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Abstract

Quantum simulations of molecules and exotic materials are pointed as the
killer application for the next generation of quantum computers. State-of-
the-art technology already allows to perform such simulations for small
systems with inaccurate results. Reducing the errors of these results with
error mitigation techniques is an active area of research. In this thesis, we
model a quantum simulation experiment of the hydrogen molecule with
a hybrid quantum-classical algorithm. The goal is to compare the perfor-
mance of a combination of three error mitigation strategies, including a
newly developed strategy, parity verification. We show that it is possible
to obtain estimates for the dissociation curve of the hydrogen molecule
below a threshold value named chemical accuracy. The conclusions pre-
sented in this thesis lay the groundwork for future experiments with larger
systems in which error mitigation will be crucial to obtain meaningful re-
sults.
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Chapter 1
Introduction

1.1 Quantum computing and quantum chemistry

The theory of quantum mechanics describes Nature at its smallest scale.
Its predictions, which have been extensively proved experimentally, are
fundamentally different with respect to classical mechanics. Such a fun-
damental difference led Richard Feynman to postulate that if informa-
tion could be processed using quantum mechanics, it would lead to an
absolutely different theory of information processing [1]. This conjecture
opened to door to a new research area, namely quantum computation and
information. A quantum computer is the device that carries and manipu-
lates quantum information.

Improved fabrication and experimental control of quantum processors
have permitted to move from theoretical proposals to practical applica-
tions. In this context, quantum chemistry has emerged as one of the most
promising fields for which near- and mid-term quantum computers can
make an impact. It is expected that these devices will solve the molecular
electronic structure problem more accurately than classical computers.

In this chapter, we introduce the basic concepts of quantum compu-
tation and how they can be used to solve complex quantum mechanical
problems. In particular, we describe how to express a molecular electronic
structure Hamiltonian in the quantum computer language.
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2 Introduction

1.1.1 Fundamentals of quantum computing

In a quantum computer the information is stored and processed in a fun-
damentally different way than its classical counter-part. The basic unit of
a quantum computer is a quantum bit, or qubit, as opposed to a classical
bit. The key difference between the bit and the qubit is that the former can
only store either a 0 or a 1, whereas the latter can be both 0 and 1 simulta-
neously. Therefore, the state of a qubit is described as a linear combination
of 0 and 1 as:

|ψ〉 = α |0〉+ β |1〉 , (1.1)

where α, β are complex numbers which give the probability of mea-
suring (0,1). As the total probability of the state can not be larger than
1, it follows that |α|2 + |β|2 = 1. The information is hence stored in a
two-dimensional complex vector space. The states |0〉 and |1〉 form an
orthonormal basis such a vector space, commonly referred as the compu-
tational basis. This description extends naturally to a representation of N
qubits on a C2 via the tensor product.

In order to manipulate the state of a qubit, we need to apply quantum
operations. A quantum operation Û transforms the state of a qubit from
|ψ〉 to |ψ̃〉 such that:

|ψ̃〉 = α̃ |0〉+ β̃ |1〉 . (1.2)

A transformation of this form requires the operation to be a 2× 2 matrix
acting on the qubit vector space. Moreover, the fact that |α̃|2 +

∣∣β̃∣∣2 = 1
implies that the operation must be a unitary, UU† = I. A unitary matrix is
therefore the quantum counter-part to a “gate” on a classical computer.

Finally, the information stored in a quantum computer must be extracted
by measuring the state of the qubit. In quantum mechanics, such a process
is describe by Born’s rule: the output of an observable Ô on the state |ψ〉 is
equal to one of the eigenvalues λi of Ô

Ô |λi〉 = λi |λi〉 , (1.3)
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1.1 Quantum computing and quantum chemistry 3

with probability

P(λi) = |〈λi|ψ〉|2. (1.4)

When a qubit is measured in a quantum computer, there are only two
possible outputs, namely 0 or 1. Based on Born’s rule, the observable of
a qubit must necessarily be a matrix with two different eigenvalues. In a
quantum computer such observables are the so-called Pauli matrices. In
the computational basis, the Pauli matrices {X, Y, Z} take the following
form:

X =

[
0 1
1 0

]
; Y =

[
0 −i
i 0

]
; Z =

[
1 0
0 −1

]

The fact that all these three matrices have the same eigenvalues allows
us to use any of them as a basis to readout a qubit. Because the Z Pauli ma-
trix is diagonal in the computational basis, it is generally used to measure
the qubits. Measurement in the X or Y basis is performed by pre-rotations.
On individual qubits, the Pauli operators anti-commute,

{X, Y} = {X, Z} = {Y, Z} = 0, (1.5)

but acting on separate tensor factors commute:

[A⊗ I , I ⊗ B] = 0, (1.6)

for any A, B = X, Y, Z.

So far, we have ignored the fact that when a qubit in a superposition is
measured, only partial information of its state is recovered. If we want to
reliably know the values α and β, we must repeatedly prepare and mea-
sure individual experiments to accumulate statistics [2], this is known as
single-shot measurements.

3



4 Introduction

1.1.2 Molecular electronic structure Hamiltonian

The molecular electronic structure Hamiltonian describes the interaction
between electrons and nuclei in a Coulomb potential [3]. The dynamics
of a system are represented by the position of the electrons ri and the po-
sition, mass and charge of the nuclei Ri, Mi, Zi. The molecular structure
Hamiltonian in the first-quantization formalism is given by:

H = −∑
i

∇2
Ri

2Mi
−∑

i

∇2
ri

2
−∑

i,j

Zi∣∣Ri − rj
∣∣

+ ∑
i,j>i

ZiZj∣∣Ri − Rj
∣∣ + ∑

i,j>i

1∣∣ri − rj
∣∣ .

(1.7)

Within the realm of quantum chemistry, this Hamiltonian is of central
interest because almost all properties of the dynamics of a molecule are
determined by its eigenstates.

For example, a chemical reaction occurs when the system evolves from
one to another stable chemical structure. The energy difference between
two stable configurations determine the kinetics of the reaction [4]. Mathe-
matically, this is expressed in equation 1.7 by the evolution of the electrons
with respect to each other and the nuclei. Those configurations that mini-
mize the energy are the most likely to be part of the reaction mechanism.
For this reason, accurate calculations of the ground and some excited state
energies of this Hamiltonian are important to understand complex chem-
ical reaction processes.

Classical computational methods have been extensively used to solve a
wide range of electronic structures problems, from molecules to materials.
However, for a system with hundred correlated electrons, the accuracy of
these techniques no longer allows one to make reliable predictions. The
reason is that the number of bits required to store all the information is
∼ 2100, exceeding the capabilities of the best supercomputers. In contrast,
a quantum computer will be able to store the information in a superpo-
sition state which will drastically reduce the resources to simulate such
problems.

In the last decade, there has been an effort to estimate the number of
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1.1 Quantum computing and quantum chemistry 5

qubits required to simulate quantum systems which exceed the capabili-
ties of the best classical computers. Large molecules or strongly correlated
materials are amongst the most studied problems in the field [4–8]. For
instance, Reiher et al. [4] studied the open problem of biological nitrogen
fixation. They predicted that a qualitatively valid result would require
∼ 104− 106 physical qubits and a computational time of the order of days
including quantum error correction. A recent work by Babbush et al. [8]
used a clever choice of the molecular basis to express the molecular struc-
ture Hamiltonian, which reduced the required quantum resources. They
proposed jellium as a model to study in near-term quantum device includ-
ing error mitigation methods instead of costly quantum error correction
codes.

1.1.3 From quantum chemistry to qubits

In order to solve the molecular electronic structure Hamiltonian (eq. 1.7)
on a quantum computer, we must express it in terms of qubits. Previ-
ous works have directly mapped eq. 1.7 onto a quantum computer [6].
However, in this work we use the second quantization formalism before
mapping the Hamiltonian onto qubits. We follow the description given in
reference [7] to express the molecular structure Hamiltonian in the second
quantization formalism.

The first step to transform eq. 1.7 is to take the Born-Oppenheimer ap-
proximation, assuming that the motion of the electrons is much faster than
the motion of the nuclei. The latter can, therefore, be treated as a classical
point charge. Next, a basis to represent the wave-function of the elec-
trons φi(ri, si) is chosen with a defined position ri and spin si for each elec-
tron. The position and momentum of the electrons are then expressed in
terms of the annihilation and creation operators (ai, a†

i ), which obey the
fermionic anti-commutation relations:

{ai, a†
j } = aia†

j + a†
j ai = δi,j,

{ai, a†
i } = {aj, a†

j } = 0.
(1.8)

The above gives the expression for the Hamiltonian:

5



6 Introduction

H = ∑
pq

hpqa†
paq +

1
2 ∑

pqrs
hpqrsa†

pa†
qaras, (1.9)

where the coefficients hpq and hpqrs are calculated from:

hpq =
∫

drds φ∗p(r, s)
[∇2

r
2
−∑

i

Zi

|Ri − r|
]
φq(r, s), (1.10)

hpqrs =
∫

dr1ds1dr2ds2
φ∗p(r1, s1)φ

∗
q (r2, s2)φs(r1, s1)φr(r2, s2)

|r1 − r2|
. (1.11)

The potential advantage of a quantum computer over its classical counter-
part in simulating molecular structure problems comes from the fact that
spin-orbitals can be identified with qubits. This is because a spin-orbital
contributes a 2-dimensional Hilbert space tensor factor, which is precisely
what a qubit does. Although some theoretical requirements exist for the
realization of a qubit [9], in principle any quantum mechanical two-level
system can be used as a one.

A qubit is described in terms of Pauli matrices which follow the com-
mutation relations previously given in equation 1.6. Hence, a natural way
to simulate a Hamiltonian in a quantum computer is in terms of such
operators. Mapping the molecular structure Hamiltonian from its anti-
commuting fermionic operators (a, a†) onto a qubits is a non-trivial task.

There exist different ways in which this mapping can be done, namely
the Jordan-Wigner and the Bravyi-Kitaev transformations. Both provide a
recipe to write the anti-commuting fermionic operators as a linear combi-
nation of Pauli matrices such that the anti-commutation relations are pre-
served.

1.2 Quantum simulations

One of the applications that Feynman envisioned for quantum comput-
ers was the possibility to simulate complex quantum phenomena [1]. As
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1.2 Quantum simulations 7

described by Seth Lloyd in [10], a quantum simulation consists of repro-
ducing the dynamics of a quantum system by another quantum system.
The requirement for such a calculation is that the interactions of the quan-
tum system must be controllable experimentally. In other words, we must
have the ability to apply quantum gates to reproduce the problem under
investigation.

Recent methods that combine quantum and classical resources have emerged
as an optimization of classical and quantum computation. In this hybrid
quantum-classical paradigm, the computational effort is split between quan-
tum and classical resources. A quantum computer performs those tasks
that are more efficient or even impossible to do in a classical computer. In
the same way, a classical computer runs those processes which a quantum
computer finds difficult.

1.2.1 Variational quantum eigensolver

In the context of quantum-classical algorithms, the variational quantum
eigensolver (VQE) [11, 12] has emerged as a candidate to use in the next
generation of quantum hardware.

The VQE algorithm can be outlined in the following steps [12]:

1. Prepare a quantum state,
∣∣∣ψ(~θ)〉 = U(~θ)

∣∣∣~0〉, depending on a set of

parameters ~θ. These parameters must be experimentally adjustable
in the quantum hardware.

2. Measure the energy E(~θ) :=
〈

ψ(~θ)
∣∣∣H∣∣∣ψ(~θ)〉 of the state.

3. Minimize E(~θ) as a function of the parameters~θ with a classical rou-
tine.

The variational principle is used to approximate the expectation value
of an observable given a trial wave-function

∣∣∣ψ(~θ)〉, commonly named
ansatzes. The variational principle states that the expectation value of
a given observable with respect to a wave-function is always greater or
equal to the lowest eigenvalue of an observable. If one is interested in the
the ground state energy of a system, as in our case, it translates to

7



8 Introduction

E(~θ) ≥ E0. (1.12)

This implies that the classical minimization routine can only push our en-
ergy closer to the ground state energy.

Some fundamental limitations of the variational methods must be taken
into account while designing a VQE experiment. First, the ansatzes are
problem-dependent. They are required to have sufficient overlap with the
ground state eigenvector|ψ0〉, such that the optimization of the parame-
ters gets close to the exact solution. Unless

∣∣∣ψ(~θ)〉 = |ψ0〉 for some ~θ, the

minimum energy E(~θ) will be strictly larger than E0. Moreover, covering
the entire Hilbert space with

∣∣∣ψ(~θ)〉 requires an exponentially large num-

ber of parameters ~θ. Therefore, the computation time of the optimization
routine might become extremely large [13].

Nevertheless, the fact that quantum resources are used in the VQE al-
gorithm allows one to prepare ansatz which cannot be, in principle, com-
puted in a classical computer. In particular, trial states which are parametrized
by the action of a unitary matrix on a state, emerge naturally in a quantum
computer and might not have any classical correspondence [14]. The abil-
ity to construct such states opens a window to explore problems for which
classical methods ado not achieve reliable results.

The VQE algorithm has been successfully applied experimentally in the
context of quantum simulations of small molecules [11, 15, 16]. These ex-
periments use very different choices of ansatz: for instance, O’Malley et
al. [15] used the unitary coupled cluster (UCC) ansatz taken from the cou-
pled cluster method in computational chemistry. By contrast, Kandala et
al. [16] designed an ansatz based on the capabilities of their quantum de-
vices: choosing the more accurate quantum gates that could be performed
experimentally.

Both, adaptability and access to new trial states make the VQE algorithm
a candidate to show an advantage with respect to classical computers for
quantum chemistry problems in the near- and mid-term.

8



1.2 Quantum simulations 9

1.2.2 Variational algorithms over other methods

The following quote by Frank Wilczek encompasses the long-time belief
that quantum computers will help to solve problems in research areas that
will directly impact society:

“In the 21st century quantum computers will do for molecular design
what classical computers did for aircraft design in the 20th century”

To fulfill these expectations, we must show that the upcoming quantum
algorithms match or improve upon the best classical algorithm. Quantum
chemistry and correlated electron problems have been largely studied us-
ing ab initio methods developed in computational chemistry. Solving those
problems with quantum algorithms allows their capabilities to be bench-
marked against state-of-the-art computational methods. Some of the most
important computational chemistry techniques are:

• Hartree-Fock: This method describes the motion of single electrons
in the field of the nuclei and the average field of the other elec-
trons [17]. However it does not account for electron correlations,
thus it does not provide good results for strongly correlated systems.

• Density functional theory (DFT): In DFT, the problem of interact-
ing electrons in an static potential is reduced to a problem of non-
interacting electrons moving in an effective potential [18]. Although
DFT has been applied to study large systems of electrons with great
success, the results become inaccurate when the problem involves
strong correlations. Furthermore, DFT does not allow for the estima-
tion or bounding of the errors.

• Configuration interaction/Full configuration interaction (CI/FCI):
These are an extension of the Hartree-Fock method in which unoccu-
pied excited orbitals are mixed with the Hartree-Fock orbitals. The
CI only considers a finite number of excitations. When all the N-
fold excited orbitals are taken into account (FCI) the result is the ex-
act solution within the Born-Oppenheimer approximation [18]. The
computational resources needed to solve a problem in the FCI are
prohibitive, making it impossible to be used for large systems. It is
expected that simulation using FCI can be efficiently performed with
quantum resources.

9



10 Introduction

• Coupled Cluster (CC): In this method the excitation operator that
promotes electrons from occupied to excited orbitals is exponenti-
ated. The CC ansatzes are prepared by the action of this exponential
operator acting on the vacuum [19].

• Other methods: Monte-carlo and Density-matrix renormalization
group are the most advanced classical methods. They show good
results for strongly correlated systems but are computationally in-
tensive if one aims to get small errors for systems with 50 electrons
and beyond.

• Quantum phase estimation algorithm (QPE): The QPE algorithm
is designed to find the phase that a unitary transformation adds to
its eigenstates. It is expected that for large enough steps of the al-
gorithm the result converges to the true eigenvalue of the unitary.
However, the existing theoretical proposals require quantum error
correction for large systems with the current error rates [7].

VQE has been marked as a promising algorithm to show advantage over
classical methods in the near-term [12, 13]. In particular, it is hoped that
simulation of ∼ 50 correlated electrons might be achieved without quan-
tum error correction [8]. Also, VQE circuits are expected to be far smaller
in depth than those required for QPE .

10



Chapter 2
Modeling the hydrogen molecule
quantum simulation

2.1 The hydrogen molecule

The hydrogen molecule (H2) is a good first toy model for studying quan-
tum algorithms applied to quantum chemistry. Despite its simplicity, it
provides a playground to experimentally test and benchmark the capabil-
ities of small quantum devices.

If we are to simulate the hydrogen molecule in a quantum computer, it
is necessary to find the number of qubits required to experimentally do so.
In quantum chemistry, qubits are identified with spin-orbitals. Hence, for
H2, where the 2 ls spin-orbitals form a minimal basis, the number of qubits
is four.

From equation 1.9, one observes that the Hamiltonian can be divided
into one- and two-electron parts:

H =
4

∑
p,q=1

hpqa†
paq +

1
2

4

∑
pqrs=1

hpqrsa†
pa†

qaras = H(1) +H(2), (2.1)

where the integrals hpq (eq. 1.10) and hpqrs (eq. 1.11) depend upon the

11



12 Modeling the hydrogen molecule quantum simulation

bond length (d) between the two hydrogen atoms. The minimal basis to
represent the hydrogen molecule requires to add the 4 spin-orbitals in the
previous expressions.

Following the calculation by Whitfield et al. [7], the one-electron Hamil-
tonian is of the form:

H(1) = h11a†
1a1 + h22a†

2a2 + h33a†
3a3 + h44a†

4a4, (2.2)

and the two-electron Hamiltonian:

H(2) = h1221a†
1a†

2a2a1 + h3443a†
3a†

4a4a3 + h1441a†
1a†

4a4a1+

h2332a†
2a†

3a3a2 + (h1331 − h1313)a†
1a†

3a3a1 + (h2442 − h2424)a†
2a†

4a4a2+

h1423(a†
1a†

4a2a3 + a†
3a†

2a4a1) + h1243(a†
1a†

2a4a3 + a†
3a†

2a4a1)+

h1423(a†
1a†

4a2a3 − a†
3a†

2a4a1) + h1243(a†
1a†

2a4a3 − a†
3a†

2a4a1).

(2.3)

Next, one expresses the above equation in terms of operators which can
be measured on a quantum computer, this is, mapping the anti-commuting
fermionic operators onto Pauli operators. In this work, we use the Bravyi-
Kitaev (B-K) transformation [20], which results in the following form at
each bond length (d) [21]:

H = f0 I + f1Z0 + f2Z1 + f3Z2 + f1Z0Z1

+ f4Z0Z2 + f5Z1Z3 + f6X0Z1X2 + f6Y0Z1Y2

+ f7Z0Z1Z2 + f4Z0Z2Z3 + f3Z1Z2Z3

+ f6X0Z1X2Z3 + f6Y0Z1Y2Z3 + f7Z0Z1Z2Z3.

(2.4)

Here, Ii, Xi, Yi, Zi are the Pauli matrices acting on the i-th qubit, and
XiZj = Xi ⊗ Zj refers to the tensor product of the operators. The coef-
ficients fi are calculated from equation 1.10 and 1.11. We use the open-
source package for quantum chemistry on a quantum computer Open-
Fermion [22] to calculate these coefficients.

A careful examination of the above Hamiltonian (eq. 2.4) leads to the
observation that the operators Z1Z3 commute with it. With this symmetry

12



2.2 VQE algorithm for the hydrogen molecule 13

it is possible to solve the problem in a single simultaneous eigenspace of
Z1 and Z3. As the true ground eigenstate of H2 is guaranteed to have
non-zero overlap with the Hartree-Fock state |0000〉, it must lie in the +1
eigenspace of Z1 and Z3. By using this symmetry we can effectively reduce
the full Hamiltonian from four to two qubits, leaving:

H = g0 I + g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1, (2.5)

where the coefficients gi are calculated from the two- and four-body in-
tegrals (1.10,1.11) and depend upon the bond length.

2.2 VQE algorithm for the hydrogen molecule

In the rest of this section, we present a VQE algorithm in a hybrid quantum-
classical architecture for the hydrogen molecule, and detail the measure-
ment protocol.

The VQE algorithm can be split into two parts, one involving quan-
tum resources and one with a classical computer. In the quantum part, a
small quantum computer is used to prepare and measure a quantum state.
We differentiate between the state preparation and the measurement, al-
though experimentally they act as one. The data processing is done in the
classical section: the coefficients gi are calculated, the expectation value is
obtained as a weighted sum of individual Hamiltonian terms 2.5, and a
minimization routine is launched to suggest new parameters. This is re-
peated until the parameters converge to a set of values which represent
the approximated ground state energy, E(~θ).

At the same time that we are searching for interesting problems to solve
on a quantum computer, we are also interested in understanding which
trial states can be efficiently prepared in small quantum devices. For in-
stance, it is known that the Hilbert space of N-qubits can be parametrized
with p = 2N+1 − 2.

However, if some physical constraints of the system are known, we can
use it to reduce the number of parameters (~θ) in the VQE algorithm (e.g. :
conservation of particle number, conservation of parity, or real-valued

13



14 Modeling the hydrogen molecule quantum simulation

Hamiltonian). If one aims to use a VQE algorithm to simulate large sys-
tems, taken advantage of the symmetries will be important to minimize
the computational resources required for it.

2.2.1 Ansatz preparation

A general 2-qubit system requires p = 23 − 2 = 6 variables to param-
eterize its Hilbert space. The hydrogen molecule Hamiltonian (2.5) con-
tains only real values, hence half of the parameters are needed to reach its
ground state. We can fix one more parameter by enforcing that the ground
state energy of the hydrogen molecule lies in the single-excitation mani-
fold. With all of the above, we find that only two parameters are needed
in our algorithm.

The circuit that prepares the state is given in figure 2.1. In order to pre-
pare the state in the single-excitation manifold, we apply a single-qubit ro-
tation Ry(π). Qubits are entangled with a parametrized two-qubit iSwap(θ1)
gate [23]. Finally, a parametrized single-qubit rotation Rz(θ2), that ac-
counts for any imaginary terms of the Hamiltonian, is applied. Although
this circuit prepares a trial state that can be used for any Hamiltonian with
real and imaginary values, for the hydrogen molecule problem, which has
only real entries, the parametrized Z-rotation is unnecessary to obtain its
ground state. Nonetheless, we leave it as a free parameter to observe its
experimental behaviour.

|0〉0 Ry(π)

|0〉1 iS
w
a
p
(θ

1
)

Rz(θ2)

Figure 2.1: State preparation circuit parametrized by angles θ1 & θ2. Qubits are
initialized in the |00〉 state because its experimental preparation is simple.

Each term of the two-qubit Hamiltonian is measured by preparing the
state with the same parameters θ1, θ2. When the energy expectation value
is calculated, an optimization process suggests a new value for the angles.

14



2.2 VQE algorithm for the hydrogen molecule 15

This optimization is repeated until the energy converges to a minimum
at ~θmin At this point,

∣∣∣ψ(~θmin)
〉

represents the best estimate of the ground
state wave-function. This is repeated for different bond lengths until the
dissociation curve is clearly defined. We make use of the Nelder-Mead
optimization method through the open source python software SciPy [24,
25].

2.2.2 Measurement

Previously in the text, we have described how to extract the information
in a quantum computer. We have mentioned that the state of a qubit is
obtained by measuring the Z observable, and also that only partial in-
formation of it can be recovered. Therefore, multiple repetitions of the
measurement are needed to statistically recover the qubit state.

Measuring I, Z0, Z1, Z0Z1 is trivial because they are diagonal in the Z-
basis. Furthermore, the fact that all of them commute with each other
allow us to use the same single-shot measurements for obtaining their
expectation values. By contrast, measuring X0X1 and Y0Y1 requires pre-
rotating the qubit. This allows us to put the qubit in the X or Y basis before
reading it out. The extended measurement circuit for these observables is
shown in figure 2.2.

From the repeated single-shots, the density matrix of the state is recon-
structed and the operators measured as:〈

Ô
〉
= tr[Ôρ]. (2.6)

The expectation value of the Hamiltonian is then obtained from the in-
dividual expectation values as:

〈H〉 = g0 〈I〉+ g1 〈Z0〉+ g2 〈Z1〉+ g3 〈Z0Z1〉+ g4 〈X0X1〉+ g5 〈Y0Y1〉 .
(2.7)

15



16 Modeling the hydrogen molecule quantum simulation

|ψ〉0 Rα(
π
2 )

|ψ〉1 Rα(
π
2 )

Figure 2.2: Measurement circuit for X0X1 & Y0Y1. Here, α = Y, X labels the
rotation to be applied.

2.3 Simulating experimental noise

In this section, we outline the underlying error model of our numerical cal-
culations. They have been performed using the quantumsim density ma-
trix simulator package [26]. This software allows us to introduce a noise
model to describe the qubit architecture imperfections. We use the noise
model described by O’Brien et al. [27] for the superconducting transmon
qubit architecture [28, 29].

One of the goals of this project is to predict the performance of an ex-
isting superconducting qubit device. We have chosen parameters to best
model this device within the capabilities of quantumsim (see table 2.1).

Superconducting qubits are prone to errors due to qubit relaxation and
dephasing (T1, T2), as well as imprecisions of control hardware (e.g. angle
dephasing) and readout infidelity. The values of T1 and T2 have been ex-
perimentally obtained, whilst the rest of the parameters are taken from the
literature and internal experimental results.

2.3.1 Idling qubits

When a qubit in the state |1〉 is idling for a time t it has a probability p1
to decay to |0〉. If the qubit is in a superposition, it can acquire a random
quantum phase with probability pφ due to 1/f or broadband noise. These

16



2.3 Simulating experimental noise 17

probabilities depend on the qubit relaxation and dephasing time T1, Tφ as:

p1 = exp
(
− t

T1

)
,

pφ = exp
(
− t

Tφ

)
,

(2.8)

where Tφ is related to the experimental values T1, T2 as:

1
T2

=
1

Tφ
+

1
2T1

. (2.9)

2.3.2 Single-qubit gates

Single-qubit gates are modeled as an instantaneous gate sandwiched by
idling gates of time t =

τ1Q
2 . In this way, it is possible to separate errors

due to qubit decoherence from those related to hardware control imper-
fections.

The instantaneous Ry rotation gate is modeled with an additional de-
polarizing noise which corresponds to a shrink towards the origin of the
Bloch sphere. The size of this errors is paxis along the y-axis and pplane in
the x,z-plane. On the other hand, the instantaneous Rz rotation will only
suffer from an over-rotation of the axis (1− paxis).

2.3.3 Two-qubit gates

The model for two-qubit gates is the same as the single-qubit model; two-
qubit gates are applied instantaneously, and sandwiched between two
idling gates of time t =

τ2Q
2 . In general, quantumsim allows one to in-

dependently set the one- and two-qubit gate times. In our simulations we
have set the time to τ2Q = 2

√
2τ1Q, provided by experimental collabora-

tors.

Unlike the single-qubit case, which is modeled from experimental to-
mography, the instantaneous noisy two-qubit gate has a model based on

17



18 Modeling the hydrogen molecule quantum simulation

the understanding of underlying physical error mechanisms. In our algo-
rithm, we use two of these gates with different noise models [23].

1. iSwap: The gate is used to prepare the trial state in its parametrized
version. Experimentally this is performed by holding the system for
a time τ(θ) in the |01〉 ↔ |10〉 avoided crossing such that the excita-
tions are exchanged between the qubits (process matrix given in app.
A.). The imperfection on the application of the angle is accounted for
by including a small incoherent error in the angle value.

2. CNOT: Experimentally this gate is decomposed in two single-qubit
gates and two-qubit C-Z gate (detailed in app. A). The C-Z gate is
performed by holding the system for a time τ2Q at the avoided cross-
ing |11〉 ↔ |02〉. The state |01〉 acquires a phase which is multiple of
2π , whilst the state|11〉 picks up a phase which is an odd multiple
of π , as required. Inaccuracies on the phase acquisition are modeled
with a small incoherent deviation from the expected phase value.
The dephasing parameter is taken from the supplementary material
of reference [27].

2.3.4 Measurement

The implementation of the measurement process in our simulations largely
differs from the physical realization. Instead of reconstructing the density
matrix of the system from single measurements, we extract it from quan-
tumsim without collapsing the state. The expectation values are calculated
as in equation 2.6. This is justified because the error in measurement can
be canceled by careful tomography using linear inversion or maximum
likelihood estimation techniques, with one exception: sampling noise.

Through the text, we have emphasized that to accurately describe the
qubit state, it is necessary to measure it multiple times. However, for the
sake of simplicity, in our numerical simulation we have completely omit-
ted this the error introduced by the finite number of measurements per-
formed in a real experiment.
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2.4 Results 19

Table 2.1: Values used in the simulations.

Parameter QL QR
T1 9.8 µs 10.8 µs

T2 echo 9.4 µs 10.4 µs
τ1Q 20 ns 20 ns
τ2Q

√
2· 40 ns

√
2· 40 ns

In-axis dephasing 10−4 10−4

In-plane dephasing 5 · 10−4 5 · 10−4

iSwap dephasing 10−2/2π 10−2/2π

C-Z dephasing 10−2/2π 10−2/2π

2.3.5 Other noise channels

Even though the quantumsim package has a very accurate error model,
there are noise sources that are not yet incorporated which could have
significant effects on the experiment.

First of all, a more thorough noise model is needed for the two-qubit
gates, including leakage effects. Leakage occurs when the qubit gets ex-
cited out of the two lowest energy levels. The C-Z gate is very sensitive
to this effect since the qubit is moved close to the |02〉 state and there is a
non-zero probability to tunnel to it.

Another unmodeled source of noise is qubit-qubit flux cross-talk, and
microwave cross-talk. When a qubit is manipulated, neighboring qubits
might interfere with it, reducing the fidelity of the process.

2.4 Results

In figure 2.3 we present the result of the simulation in the absence of er-
ror mitigation strategies. The ground energy curves are compared to the
exact solution calculated from equation 2.5. In computational chemistry,
the result of a simulation is often validated with respect to the chemical
accuracy (CA) threshold [3], equivalent to 1.6 mHartree. The reason is that
an error in the dissociation curve of this value translates into an error in
reaction rates of one order of magnitude [3].
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20 Modeling the hydrogen molecule quantum simulation
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Figure 2.3: Exact dissociation curve (solid black), solution of the VQE algorithm
for noiseless (blue dots) and noisy (orange triangles) qubits. Inset: Deviation from
the exact solution under noise effects and chemical accuracy line (solid red).

We first compute the numerical calculation under the ideal scenario of
a noiseless device. As expected, the exact solution fully overlaps with
the simulation of the experiment (blue dots in figure 2.3). The result is
a confirmation that, under ideal conditions, it is possible to calculate the
ground state energy of the hydrogen molecule via quantum simulations
with 2 qubits. Moreover, it confirms that the code works correctly.

Figure 2.3 additionally shows the simulation result in the presence of
experimental noise (orange triangles). The inset of the figure shows the
error in energy of the noisy curve with respect to the exact solution (black
solid line). As a visual reference, we also include the chemical accuracy
threshold (red line).

We conclude that with the available device a quantum simulation of H2
with errors below the CA line can not be done without the assistance of
error mitigation strategies.

20



Chapter 3
Error mitigation techniques

3.1 Introduction

In the previous chapter, we have shown that small calculations on cur-
rent quantum hardware are insufficient to make predictions. For instance,
a VQE quantum simulation of a molecule with 50 orbitals will require a
circuit of length ∼ 10 µs, reaching the limits of our experimental device.
Assuming an error probability of p = 5 · 10−2 every 1 µs, the estimate error
of such a simulation is:

p′ = 1− (1− p)t′ = 1− (1− 0.05)10 ∼ 5 · 10−1. (3.1)

This result shows that the current technology will not be sufficient to
run large calculations. While it is expected that error rates will be reduced
in upcoming generations of quantum technology, we do not expect these
to be sufficiently reduced for accurate quantum simulations without addi-
tional strategies to correct or mitigate remaining errors.

Quantum error correction (QEC) is a scalable, long-term strategy to build
a quantum computer that can perform fault-tolerant calculation with noisy
qubits [30]. However, the requirements to apply QEC techniques with ex-
isting hardware are prohibitive. For instance, Reiher et al. [4] estimated
that simulating a large molecule within chemical accuracy on a fault-tolerant
quantum computer will require of the order of million physical qubits
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22 Error mitigation techniques

with error rates of 0.1%.

An alternative solution for near-term quantum computers are the so-
called error mitigation techniques. They use extra information accessible
about the system to reach more accurate results. Error reduction methods
represent an intermediate method towards accurate solutions without, or
with minimal, QEC .

In this chapter, we apply three error mitigation strategies to a hydrogen
molecule quantum simulation to study their performance. We introduce
a new technique that we call ‘parity verification’, and apply to other pre-
vious developed technique: quantum subspace expansion [31] and active
error minimization [32, 33]. The goal is to estimate the error reduction
of these strategies for our device. Moreover, we aim to investigate their
combination with the idea of reaching chemical accuracy for the H2 disso-
ciation curve.

3.2 Parity verification measurement

Given a physical system described by a Hamiltonian H and a conserved
quantity C, if

[H, C] = 0, (3.2)

we may simultaneously measure H and C. This can be used to verify
that the prepared state lies in the subspace in which the desired solution
is contained. Experimentally, one will disregard the outputs in which C
signals an error.

By enforcing physical symmetries, it is possible to reduce noise due to
the interaction between the environment and the quantum computer, also
known as incoherent noise. The reason is that the effect of the noise on
the state often puts it out of the correct eigenspace of C. By disregarding
the measurement, we prevent the error to enter into the final result. We
expect this technique to be especially effective because incoherent noise
represents the main source of errors on superconducting qubits.

In the hydrogen molecule problem, there exists a conserved quantity
that can be used to signal errors. The operator Z0Z1, which contains in-
formation about the parity, commutes with the Hamiltonian 2.5. From
quantum chemistry, it is known that the ground state energy lies in the
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3.2 Parity verification measurement 23

|ψ〉0 Rα(
π
2 )

|ψ〉1 Rα(
π
2 )

Rα(-
π
2 )

Figure 3.1: Parity verification measurement circuit for X0X1 & Y0Y1. Here, α =
Y, X labels the rotation to be applied.

single-excitation manifold and, thus has odd parity. Therefore, it is pos-
sible to measure the energy and the parity and disregard those measure-
ments that do not satisfy the correct parity. Note that a change in the parity
of a state comes from a qubit flipping from the excited to the ground state.
A bit-flip error like this occurs when a qubit relaxes, hence we expect to
fully mitigate the T1 noise channel.

In chapter two, we have described how the individual expectation val-
ues are calculated from single-shot measurements, as well as the expecta-
tion value of the Hamiltonian. Again, I, Z0, Z1 & Z0Z1 can be obtained
from the same set of measurements. The parity is calculated from the
single-shot values a = 0, 1 or b = 0, 1 of each qubit as:

P = (−1)a+b, (3.3)

if P 6= −1, the measurement is disregarded.

By contrast, measuring ZZ along with XX or YY requires an extension
of the circuit. It is sufficient to use a single circuit because ZZ · XX = YY.
The extended measurement circuit is shown in figure 3.1. In this circuit,
the parity is encoded in the top qubit, whereas the bottom one gets the
information of the state. When the top qubit returns a 0, the measurement
is disregarded because P = 1.

With the parity verification (PV) technique, we would expect to cancel
all the errors due to qubit relaxation. However, the need of a circuit ex-
tension incorporates noise which can not be eliminated at the end of it.
Additionally, the fact that measured data needs to be thrown away might
become a problem when the error probability is large, implying that this
technique does not scale in the same manner as QEC .
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24 Error mitigation techniques

3.3 Quantum subspace expansion

McClean et al. [31] developed the quantum subspace expansion (QSE)
method to approximate excited states of a Hamiltonian from a ground
state wave-function obtained with a quantum computer. The wave-function
|ψ0〉 becomes the reference state to explore the spectrum of the system by
extending the Hilbert space with excitations from it. Therefore, the first
excited manifold will be found by acting with a single operator on each
qubit. The second will be reached by applying excitation to two qubits,
and similarly for larger systems.

Mathematically, this will translate into a construction of a new set of
vectors |φi〉, such that:

|φi〉 = Ai |ψ0〉 , (3.4)

where Ai are the excitations from the reference state. These vectors are
then used as a basis to extend the problem HamiltonianH as:

H̃i,j =
〈
φj
∣∣H |φi〉 = 〈ψ0| A†

jHAi |ψ0〉 . (3.5)

Finally, the excited states are calculated by solving the generalized eigen-
value problem of the new Hamiltonian H̃:

H̃ |λ〉 = λC |λ〉 , (3.6)

where C is the overlap matrix, given by:

Ci,j =
〈
φj
∣∣φi
〉
= 〈ψ0| A†

j Ai |ψ0〉 (3.7)

In the same paper [31], it is shown that the ground state energy given by
the H̃ is a more accurate solution than that resulting from |ψ0〉 alone. The
argument is that the ground state energy given by a quantum computer
does not belong to the problem Hamiltonian, but a different one that has
been modified by errors that can be described in terms of Pauli operators.
By extending the Hamiltonian with those operators, a better approxima-
tion of the ground state can be reached.
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3.4 Active error minimization 25

The application of QSE as a mitigation strategy requires a careful selec-
tion of the set of operators Ai to extend the problem because the number
of measurements required grows polynomially with the number of opera-
tors. Moreover, prior to the start of the experimental run, one must know
which extra measurements are required in the expansion.

In this work, we apply the linear response (LR) expansion, also de-
scribed in reference [31], on the two-qubit H2 Hamiltonian (eq. 2.5). The
set of operators in this expansion is given by:

Ai = {I I, ZI, IZ, XI, IX, YI, IY}. (3.8)

The application of these operators on equation 2.5 leads to a 7-dimensional
effective Hamiltonian H̃. In addition to the previous expectation values, H̃
also depends on 〈XY〉 and 〈YX〉. If we are to combine QSE with the parity
verification method another measurement circuit is needed. It takes the
same form of figure 3.1, with different rotation in each qubit.

In our simulations, QSE is computed as a post-processing step after the
optimal set of angles have been obtained from a numerical minimization
of the initial circuit. These angles define approximate the lowest eigen-
state of the Hamiltonian |ψ0〉which is necessary to calculate the additional
expectation values. Once all the terms have been measured, the effective
Hamiltonian and overlap matrices are computed. Finally, the eigenvalues
of these matrices are calculated and its lowest eigenvalue becomes the new
energy expectation value.

It is important to mention that a first demonstration of this method to
H2 has recently been performed [34]. However, QSE has not been tested
together with other mitigation techniques. We aim to show that it is pos-
sible to combine QSE with other methods to reduce the final error in the
energy estimate.

3.4 Active error minimization

The last error mitigation method under study is active error minimization
(AEM). It was originally introduced by Benjamin et al. [32, 35] and almost
simultaneously by Temme et al [33]. They describe an algorithm to reach a
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26 Error mitigation techniques

more accurate solution of the expectation value of a problem Hamiltonian
H by running experiments with higher error rates.

At the heart of AEM lies the idea that the energy calculated from a noisy
quantum computer differs from the true value as:

〈
H̃
〉
(ε) = 〈H〉+ εa1 + ε2a2 + ε3a3 +O(ε4), (3.9)

where
〈
H̃
〉

represents the expectation value of 〈H〉 at a noise level ε and ak
are constants of the noise model. Therefore, ε can be accurately calculated
as one makes the experiment progressively worse. The error-free expecta-
tion value can be obtained from a polynomial extrapolation at ε→ 0.

Although AEM is an interesting idea to reduce the errors in a compu-
tation, its experimental implementation remains unclear. For instance,
finding an experimental knob that can be controlled to increase the errors
seems a challenging task. Moreover, in the case that one or more of those
knobs can be found, they need to be linked to a noise source. Finally, we
will not expect that detuning a single parameter will leave the other noise
channels static, hence not affecting the final expectation value.

Nonetheless, we simulate the performance of AEM in our existing de-
vice. As discussed in section 2.3, this work focuses on cQED transmon
qubits which are known to be coherence-limited. The largest sources of
error are due to T1 and T2 decay during the experiment. One would ex-
pect that as the circuit time increases, so does the error in the energy be-
cause the qubits are longer exposed to decoherence. For this reason, circuit
length (τ) can be used as an error parameter in equation 3.9.

In our simulations, τ is tuned by increasing the time of all single- and
two-qubit gates. Based on the error model described in section 2.3, this
translates into longer idling gates that expose the qubits to more errors due
to decoherence. It turns out that this can be realized in our experimental
set-up by adding waiting times between the gates.

We must not ignore however, that every point of the hydrogen molecule
dissociation curve needs to be measured and optimized to find its low-
est value. In a real experiment, such optimization currently requires ∼ 4
hours for each point. A quantum simulation of 54 points will run for ap-
proximately 9 days.
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Figure 3.2: Example of active error minimization for different bond lengths. The
dots are the energy calculated from the VQE experiment at different τ, the solid
line is the least-square fitting of the energies. Both left and right panels show the
same data.

The optimal angles at each point are used to compute the energy of a
longer circuits. Experimentally, the computational time needed to do so
is approximately one day. Each dissociation curve currently requires 1.5
hours repeated for 19 circuit lengths. In total, we estimate an experimental
time of 10 days to implement AEM . Optimizing this is a key target for
future research.

Nonetheless, we aim to predict the performance in our existing device,
for a simulation of 54 bond distances and 19 circuit lengths. Extrapolation
curves for different distances are shown in figure 3.2, in linear (left) and
logarithmic (right) scales. The error-free ground state energy is computed
from a third order polynomial fit of the minimum energy calculated at
different τ.

3.5 Combining error mitigation techniques

The goal of this project is to benchmark the error reduction provided by
the previous noise mitigation methods under current experimental param-
eters. Additionally, we are interested in the performance of all possible
combinations of these strategies in order to reach a more accurate solution
in future simulations, as well as in H2.
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3.5.1 Parity verification and QSE/AEM

The parity verification circuit together with either QSE or AEM is obtained
in the same way as for the initial circuit. The ground state energy is com-
puted from a numerical optimization of~θ with the parity verification strat-
egy.

Next, if we want to overlay this solution with QSE, the optimal angles
~θmin must be fed into the post-processing stage to calculate the additional
terms, compute the matrices and get the lowest eigenvalue of the extended
Hamiltonian as the new energy estimate.

In a similar way as before, AEM uses ~θmin computed from the parity
verification measurement as previously described.

3.5.2 QSE and AEM

The application of QSE and AEM is done by feeding ~θmin of the initial cir-
cuit into the QSE data processing. The energy at a given circuit length is
obtained from the QSE lowest eigenvalue. By extracting the energy esti-
mate from QSE at different circuit lengths, we are able to apply the AEM
extrapolation.

While simulating the output of these combinations, we encountered
that the lowest eigenvalue goes below the exact solution of the hydrogen
molecule. As discussed in the first chapter, the variational principle en-
sures E(~θmin) ≤ E0. Hence, the result obtained does not have any physical
value as it no longer corresponds to our problem Hamiltonian. Further-
more, at some bond distances the generalized eigenvalue problem can not
be solved because the overlap matrix C can be made non-positive by nu-
merical error.

In order to overtake these issues, we tried to eliminate the columns
that broke the non-positivity of C. This translated into a reduction of the
Hilbert space that no longer contained the ground state energies, but only
excited states. As a future work, we want to solve this problem by project-
ing onto the positive sector of the overlap matrix.
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3.5.3 Parity verification, QSE and AEM

As a final goal of this work, we simulate the combination of the three meth-
ods, aiming to push the error of the dissociation curve significantly below
the chemical accuracy (CA) threshold.

The implementation requires us to obtain the optimized angles ~θmin
from the parity verification measurement. Such angles are then used to
calculate the estimate energy from the QSE protocol. This becomes the
ground state energy at a given circuit length. The final energy estimate
is obtained by repeating this for several circuit lengths, and getting the
error-free energy from the AEM protocol.

3.6 Results

In the rest of this chapter, we show the results of the application of the error
mitigation techniques to the hydrogen molecule quantum simulation.

In figure 3.3, we present the error with respect to the exact dissociation
curve of a single mitigation technique. The orange dots represent the noisy
experiment without error reduction.

From this plot, one already notices that QSE (purple stars) does not
provide a significant improvement over the initial result. Furthermore,
around R = 0.5Å the error shows a kink that goes above the bare VQE
experiment. This is unexpected because one would assume that the low-
est eigenvalue of the extended Hamiltonian will be smaller of equal to the
reference ground state. A possible explanation is that the additional ex-
pectation values calculated from the optimal angles are more noisy than
QSE is capable of correcting. However, a more rigorous study is required
to understand the possibilities of QSE as a noise cancellation protocol.

The parity verification measurement (green stars) shows a remarkable
improvement of more than an order of magnitude in the short inter-atomic
distances, reaching points below the chemical accuracy (CA) (solid red
line). However, for intermediate and large bond distances, the error in-
creases by almost an order of magnitude. Such a large deviation in the
curve is understood by the fact that for short distances our errors are
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mainly caused by the T1 channel, or bit-flips. By verifying the parity, we
are signaling these bit-flips, and thus we are able to eliminate them.

By contrast, at large distances bit-flips are not the only errors disturbing
the computation. While we can correct the remaining T1-related errors,
we are largely affected by dephasing due to T2 decay. The reason is that
larger bond lengths require more entanglement between the qubits, thus
exposing the system to such noise channels. As proof, in figure 3.4 we
show the expectation values of the individual terms of the two-qubit hy-
drogen Hamiltonian. Here, one can see that the 〈XX〉 = 〈YY〉 ∼ 0 for
short distances, while 〈ZI〉 and 〈IZ〉 are at their maximum value. When
the distance between hydrogen atoms gets larger, 〈ZI〉 , 〈IZ〉 tend to 0, but
〈XX〉 = 〈YY〉 ' −1. Hence, more entanglement is required to accurately
measure these expectation values.

The last curve on figure 3.3 (brown stars) shows the error in the energy
from the AEM protocol, as described previously. This is approximately the
error in our calculation in the absence of decoherence. By only applying
AEM in our experiment, we reduce the error from the initial experiment
by an order of magnitude, putting the simulation below CA for the entire
dissociation curve. The reason for AEM to give such an improvement is
that transmon qubits are coherence-limited, thus the time to implement a
circuit is the main noise channel.

We continue by presenting the combination of two techniques in fig-
ure 3.5 (purple and brown triangles). As previously discussed in this chap-
ter, the combination of QSE and AEM have not been successful, and we do
not include it in the figure.

By looking at the curve of PV and QSE (purple triangles) one notices
that the correction is similar to the one given by PV alone. Again, at large
bond distances dephasing is the dominant error channel and neither PV
nor QSE are able to mitigate it. This simulation also suggests that PV and
QSE mitigate similar noise channels.

If now we focus our attention at the PV and AEM plot (brown triangles),
we observe that AEM allows us to suppress errors by almost two orders of
magnitude with respect to the starting simulation. Remarkably, the three
AEM curves show a similar error trend, steadily increasing with bond dis-
tance and flattening towards the end. This can be seen as AEM being the
method that mitigates most of the errors.
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Figure 3.3: Comparison of one mitigation technique with respect to the bare VQE
experiment.
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Figure 3.5: Energy error without mitigation and with two and three mitigation
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Finally, in figure 3.5 we show the result of combining the three mitiga-
tion strategies (green crosses). We observe that the curve fully overlaps
with the one of PV and AEM . This shows that QSE no longer suppresses
any errors, and only parity verification and AEM are able to mitigate them.

The results seen previously suggest two relevant considerations to be
made when planning VQE experiments:

1. Stacking several layers of mitigation does not guarantee a more ac-
curate result.

2. Before running an experiment, it is important to balance between er-
ror reduction and the experimental cost of implementing these schemes.
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Chapter 4
Conclusions and outlook

In this thesis we have modeled a quantum simulation experiment for the
hydrogen molecule using a VQE algorithm to compare three error mitiga-
tion techniques. We have used a density-matrix quantum simulator that
allows us to introduce a realistic error model based on the current state-of-
the-art quantum hardware. Moreover, we have developed a new strategy
to signal and eliminate errors that violate physical restrictions of the prob-
lem under study. We have further explored existing noise suppression
schemes, and analyzed two of them: quantum subspace expansion and
active error minimization.

Two main results have been obtained from this work. Firstly, we have
estimated the performance of the VQE experiment on an existing device.
We have shown that in the absence of error mitigation, it is not possi-
ble to achieve a reliable result on the dissociation curve of the hydrogen
molecule. Secondly, we have explored the capabilities of the same ex-
periment in combination with three error mitigation strategies. We have
shown that near-term quantum devices can provide accurate solutions
without requiring full quantum error correction.

The error mitigation strategies developed and used in this work are cur-
rently being implemented in a quantum simulation experiment in DiCarlo
lab at TU Delft. As a follow up of this project, we are interested in develop-
ing tools to assist VQE algorithms, for instance a Bayesian estimator that
can reduce the number of measurements needed to reach accurate results.
Additionally, we aim to find new ways of reducing the error bars of VQE
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and other quantum algorithms by applying existing, or newly developed
error mitigation schemes.

Moreover, we would like to extend the conclusions of this thesis to study
larger systems. Solving them will most likely require the assistance of
classical computers in the upcoming generation of noisy devices. Hence,
adapting and creating new hybrid algorithm is also very appealing for
the future. Ultimately, we aim to elucidate the necessary requirements to
achieve “quantum chemistry supremacy” before the quantum error cor-
rection era.
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Appendix A
Matrix representation of gates

Here we show the matrix representation of the gate set used throughout
the text.

Pauli rotations

Rx(θ) =

 cos
(

θ
2

)
i sin

(
θ
2

)
i sin

(
θ
2

)
cos
(

θ
2

)  (A.1)

Ry(θ) =

 cos
(

θ
2

)
sin
(

θ
2

)
− sin

(
θ
2

)
cos
(

θ
2

) (A.2)

Rz(θ) =

cos
(

θ
2

)
+ i sin

(
θ
2

)
0

0 cos
(

θ
2

)
+ i sin

(
θ
2

) (A.3)

Specific Pauli rotations

Rx

(π

2

)
=

1√
2

[
1 i
i 1

]
(A.4)
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Ry

(π

2

)
=

1√
2

[
1 1
−1 1

]
(A.5)

Ry(π) =

[
0 1
−1 0

]
(A.6)

Two-qubit Gates

iSwap(θ) =


1 0 0 0
0 cos θ i sin θ 0
0 i sin θ cos θ 0
0 0 0 1

 (A.7)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (A.8)

In a real experiment a CNOT gate is decomposed as:

CNOT = [I ⊗ Ry(−
π

2
)] · CZ · [I ⊗ Ry(

π

2
)] (A.9)

Where the new matrices take the following form:

I ⊗ Ry(−
π

2
) =

1√
2


1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

 (A.10)

I ⊗ Ry(
π

2
) =

1√
2


1 1 0 0
−1 1 0 0
0 0 1 1
0 0 −1 1

 (A.11)
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CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (A.12)
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