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Abstract
The inflationary hypothesis was introduced as a solution to the fine-tuning issue

in the initial conditions of the Big Bang theory. In this Master’s research project, we
introduce our work in the search for features in the Cosmic Microwave Background
(CMB) power spectra that could result from reductions in the speed of sound of the
inflaton. We study these features in the context of an effective single field theory
of a multiple field scenario, due to the fact that a single field inflation approach is
favoured by the current cosmological data, especially by the CMB. First, we present
a brief review of the current cosmological model, the ΛCDM model, inflation and
the possible extensions. Secondly, we review the physics of the CMB, the main
theoretical cosmological codes and the needed data analysis tools from the point of
view of Bayesian statistics. Finally, we update our current search for features using
Planck 2015 temperature and polarization data introducing new parametrizations for
the reduction of the speed of sound. In this search, we have recovered only some
previous found modes, indicating the dependency of our results with respect to the
parametrization we were using. For this reason, we have pointed out the necessity of
reconstructing the reduction of the speed of sound, showing some preliminary results
when Gaussian Processes are used as the reconstruction technique.
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Chapter 1
Preface

“Cosmologists are (masters) of
knowledge within ignorance”

Vicente Atal [17]

For many years, cosmologists have tried to narrate the biography of the universe
with the purpose of establishing its structure, properties, evolution along time, and fate.
Thanks to cosmological observations, we may have some confidence in its evolution
from the time of creation of the first nuclei up to the present. Yet, in earlier times, we
lack cosmological information and speculation dominates.

Still, a substantial development in modern cosmology has been made in the latest
years, improving the understanding of our universe. Cosmologists have worked hard to
find a cosmological model that is able to explain the current data. This theory is the
ΛCDM model. According to this model and observations, our universe has mainly two
components: Dark Energy (Λ) and Dark Matter (DM). Apart from the remarkable
fact that we know the “ingredient recipe” of our universe, we also agree when we state
that these two main constituents are unknown.

Furthermore, this cosmological model is based on the hypothetical inflation paradigm.
In order to explain the observations, we postulate that the universe, at the very early
stages of its evolution, expanded almost exponentially in a very short period of time.
This is the key to explain why the universe seems (and is) causally connected and flat,
apart from giving a mechanism to seed the inhomogeneities of our universe, which are
the origin of its Large Scale Structure (LSS).

But, can we support inflation experimentally? At the moment, the cosmological
data favour a model with only one field responsible for driving inflation. However, most
unification theories predict the existence of more degrees of freedom. For this reason,
we could attempt to use an Effective Field Theory (EFT) approach. This approach
can build bridges to conciliate both points of view.

The main aim of this thesis is to analyse the hypothetical imprint that the reduction
of the speed of sound of the inflaton can leave in the sky when it is supported by a
heavy extra field. For that, we have developed a modification of the ΛCDM model
and we have tested it against the Cosmic Microwave Background (CMB) data in order
to find constraints on the primordial power spectrum.



2 Preface

This thesis is organized as follows. In chapter 2, basic theoretical concepts of the
thermodynamical history of the universe and the currently accepted cosmological model
are outlined. Moreover, also in this chapter, we argue why we need inflation: we review
the major fine-tuning problems in the initial condition of the Big Bang theory, and how
inflation is a solution to them. Furthermore, in chapter 3, extensions of the simplest
model of inflation from an EFT point of view are outlined, focusing on the possible
observational signatures. In chapter 4, we describe the main analysis tools required
to pursue the goal of this research. For that, we start by explaining the information
encoded in the CMB and how to use it to study its agreement with our cosmological
model. Furthermore, an introduction to Bayesian Statistics, data manipulation and
Machine Learning (ML) is also contained in this chapter. In chapter 5, we show our
main results and the current state of art, explaining how we hare partially recovered
some promising results from previous research of features in the primordial power
spectrum. Finally, we expose our conclusions and future plans in chapter 6.

In order to keep this thesis to manageable proportions, three appendices have been
also included. The first two detail the computational work carried out parallel to the
search for features. In appendix A, we present the new cosmological code cobaya,
whose performance has been tested in this project. In appendix B, we describe the
relevant modification we have coded in the cosmological code camb, which is planned
to be included in the new public version release in the near future. The last appendix,
C, describes how the effective single field action used to predict the features in the cor-
relation functions is obtained from an inflationary theory where a heavy field supports
the inflaton.

This research project shows not only the already accomplished results, but our
current work in the search for features. This work is aimed to be expanded in the
incoming years. Therefore, up to my mind, this thesis not only represents the final
stages of my Master’s education but also the beginning of the next researching steps
as a PhD student.



Chapter 2
Introduction to Standard Cosmology

“One may wonder: What came
before? If space-time did not exist
then, how could everything appear
from nothing?... Explaining this
initial singularity—where and when
it all began—still remains the most
intractable problem of modern
cosmology”

Andrei Linde [5]

In this self-contained chapter, a review of the most important concepts of the
standard model of cosmology can be found. The main ideas and concepts are based on
[19] and [22], and this is why, for the sake of brevity, most of the detailed calculations
are not shown. In this thesis, we are using natural units c = ℏ = 1, and the reduced
Planck mass, MP , is defined as MP =

√
1

8πG
. The derivative with respect to the cosmic

time t is denoted as df/dt = ḟ , and with respect to the conformal time τ , df/dτ = f ′.

2.1 Evolution of a homogeneous and isotropic Uni-
verse

Cosmological observations support the idea that the Universe is mostly isotropic on
large scales. If we also assume that we are not a special observer in the Universe,
homogeneity of space is inferred. These two characteristics are the foundations of
the cosmological principle. In the language of General Relativity, such a universe is
described by the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, defined as

ds2 = gµνdx
µdxν = −dt2 + a2(t)γijdx

idxj, (2.1)

where:

• µ, ν, i, j are the several indices that take the values {µ, ν} = {0, 1, 2, 3} and
{i, j} = {1, 2, 3}.

• a(t) is the so-called scale factor, which accounts for the relative size of space-like
hypersurfaces at a given time.

• x is the comoving coordinate, which defines a fixed set of grid points on a
coordinate grid that grows with the expansion of the universe according to the
scale factor a.
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• t is the cosmic time, which is the time measured by comoving observers (observers
who move with the space expansion determined by the rate of change of the scale
factor a).

• γij is the tensor corresponding to the spatial part, which using spherical coordi-
nates (r, θ, ϕ) and together with the differentials dxidxj takes the form:

γijdx
idxj = dr2

1− κr2 + r2dϕ2 + r2 sin θ2dθ2, (2.2)

where κ is the intrinsic curvature of 3-surfaces, and represents a flat (κ = 0),
positively curved (κ = +1), or negatively curved (κ = −1) spatial slice. Also, we
usually call the angular part dΩ:

dΩ2 ≡ r2dϕ2 + r2 sin θ2dθ2. (2.3)

For convenience, we often perform a conformal transformation of the metric in equa-
tion 2.1 using the scale factor as a common factor,

dτ = dt

a
→ ds2 = a2(τ)

[
−dτ 2 + γijdx

idxj
]
, (2.4)

where τ is usually called conformal time. Light travels along null-geodesics (ds2 = 0),
and according to the transformed FLRW metric (2.4), its propagation is the same as
in Minkowski space. The conformal time, although it simplifies the equations, does not
measure the proper time corresponding to any particular observer in the universe.

Therefore, as a(t) is the factor that defines the evolution of the universe at large
physical distances, understanding the history of the universe is analogous to determining
the dependence of the scale factor on function of time. To this aim, it is necessary
to solve the Einstein Equations. In these equations, an expression for the Energy-
Momentum Tensor, Tµν , is needed. It corresponds to the matter side of the equations.
The cosmological principle requires that Tµν takes the form of a perfect fluid, which in
comoving coordinates is defined as,

Tµν = diag(ρ, p, gii), (2.5)

where ρ is the density, p the pressure, and g is the metric of equation (2.1). Calculating
the Einstein Equations with the above given expression for Tµν , we obtain the well-
known First and Second1 Friedmann equations respectively,

H2 ≡
(
ȧ

a

)2
= ρ

3M2
P

− κ

a2 , (2.6)

Ḣ +H2 ≡ ä

a
= − 1

6M2
P

(ρ+ 3p). (2.7)

1The Second Friedmann equation is usually called acceleration equation.



2.1 Evolution of a homogeneous and isotropic Universe 5

where H is the Hubble parameter. Combining both equations (2.6) and (2.7) we obtain
the continuity equation equivalent to ∇µT

µν = 0 as,

ρ̇ = −3 ȧ
a

(ρ+ p). (2.8)

Usually in cosmology, the equation of state of a perfect fluid is defined by the dimen-
sionless state parameter, w, which is the ration between the pressure p and the density
ρ,

p = wρ with w =


0 Matter (m)
1
3 Radiation (r)
−1 Cosmological Constant (Λ)

. (2.9)

Introducing equation (2.9) into equation (2.8), we can derive the evolution of the
density of each species i as a function of the scale factor a(t),

ρi = ρi,0

(
a

a0

)−3(1+wi)
(2.10)

where the sub-index 0 indicates a reference value, which is usually taken as the one at
present time, and for convenience, we normalize the scale factor a0 = a(t0) = 1. With
equation (2.10), we can determine the evolution of the scale factor, a, on function of
time in the presence of these 3 different species: relativistic particles, such as photons
(Radiation), baryonic and dark matter (Matter), and cosmological constant. Defining
the critical density2 ρc ≡ 3M2

pH0 and the density parameter Ωi,0 = ρi/ρc (H0 is the
Hubble parameter evaluated today), we can re-write Friedman equation (2.6) as,

H2 ≡
(
ȧ

a

)2
= H2

0

[
Ωm

(1
a

)3
+ Ωr

(1
a

)4
− κ

H2
0

(1
a

)2
+ ΩΛ

]
, (2.11)

and solving the differential equation of a(t) as a function of time t for a flat geometry
(κ = 0) we obtain,

ȧ ∼ a
1
2 (1+3w) → a(t) =

t2/(3+3w) Matter and Radiation
eHt Dark energy

. (2.12)

2The definition of critical density responds to historical reasons. It is the density of a universe
with flat curvature.
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2.2 Conventional Big Bang Theory

Fig. 2.1. Schematic Timeline of the Universe (evolution of the scale factor a(t)),
highlighting key events in the history of the Universe, as a function of the cosmic time t,
redshift z and energy scales E. A division is made to remark speculative epochs of the
Universe (such as inflation), and the experimentally tested phases of the Conventional
Big Bang Theory. All acronyms can be found in the Glossary. Numerical integration
of a(t) has been done with [2].

The re-written Friedmann equation (2.11) shows how the three cosmological species
evolve differently with respect to the scale factor, and how these species also scale in
time according to equation (2.12) (see Figure 2.1). Knowing the values of the density
parameters today (Ωm,Ωr and ΩΛ), we can account for the expansion of the universe
throughout its evolution. This difference in the scaling found in equation (2.10) shows
how the universe progressed through different epochs:

Radiation→ Matter→ Dark Energy (2.13)

If the Universe is currently expanding, going backwards in time means that the Universe
was smaller, reaching a higher temperature and energy density. This thermal history is
precisely what the conventional Big Bang theory aims to explain.
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At very early stages, the universe behaved like a hot quantum gas, a thermal bath,
formed by relativistic particles. It followed the laws of particle physics, which are able
to explain the physics behind non-equilibrium processes. As a consequence of this
expansion, the universe became cooler, allowing the decoupling of diverse particles
from the thermal bath. At a temperature T ≈ 1015 K, it became more energetically
favourable for quarks to exist in bound states such as protons and neutrons instead of
being in a quark-gluon plasma. Later, neutrinos decoupled from the cosmic thermal
bath around T ≈ 1010 K. Below that temperature, high-energetic photons (gamma-
rays) are not energetic enough to produce electron-positron pairs, and the populations
of both electrons and positrons started to decrease steeply by particle-antiparticle
annihilation.

After the first 3 minutes, the early universe had reached the necessary low tem-
perature to allow several light elements (Hydrogen, Helium and some Lithium) to
be formed through a process called Big Bang Nucleosynthesis (BBN). This mecha-
nism was responsible for the transition between a radiation-dominated universe and
a matter-dominated universe. The predictions made in the context of BBN (such as
the primordial abundances of those nuclei, which can be calculated by studying the
corresponding cross-sections) are in agreement with the current experimental evidence
[26]. The primordial abundances predictions are one of the two main successes of the
conventional Big Bang Theory.

When the universe was approximately 380000 years old, the universe entered the
so-called Recombination epoch. During this time, light nuclei began to bind with
electrons to form neutral atoms. These bindings induced a drop in the number density
of free electrons. Hence, the decoupling of photons from matter took place, as photons
could no longer scatter with electrons. These photons could finally travel freely through
space, with an almost isotropic distribution. This primordial radiation of photons
is called the Cosmic Microwave Background (CMB). Its experimental detection by
Penzias and Wilson [49] represents the second main success of the Big Bang Theory.

Up to this stage, we have been referring continuously only to Baryonic Matter (BM),
which forms gas and dust. However, we know now that the universe is also composed by
a different type of matter, the Dark Matter (DM), which only interacts gravitationally.
It is assumed that DM decoupled at a very early moment in the history of the universe
and started to collapse gravitationally into halos. Thus, after recombination, stars
began to form when BM collapsed to the centre of the pre-existing DM halos. The first
stars induced a period of re-ionization of the medium. Afterwards, due to gravitation,
galaxies and clusters appeared, building what we call the Large Scale Structure (LSS)
of the universe: a web-like structure where clusters are found in filaments.

Finally, according to the current SuperNovae (SN) data [56], it has been measured
Ωm ≈ 0.3 today. Thus, it has been concluded that the universe is currently dominated
by Dark Energy (DE). This domination epoch started approximately 4 billions of years
ago [19]. In cosmology, it is convenient to use as a time variable the so-called redshift.
The cosmological redshift parameter, z, measures how stretched is the wavelength of a
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photon due to the expansion of the universe, defined as

z + 1 = 1
a(t) (2.14)

Using equation (2.14), Dark Energy began to dominated around redshift z ≈ 2.

2.3 Initial condition problems

As mentioned before, cosmological observations have accounted for experimental
evidence of the BBN as well as the CMB radiation. Nevertheless, the detection of the
CMB radiation also brought the biggest puzzles that modern cosmologists have to face.
First of all, it confirmed that our universe is currently dominated by Dark Energy.
Furthermore, it showed the necessity of fine-tuning the initial conditions of the Big
Bang. In this section, we point out the two major issues related to this fine-tuning
problem.

2.3.1 Horizon Problem

The CMB temperature has a blackbody spectrum. It shows an almost perfect isotropy
where temperature anisotropies ∆T are very small, ∆T ∼ 10−5 K. This proves that at
the moment the CMB radiation was emitted, the universe was in thermal equilibrium.
At this temperature, Thomson scattering is the dominant type of interaction among
photons. Therefore, photons could have reached equilibrium by means of Thomson
scattering. However, we know that this was not the case.

Let us introduce the concept of horizon. It is the physical magnitude that gives
the maximum distance that a photon can travel in our universe according General
Relativity. Re-writing the metric given in equations (2.1) and (2.2) in terms of the
denominated radial coordinate dχ = 1/

√
1− κr2, we find,

ds2 = −dt2 + a2(t)[dχ2 + f(χ)dΩ2], (2.15)

where f(χ) is the corresponding function which accounts for the transformation of γij

due to this change. We define the comoving particle horizon, χP , as the distance a
photon can travel radially (dΩ = 0) between an initial time 0 and a time t,

χP =
∫ t

0

dt′

a(t′) =
∫ a

0

1
aH

d ln a, (2.16)

where the factor 1/aH is denominated the comoving Hubble radius. Solving the
integral (2.16) using the equation of state (2.9), we can find that the comoving particle
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horizon for different epochs is,

χP = 2
1 + 3w

1
aH

=
a1/2 Matter-domination
a Radiation-domination

. (2.17)

Therefore, χP has always increased its size during Matter and Radiation domination.
If we calculate its size at the moment of last scattering, we discover that the CMB radi-
ation map (see Figure 2.2), is composed of ∼ 104 disconnected patches [19]. Then, the
following question arises: how is it possible we observe photons not causally connected
sharing the same temperature, if they could not interact via Thomson Scattering? This
is the horizon problem.

Fig. 2.2. Reconstruction of the CMB map using Planck and WMAP data showing
temperature anisotropies [3], superimposed to the map with no anisotropies at T ∼ 2.7
K. The small circumference is a representation of the comoving horizon χ, which
indicates the maximum distance two photons can be apart from each other in order to
be in causal contact.

2.3.2 Flatness Problem

Re-arranging equation (2.11) and evaluating it today, we obtain,
∑

i∈{m,Λ,r}
Ωi − 1 = Ωm + ΩΛ + Ωr − 1 = κ

a2H2
0
. (2.18)

The analysis of the CMB radiation also gives us constraints on the values of the density
parameters for different species. It shows that ∑i Ωi ≈ 1, and therefore, κ

a2H2
0
→ 0,

meaning that our universe is flat today.
Having a flat universe today is not a problem per se. The problem is that, because

we know how the density scales in time, in order to obtain a flat universe today, we
needed to have a flatter universe in the past. We can estimate the fine-tuning needed
in order to reach the current situation of flatness. In fact, according to the calculations,
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we need to fine-tune, at least, at the moment of BBN:

|
∑

i∈{m,Λ,r}
Ωi(aBBN)− 1| ∼ 10−16. (2.19)

This need of fine-tuning in the components of the universe is called the flatness
problem.

2.4 Introduction to Inflation
As seen before, the conventional Big Bang theory cannot give us an answer to the
previously mentioned problems, in spite of predicting successfully many other observa-
tions. Moreover, the Big Bang theory cannot give an explanation to the primordial
inhomogeneities, which are traced in the CMB radiation as its tiny temperature
anisotropies.

2.4.1 Inflation as a solution to the initial conditions problem
The goal to address is the following: can we extend the conventional Big Bang Theory
to solve the fine-tuning problems? Observing both equations (2.16) and (2.18) (the
latter evaluated at any arbitrary value of the scale factor), we see that both expressions
depend on the comoving Hubble radius, 1/aH. Moreover, from these two equations, we
deduce that a decreasing comoving Hubble radius in a very early stage of our universe
could solve both issues:

d

dt

( 1
aH

)
< 0. (2.20)

The period in the history of our universe in which it underwent an accelerated expansion
is called inflation.

Fig. 2.3. Schematic representation of the solution to the horizon problem by means of
introducing a decreasing comoving Hubble radius 1/aH. Adapted from [19].
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Let us review both the horizon and flatness problem individually. The key to
understanding how inflation solves the horizon problem is related with the definition
of the comoving Hubble radius, 1/aH. The comoving Hubble radius points out the
maximum distance two particles can be separated today to remain in causal contact.
If the comoving Hubble radius was larger than expected early on, that would imply
that χP is currently larger than 1/aH. Therefore, and although the particles cannot
communicate today, they could have been causally connected at earlier stages of the
universe.

Using equations (2.6), (2.7) and (2.9), we observe how a decreasing comoving Hubble
radius, 1/aH, is equivalent to defining a period of accelerated expansion or a period
where a fluid violating the strong energy condition dominates (negative pressure):

d

dt

( 1
aH

)
< 0 ←→ d2a

dt2
> 0 ←→ ρ+ 3p < 0 ←→ ω < −1

3 . (2.21)

Re-writing the first term of equation (2.21), we obtain

ϵ ≡ − Ḣ

H2 = −d lnH
dN

< 1, (2.22)

where N is the number of e-folds (number of expansion times of the universe so that
dN = Hdt), ϵ is usually called the first slow-roll kinematic parameter, which can be
seen as a requirement for the Hubble parameter to change slowly (adiabatic theorem).
If ϵ = 0, it implies that H is constant and that inflation would be dominated by a
never-ending exponential growth of the scale factor as described in equation (2.12)
for ω = −1. This is called de Sitter expansion. However, and in order to agree with
cosmological observations, inflation has to end, consequently 0 < ϵ < 1.

Moreover, if we want inflation to solve the horizon and flatness problems, it also
needs to last an enough period of time. For this reason, a second parameter is
introduced. This parameter, η, studies the relative change of ϵ during one e-fold as
follows

η ≡ −d ln ϵ
dN

= − ϵ̇

Hϵ
, (2.23)

and is known as the second slow-roll kinematic parameter. We require 0 < η < 1 for
inflation to last. To have slow-roll inflation, we require that {ϵ, η} ≪ 1.

2.4.2 Single Field inflation
We have concluded that we need a new substance, which violates the strong energy
condition, in order to have inflation. For simplicity, let us model this substance as
a single scalar field ϕ that is homogeneous, so that ϕ(t,x) = ϕ(t). To describe the
dynamics of the system, the field ϕ follows the action,

S =
∫
d4x
√
−g

[
M2

P

2 R− 1
2g

µν∂µϕ∂νϕ− V (ϕ)
]
, (2.24)
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where the first term of the action describes the coupling of the inflaton ϕ to gravity
and V (ϕ) is the potential energy density that follows ϕ. Calculating Tµν from the
action (2.24) and comparing to the expression for a perfect fluid (2.5), we obtain the
corresponding expressions for the density, ρϕ, and the pressure, pϕ,

ρϕ = 1
2 ϕ̇

2 + V, pϕ = 1
2 ϕ̇

2 − V. (2.25)

Introducing expressions (2.25) in (2.6) and (2.8), we can obtain the analogous to the
continuity equation as well as the Friedmann equations in terms of V and ϕ respectively:

ϕ̈+ 3Hϕ̇+ dV

dϕ
= 0, H2 = 1

3MP

(1
2 ϕ̇

2 + V
)
, Ḣ = 1

MP

(
−1

2 ϕ̇
2
)
. (2.26)

Fig. 2.4. Graphical representation of a quadratic potential V = 1
2m

2ϕ2, for different
values of m. For this particular potential, inflation ends when ϵ ≈ 1, which in this case
corresponds to ϕ ≈

√
2MP .

Following the first equation in (2.26), in the slow-roll scenario (ϕ̈ ≈ 0), we observe
how inflation ends when the slope of the potential V is compensated by the friction
term 3Hϕ̇. This can be calculated in detail using the expressions for the slow-roll
parameters ϵ̃ and η̃:

ϵ̃ ≡ − ϕ̇2

2H2 η̃ ≡ − ϕ̈

Hϕ̇
= ϵ− 1

2
ϵ̇

ϵH
≈ ϵ− 1

2η. (2.27)

In the limit when these parameters (2.27) tend to 1, we can calculate when inflation
would end. In particular, the expression for ϵ can be used to quantify how long inflation
needs to last to solve the horizon problem as a function of the number of e-folds
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(approximately between 50-60 e-folds). Therefore, the arbitrary expression for V can be
constrained as long as it solves the horizon problem (see one example of this potential
in Figure 2.4).

2.5 Primordial perturbations
In the previous section, we mentioned that the temperature anisotropies present in
the CMB radiation are very small. Still, we cannot ignore them and in fact, they do
play a crucial role. They are the earliest imprint in the sky of those inhomogeneities in
the young universe, which were the seeds of the current stellar and galactic structure.
The accomplishment of inflation resides not only in solving the horizon and flatness
problems, but in explaining the origin of these inhomogeneities.

2.5.1 Quantum fluctuations during inflation
The origin of these inhomogeneities lies in the quantum fluctuations of the inflaton
with respect to the space-time background (encoded in the FLRW metric) and the
field ϕ. In general lines, the overview is as follows. When the universe underwent
inflation, quantum fluctuations were stretched to very large scale, accounting for the
observed structure of the universe. These fluctuations remained frozen since they left
the Hubble radius during this extreme expansion. During later stages of the universe,
when the Hubble radius increased, they started to enter the horizon, becoming the
initial density fluctuations of the universe.

To study the effect of these quantum fluctuations during inflation with respect to
the homogeneous solution, we use a perturbed expression of the FLRW metric in (2.1),
g̃µν(t,x) ≡ gµν + δgµν(t,x), and of the field ϕ(t,x) ≡ ϕ(t) + δϕ(t,x). To parametrize
δgµν , we need to fix some freedom in the choice of coordinates. In the case of inflation,
a particular choice of coordinates is usually set: the comoving gauge. This choice is
defined as,

δϕ = 0, δgij(t,x) = a2 [(1− 2R(t,x))δij + hij(t,x)] , ∂ihij = 0, (2.28)

where R denotes the scalar metric fluctuation (comoving curvature perturbation) and
hij is the tensor part (gravitational waves) of the perturbed metric. In this gauge, the
inflation field ϕ is unperturbed (the density of the fluid is constant) and the scalar
degrees of freedom are parametrized by R. Substituting equation (2.28) into the
expression of the action for a single field (2.24), and expanding in powers of R, we find
the quadratic action for the scalar metric fluctuation,

S2 = 1
2

∫
d4xa3 ϕ̇

2

H2

[
−Ṙ2 + (∂iR)2

a2

]
. (2.29)

Our goal is to derive the equation of motion for R, and show that it has a Simple
Harmonic Oscillator (SHO) form. Posteriorly, we promote the classical field R to a
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quantum operator and we quantize it. In order to solve the equations of motion derived
from (2.29), the Mukhanov-Sasaki variable v is introduced [47]. It is defined as

v ≡ zR z2 ≡ 2a2ϵ. (2.30)

Transitioning from action (2.29) using the conformal time τ , defined according to
equation (2.4), and Mukhanov-Sasaki variable v, we obtain the full quadratic action in
perturbations with canonical kinetic terms:

S2 = 1
2

∫
dτd3x

[
(v′)2 + (∂iv)2 + z′′

z
v2
]
. (2.31)

This action demonstrates that the Mukhanov-Sasaki variable v is the one we should use
as the canonical quantization variable. In the Fourier space, we obtain the equation of
motion for v:

v′′
k +

(
k2 − z′′

z

)
vk = 0. (2.32)

where vk is the amplitude of the Fourier mode, and depends only on the magnitude of k.
Equation (2.32) resembles the equation of a Simple Harmonic Oscillator (SHO) with a
mass depending on the conformal time m2(τ) ≈ −z′′/z. Therefore, the quantization of
the field v is obtained analogously to the treatment of the quantum SHO. We promote
v and its corresponding conjugate momentum v′ to a quantum operator v̂,

v̂k = vkâk + v∗
kâ

†
k, (2.33)

where âk and â†
k are the creation and annihilation operators, which satisfy the canonical

commutation relation
[âk, â

†
k′ ] = −(2π)3δ(k− k′). (2.34)

Solving equation (2.32) is complicated as z depends on the background dynamics.
However, some insight can be obtained if we study certain limits and constraints.
An important constraint can be imposed at the earliest stage of our universe, when
τ → −∞, which implies that all comoving scales were within the Hubble horizon. In
this limit, we choose the vacuum state for the fluctuation,

âk |0⟩ = 0, (2.35)

meaning that every mode k is assumed to have started its evolution in the vacuum
state, such that there was not particle production. According to this, modes with high
k do no feel the curvature of space time, and the expectation value of the Hamiltonian
in the minimal energy state corresponds to the one in flat (Minkowski) space [16]. This
boundary condition is known as the Bunch-Davies vacuum.
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In the quasi-De Sitter regime, where H and ϵ are approximately constant, the full
solution to equation (2.32) is,

vk(τ) = e−ikτ

√
2k

(
1− i

kτ

)
. (2.36)

As mentioned in the beginning of the section, modes within the Hubble radius exited
the horizon during inflation. In the literature, the modes with a wavelength smaller
than the Hubble radius are called sub-horizon modes (aH < k), whereas modes whose
wavelengths are bigger than the Hubble radius are known as super-horizon modes
(aH > k). We can trace the history of a mode by studying the asymptotic limits of
the solution (2.36) in the quasi-De Sitter case (H, ϵ ≈ const):

• |kτ | ≫ 1 ↔ k ≫ aH: the solution of vk(τ) is dominated by the oscillating
exponential part e−ikτ . This is just the result of imposed the above-mentioned
Bunch-Davis vacuum.

• |kτ | ≪ 1↔ k ≪ aH: the dominant contribution to the solution is the divergent
factor 1/τ . This means that, in this range, equation (2.36) is,

lim
−τ→0

vk(τ) = 1√
2k3/2τ

∝ aH

k3/2 (2.37)

where we have used that τ ∼ (aH)−1. Recovering the definition of v from
equation (2.30), we find that the curvature perturbation R is constant:

R = v

z
= v

a
√

2ϵ
∝ H

k2/3√ϵ
→ lim

−τ→0
Ṙ = 0, (2.38)

where this expression for R should be evaluated for each mode at the Hubble
crossing radius k = aH.

In conclusion, during inflation, quantum fluctuations in the inflaton field led to some
parts of the universe being stretched to for a larger period of time than others. These
sub-horizon scales exited the horizon due to the accelerated expansion of the universe,
becoming super-horizon, where they remained frozen until they re-enter the horizon at
later stages of the universe (see Figure 4.1). The before mentioned local time delay
for inflation translated into density fluctuations, which follow their evolution during
radiation-matter domination. These local differences in density became the CMB
temperature anisotropies, which seeded all the current structure of the universe.

2.5.2 Spectrum and bispectrum
As described in the previous subsection, we can relate the CMB temperature anisotropies
with perturbations of the field R. In order to characterize these perturbations, it is
convenient to define the power spectrum, PR(k), and the bispectrum, BR(k). They
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are the Fourier transforms of the real-space two-point and three-point correlation
functions respectively. To study the probability distribution of these perturbations in
our universe, we usually average the ensemble of all possible R. The corresponding
expressions are,

⟨R(k1)R(k2)⟩ ≡ (2π)3δ3(k1 + k2)PR(k), (2.39)
⟨R(k1)R(k2)R(k3)⟩ ≡ (2π)3δ3(k1 + k2 + k3)BR(k) (2.40)

where both PR(k) and BR(k) depend only on the magnitude of the momentum scale
k = |k|, and not on the direction.

• The power spectrum, PR(k), is usually redefined as a dimensionless quantity,
P(k), as

PR(k) = k3

2π2PR(k). (2.41)

Assuming slow-roll canonical single field inflation; that is, using equation (2.38),
P(k) takes the form

PR(k) = 1
8π2

H2
∗
ϵ
, (2.42)

where H∗ is the Hubble parameter evaluated at horizon crossing k = aH. From
the observational point of view, a phenomenological parametrization of PR(k) is
used in terms of a power law. Up to the first order the expression is

PR(k) = As

(
k

k∗

)ns−1

, (2.43)

where k∗ is a pivot scale, As is the scalar amplitude and ns is called the spectral
index. The spectral index quantifies the scale dependence of PR(k). The dimen-
sionless power spectrum is expected to be nearly scale-invariant. During slow-roll
inflation, H and ϵ are not exactly constant. This time-dependence of the Hubble
parameter (during inflation, the Hubble parameter decreases as ϵ increases) in-
duces a slightly increment of PR(k) for low values of k. In the canonical slow
roll inflationary regime, ns is related to the slow roll kinetic parameters as

ns = 1− 2ϵ− η. (2.44)

We know that ϵ and η are expected to be small, which indicates that ns should
slightly deviate from one. If we assume that the distribution of the density pertur-
bations is Gaussian, the power spectrum contains all information to characterize
it. Moreover, the parametrization (2.43) is also used for the perturbations of the
metric (tensor modes),

Pt(k) = At

(
k

k∗

)nt

, (2.45)
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where At is the tensor amplitude and nt is the tensor tilt. The ratio between
both, the scalar and tensor amplitudes, is called the tensor-to-scalar ratio:

r = At

As

. (2.46)

• The bispectrum, BR(k), quantifies the deviations from Gaussianity of the
distribution of density perturbations. The bispectrum is evaluated on vectors
k1,k2,k3. These vectors are constrained under the triangular inequality. The full
bispectrum for a canonical single-field, slow-roll inflation was calculated in [45]:

BR(k1, k2, k3) = (2π)4PR
2

(k1k2k3)2
1

8k1k2k3

{
(3ϵ−2η)

3∑
i=1

k3
i +ϵ

3∑
i ̸=j=1

kik
2
j +ϵ 4∑3

i=1 ki

3∑
i=1

k2
i k

2
j

}
.

(2.47)

where ki =|ki|. Regarding its shape, BR(k) is classified as,
squeezed if k3 ≪ k1 ∼ k2

equilateral if k3 ∼ k1 ∼ k2

flattened if k3 ∼ k1 + k2

. (2.48)

Fig. 2.5. Oscillations in the normalized bispectrum S, related to BR(k) as BR(k) ≡
(2π)4A2

sM
6
P (k1k2k3)−2S, corresponding to non-gaussianities due to a reduction in the

speed of sound (see chapter 3 and appendix C). Notice the oscillatory shape, as well
as the π/2 phase difference between the squeezed and the equilateral and flattened
(folded) shapes. [58].
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2.6 Cosmological Standard Model
The cosmological observations obtained by the WMAP and Planck missions, which
have studied the anisotropies of the CMB, have led to the conclusion that we live in a
spatially flat universe. It contains less than 5% of Baryonic Matter (BM), approximately
26% of Cold Dark Matter (CDM) and almost 70% of Dark Energy (DE), making the
percentage of radiation negligible today.

The simplest cosmological model that takes into account the predictions made by
conventional Big Bang theory and inflation is known as the Standard Model of Cosmology
or the ΛCDM model. To explain most of the current cosmological observations, this
model requires only six free parameters, whose values have been obtained with high
accuracy (see in Table 2.1). The procedure and techniques to obtain the values of these
parameters using cosmological data coming from the CMB are explained in detail in
chapter 4.

Symbol Description Value
Ωbh

2 density parameter of BM 0.02225± 0.00016
Ωch

2 density parameter of CDM 0.1198± 0.0015

100θMC
measure of the sound

horizon at last scattering 1.04077± 0.00032

τreion
Thomson scattering optical
depth due to reionization 0.079± 0.017

ln (1010As)
scalar amplitude of

equation (2.43) 3.094± 0.034

ns
spectral index of
equation (2.43) 0.9645± 0.0049

Table 2.1. Mean values of the ΛCDM cosmological parameters and their corresponding
uncertainties, obtained by statistical inference using CosmoMC and Planck temper-
ature and polarization data (see chapter 4) [51]. The parameter h represents the
reduced Hubble constant defined as h ≡ H0/(100kms−1Mpc−1). The scale amplitude
As is fitted using a redefinition of it as ln (1010As) by the Planck collaboration. The
inflationary parameters ns and As were evaluated at the pivot scale k∗ = 0.005 Mpc−1.



Chapter 3
Beyond the simplest model of inflation

“One particular question [...] is
whether or not there are features, or
localized deviations from scale
invariance, in the primordial power
spectrum”

J. Chluba, J. Hamann, S. Patil [25]

3.1 Introduction
In Chapter 2, we have shown how our universe is well described by the ΛCDM model,
which is supported by current cosmological observations (see Table 2.1, [51]). We have
also pointed out how the inflation paradigm provides a suitable fundamental physical
explanation for the origin of the current structure of our universe. In fact, we have
defined two of these 6 parameters in the ΛCDM model, the scalar spectral index ns

and the scalar amplitude of the primordial power spectrum As, which are in direct
connection to inflation.

One may argue that statistical tools can be used on the current cosmological data
to select the best cosmological model based on an alternative model of inflation, which
predicts deviations for any of these inflationary ΛCDM parameters. Thus, the question
seems straightforward: is there any other way of handling the data to increase our
skills to distinguish between inflationary models or to finally support the inflationary
hypothesis? [25]. In order to answer this question, we need to study the signatures
beyond the canonical single field inflation scenario. Canonical single field inflation is
defined as [16]:

• single field slow roll inflation: there is only one degree of freedom controlling the
dynamics and the slow-roll parameters defined in chapter 2, which fulfil ϵ, η ≪ 1.

• the inflaton has canonical kinetic terms with speed of sound cs = 1 in natural
units.

• it is minimally coupled to gravity.
• it follows Bunch-Davies initial condition, as described in chapter 2. The sub-

horizon modes experienced Mikowski space-time.

One possible starting point is to study deviations in the power-law Primordial
Power Spectrum (PPS), expressed in equation (2.42). Usually, deviations of the
usual power law spectrum are encoded in higher powers of the Taylor expansion of
equation (2.42) in terms of log(k/k∗), such as the parameter αs:
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PR = As

(
k

k∗

)ns−1+ 1
2 αs ln (k/k∗)

, (3.1)

where αs is called spectral running index, and in the case of slow-roll inflation is
expected to be very small. Other inflationary scenarios, as we will see below, predict
more complex changes in the PPS (see figure 3.1, where a toy model for a modification
of the power-law PPS, ∆PR/PR0, is shown). These localized deviations from the
power-law spectrum, as well as in higher-order correlation functions, are usually known
as features. The PPS is intimately related with the temperature power spectrum of
the CMB1). However, most inflationary model predictions at the level of the PPS tend
not to be statistically significant enough, which may complicate the analysis of the
data to support one inflationary model against other [28].

(a) Primordial Power Spectrum (b) CMB Temperature Power Spectrum

Fig. 3.1. The PPS is the basis for the CMB power spectra: changes with respect the
power-tilt law induce noticeable variations in the CMB temperature power spectra.
The (localized) deviations from the PPS power-law, ∆PR/PR, are commonly called
features. Example created using the development version of CAMB (see Appendix B)
and a toy-model from M. Martinelli [39].

The canonical single field scenario of inflation states that fluctuations of the inflaton
field on large scales correspond to a local shift backwards or forwards in the trajectory
of the homogeneous background field. In chapter 2, we argued how these shifts along
the trajectory affect the total density in different parts of the universe after inflation;
however, it cannot affect the relative number density among the several components:
the perturbations are adiabatic, defined by the curvature perturbations R, meaning
that the perturbations of all the universe’s components came from the same curvature

1Further information about how the CMB power spectrum is modelled can be found in chapter 4.
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perturbation. If this adiabaticity condition is somehow violated, it may point out to
different inflationary models.

Finally, in chapter 2, we mentioned that if the curvature perturbation R is Gaussian,
the distribution of the perturbations is fully characterized by the PPS, PR. Nevertheless,
violations of any of the canonical single field conditions detailed before can generate
non-gaussian signals. Thus, non-gaussianity signatures can be encoded in higher
correlation functions such as the bispectrum BR. Constraints on non-gaussianity are
difficult to quantify, but there are mainly four templates for the three-point correlation
function which have been historically studied [38].

• One of them describes non-gaussianity by using the following parametrization
[19]:

R(x) = Rg(x) + 3
5fNLR2

g(x), (3.2)

where Rg is the Gaussian comoving curvature perturbation and fNL controls the
skewness of the probability density function. This is a local configuration that
peaks in the squeezed limit in the momentum space (see equation (2.47)). In this
limit, the amplitude of the bispectrum is proportional to the tilt of the PPS [45].
This pattern is often produced in multi-field models.

• Another template studies the equilateral shape (see again equation (2.47)), for
which the non-gaussianity signal is generated by single field inflation models
with non-canonical kinetic terms (cs ̸= 1), and in models with higher-derivative
interactions in the Lagrangian (such as in effective field theories).

• The third template is the so-called folded where the signal peaks for flat triangles
(see equation (2.47)). These non-gaussian signals are produced in single field
models initially lying in a non-Bunch-Davies vacuum and in models with higher-
derivative interactions.

• There exists a fourth one, known as orthogonal, which distinguishes among
variants of non-canonical kinetic terms.

3.2 Effective Field Theory of Inflation
The bispectrum, as well as higher correlation functions, can be used to study models
beyond the canonical single field scenario. The simplest approach to generate a
three-point correlation function, the bispectrum, consists of writing an explicit third
order interaction in the Lagrangian. For that, we are going to follow an Effective
Field Theory (EFT) methodology to characterize the theory of fluctuations around
an inflating cosmological background. This approach is an approximation of a more
fundamental theory, based on describing a system through the appropriate degrees of
freedom associated to the underlying symmetries. It has been widely used in different
fields such as particle physics or condensed matter.

Following EFT of inflationary perturbations [24], we can construct an effective
action for the Goldstone boson of time diffeomorphisms π(t,x), which is related to
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the curvature perturbation R through the relation R = −Hπ up to linear order (see
appendix C). The effective single field action up to third order, neglecting higher
order slow-roll corrections (∼ O(ϵ2)) and assuming π̇3 to be small and approximately
constant is given by,

S2 =
∫
d4xa3M2

P ϵH
2
[
− π̇

2

c2
s

+ (∂iπ)2

a2

]
; (3.3)

S3 =
∫
d4xa3M2

P ϵH
2
[
−2Hsc−2

s ππ̇2 − (1− c−2
s )π̇

(
π̇2

c2
s

− (∂iπ)2

a2

)]
, (3.4)

where the background information is contained in ϵ(t) and cs(t), and s(t) parametrizes
the change in the speed of sound cs(t) such as

s ≡ ċs

(csH) . (3.5)

The physical details of the theory are encoded in the speed of sound cs, and in its
corresponding change rate according to s. Note also that equation (3.3) reproduces
the action for R (2.28) in the single field scenario.

This last fact is important. Single field inflation is the simplest theoretical model of
inflation, which is able to fit the cosmological data within ΛCDM . Overall, it becomes
a suitable and convenient model. Nevertheless, further unification theories have extra
degrees of freedom at higher energies, and therefore, may suggest that inflation could
be driven not by one single field but by multiple ones. These extra degrees of freedom
will cause deviations from the standard canonical single field scenario: features in the
primordial power spectrum or in the bispectrum (non-gaussianity) and non-adiabatic
perturbations. Detecting any of these signatures will add information about the physics
at the very early stages of our universe. Thus, EFT is crucial in this aspect, as it may
reconcile the cosmological data with the unlikely possibility of having just one degree
of freedom.

We now explain how an effective theory for curvature perturbation R, when a
strong turn in the inflationary trajectory supported by a heavy field F with “effective
mass”2 Meff , gives interesting signatures in cosmological observables [10, 23, 17]. In
this case, the curvature perturbation is kinetically coupled to the heavy field. We will
not discuss the details of the procedure, but instead, we will draw the most important
steps when we analyze the evolution of the fields R and F when the trajectory is
turning at rate3 Ω. The details of the procedure can be found in appendix C. The goal
is to stress that the turning in the trajectory causes a reduction in the speed of sound
cs, which produces a characteristic pattern in the PPS and in the bispectrum, as we
will see in section 3.3.

2The term “effective mass” is used for historical reasons but it can be misleading, as it is not a
proper mass.

3Do not mix up the density parameter Ωi, introduced in chapter 2, with this angular rate Ω
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The equations for R and F as a function of time form a coupled system of equations
whose solutions are expressed in terms of a harmonic expansion, defined in terms of
two frequencies ω+ and ω−. The values of the frequencies depend on the wave number
of the mode k. We can differentiate between two regimes:

• k/a ≫ Meff : both fields behave as massless and oscillate with frequencies
proportional to k/a.

• Meff ≫ k/a ≫ H: the modes are no longer degenerated and the frequencies
become ω− ∼ k/a and ω+ ∼Meff . In this regime, the effective action for R can
be obtained by integrating out the heavy field F (see appendix C).

This effective action is similar to the EFT of inflation equation (3.3), where
R = πH, but the speed of sound cs of the adiabatic perturbation R is given as,

c−2
s = 1 + 4Ω2

k2/a2 +Meff

, (3.6)

which implies that cs is related to the angular velocity Ω when there is a turn
in the inflationary trajectory, inducing a momentary reduction on the speed of
sound cs.

3.3 Transient Reductions of the Speed of Sound

We have seen that, when the heavy field can be consistently integrated out, we obtain
an effectively-single field theory with a variable speed of sound cs(t). The effect of
this variable speed of sound cS(t) can be seen in the primordial power spectrum PR,
in the bispectrum BR, etc. In particular, transient variations of cs produce localized
oscillatory and correlated features in both PR and BR [13, 15, 25, 58].

In this section, we focus on this transient, moderately sharp and mild reduction in
the speed of sound cs. Concretely, in this case, the effects coming from this reduction
of the speed of sound are larger than the slow-roll corrections but small enough to be
studied at linear order. This transient reduction in cs induces corresponding effects
on PR and BR, which can calculated using the in-in formalism. This approach is a
generalization of the path integral formalism of quantum field theory [37, 61].

Within this approach, the change in the primordial power spectrum ∆PR is given by
the Fourier transform of the reduction in cs, and the bispectrum can be calculated up
to leading order as a function of the corrected power spectrum ∆PR/PR0. This approx-
imation was called, following Achúcarro et al., the Slow-Roll Fourier Transformation
(SRFT) method [11].

To calculate the modifications in the power spectrum ∆PR/PR0, we divide the
quadratic action of EFT of inflation, equation (3.3), into a free part (resembling single
field inflation) and a small perturbation:
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S2 = S0 + Spert =

=
∫
d4xa3M2

P ϵH
2
[
π̇2 − (∂iπ)2

a2

]
︸ ︷︷ ︸

S0

−
∫
d4xa3M2

P ϵH
2
[
π̇2(1− c−2

s )
]

︸ ︷︷ ︸
Spert

. (3.7)

Transitioning to the conformal time, and using the mentioned in-in formalism τ
and the following definition of the variable u,

u(τ) ≡ (1− c−2
s (τ)), (3.8)

we calculate the change in the primordial power spectrum ∆PR as the Fourier transform
of the reduction in the speed of sound cs:

∆PR

PR0
= k

∫ 0

−∞
dτu(τ) sin (2kτ), (3.9)

where PR0 is the single field inflation featureless power spectrum with cs = 1 defined
by equation (2.41).

For the case of the bispectrum, to leading order in u and s, we can also calculate
the change ∆BR using again the in-in formalism:

∆BR = (2π)4PR
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(3.10)

where ki =|ki| and k ≡ (k1+k2+k3)/2, and ∆PR/PR0 and its corresponding derivatives
are evaluated at k. We can observe how, in the squeezed limit set by equation (2.47),
equation (3.10) resembles the single field consistency relation (2.45). Moreover, we also
see how the bispectrum expression is written in terms of the features of the scalar power
spectrum, ∆PR/PR0, correlating the primordial power spectrum to the bispectrum.

The action described in equations (3.3) and (3.4) is perturbative in terms of the
speed of sound cs. It implies that the reduction in the speed of sound, cs, cannot be
too big (condition given by u≪ 1) nor too fast (condition given by s≪ 1). Also, we
have already mentioned that the slow-roll regime is kept throughout, and therefore,
the contributions of the slow-roll corrections ϵ, η have to be smaller than those of the
variable speed of sound cs. We need to impose these conditions for all values of τ , but
it is enough to restrict ourselves at the point τm where u and s take their maximum
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value [u(τm), s(τm)] = [umax, smax]. In short:

ϵ, η ≪ max(u, s)≪ 1. (3.11)

In chapter 5, we search for this particular set of features due to a transient reduction
of the speed of sound in the CMB, after reviewing how to explore the cosmological
data thanks to many analysis tools in Chapter 4.





Chapter 4
Data Analysis Tools

“Creating the tools for
computer-assisted calculations,
programming or coding,
is (theoretical) physics research in
the same way as algebraic
calculations are”

Jesús Torrado [60]

In chapters 2 and 3, we have detailed the theoretical background of the standard
cosmological model, the framework for the simplest inflationary theory and the extension
of the model that we aim to study further.

In order to carry out our research, it is essential to understand and master the
data analysis techniques and the necessary computational tools. For this reason, this
chapter aims to be self-contained to be used in the future as a reference guide for the
basics of cosmological analysis. First, it is explained how to connect inflation and
predictions to the Cosmic Microwave Background (CMB) data [19, 27]. Second, we will
provide a brief introduction to Bayesian Statistics [55], Machine Learning techniques
[54] and tools used in the data analysis of this research project.

In this chapter, we use the notation ⟨f⟩ to indicate the average over the ensemble.

4.1 Cosmic Microwave Background

4.1.1 Connection to inflation
In chapter 2, we have mentioned that the power spectrum of density perturbations
can be modelled as a power law. The connection between inflation and the current
cosmological observations is mainly done by the study of the anisotropies of the CMB
and the LSS of our universe. In this thesis, we will focus on the connection between the
CMB spectra and the primordial power spectrum. The Primordial Power Spectrum
(PPS) (2.43), which encodes the distribution of the comoving curvature perturbation,
R, remains constant when it exits the horizon during inflation (see Figure 4.1). When
R re-enters, it starts to evolve according to the physical laws that describe radiation
and matter domination. Therefore, we need to know the time evolution of the comoving
density curvature perturbation R, so that we can relate it to a cosmological observable
Qk(τ) (for instance, the temperature anisotropies of the CMB [19]). Schematically:

Qk(τ) ∼ ∆TQ(k, τ, τ∗)Rk(τ∗), (4.1)
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where ∆TQ is the so-called transfer function between R, at conformal time of horizon
crossing τ∗, and a cosmological observable Q, at a later time τ .

Fig. 4.1. Graphical representation of the history of a particular comoving scale k−1

(dashed blue line) leaving the comoving Hubble radius 1/aH due to inflation, remaining
constant when it is superhorizon, and re-entering during the conventional Big Bang
period. The evolution of k−1 after re-entering is encoded in the transfer function ∆TQ,
which can be later related to cosmological observations such as the angular power
spectrum Cℓ of the temperature anisotropies of the CMB. Adapted from [19].

How do we relate Qk to the anisotropies of the CMB map? The procedure consists
on decomposing these temperature anisotropies1, ∆T/T0, using a harmonic expansion
of the map:

∆T
T0

=
∑
ℓm

aℓmYℓm, (4.2)

where T0 ≈ 2.7 K is the background temperature of the CMB, Yℓm are the spherical
harmonic basis on a 2-sphere, and aℓm are the coefficients of the decomposition (usually
denominated multipole moments), defined as,

aℓm =
∫
dΩY ∗

ℓm

∆T
T0

, (4.3)

with dΩ being the angular differential in spherical coordinates, ℓ = 0, 1, 2 corresponding
to the monopole, dipole and quadrupole respectively, and m = −ℓ, ...,+ℓ. The multipole
ℓ is proportional to the scale k (described in chapter 2) and inverse to physical distance

1We have maintained the notation used in [19] for the temperature and the transfer function. We
should not confuse the transfer function, ∆TQ, with the differences in temperature ∆T .
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scales (low values of ℓ correspond to two points on the CMB radiation map that are
very separated). We can use the information encoded in equation (4.3) to calculate
the corresponding angular power spectrum of the CMB temperature map:

CT T
ℓ = 1

2ℓ+ 1
∑
m

⟨a∗
lm, alm⟩ . (4.4)

For low values of ℓ, there is an intrinsic limit related with the accuracy of Cℓ. This is
due to the few possible measurements at large physical distances on the CMB map:
the Cosmic Variance (see figure 4.2 and observe the large error bars until ℓ ≈ 200).

The angular power spectrum (4.4), obtained experimentally by the Planck mission,
can be observed in figure 4.2, together with the theoretical prediction from the standard
model of cosmology. However, how do we establish the relation with ΛCDM in
order to obtain the theoretical prediction? Recovering our original question expressed
mathematically in equation (4.1), we find the analogy between aℓm and Q with the
transfer function ∆TT as

aℓm ∝
∫
d3k(2π)−3∆T T

ℓ (k)R(k)kYℓm, (4.5)

where the transfer function ∆TT encodes the physical effects on the evolution of the
temperature. Substituting equation (4.5) into (4.4) we obtain,

CT T
ℓ = 2

π

∫
k2dkP (k)∆T T

ℓ (k)∆T T
ℓ (k), (4.6)

which is the expression for the theoretical prediction of CT T
ℓ . In general, the CMB

background provides more information (more cosmological observables Q) than the
temperature anisotropies. In fact, in the CMB map we can also study polarization
modes E and B (see next subsection). Thus, the general expression for the angular
power spectra of the CMB is

CXY
ℓ = 2

π

∫
k2dkP (k)∆TX

ℓ (k)∆T Y
ℓ (k), (4.7)

where X and Y may refer either to the temperature T or the polarization modes E and
B. The Planck mission has measured successfully CT T

ℓ , CT E
ℓ and CEE

ℓ . Therefore, the
connection with the ΛCDM model is obtained computing theoretically the expression
for the transfer function ∆T , which is usually written as a line-of-sight integration that
contains the source factor SX(k, τ) and the geometric projection PX

ℓ (k|τ0 − τ |) based
on Bessel functions:

∆TX
ℓ (k) =

∫ τ0

0
dτSX(k, τ)PX

ℓ (k|τ0 − τ |). (4.8)

The computation of the transfer functions is usually done numerically. There are
several codes that are designed for this goal. The most well-known ones are class and
camb, which will be briefly reviewed in subsection 4.1.3. To understand how these
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codes work, we first need to understand the physics of recombination as well as some
concepts about polarization.

4.1.2 Understanding the CMB power spectra
This section aims at explaining very briefly the main characteristics of the CMB
temperature and polarization spectra.

Temperature anisotropies

Fig. 4.2. CMB temperature spectrum. The black dots are Planck 2015 data (from [8])
and the solid blue line is the corresponding best fit of ΛCDM obtained using camb.

The information that is encoded in the temperature power spectrum of the CMB
background corresponds to the epoch of recombination. In that period, the universe
was formed by a plasma where photons and baryons2 were coupled: the photon-baryon
plasma. These two species were coupled due to Compton scattering because the mean
free path for photons was much smaller than the horizon of the universe and the free
electron density was high. This regime is analyzed by using the Boltzmann distributions,
which describes the interaction of the different species. After recombination, photons
are no longer coupled to electrons, and they can move freely through the universe, until
today, when we detect them. The Boltzmann distributions for the different species
contribute to the source term of the transfer functions ∆T .

2In astronomy, the term baryons does not only refer to protons and neutrons, but also to electrons.
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Super-horizon modes do not evolve in time3. Thus, when we observe the anisotropies
on large scales (low ℓ), we are actually observing the perturbations which were larger
than the horizon at recombination in their most pristine form. On the other hand, the
modes at smaller scales, the sub-horizon modes, evolve over time.

When studying the early stages in the history of our universe, we are interested
in photon and matter perturbations. We know how the density scales with respect
to the scale factor for radiation and matter. Photon perturbations do not grow as
much as matter perturbations with time. Still, the pressure associated to the photon
radiation is large, up to the point that it can stop the tendency of matter towards
gravitational collapse. Therefore, this system behaves as a forced harmonic oscillator,
whose simplified equation describing the photon perturbations Θ is,

Θ̈ + k2c2
sΘ = Fg, (4.9)

where k is the scale, cs is the speed of sound associated with the photon-baryon plasma
and Fg is the gravitational force. The solution of equation (4.9) is oscillatory, which
can be clearly observed in the peaks of figure 4.2. Let us focus on a mode that enters
the horizon before the time of recombination. The perturbation starts to grow until it
reaches its maximum, suppose this happens precisely at the moment of recombination.
The scale corresponding to this mode shows large fluctuations with respect to other
scales. Thus, we expect to observe a big peak in figure 4.2 corresponding to the time
of recombination. Now, let’s imagine a mode that enters the horizon slightly earlier
in time. This mode peaks earlier and then turns over. Suppose the amplitude of the
mode is such that at the moment of recombination the amplitude due to the pressure
of the photons is zero. Then, we expect a trough on that angular scale because the
fluctuations are very small. A mode that enters even earlier may have time to go
through a complete oscillation by the time of recombination, inducing a second peak
in the power spectrum.

There are two features of the power spectrum that are worth mentioning. The first
one is the fact that odd peaks are higher. This is due to the baryons. Increasing the
density of baryons in the universe decreases the speed of sound. From equation (4.9),
we observe that the frequency of the oscillations, ω, is proportional to kcs, and thus,
for constant k, the frequency also decreases, making the peaks shift towards larger
k. Adding more baryons also enhances the importance of gravity, diminishing the
radiation pressure. Therefore, the second peak, which corresponds to an under-density
of photons, reflects this fact; it would be harder for photons to escape gravity because
of the reduction of the pressure and consequently, the amplitude of the perturbation
decreases. Hence, the CMB temperature power spectrum gives a direct measurement
of the number of baryons in our universe.

This forced harmonic oscillator system is formed only by baryons and photons. It
is also assumed that Cold Dark Matter (CDM) did not interact with photons. The
amount of DM has a direct impact on the peaks of the temperature power spectrum.

3This statement is explained in chapter 2, in subsection 2.5.1.
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An increasing density of DM in our universe reduces the overall amplitude of the peaks.
Moreover, the difference between the third and the second peaks can give an estimation
of the amount of DM.

The second characteristic is that for multipoles ℓ ≳ 2000, oscillations are damped.
This is the result of the scattering of photons through a medium full of electrons (the
baryon-photon fluid is just an approximation that works good in large scales, but in
reality, the photons travel a finite mean distance between scatterings). This scattering
induces a random walk for a photon, that washes out perturbations smaller than the
mean distance between scatterings. This is called Silk Damping.

Finally, we need to mention that, in this scenario, we are assuming that the last
scattered photons have been travelling without any further incidents until today. We
have to take into consideration that recombination takes place after the transition from
radiation domination to matter domination. Therefore, the gravitational potentials
associated to matter had time to evolve, inducing a change in the redshift of the last
scattered photons. Furthermore, since few millions of years, we are Dark Energy (DE)
dominated, which implies that the gravitational potentials have decreased inducing new
effects over these photons (such as modifications in their redshift). These phenomena
are considered in the Sachs-Wolfe effects [27]. They are also taken into account in the
geometric projections of the transfer functions ∆T .

Polarization anisotropies

(a) Thomson scattering schema (b) Polarization patterns

Fig. 4.3. The CMB radiation gets polarized through Thomson Scattering (left), showing
different polarization patterns with E and B modes (right) [19].

Apart from the CMB temperature anisotropies, the CMB carries out polarization
information. The CMB photons are expected to become polarized due to Thomson
scattering. Let’s assume that the incident radiation (photons) is isotropic. When these
photons interact with free electrons, the obtained radiation pattern is unpolarized,
since orthogonal polarization directions cancel with each other. Nevertheless, it is
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possible to obtain an outgoing polarized radiation if the incoming radiation has a
quadrupole component, as shown in figure 4.3.

In order to characterize the polarization anisotropies, we can follow the same
procedure that we pursued for the temperature anisotropies, described by equation (4.2).
However, we need to use the expansion on the sphere as a function of tensor (spin-2)
spherical harmonics, as the polarization is not a scalar field. Instead of using the
analogous moments to aℓm for temperature anisotropies based on the spin-2 quantities,
we define two new scalar fields, denominated E (curl-free) and B (divergence-free).
These two mode patterns specify completely the linear polarization field.

In principle, we should consider four types of correlations between the temperature
and polarization anisotropies when calculating Cℓ: TT , BB, EE, TE (these last
two one are measured by Planck and can be seen in figure 4.10). In the standard
model, it is assumed that the correlations TB and EB vanish because of symmetry
properties. In the case of BB, Planck has measured the lensing B modes and have
set some upper bound for Gravitational Waves at large scales. The BB spectrum
is also measured by other experiments, such as the Background Imaging of Cosmic
Extragalactic Polarization (BICEP).

Fig. 4.4. CMB E-mode spectrum (left) and cross-spectrum of temperature and E-modes
(right). The black dots are Planck 2015 data (from [8]) and the solid blue line is the
corresponding best fit of ΛCDM obtained using camb.

4.1.3 Cosmological Theory Codes
As previously mentioned, the transfer functions account for the evolution in time of each
Fourier mode by means of solving Boltzmann equations for each species. The solution
is captured by using a Legendre expansion (encoded in the geometrical projection Pℓ

of equation (4.8)). The main problem resides in solving thousands of factors of the
Legendre expansion accurately in time until today. In order to reduce the number of
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equations, symmetries and a suitable system of coordinates are used. Moreover, the
geometrical part of ∆T encodes the information of the line-of-sight integral, where
effects such as the Sachs-Wolfe effects and Doppler effects are included. If polarization
effects are included, this makes the line-of-sight more complicated as one needs to
generalize equations to vector/tensors. [39]

Feature camb class
Language fortran C
Wrapper python python, c++, more complete

New PPS Arbitrary, not available
publicly yet Arbitrary, publicly available

Table 4.1. Main differences between camb and class regarding the feature of interest
for our current research. The acronym PPS refers to Primordial Power Spectrum.

Thus, to calculate CXY
ℓ (where X and Y can be the temperature T and the modes

E or B), we need to compute the transfer functions ∆T to convolve them with the
PPS. There are several cosmological theory codes that are precisely designed for this
goal. In 1995, Bertschinger released the first code named Cosmics, which only solved
Boltzmann equations without implementing all corrections in the line-of-sight, which
was later included by Seljak & Zaldarriaga in a faster code denominated CMBFast.
In 1999, Lewis & Challinor reorganized CMBFast, including new improvements in
the implementation of sources and recombination physics from codes such as RecFast
by Seager. This new code was called the Code for Anisotropies in the Microwave
Background (camb). Finally, in 2011 (to get prepared for Planck data analysis),
Lesgourgues & Tram released a new code, the Cosmic Linear Anisotropy Solving
System (class), written from scratch and adding new parametrizations, polarization
equations, and algorithms. There are probably a few other codes (mostly private), but
camb and class are the only publicly available ones that are still maintained and
improved to reach higher precision levels.

4.2 Statistics and Model Selection
Cosmological theory codes rely on parameters in order to solve the transfer functions
and obtain the CMB power spectra, among others. In fact, in order to measure them
efficiently with data, you need to use some refined techniques. Most of these techniques
are based on statistics. Dealing with statistics to analyze any experimental data is
essential. Statistics is crucial to evaluate the fit of cosmology observations and any
theoretical model. It is important to define what you want to test. For example, you
may be interested in finding the parameters that fit a chosen theoretical model better,
or you may want to discover if a model, with given parameters, is better than another
one. These questions in cosmology are usually answered in the Bayesian statistical
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framework. This section aims to be a practical guide on how to use Bayesian statistics
in the context of cosmology.

4.2.1 Bayesian Statistics
Bayesian statistics is based on producing probability distributions of the parameters
of interest, given that the model parameters are treated as random variables [35].
Bayesian statistical analysis relies on Bayes’ Theorem.

This theorem provides the probability distribution of the parameters θ given the
observed data d and a given model M . This probability distribution, P (θ|d,M), is
called posterior distribution, and is defined as

P (θ|d,M) = L(d|θ,M)Π(θ|M)
Z(d|M) . (4.10)

In equation (4.10), we find several probability distributions defined below:

• L(d|θ,M) is the so-called likelihood, which gives the probability of observing
the data d given the set of parameters θ and the model M . It measures the
compatibility of the data with the hypothesis.

• Π(θ|M) is the prior distribution, which is the probability distribution of the
parameters θ given some external information. For instance, this information
may come from previously collected data, limits imposed by theory, beliefs of the
researchers, etc. This prior should not take into account the actual data d.

• Z(d|M) is the evidence (also called marginal likelihood), which gives the prob-
ability of observing the data given the external information and the chosen
model.

Likelihood

The likelihood L is a probability distribution that determines how well a model
matches the experimental data given a set of parameters θ. The likelihood considers
the assumptions of the model as well.

In cosmology, we are especially interested in using the data from the Planck mission
to test a cosmological model M , such as ΛCDM or any other (such as the inflationary
model explained in chapter 3). Therefore, a relation between the experimental data, d,
and the theory model defined according to equation (4.7) is needed. The experimental
data used in this research, d, can be expressed in terms of the observed signal s and
the experimental noise n so that

di = si + ni, (4.11)

where the sub-index i indicates the values of the variables for the i− th experimental
observation. In this case, ni is the electronic noise associated to the measurement and
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it is assumed to be normally distributed with zero-mean and variance Nij. Moreover,
we also assume the signal s to be normally distributed with zero-mean and variance
related to the CMB source measurements according to the equation

⟨sisj⟩ =
∑

ℓ

2ℓ+ 1
4π CℓPℓ, (4.12)

where Pℓ is the geometric projection of equation (4.8). Thus, the distribution of the
data d is also normal as the sum of two normal distributions is also normal. As
a consequence, the corresponding likelihood LP lanck will be a multivariate normal
function defined as

LP lanck = 1
(2π)k

√
|Σ|

e− 1
2 dΣ−1d, (4.13)

where Σ is the covariance matrix of the data d (which combines the variances of the
noise n and signal s) and k is the number of variables measured by observations.

This approach of using a multivariate normal distribution to model the likelihood
corresponding to Planck data is very basic. In reality, more complex algorithms and
other assumptions are used, especially for ℓ < 29 (called the lowTEB likelihood) and
for the TT, TE and EE likelihood at high ℓ (denominated plikHM_TTTEEE likelihood).
For the sake of simplicity, these further methods will not be mentioned in this thesis
but can be found at [1, 52].

Prior

The already known information about the parameters of interest (previous to the
research) is summarized in a probability distribution: the prior. The information
coming from previous research experiments can be used as prior distributions, such as
Gaussian priors resulting from previous results. In general, to define a prior for the
set of parameters θ, we need to set the distribution and the hyper-parameters4 of the
distribution.

In our research, in some cases, we restrict the hyper-parameters of the prior
distribution according to the theory. In these cases, we assign equal probability to
each θ, so that we do not have any preferred values (the values follow a uniform
distribution and are sometimes called uninformative priors). In other situations, we
define more complex prior distributions, according to the theory, so that we have an
efficient sampling (for instance, a Beta function, described in chapter 5, in subsection
5.1.2 for a sampling method described in the next section).

We distinguish between two types of prior distributions: the conjugate and non-
conjugate priors. In the case of using a conjugate prior, the posterior distribution is in
the same probability distribution family as the prior distribution (for example, if the
prior is a normal distribution and the likelihood is defined as in equation (4.13), the

4We call hyper-parameters the parameters of the prior distributions. Examples of hyper-parameters
are, for instance, the bounds of a uniform distribution.
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posterior distribution is also normal). Otherwise, for non-conjugate priors, the posterior
distribution is not of the same family as the prior, which increases the difficulty of the
sampling procedure (see subsection 4.2.2).

A different approach: Frequentist Statistics

It is worth mentioning that one could have taken a different approach to obtain
quantitative statements about features in the data. For instance, the probability could
have been a direct measure of the proportion of outcomes in an experiment. This
approach is called Frequentist approach, and it is very common in particle physics and
other fields in science. This approach is, in general, based on defining a null hypothesis,
such as "the Primordial Power Spectrum (PPS) is featureless", and an alternative
hypothesis, for instance, "the PPS has some features described by the model M" [25].

In this case, the output is not a probability density distribution of the parameters,
but a numerical value called statistic, which is used to determine whether the null
hypothesis should be rejected or not. Associated to the statistic we have a p-value.
This value is defined as the probability of obtaining a statistic value equal to or more
extreme than the observed one. When the associated p-value is smaller than the
probability of rejecting the null hypothesis when it is actually true5, α, we reject the
null hypothesis in favour of the alternative one. In general, α is set to 0.05.

There is a notorious debate regarding the choice of a Bayesian or Frequentist
approach, which will not be discussed here, as both of them offer pros/cons (many
researchers criticise the use of a prior in Bayesian statistics, as well as the focus on
obtaining a p-value smaller or equal than 0.05 have induced a tendency to change
models and hypotheses on the fly during research, which is considered a malpractice
called p-hacking). What it is true is that the use of Bayesian statistics in the research of
features in the PPS is more popular [25], due to the demanding numerical simulations
and other procedures required to analyse the data in the Frequentist approach. One
of this requirements is the large number of needed experiments, such as in particle
physics. Unfortunately, in cosmology, we cannot perform several experiments for the
same research question.

4.2.2 Parameter Inference
For the estimation of the values of the set of parameters θ, we use Bayes’ Theorem (4.10),
but the normalization Z(d|M) is usually not considered, as it only provides a re-scaling
of the normalization of the distribution. Thus, in parameter extraction:

P (θ|d,M) ∝ L(d|θ,M)Π(θ|M). (4.14)

To infer the best value of θ we need to explore the parameter space and test if
the model fits the data well for a wide range of parameter values within this space.

5This is also known as type-I error.
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In cosmology, we usually deal with a very large number of parameters with non-
conjugate prior distributions, which complicate the analytical evaluation of the posterior
distribution (4.14). Therefore, we need to use different tools to compute the posterior
than evaluating the whole set of parameters in a grid. These tools are based on a
random sample drawn from the real posterior distribution. The most common ones
are Monte-Carlo Markov Chain (MCMC) methods. The name Monte Carlo simply
means obtaining a representation of a distribution by sampling it in a random way,
and the Markov Chain improves the sampling efficiency.

A Markov Chain is defined by a series of random variables where the probability of
the outcome of a random variable in the current step only depends on the outcome of
the random variable in the previous step. We are interested in two main properties of
the Markov Chains. First, we need the chain to be stationary: the distribution should
not depend on the sample number. Second, we need the chain to reach a state where
the next elements of the chain are picked from the high-density regions of the posterior
distribution. This state is reached after discarding a percentage of the initial samples
of the chain: the burn-in phase.

The simplest scenario for a MCMC is the following. We compute the set of
parameters iteratively. At each iteration, we check whether the new set of parameters
fits better than the previous one. This step is done by means of checking a selection
criterion. Regarding the selection criteria, we define several sampling algorithms. If
the selection criterion is fulfilled, we select the new set of parameters. Otherwise, we
keep the previous one. At the end of each iteration, we save the set of parameters.
The ordered set of saved iterations form what we call a chain. The density of points in
the chain gives the posterior distributions of the parameters.

There are several sampling algorithms. In this thesis, we focus on Metropolis-
Hastings and Nested Sampling.

Metropolis-Hastings algorithm

This algorithm is based on a particular choice of the selection criterion to decide
whether to keep the set of values of the parameter space during the current step θ′, or
to come back to the previous step θ. This criterion is based on calculating a ratio, the
so-called acceptance ratio, a, defined as

a = p(θ′)q(θ|θ′)
p(θ)q(θ′|θ) , (4.15)

where p(θ′) is the posterior distribution and q(θ′|θ) is the distribution that suggests a
new candidate θ′ for the next sample value. In general, q is proposed to be a normal
distribution. At each step, we must draw a realization of θ′ from q(θ′|θ), and a random
number v from a uniform distribution between 0 and 1. If a ≥ v, we accept θ′, and it
becomes a new state of the chain. Otherwise, we reject θ′ and the new state of the
chain is θ again. This is shown in figure 4.5. In this figure, it is easy to observe that
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Fig. 4.5. Left: An example of a Markov chain constructed by the Metropolis-Hastings
algorithm. It starts at 1, then 2 is proposed and accepted (step A), 3 is proposed and
refused (step B), and finally, 4 is proposed and accepted (step C). The resulting chain
is (θ1, θ2, θ2, θ4). Central: An example of what happens with a jump size too broad:
the chain lacks mobility because all the proposals are unlikely. Right: An example of
what happens with a jump size too narrow: the chain samples the parameter space
very slowly. Figure from [38].

each step only depends on the previous step and that it is independent of the number
of steps, making the chain a Markov Chain.

Still, the major disadvantage of this algorithm is the fact that the sampled sets of
parameters are correlated, and that we only use the previous sample to obtain the
current one. This means that, if we start with a value within the parameter space
that has a low probability, the chain will not reflect the underlying distribution very
well until a higher likelihood region is reached. Therefore, it is convenient to discard a
small percentage of the initial values of the chain, the so-called burn-in phase, in order
to achieve the stationary property.

The Metropolis-Hastings algorithm allows us to construct a Markov Chain contain-
ing as many values as parameters we are trying to infer per step. In general, the more
samples we draw, the better the chain will reflect the underlying marginal posterior
distribution for each parameter. Therefore, a question arises: when should we stop
sampling? A simple answer is not available, as there is no test that can affirm whether
a chain has converged or not. Still, there are some convergence diagnostics that may
point out some necessary conditions for a chain to show some convergence, although
they are not sufficient conditions. Some diagnostics include:

• Individual segments of the chain show similar results, as long as the chain is
much longer than any obvious correlation.

• A reasonable number of accepted proposed steps. If the acceptance is too high,
it may point out that the chain is slowing converging; however, if the acceptance
is too small, it may indicate that the chain is locally stuck.
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• To run several chains at the same time with different starting points and observe
whether they give similar results. This similarity is evaluated using the Gelman-
Rubin statistical criterion R. This test consists of comparing the variance within
individual chains to the variance between chains. Their ratio, R, should be close
to 1 when the chains have converged.

Fig. 4.6. 1D and 2D posterior distributions of the six ΛCDM parameters, running
cobaya (using a MCMC sampler and camb as theoretical cosmology code) with 16
chains (Gelman-Rubin convergence criterion R − 1 ≈ 0.03) and using Planck 2015
temperature and polarization data (TT, TE, EE). This figure is a self-made computation
analogous to figure 6 of [51], where CosmoMC was used instead.

The most important cosmological MCMC codes, such as MontePython [18]
and CosmoMC [42] (and its new version cobaya6) use this algorithm to explore the

6For more information about the new cosmological code cobaya, see Appendix A.
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full range of ΛCDM parameters (see figure 4.6). They use per default a normally
distributed q. In higher dimensions, as is the case for ΛCDM , a covariance matrix Σ
can be given from a previous MCMC simulation where the stationary property was
almost achieved. The codes will use it to decompose the parameters into uncorrelated
orthogonal base parameters to find the high probability regions more easily.

Finally, once the posterior distribution is sampled, we usually need to marginalise
it to show the results of a multi-parameter fit, for instance, the fit of the ΛCDM
model, in order to generate contour plots (see figure 4.6). Marginalization involves
projecting the distributions down all other dimensions, and it is usually achieved by
means of summing or integrating over the unwanted distributions of the parameters.
Mathematically, this can be written as

PΘ1(θ1) =
∫

θ2
PΘ1,Θ2(θ1, θ2)dθ2 (4.16)

where Θ1 are the set of random variables with values θ1, which are the variables that
we want to keep, and Θ2 are the set of random variables with values θ2 that we aim to
get rid of.

Nested Sampling

The Metropolis-Hastings algorithm tends to struggle with several problems. The first
one was already mentioned, and it is the need of eliminating from the chain the burn-in
phase. Moreover, because we need to define a step, the Metropolis-Hastings algorithm
is inefficient when the posterior distribution is multimodal; that is, if the posterior
has several minima or peaks (in figure 4.5, using the Metropolis-Hastings, it is likely
that the computation will get stuck in the absolute minimum). A similar problem will
arise if there are high correlations or degeneracies among the parameters (showing
correlated peaks in the posterior and “banana” contour plots).

Therefore, in order to circumvent these issues, an alternative way of sampling the
posterior was developed by J. Skilling [57]: Nested Sampling. This algorithm is based on
calculating the evidence Z (marginalized likelihood). From the Bayes’ theorem (4.10):

Z(d|M)× P (θ|d,M) = L(d|θ,M)× Π(θ|M) (4.17)∫
Z(θ)× p(θ)dθ =

∫
L(θ)× Π(θ)dθ → Z =

∫
LdX. (4.18)

where we have used the fact that dX = Π(θ)dθ can be modelled into the posterior
dP = p(θ)dθ, and the prior and posterior are normalised to the unit total. From this
equation (4.18), we observe that Z, which is the normalization in equation (4.10), is
defined as the area below the curve LdX (see right panel of figure 4.7). Therefore, the
algorithm developed by Skilling set up a genuine way to estimate Z doing a numerical
integration, whereas the sampling of the posterior p is a by-product of this calculation.

The algorithm works as follows in 1-dimension. In the first step, we generate a
starting set S0 of n samples uniformly distributed over the space and allowed by the
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prior Π. Next, we delete the lowest likelihood sample L0 in S0, and replace it with a
new uniform sample with higher likelihood L1 > L0 (this is called a hard constraint on
likelihood value), moving to step S1.

The live-evidence, Zlive, is related to the live points Xlive and their corresponding
likelihood Llive. The live points Xlive are the survivor points of the n+1 sample Sn+1
(see left panel of figure 4.7, black points). The live evidence is approximately equal
to Zlive ≈ ⟨Llive⟩Xlive (the value of the likelihood is similar when we are reaching
convergence, so we can approximate the integral as the average value of the likelihood
of every point times the number of points). The last process is repeated until the
live-evidence, Zlive is a small fraction of the total evidence Z. The algorithm needs a
precise value for this fraction, given by the user, in order to determine if convergence
is achieved or not. The value of this fraction is what we call "stopping criterion". The
set S of n samples is constantly updated after every step and the set of dead points
(the erased points with low likelihood) with an appropriate weighting factor are the
posterior samples (see left panel of figure 4.7, red points). This procedure can be
generalized to multiple dimensions [57].

In cosmology, there are mainly two scientific Nested Sampling algorithm codes:
MultiNest [29], which uses a rejection sampling technique to approach to the hard
constraint on the likelihood value (it suffers in high dimensions) and Polychord [30],
which is slice-based and the tool used for the main research content of this project.

Fig. 4.7. Left: Graphical interpretation of the Nested Sampling algorithm by means
of looking at the parameter space: the contours specify the areas of the search after
each step, where the point with the lowest likelihood was discarded. In every step,
the contours are reduced, moving closer to the regions of higher likelihood and finding
different likelihood clusters (separated contour regions with high likelihood). This
figure is the result of an animation from W. Handley lecture at [39]. Right: Likelihood
function L as a function of the parameter X =

∫
dθΠ(θ), showing how the area below

the curve is the evidence Z. Adapted from [57].
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4.2.3 Model Comparison
The selection of a model M1 over a different model M2 in Bayesian statistics is usually
computed by calculating the Bayes Factor, which is inferred from applying model
comparison to Bayes’ theorem [57]:

B = P (M1|d)
P (M2|d)

= Z(d|M1)Π(M1)
Z(d|M2)Π(M2)

, (4.19)

where P (M |d) are the posterior probability distributions integrated over all the pa-
rameter space Θ. If our sampling algorithm allows us to calculate evidences Z, for
example with the Nested Sampling algorithm, we can compute B directly by taking
the ratio of the evidences assuming that the ratio of priors Π(M) is close to unity. If B
is larger than one, this means that the data support the model M1 statistically better
in comparison to model M2.

Fig. 4.8. Illustrative example of the asymptotic behaviour of the AIC, in red with
circles, and BIC, in blue with triangles, with respect to the number of parameters of
a model (in this case, the number of Gaussian functions needed to fit a set of data).
In this example, we observe that the most statistical convenient number of Gaussian
functions is three. From that point onwards, the information criteria do not continue
decreasing. Example from the course [7].

The numerical integration to obtain P (M |d) may be infeasible, because, in general,
we might need a large number of samples. For this reason, alternatives to the Bayes
Factor are sometimes used, which are defined in terms of the likelihood L, and are
called information criteria. In general, these methods do not simply choose one model
versus a different one by analysing which likelihood is the highest, because a model
with more parameters mostly leads to a higher likelihood. The information criteria
penalize the model taking into account the number of parameters k the model has.
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The most popular information criteria are the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC). The AIC is defined as

AIC = −2 lnL+ 2k, (4.20)

where −2 lnL is also denoted by χ2 and sometimes it is called deviance7.
The BIC is defined as,

BIC = −2 lnL+ k lnN, (4.21)

where N is the number of data points used in the fit. In principle, the model with
lower BIC or AIC is favoured. It is worth mentioning that the BIC and AIC tend to
show an asymptotic behaviour beyond a certain number of parameter (see figure (4.8)).

4.3 Gaussian Processes

Gaussian Processes (GPs) are a Machine Learning technique. Machine Learning (ML)
is a field in the interface between computer science and modern statistics that aims
to use statistical techniques to give computational algorithms the ability to improve
their performance on a task progressively. In the last two decades, there has been an
explosion in the implementation of ML techniques, which have become essential in the
analysis and interpretation of data (for example, finding patterns in large data sets or
comparing data to models) [35].

The world of ML continues to increase every day and this makes it complicated to
find an up-to-date definition or try to set the frontier between ML and other fields.
In fact, being a data fluent person has become an indispensable skill not only for
academic environments but also for companies from almost all backgrounds 8. However,
if there are two fields where ML has been used for years, these are particle physics
and astronomy, due to the dramatic increase in data volume since the 90’s. In modern
cosmology, it is getting more and more popular, as demonstrated by the last program
of the Cosmo21 conference "Statistical Challenges in 21st Century Cosmology" [6].

In particular, the basic mechanism used by every ML technique is the following: a
data set is separated into the training data and generalization data (this is called cross-
validation). The training data is used to learn a ML technique, which is denominated
commonly as training process (for instance, a regression method to fit the data to a
model, or to classify a set of data). Later, the method’s performance is tested using
the generalization data, which is called the validation process. The separation of the
original data set into these two data sets is also studied by several ML techniques. The
goal is to reduce as much as possible the error associated with the real data values and

7It receives this name because −2 lnL follows a χ2 distribution
8The positions Data Scientist or and ML expert have become very popular in the industry, such

as accounting firms, airlines, insurance companies or even food delivery companies. If the reader is
interested in learning ML or data mining techniques, you can follow seminars at [4].



4.3 Gaussian Processes 45

the values estimated using the tested method during the validation process. This error
is called generalization error.

Fig. 4.9. Representation of a collection of random variables generated using Gaussian
Processes with different correlation lengths h [7].

The regression methods can be classified, for instance, according to the function
they approximate to (linear or non-linear), or by the use of a parameter in the fitting
process (parametric or non-parametric). Gaussian Processes are a non-linear and
non-parametric generic supervised learning method designed to solve regression and
probabilistic classification problems [9]. Formally, they are defined to be a collection
of processes based on random variables indexed by time or space, so that every finite
collection of those random variables has a multivariate normal distribution defined by
the kernel or covariance matrix [54]. In 1-dimension, the kernel is defined as,

K(x, x′) = exp
(
−|x− x

′|
2h

)
, (4.22)

where x is the random variable and h is the correlation length, which encodes the
length-scale "influence" of each point on the next one (see figure 4.9). In this figure, the
left panel shows a more "wavy" reconstruction, because the correlation length is smaller.
Every collection of Gaussian Processes is different because, although h fixes the scale,
the election of each x is random (in figure 4.9, every colour is a different collection
of random variables with the same h). Therefore, we can use Gaussian Processes to
define a regression method in which the parameter h of the kernel is fitted by using
maximum likelihood estimation as in any common regression method (we generate
a Gaussian Process that goes through the training data for a given h, calculate the
likelihood, and repeat this process until the optimal h is found). For the kernel of
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equation (4.22), if the training data contains only one point, the function resulting
from the regression method will be a simple 1-dimensional Gaussian function.

4.4 Data evidence for inflation
In chapter 2, we argued that inflation is a hypothetical period in the history of the
universe. For this reason, we strongly look for observational evidence that support
the fact that inflation was a real phase in the early universe. At this point of the
thesis, we have already described all data analysis tools needed to understand how the
current cosmological observations are studied, and how we can argue that some of that
evidence does add confidence in supporting inflation.

The first observational evidence in favour of inflation is the measurement of the total
parameter density Ω. The Planck collaboration [51] (see again figure 4.6) calculated
the ΛCDM parameters using Bayesian parameter inference as described in section
4.2 with the MCMC tool CosmoMC and the TT , TE and EE likelihoods. They
concluded that our universe is flat (Ω = 1 ± 10−5). Although remarkable, inflation
predicts flatness by construction, and therefore, we need to continue looking for new
evidence.

In the parameter estimation study carried out by the Planck collaboration, two
main parameters related to predictions from inflation are included in the ΛCDM model
(see table 2.1): ns and As. Simplest models of inflation predict an almost scale invariant
and slightly red (higher power at low k) spectrum of primordial perturbations (ns ≈ 1).
The experimental value is ns = 0.9645± 0.0049, which is almost 1, as predicted. We
also know that the collaboration was able to set an upper limit for r < 0.11 (when
only Planck 2015 data is used) and r < 0.009 (when Planck 2015 data is combined
with BICEP), which is consistent with single field inflation [51].

Moreover, we have to keep in mind that inflation gives a mechanism to explain the
underlying primordial density field at the time of recombination. The CMB power
spectra are a simple snapshot of this primordial density field, whose main characteristics
were already predicted in subsection 4.1.2. According to the simplest inflationary model,
fluctuations froze when exiting the horizon, making the initial phases of the Fourier
modes were fixed before the modes entered the horizon again, providing a way to
explain the phase coherence of all the Fourier modes. Without this coherence, the
CMB power spectra would not show the peaks we were able to explain above, but
just white noise. Therefore, the peak-structure of the CMB spectra is one of the main
predictions of inflation.

Still, someone may argue that the coherent phases shown in the CMB temperature
power spectrum for ℓ > 200 (see figure 4.10) can be obtained by recalling different causal
theories of structure formation with modes well within the horizon. However, when we
study the polarization spectra, these theories are also ruled out. In the right panel of
figure 4.3, we observe that the cross-correlated spectrum between the CMB temperature
and the E-mode shows a peak around ℓ ≈ 100, already detected by the WMAP mission
[20]. This minimum between the temperature and polarization spectra comes from the
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fact that the velocity of the photons is out of phase with the temperature, and since
the polarization spectra are the projection of the quadrupole temperature anisotropy,
the polarization peaks are also correlated with the temperature perturbations. This
scale ℓ ≈ 100 was not within the horizon at recombination. Consequently, there is no
causal mechanism that can describe this phenomenon and it has to be the result of
phase coherence.

Fig. 4.10. CMB temperature (TT, above line) and polarization (E-modes, below line)
spectra obtained from the corresponding best fit of ΛCDM obtained using class. The
vertical black dashed lines indicate the counter-phase between the EE and TT spectra.





Chapter 5
Search for features in the CMB

“Torture the data, and it will confess
to anything”

Ronald Coase [55]

In this chapter, we update the search for localized oscillatory features in the CMB
power spectrum due to transient reductions in the speed of sound using Planck 2015
data, carried out by J. Torrado et al. [33, 58]. We have proposed new parametrizations
for the reduction of the speed of sound and we have performed parameter estimation
for the modified ΛCDM model following the same methodology explained in [58]. For
convenience, we have dropped the subindex R when the features in the primordial
power spectrum ∆P/P are shown.

5.1 Research set-up

5.1.1 Ansatz for the reduction
In chapter 3, we characterized the reduction of the speed of sound by the parameters
umax, smax and the moment of maximum reduction, τ0. To compute the modification of
the PPS with respect to the power-law parametrization ∆P/P following equation (3.7),
we need a parametrization for the reduction of the speed of sound u(τ). In previous
works [12, 33, 58], a Gaussian as a function of e-folds N (or equivalently, in conformal
time τ) was proposed:

u = A exp
{
−β(N −N0)2

}
= A exp

{
−β

(
ln τ

τ0

)2
}
. (5.1)

This reduction is parametrized naturally by 3 parameters: the amplitude A < 0
(maximum reduction in intensity), the width β > 0 (related to the sharpness), and
the instant of maximum reduction N0 > 0 (or τ0 < 0). However, we aim to use the
independent parameters of our Slow Reduction Fourier Transform (SRFT) method
(umax, smax, τ0), described in chapter 3. The parameter u is related to the reduction of
the speed of sound cs as,

u(τ) ≡ 1− 1
c2

s(τ) . (5.2)

The value umax is defined as the maximum reduction of u taking place at τ0:

umax = |u(τ0)|, (5.3)
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where we are using the absolute value of u so that umax is always positive. The
parameter s is defined as,

s(N) ≡ ċs

Hcs

= 1
cs

dcs

dN
=
√

1− u(N) d

dN

(√
1

1− u(N)

)
. (5.4)

The maximum value of s, named smax, is the maximum of the function s(N) calculated
by solving the following equation:

d

dN
s(N) = d

dN

[√
1− u(N) d

dN

(√
1

1− u(N)

)]
= 0. (5.5)

Solving for N the equation (5.5), we find the value Nm for which s has a maximum.
The function s evaluated at Nm is what we call smax. In short:

d2

dN2 s(Nm) > 0→ smax = |s(Nm)|, (5.6)

where we have used again the absolute value so that smax is always positive. To use
a concrete ansatz, we need to establish a relation between umax and smax, and the
amplitude, A, and the sharpness, β. From equation (5.1), we calculate the amplitude:

A = −umax. (5.7)

To obtain β as a function of A and smax, we use Taylor’s expansion for 1/
√

1− u(N),
where u(N) is the parametrization of our choice described by A and β, in terms of u
up to first order to solve the equation (5.5). This procedure is analogous of the one
used in [58].

In this work, we have proposed two other ansätze for u(τ), which are also naturally
described by 3 parameters and softly depart from zero and return, and has an absolute
minimum at τ0 (see figure 5.1). These two functions1 can be seen in table 5.1. Observe
how both parametrizations also fulfil that umax is described by equation (5.7). For
later convenience, we defined a new variable to refer to the constants appearing in the
obtained values of smax as a function of β and umax, for the new parametrization of
u(τ). This variable is γ. The value of γ for both parametrizations can be seen in 5.1.

The cosine case, which is restricted to only one period, looks similar to the Gaussian
case for almost the whole range of values for (A, β, τ0), and has been mainly used as a test
to verify the already-obtained results with the Gaussian ansatz. The hyperbolic secant
case only shows some differences with respect to the studied Gaussian parametrization
for certain combinations of high values of τ0 and β (for instance, τ0 < −1000).

1The choice of such a high power for the cosine is motivated by numerical reasons.
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6th power Cosine Hyperbolic Secant
u(τ) u(τ) = A cos6 [βc(ln (τ/τ0))] u(τ) = Asech[βs(ln (τ/τ0))]
β βc = |smax|/(−3Aγc) βs = |smax|/(−Aγs)
γ γc = cos5

(
1
2 arccos (2/3)

)
sin

(
1
2 arcsin (2/3)

)
γs = tanh[ln (

√
2 + 1)][1/cosh[ln (

√
2 + 1)]

Table 5.1. Expressions for β given the different proposed parametrizations for u(τ).
The constant γ is obtained by calculating the maximum of the function (5.4) with
respect to N solving equation (5.5).

Fig. 5.1. Parametrizations of the reduction of the speed of sound in conformal time
u(τ): a Gaussian function (dashed-blue), hyperbolic secant (solid-red) and a power
of the cosine (pointed-green). The values used for the three parametrizations are:
umax = 0.3, smax = 0.4 and τ0 = −1000.

5.1.2 Prior distributions for the parameters of the features
The prior information is given in equation (3.11). In principle, any given value for umax

and smax within that range is permissible, so we could think of using an uninformative
prior such as uniform distribution. However, since smax depends on both β and A,
setting a uniform prior for both β and A is not enough. This is due to the fact that
this uniform rectangular region does not map correctly into a uniform region for umax

and smax. Therefore, if we follow this approach, we would search for allowed possible
features inefficiently. For this reason, following [58], we use as a prior a framing square
shape, where the diagonal is log[umax] = log[smax] (see figure 5.2). Above the diagonal,
the limits given by equation (3.11) are imposed on smax, whereas below, the limits
are on umax. A function that fulfils this characteristics is the symmetric log-Beta
distribution defined as,

max(log[umax], log[smax]) ∼ Beta(a, a); (5.8)
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Beta(a, a) =
∫ 1

0
xa−1(1− x)a−1dx, (5.9)

where a > 1 is called the shape parameter and we have chosen a = 5, so that we have
approximately the 95% confidence level at half the boundaries. We sample in logarithmic
scale because we expect the difference in possible values for max(log[umax], log[smax])
to be more than two orders of magnitude. In fact, we fix the limits for possible values
of (log[umax], log[smax]) ∈ [−4, 0]. This choice is coherent with the fact that both umax

and smax have to be larger than the slow-roll parameters, according to the theoretical
bounds.

In fact, we could have restricted ourselves to use as the lowest limit for (log[umax],
log[smax]) the value −2, given by the central value of the largest slow-roll parameter η ≈
0.02 according to Planck 2015 [51]. This limit is favoured by previous searches of features
[12, 33, 58], where all interesting modes where found in the range (log[umax], log[smax]) ∈
[−2, 0]. Still, we decide to make the range broader in order to (1) verify previously
found results, and (2) open the possibility of finding new modes.

Regarding the prior information for the instant of the maximum reduction in the
speed of sound τ0, the theoretical framework does not impose any range as far as all
possible values of the conformal time used for the parametrizations, τi, are negative
(τi < 0), because inflation ends at τ = 0. Thus, a uniform prior on τ0 is chosen2.

In principle, the decisions taken up to this point allow a sampling from the parameter
space consistent with the theory. Still, from a practical point of view, the prior can
be simplified: not all the combinations allowed by the prior distributions described
above for log[umax], log[smax] and τ0 produce features in the PPS which are visible on
the CMB power spectra. First, reductions in the speed of sound which took place
at an earlier conformal time, τ0 < −10000, do not leave imprints on the CMB power
spectra, as long as (log[umax], log[smax]) take values allowed by the prior distribution.
This effect can also happen if βc > 14 and βs > 10.

Second, we need to discard features that are degenerated with changes in the
slow-roll parameters. To identify the features we are interested in, we chose sets of
values for the parameters that produce, minimum, four full oscillations within the
CMB power spectra. For the case of the cosine-like function, we need to impose a limit
βc > 0, and for the hyperbolic secant βs > 1. On top of this requirement, apart from
the constraints on β, we also need to constrain the moment of maximum reduction,
τ0, by an upper limit τ0 ≤ −70 (we need the function u(τ) to return smoothly to 0
for τ = 0, so that we need to restrict the moment of maximum reduction τ0 not to
take place very close to τ = 0). In conclusion, the prior given for the parameters
(log[umax], log[smax], τ0) is,

max(log[umax], log[smax]) ∼ Beta(5, 5) (5.10)

2A uniform prior on log[|τ0|] is also suitable for a search. However, as log[|τ0|] is a physical time
instead of a conformal time, we maintain the sampling on τ0 as the conformal time is the natural time
scale for inflation. Moreover, both kinds of priors were used for the previous search in [58], concluding
that both choices are consistent.
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log[umax], log[smax] ∈ [−4, 0]; τ0 ∈ [−10000,−70]; (5.11)

Fig. 5.2. Prior density distributions for the parameters log[umax] and log[smax]. The
limits in the distribution are determined by the line of log(βc) = 0 (cosine case, left) and
log(βs) = 1 (hyperbolic secant case, right). We dashed black line shows the diagonal
log [umax] = log [smax].

5.1.3 Sampling Methodology
The features due to the reduction of the speed of sound are calculated by means of taking
a fast Fourier Transform of the parametrizations u(τ), according to equation (3.9).
Later, the features are added to the power-law PPS using a modified version of CAMB3

and a pivot scale k∗ = 0.005 Mpc−1.
The features are fitted using the Bayesian parameter estimation method explained in

chapter 4. To do so, we use the unbinned likelihood4 of the CMB TT, TE and EE power
spectra data from the Planck 2015 release: lowTEB + plikHM_TTTEEE_unbinned. The
use of the unbinned likelihoods is very important. For example, we have features for
values τ0 < −1500 that oscillate faster than the predefined bins of ∆k ≈ 10−3 Mpc−1.
Therefore, if we use the binned likelihoods, our method will be blind to those features.
The used sampling tool is CosmoChord, as previous explorations already showed
that the posterior distribution is multimodal.CosmoChord is a modified version
of CosmoMC that contains CAMB as cosmological theory code. It also includes
Polychord as sampler. The free fitting parameters are the 6 parameters of ΛCDM
model, meaning (Ωbh

2,Ωch
2, θMC , τreio, lnAs, ns) (explained in chapter 2), for which

we have used a uniform prior, plus the 3 feature parameters (log[umax], log[smax], τ0).
3For more information about the modification of CAMB, the reader can find information in

Appendix B.
4A basic introduction to the Planck 2015 likelihoods can be found at chapter 4, subsection 4.2.1.
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Fig. 5.3. Graphical summary of the sampling methodology. Up left panel: the reduction
of the speed of sound in terms of u(τ). Up right panel: feature calculated using a fast
Fourier Transform of u(τ). Bottom left panel: CMB TT power spectrum corresponding
to the modified PPS. Bottom right panel: relative difference between the modified CMB
TT power spectrum and the ΛCDM case. Example calculated using the hyperbolic
secant case (same applies for other parametrizations), using the best-fit values for the
mode 100, shown in table 5.2.

We do expect some degeneracy with respect to the PPS parameters (logAs, ns),
which motivates our decision of setting all ΛCDM model parameters free. To obtain
an estimation of ∆χ2 with respect to the unmodified ΛCDM , we have run Cosmo-
Chord with a featureless PPS using the same likelihoods of Planck 2015: lowTEB +
plikHM_TTTEEE_unbinned. The reference value, this is, the value corresponding to the
unmodified ΛCDM model, is χ2 = 34654.9. We have fixed the value of the nuisance
parameters5 of the Planck 2015 likelihoods to their best fit obtained by the Planck
MCMC with the binned likelihoods lowTEB + plikHM_TTTEEE. After some tests, we
have not found any evidence of degeneracies between the feature parameters and the
nuisance parameters, which support our decision of fixing them. In the future, more
complete studies to evaluate the effect of each of these nuisance parameters on the
features parameters are suggested, although they are currently beyond the scope of
this research. We have run CosmoChord with 16 MPI processes, fixing the number

5The nuisance parameters are associated with the experimental calibration of the instrument and
other effects. For more information read [51].
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of live points to 1000 and with stopping criterion6 0.02. With this sampling set-up,
the runs converged after four or five days.

5.2 Results of the fit
Observing the marginalised posterior for (log[umax], log[smax], τ0) using the hyperbolic
secant ansatz for u(τ) (see figure 5.4), we identify two main modes at low τ0 (see
table 5.2). These modes are approximately at τ0 ≈ −100,−200, and are associated
to amplitude values of around umax ≈ 0.017. These modes are in the range where
umax > smax.

Comparing these results with previous research [12, 33, 58], we conclude that we
have recovered the two main modes already-found at low τ0. However, in [58], J.
Torrado et al. observed two modes at τ0 ≈ −800,−1000, for which umax ≈ smax. We
were not able to recover with the hyperbolic secant ansatz these two modes at high
τ0. The disappearance of the modes at high τ0 can be due to the fact that, for this
particular range, τ0 > −500 and umax ≈ smax, the hyperbolic secant shape is very
different to the Gaussian ansatz (see figure 5.1), producing a complete new feature
pattern which is not favoured by the data.

Mode name Ansatz log [umax] log [smax] τ0

100 Hyperbolic Secant [-1.79 (-1.57) -1.45] [-1.07 (-0.78) -0.58] [-101 (-103) -105]
6th power Cosine [-1.85 (-1.62) -1.41] [-1.18 (-0.94) -0.48] [-99 (-105) -110]

200 Hyperbolic Secant [-1.77 (-1.61) -1.42] [-0.75 (-0.43) -0.24] [-199 (-205) -209]
6th power Cosine [-1.73 (-1.59) -1.39] [-1.22 (-0.61) -0.39] [194 (203) 209]

800 6th power Cosine [-1.79 (-1.57) -1.45] [-0.93 (-0.41) -0.09] [-770 (-864) -912]
1000 6th power Cosine [-1.93 (-1.67) -1.41] [-0.83 (-0.35) -0.12] [-946 (-1083) -1108]

Table 5.2. Intervals for (log[umax], log[smax], τ0) corresponding to the modes at 68% con-
fidence level, with the maxima a posteriori in parenthesis, in the posterior distributions
of figures 5.4 and 5.5. The mode names are chosen in agreement with [58].

The results obtained using the cosine ansatz (figure 5.5) does not provide new
information with respect to previous searches [12, 58], as we recovered exactly the
same four modes that were already observed with the Gaussian parametrization (see
figure 3 of [58]). This result is reasonable, as the 6th power cosine and the Gaussian
parametrizations have a similar shape for the most range of values for the feature
parameters. We also see traces of a faint mode around τ0 ≈ −370, which was already
observed in [12] (under the name A mode) using Planck 2013 data, but not observed
in the update search [58]. The cause of the partial re-appearance of this mode may be
the subtle differences in shape between two ansätze.

6The stopping criterion is defined in chapter 4, in subsection 4.2.2 when the Nested Sampling
algorithm is explained.
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Our modified ΛCDM model with the three features’ parameters is not statistically
favoured with respect to the simplest ΛCDM model when the Bayes factor is calculated,
for any of the two different ansätze. This result was already found when the Gaussian
parametrization was used [58]. However, we cannot miss what the final goal of this
project is: these modes should be the starting point for searches of features in the
bispectrum, which can make our modified ΛCDM model statistically more significant
and robust in the future.

Fig. 5.4. 1D and 2D marginalized posterior distributions of the feature parameters
(log[umax], log[smax], τ0), using the hyperbolic secant ansatz. The colour-bar indicates
the difference in χ2 with respect to the best fit of the featureless ΛCDM model.
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Fig. 5.5. 1D and 2D marginalized posterior distributions of the feature parameters
(log[umax], log[smax], τ0), using the 6th power cosine parametrization. The colour-bar
indicates the difference in χ2 with respect to the best fit of the featureless ΛCDM
model.

5.3 Reconstruction of u(τ )

5.3.1 Motivation

In section 5.2, we have summarized the several modes found when two different
parametrizations for u(τ) are used. We have also concluded that we did not find any
trace of modes at τ0 ≈ −800 and τ0 = −1000 when we used the hyperbolic secant
parametrization. One can argue that the reason lies on the integration method used
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by camb for the PPS to obtain Cℓ. Nevertheless, after some testing, it seems that
the most likely reason behind the loss of these modes at high τ0 is the difference in
shape between the hyperbolic secant with respect to the Gaussian and the 6th power
cosine at high value of τ0 when umax and smax are reasonable small. Moreover, the
re-appearance of traces of the so-called A mode when the 6th power cosine is used
with respect to the Gaussian parametrization is also a signal that the dependence of
our model on the ansatz for u(τ) is noticeable.

This fact also remarks the intrinsic need of our theory to define a priori what a
good ansatz is, which does not only model the dependence of the reduction of the speed
of sound in time, but also fulfils the numerical needs of our computation (for instance,
numerical stability during integration processes).

Therefore, a major improvement in our research, which can make our model be more
robust and consistent, is to avoid using a predetermined function for u(τ). Instead, we
aim to reconstruct the shape of u(τ) favoured by the data and allowed by the theoretical
bounds at the same time. For this, we use a hyper-parametric Machine Learning (ML)
technique, called Gaussian Processes (GPs) and explained in chapter 4 in detail. Apart
from overcoming the weaknesses of using a predetermined parametrization function for
u(τ), we can also explore more complex features with this new method. In fact, it was
already pointed out in [58] that the possibility of having reductions in the speed of
sound at two different values of τ0 cannot be excluded. For instance, a combinations of
the modes τ0 ≈ −800 or τ0 ≈ −1000, and τ0 ≈ −200 or τ0 ≈ −100 are allowed by the
theory, and these situations arise naturally when GPs are implemented.

Reconstructions at the level of the PPS have already been attempted [50]. However,
the degeneracy with respect to the data is very big. A reconstruction of u(τ) instead of
reconstructing directly PPS allows us to include extra theoretical limits and conditions,
which should minimize the impact of only using the data.

5.3.2 Methodology
In light of the limitations in the use of a predetermined parametrization for u(τ), we
reconstruct the shape of u(τ) using GPs. To reconstruct u(τ), we set a number k of
training nodes (τ0,k, uk) (see figure 5.6), where τk < τk+1, and we use the Gaussian
kernel defined in equation (4.25) with a fixed correlation length h to generate the
random collection of points. If we had 3 free parameters when we were using a concrete
parametrization for u(τ), in this case we have 2k+1 parameters (k pairs [τ0,k, uk] and h).

To verify that the parameters of the reconstruction (τ0,k, uk) fulfil the EFT conditions
of equation (3.11), we establish a relation with respect to umax and smax, which are
calculated a posteriori. Once the reconstruction is done, we look for the maximum value
of u(τ) and we verify that umax < 1. The value of umax is related to the reconstruction
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through equation (5.4). If we re-write that equation we find

smax = max
[

|τ |
2(1− u(τ))

du(τ)
dτ

]
< 1, (5.12)

where du(τ)/dτ is calculated numerically and later, the maximum of s is found
computationally. If either umax or smax (or both) do not fulfil the requirements, the
reconstruction is discarded.

Fig. 5.6. Left: reconstruction of u(τ) using Gaussian Processes, with four training
nodes (black dots), a Gaussian kernel and two different values of the correlation length
h. Right: corresponding features in the primordial power spectrum ∆P/P from the
reconstruction.

We also impose a preliminary prior distribution on the derived values of log [umax]
and log [smax], which follows a Beta distribution (see figure 5.7) as in the case of
the hyperbolic secant and the 6th power cosine. We discard the reconstruction if at
any moment u(τ) becomes positive. In this work in progress, we are using the new
Bayesian tool cobaya and the sampling algorithm Polychord. We use the unbinned
likelihoods lowTEB + plikHM_TTTEEE_unbinned corresponding the Planck 2015 data,
and we run with 16 MPI processes, fixing the number of live points to 1000 and with
stopping criterion 0.02. At this moment of the preliminary research process, we are



60 Search for features in the CMB

fixing the ΛCDM model parameters as well as the nuisance parameters to the best
value of the Planck 2015 MCMC fit, for computational reasons (we are interested in
this moment in the convergence of the features’ parameters in a reasonable period of
time).

Fig. 5.7. Prior density distribution for the parameters log [umax] and log [smax]. The
diagonal sets log [umax] = log [smax].

5.3.3 Preliminary results

In figure 5.8, we observe the marginalised posterior for (log[umax], log[smax], τ0) using
the reconstruction of u(τ) obtained with Gaussian Processes. At the time of writing
this report, the sampling method had not yet converged. Still, we are able to identify
the two main modes already observed at low τ ≈ −100 and τ ≈ −200, corresponding
to values of umax > smax. These results shows how these modes at low τ are clearly
favoured by the data, independently of the parametrization used. It also points out
that Taylor’s expansion carried out to calculate smax in the three parametrizations of
u(τ) works, as long as the amplitude of the reduction, which is directly related to umax,
is sampled from the allowed prior distribution, which assures that umax is small (we
are using the same prior for both the fixed parametrizations and the reconstruction).

As mentioned above, at the time of writing this report, the sampling method has
not yet converged, as Polychord gets stuck for high values of τ0. Further research
has to be done regarding this matter. We need to check if the prior distribution that we
are using for our feature parameters is suitable in the case of the Gaussian Processes’
reconstruction, as well as evaluate if our stopping criterion of 0.02 for Polychord is
too demanding to find new clusters, which will be candidates for possible modes.
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Fig. 5.8. Preliminary 1D and 2D marginalized posterior distributions of the feature
parameters (log[umax], log[smax], τ0), using the GPs reconstruction for two nodes. The
colour-bar indicates the difference in χ2 with respect to the best fit of the featureless
ΛCDM model.





Chapter 6
Conclusion and outlook

“The beginning is the most
important part of the work”

Plato [53]

In this thesis, we have detailed the theoretical framework of the current ΛCDM
model of cosmology, which includes the inflationary paradigm. Furthermore, we have
showed how the analysis of Cosmic Microwave Background (CMB) cosmological data
is usually done from the statistical point of view, pointing out the most important
available analysis tools.

We have also studied possible extensions of the single field inflation theory from
the Effective Field Theory (EFT) point of view, analysing a concrete model within
this theory that predicts features in the correlation functions, such as the primordial
power spectrum (PPS) and in the bispectrum. These features are a consequence of a
reduction in the speed of sound of the curvature perturbation due to, for instance, a
turn in the field trajectory.

Our main goal has been to detect those possible features in the PPS analysing
current CMB data. For that, we have proposed a modified ΛCDM model with nine
parameters: the six ΛCDM parameters and three other parameters that define the
shape of the reduction of the speed of sound. Within this approach and using parameter
estimation, we have identified certain possible fits of our modified model with respect
to the data, which we shall call modes.

We were able to identify some of these modes with already-detected ones showed in
previous researches [33, 58]. We have observed that some of these modes disappear
when a concrete parametrization for the reduction of the speed of sound u(τ) (the
hyperbolic secant) is used, concluding that our results are very dependent on the chosen
parametrization for u(τ). In addition, we have observed that, in fact, our theory does
not restrict the possibility of having two reductions in the speed of sound at different
times. Thus, the data could favour another kind of feature patterns corresponding to
several relative reductions of the speed of sound, as it was already mentioned in [58].

For this reason, as an extension to this project, we are working on reconstructing
u(τ) using Gaussian Processes (GPs). We are carrying out a preliminary search for
features using a prior similar to the one used for previous parametrizations, where the
theory parameters (log [umax], log [smax]) are checked numerically a posteriori. After
analysing some preliminary results of the posterior distribution, we have observed a
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problem in the convergence of the sampling algorithm. A possible explanation to this
problem is a large number of small clusters detected by Polychord for high values of
τ0. This may suggest that we need to assess the quality of our current prior in future
steps. Also, we still need to evaluate information criteria to estimate the improvement
when new training nodes are added in the reconstruction.

Besides, as explained in chapter 3, our extension of the simplest inflationary model
gives observable predictions in the bispectrum. Hence, we expect to perform a joint
search for features not only in the Primordial Power Spectrum (PPS) but in the bispec-
trum as well. To this aim, we need the likelihoods for the bispectrum, which in principle
could be released once that Planck mission has concluded. This aspect is crucial: our
modified model of ΛCDM with parameters (log [umax], log [smax], τ), which determine
the feature, is disfavoured with respect to the simplest ΛCDM model when the Bayes’
factor is calculated. However, the detected modes in the PPS are crucial to give a
prediction of the whole bispectrum. Therefore, in order to increase the significance of
our research, we need to verify these current promising modes in the bispectrum as well.

With the perspective of the imminent final release of Planck data, we have contin-
ued to increase our computational expertise to repeat the analysis in the future using
up-to-date techniques (a new implementation on a highly-used code such as camb
and beta-test of cobaya, the new cosmological Bayesian tool). For this reason, brief
appendices including the major advantages and implementations of these codes have
been presented in this thesis.

Finally, another important point that we can investigate in the future is to repeat
the statistical analysis from a frequentist point of view, using re-sampling techniques
such as bootstrap during the analysis of the results. Furthermore, with the ending of
the Planck mission and the incoming launch of the Euclid satellite, it seems more than
convenient to start thinking about how to incorporate Large Scale Structure cosmologi-
cal datasets into our current research, as they look promising to study non-Gaussianity,
following the methodology used by [33].



Appendix A
Cobaya: the new cosmological Bayesian analysis
tool

A.1 Software Information

cobaya1 [59], the COde for BAYesian Analysis, is a Bayesian statistical analysis tool
designed for sampling and modelling in the framework of cosmology. The code is able
to explore priors and posteriors using several samplers and theoretical cosmology codes.
The results (sampling chains) can be analysed with GetDist [41]. Its authors are J.
Torrado and A. Lewis, and at the moment, it is under beta test. It is planned to be
released during the summer of 2018.

Fig. A.1. cobaya working scheme. The input yaml file is set with the priors,
likelihoods and the sampler that we decide to use. A set of parameters, θ, allowed
by the prior, is passed to the theoretical cosmology code, which calculates the CMB
power spectra or any other cosmological observable. The result is compared with the
data likelihood, and by the sampling algorithm, it is decided whether θ is accepted and
written in the chain. The sampler repeats this procedure until convergence is reached.

cobaya, which was designed for general purpose statistical tool, is fully written in
python (compatible with both v.2.7 and v.3.0), callabled from the shell or from a
jupyter notebook and uses yaml language for the input files.

1The word “cobaya” means in Spanish “guinea pig”.
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A.2 Improvements
With respect to other tools, cobaya gives:

• Automatic installation script of cosmological codes (theoretical and samplers)
and data (and their dependencies): only needs a yaml file indicating desired
modules.

• flexibility, as it is easily extensible: possibility of defining own likelihoods and
priors distributions effortlessly.

• the choice between the two major cosmological theory codes class [21] and
camb [44, 32] indistinctly.

• the possibility of choosing from several samplers, for instance the MCMC Cos-
moMC [43, 40, 48] and the Nested Sampling Polychord [30, 31].

• an easy use of modified versions of theoretical cosmology codes (cobaya only
needs the path to their corresponding python wrappers).

• the possibility of create citations easily: automatic script to create citation
references of the used modules.

• the opportunity of analysing derived parameters directly calculated by cobaya.

A.3 List of bugs and other implemented sugges-
tions

Within the detailed beta test carried out for the test of cobaya, we suggested new
improvements and we also found and fixed some bugs:

• cobaya failed to finish its algorithm when convergence was reached but only
one chain was being computed.

• cobaya did not die in cluster computations as some errors were not classified as
error log outputs.

• cobaya stopped every time you re-run computations in the same folder and a
chain file is also present. Currently, it only stops if the chain file is not empty.

• Included derived parameters on the fly, weighted by the prior, after the computa-
tion of the theoretical cosmology code.

• Tested automatic installation script of cobaya modules. Included possibility
of changing the path to common libraries (i.e: Lapack, OpenBlas) from the
yaml file.
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• Easy check included in cobaya to verify which libraries numpy is using, and
change them if desired.

A.4 Acknowledgements
I acknowledge Santander Supercomputacion support group at the University of
Cantabria who provided access to the supercomputer Altamira Supercomputer at
the Institute of Physics of Cantabria (IFCA-CSIC), member of the Spanish Supercom-
puting Network, for performing simulations/analyses.

cobaya takes advantage of multiple python modules such as matplotlib [34],
scipy [36] and pandas [46].





Appendix B
Arbitrary Change of the PPS Modification for
camb

B.1 Software information

Fig. B.1. Example of a feature (predicted for a transient and mild reduction of
the speed of sound u(τ) parametrized using Gaussian Processes, with training nodes
τt = [−150, 120] and ut = [−0.03,−0.1]) calculated with the new modification of camb.

In order to calculate the predicted features in the Primordial Power Spectrum (PPS), it
has been necessary to modify camb accordingly. This modification was first introduced
by J. Torrado [33] to allow for features in the PPS from reductions of the speed of
sound (see chapter 3), parametrized using a Gaussian ansatz for u(τ). During the
course of this project, we have extended the modification not only to include any
prospective new parametrizations for u(τ), but an arbitrary modification of the PPS,
∆P/P (see figure B.1).

This modification of camb can be found in https://gitlab.strw.leidenuniv.nl/SRFT/
CAMB_external_PS.git, and at the moment, it is not publicly available1. This
modification is planned to be merged with the official incoming version of camb in the
near future.

1If the reader is interested in the project, an e-mail can be sent to canasherrera@lorentz.leidenuniv.nl

https://gitlab.strw.leidenuniv.nl/SRFT/CAMB_external_PS.git
https://gitlab.strw.leidenuniv.nl/SRFT/CAMB_external_PS.git
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B.2 Structure

Fig. B.2. camb modification to include an arbitrary modification of the power-law
type PPS. The feature is generated via the python wrapper of camb, pycamb,
which includes the class InitPower. If the external mode for an arbitrary ∆P/P is
activated (Mode = 1), the initialpower.py module calls the submodule feature,
which includes the self-written functions of your model predictions for features. The
feature is passed to the fortran main core of camb, to the module power_tilt.f90,
which sums the feature to the power-law PPS.

The arbitrary feature in the PPS is computed using the camb python wrapper, called
pycamb, which includes the InitPower class in the module initialpower.py. The
mode is activated by the attribute of the InitPower class: InitPower.Mode = 1. If
this mode is activated, it will call the submodule feature within the python wrapper.
This module includes the python file mod_initialpower.py, which can be arbitrary
modified to include any predictions for modifications of the PPS. At the moment, a
toy-model designed by M. Martinelli is included in the DEMO case. The parameters
that define the feature will be saved as attributes of the class InitPower. This step is
essential, as the new sampler cobaya automatically detects all attributes of any class
from pycamb, and it is able to perform sampling over them.

For convenience, some automatic sampling functions to define the range of k have
been included. Nevertheless, the user is able to define its own range and density for the
k. The function mod_initialpower.py also calculates the minimum distance within
the k, ∆kmin, which is directly determined by the density of the sampling the user
performs. This value is necessary for the computation of the Cℓ at later stages.

Once that the feature ∆P/P is created, it is passed to the fortran core of
camb, concretely to init_power.f90. This routine adds ∆P/P to the power-law PPS.
To calculate the Cℓ, it is necessary to integrate over the modified PPS (see chapter
4). However, if the interval dk for integration is too big, the feature will be missed.
Therefore, we set dk to be the the minimum distance within the k, ∆kmin. For a
∆kmin = 10−5, camb needs approximately 15 seconds to calculate the CMB power
spectra, in a computer i7 with 16 GB of RAM. We also set the corresponding dℓ to be
the corresponding minimum distance ∆ℓmin ≈ 13911.6∆kmin.
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B.3 Improvements for publication
In order to publish our modification in the new version release of camb, we need to
perform further changes in the code such as:

• Include an easy reading routine in power_tilt.f90 to obtain from a text file a
random PPS for those users that still would like to use the full-written fortran
code and avoid the python.

• Include interpolation routines from subroutines.f90 from the development
branch, instead of the ones available at equations.f90.

• Re-define dynamically the parameters for the integration density k_boost and
l_boost in cmbmain.f90 and modules.f90.

• Include modifications to take into account the effects in the lensed power spectrum.

• Link cobaya with a general function not necessary under the module mod_initialpower.py
(under development, as we need cobaya to finish its integration with the new
development branch of camb).

• Change variable names for more recognizable ones such as primordial_k instead
of dPoP0.

B.4 Acknowledgements
We would like to thank Antony Lewis for interesting discussions about how to incorpo-
rate the modification in camb for a future publication.





Appendix C
From multifield inflation to EFT

The aim of this appendix is to obtain the Effective Field Theory (EFT) expansion of
adiabatic perturbations for a single field inflationary model, represented in the action
of equations (3.3) and (3.4) in chapter 3, and calculated in [24]. We start from a
multiple field model. This appendix is based on the previous work of EFT of inflation
[14, 23, 24] and on basic concepts of multifield inflation [17, 16]. For convenience, we
set the reduced Planck mass MP =

√
1/8πG = 1.

C.1 Basics of multifield inflation

Let us begin by setting the action for a set of multiple scalar fields ϕa minimally
coupled to gravity,

S =
∫
d4x
√
−g

[1
2R−

1
2g

µνγab(ϕ)∂µϕ
a∂νϕ

b − V (ϕ)
]
, (C.1)

where a = (1, ..., N) being N the total number of fields, R is the Ricci scalar of the
space-time metric gµν , γab is the space metric spanned by the fields ϕa, and V is the
scalar density potential. The equation of motion is,

□ϕa + Γa
bc∂µϕ

b∂µϕc − V a = 0 (C.2)

where □ = ∇µ∇µ, ∇µ being the covariant derivative and V a ≡ γabVb. The Christoffel
symbols Γa

bc are defined according to the field space metric γab as

Γa
bc = γad

2 (∂bγdc + ∂cγbd − ∂dγbc). (C.3)

Given this set-up, we can study the solutions of the system (C.2).

C.1.1 Background

We focus first on the equations corresponding to a homogeneous and isotropic cos-
mological background, where ϕa = ϕa

0(t) is a scalar field solution, which defines the
trajectory in field space as a function of time t. Let gµν be the flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric,

ds2 = gµνdx
µdxν = −dt2 + a(t)δijdx

idxj. (C.4)
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where a(t) is the scale factor defined in chapter 1. Using equation (C.4), the equations
of motion (C.2), which describe the evolution of the background, are

Dtϕ̇
a
0 + 3Hϕ̇a

0 + V a = 0, (C.5)

3H2 − ϕ̇2
0/2− V = 0, (C.6)

where Dt is the covariant time derivative defined as,

DtY
a ≡ Ẏ a + Γa

bcϕ̇
bY c, (C.7)

and ϕ̇2
0/2 is the total kinetic energy expressed as,

ϕ̇2
0 ≡ γabϕ̇

a
0ϕ̇

b
0 ↔ ϕ̇0 =

√
γabϕ̇aϕ̇b. (C.8)

where, from it, we find:

Ḣ = − ϕ̇
2
0

2 . (C.9)

These equations of motion (C.5) and (C.6) are written in terms of the basis formed by
the fields ϕa, and they do not give easily any insight about how the system behaves.
For this reason, a different basis is used, called kinematic basis, which is formed by the
tangent T a = T a(t) and normal Na = Na(t) direction vectors to the trajectory. Let
us assume that we are dealing with a system formed by only two fields. In this case,
these vectors are defined as,

T a ≡ ϕ̇a
0

ϕ̇0
Na = γabNb = γab√γϵbcT

c, (C.10)

where γ = det(γab) and ϵbc is the Levi-Civita symbol, so that

NaTa = 0 NaN
a = TaT

a = 1, (C.11)

Projecting the equations of motion along T a we obtain

ϕ̈0 + 3Hϕ̇0 + VT = 0, (C.12)

where VT ≡ T aVa. Projecting along Na,

DtT
a = −VN

ϕ̇0
Na, (C.13)

where VN ≡ Na∂aV . Following the same procedure used for single field inflation
in chapter 2, we define the slow-roll parameters, ϵ, ηa, which take into account the
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background time evolution:

ϵ ≡ − Ḣ

H2 ηa ≡ − 1
Hϕ̇0

Dtϕ̇
a
0, (C.14)

where ηa is a two-dimensional field that gives the rate of change of ϕ̇a
0 in time. De-

composing ηa in terms of the new vectors of the kinetic basis ηa = η∥T
a + η⊥N

a, we
find

η∥ = − ϕ̈0

Hϕ̇0
η⊥ = − VN

Hϕ̇0
, (C.15)

where η∥ agrees with the definition of η̃ given in chapter 2 in equation (2.27), for single
field inflation, and η⊥ accounts for the rate of turning in the trajectory, telling how
fast the tangent vector T a changes in time. This rotation in time is encoded in the
angular velocity Ω of the trajectory defined as,

Ω ≡ −NaṪ
a = η⊥H = VN

ϕ̇0
. (C.16)

To summarize, and as in the single field inflationary case, slow-roll inflation will take
place as long as,

ϵ≪ 1 η∥ ≪ 1, (C.17)
where a large value for η⊥ is consistent with the slow-roll condition. In fact, we will
see later how η⊥, and so ϕ̇, is related to a change in the speed of sound cs.

C.1.2 Perturbations

We now study perturbations around the background solution ϕa
0(t). We parametrize

the perturbations as
δϕa(t,x) = ϕa(t,x)− ϕa

0(t), (C.18)
and we decide to work with the gauge invariant quantities R and F defined as

R ≡ H

ϕ̇
Taδϕ

a + ψ F ≡ Naδϕ
a, (C.19)

where ψ is the scalar perturbation of the spatial part of the metric, and in the comoving
gauge described in chapter 2, agrees with the comoving curvature perturbation R. The
quadratic action for R and F is,

S2 = 1
2

∫
d4xa3

[
ϕ̇2

0
H2 Ṙ

2 − ϕ̇2
0

a2H2 (∇R)2 + Ḟ2 − (∇F)2

a2 −M2
effF2 − 4Ω ϕ̇0

H
FṘ

]
,

(C.20)
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where Meff is called the “effective” mass1 of F defined as,

M2
eff ≡ m2 − Ω2, (C.21)

and m2 ≡ VNN + ϵH2R, where R is the Ricci scalar associated to γab.

C.2 EFT description when F is heavy

The action (C.20) shows how Ω couples both perturbations R and F . The term Ω
appearing in the effective mass is due to a correction in the potential because of the
centripetal force suffered by the turn. If F is heavy, the coupling reduces the effective
mass Meff , suggesting that there may be a single field effective description of the
theory when Ω2 ∼ m2, as the mass hierarchy would have broken.

We calculate the equations of motion associated to the system described by (C.20)
in Fourier space:

R̈+ (3 + 2ϵ− 2η∥)HṘ+ k2

a2R = 2ΩH
ϕ̇0

[
Ḟ +

(
3− η∥ − ϵ+ Ω̇

HΩ

)
HF

]
, (C.22)

F̈ + 3HḞ + k2

a2F +M2
effF = −2Ω ϕ̇0

H
R. (C.23)

The values R = const and F = 0 (for an arbitrary value of Ω) are non-trivial solutions
of equation (C.22) and (C.23). In fact, if F is heavy, F → 0 and R → const after
horizon exit during inflation. Then, in the regime when Meff ≫ (k/a), we can ignore
the time derivatives of F in equation (C.23). Taking into consideration that Meff ≫ H,
we can disregard the friction term 3HḞ as well. Therefore, equation (C.23) becomes,

k2

a2F +M2
effF = 2ϕ̇0η⊥R ↔ F = 2ϕ̇0η⊥

k2

a2 +M2
eff

R, (C.24)

where we have used the definition of Ω from equation (C.16). Substituting relation
(C.24) into the action (C.20) and neglecting the terms Ḟ , we obtain an effective action
for the comoving curvature perturbation only,

Seff = 1
2

∫
d4xa3 ϕ̇

2
0

H2

[
Ṙ
c2

s

− k2R2

a

]
, (C.25)

where the speed of sound cs of the adiabatic mode is given by,

cs = 1 + 4Ω2

k2

a2 +M2
eff

. (C.26)

1The name effective mass is used only for historical reasons, but it is not a proper mass.
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This effective field theory is valid as far as we can continue ignoring the kinetic terms
of F in equation (C.23):

F̈ ≪M2
effF . (C.27)

Equation (C.27) represents the adiabatic condition that every mode k needs to fulfil
for the effective field theory to be valid.

C.3 Generalization

We have obtained an effective action for the comoving curvature R. Now, we study
a generalization of this framework. For that, we are going to identify the Goldstone
boson corresponding to the broken time translational symmetry π = π(t,x), with the
adiabatic mode of our system R. To obtain the effective action, we are eventually
interested in integrating out the heavy field F .

C.3.1 Gauge relation between R and π

In this section, we will remark in which manner π and R are related by gauge
transformations. We begin by using the Arnowitt-Deser-Misner (ADM) formulation2

to write the metric as,

ds2 = −N2dt2 + hij(dxi +N idt)(dxj +N jdt) (C.28)

where N is the lapse function, N i is the shift vector and hij is the metric on the
spatial slices. To study the deviations from the homogeneous and isotropic background,
we follow the same procedure carried out in subsection C.1.2, parametrizing the
perturbations in this system using:

ϕa(t,x) = ϕa
0(t+ π) +Na(t+ π)F , (C.29)

hij = a2(t+ π)e2Rδij, (C.30)
where π parametrizes the deviations along the trajectory and F the displacements
from the trajectory. There are non-trivial solutions to the system of equations like in
the previous case, where π = const, R = const and F = 0.

Now, we analyse how R and π are related by a gauge transformation. Let us
consider the general coordinate transformation:

xµ → x̂µ = xµ + ξµ. (C.31)

2The ADM formalism is a Hamiltonian formulation of general relativity.
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We expand equations (C.29) and (C.30) in terms of R and π. For simplicity, we restrict
to the single field case, where we use δϕ(t,x) ≡ ϕ(t,x)−ϕ0(t) and hij ≡ a2(t)(1+2φ)δij :

δϕ(t,x) = ϕ̇0π + ϕ̈0

2 π
2 + ..., (C.32)

φ(t,x) = Hπ +R+
(
H2 + Ḣ

2

)
π2 + 2HπR+R2 + ..., (C.33)

Transforming t according to equation (C.31), so that t→ t̂ = t+ ξ0, we observe that
equations (C.32) and (C.33) transform up to first order as

δ̂ϕ = ϕ̇0(π − ξ0) φ̂ = H(π − ξ0) +R, (C.34)

where we can see that π is the Goldstone boson associated to the spontaneous time
translational symmetry breaking π̂ = π − ξ0. If we choose to work on a flat slicing,
the spatial part of the metric will remain unperturbed so that φ = 0. Thus, from
equation (C.34) we realize that,

ξ0 = π + R
H

(C.35)

and therefore, we arrive at the relation between π and R,

π̂ = −R
H
. (C.36)

C.3.2 EFT action for π

To obtain the effective action for the generalized framework, we use the flat gauge
described above. In this gauge, π is the dynamical field of interest but is not longer
constant. In this framework, equation (C.30) becomes,

hij = a2(t)δij. (C.37)

Introducing equations (C.29) and (C.37) into the action (C.1), we obtain

Seff = −
∫
d4xa3N

2

{
−6H2

N2 + 4H
N2N

i
,i + 1

2N2

(
N i

,jN
j
,i + δijN

i,kN j
,k − 2N i

,iN
j
,j

)
+ 1
N2 (ϕ̇0 + ΩF)2

[
(1 + π̇ −N iπ,i)2 − N2

a2 (∇π)2
]

1
N2 (Ḟ −N iF,i)2 − (∇F)2

a2 − 2V (ϕa
0 +NaF)

}
. (C.38)
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Calculating the equation of motion and ignoring from them the kinetic terms of F as
we did before, we find a relation between F and π:

F = γϕ̇0Ω
M2

eff − γΩ , (C.39)

γ ≡ 1
N2 − 1− 1

N2

[
2(1 + π̇ −N iπ,i) + (1 + π̇ −N iπ,i)2 −N2 (∇π)2

a2

]
. (C.40)

Introducing the obtained expression for F , equation (C.39), back into the action (C.38)
and ignoring the kinetic terms of F in the action, we obtain

Seff =
∫
dxa

3

2 ϕ̇
2
0

[
π̇ − (∇π)2

a2 + (c−2
s − 1)[2π̇ + π̇2 − (∇π)2/a2]2

4− 2π̇ + π̇2 − (∇π)2/a2

]
. (C.41)

To compare the action (C.41) with the action (3.5) of chapter 3, we expand (C.41) up
to third order in π and use the relation Ḣ = −ϕ̇2

0/2,

Seff = −
∫
d4xa3Ḣ

{
c−2

s π̇2 − (∇π)2

a2 + (c−2
s − 1)π̇

[
π̇2 − (∇π)2

a2

]
+ (c−2

s − 1)2 π̇
3

2

− 2 ċs

c3
s

ππ̇2 − 2Hη∥π

[
c−2

s π̇2 − (∇π)2

a2

]}
. (C.42)

If we neglect the higher order slow-roll corrections from action (C.42), we finally obtain
the EFT action of chapter 3.

S =
∫
d4xa3ϵH2

[
− π̇

2

c2
s

+ (∂iπ)2

a2 − 2Hsc−2
s ππ̇2 − (1− c−2

s )π̇
(
π̇2

c2
s

− (∂iπ)2

a2

)]
; (C.43)
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