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Abstract

In BCS superconductors the critical temperature is dependent on
the phonon dispersion relation. We want to influence - and

hopefully increase - the critical temperature by varying the phonon
dispersion. This can be done by altering the lattice structure of a

material on the nanoscale using nanofabrication. As a
proof-of-principle project we simulate these phonon structures and

see whether or not higher critical temperatures come out. In this
project we tested the code for mistakes and physical inaccuracies.

The code reproduced physical effects correctly, but artificial
parameters which we need to put in because of numerics issues
have some influence on the outcomes. However, we think this is

not a big problem because in the end we calculate the ratio of
critical temperatures between two systems. This means that all

that is constant in the whole calculation will be divided out.
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Chapter 1
Motivation

Already in 1911 Heike Kamerlingh Onnes discovered that certain materials
become superconducting at sufficiently low temperatures [1]. Nowadays,
these materials have lots of applications in both industry and research.
There is one drawback though: these materials, commonly called super-
conductors, need to be cooled down to well below 150 Kelvin. This makes
the use of superconductors quite expensive and tiresome.

Ever since the discovery of superconductors researchers have been try-
ing to find new materials that can become superconducting. The main goal
is to find materials that have a higher critical temperature (Tc): the temper-
ature below which they become superconducting. Beside that physicists
were looking for a theoretical framework that explains superconductivity.
One of the biggest accomplishments in this field was the development of
BCS theory: a theory that describes and explains the behaviour of super-
conductors.

BCS theory uses electron-phonon interaction to show that electrons form
Cooper pairs. These pairs form a condensate that can move through a
material with zero resistance: it becomes superconducting. The fact that
electron-phonon coupling is the origin of superconductivity means that
the dispersion relation of the phonons influences Tc. This is where our
idea comes in: if we can find out how changing the phononic dispersion
changes the Tc, then we can look for specific structures that give a higher
critical temperature.

The dispersion relation of the phonons is of course highly dependent
on the lattice structure of the material you work with. Already in the
’80s chemists tried to alter the phonon dispersion by changing the lattice
structure of materials. They made new materials by periodically replacing
atoms in a lattice, which resulted in some materials that are still in use to-
day [2]. This is a way to find out if the indicated method is any good, but
not a fast one because it takes quite some time to fabricate your samples.
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2 Motivation

In 1986 this research was put on hold when there was a major break-
through in superconductivity research: there was a material discovered
that had a higher Tc than thought to be possible: the start of the field of
high-Tc superconductors [3]. This is a completely different type of super-
conductivity, and it showed such good prospects that the research on BCS
superconductors became less attractive.

Currently there is still a lot of research being done on high-Tc super-
conductors, but nobody has found a satisfactory theoretical description of
these materials yet. More and more materials with these properties are
found, but it proves to be difficult to make a lot of progress without know-
ing where to look. Besides this, the materials that are found are quite in-
convenient: they are mostly brittle, expensive and unreliable. This makes it
interesting again to have a look at the ‘old’ type of superconductors, which
we understand much better. Since we have made a lot of progress regard-
ing research methodology, we can pick up the research the aforementioned
chemists did and do it in a different way.

The eventual goal is to fabricate new materials by altering the phonon
dispersion relation. This can be done in multiple ways: in the ’80s people
tried to replace specific atoms, but it is also possible to change the structure
of the material on the nanoscale. The idea is to make holes in a thin film
of the material, which alters the phonon dispersion. This way we create a
kind of ‘superlattice’ on a bigger scale than the atomic lattice.

Our idea is as follows: instead of experimentally making new materials
we first do computer simulations of lattice structures. The electron-phonon
coupling can be described mathematically, which makes it possible to cal-
culate the Tc of a material from its phononic and electronic structure. This
calculation can be cast into MATLAB code, which allows for trying out lots
of different phonon dispersions much faster than previously possible. This
gives us a proof-of-principle project, in which we want to show whether
or not this path is a promising one. Of course this is no conclusive proof
that it is possible to make BCS superconductors with much higher critical
temperatures than before, but if our results show that the concept works it
gives a starting point for future research.

2
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Chapter 2
How to Calculate Tc

In the previous chapter we postulated that it is possible to calculate the
critical temperature of a BCS superconductor from the electron and phonon
dispersion relations. Here we will go a bit deeper into the procedure for
doing this, while avoiding most of the mathematics. For a more extensive
look into the mathematical procedure, we refer to the masters thesis by
Oliver Ostojić which covers this quite extensively [4].

The Hamiltonian of our system should describe both the phonons and
the electrons. We model the electrons using the tight binding model and
the phonons as a one dimensional chain of masses with springs in between
them. Thus there is only nearest neighbor interaction. The Hamiltonian of
this model is as follows:

H = ∑
i

p2
i

2mi
+ ∑

<ij>

1
2

K(ui − uj)
2 − ∑

<ij>
(tij − α(ui − uj))(c†

i cj + h.c.)(2.1)

with pi the momentum of atom i, mi its mass, ui its displacement from the
equilibrium position, K the spring constant between two atoms, tij the hop-
ping term between two atoms, α the change of the hopping term when the
interatomic distance varies and ci(c†

i ) the annihilation(creation) operator of
an electron. The observant reader probably already deduced that the i and
j index the equilibrium positions of the atoms in the chain.

The first two of these terms describe the phonons. The first is the kinetic
energy term, the second the potential energy term. The electron term is a bit
less straightforward. Between the first brackets we see the hopping factor,
but it is modulated by the displacement of the atoms. This makes a lot
of sense: if the distance between two atoms gets smaller, the probability
of an atom hopping over becomes bigger. Between the last set of brackets
is the annihilation of an atom at position j and the creation at position i:
an electron hops from position j to i. The reversed process is expressed
as the Hermitian conjugate of c†

i cj. Both processes occur with the same
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4 How to Calculate Tc

probability.
The modulation of the hopping term by the displacement of the atoms

is not in the ‘normal’ tight binding model, mainly because this is not a
very strong effect. This modulation is the origin of the electron-phonon
coupling. In BCS theory, electron-phonon coupling causes the formation
of Cooper pairs: Leon Cooper showed that an arbitrarily small attractive
force between electrons is sufficient to make the formation of Cooper pairs
energetically favourable [5].

The next step is to go from real space to reciprocal space, because in
reciprocal space the bare phonon and electron parts of the Hamiltonian
become diagonal. The kinetic and potential energy terms are quite easily
transformed by applying a Fourier transform∗. The same goes for the stan-
dard tight binding part of the last term; the modulated part though is a bit
less obvious. When transformed into reciprocal space, the easy terms are
expressed in second quantisation: we use creation and annihiltion opera-
tors (different ones for the phonons and the electrons). We substitute these
operators into the modulated part of the Hamiltonian to transform it. This
yields the following equation:

H = ∑
k

εkc†
k ck + ∑

q
h̄ωqa†

q aq +
1√
N

∑
kq

g(k, q)(aqckc†
k+q + a†

qc†
k ck+q)(2.2)

Here k indexes through the electrons, q through the phonons. εk is the
electron dispersion relation, ck(c†

k) the creation(annihilation) operator for
the electrons. Equivalently, ωq is the phonon dispersion relation and aq(a†

q)
the creation(annihilation) operator for the phonons. The first two terms
are the ‘normal’ electron and phonon energies, but the last one is the most
interesting one: this is the electron-phonon coupling.

Figure 2.1: The feynmann diagrams of the two possible processes in electron-
phonon coupling. The k and the k + q are the quantum numbers of the electron, q
that of the phonon.

In figure 2.1 we see the two possible processes that are shown mathe-
matically in equation two. Either the phonon adds energy to the electron

∗This is not exactly a Fourier transform because we do the transformation on a period-
icity in the lattice, but it is formally equivalent to it.

4
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5

(picture on the left) or it takes energy from it (picture on the right). These
two possibilities are expressed using the creation and annihilation opera-
tors, both with the same amplitude g(k, q).

This amplitude is used in the expression for the electron-phonon cou-
pling strength, but first there are a few things that need fixing. First of all, if
our system is not monoatomic we get different bands in the phonon disper-
sion relation. We need an extra index for that. Next we should make sure
that we take only the actually existing phonons. When we go to a mul-
tiatomic system, our Brillouin zone gets smaller so we should re-evaluate
which phonons in the old Brillouin zone are the real ones. If we take all
this into account we get the multiatomic amplitude of the aforementioned
processes:

Mν
k,k+q =

g(k, q)√
2ωq,ν

Γq,ν. (2.3)

The index for the different bands is the ν and Γq,ν says for every phonon
frequency what weight it carries in the calculation to prevent double count-
ing. For a more extensive look at this Γ, see the aforementioned masters
thesis by Ostojić.

Now we can go to the coupling strength, which we call λ. Here we
follow a paper by Philip Allen [6]. For every electronic frequency we want
to know how strongly it couples to all the phononic frequencies. For the
sake of transparancy we first express λ as a function of q (so we show how
much each phonon frequency couples to all electronic frequencies). This
gives the following formula:

λq,ν =
2

ωq,νN(EF)
·∑

k
|Mν

k,k+q|2δ(εk)δ(εk+q) (2.4)

We have a different lambda for every combination of q and ν, so for
every phonon frequency in our system. The ωq,ν is the same phonon dis-
persion from earlier on and we already saw Mν

k,k+q. The deltafunctions at
the end select only those electrons that are at the Fermi level. We define our
Fermi energy to be at ε = 0. The electrons with quantum numbers k and
k + q should be at that energy because in BCS theory only the electrons at
the Fermi surface can interact with the phonons. As you can see in figure
one, these are the electrons with momentum k and k + q.

This is the expression for the strenght of the electron-phonon coupling
of one phonon. However, in the end we want to know how strong the
coupling in our entire system is. This is quite easy: we can just sum over
q and ν which gives the complete coupling strength. From this coupling
strength we can then calculate the critical temperature Tc [7]:
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6 How to Calculate Tc

λ = ∑
q,ν

λq,ν (2.5)

Tc = 1.13ωDe
1
λ (2.6)

The sum gets the total coupling strength λ from λq,ν and the ωD in for-
mula 2.6 is the Debye-frequency. In the end, what we will calculate is not
an exact critical temperature, but the ratio between the phonon dispersion
we’re interested in and some basis dispersion we compare it with. This
avoids issues with units because you divide them all out.

6
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Chapter 3
Sanity Checks

When you do a simulation, you almost always make use of approxima-
tions. This is partially because of numerics issues, but also due to the phys-
ical model that you choose. In our case we use for instance a model of
electron-phonon coupling that is very much like BCS theory, but a bit more
sophisticated. For this reason it is a good idea to check if the results we
obtain from our simulation agree with reality. Unfortunately the nature of
our results prevents us from examining their agreement with the real world
directly. So we devised some sanity checks: tests that we can calculate with
our code of which we do know the correct results. In this chapter we will
go through some of these tests and their results and we will discuss what
this means for the code. First we will discuss some tests we did on the
phonon dispersion relation, after that on the lambdas.

3.1 The Isotope Effect on the Phonon Dispersion

Ultimately we want to vary the phonon dispersion to influence the Tc, so
we should check if the phonon dispersions we get behave correctly. In

Figure 3.1: Example of a phonon dis-
persion. This one is of a mass unit cell
with two masses in it, hence the two
bands. The ratios between the masses
are 1:1.2 which results in the opening
of bandgaps.
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8 Sanity Checks

figure 3.1 we see an example of a phonon dispersion that our code gives.
At first sight the dispersion looks as expected. We used a mass unit cell
with two masses, so the dispersion has two bands. There are bandgaps
because the masses in the unit cell are slightly different.

If we now vary the masses in the unit cell together (i.e. keeping the
relative differences the same), the dispersion should get smaller. This is
called the isotope effect: the dispersion goes with one over the square root
of the masses. To test this we plotted the maximum value in the dispersion
against the masses in the unit cell. We took a unit cell with only one mass in
it. That means that there is only one band in the dispersion, but that makes
no difference for this test. If our code works correctly we should see the
values fall off with the square root of the mass.

Figure 3.2: The maximum phonon value in the dispersion of a unit cell with one
mass in it. This mass is varied. The red line shows a 2/

√
M dependence.

In figure 3.2 we see that the phonon dispersion does what we expect:
the 2/

√
M dependence fits the values exactly. This means that our code

handles the isotope effect very well.

8
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3.2 Bandgap Size 9

3.2 Bandgap Size

Next we want to do some checks on the size of the bandgap in the phonon
dispersion. In figure 3.3 we see a typical density of states as our code pro-
duces it. This one is of a unit cell with two masses, one twice as heavy as
the other. In the middle of the graph we see a region without states: the
bandgap.

Figure 3.3: The density of states of a system with a mass unit cell with two masses
in it. The second mass is twice as heavy as the first one, which results in a bandgap.

When we now vary the difference between the two masses, the density
of states changes. We can investigate the size of the bandgap for these
different situations. We know for sure that the bandgap should be closed
when the masses are equal and that the bandgap should grow bigger if
we increase the difference between the masses. Also the curve should be
smooth.

In figure 3.4 we plotted this difference. The second mass is varied be-
tween 0.1 and 2 times the other mass. We see that at M = 1, i.e. two equal
masses, the bandgap is indeed 0. When the second mass becomes very
small, the bandgap gets asymptotically bigger. This is as expected, because
the ratio between the two masses goes to infinity. When we increase the sec-
ond mass the difference also gets bigger, but a lot slower. This is because it
also grows with the ratio between the biggest mass and the smallest mass
this way. So we can conclude that the size of the bandgap behaves correctly.
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10 Sanity Checks

Figure 3.4: The size of the bandgap in a system with two masses. One of the
masses is constant, the other one is varied between 0.1 and 2 times the original
mass. The y-axis is in arbitrary units

3.3 Chemical Potential vs. the Lambdas

Next we did tests on the lambdas themselves. To remind you about what
they are: the λq,ν indicates how strongly the phonon with quantum num-
bers q and ν couples to the electrons in the system. The sum of these λq,νs,
which we will just call lambda after this, is the thing that tells us how strong
the total electron-phonon coupling is in the end.

There is much less theory about these lambdas then about the phonon
dispersions, which makes it more difficult to design a test for them. One
of the things we can do is look at how the lambdas react on changing the
Fermi energy.

Earlier on we stated that only the electrons at the Fermi surface can
take part in the electron-phonon interaction. This means that changing the
Fermi energy (and with that the shape of the Fermi surface) changes the
lambdas. To explain what the expected effect is, we will first show how the
Fermi surface changes.

10
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3.3 Chemical Potential vs. the Lambdas 11

The tight binding electron model gives the following dispersion:

εk = µ− 2t(cos(kxa) + cos(kya)) (3.1)

with µ the chemical potential (for now we take this as zero), t the hopping
parameter, kx and ky the momentum number of the electrons in the x and
the y direction and a the lattice constant. When we now take a cross section
of the surface that is defined by equation 3.1 at a certain energy level, we
get the set of k-values that corresponds to that energy. That energy is the
Fermi energy, so that set of k-values forms the Fermi surface.

(a) low Fermi energy (b) intermediate Fermi en-
ergy

(c) high Fermi energy

Figure 3.5: Fermi surfaces at different Fermi energies

Figure 3.5 shows three different situations. Firstly, in 3.5a a low Fermi
energy. In this case, the Fermi surface is almost circular and quite small.
When the Fermi energy becomes higher, the surface becomes wider and
more square (figures 3.5b and 3.5c).

The question is what this means for the lambdas. In equation 2.4 we
see that δ(εk)δ(εk+q) selects the correct k-values. This means that both the
original electron with momentum number k, but also the resulting electron
with momentum number k + q, should be on the Fermi surface. In other
words, the momentum vector q should connect two points on the Fermi
surface.

This means that when the Fermi surface gets wider, there will be a larger
phonon momentum vector that connects two sides of the the Fermi surface
nicely. However, we are not interested in which q vectors connect nicely.
We are interested in the total coupling, the sum over the q vectors. This
sum should not be affected too much by the size of the Fermi surface. We
only expect problems when the Fermi surface either gets very small and
becomes a filled circle, or gets very big and gets a spread at the corners (in
figure 3.5c you can already see the start of this). In those cases the total
lambda should grow because there are more k-values to sum over, as the
sum in the formula for the lambdas only goes over the k-values on the
Fermi surface.

In figure 3.6 we see that the lambdas indeed behave as expected. For
both high and low values of the chemical potential the lambdas rise sharply,
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12 Sanity Checks

Figure 3.6: The total lambda for different Fermi energies. A higher value for µ
actually means that the Fermi energy gets lower, see equation 3.1 and the subse-
quent explanation of the deltafunctions from equation 2.4. All values are normed
to the first value of total lambda.

but in the middle there is a nice and calm region. As long as we stay be-
tween approximately µ = 1 and µ = 2 we have a beautiful Fermi surface.

3.4 Fermi Surface Smearing vs. the Lambdas

We are not done with the Fermi surface yet. As you can see in figure 3.5,
the Fermi surface we use is not a simple line. It is a bit smeared around the
theoretical position because the k-space is not continuous but has discrete
values (although it approaches continuity when the number of points in the
Brillouin zone goes to inifinity). The smearing of the Fermi surface makes
sure that there are enough points in the surface to make the calculation
work. The size of this smearing should not influence our final results as it
is an artificial parameter. To test this we varied this smear parameter while
leaving the rest of the parameters the same. At first this was not constant
at all. That is not desirable, but not that weird due to the way we calculate
the lambdas. As a solution we tried to divide out the influence of the smear
parameter. This gave the plot you see in figure 3.7.

12
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3.5 Phonon Dispersion Offset vs. the Lambdas 13

Figure 3.7: The influence of the smear parameter after we tried to divide it out. All
values are normed.

As you can see, the influence is not completely gone. This is obviously
not good, the smear parameter should not influence the lambdas because
it is an artificial parameter.

At the time of writing, we decided not to focus on getting the last smear
dependency out. We have some ideas where it could come from, but prob-
ably it is quite a lot of work to find out exactly how it enters. Besides that,
in the end we want to calculate the ratio between the total lambda of two
different systems as explained in chapter 2. This means that we will divide
out everything that is equal in the two systems, so as long as we do not
vary the smear parameter in this process we will be all right.

3.5 Phonon Dispersion Offset vs. the Lambdas

In equation 2.4 you can see that there is a prefactor of 1
ωq,ν

in front. This
becomes problematic at points where ωq,ν = 0.

Theoretically this will not be a problem: the 1
ωq,ν

diverges at q = 0 but
the matrix element goes to 0 and in the end they will balance each other
out. In practice we still have a problem at q = 0 though, because MATLAB
does not handle these divergences very well. For that reason we added a
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14 Sanity Checks

very small number to the phonon dispersion, an offset.
This offset is also an artifical parameter, so it should not influence the

total lambda. To check if this is the case we plotted the total lambda as a
function of the offset, see figure 3.8.

Figure 3.8: The offset parameter for the phonon dispersion vs. the total lambdas.
Note that the values on the x-axis are times 10−5. Values on the y-axis are normed
to the first value of total lambda.

There seems to be a linear dependence on the offset parameter, but only
in the order of 10−4. This is quite a small effect, and the same argument as
for the smear parameter can be used here: the offset parameter will not be
varied during our experiments. We can conclude that the offset will not be
a problem in running the code.

14
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Chapter 4
Outlook

In the previous chapter we discussed the different tests we conducted on
the code. All the tests on physically ‘real’ parameters - the Fermi energy, the
size of the bandgap and the isotope effect - turned out well. They showed
that our code does correctly calculate the lambdas. On the other hand,
some work still can be done on the artificial parameters. The results we got
on those parameters do not form a big problem though. There still is a de-
pendency on the artificial parameters, but we can divide this dependency
out in the final results because we calculate the ratio between two different
structures in the end.

In conclusion we see that the code we made is reliable and should give
good results. This does not mean that there is nothing left to be done. Some
things we can do ourselves, other things should be left to other groups that
want to follow up on this research.

4.1 Simulations

The obvious thing to do is to explore parameter space. That was the goal
of this project, and we still want to do it. Unfortunately it falls just out-
side the scope of this thesis, but we should certainly finish the project. We
are currently writing code that can iterate through a lot of different lattice
structures, such that we can give it a list of these structures that it can cal-
culate through. This can also be a basis to judge whether or not there are
more possibilities in this field.

4.2 Nanofabrication

If the simulations show that there possibly are structures that yield a higher
Tc, the next step is to try to reproduce them experimentally. One way to do
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16 Outlook

this is by making thin films in which we make holes.

Figure 4.1: The process for making
a thin film with holes. The holes or
not on scale. Material M2 is the ma-
terial whose phonon dispersion we
are changing, material M is to ensure
that the electron dispersion does not
change.

The holes alter the phonon disper-
sion of the material, which influences
the critical temperature of the material.
These holes will be about 10 nanome-
ters in size. Beneath that there is a layer
to ensure that the electron dispersion
relation is not changed by the holes.
When we now cool this thin film with
holes down and measure the tempera-
ture at which it becomes superconduct-
ing, we can see if the critical tempera-
ture indeed changes.

This experiment is something that
we will not do; if our simulations show
that this is actually a working idea then
we can publish it and let other groups
do further experimental research.

16
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