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Abstract 

Sex differences in cognition and the differential susceptibility of men and women to various 

psychiatric disorders may be partly explained by differences in structural characteristics of the brain 

present from birth. One such characteristic may be the pattern of gyrification on the cortex. While 

the presence and location of sulci are largely genetically pre-specified, there is reason to believe 

prenatal androgen exposure may influence this process in a regional specific way. Gyrification of 

the left anterior cingulate cortex (ACC) is particularly interesting as it shows high variability across 

individuals, has been found to be sexually dimorphic and appears to be correlated with 

electrophysiological and behavioral markers in executive tasks. In this study, we test the inter-

relationships between sex, a putative marker of prenatal androgens (the 2D:4D finger ratio) 

gyrification asymmetry across the ACC and task-related electrophysiological marker believed to be 

generated in the ACC: the N2. 

          Keywords: N2, sex, gender, prenatal hormones, ACC, gyrification, asymmetry, 2D:4D ratio
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Introduction 

 The chances of developing certain psychological disorders are different for males and 

females. Also, the presentation of symptoms— age of onset, symptom severity and range of 

comorbidities— often show sex differences. Such effects have become apparent in Autism 

Spectrum Disorders, depression, Alzheimer’s disease, PTSD, schizophrenia, stroke, multiple 

sclerosis, addiction and Tourette’s syndrome (see Cahill, 2006 for a review). Unsurprisingly, it is 

sometimes noted that males and females respond differently to pharmacological treatments (e.g. 

depression: Kornstein et al., 2000; ADHD: Marchant et al., 2011) but unfortunately this is often 

reported following treatment approval, or if discovered during clinical trials remains an unexplored 

covariate (Fadiran & Zhang, 2015; Johnson, Fitzgerald, Salganicoff, Wood & Goldstein, 2014). 

Abnormalities in frontally-mediated executive functions are a key feature of many of the 

disorders mentioned above, however research on executive functioning in neurologically normal 

samples has not reached any conclusions for or against the presence of sex differences. Some 

studies find sex differences in inhibitory control (Kessler, 2005; Lipsyc & Schachar, 2010; Hooper 

et al., 2004; Hansen, 2011) while others fail to (Evans & Hampson, 2015; Li et al., 2006, 2009). 

Similarly, inconsistent findings obscure the link between gender and other executive functions like 

selective attention (Christakou et al., 2009; Stoet, 2016; Evans & Hampson, 2015) and task-

switching (Stoet, Connor, Conner & Laws, 2013; Buser & Peter, 2012).  

To better understand how sex relates to executive functioning, it is important to 

acknowledge the multi-faceted nature of both variables. Executive functions encompass a range of 

distinct cognitive processes and rely on the interplay of a range of subcortical and frontal regions 

(Alvarez & Emory, 2006; Seeley et al., 2007). It may be that sex influences the functioning of these 

distinct subcomponents, or functional “nodes”, in different ways, resulting in a sex-linked bias 
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toward one neural strategy over another. In this thesis, we attempt to tap individual differences in 

the recruitment of one important subcomponent of executive functioning: the dorsal anterior 

cingulate (dACC; Botvinick, Cohen & Carter, 2004; MacDonald, Cohen, Stenger & Carter, 2000). 

Further, delineating the factors which sexually differentiate the brain may help improve our 

understanding sex differences in the brain. While genetic factors can induce sex differences directly, 

many permanent sexual dimorphisms in the brain are the result of differential exposure to sex 

hormones in utero (Phoenix, Goy, Gerald &Young, 1959; Arnold, 2009). Virtually all neural and 

behavioral patterns are sex-typical, not sex-exclusive, thus a biological gradient which sexually 

differentiates the brain in a somewhat probabilistic fashion, such as prenatal sex hormones, may be 

a more appropriate correlate of sex-linked variation in brain structure and functionality than the sex 

dichotomy. 

The aim of this study was to investigate whether prenatal hormone levels (as operationalised 

by the 2D:4D finger ratio) could explain sex-linked variation in gyrification patterns within the 

dACC. We chose to focus on dACC gyrification given previous reports of sexual dimorphism in its 

gyrification patterns (e.g. Leonard, Towler, Welcome & Chiarello, 2009) and structural connectivity 

(e.g. Huster, Westerhausen, Cruder, Schweiger & Wittling, 2009). 

ACC Gyrification Patterns 

 There are two major sulci that can be found on the medial wall of the ACC: the cingulate 

sulcus (CS) and the paracingulate sulcus (PCS; Figure 1A). Despite ubiquity across neurologically-

normal individuals regarding bilateral presence of the CS, there appears to be significant variation 

regarding the PCS, which is present in only 30–60% of individuals and more commonly found in 

the left hemisphere (Paus et al., 1996b; Watkins et al., 2001; Kennedy et al., 1998; Thompson et al., 

1996; Fornito et al. 2008; Leonard et al., 2009). 
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 As shown in Figure 1D, the presence of a PCS affects not just the gross surface morphology 

of the area but also the relative size and locations of cytoarchitectural regions (Vogt et al., 1995). 

Furthermore, the consequences of this sulcal doubling in the ACC are not trivial and has been 

related to several indices of cognition, affect and behavior (Fornito et al., 2004, 2006b; Yücel et al., 

2002b, c; Huster et al., 2009, 2011, 2014; Pujol et al., 2002). 

Sex & ACC Gyrification Patterns 

 One interesting feature of the pattern of gyri and sulci on the cingulate is that unlike its 

volume and thickness, it does not change much after birth (Armstrong et al., 1995; White et al., 

2010). In normally-developing fetuses, the CS starts to develop around week 18 and the PCS (when 

present), 10-15 weeks later (Chi, Dooling & Gilles, 1977; Garel et al., 2001). While the depth, 

length and course of these sulci do vary somewhat over childhood and adolescence, their qualitative 

presence does not (Armstrong, Schleicher, Omran, Curtis & Zilles, 1995; Pienaar, Fischl, Caviness, 

Makris & Grant, 2008) and regarding the ACC in particular, the presence of a single or double 

sulcal formation (Figure 1) appears to remain stable throughout childhood and adolescence (Cachia 

et al., 2016). 

Figure 1. Gyrification patterns of the ACC. (A) shows the two major sulci of the ACC: the cingulate sulcus 
(CS) and the paracingulate sulcus (PCS). Individual differences in this area are often defined by PCS length. 
(B) Sagittal view indicating the slice position of the following images: (C) a cingulate with CS only, and (D) 
a cingulate with both CS and PCS (CaS: Callosal Sulcus. Numbers in C and D refer to Brodmann areas; 
images from Le Provost et al., 2003 and Shackman et al., 2011). 
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 Given that hormone-induced sexual differentiation of the brain coincides with the 

development of the sulci (Phoenix et al., 1959; Arnold, 2009), one might question whether the 

resulting ACC sulcal pattern is influenced by such pressures. If so, one might expect sex differences 

in this pattern. Indeed, Yücel et al. (2001) and Huster et al. (2007) have found sex differences in the 

extent of ACC gyrification in the left vs. right hemisphere. Specifically, a leftward asymmetric 

pattern, as defined by longer PCS lengths in the left hemisphere compared to right, is more common 

in males than females (see Figure 2), though this distribution of the sexes across asymmetry types 

appears to be specific to right-handers (Huster et al., 2007). 

 One problem with categorising ACC gyrification on the basis of PCS length (the standard 

since Paus et al.,1996a), is the difficulty in unambiguously dissociating the PCS from displaced CS 

segments (Leonard et al., 2009). Furthermore, given that PCS presence influences the position and 

relative size of surrounding cytoarchitectural regions (Paus et al., 1995) and sulci (Connolly et al., 
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Figure 2. Distribution of a large sample (N = 171) across categories of ACC gyrification 
asymmetry. Five categories of PCS-asymmetry are shown: extreme asymmetries (L2/R2) 
were those in which the PCS was prominent in one hemisphere (in terms of its length) and 
absent in the other. Data from Yücel et al., 2001.
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1940), it is unclear whether the functionally relevant feature (and that which shows a sex difference) 

is the asymmetry of PCS length, as has been implied by previous research, or one of these related 

side-effects. To avoid time-consuming manual tracings, misclassification of PCS/CS and to explore 

gyrification of the general region, we adopted an automated, curvature-based gyrification index and 

applied it to a region of interest, the dACC. This gyrification index has been shown to be sensitive 

to small-scale regional differences in gyrification (Luders et al., 2006). 

!  

Prenatal Sex Hormones & ACC Gyrification Patterns 

 The sex dichotomy can explain a limited portion of variance in cortical surface morphology 

and provides limited etiological information. Exposure to sex hormones (e.g. testosterone) in utero 

is a continuous variable that is believed to sexually differentiate the brain (Phoenix et al., 1959; 

Arnold, 2009) and there are several lines of evidence to suggest it influences gyrification of the 

ACC in an asymmetrical fashion. 

 First, Huster et al. (2007) found that sex differences in ACC gyrification patterns were 

driven by differences in the left hemisphere. This is interesting because left hemisphere 

development of grey matter volume has been found to be twice as susceptible to environmental 

influences as right hemisphere development (Geschwind et al., 2002). Second, the cingulate is a 

known high-density androgen-receptor region in rats (Nuñez et al., 2003) and rhesus monkeys 

(Clark et al., 1988; Sholl and Kim, 1990b). In fetal rhesus brains, androgen-receptor densities are 

Hypothesis 1 

There will be a sex difference in ACC gyrification patterns such that males will exhibit  

greater gyrification within left dACC relative to their right dACC  

(greater leftward asymmetry)
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unequally distributed across the right and left cingulum in males, while no such asymmetry exists in 

females (Sholl and Kim, 1990a). Third, the cytoarchitectural patterning of the cortex and regional 

expansion which decide the presence and positioning of sulci (Ronan & Fletcher, 2014) coincides 

with the time in which gonadal hormone levels show maximal sex difference (mid-Trimester 1; 

Tapanainen et al., 1981; Finegan et al., 1989). Fourth, Lombardo et al. (2012) found a negative 

correlation between amniotic testosterone (measured between gestational weeks 13-20) and dACC 

volumes (BA 24), which tends to be strongly and positively correlated with gyrification (Gautam et 

al., 2015). Finally, Autism Spectrum Disorder (ASD) is often considered an expression of the 

extreme male brain (Baron-Cohen et al., 2005; 2011) and is associated with exposure to above-

average levels of foetal testosterone (Baron-Cohen et al., 2014). Ecker et al. (2010) found that, the 

degree of folding in the ACC differentiated ASD cases from controls, with folding in the left 

hemisphere a more sensitive predictor (80%) of ASD than folding in the right (45%). 

 Despite this evidence, no study has tested the relationship between sex hormone exposure in 

utero and the extent of gyrification in the ACC. Our second hypothesis assumes a link between 

prenatal hormone levels and ACC gyrification asymmetry, but first we explain how prenatal 

hormone variation was approximated. 

  The 2D:4D finger ratio. The ratio between the length of the 2nd digit (the index finger) and 

the 4th (the ring finger) is a sexually dimorphic trait (Hönekopp & Watson, 2010) and is believed to 

reflect prenatal hormone levels such that higher concentrations of testosterone (relative to estradiol) 

relates to lower “male-typical” 2D:4D ratios. Several lines of evidence supporting the 2D:4D ratio’s 

construct validity are provided: 

 Testosterone measured directly from the amniotic fluid at around 16th gestational week 

correlates with the right-hand 2D:4D ratio in the same infants at 2 years old (Lutchmaya et al., 
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2004). Androgen insensitivity syndrome involves the partial or complete insensitivity of the 

androgen receptor and thus the inability of cells to respond to androgens. Genetic males with this 

disorder develop many female phenotypical traits and have 2D:4D ratios that are significantly 

higher than then the male mean (Berenbaum, Bryk, Nowak, Quigley & Moffat, 2009). Another 

disorder, congenital adrenal hyperplasia, involves excessive androgen exposure prenatally and is 

associated with reduced 2D:4D ratios in both male and female patients compared to respective 

gender norms (Hönekopp & Watson, 2010). Experimentation with mice, which also display a 

sexually dimorphic 2D:4D in front paws, shows that the effect arises from the differential 

distribution of androgen and estrogen receptors across the digits, in conjunction with different 

levels of circulating testosterone and estradiol during cartilage development of the digits (Zheng & 

Cohn, 2011).  

 While some doubts exist regarding the construct validity of the 2D:4D (see Berenbaum et 

al., 2009), it is considered to be a suitable alternative to amniotic fluid testing given that this is the 

first investigation of the link between prenatal hormone exposure and the extent of cingulate 

gyrification (or indeed gyrification in any region). The results of this study may provide the impetus 

for future studies to test this link using more direct measures of foetal hormone levels. 

!  

Functional Relevance of ACC Gyrification Asymmetry 

 Earlier we mentioned that the prominence of the PCS, particularly in the left hemisphere, is 

Hypothesis 2 

The 2D:4D finger ratio will be correlated with gyrification asymmetry in the ACC 

in a manner consistent with the predicted sex difference (low “male-typical” 2D:4D  

related to more leftward asymmetry).
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not trivial. It appears to have implications for executive abilities (Fornito et al., 2004, 2006b) and 

clinical disorders such as obsessive-compulsive disorder and schizophrenia (Fornito et al., 2008; 

Yücel et al., 2002b; Shim et al., 2009). The surface area of the anterior cingulate gyrus, a feature 

inversely related to PCS prominence (Paus et al., 1995), has been linked with the personality trait of 

harm avoidance, explaining a large portion of the sex difference on this trait (Pujol et al., 2002). 

 On a more fine-grained level of neurocognitive processing, the asymmetrical prominence of 

PCS in the left hemisphere has been related to variation in task-related modulations of the N2.  

 The N2. The N2 is an event-related potential (ERP) component which appears as a negative-

going peak around 200ms post-stimulus, contingent on the probabilistic characteristics of the 

stimulus. Specifically, an N2 peak can be observed following relatively unexpected (low-

probabilistic) stimuli (e.g Nieuwenhuis et al., 2003) however, the N2 also appears to be sensitive to 

response demands: greater N2 amplitudes are found in response to NoGo compared to Go stimuli, 

even when conditions have equal probabilities (Pfefferbaum, Ford, Weller & Kopell, 1985; 

Nieuwenhuis et al., 2003). The sensory-modality independence of these effects and the precedence 

of N2 amplification to up-regulation of attentional resources and improvements in cognitive control 

have led researchers to believe that the N2 reflects a generalised element of executive functioning 

described as conflict detection or conflict monitoring, thought to take place in the ACC (Botvinick 

et al., 2001, 2004; van Veen & Carter, 2006; Carter & van Veen, 2007; Forster et al., 2011). 

Concurrently, a range of source localisation methods have pointed to the ACC and adjacent medial 

frontal cortices as the source of the N2 (van Veen & Carter, 2002a,b; Bekker et al., 2005; Jonkman 

et al., 2007; Lamm, Zelazo & Lewis, 2006; Nieuwenhuis et al., 2003; Yeung et al., 2004; 

Ridderinkhof, Ullsperger, Crone & Nieuwenhuis, 2004). 

 The asymmetrical prominence of the PCS appears to be related to the extent of 
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differentiation between Go and NoGo/Stop N2 amplitudes (Huster, Enriquez-Geppert, Pantev & 

Bruchmann, 2014). Specifically, NoGo- and Stop-related N2 amplitudes were significantly more 

negative than Go-N2 amplitudes but only in those showing a leftward PCS asymmetry (Figure 3), 

that is, those with a prominent left PCS and no right PCS. 

 This leftward asymmetry has also been associated with stronger conditional differentiation 

of another frontocentral negative component, the Stroop N400 (Huster et al., 2009, 2014). In these 

Stroop tasks, having a leftward asymmetrical PCS was also associated with faster response times on 

incongruent Stroop trials and a larger congruency effects (incongruent accuracy < congruent 

accuracy) compared with those displaying rightward asymmetry or symmetry. 

 

 

 

 

Figure 3. ERPs from a combined Go/NoSo and Stop-Signal task for the leftward asymmetry group vs. 
other ACC folding types. NoGo- and Stop-N2 amplitudes are greater in the leftward gyrification 
asymmetry group compared with the other group. From Huster et al. (2014, Study 2). pr = probability of 
trial-type.

Hypothesis 3 

Leftward gyrification asymmetry within the dACC  

will relate to greater conditional differentiation of N2 amplitudes.

Leftward Symmetrical or Rightward
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Sex & The N2 

 We have now reviewed the evidence for sex differences in ACC sulcal asymmetry and for 

links between this asymmetry and N2 amplitudes— we turn now to the final link in the triad 

between sex and N2 amplitudes.  

 The existing evidence regarding the sex difference in N2 amplitudes is contradictory with 

some studies reporting a larger conflict-related N2 in males than female (Clayson et al., 2011; 

Omura & Kusumoto, 2015) and others reporting the opposite (Yuan et al., 2008). Furthermore, 

these studies vary the task used to induce the N2 (Flanker, AX-continuous performance, Oddball) 

and task parameters (stimulus durations and probabilities, uni- vs bi-lateral response options). 

 While state factors may influence the sex difference in N2 amplitudes, (e.g. menstrual 

hormones; Walpurger, Pietrowsky, Kirschbaum & Wolf, 2004), we speculate that sex-linked 

variation in a structural brain feature, ACC gyrification, may account for the sex difference in N2 

amplitudes. In our final hypothesis we thus predict that sex differences in the N2 will align with sex 

differences in ACC gyrification asymmetry in a way that is consistent with the structure-function 

links discussed.

!  

Method 

Participants 

 Participants were recruited through posters in the Department of Psychology (University of 

Oslo) and social media groups. Screening occurred via a phone-call and participants were excluded 

Hypothesis 4 

There will be a sex difference in N2 amplitudes such that the sex with greater leftward 

gyrification asymmetry will exhibit greater differentiation of Go and NoGo-N2 amplitudes.
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if they were outside the 18-35 year age bracket, were left-handed or had a history of psychiatric or 

neurological illness. Due to the difficulties posed to EEG preparation, individuals with dreadlocks 

or an afro hairstyle were excluded. MRI safety protocol excluded participants with metal body-

implants, metal dental-implants (e.g. braces), recent tattoos or irremovable piercings. Participants 

were also excluded if they suffered from claustrophobia or were pregnant.  

 The screened sample consisted of 37 individuals (20 females, 17 males). Ages ranged from 

19 to 35 (M = 26.81, SD = 5.37) and did not differ significantly between men and women. The 

sample was composed of 17 nationalities, the main contributors of which were Norwegian, German 

and Estonian. All participants completed the EEG session. Two males did not attend the MRI 

session due to scheduling problems and another male did not provide a left 2D:4D ratio due to a 

hand injury. Participants were included in all analyses that did not include variables for which they 

had missing data. 

 Participants were removed from EEG analysis if their behavioral performance indicated that 

task instructions were not understood or task engagement was excessively poor. This was defined as 

a Go or NoGo accuracy score below 85%. Based on this criteria, 1 female was removed (Go 

accuracy = 83.8%). 

Procedure 

 Participants attended two testing sessions, one including 2D:4D measurement, EEG and 

behavioral testing (~3 hours) and the other for MRI scanning (~ 30 mins). Participants provided 

written informed consent and completed the Edinburgh Handedness Inventory (Oldfield, 1971) to 

validate self-reported right-handedness. During EEG acquisition, participants performed a Go/

NoGo and a Stop-signal task, and the order in which they were performed was counterbalanced 
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across participants. 

Measures 

 2D:4D finger ratios. High resolution (400 dpi, 48-bit) images of the ventral side (palm) of 

both hands were obtained with an Epson Perfection V370 scanner and saved as PDF files with 

participant ID. No other identifying information was visible from the image (e.g. clothing, jewelry). 

Lengths of fingers were calculated from these images using the measuring toolbar of Adobe 

Acrobat (accurate to 0.01mm). Digit length was defined as distance from the crease in the skin 

nearest the palm, to the tip of the digit as is common protocol (Manning, Scutt, Wilson & Lewis-

Jones, 1998). 2D:4D ratios were defined as 2nd digit length divided by 4th digit length (see 

Appendix, Figure D).  

 Previous research has found ethnicity to have a significant effect on 2D:4D ratios (Manning, 

Stewart, Bundred & Trivers, 2004; Manning, Churchill & Peters, 2007; Manning, Fink & Trivers, 

2014) likely due to variation in allele distribution of the androgen receptor gene (Ackerman et al., 

2011). In an effort to control for this the nationality of participants was recorded and from these, 

broader regional groups were formed (Norther, Europe, Eastern Europe, Asia etc; Appendix Figure 

B). 

 Go/NoGo task. This task was created and ran on E-Prime 2.0. Participants sat in a darkened 

room before a computer screen and were required to respond with their left and right thumbs on a 

response box. The task took 25-30 minutes. 

 This task featured green (Go) and blue (NoGo) arrows pointing left or right on a grey screen 

for a duration of 100ms. The Go:NoGo ratio was 3:1. Participants were required to press the left or 

right key in accordance with the arrow direction when they saw the Go but not the NoGo stimulus. 
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Responses were recorded if they occurred within 1000ms of the stimulus-onset. A fixation cross 

was present for between 2000 and 2500ms (jittered) before, and 900ms after, stimulus presentation 

(ITI = 3000 - 3500ms jittered). Training consisted of 20 trials, in which participants received trial-

feedback. Testing consisted of 800 trials with breaks between every 80 in which participants 

received block-feedback (accuracy and RT). Participants were instructed to be both as fast and as 

accurate as possible. 

 EEG. 

 EEG acquisition. EEG was acquired during the task using 64 non-active, sintered Ag/AgCl 

electrodes arranged in a standard 10-10 configuration (Chatrian et al., 1985) and mounted on a 

flexible lycra cap. The tip of the nose served as the reference site, AFz as the ground, and two 

electrodes at the outer canthi of each eye recorded ocular movements. Electrodes were also attached 

to the participant’s hands as part of another study. The signal was amplified by a Neuroscan EEG 

amplifier and recorded on Curry (Neuroimaging Suite 7) software. The sampling rate was 2500Hz 

was and a high-pass filter of .01Hz was applied online. During preparation of the scalp, impedances 

were kept below 5kΩ. 

 EEG preprocessing. EEG data were preprocessed and analyzed offline using the MATLAB 

toolbox, EEGLAB. Preprocessing of the signal involved the following steps:  

 Numerical stimulus and response triggers were recoded according to stimulus type (Go/

NoGo) and response outcome (correct/incorrect). Correct Go trials were defined as Go trials which 

were responded to with the appropriate response (left/right) within 1000ms of stimulus onset. 

Correct NoGo trials were defined as those for which no response was detected between stimulus 

onset and 1000ms post-stimulus onset.  



SEX, ACC GYRIFICATION & THE N2        !16

 The signal was filtered with a 35Hz low-pass filter, resampled to 350 samples per second 

and epoched into 1 second segments. Epochs were time-locked to Go or NoGo stimuli with a 

200ms pre-stimulus baseline and a 800ms post-stimulus period.  

 An independent components analysis (ICA) was performed and ocular and muscular 

artifacts were identified by visual inspection of these components. The number of components 

removed (M = 7.35, SD = 3.34 ) did not differ across gender. An automatic trial rejection procedure 

rejected epochs of the decomposed data if they contained component amplitudes greater than ± 14 

SDs of any component’s mean (eeglab function: pop_eegthresh). This required that activity for each 

component be normalized before thresholding. A second criterion rejected epochs if observed 

component activity exceeded probabilistic values for that component (local threshold) or for the 

whole dataset (global threshold) by more than ± 8 SDs (eeglab function: pop_jointprob). The 

number of epochs rejected (M = 37.38, SD = 27.50) did not differ by sex and equivalent proportions 

of Go and NoGo epochs were rejected. 

 The data was then back-projected to EEG channel data. One participant required 

interpolation of data for one channel (CP2) which was performed using the spherical method. 

Finally, correct Go and correct NoGo epochs were averaged. 

 N2. 

 N2 peak amplitude. Three electrodes of interest were chosen as the most likely to exhibit an 

N2 effect based on the frontocentral topography of the N2. N2-peak was defined as the global 

minima between 190 and 330ms post-stimulus. Quality checks ensured the peak within this window 

was correctly identified for all subjects. We used the difference in peak N2 amplitudes instead of the 

peak of the difference ERP as the N2 index of interest given peak latency differences across 
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conditions. 

 N2 mean amplitude. Mean amplitude was the mean potential between 220 and 250ms post-

stimulus. This window was based on the average peak latency for the grand-averaged NoGo ERP 

across three frontal electrodes (Fz, FCz and Cz) ±15ms. 

 MRI. 

 MRI acquisition. Images were obtained on a 3T MRI scanner (Siemens Skyra) using a T1-

weighted spoiled gradient echo-pulse sequence with the following parameters: TR = 4.66ms, TE = 

2.32 ms, 8º flip angle, matrix size = 256 x 256 x 184 mm, voxel size = 1mm3. 

 MRI preprocessing & asymmetry classification. All preprocessing of MR images was done 

using CAT12 (Computational Anatomy Toolbox; Gaser & Dahnke, 2016) an extension to SPM12 

that allows for surface-based morphometric measurements. 

 T1 images were normalised to a template space and segmented. SPM12 tissue probability 

maps were used for the initial spatial registration and segmentation. The left and right central 

cortical surfaces were reconstructed using a projection-based thickness method. The gyrification 

index was found by estimating the “smoothed absolute mean curvature” across the central cortical 

surface. Curvature values from each vertex of a spherical surface mesh are first averaged within 

3mm areas. This small region adopts the absolute value of this average. Finally, the absolute mean 

curvature values are smoothed using a surface-based heat kernel smoothing filter (Chung et al., 

2005) of full width at half maximum (FWHM) of 25mm. This relatively large kernel was chosen on 

the basis that it optimally enhances features in the range of the distance between sulci and gyri, 

which is about 20-30mm. See Luders et al. (2006) for a more detailed description of this 

gyrification index.  
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 The mean gyrification index (GI) within a region of 

interest (ROI) was calculated for an area corresponding to the 

dACC, but defined by the Desikan-Killiany atlas as caudal ACC 

(Figure 4; Desikan et al., 2006). Mean gyrification was 

calculated within this ROI for each hemisphere, and an index of 

asymmetry was created by dividing left dACC GI by right 

dACC GI. In this index, a score of 1 corresponds to symmetry 

and scores greater than 1 corresponded to leftward-biased 

asymmetries (M = 1.04, SD = 0.11, min = 0.85, max = 1.23). 

!  

Statistical Analyses 

 A repeated-measures ANOVA was performed to confirm the typical spatial configuration 

and conditional-dependency of the N2. Nine electrodes were chosen for this analysis (Fz, Cz, Pz, 

F3, F4, C3, C4, P3, P4) on the basis that they covered a wide area of scalp. Mean amplitudes with a 

30ms window were used for this analysis as posterior sites often do not have N2 peaks. The 

Figure 5. Coronal slices from the most extreme cases of asymmetry and a case of relative symmetry. Slice 
location marked with red line on sagittal view in top left. Red square indicates the general position of both 
CS and PCS. Slices taken from normalized grey matter volumes within the ROI.

Figure 4. Region of interest marked in 
yellow, defined by the Desikan-Killiany 
atlas.The top image shows inflated surface 
with sulal fundi exposed. Images from Klein 
& Tourville (2012)
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dependent variable was mean amplitude and factors included were task condition (Go, NoGo), scalp 

longitude (frontal, central, parietal) and latitude (left, middle, right). 

  An independent samples t-test was used to test sex differences in ACC gyrification 

asymmetry (H1). Pearson’s correlations tested the hypothesised relationship between gyrification 

asymmetry and the 2D:4D finger ratios (H2), as well as the relationship between gyrification 

asymmetry and the conditional differentiation of N2 (H3). A mixed ANOVA was used to explore 

sex differences in the conditional N2 difference across three frontal electrodes (H4). An ANCOVA 

was used to check if this effect was altered by covarying for gyrification asymmetry. Bonferonni 

corrections were used for all post-hoc tests of AN(C)OVA effects. Greenhouse–Geisser epsilon 

corrections were used when the assumption of sphericity was violated. 

 We chose to test H3 using a 1-sided test given that all evidence for the effect to date has 

been in one direction (leftward asymmetry of ACC gyrification and greater conflict-related N2 

amplitudes). Two-sided tests were chosen for all other hypotheses. 

 Finally, given the small sample size we also estimated the reliability of point estimates with 

bootstrapped confidence intervals (1000 iterations). 

 Statistical tests were carried out in IBM SPSS Statistics 24. Bootstrapped tests were 

performed in MATLAB when not available in SPSS.  

  

Results 

Behavior 

 Go and NoGo accuracies were positively skewed while reaction times showed a relatively 

normal distribution. The medians and variances of these behavioral variables, split by gender, are 

displayed in Table 1. Independent-samples median and Mann-Whitney tests indicated that there 

were no significant gender differences in the median or distribution of Go or NoGo accuracies. An 
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independent samples t-test showed there was no significant sex difference in Go RTs. 

Conditional and Spatial Specificity of The N2 

 There was a strong main effect of condition on the N2 (F(1,35) = 22.04, p < .001, ηp2 = .39) 

such that NoGo amplitudes were more negative than Go amplitudes (MDiff  = -0.41, p < .001). The 

two spatial parameters longitude and latitude, showed interaction effects with condition on mean 

negativity. Amplitudes across the longitudinal axis of the scalp differed as a function of condition 

(F(1.43, 49.90) = 11.74, p < .001, ηp2 = .25) such that the conditional difference in amplitudes (NoGo - 

Go) was only significant at frontal sites (MDiff = -1.02, p < .001). Regarding the interaction between 

latitude and condition (F(1.69, 59.27) = 12.56, p < .001, ηp2 = .26)— the conditional difference was 

significant at both midline (MDiff = -0.66, p < .001) and right hemisphere sites (MDiff  = -0.45, p < .

001). Finally there was a 3-way interaction of condition, longitude and latitude (F(2.81, 98.35) = 4.21, p 

= .009, ηp2 = .11) driven by significant conditional differences at all frontal electrodes (F3, Fz, F4; 

Table 1. Behavioral Results on the Go/NoGo Task by Gender

  Variable Median (25th & 75th percentile)

Females 
(n = 19)

Go Accuracy (%) 95.67 (94.00, 97.00)

NoGo Accuracy (%) 99.50 (99.00, 100.00)

Go RT (ms) 400 (384, 422)

Males 
(n = 17)

Go Accuracy (%) 96.17 (92.08, 97.42)

NoGo Accuracy (%) 99.50 (98.50, 100.00)

Go RT (%) 400 (373, 436)

Total  
(n = 36)

Go Accuracy (%) 95.92 (93.58, 97,00)

NoGo Accuracy (%) 99.50 (98.63, 100.00)

Go RT (%) 400 (376.63, 422.93)
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all p < .001) and the central-midline (Cz; p = .005). These results support that the N2 is amplified in 

the low-probability relative to high-probability condition and that this effect is maximal at 

frontocentral sites (Folstein & van Petten, 2008). 

Hypothesis 1 

 Females had a more leftward asymmetry 

index (M = 1.06, SD = 0.11; n = 20) than males (M 

= 1.00, SD = 0.09; n = 15) however this difference 

was not significant (t(33) = 1.60, p = .12, 95% CI 

[-0.01, 0.12]). Figure 6 illustrates the hemispheric 

contribution to these asymmetry scores. Only 35% 

of bootstrap simulations showed a significant sex 

difference in gyrification asymmetry. 

Hypothesis 2 

 Across the entire sample, there was no correlation between gyrification asymmetry and 2D:

4D, neither in the left hand 2D:4D (r = -.02, p = .90) nor right-hand 2D:4D (r = -.01, p = .93).  

 Distribution across putative ethnic groups was too sparse to include this variable as a 

covariate (Appendix, Figure B). Further, it did not seem reasonable to merge groups again given 

previous findings suggest differences in the 2D:4D even at the intra-continental level (Manning et 

al., 2014; Voracek & Dressler, 2006). Thus we decided to test this hypothesis in the largest 

ethnically homogenous group available: Northern Europeans (n = 14, 7 males).  

            Correlations between gyrification asymmetry and 2D:4D ratio were much larger in this 

Figure 6. Gyrification indices within each 
hemispheric ROI (dorsal ACC) across males and 
females. Females show greater asymmetry in 
gyrification within this region than males.
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subsample than the whole (Table 2) despite a lack of a sex difference in ACC gyrification 

asymmetry in this subgroup. The direction of associations in this subsample indicated that the lower 

the 2D:4D finger ratio, the more leftward asymmetry was observed in dACC gyrification. 

            Additional exploratory analyses on gyrification within 

each hemisphere indicated that this was driven by associations 

between 2D:4D finger ratios and left ACC gyrification rather 

than right-ACC gyrification. However, wide 95% confidence 

intervals around zero indicated the low reliability of most of 

these correlations.  

Hypothesis 3 

 There were trend correlations between gyrification 

asymmetry and the conditional difference in N2 amplitudes at Fz 

(r = -.28, p = .06, 95% CI [-.60, .08]) and FCz (r = -.25, p = .08, 

95% CI [-.54, .05]) in the expected direction (leftward 

asymmetry related to greater negativity). 

 To illustrate how the N2 conditional effect varied across the 

asymmetry index, the index was split into three equal segments with 

Table 2. Correlations Between 2D:4D Finger Ratios and ACC Gyrification Indices (GI) for 
Northern Europeans (n = 15) and Reliability Estimates [Bootstrapped 95% Confidence 
Intervals]

Left Hemisphere GI Right Hemisphere GI Gyrification 
Asymmetry (L > R)

Left 2D:4D -.56   [-.86, .18] -.36  [-.83, .10] -.42  [-.80, .34]
Right 2D:4D -.47   [-.82, .12] -.11  [-.69, .49] -.45  [-.80, .06]

Figure 7. NoGo-N2 amplitudes 
show greater group differences 
than Go-N2 amplitudes
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sample min and max at the extreme ends (0.85 - 0.97; 0.98 - 1.10; 1.11 - 1.23). Figure 7 indicates 

that the relationship between the asymmetry index and the magnitude of conditional differentiation 

of N2 amplitudes was due to relative amplification of the NoGo-N2 among those with more 

leftward asymmetrical folding patterns. NoGo-related topographies and ERPs were averaged across 

participants falling in each third (Figure 8). Note these groups are only used to demonstrate 

incremental differences in ERPs and topologies and were not statistically analysed. 

Figure 8. (Top) NoGo topographies averaged across the time window marked in grey (220-250ms); (Bottom) NoGo ERPs 
across 4 midline electrodes for 3 ranges on the ACC gyrification asymmetry index. Note larger frontocentral N2 peak 
amplitudes (blue, cyan, green) in those with leftward asymmetries.
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Hypothesis 4 

 To test whether there were sex differences in the conditional N2 effect, a mixed ANOVA 

was performed on conditional differentiation of N2 amplitudes. Electrode (Fz, FCz, Cz) was also 

included as the within-subjects factor.  

 We found a main effect of sex on the conditional N2 effect (F(1,34) = 6.84, p = .01, ηp2 = 

0.17). Observation of means (Table 3) and ERPs (Figure 9) suggests this effect is driven by greater 

differentiation of NoGo and Go-N2 amplitudes in females compared to males. This main effect of 

sex on N2 could be replicated in 75% of bootstrap samples. Paired samples t-tests within each sex 

showed that the conditional difference in N2 amplitudes was significant only for females, at FCz 

(t(18) = 2.17, p = .04) and Cz (t(18) = 2.51, p = .02). The interaction effect of sex and electrode was 

not significant. 

 Given that ACC gyrification asymmetry covaried with the dependent variable (H3), we 

included this as a covariate in the model. Homogeneity of covariate regression coefficients was 

observed in sex-split scatterplots of the covariate and the dependent variable. The effect of sex 

became non-significant after including this covariate (F(1,31) = 3.90, p = .06, ηp2 = .11). No main or 

interaction effect of electrode was found, nor was there a main effect of ACC gyrification 

asymmetry. Means and standard deviations of N2 amplitudes across sex, condition and electrode are 

displayed below. 



SEX, ACC GYRIFICATION & THE N2        !25

 

 

Figure 9. Go and NoGo ERPs at Fz, FCz, Cz for males and females. *p < .05
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Discussion 

 In summary, we first found a trend sex difference in gyrification asymmetry in the opposite 

direction to what had been previously found. As will be discussed, the cortical atlas used to define 

the dACC may account for this difference. Second, we found that lower more “male-typical” 2D:

4D ratios were related to more leftward asymmetries, however this was a weak correlation and was 

only found in a ethnically homogenous subsample. Third, we found that a leftward asymmetrical 

gyrification pattern in ACC was related to greater conditional differentiation of N2 amplitudes in 

keeping with previous findings (Huster et al., 2009, 2014). Finally, sex differences were observed in 

this conditional differentiation of the N2, a difference partially accounted for by asymmetrical 

gyrification of the dACC. Results are discussed in greater detail below. 

Sex differences in ACC gyrification (H1) 

 On average, while males exhibited relative symmetry, 

females exhibited a slightly leftward asymmetrical gyrification. 

Albeit a non-significant difference, this is in conflict with the 

findings of Yücel et al. (2001; Figure 2) and Huster et al. (2007) 

who both found leftward asymmetries to be more common in men, 

and symmetry to be more common in women. This contradiction 

may be explained by the following… 

 One of the limitations of the regional parcellation procedure used in this study was that the 

PCS, when present, was not included in the definition of the ROI, and thus was excluded from 

Figure 10. Yellow arrows indicate PCS 
segments which were not included in 
the ROI (shaded yellow)
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gyrification calculations (Figure 10) . That is, asymmetry found by this method more likely reflect 1

asymmetry of the CS, other minor sulci radiating from the CS or the callosal sulcus.  

 This said, the compensatory relationship between neighbouring sulci (Connolly, 1940) 

means that variation in CS and other tertiary sulci are likely influenced by PCS presence and 

prominence, albeit indirectly. To visualise what the ROI-averaged gyrification index reflects, left 

medial surfaces for those with highest and lowest GI values are displayed in the Appendix (Figure 

A). These show that hemispheres with the highest GIs have narrower cingulate gyri, consistent with 

the effect of PCS presence (Vogt et al., 1995; Leonard et al., 2009; Figure 1). Additionally, those 

with higher GIs appear to show more PCS segments (as defined as any segment running parallel 

and dorsal to the CS; Yücel et al., 2001) though as already mentioned, our gyrification method 

could not capture the metrics of this sulcus directly. There are two possible methodological 

explanations for this. First our GI is based on the curvature at every point of cortex. Relatively flat 

regions on gyral peaks are considered to have low GI due to their near-zero curvature. The tendency 

for the cingulate gyrus to have a larger surface area when the PCS is absent (Vogt et al., 1995), and 

the low curvature values across gyral peaks may explain why low mean gyrification within the ROI 

may indicate PCS presence. Alternatively, PCS presence may be reflected in the GI as a function of 

sulcal frequency: our GI takes into account the frequency of cortical folds as well as their depth, 

thus a sulcal doubling of the ACC may result in a higher GI within the ROI, even if the ROI does 

not contain both sulci, as a result of smoothing. 

 Thus we can say that females showed greater asymmetry in gyrification within the dACC, 

and this may have been influenced by PCS prominence, indirectly, or by other sulci, the functional 

significance of which are not yet understood.  

 An adapted version of our cortical parcellation scheme is available (Klein & Tourville, 2012), which 1

corrects for this failure to include paracingulate regions in the ROI. However this version was not available 
in CAT12’s surface morphometry toolbox at the time of analysis.
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Prenatal Hormones: a plausible influence on ACC gyrification asymmetry? (H2) 

 We did not find a correlation between 2D:4D of either hand and gyrification asymmetry in 

the full sample however it is likely that ethnic heterogeneity posed a major source of noise to 2D:

4D correlations. 

 Within the largest group available, Northern Europeans (n = 14), medium-sized correlations 

were found between the 2D:4D and the extent of asymmetry such that lower “male-typical” finger 

ratios were associated with a more leftward asymmetry. It is interesting to note that this correlation 

existed in absence of a sex difference in gyrification asymmetry in this subsample. This is tentative 

support for the use of 2D:4D as a more sensitive marker of sex hormone-linked brain variation than 

the sex dichotomy.  

 We do not want to weigh too much on this finding given the statistical unreliability of this 

effect and the specific group to which it refers. However stronger correlations between 2D:4D ratios 

and hemispheric gyrification in the left, rather than in the right, suggests that the previously found 

greater variability in left ACC sulcal patterns might be explained by the same prenatal hormone 

variation which influences the 2D:4D finger ratio. Huster et al. (2007) found that discrepancies in 

PCS asymmetry across sex and handedness stemmed from variations of cingulate morphology in 

the left hemisphere, and Yücel et al. (2002) found that schizophrenics differed from controls in the 

extent of left but not right ACC gyrification. Geschwind and Galaburda (1987) argue that it may be 

the earlier and more prolonged maturation of the left cerebral hemisphere that renders it more 

susceptible to circulating steroid hormones and that this may account for males greater likelihood of 

becoming right-brain dominant (and left-handed). 

 The only other study that has directly investigated links between ACC morphology and the 

2D:4D finger ratio, found a positive correlation between grey matter volume in the dACC and 2D:

4D ratios, after controlling for gender and age (Gorka, Norman, Radtke, Carré & Hariri, 2015). 
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Lower “male-typical” 2D:4D ratios were associated with reduced left dACC volumes. Given that 

this cluster appears to be situated on a gyral peak (Appendix, Figure C) and given that sulcal 

prominence and adjacent gyral expansion are inversely related (Vogt et al., 1995; Figure 1D), these 

findings are consistent with our finding of low 2D:4D ratios and greater gyrification of the left 

dACC. 

Structure-Function links in the ACC (H3) 

 The direction of our structure-function hypothesis was confirmed: leftward asymmetry of 

ACC gyrification was related to greater conditional differentiation of N2 amplitudes. The 

convergence of this result with past research (Huster et al., 2009, 2014) is interesting given 

methodological differences. Notably, Huster et al. focused exclusively on PCS length while our 

approach took the curvature of the surface within the ROI which, as discussed above, could only 

have included PCS-related variation indirectly.  

 Could it be that the functional significance of an asymmetric gyrification pattern is rooted in 

the asymmetric prominence of the PCS, and that our method captured some downstream effects of 

this, plus some other curvature-related “noise”? In support of this, the occurrence of a PCS has been 

linked to a relative expansion of cytoarchitectural area 32’ and its occupation of the gyral peak 

rather than the sulcal fundus or wall (Vogt et al., 1995; see Figure 1D). While there has been no 

direct microstructural investigation of the cognitive effects of expansion of this cytoarchitectural 

area— its greater size in humans, particularly in the left hemisphere, relative to primates (Paus et 

al., 1995; Paus, 2001) and recruitment of left paracingulate gyrus during task tapping executive 

functions such as spatial working memory and planning (Fornito et al., 2004; Dagher et al., 1999; 

Duncan & Owen, 2000) has been interpreted as evidence for the functional significance of PCS 

asymmetry. 
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 One could argue that variation in N2 amplitude across this structural asymmetry index 

simply reflects differences in dipole orientation, a plausible theory given PCS-dependant movement 

of cytoarchitectural areas from sulcal fundus to gyral peak (illustrated in Figure 1). Source analyses 

were not carried out in this study, however Huster et al. (2014), investigating the same structure-

function relationship, used performed a dipole source analysis to assess whether scalp-recorded 

ERP differences across subjects were attributable to differences in dipole location or orientation. 

They seeded an equivalent-current dipole to a midcingulate region (Talairach coordinates [x, y, z]: 

0, 2, 33) with its orientation free to rotate, and found that differences in scalp-recorded N2 

amplitudes between those with leftward-biased PCS patterns and other types of PCS patterns, did 

indeed stem from differential engagement of the fixed midcingulate source. The authors argue that 

if ERP differences reflected topographical differences due to variation in gyral orientation, no 

differences between the structurally-relevant groups would be observed at the source level using 

fixed dipole location and data-driven orientation. 

 Dampened frontocentral negativity does not necessary imply “worse” processing of NoGo 

stimuli. Indeed this is supported by the lack of correlation between the gyrification asymmetry 

index and any behavioral outcome. Similarly, other studies have failed to find a dependency of 

successful inhibition rates on N2 amplitude (Kok, Ramautar, de Ruiter, Band & Ridderinkhof, 

2004; de Jong et al., 1990; Pliszka, Liotti & Woldorff, 2000). The fact that those exhibiting 

rightward asymmetries showed greater P3 amplitudes than the leftward asymmetry group (inferred 

from Pz amplitudes at 300ms; Figure 8) may reflect differential emphasis on the processes 

underlying each component. Huster et al. (2009) found a similar phenomenon in Stroop-related 

ERPs: subjects with a symmetrical absence of PCS showed a diminished N400 but a more 

pronounced positivity over posterior electrodes in a subsequent time-window, compared with 

subjects with a leftward PCS asymmetry. The authors inferred that the left asymmetrical-PCS group 
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relied more on early conflict monitoring processes, while the symmetrically PCS-absent group 

relied more on later, effortful attentional control processes. Our results suggest that a similar 

frontocentral-negativity vs parietal-positivity strategic trade-off exists in the Go/NoGo task and is 

influenced by ACC morphology.  

Sex differences in N2 amplitudes (H4) 

 The finding of greater conditional differentiation of N2 amplitudes among females is 

consistent with Yuan et al. (2008) who showed greater N2 differentiation in females to deviant vs 

standard stimuli in an oddball task. Like our Go/NoGo task, the oddball task involves a frequent 

and infrequent response but unlike the Go/NoGo, it lacks an element of inhibitory control. Inferring 

from the common demands of both tasks, it may be that females have a relatively larger N2 

response to such violations of expectations rather than to response demands per se, though further 

research will need to elucidate whether the presence of a sex difference in the N2 is dependent on 

the probability or inhibitory demands of the stimulus. 

 There are however studies showing the opposite sex difference. Omura and Kusumoto 

(2015) analysed N2 amplitudes across two conditions: a cued response (O followed by X) and cued 

inhibition (O followed by any other letter) which both had equal probabilities. Males showed higher 

N2 amplitudes regardless of condition and no sex X condition interactions was present. We argue 

that absolute amplitudes are a worse metric for investigating individual differences in functional 

electrophysiology than the relative amplitude differences across conditions given the contribution of 

bone and tissue factors to the EEG signal (Nunez & Srinivasan, 2006). Indeed males had overall 

more negative N2 amplitudes in our sample too, but this could plausibly be due to sex differences in 

total brain volume (Lange, Giedd, Castellanos, Vaituzis & Rapoport, 1997) or skull thickness 

(Pfefferbaum & Rosenbloom, 1987; Dijk, Beersma & Bloem, 1989). 
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 Sex differences in N2 amplitudes, and not in any behavioral index of performance, suggests 

males and females can achieve equivalent inhibitory control with differential emphasis on this 

frontocentral negative component. Support for differential use of neural strategies across the sexes 

comes from ERP (Huster, Westerhausen & Herrmann, 2011) and fMRI studies (Li et al., 2006, 

2009) which also show different patterns of regional activation despite equivalent inhibitory 

performance. Of note, Liu et al. (2012) and Li et al. (2006, 2009) have shown greater activation of 

ACC in males relative to females in successful (vs. unsuccessful) inhibition. This supports our 

findings given recently discovered links between larger inhibition-related N2 amplitudes and 

deactivation of the midcingulate area (Baumeister et al., 2015).  

 Finally, the significance of this sex difference, in the traditional statistical sense, was 

dependent on ACC gyrification patterns, being reduced to a sub-alpha level after inclusion of this 

structural covariate. This suggests sex differences in conflict- and novelty-processing are at least 

partly mediated by brain structure, and more interestingly a structural factor which is established 

predominantly before birth (Zilles et al., 1997; Armstrong et al., 1995). 

  

Limitations & Future Directions  

 The main limitation of this study was its failure to control or covary for ethnicity, given the 

centrality of the 2D:4D to our overarching theory of sex differences in the brain. Our sample was 

ethnically heterogenous and this likely contributed to the lack of a significant gender difference 

which is highly reproducible (Hönekopp & Watson, 2010) and, we speculate, to the lack of a 

relationship with gyrification asymmetry. It is difficult to interpret anything from our subsample 

analysis given the unreliability of correlations— these hypotheses must be tested in a more 

homogenous group in future, using either the 2D:4D finger ratio or direct amniotic samples to 

estimate prenatal hormone levels. 
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 Another limitation of this study is its inability to delineate the contribution of specific sulci 

to the asymmetry index, and subsequently their relevance to N2 modulations. Previous studies have 

had the same problem but due to the exclusive focus on PCS asymmetry. It would be interesting to 

know whether it is indeed the leftward asymmetry of PCS or the concurrent reduction in the surface 

area of the cingulate gyrus (Paus et al., 1995) that is functionally relevant to electrophysiological 

markers and advantage on executive tasks. Future research should also consider using 

microstructural markers to elucidate the functional effects of large-scale movements of 

cytoarchitecturally distinct regions from sulcal depth to gyral peak. 

 Finally, Go-N2 amplitudes were unusually large in this study, particularly in males. It is 

possible that given speed demands of the task, the two-choice decision on Go trials was perceived 

as a response conflict, leading to a “conflict-related Go-N2”. Alternatively, the Go-N2 may reflect 

residual motor potential, which tends to consist of a short negativity before responses (Kornhuber & 

Deecke, 1965; Shibasaki et al., 1980). However this seems unlikely as the motor potential is usually 

attenuated by the variance in RTs. Also it seems unlikely to account for the greater Go-N2 in males 

given that males showed greater variance in RTs (SD = 38.20) than females (SD = 28.11). A final 

possibility, is that large Go-N2 amplitudes reflect a trait-like speed-accuracy trade-off. Perri et al. 

(2015) suggested that larger N2 amplitudes are related to a preference for speeded over accurate 

responses. Our data support this explanation, at least within male participants: exploratory 

correlations between Go-N2 amplitudes and response times showed that greater (more negative 

amplitudes) related to faster responding among males (Fz = .39, FCz = .43 Cz = .39) while 

correlations were weaker among females (Fz = .20, FCz = .09, Cz = -.26). 
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Conclusions 

 These results contribute to the wealth of evidence showing males and females process 

executive task demands differently at the neural level. It indicates that one area in which 

information processing differs between the sexes is in the detection of conflicts or surprise, as 

indicated by the N2, and suggests that sex-linked variance in ACC surface morphology may help 

explain this. Regarding the hypothesised prenatal origins of these ACC gyrification patterns, our 

findings align with previous research showing the differential sensitivity of the hemispheres to 

environmental factors. However our tests involving our putative marker of prenatal hormones were 

not well powered and require replication in larger, more homogenous, sample. 
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Appendix 

 

Figure A. Central surfaces for left hemispheres with the 5 highest (top) and 5 lowest (bottom) 
gyrification indices (GI). Noteworthy is the reduced cingulate gyrus surface area in its dorsal-
ventral extent in those with high GIs compared to those with low GIs.
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Figure B. Mean left and right 2D:4D finger ratios for males and females of each regional category in this 
sample. Regional categories were composed as follows: Britain and British colony (n = 3; Scotland, 
Australia), Northern Europe (n = 16; Norway, Sweden, Estonia, Germany), Eastern Europe (n = 6; Russia, 
Ukraine, Serbia, Czech Republic), Northern America (n = 1, Canada), Asia (n = 1, Thailand), the 
Mediterranean (n = 5; Spain, Italy, Portugal) and Southern America (n = 1; Mexico). Four participants did 
not provide their nationality. One male in the Mediterranean group had missing left 2D:4D data due to a 
hand deformity.

Figure C. Results of Gorka et al. (2015): Right hand 2D:4D ratio was positively correlated with gray 
matter volume within the left dorsal ACC (dACC) after controlling for age and gender (N = 464).
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Figure D. Example of a hand scan with 2D and 4D lengths calculated 
using the Adobe Acrobat measuring toolbox.


