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Abstract

In this work, the possibility to measure time- and spatially
resolved spin fluctuations using Scanning Tunneling Microscopy

is investigated. By using an impedance matching circuit as
described in [1], the bandwidth of conventional STM can be

increased opening up possibilities for new kinds of experiments.
When combined with the technique of spin-polarized STM, it

theoretically becomes possible to track spin states of individual
atoms. Here, we present an overview of existing literature on this

topic and propose several experiments to test this hypothesis.
Finally, with a python simulation, we test the viability of

EPR-STM measurements on a single atom and provide directions
to expand upon this work.
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Chapter 1
Introduction

High temperature superconducting copper-oxide compounds, or cuprates,
have been know to man since 1986. Currently, almost thirty years later, it
is still not fully understood how superconductivity survives up till such
high temperatures, but there are plenty of rumors about strong spin inter-
actions that mediate the pairing mechanism in these type of compounds,
enhancing their Tc. Up till now, there is no experimental data of local spin
fluctuations with high spatial and temporal resolution. This is something
that we would very much like to change in the future.
To tackle this problem, because we demand high spatial resolution, the
first type of measurement device that comes to mind, is a Scanning Tun-
neling Microscope (STM). Being known to achieve atomic resolution with
ease, it should be the perfect device for these type of measurements. When
combined with a spin polarized tip (SP-STM), the conventional STM is ca-
pable of measuring the magnetic structure of samples with atomic preci-
sion. There is however also a big downside to STM measurements: Due to
the nature of the apparatus, its temporal resolution is fairly poor (∼ kHz).
Since relevant timescales for spin fluctuations in high-Tc compounds have
been predicted to be in the range of ∼ GHz or even ∼ THz, the temporal
resolution of STM should first be improved in order to open up the pos-
sibility of measuring them. One solution for this is to mount a cryogenic,
low-noise amplifier close to the tip of the STM amplifying the signal before
it is low pass filtered [1]. If the amplification is big enough, we retain the
possibility to measure small signals with a bandwidth that depends on the
amplifier itself. In this report, we would like to investigate the possibility
to measure properties of single spin systems in real time.
In chapter 2, we begin by reviewing some existing literature on measure-
ments of temporal evolution of single spin systems. Following these re-
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2 Introduction

views, we outline some ideas for experiments in chapter 3 that could pos-
sibly be performed using a commercial low-temperature STM provided
with a magnet and RF electric matching circuitry. In chapter 4, we con-
tinue by providing some theory to support these experiments. Chapter 5
focuses on a simulation of the tunneling current that we expect to mea-
sure in the system described in chapter 3. Finally, in chapter 6, we provide
some points for future research.

2
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Chapter 2
Literature on temporal single spin
measurements

The development of a STM capable of measuring spin fluctuations with
atomic resolution will be a long term objective. As was already expressed
in the introduction of this report: It is the time resolution of scanning tun-
neling microscopes that severely limits its capabilities and prevents us
from reaching this goal. To overcome this obstacle, we propose to build
a high frequency amplifier close to the tip in order to still measure radio
signals as described elsewhere [1]. In this report, we will focus on creating
a proof of principle experiment, hopefully demonstrating some of the pos-
sibilities of a STM equipped with a RF amplifier. Furthermore, we hope
to be able to measure the temporal evolution of a single (possibly driven)
spin. This means that the aim of this experiment will be to measure re-
laxation times of a single spin in ”real time” and possibly measure Rabi
oscillations of a single spin.
We begin this report by reviewing some important literature, on which the
experiment will be based.

2.1 Measurement of Fast Electron Spin Relaxation
Times with Atomic Resolution

In 2010, Loth et al. [2] first introduced an all electric pump probe tech-
nique, allowing them to measure the longitudinal relaxation time (T1) of
Fe-Cu dimers on a Cu2N layer suspended on a Cu(100) bulk sample. The
CuN layer serves as a decoupling layer between the Fe spin and the con-
duction electrons of the bulk Cu substrate. Furthermore the Cu atom ad-
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4 Literature on temporal single spin measurements

jacent to the Fe atom enlarges the local magnetic anisotropy felt by the Fe
atom. Both these elements together make for the fact that the Fe atom has
relatively long relaxation (T1) time, on the order of 200ns.
The idea of the pump- probe measurement technique applied in this paper
is the following: First, a pump pulse with a fixed bias voltage excites the
spin state of in this case the Fe atom. A time ∆t later, a second probe pulse
with a much lower bias voltage measures the relative spin polarization
of the Fe spin with respect to its ground state (figure 2.1). By repeating
this process for various ∆t, the time dependent spin relaxation of a sin-
gle atom can be measured. The magnitude of the pump- and probe pulse
are different for each system. Luckily, using IETS (section 3.2), the energy
spectrum of the individual atom can be measured and correct values for
the pump and probe pulse can be determined experimentally within the
same setup. The pump pulse should satisfy eVpump ≥ ∆E, where ∆E is the
energy difference between the ground state and excited state of the spin
system. Complementary, the probe pulse should fulfill eVprobe < ∆E to
avoid re-exciting the spin.

Figure 2.1: Scheme of the pump- probe measurement technique used in ref 2.
A pump pulse excites the spin state of the adatom in the tunnel junction. After
waiting ∆t, a secondary probe pulse measures the orientation of the adatom spin.
By varying ∆t, the evolution of the spin relaxation process can be tracked in time.
Figure taken from reference [2].

Setupwise, Loth et al. use a STM with a spin-polarized tip at a tempera-
ture of 0.6K. Furthermore, a magnetic field of 7T is applied perpendicu-
lar to the sample. For Fe-Cu dimers, this means that the field is applied
parallel to the magnetic anisotropy axis, enhancing the level splitting of
the energy eigenstates of the Fe atom. The tip is polarized parallel to the

4
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2.2 Electron Paramagnetic Resonance of individual atoms on a surface 5

applied magnetic field. Thus in this case, the tip is polarized perpendic-
ular to the sample and parallel to the magnetic anisotropy axis. Since the
ground state of the Fe atom has a spin polarization parallel to the mag-
netic anisotropy axis, upon excitation, the spin of the Fe atom becomes
misaligned with the tip polarization. Hence, in the relaxation window of
the Fe atom, a decrease in tunnel current is observed (figure 2.2).

Figure 2.2: Measured decrease in tunneling electrons as function of ∆t, i.e. time
between pump- and probe pulse. By fitting an exponential to the slope at t = 0,
T1 can be obtained (red line). Data and image taken from reference [2].

2.2 Electron Paramagnetic Resonance of individ-
ual atoms on a surface

In 2015, Baumann et al. [3] managed to do an Electron Paramagnetic
Resonance experiment on a single iron atom placed on top of a single
monolayer of MgO. The monolayer was grown on Ag(100) by bombard-
ing the surface with manganese ions in an oxygen environment. Simi-
lar to the CuN layer in the previous paper, the MgO layer decouples the
Fe spin from the silver substrate conduction electrons and introduces an
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6 Literature on temporal single spin measurements

anisotropic magnetic environment, increasing the lifetime of spin states of
the Fe-atom. However, the direction of the magnetic easy axis of the Fe
spin is different from the previous case. When placing an Fe spin on top of
MgO, the anisotropy axis points perpendicular to the surface and parallel
to the tunnel junction.

Figure 2.3: Schematic overview of the setup used by Baumann et al. [3] to per-
form the EPR measurement on a single Fe atom using STM. The tip is polarized
parallel to the magnetic field, whereas the adatom spin states mostly follow the
anisotropic magnetic environment provided by the sample. An alternating elec-
tric field was applied between tip and sample to drive the transition between two
spin states of the Fe adatom. Figure taken from reference [3]

In this experiment, an external magnetic field was applied mostly paral-
lel to the sample thus pointing perpendicular the anisotropy axis. This
was achieved by having a magnet creating a parallel field and slightly
tilting the sample (±2◦). The perpendicular component (parallel to the
anisotropy axis) ensures a finite level splitting, whereas the parallel com-
ponent mixes the states. Having the majority of the field pointing parallel,
the tip is also polarized parallel to the sample surface.

6
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2.2 Electron Paramagnetic Resonance of individual atoms on a surface 7

Furthermore, an oscillating electric field was applied between the tip and
sample in order to drive a transition between the ground state of the atom
and its first excited state (∆E ≈ 100µeV≈ 25 GHz). When measuring
the DC tunneling current and sweeping the frequency of the AC electric
field, upon resonance, an increase in DC tunneling current is observed (±
100 fA). Intuitively, this can be explained by the Rabi model (chapter 2).
Upon applying the electric field, the state of the atom oscillates between a
ground state and an excited state. In this case, the ground state has a spin
component pointing mostly parallel to the anisotropy axis, whereas the
excited state’ spin component is more aligned with the tip polarization. In
turn, when the Rabi oscillations have maximum amplitude, i.e. zero de-
tuning, the excited state of the atom is on average populated more than
in the case of finite detuning. Hence, for zero detuning, an increase in DC
tunnel current is observed.

Figure 2.4: Relative increase in DC tunneling current as a function of frequency
of the applied electric field as measured by Baumann et al. [3]

Mathematically, this was explained by Berggren et al. [4]. In this paper,
it is shown that the total tunnel current can be divided into three sepa-
rate components. The second component is an alternating current. When
calculating the average of the total current, it can be shown that for zero
detuning, it is this second component that becomes DC and explains the
increase in DC tunnel current.
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8 Literature on temporal single spin measurements

Figure 2.5: Averaged 2nd component of the total tunneling current as a function
of time for different applied field frequencies (ωe). When the field is applied res-
onantly, the average of this component of the current becomes DC. Figure taken
from reference [4]

From the peak in the DC tunnel current versus frequency of the applied
electric field (fig 2.4), T2 and the Rabi frequency were derived. Further-
more, T1 was measured with the pump- probe technique discussed in the
previous paper (T1 ≈ 88µs, T2 = 210ns, Ω = 2.6rad/µs).
It is important to observe that this same experiment was also attempted
with Co atoms, instead of Fe atoms. Driving the transition for Co atoms
proved impossible, which was later explained by Berggren et al. [4]. For
half integer spin particles (such as Cobalt atoms), the transition between
the ground- and excited state requires a transfer of spin angular momen-
tum. This cannot be provided by the applied, linearly polarized electric
field, and thus, it is impossible to do EPR measurements on particles with
half integer spins. Since Fe has S=2, it does not suffer this problem.

8
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2.3 Control of the millisecond spin lifetime of an electrically probed atom 9

2.3 Control of the millisecond spin lifetime of an
electrically probed atom

One year after the paper of Baumann et al [3], in 2016, Paul et al. [5] pub-
lished a paper about the same system, except with variable thickness of
the MgO film. They observed that for a system with > 2 Ml of MgO, the
T1 time could be increased all the way to the ms range.
Their setup consists of a Ag(100) substrate, similar to the setup in Bau-
mann et al. A MgO film is grown on top of the substrate, and individual
Fe atoms are placed on different patches of the MgO film with variable
thickness. The position of the Fe atoms on the MgO surface is manipu-
lated with the STM tip. The magnetic field is applied perpendicular to the
surface, i.e. parallel to the magnetic anisotropy axis.
To measure the T1 time of different atoms, the same pump- probe tech-
nique demonstrated by Loth et al. [2] was used. It is also noteworthy that
for an Fe atom on top of 2Ml MgO, a periodic modulation of the tunnel
current was observed in the otherwise DC signal. This modulation corre-
sponds to the excitation and relaxation of a spin state of the Fe atom (fig
2.6).

Figure 2.6: Spin polarized tunneling current as measured with a SP tip above a
single Fe adatom. The oscillation in the current can be explained by the excitation
of a spin state of the adatom due to inelastically tunneling electrons. As a result of
this, the adatom polarization is less aligned with the tip polarization, resulting in
an increase in magneto-resistance of the tunnel junction. Upon relaxation of the
excited state, the current is restored to its original value. Assuming the adatom is
instantly excited after relaxation, the oscillations in the current should provide a
measure for the T1 time of the excited state. Figure taken from reference [5].
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10 Literature on temporal single spin measurements

2.4 Large Magnetic Anisotropy of a Single Atomic
Spin Embedded in a Surface Molecular Net-
work

A few years before the publication of the work by Loth et al., in 2007, Hir-
jibehedin et al. [6] published a paper on the magnetic anisotropy effect of a
CuN layer on a surface adatom which was either Fe or Mn. By using IETS
(section 4.2), they measured the energy spectrum of the adatom and com-
pared it to their theoretical expectations. They found, that even though the
molecular binding environment of an Fe atom does not differ very much
from that of a Mn atom, the magnetic anisotropy field of the two individ-
ual systems was very different. Where the magnetic easy axis of an Fe
atom on CuN points almost parallel to the surface, the easy axis of a Mn
atom on the same surface was found to point perpendicular to it. This is
an important conclusion in the sense that if we are to come up with an ex-
periment to measure the properties of a single adatom spin of an arbitrary
element, we should also be able to measure the energy spectrum of the
adatom within the same setup seeing as we cannot necessarily compare
our system with existing literature due to the criticality of these systems.
Luckily, following this paper, measuring the energies of the spin states is
just a matter of doing a differential conductance measurement ( dI

dV ). We
should keep in mind however that the energy resolution of IETS is given
by 5.4kbT, corresponding to the thermal broadening of the tip state (dou-
ble convolution of an infinitely sharp level with the Fermi distribution).
This means that the level pairs used in the EPR experiment (∼ 100 µeV)
will be practically impossible to detect. This does not matter that much,
but we should be able to detect higher lying energy states (∼meV) in order
to determine the degree of polarization of the tip (section 3.4).

2.5 Direct Observation of the Precession of Indi-
vidual Paramagnetic Spins on Oxidized Sili-
con Surfaces

In 1989, Manassen et al. [7] claimed to have observed the precession of a
single spin around an applied magnetic field (Larmor precession). The rea-
son we are briefly highlighting this paper here is because it has a slightly
different approach from the papers referred to in the sections above. The
difference is that detection happens without a spin polarized tip. Even so,

10
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2.6 Overview 11

a Larmor precessing spin induces a small modulation of the tunneling cur-
rent at the Larmor frequency ωl = −γB, where γ is the gyromagnetic ratio
and B is the magnitude of the applied magnetic field. This modulation is
detected here using a RF matching circuit and a spectrum analyzer.

2.6 Overview

In this section, we will give a schematic overview of the key points of the
papers presented in this chapter.

Title Key features
Measurement of Fast Electron Spin
Relaxation Times with Atomic
Resolution • Pump- probe measurement

technique to measure T1 of
single Fe-Cu dimers.

Version of October 11, 2017– Created October 11, 2017 - 16:15
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12 Literature on temporal single spin measurements

Electron Paramagnetic Resonance
of individual atoms on a surface • By superimposing an AC

bias to the conventional DC
bias, the atom under study
can be driven between two of
its spin states. In this paper,
Fe/Co atoms are studied on
a single layer of MgO, on top
of a bulk Ag(100) substrate.

• When the transition is reso-
nantly driven, an extra com-
ponent in the DC tunneling
current appears.

• By sweeping the frequency
of the applied field, the en-
ergy level splitting between
the two states can be deter-
mined.

• In addition to this, from the
shape of the DC current as
a function of applied field
frequency, Baumann et al.[3]
claims to be able to derive
the T2 time and the Rabi fre-
quency.

Control of the millisecond spin
lifetime of an electrically probed
atom • By varying the thickness on

the insulating film on the
sample, the T1 time of the
atom under study can be
tuned.

• The stray field of the SP tip
influences the T1 time of spin
excited states: tip- sample
distance is an important pa-
rameter.

12
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2.6 Overview 13

Large Magnetic Anisotropy of a
Single Atomic Spin Embedded in
a Surface Molecular Network • The chemical binding en-

vironment of the surface
adatom with the insulating
film determines in first prin-
ciple the direction of the easy
magnetization axis of the
adatom.

• Even though certain
adatoms can have a very
similar chemical envi-
ronment, their magnetic
environments can differ sub-
stantially. (in this paper; Fe
on CuN has an easy axis par-
allel to the sample surface,
whereas Mn on CuN has an
easy axis perpendicular to
the surface)

• Using the IETS technique
(section 4.2), the energy lev-
els of the spin excited states
of the atom under study can
be measured.

Direct Observation of the Preces-
sion of Individual Paramagnetic
Spins on Oxidized Silicon Surfaces • Even without a SP tip, a

small AC modulation of the
tunneling current can be
measured that results from
the Larmor precession of
single spins.
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Chapter 3
Proof of principle experiment

Based on the literature covered above, we will now propose an experiment
in which we try measure the relaxation times of a single spin and/or Rabi
oscillations.

3.1 Parameter space within our STM setup

In this section, we describe the possibilities in our own STM setup regard-
ing single spin measurements similar to the experiments described above.
In order to realize such experiments, special attention needs to be paid to:

• Possible contamination of the vacuum: we would like to maintain
the UHV environment in our system. This means that our possibili-
ties regarding sample growth are limited.

• The possibility to to EPR measurements on the sample: even if we
just plan on measuring the T1 time of a single atom, it would still
be nice to keep open the possibility to do EPR measurements in the
future with preferably the same sample.

• In our STM setup, we are limited to magnetic fields up to 9T, applied
perpendicular to the sample.

• There are different techniques for creating a SP tip, for example the
procedure in reference [8], where a SP tip is made by either scanning
the surface or slightly indenting the tip on the surface of an Fe1+yTe
compound. To do experiments on the single atom systems would
then require us to create the SP tip followed by a sample exchange.
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16 Proof of principle experiment

This would require a highly stable tip, on which we would not like
to gamble.

As a result of this, we propose the following experimental environment:

• It is rather inconvenient to grown MgO films in our STM because
it requires filling the system with oxygen. This means that the vac-
uum chamber will be polluted which we would like to avoid. There-
fore we would like to use Cu(100) with a CuN film, since the film is
relatively easy to grow with a relatively small amount of pollution
(section 3.2).

• In order to be able to do EPR measurements where we drive an
atomic transition with an alternating electric field between tip and
sample, we choose to evaporate individual iron atoms (S=2) on the
sample.

• The magnetic field in our STM setup is limited to 9T perpendicular
to the sample. In order to create some in plane magnetic field, we
could tilt the sample under a slight angle. We estimate a maximum
tilt angle of 5◦, in order to still be able to do STM.

• It seems easiest to first prepare the single spin system and thereafter
pick up a single magnetic adatom to polarize the tip (section 3.3).

3.2 Sample preparation

Creating a CuN layer on top of Cu(100) can be done in multiple ways. In
this section, we describe the method used in a paper by Leibsle et al.[9].
This paper studied the Cu(100)-c(2x2)N surface structure, which is the sur-
face we would like to prepare.

16
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3.3 Creating a spin polarized tip 17

Recipe:

1. Clean the Cu(100) sample by repeated cycles of argon ion bombard-
ment and annealing (600K). The authors of Leibsle et al. use LEED
to verify the cleanliness of the surface. Our system is not provided
with a LEED setup, however, we can check the quality of the surface
by taking large scale topographs if deemed necessary.

2. Ion bombard the crystal with nitrogen ions. This can be done at room
temperature, at a pressure of 3.6× 10−4 mbar. The nitrogen gas used
by Leibsle et al. was of 99.999% purity and their ion gun had a beam
energy of 500 eV.

3. Heat the sample to 600K.

4. Use the evaporator to evaporate single Fe atoms onto the sample.
The exact settings for the evaporator need to be tested to achieve the
best results. Furthermore, for example in the paper by Baumann et
al. [3], they cool the sample to 4K when evaporating the Fe atoms. It
is not known if this is necessary, but it might be worth looking into a
way to cool the sample holder during evaporation.

3.3 Creating a spin polarized tip

To create a spin polarized tip on these single spin samples, one has to start
this process by coating the tip with a metal. This can be best achieved
prior to the sample preparation using the clean Cu(100). By indenting the
tip (PtIr) on the surface, Cu atoms will coat the apex of the tip. Then, the
sample can be retracted from the STM head in order to commence the sam-
ple preparation (section 3.2). The metallic coating of the tip is necessary in
order to reduce the lifetime of the excited spin states of the polarized atom
on the tip. Where the insulating layer on the sample (here CuN) extends
the life- and coherence times of the adatom placed on top, we want the tip
polarization to remain constant during our measurements. The metallic
coating of the tip achieves this by ensuring a strong coupling between the
tip spin and the conduction electrons in the tip. Excited states of the tip
spin have an expected lifetime < ps, hence the tip spin can be considered
to have a constant polarization in most experiments.
To transfer an Fe atom to the tip, we follow the procedure applied by Bau-
mann et al[3]. The tip should be positioned above an adatom and brought
close to the sample (∼ 1 MΩ junctionresistance). Then, the tip should be
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18 Proof of principle experiment

retracted whilst applying a large voltage bias (∼ 0.55 V). Typically, this
procedure should be repeated ±5 times in order to successfully transfer
the adatom to the tip. It should also be noted that this technique can best
be attempted with a blunt tip. In order to blunt the tip, we can slightly
indent it on the CuN surface, making sure not to damage the surface too
much. To test if the adatom has been transferred successfully, the degree
of tip polarization should be measured as described in the next section.

3.4 Experimental procedure

Once the single spin systems are created on the sample and a spin polar-
ized tip has successfully been made, the sample should first be character-
ized in order to start time resolved measurements. This is necessary in
order to know the direction of the magnetic anisotropy axis. According
to Hirjibehedin et al. [6], the magnetic anisotropy axis of an Fe atom on
CuN lies mostly parallel to what they define as the N- direction. In order
to clarify this, we take a look at the topograph made by Hirjibehedin et al.
of Fe on CuN (fig 3.1).

Figure 3.1: Topograph of the single spin system of Fe adatoms on CuN created by
Hirjibehedin et al. [6]. Marked by the blue cross is the position of the Fe adatom
on the surface. For clarity, the Cu atoms (yellow) and the N atoms (green) were
drawn in the picture. The Fe atom binds on a copper site, next to two N atoms.
We define the N- direction, similar to Hirjibehedin et al.[6], parallel to the line
intersecting the 2 neighboring N atoms of the Fe adatom.

From figure 3.1, it becomes clear that the Fe adatoms like to bind on a Cu
site next to two nitrogen atoms. We define the direction parallel to the line
intersecting these two nitrogen atoms as the N- direction, following the

18
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3.4 Experimental procedure 19

convention of Hirjibehedin et al.[6]
A finite amount of magnetic field can be applied in this N-direction to tune
the level splitting of adatom states. Since we can only apply field perpen-
dicular to the sample, the only way to achieve this is by tilting the sample
prior to mounting it in the STM. Since there is no way to know a priori
what direction will become the N-direction, the sample should be tilted
on a corner before inserting the sample to ensure a finite tilt angle over
both directions.
Another option would be to, if possible, install the magnet under an angle.
This would be preferred since we are not sure how tilting the sample will
affect scanning and we need to have atomic resolution in order to deter-
mine the N- direction.
Once the N-direction has been established, the magnetic field can be ap-
plied. The component parallel to the N- direction tunes the level splitting
between the spin states of the adatom, whereas the component orthogonal
to the N- direction mixes the states. Furthermore, since the latter compo-
nent will be larger than the former, it will be mostly this component that
can be used to enhance the degree of polarization of the tip. The exact
values for the applied magnetic field need to become apparent from sim-
ulations (chapter 4).
After a magnetic field is applied, the setup procedure is completed and
we can begin characterizing the sample. We start by doing an Inelasting
Electron Spectroscopy Measurement (section 4.2), in order to characterize
the energy levels and spin states of the adatom. Furthermore, from the
dI
dV obtained, the degree of spin polarization of the tip can be measured.
Following Loth et al. [10], the degree of polarization can be derived from
the dI

dV curve. Because the tip is polarized, the density of states can be split
up into two spin components, i.e. up and down electrons. To excite a spin
state in the adatom which requires spin angular momentum transfer, for
example S = +2 → S = +1, an electron from either the tip or the sample
will have to transfer a quantum of spin to the adatom, depending of the
polarity of the applied bias.
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19



20 Proof of principle experiment

Figure 3.2: Example data of an IETS measurement using a spin polarized tip. This
data was taken from Loth et al [10]. They measured dI/dV with a spin polarized
tip on a Mn atom on top of a CuN surface. It is really clear that the conductance
for negative bias at the inelastic transition (red), is roughly 10% larger than at
positive bias (green). It is this difference that allows us to infer the polarization of
the tip.

Since in our case the tip is spin polarized (meaning there is a difference
in D.O.S. for up- and down electrons) and the substrate is not polarized,
the height of conductance step corresponding to the inelastic transition
between the final adatom state (|Φ f 〉) and the initial adatom state (|Φi〉)
will be different for positive and negative bias. From the height difference
in the conductance steps at positive and negative bias (fig 3.2), the degree
of spin polarization can be inferred according to:

Pt =
1
ηs

G+ − G−

G+ + G−
(3.1)

Where G+ and G− are the dI
dV values of the conductance step correspond-

ing to the inelastic transition, at positive and negative bias respectively
and ηs is the polarization of the adatom spin:

ηs =
|〈Φ f |S+|Φi〉|2 − |〈Φ f |S−|Φi〉|2

2|〈Φ f |S|Φi〉|2

After this final characterization procedure has been completed, we can
measure a number of physical quantities regarding the temporal evolu-
tion of a spin state. Below, we present a few ideas based on the work
discussed in chapter 2 for measuring different physical quantities related
to the temporal evolution of a single atom spin state.

20
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3.4 Experimental procedure 21

3.4.1 Measuring T1 on a single atom

As described in section 2.1, in 2010, Loth et al. [2] first introduced a pump-
probe measurement scheme in order to measure the decay time of an ex-
cited spin state. In this section, we would like to propose an alternative
method for measuring this T1 time.
Instead of doing the pump- and probe measurement for several cycles, we
think it is possible to measure the decay of the spin state in real time just
by applying a DC bias. A requirement for this type of measurement is an
extension, or shift in bandwidth, which can be achieved by using our RF-
STM setup (section 4.1). If we could measure alternating current signals
in the frequency range characteristic for the decay of the spin state ( 1

T1
),

we could keep exciting the spin state by applying a DC bias voltage larger
than the energy difference between the two states. In this way, electrons
can inelastically excite the spin each time it relaxes back to its ground state.
Assuming we apply a large enough current by approaching the sample re-
ally close, the spin is instantly re-excited after relaxation. As a result, the
tunneling current will be modulated at a frequency characteristic for its
relaxation time.
For Fe atoms on CuN, the T1 time is unknown. However, for Fe-Cu dimer
on CuN, the T1 time was measured by Loth et al. in their pump-probe
measurement paper [2]. They obtained a T1 time, varying between 50 ns
and 250 ns. This corresponds to 1

50×10−9 = 20 GHz and 1
250×10−9 = 4 MHz,

meaning that especially in the latter case we could measure the T1 time
using our already existing RF- circuitry (after some minor modifications).
For Fe-Cu dimers, the magnetic easy axis points parallel to the sample
surface. Since we are not doing EPR in this experiment, we do not have
to worry about applying field perpendicular to this axis to mix the states.
Hence, this experiment can be done in our STM by just applying the field
perpendicular to the surface. The tip polarization aligns with the mag-
netic anisotropy axis, thus a decrease in tunnel current is expected to be
measured upon excitation of the spin. With the RF- circuitry, we should
be able to measure this current change in the MHz range. If we do not
immediately detect the AC signal, it is possible that the lifetime of the se-
lected Fe-Cu dimer is too short and falls out of our bandwidth. Hence
we should try different Fe-Cu dimers at different positions on the sam-
ple since the local environment can influence the lifetime. Also junction
resistances should be varied at each dimer since it was observed in Paul
et al. [5] that the stray field of the tip spin can influence the lifetime of
the spins quite dramatically. Therefore, it should also be mentioned that
the bandwidth of the RF- circuitry should be chosen preferably in the up-
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per MHz region or even redesigning the amplifier to get bandwidth in the
GHz range could provide useful. Should we not detect any signal because
the lifetime is too long, we could lower the junction resistance, therefore
decreasing the lifetime of the excited state and increasing the frequency of
the AC signal, potentially shifting it into our bandwidth.
If we attempt this experiment on individual Fe atoms, the field could still
be applied perpendicular to the surface. The only difference is that now,
the tip polarization is orthogonal to the magnetic easy axis resulting in
an increase in tunneling current upon exciting the spin state. This is only
relevant for the pump- probe measurement, but it is recommended to do
this on single iron atoms before attempting the real time detection in order
to tune the bandwidth of the RF- circuitry to the correct frequency range.
Also, the applied field could be varied in this case to enhance state mixing
an thereby potentially change the relaxation time directly. The lower the
field, the less state mixing therefore the longer the lifetime, but it should
be mentioned that the tip polarization of course also depends on this ap-
plied field and it is not certain what the lower limit of the applied field is
in order to keep a stable tip polarization.

3.4.2 EPR on Fe adatoms

The second type of measurement we can do with Fe atoms on CuN in-
volves applying an alternating electric field in the tunnel junction. This
can be achieved by superimposing an AC bias on the standard DC bias,
using for example a function generator. The AC electric field will be able
to drive transitions between two states of the adatom, depending on the
frequency of this applied electric field (section 4.3). Depending on how we
set the DC bias, we predict the ability to measure two different phenom-
ena:

• A change in DC tunnel current when the transition is resonantly
driven. This phenomenon is in principle independent of the applied
bias voltage and was experimentally measured by Baumann et al.
[3]. A theoretical explanation for this was given by Berggren et al.
[4] (section 4.5). From the shape of the resonance peak, T2 and the
Rabi frequency can be derived.

• An alternating current component corresponding to the Rabi oscil-
lations of the magnetic adatom. This is something that has not been
measured before and can probably only be measured when the DC
bias can be kept constant in the µV range. (section 4.5)

22
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3.4 Experimental procedure 23

In an EPR measurement, the magnetic field component perpendicular to
the anisotropy axis enhances the spin state mixing of the eigenstates. The
parallel field component is used to control the level splitting and thereby
the resonance frequency of the transition.
The amplitude of the applied alternating electric field eventually deter-
mines the Rabi frequency, i.e. the rate at which the transition takes place
(section 4.3). Please observe that it is necessary to vary the output power
of the function generator for different frequencies taking into account the
transfer function of the STM in order to get an equal electric field ampli-
tude for all frequencies in the tunnel junction. [3], [11].

3.4.3 Overview

In this section, we give a short, schematic overview of the experiments de-
scribed above. We state the main technical challenges and possible results
in terms of new physics that can be learned from the experiments.
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Experiment Technical challenges Outcome/What can we
learn?

Realtime
measure-
ment of
the T1
time of
a single
atom.

• Tunnel junction sta-
bility

• Tuning of the RF cir-
cuitry

Probably we cannot learn
any new physics from this
type of experiment. How-
ever, if successful, this
experiment will demon-
strate the viability of a
STM with good time res-
olution. Furthermore,
it will provide a new
method for measuring T1
times of single atoms and
as a group, it will pro-
vide a way for us to
get experience with these
kind of samples. If we
get RF ciruitry with bet-
ter bandwidth and higher
resonance frequency, we
might also be able to do
this kind of measurement
on more interesting sam-
ples, provided we come
up with a new way to
make a SP tip.

DC EPR
measure-
ments. • Tunnel junction sta-

bility

• Controlling ampli-
tude of the applied
electric field

Since this experiment has
already been conducted
by Baumann et al. [3],
we will not be able to
learn anything new per
se. Furthermore, since the
technique only works for
a transition between two
well defined levels, it will
probably not be possible
in most bulk systems.

24
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AC EPR
measure-
ments. • Tunnel junction sta-

bility

• Tuning of the RF cir-
cuitry

• Requirement of µV
control of the ap-
plied DC bias

• Controlling ampli-
tude of the applied
electric field

Time resolved Rabi os-
cillations have, to our
knowledge, never been
measured electronically.
Therefore, if this experi-
ment succeeds, it will be
the first time someone has
ever done that. In terms
of new physics however,
the Rabi model is a really
well understood con-
cept in quantum optics.
Hence, we probably will
not learn any new physics
from this experiment.
Furthermore, since the
Rabi model assumes that
a spin oscillates between
two well defined states,
the applicability of this
model becomes question-
able in bulk systems.
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Chapter 4
Theory

4.1 (RF- ) Scanning Tunneling Microscopy

The technique of Scanning Tunneling Microscopy is based on measuring
a finite tunneling current between an atomically sharp tip and a sample.
This finite tunneling current is a purely quantum mechanical effect that,
according to Bardeen [12], depends on the overlap between the electronic
wavefunctions of the tip and sample. It is for this reason that the spatial
resolution of STM is so outstandingly good, because the current will de-
cay exponentially as a function of tip- sample distance. This means that
small deviations (∼ Å) can be detected as relatively large deviations in the
tunnel current.
Moreover, the usefulness of STM does not end here. By freezing the feed-
back and measuring dI

dV , insight in the local density of states of the sample
can be obtained (STS). By measuring the noise of the tunneling current
(shotnoise), we can learn the properties of the charge carriers in the sam-
ple and by using a spin-polarized tip, the local magnetic structure of the
sample can be analyzed. It is this last effect that we would like to apply in
order to measure the spin state of individual atoms.
In the introduction, we briefly commented on one of the weaknesses of
STM: its temporal resolution. The reason for this is that, especially in low-
temperature UHV-STMs, the STM head is connected to room temperature
current amplifiers by means of a relatively long coax cable. The problem
lies with the parasitic capacitance that is introduced by this cable. This
basically low-pass filters all signals coming from the STM head before it
reaches the amplification stage. As a result, it becomes impossible to de-
tect small signals > 10 kHz, severely limiting the temporal resolution of
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the device.
One way to overcome this problem is by introducing a small, low-noise
cryogenic amplifier close to the STM head, amplifying all signals within a
certain bandwidth [1]. This means that the attenuation due to the coax ca-
ble is basically negated by means of amplification before the signal reaches
this low-pass filter stage. In principle, this method can open up the possi-
bility to measure time-resolved spin fluctuations and or spin relaxation, if
combined with a spin-polarized tip.

4.2 Inelastic Electron Tunneling Spectroscopy (IETS)

Inelastic Electron Tunneling Spectroscopy is a technique originally used to
measure vibrational modes in molecules. Around 1990, the technique was
sort of re-discovered and was first applied in a STM. Now, by combining
IETS with spin polarized tips, it is possible to measure the magnetic states
of samples with atomic precision.
The principle of IETS was described in section 3.4. Here, we would like
to elaborate a bit more on the working principle behind IETS. For further
reading, we would like to refer to reference [10].
To start off, we would like to point out that the total tunneling current
inside a tunnel junction can be regarded as two individual components.
One part is fully elastic, meaning that electrons tunnel from one reservoir
to another without losing or gaining energy. This means that for the sin-
gle spin systems described in chapter 2, the electrons do not influence the
state of the adatom and either tunnel directly between the two reservoirs,
or cotunnel from one reservoir through the adatom to the other reservoir,
without exchanging energy or spin angular momentum. The other com-
ponent, the inelastic part, contains more information since it depends on
the available quantum states of the magnetic adatom. Inelastically tun-
neling electrons come from one reservoir, tunnel to the magnetic adatom
and exchange either energy or angular momentum, or even both. Depend-
ing on the energy of the incoming electrons, different tunneling events are
possible and since the conductance of the junction is proportional to the
tunneling probability, we can measure the atomic states of the atom by
measuring the differential conductance dI

dV .
To better understand this, let us take a look at figure 3.2. The dI

dV is roughly
constant up until approximately 1 mV. For bias voltages > 1 mV, a sudden
increase in differential conductance is measured. This corresponds to the
opening of an extra tunneling channel, if the electrons have an energy >
eVthreshold.

28
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4.3 Resonant driven transition in a 2 level system: The Rabi model 29

By using a spin-polarized tip, another feature appears in the dI
dV measure-

ment: the step size at the threshold voltage differs for positive and nega-
tive bias. The reason for this was described in section 3.4. We can make
use of this to measure the degree of tip polarization.

4.3 Resonant driven transition in a 2 level sys-
tem: The Rabi model

When an atom is placed in an alternating electric field, the atomic state will
oscillate between unperturbed atomic states as a result of the atom-field
interaction. In this section, we describe the driven transition occurring in
a two level system according to the Rabi model [13].
We start of by defining the two atomic states as |g〉 and |e〉. Convention-
ally, |g〉 is the lowest of the two states. The two states have energies Eg and
Ee respectively. The energy difference between the two states is given by
∆E = Ee− Eg, to which is associated a characteristic frequency of ω0 = ∆E

h̄ .
To describe the atom-field interaction, we can write the following interac-
tion Hamiltonian:

H(1)(t) = V0 cos(ωt) (4.1)

where ω is the frequency of the driving electric field and V0 is the ampli-
tude of the driving field. Furthermore, we can write down the state vector
of the system as:

|Ψ(t)〉 = Cg(t)e−
iEgt

h̄ |g〉+ Ce(t)e−
iEet

h̄ |e〉 (4.2)

Substituting 4.1 and 4.2 in the Schrödinger equation, we get:

ih̄
dΨ
dt

= H Ψ(t)

ih̄
[(

Ċg(t) + Cg(t)
(−iEg

h̄

))
e−

iEgt
h̄ |g〉+

(
Ċe(t) + Ce(t)

(
−iEe

h̄

))
e−

iEet
h̄ |e〉

]
=

V0 cos(ωt)
[

Cg(t)e−
iEgt

h̄ |g〉+ Ce(t)e−
iEet

h̄ |e〉
]
+ H0 Ψ

Now, taking the inner product with 〈g| and 〈e| respectively, we obtain 2
equations:

ih̄Ċg(t)e−
iEgt

h̄ = cos(ωt)Ce(t)e−
iEet

h̄ 〈g|V0|e〉
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ih̄Ċe(t)e−
iEet

h̄ = cos(ωt)Cg(t)e−
iEgt

h̄ 〈e|V0|g〉

Notice that 〈g|V0|g〉 and 〈e|V0|e〉 are 0, due to the quantum mechanical
formulation of the electric field operator. Letting ν = 〈g|V0|e〉 = 〈e|V0|g〉,
we get:

Ċg(t) = −
i
h̄

ν cos(ωt)Ce(t)e−
i(Ee−Eg)t

h̄ = − i
h̄

ν cos(ωt)Ce(t)e−iω0t

and

Ċe(t) = −
i
h̄

ν cos(ωt)Cg(t)e
i(Ee−Eg)t

h̄ = − i
h̄

ν cos(ωt)Cg(t)eiω0t

Writing cos(ωt) as a complex number:

Ċg(t) = −
i

2h̄
νCe(t)

(
ei(ω−ω0)t + e−i(ω+ω0)t

)
Ċe(t) = −

i
2h̄

νCg(t)
(

ei(ω+ω0)t + ei(ω0−ω)t
)

Assuming that the frequency of the driving field is close to the resonance
frequency, the ω +ω0 term oscillates very rapidly, leaving the ω0−ω term
to dominate the expression. Therefore we can neglect the ω + ω0 term.
This is called the Rotating Wave Approximation. Defining the detuning as
δ = ω0 −ω, we get:

Ċg(t) = −
i

2h̄
νe−iδtCe(t) (4.3)

Ċe(t) = −
i

2h̄
νeiδtCg(t) (4.4)

We shall now proceed to solve this system of coupled differential equa-
tions. Taking the time derivative of 4.4. we get:

C̈e(t) = −
i

2h̄
ν
(
iδCg(t) + Ċg(t)

)
eiδt

Substituting 4.3 into this result, we find:

C̈e(t) = −
i

2h̄
ν

(
iδCg(t) +

[
− i

2h̄
νe−iδtCe(t)

])
eiδt

C̈e(t) = −
( ν

2h̄

)2
Ce(t) +

ν

2h̄
δeiδtCg(t)

30
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Rewriting 4.4 and inserting it in this result:

C̈e(t) = −
( ν

2h̄

)2
Ce(t) +

ν

2h̄
δeiδt

[
2h̄i
ν

e−iδtĊe(t)
]

C̈e(t)− iδĊe(t) +
( ν

2h̄

)2
Ce(t) = 0

As an Ansatz, we use:

Ce(t) = ∑
i

cieλit, ci ∈ Z

Substitution in the differential equation yields:

λ2 − iδλ +
( ν

2h̄

)2
= 0

λ± =
i
2

(
δ±

√
δ2 +

(ν

h̄

)2
)

Let Ω =
√

δ2 +
(

ν
h̄
)2:

λ± =
i
2
(δ±Ω)

Finally, we find:

Ce(t) = c1e
i(δ+Ω)t

2 + c2e
i(δ−Ω)t

2

= e
iδt
2 (c1e

iΩt
2 + c2e−

iΩt
2 )

and using 4.4:

Cg(t) =
2h̄i
ν

e−iδtĊe(t)

=
2h̄i
ν

e−iδt ∂

∂t

[
e

iδt
2 (c1e

iΩt
2 + c2e

−iΩt
2 )
]

=
2h̄i
ν

e−
iδt
2

(
i
δ

2
(c1e

iΩt
2 + c2e−

iΩt
2 ) + i

Ω
2
(c1e

iΩt
2 − c2e−

iΩt
2 )

)
= − h̄

ν
e−

iδt
2

(
δ(c1e

iΩt
2 + c2e−

iΩt
2 ) + Ω(c1e

iΩt
2 − c2e−

iΩt
2 )
)
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What is left to do now, is to choose proper initial conditions and calculate
constants c1 and c2. As initial conditions, we assume that at t = 0, the
levels are populated according to the Boltzmann distribution. This means
that we can write:

C2
e (0)

C2
g(0)

=
e−

Ee
KbT

e−
Eg

KbT

= e−
∆E

KbT ≡ B

Furthermore, normalization of the wavefunction requires that:

C2
g(t) + C2

e (t) = 1

If we now combine these criteria, we find for our initial conditions:

Cg(0) =
1√

1 + B

Ce(0) =

√
B

1 + B

Setting t = 0 in the expressions obtained for Cg(t) and Ce(t), we get:

Ce(0) = c1 + c2 =

√
B

1 + B

Cg(0) = −
h̄
ν
(δ(c1 + c2) + Ω(c1 − c2)) =

1√
1 + B

After doing some algebra, we can solve this system of coupled equations
to get:

c1 = −
√

B(δ−Ω) + ν
h̄

2Ω
√

1 + B

c2 =

√
B(δ2 −Ω2) + ν

h̄ (δ−Ω)

2Ω
√

1 + B(δ−Ω)

This means that we now have obtained a time dependent expression for
the wavefunction of an atom in an oscillating electric field. To further il-
lustrate the meaning of this model, we can plot the probability of finding
the atom in state |g〉 or |e〉, i.e., |Cg(t)|2 or |Ce(t)|2. Below, several plots are
generated for different input parameters. For now, we will not consider
the effect of changing the amplitude of the applied electric field. We will
solely vary the frequency of the applied field ( f = ω

2π ), and the tempera-
ture of the atom:

32
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4.3 Resonant driven transition in a 2 level system: The Rabi model 33

Figure 4.1: Time evolution of the probabilities |Cg(t)|2 and |Ce(t)|2, associated
with finding the atom in state |g〉 or |e〉 respectively. The plot was generated with
the following input parameters: δ = 0, T = 0K

Figure 4.2: Time evolution of the probabilities |Cg(t)|2 and |Ce(t)|2, associated
with finding the atom in state |g〉 or |e〉 respectively. The plot was generated with
the following input parameters: δ = 0, T = 2K
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From the difference between figure 4.1 and 4.2, it becomes clear that finite
temperature dampens the amplitude of the Rabi oscillation. This means
that the Rabi oscillation itself becomes less defined, because the probabil-
ity of finding the atom in a certain state never reaches one.
The effect of finite detuning becomes clear from the difference between
figure 4.1, 4.3 and 4.4. Judging from these plots, the detuning becomes
relevant when its magnitude is of the order of ν

h̄ . This is expected, since

we derived that Cg(t) and Ce(t) oscillate with Ω =
√

δ2 +
(

ν
h̄
)2. In turn,

we can also conclude from this that the effect of detuning on the oscilla-
tion frequency can be controlled by varying the amplitude of the applied
electric field (ν). It should however be observed that knowing the exact
amplitude of the electric field as felt by the adatom is almost impossible,
since we generate this field inside a tunnel junction contained in the STM
head. This is far from an ideal microwave cavity and hence there is a rel-
atively large uncertainty in amplitude of the applied electric field. Due
to the geometry of STM, the alternating electric field can only oscillate
parallel to the junction unless we use some secondary antenna to gener-
ate an electric field. On the other hand, we describe above that for the
combination of adatom and substrate of choice, the magnetic anisotropy
axis points parallel to the sample surface. This means that in theory, for
this combination it is impossible to drive the transition between two states
due to orthogonality of the magnetic moment of the adatom and the am-
plitude of the driving field. In practice, however, one can hope that some
microwave signal reflects non-trivially in the junction and still drives the
transition. Furthermore, we are assuming here that the magnetic moment
of the adatom in its ground state is polarized, parallel to the magnetic
anisotropy axis. In practice, due to thermal fluctuation, the moment might
deviate slightly from this, giving rise to another opportunity to drive the
adatom with an RF field in the tunnel junction.

34
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4.3 Resonant driven transition in a 2 level system: The Rabi model 35

Figure 4.3: Time evolution of the probabilities |Cg(t)|2 and |Ce(t)|2, associated
with finding the atom in state |g〉 or |e〉 respectively. The plot was generated with
the following input parameters: δ = 0.5 ν

h̄ , T = 0K

Figure 4.4: Time evolution of the probabilities |Cg(t)|2 and |Ce(t)|2, associated
with finding the atom in state |g〉 or |e〉 respectively. The plot was generated with
the following input parameters: δ = ν

h̄ , T = 0K
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4.4 Big spin Hamiltonian

Upon placing a magnetic adatom on a substrate, the energy levels of the
adatom are influenced by the magnetic environment of the substrate. Typ-
ically, this magnetic environment is not isotropic. To lowest order, we can
describe this anisotropic environment by the so called big spin Hamilto-
nian:

HS = −gµbB · S + DS2
z + E(S2

x + S2
y) (4.5)

Where µb is the Bohr magneton and D and E are the axial- and transverse
magnetic anisotropy parameters.
Typically, the eigenstates of a Hamiltonian with a magnetic term are char-
acterized by their magnetic quantum number (m), i.e. the magnitude of
the z-projection of the spin angular momentum of the state. For the big
spin Hamiltonian, this will also be the case, with the addition that besides
the conventional Zeeman term, there is the axial anisotropy term which
further divides the energies depending on the absolute value of m. Fur-
thermore, the eigenstates of the big spin Hamiltonian will not be purely
dependent on m, due to the transverse anisotropy term which mixes the
eigenstates and a possible magnetic field component parallel to the mag-
netic easy axis.

4.5 Tunneling current in junction containing a
magnetic adatom

When a magnetic adatom is placed in a tunnel junction, the tunneling
current can be divided into three components. This was first derived by
Fransson et al. [14], and also independently by Delgado et al. [15]. In this
report, we will go over the derivation and use the result of Delgado et al.,
since the formulas presented in their paper are more compact and easier
to interpret.
To derive the magnitude of the tunneling current, Delgado et al. solve the
master equation for the eigenstates |m〉 of the Hamiltonian we presented
in equation 4.5. Transitions between different eigenstates can occur due to
exchange of spin angular momentum with delocalized electrons, i.e. tun-
neling electrons from the tip or sample. The occupation probability of a
spin state |m〉, Pm should satisfy:

dPm

dt
= ∑

m′,ηη′
Pm′W

η′→η
m′,m − Pm ∑

m′,ηη′
Wη→η′

m,m′

36
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4.5 Tunneling current in junction containing a magnetic adatom 37

where Wη→η′

m,m′ is the transition rate between state |m〉 and |m′〉 caused by
quasiparticles which come from reservoir η and end up in reservoir η′.
With reservoir, we mean either the tip or sample.
These scattering rates can be written as:

Wη→η′

m,m′ =
π|Tsνηνη′ |2

h̄
G(∆m,m′ + µη − µη′)Σ

ηη′

m,m′

Where Ts is an element of the tunneling matrix, νi are dimensionless fac-
tors parametrizing the hopping integral between tip-adatom (νt) or sample-
adatom (νs), G(ω) = ω

1−e−
ω

KbT
, are the phase factors associated with quasi-

particle scattering, ∆m,m′ is the energy difference between state |m′〉 and

|m〉, µi is the chemical potential associated with the electrode i and Σηη′

m,m′
are spin matrix elements:

2Σηη′

m,m′ = |S
m,m′
z |2(ρη↑ρη′↑ + ρη↓ρη′↓) + |Sm,m′

+ |2ρη↓ρη′↑ + |Sm,m′
− |2ρη↑ρη′↓

where Sm,m′
j = 〈m|Sj|m′〉 and ρη,σ is the density of states at the Fermi en-

ergy of electrons with spin σ in electrode η. In this equation, it also be-
comes apparent that a spin-polarized tip (or even a spin-polarized sample
for that matter) creates an imbalance in the different transition rates.
Further evaluation of the individual transition rates results in a tunneling
current, that can be divided in three components:

I = I0 + Imr + Iin

Here, I0 is an elastic component of the tunneling current and is indepen-
dent of the polarization of the tip and sample. Imr is also elastic but it
depends on the relative spin polarization between the tip and adatom. Iin
is an inelastic component and it also depends on the spin polarization of
the adatom. The individual current components can be expressed as:

I0 + Imr = −
2
e

G0 (1 + x〈Sz〉Pt) i−(−eV) (4.6)

and

Iin = −GS

e ∑
m,m′

[
i−(∆m,m′ − eV)∑

j
|Sm,m′

j |2 + Pti+(∆m,m′ − eV)=(Sm,m′
x Sm′,m

y )

]
Pm(V)

(4.7)
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In these equations, G0 ≡ e2πρtρs
4h̄ |T0νtνs|2 is the elastic junction conductance,

Gs = x2G0 is the inelastic conductance, where x = Ts
T0

is the relative inten-
sity difference of the inelastic- to the elastic channel.
Furthermore, Pt =

ρt↑−ρt↓
ρt↑+ρt↓

is the tip polarization is the z- direction, i±(∆m,m′−
eV) = G(∆m,m′ − eV) ± G(∆m,m′ + eV) and 〈Sz〉 = ∑

m
Pm(V)〈m|Sz|m〉 =

〈Ψ|Sz|Ψ〉 is the average spin polarization along the z-direction of the mag-
netic adatom.
Note that equation 4.6 is not entirely identical to the result in the paper,
since we suspect a typo in the paper. From dimensional analysis, the equa-
tion given here should be correct and thus this expression was also used
in the simulations (chapter 5).
In case we decide to drive the adatom with an applied alternating electric
field, the state of the adatom will oscillate between what we consider its
ground state and an excited state. This means that 〈Sz〉, which is of course
dependent on the current state of the adatom, will also become a function
of time and the magneto-resistive component of the tunneling current will
become an alternating current which we could possibly measure using
an impedance matching circuit. Nevertheless, this view of the oscillating
system will only be valid if the DC bias voltage is set below the energy
required to excite the spin state through inelastic scattering. If this is the
case, the atom can only go in the excited state through the Rabi oscillations
and the Rabi oscillations in itself should stay unperturbed. If the bias ex-
ceeds this limit, the atom can be excited through an inelastic tunneling
process and it is unsure what effect this will have on the driven system.
Since the transition is separated by an energy difference of ∆E ∼ 100µeV,
this means that the bias voltage should be accurate in µV range.

38
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Chapter 5
Simulated EPR data

In order to be able to comment on the feasibility of the experiments men-
tioned above, we wrote a Python code based on a theoretical result of Del-
gado et al. [15] (section 4.5) that calculates the tunneling current when
driving the magnetic adatom with an alternating electric field. This code
can be modified to estimate results for the T1 time measurement and for
the DC EPR measurements conducted by Baumann et al. [3], but due to a
shortage of time, this will have to be done in a future project (see Future
research).
To describe the tunneling current as measured in a junction containing a
Rabi precessing atom, we assume a model based on sections 4.3 and 4.5.
The atom is assumed to be unperturbed by the tunneling electrons, which
is valid for small bias voltage (e Vbias < ∆E). We calculate the energies
and eigenstates for iron atoms on CuN according to section 4.4. The atom
is assumed to oscillate between its two lowest lying energy states. We
calculate equation 4.6, since this contains the AC current component due
to time dependent magneto resistance of the tunnel junction. To clarify:
When the atom oscillates between two states with different 〈Sz〉, the mag-
neto resistance of the total junction becomes a function of time since the
projection of the atom spin component on the tip polarization axis varies
with time. Hence an alternating current component can be measured with
a spin polarized tip.
It should be mentioned that the calculations done in this chapter are not
fully representative of experimental reality, since there is no way to ac-
curately estimate all the physical parameters of the problem. Especially
estimating the amplitude of the driving electric field is not an easy task,
since as we mentioned before, a tunnel junction in a STM head is far from
an ideal microwave cavity. This is quite problematic for the viability of
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our calculations since in section 4.3, it was shown that the amplitude of
the driving field determines the Rabi oscillation frequency which is an im-
portant parameter because it determines how we need to tune our RF- cir-
cuitry. Nevertheless, we proceeded to execute the Python code with what
we consider to be realistic input parameters.
To start, we assume to be able to create an experimental environment sim-
ilar to the conditions used in Baumann et al [3]. This means that we try
to create a system Rabi oscillating between two levels split by a gap of
roughly 100µeV, but this time with Fe atoms on CuN. Luckily, at zero ap-
plied magnetic field, the level splitting between the two lowest energy
levels already equals 181µeV. This means that in that regard, we do not
require much field parallel to the anisotropy axis, which is parallel to the
sample (N- direction) and this condition is therefore favorable to us. To
calculate the energies and eigenstates, we diagonalise the Big spin Hamil-
tonian of section 4.4 with parameters measured by Hirjibehedin et al [6].
At zero applied magnetic field, we find the energy spectrum of figure 5.1
and corresponding eigenstates:

Ψ0 = 0.697300362563|2〉 − 0.165965082889|0〉+ 0.697300362563| − 2〉
Ψ1 = 0.707106781187|2〉 − 1.36222468205e− 15|0〉 − 0.707106781187| − 2〉
Ψ2 = 0.707106781187|1〉 − 0.707106781187| − 1〉
Ψ3 = 0.707106781187|1〉+ 0.707106781187| − 1〉
Ψ4 = 0.117355035551|2〉+ 0.986131629785|0〉+ 0.117355035551| − 2〉

Here, the z- axis , i.e. the quantization axis, was chosen parallel to the
magnetic easy axis (parallel to the sample). This result fully matches the
states predicted by Hirjibehedin et al [6]. It is clear that the lowest two
states are mainly superpositions of |2〉 and | − 2〉. In this case, the differ-
ence between the two states would be undetectable in IETS since 〈Sz〉 is
roughly the same for both states, which is ∼ 0.
If we start driving the transition between Ψ0 and Ψ1, we can write down
the wavefunction of the adatom as: (equation 4.2)

|Ψ(t)〉 = Cg(t)e−
iEgt

h̄ |Ψ0〉+ Ce(t)e−
iEet

h̄ |Ψ1〉

Calculating 〈Sz(t)〉 = 〈Ψ(t)|Sz|Ψ(t)〉 allows us to calculate the tunneling
current (equation 4.6). As physical parameters, we estimate:

40
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Physical quantity value comment
Applied magnetic
field

0T -

Sample tilt angle 0◦ -
Temperature 2K -
Junction resistance 100MΩ -
Bias voltage 0.1mV -
Magnetic moment of
the adatom

2.2µb Magnetic moment of
an individual iron
atom

Electric field ampli-
tude

1× 105V/m Assuming a parallel
plate capacitor with a
junction size of 1nm
and Vr f = 0.1mV

Frequency of driving
field

- The detuning is set to
0.

Figure 5.1: Energy distribution of adatom states for Fe on CuN. The magnetic
field is applied perpendicular to the sample and the tilt angle is measured be-
tween the current N-direction axis and the N-direction axis without sample tilt.

With the parameters given above, calculating the tunneling current with
the Python code results in figure 5.3 and 5.4.
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Figure 5.2: Expectation value for the z- component of the spin angular momen-
tum of the magnetic adatom undergoing Rabi oscillations according to the table
presented above.

Figure 5.3: Simulated tunneling current measured with a magnetic adatom in the
tunnel junction undergoing Rabi oscillations.

42
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Figure 5.4: Zoom in of tunneling current presented in figure 4.3. By zoomin ing, it
becomes apparent that besides the main oscillation on timescales of∼ 25ps, there
is a secondary oscillation on much shorter timescales (∼ 0.5 f s).

With a Rabi precessing atom in the tunnel junction, for the parameters
we declared above, the tunnel current is modulated at two frequencies.
The major oscillation happens at timescales of ∼ps, corresponding to an
AC current component in THz range. Furthermore, upon closer inspec-
tion (fig 5.4), we see that there is a second modulation at much shorter
timescales (∼ f s). It is actually this second oscillation that corresponds to
the Rabi frequency, which is in this case Ω

2π = 3.08× 1015 Hz. The first
oscillation is due to the e− iEit

h̄ term in the wavefunction, for which in both

cases Ee
h =

Eg
h ≈ 1.5× 1012 Hz.

Measuring the contribution to the tunneling current in real time of both
these oscillations will be extremely difficult due to their very high fre-
quencies. To solve this, lowering the Rabi frequency seems a logical step.
However, as determined previously, the Rabi frequency is proportional to
the amplitude of the applied driving electric field. This is approximately
given by |Edrive| =

Vr f
djunction

, if we assume a parallel plate capacitor model.
In this formula, Vr f is the applied RF- voltage on the junction (rms), and
djunction is the distance between tip and sample. Due to the fact that our
samples are insulating (due to the CuN layer), djunction is limited because
the junction resistance will quickly become too large. This, in addition to
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the fact that the DC bias is limited by the level splitting between the two
levels in order to refrain from perturbing the Rabi oscillations, makes that
djunction is not a very flexible variable. The sole parameter left to tune is
then Vr f . Naı̈vely one could think that this value can be made arbitrarily
small, provided that one cannot go lower than the noise limit of the device
used to create the RF bias. However, the second factor one has to take into
account is the transfer function of the cable connecting the STM head to
room temperature devices. As discussed previously, associated with this
cable is a parasitic capacitance which low-pass filters any signals going
through. The accuracy with which we can determine the transfer function
of this cable, together with the noise of the RF device determines the lower
limit to Vr f .
Tuning the magnetic field does not influence the Rabi frequency. Conse-
quently, it does not make any sense at this point to rerun the simulation
for different magnetic field values, since the frequency of the signal gener-
ated by Rabi precession is just too large to detect. With this, we therefore
conclude this investigation on EPR measurements on a single spin device.

44
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Chapter 6
Future research

6.1 Outlook

Because of short time constraints, this research if far from complete. To
continue this project, the following topics should be considered:

• Further parameter space exploration using the python code in or-
der to create an optimal experiment: In chapter four, the main focus
was to simulate EPR measurements using individual Fe atoms on
CuN. With minor modifications, the existing python code (appendix
A.1) can be used to also describe measurements on single atom sys-
tems without a driving field. This might be useful, since we think
that measuring relaxation times, especially T1, is a lot easier than
measuring Rabi precession (section 6.2).

• Theoretical model check: Big spin Hamiltonian. To calculate the
energies and eigenstates of the magnetic adatom in the tunnel junc-
tion, the python code solves the Schrödinger equation for the so
called big spin Hamiltonian presented in section 4.4. Even though
this is confirmed to be a valid model [4], in some instances, for ex-
ample reference [3], a more advanced model called the Ligand field
Hamiltonian is used. We think it is interesting to see how these dif-
ferent models compare to each other.

• Theoretical model check: Rabi Precession. In section 4.3, we de-
scribe a way to model an atom inside an oscillating electric field
based on reference [13]. It might be useful to also use a more gen-
eral theoretical framework, starting from the Bloch equations and
comparing the outcome to the results we obtained in this report.
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• Temperature effects: In our python simulation, temperature only
enters in the initial conditions of the population degree of the two
level system. It should be checked if this is done correctly and prob-
ably the effect of level broadening should also be researched in the
context of Rabi oscillations.

• STM characterization. As mentioned in chapter 5, to properly sim-
ulate the effects of a Rabi oscillating atom in the tunnel junction, it is
invaluable to know the exact amplitude of the applied electric field.
Hence, should we want to further investigate EPR measurement pos-
sibilities, measuring the transfer function of our STM is a step in the
right direction. This might be good in general, for future RF- STM
experiments. We can also think about building an antenna close to
the tunnel junction in order to generate the AC electric field with a
secondary electrode.

6.2 Final thoughts

In the end, I am personally most confident about time resolved T1 mea-
surements of Fe-Cu dimers on CuN since we know what we are supposed
to measure (Loth et al.[2]: T1 ∼ 100ns) and it seems doable with only mi-
nor modifications of our current RF- circuitry. It will still be challenging
because we need to install the magnet, need to learn to grow CuN sam-
ples, etc., but it is also for this reason that I think it is good to start here
in order to learn these skills. Once we can successfully do this, we can
think about doing the more complicated EPR measurements, should we
find that they are useful to do. After all, even though I think it is inter-
esting to measure real time Rabi precession, the question is what we can
learn from it in terms of new physics and knowledge for future research
projects like spin fluctuation measurements in superconductors.

46
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Appendix A
Python code

A.1 EPR measurement simulation

This python code was used to simulate the data presented in chapter 4. It
can be modified to also simulate DC current measurements on a magnetic
adatom in the tunnel junction.
This code also contains the possibility to export the generated data to .npz
files, which can be loaded with the code presented in A.2 in order to do a
Fourier transform on it for easy data analysis.

1 #Simulation: magnetic adatom in tunnel junction
2

3 import numpy as np
4 from matplotlib import pyplot as plt
5

6 import os # these modules are used to export the simulated current data
7 import errno
8

9

10 plt.close('all')
11

12 #plot graphics:
13 plt.rcParams["font.weight"] = 'bold'
14 plt.rcParams["axes.labelweight"] = 'bold'
15 plt.rcParams['lines.linewidth'] = 2.7
16 plt.rcParams['axes.linewidth'] = 1.5
17

18 #constants:
19

20 Mub = 5.7883818012e−5 #bohr magneton (eV/T)
21 h = 4.135667662e−15 #eV*s
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22 hbar = 1.054571800e−34 #J*s/rad
23 kb = 8.6173303e−5 #ev/K
24 e = 1.60217662e−19 #C
25

26 ##########################################################################
27 #create spin algebra:
28 class spin:
29 def init (self):
30 Su = np.array([[0,2,0,0,0],[0,0,np.sqrt(6),0,0],\
31 [0,0,0,np.sqrt(6),0], \
32 [0,0,0,0,2],[0,0,0,0,0]])
33 Sd = np.array([[0,0,0,0,0],[2,0,0,0,0],\
34 [0,np.sqrt(6),0,0,0], \
35 [0,0,np.sqrt(6),0,0],[0,0,0,2,0]])
36

37 self.x = (Su +Sd)/2
38 self.y = (Su −Sd)/2j
39 self.z = np.array([[2,0,0,0,0],[0,1,0,0,0],[0,0,0,0,0], \
40 [0,0,0,−1,0],[0,0,0,0,−2]])
41

42 S = spin()
43 ##########################################################################
44

45 #functions:
46 def spinHamiltonian(g,B,D,E):
47

48 H = −1*g*Mub*(B[0]*S.x+B[1]*S.y+B[2]*S.z) +\
49 D*np.linalg.matrix power(S.z,2) + \
50 E*(np.linalg.matrix power(S.x,2) − \
51 np.linalg.matrix power(S.y,2)) #note that here,
52 #there's a minus sign for the Zeeman term,
53 #contrary to Hirjibehedin.
54

55 E,States = np.linalg.eig(H)
56

57 '''
58 #check if energies are real valued:
59 if np.size(np.nonzero(E.imag)) >= 1:
60 print('Error: Energies contain imaginary values.')
61 '''
62 #sort energies & states:
63 order = E.argsort()
64 E = E[order]
65 States = States[:,order]
66

67 return States,E.real
68

69 def state(s):
70 lib = ['|2>','|1>','|0>','|−1>','|−2>']

50
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A.1 EPR measurement simulation 51

71

72 string = ''
73 for i in range(len(s)):
74 if s[i] == 0:
75 string = string
76 else:
77 if s[i].imag == 0:
78 if s[i].real < 0:
79 string = string[:−2]
80 string = string + ' ' + str(s[i].real) +lib[i] + '+ '
81 else:
82 string = string + str(s[i].real) +lib[i] + '+ '
83 else:
84 string = string + str(s[i]) +lib[i] + '+ '
85

86

87 return string[:−2]
88

89 def visualoutput adatomstates(init,E,S,B,theta):
90 if init == True:
91 #plot energy spectrum:
92 fig1 = plt.figure()
93 ax1 = fig1.add subplot(111)
94 ax1.scatter(range(len(E)),E*1e3)
95 ax1.set xlabel('State')
96 ax1.set ylabel('Energy [meV]')
97 ax1.set xlim([−1,len(E)])
98 title = 'Energy levels of magnetic adatom for B ='+ str(B) +\
99 'T, tilt ='+ str(theta*180/np.pi) +'deg.'

100 ax1.set title(title)
101

102 #determine useful parameters:
103 delta E = E[1] − E[0]
104 f0 = delta E/h
105

106 print('')
107 print('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
108 print('levelsplit = ', delta E*1e3, 'meV')
109 print('f0 = ', f0*1e−9, 'GHz')
110 print('')
111

112 print('Eigenstates:')
113 for i in range(len(S[0,:])):
114 print('V' + str(i) + ' = ' + state(S[:,i]), '\n')
115 print('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
116

117 def expecval(s1,s2,A):
118 #calculate expectationvalue of operator A given states s1,s2
119 inprod = np.dot(A,s2)
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120 inprod = np.vdot(s1,inprod)
121

122 return inprod
123

124 def expectations(State,visual):
125 #calculates expectation values for the time−independent states of the
126 #Hamiltonian, without driving field
127

128

129 #calculate expectation value:
130 Sx2 = np.zeros(len(State[0,:]))
131 Sy2 = np.zeros(len(State[0,:]))
132 Sz = np.zeros(len(State[0,:]))
133

134 for i in range(len(State[0,:])):
135 Sz[i] = expecval(State[:,i],State[:,i],S.z)
136

137 Sx2[i] = expecval(State[:,i],State[:,i],\
138 np.linalg.matrix power(S.x,2))
139 Sy2[i] = expecval(State[:,i],State[:,i],\
140 np.linalg.matrix power(S.y,2))
141

142 if visual:
143 fig2 = plt.figure()
144

145 ax2 = fig2.add subplot(311)
146 ax3 = fig2.add subplot(312)
147 ax4 = fig2.add subplot(313)
148 ax2.scatter(range(len(Sz)),Sz)
149 ax3.scatter(range(len(Sx2)),Sx2)
150 ax4.scatter(range(len(Sy2)),Sy2)
151

152

153 ax2.set xlabel('statenr.')
154 ax2.set ylabel('<Sz>')
155 ax2.set title('Spin z−projection')
156 ax2.set ylim([np.min(Sz) − 0.5*np.abs(np.min(Sz)),np.max(Sz) +\
157 0.5*np.abs(np.max(Sz))])
158

159 ax3.set xlabel('statenr.')
160 ax3.set ylabel('<Sx2>')
161 ax3.set title('Spin x−projection')
162 ax3.set ylim([0,5])
163

164 ax4.set xlabel('statenr.')
165 ax4.set ylabel('<Sy2>')
166 ax4.set title('Spin y−projection')
167 ax4.set ylim([0,5])
168 fig2.tight layout()

52
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169

170 return Sz,Sx2,Sy2
171

172 def expec t(state):
173 Sz = np.zeros(len(state[0,:]),dtype=complex)
174

175 for i in range(len(Sz)):
176 Sz[i] = expecval(state[:,i],state[:,i],S.z)
177

178 return Sz
179

180 def calc tunnelcurrent(G0,x,P,V,Sz):
181

182 #Formula from Delgado et al. (PRL 104, 026601 (2010))
183 #(with correction and removal of factor 2)
184 I0 = G0*V
185 Img = G0*x* Sz * P*V
186

187 return I0,Img.real
188

189 def Rabi state(State,Energy,Mu,E,f drive,T,time,show popgraph):
190 delta E = Energy[1] − Energy[0]
191 f0 = delta E/h
192

193 if f drive == −1:
194 f drive = f0
195

196

197 #Calculate boltzmann factor:
198 B = np.exp(−1*delta E/(kb*T))
199

200

201 V = Mu*E
202 delta w = 2*np.pi * (f0 − f drive)
203 f rabi = np.sqrt(delta w**2 + (V/hbar)**2)
204

205 if type(time) == int:
206 t = np.linspace(0,time*2*np.pi/(f rabi/2),100*time)
207 else:
208 t = time
209

210 #coefficient constants:
211 c1 = −1 * (np.sqrt(B)*(delta w − f rabi) + V/hbar)/(2*f rabi*np.sqrt(1+B))
212 c2 = (np.sqrt(B)*(delta w**2 − f rabi**2) + (V/hbar)*(delta w − f rabi))\
213 /(2*f rabi*np.sqrt(1+B)*(delta w − f rabi))
214

215 #wavefunction coefficients:
216 cg = −1 * (hbar/V) * np.exp(−1j*delta w*t/2) * \
217 ((delta w + f rabi)*c1*np.exp(1j*f rabi*t/2) \
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218 + (delta w − f rabi)*c2*np.exp(−1j*f rabi*t/2))
219

220 ce = np.exp(1j*delta w*t/2)*(c1*np.exp(1j*f rabi*t/2) + \
221 c2*np.exp(−1j*f rabi*t/2))
222

223 if show popgraph:
224 fig test = plt.figure()
225 ax test = fig test.add subplot(111)
226 ax test.plot(t,np.abs(cg)**2,'b−')
227 ax test.plot(t,np.abs(ce)**2,'r−−')
228 ax test.set xlabel('time [s]')
229 ax test.set ylabel('Probability')
230 ax test.legend(['Pg(t)','Pe(t)'],loc='upper right')
231 ax test.set title(\
232 'Rabi oscillations between ground and first excited state')
233

234

235 cg tot = cg*np.exp(−2j*np.pi*Energy[0]*t/h)
236 ce tot = ce*np.exp(−2j*np.pi*Energy[1]*t/h)
237

238 wavefunc = np.outer(State[:,0],cg tot) + np.outer(State[:,1],ce tot)
239

240 return wavefunc,cg,ce,t
241

242

243

244 ##########################################################################
245 #DEFINE INPUT HERE:
246 ##########################################################################
247

248

249 B = 0 #applied magnetic field [T]
250 theta = 0 #tilt angle of the sample (angle between N−row in CuN and
251 #sampleholder [deg.])
252 T = 2 #temperature in K
253

254 G0 = 1/100e6 #junction elastic resistance(approx junction resistance)
255 Vbias = 1e−4
256

257 Mu = 2.2*Mub*e #magnetic moment of adatom (j/T)
258 E applied = 1e5 #electri field amplitude (V/m)
259 f drive = −1 #frequency of driving field (Hz), set to −1 if equal to
260 #resonance frequency
261

262

263 t = 20000#2000 #integer for nr of rabi oscillation periods, or
264 #array to define manually
265 Display states = True
266 show popgraph = False #toggle graphic display of population

54
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267 #of states over time
268

269 export data = False
270 filename = 'simulated current/Rabidata t=' + str(t) + '.npz'
271

272

273 #####################################################################
274 #Main program:
275 #####################################################################
276

277

278 theta = theta*np.pi/180 #convert angle to radians
279 State,E = spinHamiltonian(2.11,np.array([0,B*np.sin(theta−(np.pi/2)),\
280 −1*B*np.cos(theta−(np.pi/2))]),\
281 −1.55e−3,0.31e−3)
282

283

284 #print stuff to screen
285 print('')
286 print('Values calculated for input:')
287 print('B = ' , B , 'T')
288 print('theta = ' , theta*180/np.pi , 'degrees')
289 print('T = ', T , 'K')
290 print('\n')
291 print('Vbias = ' , Vbias*1e3 , 'mV')
292 print('Junction Resistance = ' , 1e−6/G0, 'Mohm')
293 print('Mu = ', Mu/(Mub*e) , 'Bohrmagnetons.')
294 print('Applied electric field amplitude = ' , E applied , 'V/m')
295

296 if f drive == −1:
297 print('Applied field is in resonance with level spillting')
298 else:
299 print('Driving frequency of field = ' , f drive , 'Hz')
300

301 visualoutput adatomstates(Display states,E,State,B,theta)
302

303 wavefunc,cg,ce,t = Rabi state(State,E,Mu,E applied,f drive,T,t,show popgraph)
304

305

306

307

308 Sz = expec t(wavefunc)
309

310 #debug:
311 fig sz = plt.figure()
312 ax sz = fig sz.add subplot(111)
313 #ax sz.scatter(t,Sz,c=range(len(Sz)),cmap='gist rainbow')
314 ax sz.plot(t,Sz,'k−')
315 ax sz.set title('time dependence of < Sz > during Rabi oscilattions')
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316 ax sz.set xlabel('time [s]')
317 ax sz.set ylabel('< Sz >')
318 ax sz.set xlim([t[0],t[−1]])
319

320

321

322

323

324

325 I0,Img = calc tunnelcurrent(G0,1,0.2,Vbias,Sz)
326

327 fig I = plt.figure();
328

329 ax I1 = fig I.add subplot(411)
330 ax I2 = fig I.add subplot(412)
331 ax I3 = fig I.add subplot(413)
332 ax I4 = fig I.add subplot(414)
333

334 ax I1.plot(t,(I0+Img)*1e12,'b−')
335 ax I1.set xlabel('time [s]')
336 ax I1.set ylabel('current [pA]')
337 ax I1.set title('Total tunneling current over time.')
338

339 ax I2.plot(t,I0*1e12*np.ones(len(t)),'b−')
340 ax I2.plot(t,(I0 + Img)*1e12,'r−')
341 ax I2.set xlabel('time [s]')
342 ax I2.set ylabel('current [pA]')
343 ax I2.set title('Components of tunneling current over time.')
344

345 ax I3.plot(t,I0*1e12*np.ones(len(t)),'b−')
346 ax I3.set xlabel('time [s]')
347 ax I3.set ylabel('DC−current [pA]')
348 ax I3.set title('DC tunneling component.')
349

350 ax I4.plot(t,(Img)*1e12,'r−')
351 ax I4.set xlabel('time [s]')
352 ax I4.set ylabel('Rabi current [pA]')
353 ax I4.set title('Rabi tunneling component.')
354

355 fig I.tight layout()
356

357

358 if export data:
359 #if path doesn't exist, create it:
360 print('Data exportation initialized.')
361 if not os.path.exists(os.path.dirname(filename)):
362 try:
363 os.makedirs(os.path.dirname(filename))
364 except OSError as exc:

56
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365 if exc.errno != errno.EEXIST:
366 raise
367

368 np.savez(filename, time = t, I0 = I0, Img = Img)
369 print('Data exportation completed.')
370

371

372 ##########################################################################
373 #debug: check if data is saved succesfully:
374 debug checkdata = False
375

376 if debug checkdata:
377 data = np.load(filename)
378

379 if all(data['time'] == t) and data['I0'] == I0 and \
380 all(data['Img'] == Img):
381 print('Data exportation succesfull with 0 errors.')
382 else:
383 print('Error with data exportation!!!')
384 ##########################################################################

A.2 Analysis code

This code was in the end not used in this report. It Fourier transform
any exported data from the code in section A.1. It is therefor included for
analysis purposes.

1 #script to do simulation analysis for the magenetic adatom in junction system
2

3 import numpy as np
4 from matplotlib import pyplot as plt
5

6

7 #plot graphics:
8 plt.rcParams["font.weight"] = 'bold'
9 plt.rcParams["axes.labelweight"] = 'bold'

10 plt.rcParams['lines.linewidth'] = 2.7
11 plt.rcParams['axes.linewidth'] = 1.5
12

13 def fourier(A,t):
14 samplespaceing = t[1] − t[0]
15

16 A freq = np.fft.fft(A,norm='ortho')
17 f = np.fft.fftfreq(np.size(t), d=samplespaceing)
18
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19 #order the arrays:
20 order = f.argsort()
21 f = f[order]
22 A freq = A freq[order]
23

24 return A freq,f
25

26 def find max(A,thresh):
27 #function returns arguments of local maxima of positive valued
28 #array (requires numpy module)
29

30 ls = np.empty(0,dtype=int)
31

32 #set boundary value to find maxima only above this threshold
33 if thresh:
34 lim = np.average(A)
35 else:
36 lim = 0
37

38 for i in np.arange(1,len(A)−1,1):
39 if A[i] >= A[i−1] and A[i] >= A[i+1] and A[i] > lim:
40 ls = np.append(ls,int(i))
41

42 return ls
43

44 ###################################################################
45 ###################################################################
46 ###################################################################
47

48 filename = 'simulated current/Rabidata t=50000.npz'
49

50

51 data = np.load(filename)
52

53 I0 = data['I0']
54 Img = data['Img']
55 t = data['time']
56

57

58 #fourier transforming the current:
59 I f,frq = fourier(I0 + Img,t)
60 lmax = find max(np.abs(I f),True) #indices or large frequency peaks
61

62

63 plt.close('all')
64

65 fig signal = plt.figure()
66 ax t = fig signal.add subplot(221)
67 ax f = fig signal.add subplot(222)

58
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68 ax lowf = fig signal.add subplot(223)
69 ax hf = fig signal.add subplot(224)
70

71 if np.size(t) > 1000000:
72 #to prevent matplotlib crash, only plot portion of t−spectrum
73 ax t.plot(t[0:1000000],(I0+Img[0:1000000])*1e12,'b−')
74 ax t.set xlabel('time [s]')
75 ax t.set ylabel('Current [pA]')
76 ax t.set title('Time dependent tunneling current.')
77 else:
78 ax t.plot(t,(I0+Img)*1e12,'b−')
79 ax t.set xlabel('time [s]')
80 ax t.set ylabel('Current [pA]')
81 ax t.set title('Time dependent tunneling current.')
82

83 ax f.plot(frq*1e−12,np.abs(I f)*1e8,'b−')
84 ax f.scatter(frq[lmax]*1e−12,np.abs(I f[lmax])*1e8,marker='.',c='r')
85 ax f.set xlabel('frequency [THz]')
86 ax f.set ylabel('magnitude [arb]')
87 ax f.set title('DFT of tunneling current.')
88 ax f.set xlim([−5,100])
89

90 ax lowf.plot(frq*1e−12,np.abs(I f)*1e8,'b−')
91 ax lowf.scatter(frq[lmax]*1e−12,np.abs(I f[lmax])*1e8,marker='.',c='r')
92 ax lowf.set xlabel('frequency [THz]')
93 ax lowf.set ylabel('magnitude [arb]')
94 ax lowf.set title('DFT of tunneling current.')
95 ax lowf.set xlim([−0.1,0.1])
96

97 ax hf.plot(frq*1e−12,np.abs(I f)*1e8,'b−')
98 ax hf.scatter(frq[lmax]*1e−12,np.abs(I f[lmax])*1e8,marker='.',c='r')
99 ax hf.set xlabel('frequency [THz]')

100 ax hf.set ylabel('magnitude [arb]')
101 ax hf.set title('DFT of tunneling current.')
102 ax hf.set xlim([86.1,86.3])
103 fig signal.tight layout()
104

105 output = 'Signal at: '
106 for i in np.arange(int((len(lmax)/2)−0.5),len(lmax),1):
107 output = output + str(frq[lmax[i]]*1e−9) + 'GHz, '
108 output = output[:−2] + '.'
109

110 print('')
111 print(output)
112 print('')
113

114

115 '''
116 fig d = plt.figure()
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117 ax d = fig d.add subplot(111)
118 ax d.plot(frq*1e−12,np.abs(I f)*1e8,'b−')
119 ax d.scatter(frq[lmax]*1e−12,np.abs(I f[lmax])*1e8,marker='x',c='red')
120 ax d.set title('Debugplot')
121 #ax d.set xlim([86.1,86.3])
122 '''

60
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