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Abstract

We describe a method to increase the critical temperature of BCS
superconductors. The method is based on altering the electronic
properties of a thin film of a superconductor by periodically fabricating
holes in the crystal lattice. We use a MATLAB simulation to demonstrate
that certain patterns enhance the coupling between electrons and
phonons, which increases the transition temperature. In this project we
attempted to improve the simulation such that it executes faster and is
compatible with hexagonal structures.
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Chapter

Introduction

Ever since the discovery of superconductivity scientists have searched for
materials that superconduct at a higher temperature. It was long thought
the phenomenon could only happen at a temperature below about 30 K.
However, currently many materials have been discovered that supercon-
duct at a temperature higher than even 100 K. Although these materials
seem promising, the mechanism behind their high temperature supercon-
ductivity is unknown. These materials also often have a complex chemical
structure, making them brittle and hard to manufacture on a large scale.

Luckily, there is a consistent theory describing the materials which only
superconduct at temperatures below about 30 kelvin. These materials of-
ten have a simple chemical structure, making them easier to manufacture.
For these reasons, it can be worthwhile to try to improve these low tem-
perature superconducters rather than focussing on the high temperature
superconductors.

By improving superconductors we mean to raise the lowest temper-
ature at which the material superconducts. This critical temperature is
denoted as T,.

The way we will try to raise T, is by periodic nanopatterning; changing
the periodic crystal lattice by periodically removing atoms, thus changing
the periodicity of the material. This will influence the electronic structure
of the material, which in turns influences the critical temperature.

A MATLAB simulation is used to find what hole sizes and geometries
will yield optimal results. This simulation has been created and used be-
fore and already provides promising results[1]. During this project, we
have worked on improving the simulation. We have attempted to make
the simulation run faster by converting some of the MATLAB code to C++,
as C++ code has the potential to be faster than MATLAB code. Secondly,
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2 Introduction

we have tried to make the simulation compatible with hexagonal struc-
tures rather than only square lattices. Unfortunately we haven’t met these
goals, however we did make progress. In this thesis, we first provide the
reader with some relevant theory, and then report on what has been tried
to improve the simulation.
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Chapter

Theory of superconductivity

In this section we will briefly touch on some of the related theory of super-
conductors.

2.1 BCS theory

Bardeen, Cooper and Schrieffer published the first microscopic theory of
superconductivity in 1957. For this theory, which was named BCS theory
after their names, they later recieved a Nobel prize as it was soon recog-
nized to be correct in all essential aspects of low T, superconductivity.

The theory is based on the following three assumptions for electrons in
a solid material:

o The effective force between electrons can be attractive instead of re-
pulsive.

e However weak this attractive force, electrons can form stable pairs.

e Under suitable circumstances, all electrons near the Fermi surface
are bound in pairs. These electron pairs form a coherent state.

We shall now describe these assumptions and what implications they have.

Attractive electron interaction

It may be surprising to find an attractive interaction between electrons,
since the Coulomb interaction tells us that like charges repel. To see how
an attractive interaction is established, we consider an electron moving
through the crystal lattice of a solid material. First, the repulsive force is

3
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4 Theory of superconductivity

significantly reduced by screening due to the charged atoms in the lattice.
Second, the electron can interact with phonons of the crystal lattice, by ex-
citing one for example. Another electron can absorb this phonon and pick
up the momentum. By interacting with phonons the resulting interaction
between electrons can be attractive.

Electron pairs

Cooper discovered that this phonon mediated interaction between elec-
trons in a solid material is attractive only near the Fermi surface. In fact,
he found that for a single pair outside the Fermi sea the electrons form a
bound state, due to this attractive interaction.

Coherent state

From the previous phenomenon followed that each electron on a Fermi
surface is part of a pair. It should be noted that the bounded state of elec-
tron now behaves like a boson, since it has integer spin. Because of this and
since there are a lot of such electron pairs in a material, the pairs overlap
very strongly and form a highly collective condensate. From this follows
that instead of looking at single electrons or pairs, the entire condensate
should be taken into account.

The energy related to break a single pair is then related to the energy
required to break all pairs in the condensate. Each bounded state in the
condensate increases the energy barrier. At sufficiently low temperatures,
the energy from collisions between atoms and electrons is not enough to
break an electron pair. Because of this, the condensate as a whole does
not interact with atoms anymore and it behaves like there are no atoms
at all. Thus the atoms can’t slow the electrons down, so the flow of the
electron condensate experiences no resistance. This means the material is
superconducting.

2.2 Second quantization

Throughout this thesis we will use the occupation number representation,
which is also known as second quantization. This formalism is particu-
larly convenient to describe quantum many-body systems.

In first quantization, a wave function of a many-body systems satisfies
the following symmetry relation:

Y(ry,ro, ooty e rn) = 0¥ (12,0 1y i), (221)
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2.3 Bloch’s theorem 5

where r; specifies the position of the i-th particle, and

] . (2.2)
—1 for fermions

1 for bosons
1

The wave function is here expressed in terms of position, but this sym-
metry property holds in any basis. Since it’s impossible to tell identical
quantum particles apart, this formalism isn’t convenient because the wave
function is expressed in terms of the properties of each particle. It is un-
physical to ask what particle i is doing, because there is no way to keep
track of the ith particle. For many-body systems the wavefunction also
gets very tedious to work with.

Occupation number representation, or second quantization, is a differ-
ent formalism which doesn’t need this unphysical information and is more
useful for calculations involving many-body systems. The starting point
for this representation is the indistinguishability of identical particles[2].

We choose a complete and ordered single-particle basis { |v1) , |v2) , ... }.
With second quantization we can represent many-body states by writing
how many particles are in each single-particle state. For example, states
where n,, particles are in the single-particle state |v1), 1y, particles in |1p),
etc, can be represented as the ket |n,,,1,, .. .).

It makes sense to introduce operators for the many-body state that raise
or lower the amount of particles in a certain single-particle state. The an-
nihilation operator c,, and creation operator cIi lower and raise the occu-
pation number of state v; respectively. It turns out that all operators, such
as the Hamiltonian, can be written in terms of these operators. The ladder
operators used to solve the Schrodinger equation for a harmonic oscillator
are exactly annihilation and creation operators. We will use these kind of
operators in the Hamiltonian in section 2.4.

2.3 Bloch’s theorem

One of the most important results in solid state physics is Bloch’s theorem.
This theorem is a statement on the wavefunction of a particle in a periodic
material®. More specifically, there is a basis of wavefunctions with the
properties that each wavefunction 1 is an eigenstate and can be written as
¥(r) = e®Tu(r) , where u has the same periodicity as the crystal lattice of
the material. Since electrons and the periodicity of the underlying crystal

*The periodicity comes from the underlying crystal lattice.

Version of July 2, 2018- Created July 2, 2018 - 13:07



6 Theory of superconductivity

lattice plays a big role in this project, and since this thesis is also submitted
in partial fulfillment of the requirements for the bachelor of mathematics
degree, we have done some additional research on this theorem. In this
section, a (partial) proof is given of Bloch’s theorem.

We first state for N € IN the N-dimensional (time independent) Schrodinger
equation for the wavefunction ¢ : RN — C of a particle of mass m € R+
in a periodic potential V(r) : RN — R. Thus we assume there are N
linearly independent vectors a; € RN such that V(r +a;) = V(r). The
N-dimensional parallelogram spanned by the vectors a; will be denoted
by A. The Schrodinger equation is an eigenvalue problem for the energy
E € R on an unbounded domain

9(r) = Ep(r). 2.3)

_K2 )

In this equation 7 is the reduced Planck constant. By substituting q(r) =
2h—’§V(r) and A = Zh—’?E we get the following equation on an unbounded

domain:
=24 9(0)] 9 (1) = Ap(r), (2.4)

From now on we will call g4 the periodic potential. Throughout this sec-
tion we assume that the potential is piecewise continous and that it has
piecewise continuous first-order partial derivatives.

Theorem 2.3.1 (Bloch’s Theorem). If A is a real number such that (2.4) has a
non-trivial bounded solution, then it has solutions of the form

p(r) = p(r) exp(ic-r) (2.5)
where p(r) : RN — C is periodic with each vector a; and ¢ € RN.

Note that equation (2.4) is a partial differential equation. Since these
are often more difficult to work with, we will first consider some theory
on ordinary differential equations. We will eventually provide the most
important results for the 1 dimensional eigenvalue equation

d2
(@ + q(S)) y =2y, (2.6)

where y : R =& R and g : R — R are continuous. This is the one di-
mensional equivalent of (2.4), so equation (2.6) is an ordinary differential
equation. The theory and results we will find can be extended to more
dimensions, but this is not shown in this thesis. However, the theory for

6
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2.3 Bloch’s theorem 7

ordinary differential equations is so enlightening that we will give that in
the coming sections.

We will use the theory of linear operators to prove the theorem. Since
differential operators are generally unbounded, we will actually focus on
integral operators. As will soon be shown, differential equations can be
reformulated as integral equations.

Before that we first provide the reader with some relevant definitions
and theorems concerning linear operators in the coming sections. Some
of these are taken directly from the book Linear Functional Analysis by
Bryan P. Rynne and Martin A. Young[3], chapters 4, 6, 7 and 8. We will
skip the proofs of most theorems, as these can be found in the book.

2.3.1 Basic definitions

This section serves to provide the most basic definitions which we will
require.

Definition 2.3.2 (Hilbert space). A Hilbert space is an inner product space
which is complete with respect to the metric associated with the norm
induced by the inner product.

The Hilbert space we will mostly use is the Lebesgue space L?[a, b].

Definition 2.3.3 (Linear operator). Let X, Y be normed linear spaces and
let T : X — Y be a linear transformation. If T is bounded, i.e. there exists
a positive real number k such that || T(x)|| < k||x|| for all x € X, then T is
called a linear operator.

Suppose X, Y are normed linear spaces. The set of all linear operators
from X to Y is denoted by B(X,Y). The set of all linear operators from X
to X is denoted as B(X). Note that a linear operator is bounded if and only
if it’s continuous.

Definition 2.3.4 (Spectrum). The spectrum ¢ of a bounded operator T is
the set of complex numbers y such that uI — T is not invertible.

It is in some sense a generalisation of the collection of eigenvalues of a
matrix. A basic fact that we will see later is that a spectrum of a bounded
operator is always closed.

Definition 2.3.5 (Adjoint operator). Let H, K be complex Hilbert spaces
and T € B(H,K). The unique operator T* € B(K, H) for which

(Tx,y) = (x, T"y)
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8 Theory of superconductivity

holds for all x € H and all y € K is called the adjoint operator of T. If
T € B(H) then T is called self-adjoint if T = T*.

For a proof of the existence and the uniqueness of an adjoint operator
see [3].

Definition 2.3.6 (Compact operator). Let X, Y be normed linear spaces. A
linear map T : X — Y is compact if, for any bounded sequence {x,} C X,
the sequence {Tx,} C Y contains a convergent subsequence.

Theorem 2.3.7. Suppose H is a complex Hilbert space, and T € B(H) a self-
adjoint and compact bounded operator. Then T has finite non-zero eigenvalues.
The set of non-zero eigenvalues is is either finite or consists of a sequence which
tends to zero. Each non-zero eigenvalue is real and has finite multiplicity. The
eigenvectors corresponding to different eigenvalues are orthogonal.

This theorem implies that we can order the eigenvalues of a self-adjoint
and compact operator T like Ay, Ay, ....

2.3.2 Integral operators

Let # = L?[a,b]. Let R,y = [a,b] x [a,b] C R?, and k : R(,) — Ca
continuous function. For any u € H, define f : [, b] — C such that

b
£(s) = [ ks Hu(t)at.
a
It can be proven that for any u € H the function f belongs to H.

Definition 2.3.8 (Fredholm integral operator). Let H = L?[a, b]. Let R, ) =

[a,b] x [a,b] C R? and k : R,y — C a continuous function. Define
K : H — H such that

Ku = /b k(s, t)u(t)dt (2.7)

for u € H. It can be verified that the right hand side of this equation is
indeed an element of H. The operator is also linear and bounded. Then
K is called the Fredholm integral operator, and k is called the kernel of K
(not to be confused with the null-space of a linear operator).

An equation of the form Ku = f, where f is known and ©# unknown,
is known as a first kind Fredholm integral equation. An equation of the
form

(I —uK)u = f, (2.8)

where 1 € C\ {0}, is known as a second kind Fredholm integral equation.

8
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2.3 Bloch’s theorem 9

Theorem 2.3.9. The integral operator K : H — H is compact.

Theorem 2.3.10. If the kernel k of an integral operator K is Hermitian, i.e. if

k(s,t) = k(t,s) forall s, t € [a,b], then K is self-adjoint.

2.3.3 Differential equations

The reason we stated the theory in the sections above is that it can be used
for differential equations. Differential operators which arise are generally
unbounded, which makes them problematic to work with. Instead it is
possible to reformulate differential equations as integral equations, which
give rise to integral operators which are bounded. In this thesis we will
only consider a specific class of second order ODE’s, but the methods can
be extended rather easily.

Throughout this section we denote the set of continuous functions f :
[a,b] — C by Cla, b]. The subset of continuous functions on this domain
whose first two derivatives are also continuous will be denoted as C?[a, b)].

We consider the following ordinary differential equation on an interval
[a, b] where we assume g, f € Cla, b], together with boundary conditions

y"(s) +q(s)y(s) = f(s), (2.9)
y(a) =y(b) =0 (2.10)

A solution is a function y € C?[a,b]. Let Y be the set of functions y €
C2[a, b] satisfying the boundary conditions y(a) = y(b) = 0, and define
T:Y — Cla, bl by Ty =y".

Lemma 2.3.11. The map T is bijective. If z € C|a, b] then the solution y € Y to
the equation Ty = z is given by

b
v(s) = [ solsHz(t)at (2.11)

where

G-
go(s’t):{ (b-3)(1—a) fasssts<h
— 3, fast<s<b

Proof. Suppose y € Y and let z = Ty. By integrating this twice and substi-
tuting in the boundary conditions y(a) = y(b) = 0 we get equation (2.11).

To prove that T is injective, note that we can express y € Y in terms of
z = Ty. Suppose y1,y2 € Y so that Ty; = Ty, = z for some z € Cla, b].
Then by equation (2.11) y; = yp, so T is injective.
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10 Theory of superconductivity

Suppose z € Cla, b] is arbitrary. Then define y by (2.11). It is easy to
see that y can be differentiated twice and that is satisfies the boundary
conditions y(a) = y(b) = 0. Soy € Y, and Ty = z. So T is also surjective.

O

We let Go denote the integral operator defined by

Goz = /ab Qo(s, t)z(t)dt

for z € Cla, b].

Lemma 2.3.12. It holds true that y € C2[a,b] is a solution of the differential
equation (2.9) with boundary values (2.10) if and only if it satisfies the integral
equation

y = Go(f —qv) (2.12)

Proof. This follows from Lemma 2.3.11 by setting z = f — gv. O

With this lemma we see that the boundary problem (2.9), (2.10) is equiv-
alent to the integral equation (2.12). This doesn’t help us immediately to
solve the differential equation, as we still need to solve an equation. How-
ever, we will show now that we are able to find an integral operator which
will give us a solution to the differential equation immediately.

As an example, we assume q = 0 to get the following simple boundary
value problem

y'=f, y(a)=y({)=0. (2.13)

We can write this differential equation as Ty = f. It follows from lemma

2.3.12 the solution of (2.13) is directly given by y = Gpf. Thus in a sense, T

and Gy are each others inverses. We call the operator Gy for this problem

a Green'’s operator, and the kernel gp is known as the Green’s function.
As another example, we consider the eigenvalue problem

y' =My, yla) =y(b) =0. (2.14)
So using the operator T this problem can be written as
Ty = Ay (2.15)

From lemma 2.3.12 we find problem is equivalent to the eigenvalue equa-
tion

1
Goy = v (2.16)

10
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2.3 Bloch’s theorem 11

So A is an eigenvalue to the eigenvalue equation (2.14) if and only if % is
an eigenvalue for Gp. The eigenfunctions are also similar, as the problems
are equivalent. Since Gy is an integral operator with a Hermitian kernel,
we know by Theorem 2.3.9 and Theorem 2.3.10 that we can use the results
from Theorem 2.3.7.

Integral operator for more general boundary value problem

We would now like to find an integral operator which gives us the solution
to the more general boundary value problem

y'+aqy=f, y(a)=y(b)=0. (2.17)

We assume g, f € Cla,b] and y € C?[a,b]. We will also consider the corre-
sponding eigenvalue problem for when f = Ay.

It turns out that for a solution operator to exist there must be no non-
zero solution to the homogeneous problem, i.e. 0 cannot be an eigenvalue
to the eigenvalue problem.

Let y;, y, be solutions to the equation y” + gy = 0, with the initial value
conditions

yi(a) = yr(b) =0, y(a) = y;(b) = 1. (2.18)

Lemma 2.3.13. If 0 is not an eigenvalue to the eigenvalue problem for when
f = Ay in equation (2.17), there is a constant C # 0 such that y;(s)y,(s) —
vr(s)yj(s) = Cforalls € [a,b].

Proof. By differentiating C(s) = y;(s)y,(s) — y+(s)y;(s) one sees this must
be constant, and from the assumption that there is no non-zero solution to
the homogeneous problem follows that the constant C(s) = C # 0. O

Theorem 2.3.14. If 0 is not an eigenvalue to the eigenvalue problem for when
f = Ay in equation (2.17), then the function

g(s,t) = {

is a Green’s function for the boundary value problem (2.17). Thus, for G the
integral operator with kernel g the unique solution to (2.17) is given by y = Gf.

yi(s)y.(t), ifa<s<t<b

ye(s)yi(t), fa<t<s<b (2.19)

Q= Al

Proof. Let y = Gf. By using the definitions of g, y;, y, and differentiating
twice it can be seen that y satisfies the boundary value problem (2.17). [

11
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12 Theory of superconductivity

In the case that we have the eigenvalue problem f = Ay we have the
following two equivalent eigenvalue problems

d2
(4 +99)) v =1 (220)
1
Gy = 1, 2.21)

where G is defined as in Theorem 2.3.14. So A is an eigenvalue to equation
(2.20) if and only if % is an eigenvalue to equation (2.21). The eigenfunc-
tions of (2.20) corresponding to A are the same as the eigenfunctions of
(2.21) corresponding to }.

Theorem 2.3.15. There are countably infinitely many eigenvalues for the bound-
ary value problem

A2
(52 +96)) v =Aw vl@) = y) 0. e2)
We assume 0 is not an eigenvalue. The eigenvalues can be ordered so that
A >Ary > ...,

and A, — —ooasn — oo,
The set of corresponding eigenfunctions form an orthonormal basis for L?[a, b].

Proof. Let G be the integral operator as in theorem 2.3.14. The kernel
g is symmetric, so hermitian. By Theorems 2.3.10 and 2.3.9, G is self-
adjoint and compact. By Theorem 2.3.7 G has a countably infinite sequence
of eigenvalues u which tend to zero, and eigenvectors corresponding to
eigenvalues form an orthonormal set. For each eigenvalue u of G, there is
an eigenvalue A = 1 for the boundary value problem (2.22). It follows nat-
urally that the eigenvalues A can be ordered as in the statement, and that
the sequence converges to —co. The eigenfunctions of the integral operator
are the same as the eigenfunctions for the boundary value problem (2.22),
so by Theorem 2.3.7 the eigenfunctions form an orthonormal basis. O

2.3.4 Bloch’s theorem

We now introduce the set S, called the conditional stability set. It consists
of the values A for which equation (2.4) has a non-trivial bounded solution.

We are now ready to work on a proof for Bloch’s Theorem 2.3.1. We
tirst state two eigenvalue problems related to equation (2.4).

12
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2.3 Bloch’s theorem 13

Definition 2.3.16 (The periodic problem over A(k)). Let k € NV de-
note the N-tuplet (k,ky, ..., ky). Let A(k) be the N-dimensional paral-
lelogram spanned by the vectors kjaj, kpay, ..., kyan. Then the periodic
problem over A(k) is equation (2.4) considered to hold in A(k) with the
periodic boundary conditions

P(r+kjaj) =9(r), 1<j<N. (2.23)

Definition 2.3.17 (The p-periodic problem). Let pj (I <j < N) be real
parameters such that for each j, p; € (—1,1]. Let p denote the N-tuplet
(p1,p2,--.,PN)- The p-periodic problem is equation (2.4) considered to
hold in A with boundary conditions

P(r+a) = p(r)explinp;), 1<j<N, (224

For both these two problems we can prove the existence of eigenvalues
and corresponding eigenfunctions using Green'’s functions like in Theo-
rem 2.3.15. To see the exact proof one can consult [4]. For now, we state
the most important results of this method.

The eigenvalues of both problems are real and form a countably infinite
set. We can denote the eigenvalues of the periodic problem over A(k) as
An(k), and the eigenvalues of the p-periodic problem as A, (p), where
n € IN. We have the following inequalities

Ao(k) < Aqg(k) < Ag(k) <., (2.25)
Ao(p) < Ai(p) < Aa(p) < ... (2.26)

Both sequences converge to infinity as n goes to infinity. We let X denote
the set of all A,(k) forn > 0 and ki<1(1<j< N). The set of all A,,(p)
forn > 0and —1 < pj < 1(1 <j < N)isdenoted as .7

For both sets of eigenvalues there is a corresponding set of orthonor-
mal eigenfunctions. Let ¥, (r; k) denote the eigenfunctions of the periodic
problem over A(k), and let ,(r; p) denote the eigenfunctions of the p-
periodic problem. Thus we have

/A ” Wi (1K) Y0 (r;k)dr = Spun, (2.27)
/A ’Pm(f} P)lpn(l‘} p)dr = dun, (2.28)
(2.29)

where ¢ is the Kronecker delta.
In the following theorem we show these two problems are somewhat
related.

13
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14 Theory of superconductivity

Theorem 2.3.18. For each 1 < j < N, let rj € {0, .. .,k]- —1} and -1 <
pr; < 1 be such that exp(irtpy;) are the kj-th roots of unity. So for each j there
are k; parameters Pr;- Let pr (1 < R < kiky...ky) denote the N-tuplets
(Prys Prys- -+, Pry) in any order. Then the set of all functions ,(x; pr) where
n>01<R < kiky...kyn, and P, (x; pr) are solutions for the pr-periodic
problem, is a complete set of eigenfunctions for the periodic problem over A(k).

Proof. We first show that the eigenfunctions ¢, (r; pr) satisfy relation (2.23).
Since these eigenfunctions are solutions for the pg-periodic problem, we
know that

¥n(r + aj; pr) = Pu(r; Pr) exp(i7TpR;)- (2.30)
Then
¥u(r + kjaj; pr) = (r + (k; — 1)aj; pr) exp(intpr,) (2.31)
=Yu(r + (kj — 2)aj; pr) exp(intpr;) (232)
=... (2.33)
=t (r+ (kj — k)aj; pr) exp(irtpr, ) (2.34)
=1, (r; pr). (2.35)
So the eigenfunctions ¢, (r; pr) satisfy relation 2.23. The proof for the com-
pleteness can be found in [5]. o

To prove Bloch’s theorem, we need two results from the spectral theory
of differential equations. The differential operator associated with equa-
tion (2.4) is L = —V?2 + g(r) such that we have L{(r) = Ap(r). We let o
denote the spectrum of L.

Theorem 2.3.19. Let A be real such that equation (2.4) has a bounded solution.
Then A is in the spectrum o.

The proof can be found in [6].

Theorem 2.3.20. For each k, let oy denote the set of eigenvalues An(k)(n > 0).
Then A is in o if and only if dist(A,0x) — 0asky — oo, ..., kny — 0.

The proof of this theorem can be found in [4].
To recap, we now have the following 4 sets which we will require for
the proof.

1. X%, the eigenvalues of the periodic problem over A(k), k € NN,

14
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2.4 Hamiltonian 15

2. .7, the eigenvalues of the p-periodic problem for p = (p1, ..., pn), pj €
(—=1,1],

3. 0, the spectrum of the differential operator L,
4. S, the conditional stability set.
Theorem 2.3.21. The sets X, ., o, and S are identical.

Proof. Suppose x € . Then there are k and n € IN such that x is A, (k).
Then, by Theorem 2.3.18, x is also the eigenvalue of some p-periodic prob-
lem. So X~ C .7.

Now suppose y € .. Let i(r) be the corresponding eigenfunction,
satisfying equation 2.24. Taking the absolute value of both sides gives
[p(r+aj)| = |¢(r)| for all (1 < j < N), which implies that ¢ is bounded.
This means thaty € S,s0 . C S.

From Theorem 2.3.19 we see immediately that S C ¢, so we have 2 C
S CSCo.

Now suppose z ¢ ¥. Then by theorem 2.3.20 it is also not in the spec-
trum . Thus we have ¥ C ¢ C . And since the spectrum ¢ is closed, by
definition of the closure of a set this shows that the latter two sets are the
same. Then all sets must be the same,so X =.¥ =S = 0. O

We can now give the proof of Bloch’s Theorem.

Proof. Since A is in the conditional stability set S, by Theorem 2.3.21 it is
also in .. So there is a solution ¥ (r) and some p such that ¥(r + a;) =
p(r) exp(irrp;) for 1 < j < N. Let ¢ be the unique vector such that for all
1 <j < Nwehavec-aj = 7tp;. Define p(r) = ¢(r) exp(—ic - r). It follows
that p(r) has period parallelogram A, and (r) = p(r) exp(ic - r). O

The physical interpretation of the vector c is that it representents the
wavevector of the particle. The most important take away from this sec-
tion is that an electron in a periodic potential has eigenstates of the form
¥(r) = e®Tu(r), where u(r) has the same periodicity as the potential.
Hence, this gives a means of quantifying how changing the periodic po-
tential changes the eigenstates.

2.4 Hamiltonian

The Hamiltonian equation of our system we will consider consists of three
parts:
H = He1 + Hph + Helph- (2.36)

15
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16 Theory of superconductivity

In the coming three sections we will discuss each part of the Hamiltonian.

2.4.1 Electron part of Hamiltonian

We approach the electronic structure of our material with the tight bind-
ing model. This model is based around the idea that the wavefunction of
an electron in a material is a linear combination of atomic orbitals. For
simplicity we assume there is only one orbital per atom and we make the
approximation that orbitals are orthogonal to each other!. To clarify this
model we start with a one dimensional monoatomic chain. The following
sections closely follow the theory of [7]. For derivations of equations one
can consult this source.

Monoatomic chain

Suppose we have N atoms in a chain where the spacing between atoms is
the lattice constant a. We assume this chain has periodic boundary condi-
tions, so that the n-th atom is the same as the (n + N)-th atom. We denote
the orbital of the n-th atom by |n), so that our orthogonality condition is
(n|m) = dy,. Then we use a general trial wavefunction of the form

1Y) =Y ¢uln), (2.37)

where ¢, is the amplitude of the wavefunction |#). From this follows that
for each atom 7 the effective Schrodinger equation takes form of the eigen-
value problem, where m sums over all atoms in the chain.

Edn = ZHnmqur (2.38)
m
where Hy,, = (n|H|m) is the matrix element of the Hamiltonian. This
matrix element is given by
Hnm = —“I/lénm — t(S(n,m)/ (2.39)

where 6, = 1 only when 1 and m are the same and ¢, ,,) = 1 only when
n and m are nearest neighbours. yu is the chemical potential of an elec-
tron in one of the orbitals, and ¢ is called the hopping term. The physical

TWhen atoms are far apart, this approximation makes sense. But when the nuclei are
close together, such as in the molecular structure of a solid, this approximation is far from
correct. However, when not assuming orthogonality, improvements in accuracy do not
justify the added complexity for our purposes.

16
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2.4 Hamiltonian 17

interpretation of this is that this hopping term allows to move electrons
from one atom site to another, but only when the sites are close enough,
i.e. nearest neighbours.

Thus by plugging in equation 2.39 into equation 2.38 we get the follow-
ing result:

Epn = —ppn — H{Ppt1 + Pn—1)- (2.40)

By using an ansatz solution of the form ¢, = e ", where k is the

wavevector, it is fairly straight-forward to determine the energy spectrum.
However this is not particularly enlightening for our current purposes.

Triatomic chain

Instead of a monoatomic chain, we will now consider a chain with a unit
cell of 3 atoms which is represented as follows:

X =Y —Z—X—Y—Z—... (2.41)

Each letter denotes a type of atom. We consider M unit cells, so that the
total amount of atom sites is 3M. Again we assume periodic boundary
conditions, so that the j-th atom is the same as the (j + 3M)-th atom. This
way we approximate a large (infinite) chain by using a small part of 3M
atoms. For clarity we have shown 2 unit cells above. The distance between
adjacent atoms is 4, so the unit cell has a length of 3a.

In the following, we let the index i represent the type of atom. In this
case it is either x, y or z. Let ¢, be the amplitude of the wavefunction on
the n-th site of atom type i.

We have an effective Schrodinger equation and Hamiltonian of the
same type as the monoatomic case, however we have to be sure to take
the different wavefunctions into account. By substituting the Hamiltonian
into the Schrodinger equation we get the following 3 equations:

E¢y = — pxpy — t(ph + ¢ 1) (2.42)
Eh = — pyn — t(¢} + o) (2.43)
E¢s = — p=% — H(iq + 1) (2.44)

Like in the previous example for the monoatomic case, there is the chemi-
cal potential y which is now dependent on the type of atom, and the hop-
ping term f between nearest neighbours. Note that an electron on the n-th
atom of type x can hop to either the n-th atom of type y, or to the atom of
type z on the unit cell adjacent to it.

17
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18 Theory of superconductivity

We now demonstrate the effect of substituting in the previous equa-
tions ansitz of the form

pr = Ae'm3 (2.45)
¢} = Bt (2.46)
7 = Ce'*de, (2.47)

where k is the wavevector. This gives the following matrix equation after
dividing common factors:

—ux  —t  —te7M\ /A A
—t -y —t B|=E|B (2.48)
—tei™ C C

We denote the matrix in this equation as [Hy|. It turns out that this matrix
looks very similar in the case when we have more than 3 atoms in our
unit cell. In fact, for a unit cell of L > 3 atoms, [H] is a L by L matrix
with chemical potentials on the diagonal, hopping terms on the super-
and subdiagonal, and a hopping term with a phase factor in the upper
right corner and the lower left corner.

In the coming sections we will call a unit cell consisting of more than 1
atom a supercell.

Tight binding Hamiltonian for lattice with supercell

We will now generalize the previous theory for mono- and triatomic chains
to a lattice with square supercells with a size of L by L. Throughout this
section we assume L > 3. We denote the number of supercells with M2,

In the case of the triatomic chain, our matrix [Hy| had diagonal ele-
ments with the chemical potentials of each of the 3 atoms, hopping ele-
ments between all adjacent elements, and an additional phase factor for
connections between adjacent unit cells.

For a supercell of L by L we have the same elements, we just have to
take into account the other dimension. Again we assume that the chemical
potential depends on the type of atom. Let K = (K, K;) be the reciprocal
wavevector with respect to the periodicity of the supercell.

This leads to the matrices

[HK]TT = _VT‘STT’ - t((s('r,*r’) + ‘S(T,up)e_iLKy + 5(T,down)eiLKy+ (2.49)
5(T,right)eilLKx + 5(T,left)elLKx)

18

Version of July 2, 2018- Created July 2, 2018 - 13:07



2.4 Hamiltonian 19

where we use the single T as an index of an atom. When 7 and 7’ repre-
sent the same atoms d;» = 1, and when T and 7’ are nearest neighbours
O(zleft) = 1. O(¢up) = 1 when 7 is nearest neighbour to a site in the next
supercell to the right of it, and this is the similar for down, left and right.
In all other cases the delta functions are 0.

Modelling holes

To model holes in the supercell, we need to do two things: increase the
chemical potential of lattice points which make up the hole, and set hop-
ping between holes and neighbours to zero. To achieve the latter we need
t to be dependent on the lattice point indices. We get the following block
Hamiltonians:

—iLKy _ 4 iLKy

[HK]TT = - ,u"c5rr’ - tT,T’(S(T,T’) - tT,upd(T,up)e T,dOWl’l(S(T,down)e

LKy

X .
- tT,right(S(T,right)e t tT,lefté (T left) ¢

(2.50)
Second quantization representation of the electronic Hamiltonian

Using second quantization, the electron part of the Hamiltonian can now
be written as

He =Y ck[Hk]ck, (2.51)
K

where c}l, ck are electron creation/annihilation operators.

2.4.2 Phonon part of Hamiltonian

The phonon part of the Hamiltonian is given by

pr2 K 2 K 2
Hpn = Zr:% + 2 (Z) (enn - (ur —uy))” + 2 [Z (ennn - (ur — uy))

Y/ iod

K//
+5 Lu’ (252)
r

In the summations, (r,r’) denotes nearest neighbours and [r, r'] denotes
the next nearest neighbours. «, ¥’ and «” are spring constants. p, and
u, are the momentum and the deviation of the atom at lattice site r, re-
spectively. enp is the unit vector in the direction of nearest neighbour, and

19
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20 Theory of superconductivity

similarly ennn is the unit vector in the direction of the next-nearest neigh-
bour.

This Hamiltonian results in the phonon spectrum. Although periodic
nanopatterning can influence the phononic structure, for this project we
focus on altering the electronic structure. Since according to BCS the-
ory the critical temperature does not depend on the phononic structure
as much as on the electronic strucure, we ignore the effect of periodic
nanopatterning on the phonon spectrum.

2.4.3 Electron-phonon coupling part of Hamiltonian

The electron-phonon coupling Hamiltonian is responsible for the interac-
tion between electrons and phonons. It is given by

AV,
Heph=D)_ chjcr. (2.53)
T

The displacement potential D represents the change of the chemical po-
tential per volume change AV /V. ¢! and ¢, are electron creation and an-
nihilation operators.

2.5 Determining the electron-phonon coupling con-
stant A

The effect of the electronic structure, phononic structure and the coupling
between them on the critical temperature is summarized in the electron-
phonon coupling parameter A. BCS theory tells us that the relation be-
tween T, and A is given by

T. e 7. (2.54)

In order to determine the parameter A the Hamiltonian equations have
to be diagonalized. From this the electron and phonon dispersion can be
extracted.

The formula for A of the pristine material is given by

2
A = kz mgﬂqﬁé(ek)é(ekm). (2.55)
q

In this formula w, and € are the phonon and electron dispersion, respec-
tively. N(0) is the electron density of states at the Fermi level. The two

20
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2.5 Determining the electron-phonon coupling constant A 21

delta functions are kinematic constraints and make sure that only states
at the Fermi level are considered. The interaction matrix element g{ q has

to do with the probability of the electron-phonon interaction. A high g) q
means that an electron with momentum k and a phonon with momentum
q will interact more strongly. This in turn means that the electron can bond
more strongly to another electron.

In the pristine material, the electron dispersion will be a single band.
By supermodulating the material, we increase the periodicity, thus de-
creasing the size of the Brillouin zone and raising the number of bands.
Because of this, there are more ways electrons can scatter, since there are
more bands and we now take scattering between different (reduced) Bril-
louin zones into account. By designing the supercell we can influence how
the electrons scatter. With supermodulation we want to make sure that
electrons will easily scatter at points with a high interaction matrix ele-
ment g%. The superscripts v and v indicate the band indices.

The formula for A of the supermodulated material is then given by

/\new — Z

k,quv/!

2

/ 2 /!
PR S RIGALC A (256)

where we now also sum over the different bands.
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Chapter 3

Improving the MATLAB
simulation

This project uses a MATLAB simulation to compute the effects of periodic
nanopatterning on the parameter A. Creating the numerical simulation
was not part of this project as the simulation was already created[1]. Dur-
ing our project we have worked on improving this simulation. We have
attempted to shorten computation time by converting certain segments
of the code to C++ and we tried to make the simulation compatible with
hexagonal lattices. The efforts are described in this chapter, but first we
give a short introduction to the MATLAB simulation.

3.1 Implementation of the theory

This chapter briefly describes the outline of the MATLAB code. As an
input, the code requires several parameters to construct the model. The
most relevant are summarised here:

e L, the periodicity of supermodulation

e M, the amount of unit cells

e g, the lattice constant

e the hole shape

e the spring constants (see equation (2.52))
e the electron-phonon coupling strength

23
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24 Improving the MATLAB simulation

e 1, the tight binding energy constant
e t, the hopping constant

From this the matrices [Hy] as in equation (2.50) are computed. This
gives the electronic structure, from which eventually the parameter A can
be determined, as in equation (2.56). It then compares this A"V to the A"
of the pristine material. The output of the simulation is the ratio between
the two A’s. The simulation can also provide the user with graphs of the
electronic band structure among other things.

3.2 Improving computation speed

Although MATLAB is fast with matrix multiplications, an efficient pro-
grammer could save computation time when writing C++. Especially with
long nested loops C++ can be a faster alternative. As the simulation makes
use of a couple nested loops, an investigation is made to find out if con-
verting MATLAB code to C++ will be able to shorten computation time.

For small unit cells of about 6 by 6, the simulation is very quick, de-
termining A for a given hole in a matter of seconds. However, for bigger
supercells, such as 20 by 20, the simulation becomes very slow, and deter-
mining A now takes up to a couple hours. Therefore, as part of this project
an attempt is made to write certain parts of the simulation in C++, so as to
speed up the computation time for these big supercells.

One can write C++ programs which interact with MATLAB using MEX
functions. By using the C++ MEX API and after compiling the code using
MATLAB, one can call the C++ program as if it were an ordinary MATLAB
function. Since the C++ code can get input from MATLAB and return
output to MATLAB, this seemed useful for our current goal.

We ran into the following things during this part of the project:

e Reading MATLAB input is slow. Since some data had to be accessed
multiple times, it was faster to first put MATLAB input into regular
C++ variables, and then use that variable. This saved a lot of time.

e MATLAB crashes when the C++ program uses too much memory.
This poses a problem for big enough unit cells.

e MATLAB uses very efficient libraries to calculate matrix multiplica-
tions. The C++ code which was produced for this project does not
use libraries for matrix multiplication, but rather uses brute force to
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3.3 Lattice types 25

compute the result. Much time could probably be saved using effi-
cient libraries.

Since not each step the simulation carries out becomes very slow for
big unit cells, we targeted a part which contains a quadruple nested loop.
This section becomes very slow for larger unit cells.

To see whether using MEX functions as a means to cut computation
time is feasible, we first decided to compare computation speed of quadru-
ple nested for loop, without adding any interesting computations within
the loops. For a 6 by 6 supercell this looked like this:

ML | 220
C++ |45
0 50 100 150 200 250

computation time in milliseconds

From this it would seem that MEX functions can be used to speed up
the original quadruple nested loop. Also for bigger supercells C++ is a lot
faster than MATLAB. After translating the original MATLAB code to C++
we compare it to find the following for a 6 by 6 supercell.

ML | 3.7
C++ | 28

0 5 10 15 20 25 30
computation time in seconds

Unfortunately it is quite slower in C++, and for bigger unit cells the dif-
ference between computation speed only becomes bigger. This is proba-
bly due to inefficient coding. We suspect a more experienced programmer
would be able to decrease computation speed of the C++ code, perhaps to
the point that it is faster than MATLAB.

3.3 Lattice types

Currently, the simulation works only for square lattices. However, many
materials that can be manufactured as a very thin sheet have a hexagonal
structure. Therefore, as part of this project, an attempt is made to extend
the simulation so that it is compatible with hexagonal structures.

25
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26 Improving the MATLAB simulation

3.3.1 Square lattices

In an effort to understand how to make the simulation compatible with
hexagonal structures, we first expand on the square lattice to gain a better
understanding about the things that we need to change.

As explained in section 2.4.1 we have the following matrices that need
to be diagonalized for each wavevector K:

—iLK, _ ¢ iLK,

[HK]TT == VT5TT/ - tT,Tlé(T,T') - tT,up(S(T,up)e T,down(s(r,down)e

—iL Ky

- t’c,righté(r,right)e e tT,lefté(T,left)eZL
(3.1)

To clarifty how this matrix looks, we show a part of a square lattice
where we have a 3 by 3 unit cell in figure 3.1. In this figure, each cir-
cle represents an atom. The orange lines indicate a horizontal connection
between adjacent atoms, the green lines indicate a vertical connection be-
tween adjacent atoms. We represent connections between neighbouring
unit cells with blue lines.

The form of the accompanying Hamiltonian [Hg| matrix is as shown
in figure 3.2. The numbers on top and on the left represent the atoms as in
3.1. So a connection from atom 2 to atom 5 in figure 3.1 is represented by
the entry in the 2nd row and the 5th column in figure 3.2. The black dots
along the diagonal represent the chemical potential term u. The green
and orange dots are the hopping terms ¢ between adjacent atoms within
a supercell, the color depending on the direction as in figure 3.1. Since
the terms associated with hopping to adjacent supercells depend on the
direction, these are represented by blue arrows. These will get the phase
factor corresponding to the direction as in equation 3.1.

To model holes, hopping terms to and from sites that represent holes
are then set to zero and the chemical potential of these hole sites is in-
creased.

The matrix [Hy] is to be diagonalized in the simulation for each wavevec-
tor k. We suspect that these matrices are the only thing that need to be
updated to make the simulation compatible with hexagonal structures.

3.3.2 Hexagonal lattices

To determine how the matrices [Hy] look for a hexagonal lattice we first
show a part of a hexagonal lattice with a 3 by 3 supercell in figure 3.3. From
this figure it can be seen that in a hexagonal lattice, each atom has 6 nearest
neighbours instead of the 4 in a square lattice. Furthermore, in the square
lattice connections could either be horizontal or vertical. Connections in
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Figure 3.1: A 3 by 3 unit cell in a square lattice.
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Figure 3.2: The Hamiltonian matrix [Hy] for a 3 by 3 unit cell in a square lattice.
The colors of entries correspond to the colors of directions in figure 3.1.
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Figure 3.3: A 3 by 3 unit cell in a hexagonal lattice.
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Figure 3.4: The Hamiltonian matrix for a 3 by 3 unit cell in a hexagonal lattice.
The colors of entries correspond to the colors of directions in figure 3.3.

the hexagonal structure can be in 3 directions. Again vertical connections
are represented with green lines. Tilted connections are either orange or
purple. Connections between neighbouring unit cells are denoted with a
blue line.

Taking into account the extra nearest neighbours and the different di-
rections of skewed connections, we show our speculation of the Hamilto-
nian matrices [Hk] in figure 3.4. Again the numbers on top and on the left
represent the atoms as in figure 3.3. The black dots along the diagonal rep-
resent the chemical potential term u. The green, orange and purple dots
are the hopping terms t between adjacent atoms within a supercell, the
color depending on the direction as in figure 3.3. Again the terms associ-
ated with hopping to adjacent supercells are represented by blue arrows in
the direction of the connection. These entries get a phase factor depending
on this direction. The exact factor follows from simple geometry; e.g. the
phase factor for the connection from atom 7 in the supercell to atom 3 in
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3.3 Lattice types 31

the adjacent supercell is

exp(—i (?Kx + %I@) L). (3.2)

Implementation

To fully understand the problems posed in this section, we recommended
the reader to refer to the MATLAB code.

Before implementing this, we ran into a problem concerning the phase
factors in the square lattice. It seemed that the direction of phase vectors
was 90 degrees of. For example, entries that are supposed to connect to
the unit cell upwards actually got a phase vector corresponding to a con-
nection to the unit cell right. Despite this, it gave consistent results, and
changing the directions so that they would seem more logical gave wrong
results.

We first tried to implement the matrix corresponding to the hexagonal
lattice with the phase vectors 90 degrees shifted. This produced nonphys-
ical results, so we decided to try to find out why phase vectors should be
rotated by 90 degrees in the square lattice. This might provide more in-
sight on how to determine the correct phase directions for the hexagonal
structure.

A possible explanation is that the lattice ordering used to be different
than the linear indexing in MATLAB. The lattice used to be ordered as

(3.3)

N o
® U1 N
O O W

In MATLAB, one can access matrix entries by single index. When you
index a matrix by using only one subscript, MATLAB treats it as if its ele-
ments are in a long column vector, by going down the columns consecu-
tively. The linear indices for a matrix are according to this ordering

147
2 5 8]. (3.4)
369

The MATLAB simulation actually uses this type of indexing in determin-
ing what elements needed what type of phase factor. By transposing the
original lattice ordering, the atom number corresponds to the single index.
The lattice ordering is actually not used by the simulation in calculations,
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32 Improving the MATLAB simulation

and is only there for us to gain better insight. This made things easier to
comprehend, and it turned out that using this transposed lattice ordering
the matrix entries of [Hy] that correspond to vertical connections are cor-
rect. However, matrix entries that correspond to horizontal connections
are now mirrored.

Unfortunately I could not find an explanation as to why these entries
should remain mirrored*. However, implementing the Hamiltonian ma-
trix [Hy] using the new notion that horizontal directions should be flipped,
provided results which would seem incorrect.

The simulation calculates the coupling parameter A without super-
modulation and with supermodulation and then compares. When testing
with a supercell with no holes, we should see no change in A. For testing
with a 3 by 3 supercell with no holes, we unfortunately get a A decrease of
-41.8%.

Whether the current implementation of the matrix [Hy] for the hexag-
onal lattice is incorrect or whether more changes need to be made to the
simulation is unknown at this time. It would be helpful to do a study on
band structures for hexagonal materials before tackling this problem, to
see whether results are correct or incorrect. Due to time constraints this
has not been done during this project.

*Mirroring the horizontal phase vectors again would give incorrect results.

32

Version of July 2, 2018- Created July 2, 2018 - 13:07



Chapter

Discussion on the future of this
project

During this project, our main goal was improving the simulation. At first
an attempt was made to decrease computation time. We also tried making
the simulation compatible with hexagonal structures.

We didn’t manage to decrease computation time. Perhaps a more expe-
rienced coder would be able to improve the execution speed by program-
ming more efficiently.

It should be taken into account that currently the simulation is able to
provide data supporting the concept that supermodulation in materials
with a square lattice can improve the critical temperature of superconduc-
tivity, with an acceptable execution time. The computation speed might be
slow to find hole size and parameters which optimise the electron-phonon
coupling parameter A, however it is quick with determining whether a
given hole size and geometry will improve it.

Effort was also made to make the simulation compatible with hexag-
onal materials. So far, this has not worked yet. There was not enough
time to fully understand why the phase factors seemed to be in incorrect
directions. With more time it would also be helpful to do research on how
band structures should look for hexagonal lattices, before looking into this
problem. Since many nearly 2D materials have hexagonal structure, it is
worth to pursue solving this problem to find whether making holes in
these structures can improve the critical temperature. After all, there is a
chance that periodic nanopatterning does not work for hexagonal lattices.

At this time, there is no experimental proof yet that periodic nanopat-
terning in superconductors will actually improve the critical temperature.
It may be worthwhile to experimentally test this before working on a bet-
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ter version of the simulation, as currently it is already able to provide
promising results.
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