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Abstract

In this thesis, the necessary elements to build up a quantum switch, the
central element in a quantum random access memory, are proposed and

analyzed. A network with quantum switches at its nodes forms the
bifurcation path that leads an address register from a root node to an

array of memory cells, activating, quantum coherently, only the quantum
switches that the register encounters in its path to the memory cells.
Transmon qubits and SQUIDs are used to design a superconducting
device capable of routing a register of microwave photons through a

bifurcation network, allowing for superposition of paths. In order to give
rise to all the required interactions between the device and the address
register, a non-linear capacitor, composed of two plates with carbon
nanotubes in between, is introduced into the transmon. The dynamic

operation of the quantum switch is analyzed using Langevin equations
and a scattering approach, and probabilities of reflection and

transmission of photons by (or through) the switch are computed, both
for single- and two-photon processes. Computations show that, with

parameters taken from up-to-date similar devices, probabilities of
success are above 94%. Applications of quantum random access
memories are discussed, as well as other applications of quantum

switches. Also, solutions are proposed to the challenges that emerge
during the study of the dynamics of the quantum switch.
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Chapter 1
Introduction

1.1 Quantum information processing
With the latest advances in experimental quantum computation [1–10], the forth-
coming development of a quantum computer seems just a matter of time. Im-
provements have been made in the field of superconducting qubits, where some
authors [1] have realized a two-qubit superconducting processor with which they
have implemented, with great success, the Grover search and the Deutsch-Jozsa
quantum algorithms [11]. Another group [2] has implemented a three-qubit ver-
sion of the Shor’s algorithm [11] –within a circuit quantum electrodynamics ar-
chitecture– to factorize the number 15. Also with trapped ions [3], quantum al-
gorithms involving very few qubits have been realized. New advances in this
field admit to scale the quantum processor from 10 to 100 qubits, allowing the
implementation of quantum simulations in a regime where its classical counter-
part fails [4]. Within quantum optics implementation of quantum algorithms to
factorize (small) numbers [5] and to solve systems of linear equations [6] us-
ing a two-qubit quantum processor have been demonstrated. One of the bene-
fits of working with optical quantum systems is that they can naturally integrate
quantum computations with quantum communication[12]. A lot of research, with
promising outcomes due to the atom-like properties of the elements in a solid-
state device [7], is being conducted in the field of condensed matter, where some
authors are working with high-fidelity two-qubit gates [8]. They have also been
able to create a multi-qubit register, an indispensable element for implementing
a quantum-error-correction protocol [8]. The Grover’s quantum search algorithm
has also been proven in these systems [9]. A solid-state device fabricated using
NV (Nitrogen-vacancy) centers in diamonds has relatively long coherence times
–even at room temperature– and can be optically coupled to other systems [7].
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2 Introduction

It is even possible to combine these disciplines to create a hybrid device [10].
Though in all these cases only few qubits were considered, there is no reason
to believe that a larger device, capable of handling more inputs, cannot be con-
structed [4, 7, 13].

In any case, to perform quantum computations, a universal quantum computer
must be capable of storing information within quantum states to use it later in a
further stage of an algorithm and it must also have access to classical (or quantum)
data as a superposition of the entries. Examples of algorithms with these require-
ment are the Grover search [11] and the Deutsch-Jozsa [11] algorithms. For these
reasons, just like a classical computer needs a processor capable of doing classical
operations and a memory to keep and extract the data, a quantum computer also
needs some sort of RAM memory able to handle quantum information.

1.2 Why a quantum RAM? Quantum memory the-
ory

Any computer needs some memory device for storing or extracting information.
Given that current computers work with may bits, this device has to be composed
of multiple instances of “memory cells” where single bits can be stored. Nowa-
days, the device used for these purposes is a random access memory (RAM),
which is a device whose memory cells can be addressed at will (randomly) in-
stead of sequentially (like in a CD or a hard drive). This instrument [14] consists
of an array of memory cells, where the information (bits) is kept, and an electronic
circuit in a tree-like structure that routes an “address register” from a root node
–connected to the processor– to each of the memory cells, as shown in FIG. 1.1.
When the address register –which contains the instructions to reach the desired
memory cell– is sent to the memory device, a path through the tree-like circuit
that leads to the target cell is opened. Common RAM memories composed of
N = 2n memory cells require the manipulation of N− 1 nodes of the bifurcation
path.

In the quantum world, a memory cell can be a qubit with a long enough coher-
ence time [4, 7, 13], but when working with a multiple-qubits algorithm, a single
memory cell may not be enough. In these cases, a collection of memory cells with
a proper addressing scheme is needed. For algorithms such as the Grover search, a
memory –which may only contain a classical database– with a quantum address-
ing scheme is required. This memory is a device that returns a superposition of
the data hosted by some of its cells [11].

2
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1.2 Why a quantum RAM? Quantum memory theory 3
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Figure 1.1: A common random access memory can be schematically represented with
this diagram [14]. This diagram contains a root node in the 0th level that bifurcates into
two transmission lines (solid gray). A switch at every node (black) decides which path
leads to the chosen memory cell and which paths remain unconnected.

An interesting architecture (the bucket brigade architecture) for a quantum
random access memory (QRAM) was proposed by Giovannetti, Lloyd and Mac-
cone [15]. It consists of a device similar to FIG. 1.1 but with quantum switches at
the nodes. These quantum switches are elements that can be in three states, one
of them being a ground state and the other two being excited states. The ground
state is the wait state: the path is closed. The other two excited states are either
left or right (open the path that goes to the left/right). Given the quantum nature
of the switch, it is also possible to prepare it in the state left and right.

Within this scheme, to evaluate a memory cell, an initial register is needed.
This register contains the instructions to reach the target cell: if the path from the
root node to the cell is root-left-left-right-left-right, then the first element of the
register contains left, the second contains left, etc. One more element in the regis-
ter is needed to interact with the content of the memory cells and bring back the
information it stores. When the register reaches the root node, the quantum switch
reads (and keeps) its first element and evolves from wait to left. The register con-
tinues (without its first element) to the second node and so on. After the register
has gone through all the nodes, a single element is left. This element reads the
content of the memory cell and is emitted back through the path that is still open.
If instead of a classically-defined register a quantum register with a superposition
of states is sent in, the output would be a superposition of the content of the mem-
ory cells evaluated.

A quantum generalization of a conventional RAM would require the manip-
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4 Introduction

ulation and entanglement of O(N) quantum switches whereas, with the bucket
brigade architecture only O(log(N)) switches must be thrown, thus reducing the
number of elements that have to be coherently entangled.

The benefits of working with a QRAM include the possibility of realizing
algorithms that require the manipulation of data in a superposition state and the
possibility of sending a query and receiving an answer with total anonymity: if
instead of a definite question (evaluation of a memory cell) a superposition of
questions is sent, an output with a superposition of answers will be sent back, and
only who has a complete knowledge of the original question can extract the right
answer out of the output [16].

1.2.1 Quantum memory implementation

The most important element of a QRAM, that makes it different from any other
device capable of storing information, is the quantum switch that routes the in-
coming register through the right path to the memory array. This element can in
principle be realized with many different elements, but only a solid-state imple-
mentation, using superconducting qubits, will be discussed. This choice has been
made based on the simplicity of its structure –it is analytically tractable and easy
to fabricate– and the apparently small probability of errors, as various authors
show in their single-photon transistors based on circuit quantum electrodynamics
(cQED) [17, 18] or nanoscale surface plasmons [19]. A superconducting-based
device can be combined with other systems, such as diamonds [10], etc.

The other basic element of a memory, the array of memory cells, can be re-
alized in multiple ways –it can be a quantum device or a classical memory with
only classical information– without affecting the dynamics of operation described
previously and it is not in the focus of this project.

Thus, the device to be developed must absorb the first element of a register
composed of photons –microwave photons, since these are the kinetic elements
in cQED systems– and route the rest of the photons, independently of their state,
according of the state of the absorbed photon.

1.3 Other attempts

Different approaches have been proposed by [20] for building a QRAM such as an
optical implementation, using polarized photons and trapped atoms. Also a phase

4
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1.4 Thesis outline 5

gate implementation, using phase shifters (e.g. superconducting qubits) and mi-
crowave photons is discussed in the same paper [20]. Alternatively, the authors
propose to use multilevel atoms controlled by lasers to induce Raman transitions
so they absorb and emit photonic registers. Other alternatives have been proposed,
such as using a beam splitter based on Superconducting Quantum Interference De-
vices (SQUID) to route some photons carrying the information through the desired
path [21]. Others propose to use toroidal resonators as quantum switches [22].

Regarding the beam splitters (BS), there has been some research too. In ref-
erences [23–25] the authors use cQED devices to act as BS in a way such that
there are two incoming photons through two different transmission lines and the
BS sends the input photons to one of the outgoing transmission lines, or both,
creating an entangled state or just separating even modes from odd modes. This
option is in disagreement with the structure of a QRAM (or a RAM) because there
is a single incoming transmission line that bifurcates several times, whereas the
authors consider multiple incoming transmission lines. The authors in [26] have
designed a beam splitter that separates an incoming photon into even and odd
modes. This design is not useful either because once the modes have been sep-
arated the beam cannot be split again, thus it is not possible to create a tree-like
structure with more than one node. Finally, other authors [27] have designed a
device that can send a photon to one transmission line or another depending on its
frequency. With this device, a photon that goes to the left in one node will go to
the left in all the successive nodes as well, so it may not be a good option because
the only two memory cells accessible from the root node would be the rightmost
node and the leftmost node.

1.4 Thesis outline
During this project I have proposed and analyzed the necessary elements to build
up a quantum random access memory with the architecture proposed by Giovan-
netti et al. in [15]. Transmon qubits and SQUIDs are used to design a multi-
level system, mimicking artificial atoms with non-linear energy levels, capable of
routing a register from the root node to the target cell minimizing the quantum
decoherence processes. The register is sent via microwave photons through su-
perconducting waveguides (transmission lines).

In the second chapter I introduce all the necessary elements to construct a
quantum switch that satisfies the requirements needed to route a register of pho-
tons through the desired path. A lightweight analysis of the proposed device is
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6 Introduction

conducted to check that no more elements are needed and that the switch can, in
principle, work as expected. A Lagrangian of the system is derived in this section.
In the third chapter, an in-depth analysis of the device is conducted. A Hamil-
tonian, derived from the Lagrangian, is quantized and the equations of motion,
containing relaxation and dephasing elements, are obtained. The fourth chapter
contains the calculation of scattering amplitudes and probabilities of reflection and
transmission processes involving one and two photons. Numerical calculations,
with realistic parameters, are carried out to check the performance of the quantum
switch. The dynamics of operation of this device is derived in this chapter. The
possibility of implementing this element into a quantum random access memory
is treated in the chapter 5. The sixth chapter contains an interesting discussion of
the possibilities of the quantum switch beyond a QRAM.

In the appendices, the reader will find the derivation of some of the formulas
and also a review of some (failed) attempts to study the dynamics of operation of
the quantum switch.

6
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Chapter 2
The Quantum Switch as a central
element

2.1 A first guess
In order to find the right elements that compose a quantum switch it is convenient
to write down a basic Hamiltonian containing all the necessary terms to gener-
ate the desired interaction. Once the Hamiltonian has been set, we can proceed
to find the physical elements –capacitors, inductors, Josephson junctions or other
elements of cQED systems– corresponding to each term of the Hamiltonian. To
make this process simpler, let us first consider the case where only one incoming
transmission line and only one outgoing transmission line are present. This sim-
plified quantum switch has to decide whether the incoming photons (the address
register) can be transmitted or not.

As explained before, the address register consists of an array of photons. Each
of the photons can be in two states (or a superposition) that tells the quantum
switch in which directions the other photons of the register have to be forwarded.
These states are defined by the energy of the photons.

The system has to be composed of two artificial “atoms” T and S. The first
atom, the control element, absorbs a photon from the incoming transmission line
and, depending on the state of the photon, decides whether the other photons will
be transmitted through S to the outgoing transmission line or be reflected. The
reason for using exactly two elements T and S is simple: the first photon has to be
always absorbed by a control element (T ), while the other photons are absorbed
by S and emitted back into the incoming transmission line or transmitted through
S, depending on the state of T . To achieve this goal, the Hamiltonian must contain
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8 The Quantum Switch as a central element

kinetic terms describing the energy of the levels of T and S

H0 = ωT 1a†
T 1aT 1 +ωT 2a†

T 2aT 2 +ωS1a†
S1aS1 +ωS2a†

S2aS2. (2.1)

In this equation, a†
T 1 and a†

T 2 are the ladder operators that excite the levels of T .
a†

S1 and a†
S2 are the ladder operators that excite the levels of S. Since the photons

can only be in two states, with energies ωT 1 and ωT 2, I have only considered the
two lowest energy levels of T and S. The energies of the levels satisfy ωT 1 < ωT 2
and ωS1 < ωS2. I have also chosen ωT 2−ωT 1 6= ωT 1 to make sure that it is not
possible to excite the second level of T (ωT 2) by sending two photons with energy
ωT 1 each. If that were the case, the control element would absorb also the second
photon of the register instead of forwarding it. Moreover, there has to be an extra
term that, in case that the levels of T are occupied, enforces a shift in the energies
of S, so they can be excited by incoming photons with energies ωT 1 and ωT 2.

HJ =− J11a†
T 1aT 1a†

S1aS1− J12a†
T 1aT 1a†

S2aS2

− J21a†
T 2aT 2a†

S1aS1− J22a†
T 2aT 2a†

S2aS2. (2.2)

The elements with Ji j decrease the energy of the j-th level in the S atom when the
i-th level in the T atom is occupied. I have also included a term that couples T
and S to the transmission lines. Actually this term has to couple T and S to the
incoming transmission line and only S to the outgoing transmission line, because
the photon absorbed by T must not be transmitted.

Hc =
a†

T 1bω√
πτ

+
a†

T 2bω√
πτ

+
a†

S1bω√
πτ

+
a†

S2bω√
πτ

+
a†

S1cω√
πτ

+
a†

S2cω√
πτ

+h.c. (2.3)

Here b and c are the frequency-dependent ladder operators for the incoming and
outgoing transmission lines, respectively. A momentum integral should be in-
cluded in this expression to account for all the possible momenta an incoming (or
outgoing) photon can have. The coupling constant, which in this simple case I
make the same for all the possible processes, has this form to show its explicit
dependence on the lifetime τ of the atomic excitations. This equation shows how
a photon (b or c) is absorbed (and emitted) by the T or S atom-like elements.

This Hamiltonian can be realized by using a transmon qubit coupled to an
incoming transmission line for T ; and a SQUID coupled to the same incoming
transmission line together with the transmon and also coupled to an outgoing
transmission line for S [28, 29]. This device is shown in FIG. 2.1. The Hamilto-
nian that describes this system is found by performing a Legendre transformation
of its Lagrangian (for a derivation of the Lagrangian and also the Hamiltonian see
Appendix A).

8
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2.1 A first guess 9
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ϕ2
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Figure 2.1: A candidate for a device whose Hamiltonian contains all the desired inter-
actions could be this system composed of a transmon qubit (blue box) with Josephson
energy Et and a SQUID (green box) with Josephson energy Es. They are capacitively
coupled to an incoming transmission line with potential V1 and an outgoing transmission
line with potential V2. At each node of the circuit a flux can be defined. These are the
dynamical variables of the system.

L =
C1

2
(ϕ̇1−V1)

2 +
C2

2
(ϕ̇2−V2)

2 +
Cs

2
(ϕ̇1− ϕ̇2)

2 +
Ct

2
ϕ̇

2
1

+Etcos
(

ϕ1

ϕ0

)
+Escos

(
ϕ1−ϕ2

ϕ0

)
, (2.4)

H =
1
2γ

(
p2

1 +
C1 +Cs +Ct

C2 +Cs
p2

2 +
2Cs

C2 +Cs
p1 p2

+2C1V1 p1 +2
C2Cs

C2 +Cs
V2 p1

+2C2
C1 +Cs +Ct

C2 +Cs
V2 p2 +2

C1Cs

C2 +Cs
V1 p2

)
−Et cos

(
ϕ1

ϕ0

)
−Es cos

(
ϕ1−ϕ2

ϕ0

)
, (2.5)

where ϕ0 = h̄/2e is the flux quantum divided by 2π , p1 and p2 are the conju-
gate momenta of ϕ1 and ϕ2 and γ = C1 +Ct +

CsC2
Cs+C2

. This Hamiltonian contains
four terms (second and third lines) that describe the coupling between the trans-
mon and the SQUID and the transmission lines. By choosing the right values of
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10 The Quantum Switch as a central element

the capacitances it is possible to weaken the interaction between the transmon and
the outgoing transmission line (V2), so the photons absorbed by the transmon are
never transmitted forward. From the cosines it is possible obtain HJ after expand-
ing them in a Taylor series and quantizing the fluxes∗.

Let me now analyze with more detail the Eq. (2.1, 2.2, 2.3). a†
T 1 excites the

first level of a multilevel system, whereas a†
T 2 excites a second –or higher– level.

These are given by a ladder operator and some power of ladder operators, re-
spectively. This means that, before quantizing the Hamiltonian, there should be
different powers of the momenta or the fluxes ϕ1 and ϕ2 –such as p4

1 or ϕ4
1 ; these

may come from the cosines– and also powers of the fluxes times the potential,
such as p3

1V1
†, that describe how the highest energy level of the transmon (or the

SQUID) is excited directly from the ground state with a single photon. These last
elements are not in the Hamiltonian derived from (2.4).

2.2 The need for a non-linear element
A Hamiltonian that describes a transmission line coupled to the third level of a
transmon –a transmon whose higher energy levels can be excited by the absorp-
tion of a single photon, without the need to go through all the lower levels– must
contain either p3

1V1 or ϕ3
1V1. Alternatively, it can contain a function with e.g.

p1 +V1 in its argument such that its Taylor expansion gives rise to the desired
interaction.

In cQED circuits there are typically two kinds of elements: capacitive ele-
ments, whose energy depends on the derivative of fluxes and on potentials; and
inductive elements, whose energy depends only on the fluxes, such as inductors
or Josephson junctions [29]. An inductive element cannot depend on ϕ−V ‡, the
element to be introduced in the system has to be a capacitive element. If this is
a capacitor whose capacitance is a non-linear function of the potential –and its
energy is not a quadratic function of the potential–, the Hamiltonian may contain
a function that depends on ϕ̇ and V and whose Taylor expansion will give rise to
the desired terms§.
∗See Appendix A
†The Hamiltonian must contain even powers of operators to ensure that the energy is con-

served (bounded from below). Thus, the coupling to the transmission lines is given by p3
1V1. This

means that the third –and not the second– level of the transmon (or the SQUID) is coupled to the
transmission lines. This coupling is obtained in Chapter 3.

‡This follows from the Kirchhoff’s circuit laws and the dependence of the current on the flux
and momentum for the different inductive elements [30].

§If the energy of the capacitor is not a quadratic function of the potential, then the Legendre

10
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2.2 The need for a non-linear element 11

Non-linear capacitors are not common in this kind of circuits, but they have
been studied for decades. In the related literature capacitors with two different
non-linear behaviors can be found. Some of them are made of ferroelectric thin
films or ferroelectric ceramics and show a capacitance that decreases with the
applied voltage [31–33]. Others show a capacitance that increase with the volt-
age, such as those made out of antiferroelectric materials [34] or semiconductor
devices that, under some conditions, behave as non-linear capacitors due to the
presence of a space charge near a junction [35].

There is another well studied semiconductor device that show both behaviors:
the MOS capacitor. Depending on whether it is a p-type or a n-type MOS, it will
exhibit a capacitance that increases or decreases with the voltage [36–38].

Some work has been done on the quantum level as well. The capacitance due
to the presence of quantum wells in heterojunctions gives rise to a strong non-
linear behavior of the capacitor, whose capacitance drops off very fast with small
variations of the potential [39]. Another source of non-linear behavior is the finite-
ness of the density of states (DOS) in small devices. For a two-plate capacitor, this
gives rise to a capacitance that decreases for increasing potential [40]. But, if car-
bon nanotubes are placed between the plates of the capacitor, due to the finiteness
of the DOS of the nanotubes the capacitance will increase with small variations of
the potential [41, 42].

In the model I propose I am using a non-linear capacitor with a behavior sim-
ilar to the last one. For simplicity I have used a curve for C(V ) (capacitance as a
function of the potential across the plates of the capacitor) only valid near V → 0,
given that only (small) quantum fluctuations of V have been considered. The ca-
pacitance as a function of the potential I have used is

C(V ) =C0 +C1V 2. (2.6)

If the chosen capacitor had a capacitance given by C(V ) = C0 −C1V 2 or
C(V ) = C0±C1V , the obtained Hamiltonian would not conserve energy. The
energy of a ferroelectric or a MOS capacitor, expanded in a Taylor series around
small V , is a function that is not bounded from below. With these capacitors, the
Hamiltonian drives the system to a region with large values of V . In this new do-
main, the Taylor expansion is no longer a valid approximation, so it does not make
sense to consider only small potentials. The only way to obtain a Hamiltonian that

transformation may give rise to a non-quadratic function of the potential whose Taylor expansion
gives terms with higher powers of the momentum.
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12 The Quantum Switch as a central element

does not contain terms such as a† or a†a†a (odd powers of the momentum or the
flux) is to use Eq. (4.33) for the voltage dependence of the capacitor, leading to an
energy function of the form

E(V ) =
C
2
(
V 2 +αV 4) . (2.7)

As will be shown later on (Section 2.5), the odd energy levels of a transmon
constructed with this capacitor are coupled to the transmission lines, whereas the
even levels are not. It is only possible to excite an even level if an odd (inferior)
level had been excited first.

2.3 A multilevel device using non-linear capacitors

Consider the system shown in FIG. 2.2. It contains the three required transmission
lines. This device is composed of a transmon qubit with a non-linear capacitor and
two SQUIDs with linear capacitors. I have not included non-linear capacitors on
the SQUIDs because they would make impossible to perform the Legendre trans-
formation of the Lagrangian analytically. Moreover, with one non-linear capacitor
is enough to generate all the desired interactions. Using Eq. (2.7) for the energy
of the nonlinear capacitor in the transmon, the Lagrangian of this system reads

L =
C1

2
(ϕ̇1−V1)

2 +
C2

2
(ϕ̇2−V2)

2 +
C3

2
(ϕ̇3−V3)

2

+
Cs2

2
(ϕ̇1− ϕ̇2)

2 +
Cs3

2
(ϕ̇1− ϕ̇3)

2 +
Ct

2
(
ϕ̇

2
1 +αt ϕ̇

4
1
)

+EJt cos
(

ϕ1

ϕ0

)
+EJ2 cos

(
ϕ1−ϕ2

ϕ0

)
+EJ3 cos

(
ϕ1−ϕ3

ϕ0

)
. (2.8)

Despite the presence of the nonlinear equation, the Hamiltonian can be con-
structed analytically with the conjugate momenta p1, p2 and p3 and the fluxes
defined, as a function of the momenta, as

ϕ̇1 =
21/3γ

f (x)
− f (x)

21/3β
(2.9)

ϕ̇2 =
p2 +C2V2 +Cs2ϕ̇1

C2 +Cs2
(2.10)

ϕ̇3 =
p3 +C3V3 +Cs3ϕ̇1

C3 +Cs3
, (2.11)

12
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2.3 A multilevel device using non-linear capacitors 13
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V3

V2
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Cs3

EJ2

EJt

EJ3

C3

Ct

ϕ3

ϕ1

ϕ2

C1

Figure 2.2: This system contains one incoming (V1) and two outgoing (V2, V3) transmis-
sion lines. It is composed of a transmon with a non-linear capacitor (Ct) and two SQUIDs
with linear capacitors (the symbol used for the non-linear capacitor is also a commonly
used symbol for capacitors, especially in the US, but is not the generic).

with

f (x) =
(
−3β

2x+
√

4β 3γ3 +(3β 2x)2
)1/3

(2.12)

β =6Ctαt (2.13)

γ =C1 +Ct +
C2Cs2

C2 +Cs2
+

C3Cs3

C3 +Cs3
(2.14)

x =p1 +C1V1 +
Cs2

C2 +Cs2
(p2 +C2V2)+

Cs3

C3 +Cs3
(p3 +C3V3) . (2.15)

The resulting Hamiltonian contains the function f (x), which is not an easy
function to work with. Instead I have expanded the Hamiltonian in a Taylor series
in x. Since the Hamiltonian must contain interactions such as a coupling between
the third level of the transmon and the third level of the SQUID, a term containing
three times a†a for the transmon and three times a†a for the SQUID should appear
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14 The Quantum Switch as a central element

in the equation, i.e., a product of up to twelve momenta (each of them contains
one ladder operator, and a total of 12 is needed). To obtain this term, the Taylor
expansion of the Hamiltonian goes up to the twelfth order:

H =
p2

2 +2p2C2V2−Cs2C2V 2
2

2(C2 +Cs2)
+

p2
3 +2p3C3V3−Cs3C3V 2

3
2(C3 +Cs3)

−
C1V 2

1
2

+
x2

2γ
− βx4

12γ4 +
β 2x6

18γ7 −
β 3x8

18γ10 +
11β 4x10

162γ13 −
91β 5x12

927γ16

−EJt cos
(

ϕ1

ϕ0

)
−EJ2 cos

(
ϕ1−ϕ2

ϕ0

)
−EJ3 cos

(
ϕ1−ϕ3

ϕ0

)
. (2.16)

After replacing x by the expression in Eq. (2.15), the Hamiltonian contains
V 2

1 p2
1, V 3

1 p2, etc, which describe the process where one or several transmon states
decay into more than one photon in the transmission lines or several photons are
absorbed by the transmon at the same time. These processes must be eliminated.
To do so I have expanded the Hamiltonian in a power series of V1, V2 and V3 and
I have checked under what conditions on the capacitances terms of order O(V 2)
can be omitted (C1, Cs2, Cs3 smaller that C2, C3).

Next I have also also expanded the Hamiltonian in Eq. (2.16) for p1, p2 and
p3, keeping only the largest terms, up to order O(p6) –that is, keeping p6

1 and also
p6

1 p6
2. The final equation can be separated in six parts, each of them describing a

different behavior. The first equation, H1, contains even powers of the momenta
and the fluxes without mixing them. From this expression, the Hamiltonian de-
scribing the energy of the levels can be derived.

H1 =
1
2γ

p2
1 +

(
1

2(C2 +Cs2)
+

C2
s2

2(C2 +Cs2)2γ

)
p2

2

+

(
1

2(C3 +Cs3)
+

C2
s3

2(C3 +Cs3)2γ

)
p2

3

− β

12γ4 p4
1−

C4
s2β

12(C2 +Cs2)4γ4 p4
2−

C4
s3β

12(C3 +Cs3)4γ4 p4
3

+
β 2

18γ7 p6
1 +

C6
s2β 2

18(C2 +Cs2)6γ7 p6
2 +

C6
s3β 2

18(C3 +Cs3)6γ7 p6
3

− (EJt +EJ2 +EJ3)cos
(

ϕ1

ϕ0

)
−EJ2 cos

(
ϕ2

ϕ0

)
−EJ3 cos

(
ϕ3

ϕ0

)
. (2.17)

The cosines have been conveniently separated using trigonometrical identities
and placed inside the different expressions that conform the Hamiltonian, accord-
ing to the physical processes they describe. The second part of the Hamiltonian

14
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2.3 A multilevel device using non-linear capacitors 15

describes the coupling between the energy levels. It contains products of even
powers of the momenta and also the fluxes:

H2 =
3

∑
i=1
j>i

3

∑
m=1

3

∑
n=1

Ai jmn p2m
i p2n

j

−EJ2

(
cos
(

ϕ1

ϕ0

)
−1
)(

cos
(

ϕ2

ϕ0

)
−1
)

−EJ3

(
cos
(

ϕ1

ϕ0

)
−1
)(

cos
(

ϕ3

ϕ0

)
−1
)
. (2.18)

The coefficients Ai jmn can be found in the Appendix B. The interaction with the
transmission lines, also obtained by expanding the Hamiltonian in Eq. (2.16), is
described by

H3 =

(
C1V1 +

Cs2C2V2

Cs2 +C2
+

Cs3C3V3

Cs3 +C3

)
1
γ

p1

−
(

C1V1 +
Cs2C2V2

Cs2 +C2
+

Cs3C3V3

Cs3 +C3

)(
β

3γ4

)
p3

1

+

((
C1V1 +

Cs2C2V2

Cs2 +C2
+

Cs3C3V3

Cs3 +C3

)(
Cs2

(Cs2 +C2)γ

)
+

C2V2

(Cs2 +C2)

)
p2

−
(

C1V1 +
Cs2C2V2

Cs2 +C2
+

Cs3C3V3

Cs3 +C3

)(
β

3γ4

)(
Cs2

Cs2 +C2

)3

p3
2

+

((
C1V1 +

Cs2C2V2

Cs2 +C2
+

Cs3C3V3

Cs3 +C3

)(
Cs3

(Cs3 +C3)γ

)
+

C3V3

(Cs3 +C3)

)
p3

−
(

C1V1 +
Cs2C2V2

Cs2 +C2
+

Cs3C3V3

Cs3 +C3

)(
β

3γ4

)(
Cs3

Cs3 +C3

)3

p3
3. (2.19)

This expression shows that only the odd levels of the transmon (and the SQUIDs)
are coupled to the transmission lines. For another choice of the capacitance be-
havior a different system may be obtained, e.g., a system that couples also the
even levels of the transmon with the transmission lines¶.

In the present system, there is also a term (H4) that describes an exchange
interaction between the transmon and the SQUIDs‖.

¶But within these Hamiltonians, other terms that do not conserve the energy and the particle
numbers would emerge.
‖All these expressions are obtained by expanding the x variables [defined in Eq. (2.15) together

with the cosines] inside the Hamiltonian in Eq. (2.16).
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16 The Quantum Switch as a central element

H4 =
3

∑
n=1

3

∑
m=1

(
B2nm p2n−1

1 p2m−1
2 +B3nm p2n−1

1 p2m−1
3

)
−EJ2 sin

(
ϕ1

ϕ0

)
sin
(

ϕ2

ϕ0

)
−EJ3 sin

(
ϕ1

ϕ0

)
sin
(

ϕ3

ϕ0

)
. (2.20)

Again, the coefficients B2nm and B3nm are found in the Appendix B. The Hamil-
tonian H5, displayed in Eq. (B.1), describes processes such as the annihilation of
two excitations of the transmon and the creation of an excitation on one SQUID
and an outgoing photon in the transmission lines. In such processes, the informa-
tion contained in the photons is lost.

Finally, there is another expression that contains SQUID-SQUID and SQUID-
SQUID-transmon exchange interactions. This expression is not included in the
thesis due to its extension, but is not a relevant expression because a slightly dif-
ferent system will be introduced (in the following sections) that do not present this
interactions. In the previous expressions the terms describing only the transmis-
sion lines have been omitted. They will be included a posteriori.

Although it contains the terms that are required for a quantum switch, this
Hamiltonian presents some problems:

a) One of them is the Hamiltonian H4. Within this expression, the sine functions
can be tuned to make them cancel some of the terms, but not all of them. There
are some undesired interactions left.

b) Another problematic expression is H5. According to this expression, an exci-
tation in the SQUID can decay into a lower excitation of the transmon plus an
outgoing photon in the transmission lines. In this case, the outgoing photon
would lose the information it contained and the device would not work prop-
erly due to the presence of an excitation where it should not be. The interaction
strengths of these processes are too large –compared to those of H3– to neglect
them.

c) Finally, the SQUID-SQUID and SQUID-SQUID-transmon exchange interac-
tions also threaten to give important errors. During the process of transmission
of a photon it is important to control exactly which levels are excited and which
are not.

The solution to these problems necessarily involves finding some variation of
the circuit shown in FIG. 2.2 that cancels –or minimizes– H4 and H5 but preserves

16
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2.4 Frequency filters in the transmission lines 17

H1, H2 and H3 because these describe the correct operation of the quantum switch
I am looking for. These solutions could be:

i) Regarding H4, I can get rid of it by introducing some inductive elements
between the SQUIDs, such as a pair of Josephson junctions or a coil. The
Hamiltonian of these elements contains a cosine of the fluxes ϕ2−ϕ3 (in the
case of a Josephson junction) whose Taylor expansion will cancel H4.

ii) The Hamiltonian H5, on the other hand, is more tricky. Imagine that a photon
is sent to the switch. This photon can have energies ω1 or ω2. I am only
interested in two processes –considering now that there is only one outgoing
transmission line– namely: either the incoming photon with frequency ω1
(ω2) is absorbed and reflected back with energy ω1 (ω2) or it is absorbed and
transmitted forward with energy ω ′1 (ω ′2). The expression H5 describes other
possibilities such as the emission of a photon with energy ω ′′1 < ω ′1 with the
subsequent loss of information because it is not possible to know what was
the previous state of the photon before the interaction took place and is also
not possible to know what interaction took place. To avoid these processes
some kind of filters can be introduced in the transmission lines such that
they only accept photons that have the right energy. In this way the processes
contained in H5 cannot happen. Special care has to be taken when introducing
these new elements because they may modify the entire Hamiltonian.

2.4 Frequency filters in the transmission lines

Different kinds of filters can be found in the electronics literature [43]. Some of
them contain resistors, other contain capacitors and inductors, etc. Given that the
cQED elements used in this work are capacitors and inductors, these are the filters
I am considering to use. The high pass LC filter, schematically drawn in FIG. 2.3
seems to be the adequate device: it does not allow photons with frequencies below
ω1 and photons with higher frequencies pass through.

The Hamiltonian describing the device in FIG. 2.3 is given by (see [30])

Hhp =
1

2(C1 +C2)
p2 +

C1V1

C1 +C2
p+

C2V2

C1 +C2
p

− C1C2

2(C1 +C2)
(V1 +V2)

2 +
ϕ2

2L
. (2.21)
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18 The Quantum Switch as a central element

Figure 2.3: Diagram of a high pass LC circuit containing two capacitors and an inductor.
At one end of the circuit (e.g., at the top) there is the whole quantum switch and at the
other end (bottom) there is one outgoing transmission line.

Once quantized it reads∗∗

Hhp,q = ω1a†a+
∫

d p

(
b†

1a+a†b1√
πτ1

+
b†

2a+a†b2√
πτ2

)
+
∫

d p p
(

b†
1b1 +b†

2b2

)
.

(2.22)

According to this Hamiltonian, when a photon (b†) with frequency ω < ω1
(ω1 is the threshold frequency) goes in it is reflected, because it cannot excite the
system. If the frequency is ω1, then it excites the system (a†) and it decays into
the outgoing transmission line. But if the frequency is larger than ω1, it cannot
transmit the whole photon: the information is lost.

Since the incoming photons may be in two different states, I need a cavity
with two resonant frequencies that routes the photons forward. For this purpose
a transmon or a system composed of two high pass LC filters can be used. In
case a transmon is used, this must contain a non-linear capacitance so any of its
energy levels can be selectively excited from the ground state. The problem with
using a transmon is that three levels have to be considered, and the three excited
levels may be coupled in the sense that an excitation in the third level can decay
into the second level and emit a low energy photon in the transmission line. Thus,
this does not solve the problems. Another problem that can arise when using a
transmon is that due to the interaction between the inductive and the capacitive
elements, the lifetime of its excited levels is larger than in the case of a simple
filter.

∗∗See Appendix A for the procedure followed for the quantization of a Hamiltonian.
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2.5 An alternative solution 19

Ca1 Cb1

Ca2 Cb2

La Lb

V1

V2

ϕa ϕb

Figure 2.4: Device proposed to act as a high pass filter. It will allow to transmit pulses of
two definite frequencies. A pulse coming from the transmission line 1 (V1) with frequency
ωa can excite the oscillator in the branch a and be transmitted into transmission line 2 (V2).
If the incoming photon has frequency ωb the same will happen with the other branch,
whereas if the frequency is neither ωa nor ωb, the pulse will not be transmitted.

On the other hand, when using a system of high pass LC filters like the one
shown in FIG. 2.4, with Hamiltonian

H f =
q2

a
2(Ca1 +Ca2)

+
q2

b
2(Cb1 +Cb2)

+
Ca1V1 +CaV2

Ca1 +Ca2
qa +

Cb1V1 +CbV2

Cb1 +Cb2
qb

− 1
2

(
Ca1Ca2

Ca1 +Ca2
+

Cb1Cb2

Cb1 +Cb2

)
(V1 +V2)

2 +
ϕ2

a
2La

+
ϕ2

b
2Lb

, (2.23)

the resulting device has two levels that do not interact with each other. Since it
does not contain a transmon inside, the lifetime of the excitations is small and
the photons are transmitted fast. Nevertheless, there is a drawback in this system
when compared to the transmon: in the transmon there is only one flux, whereas
here there are two. Two fluxes mean two “artificial atoms”. Two more atoms that
have to be coherently coupled to the rest of the system.

2.5 An alternative solution

I could introduce any of these two elements (transmon or high pass LC filter) into
the device, yielding a system with either five independent fluxes that represent
five multilevel atoms or seven fluxes representing three multilevel atoms plus four
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20 The Quantum Switch as a central element

two-level atoms††. In both cases there are lots of possible excited levels –coming
from the large number of fluxes and the large number of levels per atom– and thus,
lots of sources of decoherence. Moreover, if I introduce these extra elements, the
Hamiltonian will be modified, yielding a system where a photon has to interact
with many elements before it can be transmitted and, probably, other processes
that destroy the information contained in the photons may emerge from this new
Hamiltonian. In order to simplify the system but introducing some elements that
guarantee the proper operation of the quantum switch I propose a slightly differ-
ent design from that of FIG. 2.2. Instead of two multilevel SQUIDs I use four
modified high-pass filters. These elements, containing Josephson junctions in-
stead of coils, are two-level SQUIDs. The new system is shown in FIG. 2.5. This
reduction of the levels of the SQUIDs drastically reduces the amount of possible
interactions between the different energy levels that give, as an output, an out-
going photon with the “wrong” energy (i.e., an outgoing photon with an energy
different from that of the incoming photons. The device should not change the
energy of the photons).

This device contains one multilevel transmon with a non-linear capacitor and
four two-level SQUIDs. This translates into a flux with three excitations and four
more fluxes with just one excitation each, as will be shown in Section 3.1.

With this setup, when a photon is absorbed by the transmon, the energy levels
of the filters are modified due to the Josephson elements in the SQUIDs. With
regular inductors this would not happen because their energy do not contain high
enough powers of the fluxes involved in this interaction, as it is the case for the
SQUIDs [28–30]. I expect that when a second photon comes in –after the first is
absorbed by the transmon and the energy levels of all the SQUIDs are modified–,
it excites the only SQUIDd available and is decays into one of the outgoing trans-
mission lines. Since these SQUIDs are two-level systems, the information carried
by the photons will not be lost by the same mechanism as it was with the previous
design (see Section 2.3).

Now let us analyze the Hamiltonian for this device (FIG. 2.5). The Lagrangian

††Transmons and SQUIDs are always multilevel systems. Whenever the word multilevel is used,
it refers to a system where the higher energy levels can be excited directly from the ground state.
Moreover, the Hilbert space is conveniently limited and only the few energy levels needed are
considered. Therefore, when I talk about a two-level system, what I mean is that only the ground
state and the first excited state are considered, whereas the possibility of exciting higher levels is
neglected. Whenever I talk about multilevel systems I am referring to systems where the higher
energy levels are actually used.

20
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2.5 An alternative solution 21

V1
C1 ϕ1

EJt

Ct

C3sa C3sbEJ3a EJ3b

ϕ3a ϕ3b

C3a C3b

V3

V2

C2sa C2sbEJ2a EJ2b

ϕ2a ϕ2bC2a C2b

Figure 2.5: This is the diagram of a device with two filters in the outgoing branches,
containing two SQUIDs each. There are a total of five different fluxes –one at each node,
black circles–, instead of the three of the previous design (FIG. 2.2), but in this case only
the higher energy levels of the transmon are considered. I will treat the SQUIDs as two-
level systems because I am not interested in exciting their higher energy levels.
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22 The Quantum Switch as a central element

from which the Hamiltonian is derived is

L =
C2a

2
(ϕ̇2a−V2)

2 +
C2b

2
(ϕ̇2b−V2)

2 +
C3a

2
(ϕ̇3a−V3)

2 +
C3b

2
(ϕ̇3b−V3)

2

+
C2sa

2
(ϕ̇1− ϕ̇2a)

2 +
C2sb

2
(ϕ̇1− ϕ̇2b)

2 +
C3sa

2
(ϕ̇1− ϕ̇3a)

2 +
C3sb

2
(ϕ̇1− ϕ̇3b)

2

+
C1

2
(ϕ̇1−V1)

2 +
Ct

2
(
ϕ̇

2
1 +αt ϕ̇

4
1
)
+EJt cos

(
ϕ1

ϕ0

)
+EJ2a cos

(
ϕ1−ϕ2a

ϕ0

)
+EJ2b cos

(
ϕ1−ϕ2b

ϕ0

)
+EJ3a cos

(
ϕ1−ϕ3a

ϕ0

)
+EJ3b cos

(
ϕ1−ϕ3b

ϕ0

)
. (2.24)

The time derivative of the fluxes as a function of the momenta are

ϕ̇2a =
p2a +C2aV2 +C2saϕ̇1

C2a +C2sa

ϕ̇2b =
p2b +C2bV2 +C2sbϕ̇1

C2b +C2sb
, (2.25)

with a similar expression for ϕ̇3a and ϕ̇3b, and

ϕ̇1 =
21/3γ

f (x)
− f (x)

21/3β
, (2.26)

with

γ =C1 +Ct +
C2aC2sa

C2a +C2sa
+

C2bC2sb

C2b +C2sb
+

C3aC3sa

C3a +C3sa
+

C3bC3sb

C3b +C3sb
(2.27)

β =6Ctαt (2.28)

x =p1 +C1V1 +
C2sa

C2a +C2sa
(p2a +C2aV2)+

C2sb

C2b +C2sb
(p2b +C2bV2)

+
C3sa

C3a +C3sa
(p3a +C3aV3)+

C3sb

C3b +C3sb
(p3b +C3bV3) (2.29)

f (x) =
(
−3β

2x+
√

4β 3γ3 +(3β 2x)2
)1/3

. (2.30)

These expressions are similar to the ones found before, so a similar Hamilto-
nian is expected. Previously I had to expand the flux ϕ̇1 in a power series of x up
to O(x12) [see Section 2.3, Eq. (2.16)]. Since now the SQUIDs contain only one
excited level –the excitation of the SQUID 2a plays the role of the first excitation
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2.5 An alternative solution 23

and the excitation of the SQUID 2b plays the role of the second excitation– I only
need to expand the flux up to O(x8). The Hamiltonian, up to this order, reads

H =−
C1V 2

1
2

+
p2

2a +2p2aC2aV2−C2saC2aV 2
2

2(C2a +C2sa)
+

p2
2b +2p2bC2bV2−C2sbC2bV 2

2
2(C2b +C2sb)

+
p2

3a +2p3aC3aV2−C3saC3aV 2
3

2(C3a +C3sa)
+

p2
3b +2p3bC3bV3−C3sbC3bV 2

3
2(C3b +C3sb)

+
x2

2γ
− βx4

12γ4 +
β 2x6

18γ7 −
β 3x8

18γ10 −EJt cos
(

ϕ1

ϕ0

)
−EJ2a cos

(
ϕ1−ϕ2a

ϕ0

)
−EJ2b cos

(
ϕ1−ϕ2b

ϕ0

)
−EJa cos

(
ϕ1−ϕ3a

ϕ0

)
−EJ3b cos

(
ϕ1−ϕ3b

ϕ0

)
. (2.31)

This Hamiltonian has to be expanded, as before, in powers of the momenta to
extract all the relevant interactions. To expand Eq. (2.31) I have imposed C2a >
C2sa and the same for the other three SQUIDs. I have also made C1 small, but
not necessarily as small as Cs2a. Previously I kept some powers of Cs2/(C2 +Cs2)
because they were multiplying some expressions in the Taylor expansion of the
Hamiltonian in Eq. (2.16) that I had to keep in order to give rise to interactions be-
tween higher SQUID energy levels, although these factors (and their powers) were
small. Now I can be more strict and get rid of all the terms of order ( C2sa

C2a+C2sa
)3

or smaller because now the SQUIDs are two-level systems. Taking into account
these considerations, the Hamiltonian can be separated in seven different expres-
sions, which I now discuss

H1 =
p2

1
2γ
−

β p4
1

12γ4 +
β 2 p6

1
18γ7

+
1
2

(
1+

C2
2sa

(C2a +C2sa)γ

)
p2

2a
C2a +C2sa

+
1
2

(
1+

C2
2sb

(C2b +C2sb)γ

)
p2

2b
C2b +C2sb

+
1
2

(
1+

C2
3sa

(C3a +C3sa)γ

)
p2

3a
C3a +C3sa

+
1
2

(
1+

C2
3sb

(C3b +C3sb)γ

)
p2

3b
C3b +C3sb

− (EJt +EJ2a +EJ2b +EJ3a +EJ3b)cos
(

ϕ1

ϕ0

)
−EJ2a cos

(
ϕ2a

ϕ0

)
−EJ2b cos

(
ϕ2b

ϕ0

)
−EJ3a cos

(
ϕ3a

ϕ0

)
−EJ3b cos

(
ϕ3b

ϕ0

)
. (2.32)
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24 The Quantum Switch as a central element

H1 [Eq. (2.32)] contains information about the energy of the transmon and
SQUID excitations. Just as before, the cosines have been separated and sorted
into the different expressions that form the Hamiltonian.

The coupling between the different levels is contained in H2.

H2 = ∑
k

(
3

∑
i=1

A′ik p2i
1 p2

k−EJk

(
cos

ϕ1

ϕ0
−1
)(

cos
ϕk

ϕ0
−1
))

, (2.33)

where k ∈ {2a,2b,3a,3b}. The reader is referred to Appendix B (Section B.2) for
a complete definition of all the coefficients in this expression.

The SQUIDs have to be coupled to the transmission lines. Actually they are
coupled to all the transmission lines but, as expected, they are strongly coupled
only to their nearest transmission line, whereas the transmon is weakly coupled to
all the transmission lines. This makes its lifetime larger. This is expressed in the
Hamiltonian H3:

H3 =
3

∑
i=1

(
B′i1Vi p1 +B′i3Vi p3

1 +∑
k

B′ikVi pk

)
, (2.34)

with the coefficients B′ik also found in the aforementioned Appendix. The Hamil-
tonian also contains some terms that describe the exchange of excitations between
the transmon and the SQUIDs (H4) and also between the SQUIDs (H4.2):

H4 =

(
1
γ

p1−
β

3γ4 p3
1 +

β 2

3γ7 p5
1

)
C2sa

C2a +C2sa
p2a

−EJ2a sin
(

ϕ1

ϕ0

)
sin
(

ϕ2a

ϕ0

)
+{2a→ 2b, 3a, 3b}, (2.35)

H4.2 =
C2sa

C2a +C2sa

C2sb

C2b +C2sb

p2a p2b

γ
+

C3sa

C3a +C3sa

C3sb

C3b +C3sb

p3a p3b

γ

+
C2sa

C2a +C2sa

C3sb

C3b +C3sb

p2a p3b

γ
+

C3sa

C3a +C3sa

C2sb

C2b +C2sb

p3a p2b

γ

+
C2sa

C2a +C2sa

C3sa

C3a +C3sa

p2a p3a

γ
+

C2sb

C2b +C2sb

C3sb

C3b +C3sb

p2b p3b

γ
. (2.36)

After quantizing H4 and also H4.2 (see Appendix A), terms would appear describ-
ing how an excitation in one of the SQUIDs can “jump” to another SQUID (e.g.,
from terms with p2a p2b).
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2.5 An alternative solution 25

By choosing a suitable set of values for the energy of the Josephson junctions
it is possible to make H4 vanish. In order to cancel also H4.2, more Josephson
junctions –or just regular inductors– have to be introduced into the system. It is
trivial to introduce them in the Hamiltonian because their energy does not depend
on the derivative of the fluxes, and they do not create other interactions: these
extra elements only cancel H4.2 and increase the energy levels of the SQUIDs,
slightly.

There are two more expressions that cannot be canceled but their contribution
to the Hamiltonian is not much important, in contrast to the equivalent expressions
for the previous device, from Section 2.3. These are H5, in Eq. (B.2), and H6, in
Eq. (B.3), both in the Appendix B.

H5 describes exchange of excitations between SQUIDs in the presence of an
excited state in the transmon. This expression cannot be canceled in the same way
as H4.2. It is of the same order as H2, but by comparing it with H3 it can be seen
that the excited SQUID will emit a photon into the transmission line rather than
decay into another SQUID excitation. Regarding H6, it describes two processes:
the relaxation of a SQUID excited state with the emission of a photon into any
transmission line in the presence of an excitation in the transmon and the relax-
ation of a SQUID state with the emission of a photon into a transmission line plus
the excitation of two transmon energy levels. The amplitude of these processes is
much smaller than those described in H3, so these are not likely to happen. Also
because of the discrete energy separation of the transmon and SQUID levels, not
all the combinations that appear in these two Hamiltonians are possible, especially
if the energy spectrum of the transmon and the SQUIDs dissuade such processes
to happen.

The advantages of working with this design are that all the necessary interac-
tions are contained in H2 and H3, and that the contributions of H5 and H6 to the
total Hamiltonian is small compared to other similar terms. The inconvenience
is that more elements have to be added in order to completely get rid of H4. To
cancel this expression I propose the device shown in FIG. 2.6. It contains six in-
ductors that connect the four SQUID fluxes in all the possible ways. This cancels
the SQUID-SQUID interaction, as will be shown in Section 3.1.
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26 The Quantum Switch as a central element

The Hamiltonian of these extra inductors is‡‡

Hi =
1
2

ϕ
2
3a

(
1
L1

+
1
L2

+
1
L3

)
+

1
2

ϕ
2
3b

(
1
L1

+
1
L5

+
1
L6

)
+

1
2

ϕ
2
2a

(
1
L3

+
1
L4

+
1
L6

)
+

1
2

ϕ
2
2b

(
1
L2

+
1
L4

+
1
L5

)
− ϕ3aϕ3b

L1
− ϕ3aϕ2b

L2
− ϕ3aϕ2a

L3
− ϕ2aϕ2b

L4
− ϕ3bϕ2b

L5
− ϕ3bϕ2a

L6
. (2.37)

Now that all the necessary elements that form the quantum switch have been iden-
tified and that the Hamiltonian contains all the desired interactions, it can be quan-
tized and conditions can be imposed on the still free parameters that are left to
cancel the remaining undesired interactions. This will result in a functional model
for a quantum switch: the central element for a quantum random access memory
based on circuit-QED.

‡‡The energy of an inductor with inductance L is 1
2 ∆ϕ2/L, where ∆ϕ is the flux across the

device. From this, the Lagrangian is obtained. Since it does not depend on the derivative of the
flux, the Legendre transformation is trivial.
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2.5 An alternative solution 27

V1
C1 ϕ1

EJt

Ct

C3sa C3sbEJ3a EJ3b

ϕ3a ϕ3b

C3a C3b

V3

V2

C2sa C2sbEJ2a EJ2b

ϕ2a ϕ2b
C2a C2b

L2 L3

L4

L5 L6

L1

Figure 2.6: This figure shows the same diagram as before but with the extra inductors in
light gray. These six inductors connect the four SQUID fluxes in all the possible ways. It
would also work if the inductors were substituted by Josephson junctions.
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Chapter 3
Analysis of the model and further
considerations

The device schematically drawn in FIG. 2.6 is the definitive design for the quan-
tum switch. This device gives rise to the desired interactions, described by H1,
H2 and H3 but it also produces processes that are unacceptable in a successfully
operating quantum switch and, thus, have to be eliminated. These are H4, H4.2, H5
and H6. The last two expressions both contain exchange interactions. Compared
to the other expression that contains this kind of interactions, the Hamiltonian H3,
the expressions in H5 and H6 describe very weak processes –the coefficients in
front of each of the momenta are small, so these expressions lead to processes
whose probability to happen are very small– and, thus, can be neglected. The way
to deal with H4 and H4.2 consists of quantizing the Hamiltonian and imposing
the necessary conditions on the free parameters (Josephson energies, capacitances
and inductances) to make these expressions cancel.

3.1 Quantizing the Hamiltonian

The procedure for quantizing the Hamiltonian is the usual: impose [pi,φi] =
ih̄/ϕ0

∗ and cancel the expressions that should be canceled: the Hamiltonians H4
and H4.2 need to be strongly suppressed, so the only remaining expressions are
H1, H2 and H3. From these conditions the expressions for the momenta and the
fluxes as a function of ladder operators are found. The flux φ1 and the momentum

∗The variables φi are defined as φi = ϕi/ϕ0. See Appendix A.
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30 Analysis of the model and further considerations

p1 read

p1 =−
ih̄

2ϕ0

(
3
2

γ2

βET

)1/4

(a1−a†
1) (3.1)

φ1 =

(
2
3

βET

γ2

)1/4

(a1 +a†
1), (3.2)

with ET = h̄2

8γϕ2
0
. The ladder operators a1 and a†

1 annihilate and create an excitation
in the transmon. The other fluxes and momenta are defined as

p2a =−
ih̄

2ϕ0

[
EJ2a

C2a +C2sa

C2sa

(
β

6γ2ET

)1/2
]1/2

(a2a−a†
2a) (3.3)

φ2a =

[
1

EJ2a

C2sa

C2a +C2sa

(
6γ2ET

β

)1/2
]1/2

(a2a +a†
2a), (3.4)

with similar expressions for p2b, p3a, p3b and the rest of the fluxes. In each of these
pairs of equations, the ladder operators a2a (and also a†

2a) act on the SQUID that
contains ϕ2a. With this transformation, the terms in H4 [see Eq. (2.35)] containing
a†a vanish, whereas the terms containing aa and a†a† disappear by making use
of the rotating wave approximation. Now consider H4.2 [displayed in Eq. (2.36)]
together with Hi [in Eq. (2.37)]. In order to cancel them, the extra inductances
must satisfy†

L1 =
4γϕ4

0
EJ3aEJ3b

6γ2ET

h̄2
β

L2 =
4γϕ4

0
EJ3aEJ2b

6γ2ET

h̄2
β

L3 =
4γϕ4

0
EJ3aEJ2a

6γ2ET

h̄2
β

L4 =
4γϕ4

0
EJ2aEJ2b

6γ2ET

h̄2
β

L5 =
4γϕ4

0
EJ3bEJ2b

6γ2ET

h̄2
β

L6 =
4γϕ4

0
EJ3bEJ2a

6γ2ET

h̄2
β

. (3.5)

Once H1 has been expanded using these equations, the resulting expression
contains terms with a†a, but also a2, a2a†a, a4 and higher orders of a. Since it is
not possible to get rid of all terms that do not conserve energy –interactions of the

†Boxed equations contain the conditions that must be imposed to the different parameters, i.e.,
Josephson energies, inductances, capacitances, etc.

30

Version of June 29, 2015– Created June 29, 2015 - 21:15



3.1 Quantizing the Hamiltonian 31

kind aa, (a†)3a, etc–, the energies of the Josephson junctions have to be modified
until some terms cancel and others become negligible. What can be canceled are
the terms containing a2 (and their hermitian conjugates). Consider the expressions
in H1 that contain information about the first energy level of the transmon. That is
(the cosines have been expanded in a Taylor series), see Eq. (2.32),

H1.1 =
p2

1
2γ

+ ĒJ
φ 2

1
2
, (3.6)

where ĒJ = EJt +EJ2a +EJ2b +EJ3a +EJ3b. Expressed in the ladder operators,
this becomes

H1.1 =−
(

3
2

γ2

β
ET

)1/2

(a1−a†
1)

2 +

(
Ē2

J
6

β

γ2 ET

)1/2

(a1 +a†
1)

2. (3.7)

By using Josephson energies that satisfy the condition

ĒJ =
3γ2

β
, (3.8)

the expression for H1.1 becomes a simpler equation containing only a particle
density operator

H1.1 = 2
√

2ĒJET a†
1a1. (3.9)

The same procedure has to be applied to the other elements in H1. After
expanding them, some of the terms must be rearranged, since they may contribute
to e.g. H1.1. These other expressions become

H1.1 =

(
2
√

2ĒJET −7ET +90ET

√
2ET

ĒJ

)
a†

1a1, (3.10)

H1.2 ≈ −
7
2

ET a†
1

2
a2

1 +90ET

√
2ET

ĒJ
a†

1
2
a2

1

+
5
3

ET

((
a†

1a1

)
a2

1 +a†
1

2(
a†

1a1

))
+

5
2

ET

(
a2

1 +a†
1

2)
, (3.11)

H1.3 ≈ ET

√
2ET

ĒJ

(
20
(

a†
1

3
a3

1

)
−45

(
a†

1
2
+a2

1

)
−75

((
a†

1a1

)
a2

1 +a†
1

2(
a†

1a1

))
−15

((
a†

1
2
a2

1

)
a2

1 +a†
1

2(
a†

1
2
a2

1

)))
. (3.12)
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32 Analysis of the model and further considerations

In all these expressions I already got rid of some terms that contained high
powers of a and a†. In order to apply the rotating wave approximation, the pre-
factor of aa has to be smaller than the prefactor of a†a. It can be achieved by
imposing ĒJ > ET . This implies that Ct is smaller than the other capacitances or
that
√

αt h̄/ϕ0 is small compared to γ .

These simplifications and approximations result in an expression for H1, the
Hamiltonian that describes the energy levels of the transmon and SQUIDs, that
only contains particle density operators (a†a and powers of this operator).

H1 =

(
2
√

2ĒJET −7ET +90ET

√
2ET

ĒJ

)
a†

1a1

+

(
90ET

√
2ET

ĒJ
− 7

2
ET

)
a†

1
2
a2

1 +20ET

√
2ET

ĒJ
a†

1
3
a3

1

+

(
4

EJ2aE2a√
2ĒJET

+2
EJ2aC2sa

C2a +C2sa

(
2ET

ĒJ

)1/2
)

a†
2aa2a

+

(
4

EJ2bE2b√
2ĒJET

+2
EJ2bC2sb

C2b +C2sb

(
2ET

ĒJ

)1/2
)

a†
2ba2b

+

(
4

EJ3aE3a√
2ĒJET

+2
EJ3aC3sa

C3a +C3sa

(
2ET

ĒJ

)1/2
)

a†
3aa3a

+

(
4

EJ3bE3b√
2ĒJET

+2
EJ3bC3sb

C3b +C3sb

(
2ET

ĒJ

)1/2
)

a†
3ba3b, (3.13)

where the energies E2a, E2b, E3a and E3b are

E2a =
h̄2

8C2saϕ2
0

E2b =
h̄2

8C2sbϕ2
0

E3a =
h̄2

8C3saϕ2
0

E3b =
h̄2

8C3sbϕ2
0
. (3.14)

Unlike in the case of the flux φ1 and momentum p1, for the SQUIDs it is
possible to exactly cancel all the undesired expressions without making use of the
rotating wave approximation. To do so, I had to impose
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3.1 Quantizing the Hamiltonian 33

EJ2aE2a =(ĒJ−EJ2a +EJ2b +EJ3a +EJ3b)
ETC2sa

C2a +C2sa

EJ2bE2b =(ĒJ +EJ2a−EJ2b +EJ3a +EJ3b)
ETC2sb

C2b +C2sb

EJ3aE3a =(ĒJ +EJ2a +EJ2b−EJ3a +EJ3b)
ETC3sa

C3a +C3sa

EJ3bE3b =(ĒJ +EJ2a +EJ2b +EJ3a−EJ3b)
ETC3sb

C3b +C3sb
. (3.15)

Now, ideally, EJ2a ∼ EJt so the SQUIDs and the transmon have similar en-
ergy levels, but this equations tells that EJ2a, EJ2b, EJ3a, EJ3b << EJt –recall that

C2sa
C2a+C2sa

< 1.

Now I check whether these conditions are consistent with what is expected
from H2. This Hamiltonian contains the coupling between the transmon and the
SQUIDs. Since all the couplings have the same form, by analyzing one of them the
whole Hamiltonian can be easily found. Let me first study the coupling between
the transmon and the SQUID 2a:

H2.1 =

(
−

16ϕ4
0 E2

T

h̄4ĒJ
p2

1 +
15 ·28ϕ6

0 E3
T

h̄6Ē2
J

p4
1−

42 ·212ϕ8
0 E4

T

h̄8Ē3
J

p6
1

)(
C2sa

C2a +C2sa

)2

p2
2a

−EJ2a

(
φ 2

1
4
−

φ 4
1

48
+

φ 6
1

1440

)
φ

2
2a. (3.16)

Now ladder operators could be plugged inside the fluxes and momenta using
Eq. (3.1) to (3.4), but it can be simplified if all the six terms are compared by pairs.
Let us consider first the terms in Eq. (3.16) containing p2

1 p2
2a and φ 2

1 φ 2
2a.

−
16ϕ4

0 E2
T

h̄4ĒJ

(
C2sa

C2a +C2sa

)2

p2
1 p2

2a =−
ET EJ2a

2ĒJ

C2sa

C2a +C2sa

(
a1−a†

1

)2(
a2a−a†

2a

)2
,

(3.17)

−EJ2a

4
φ

2
1 φ

2
2a =−

ET

2
C2sa

C2a +C2sa

(
a1 +a†

1

)2(
a2a +a†

2a

)2
.

(3.18)

Since EJ2a < ĒJ , the first line is negligible compared to the second. A similar
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analysis of the other four terms yields

H2.1 ≈−
(

1−
(

180
EJ2a

ĒJ
+

1
2

)√
2ET

ĒJ
+7560

ET EJ2a

Ē2
J

)
2ETC2sa

C2a +C2sa
a†

1a1a†
2aa2a

+

((
90

EJ2a

ĒJ
+

1
4

)√
2ET

ĒJ
+7560

ET EJ2a

Ē2
J

)
2ETC2sa

C2a +C2sa
a†

1
2
a2

1a†
2aa2a

−1680
ET EJ2a

Ē2
J

2ETC2sa

C2a +C2sa
a†

1
3
a3

1a†
2aa2a. (3.19)

To obtain this expression I have also used the rotating wave approximation.
The full interaction Hamiltonian H2 is constructed by doing the same analysis
with the other SQUIDs.

Up to this point, the only free parameters that are left are the capacitances, all
of them, but with the constraints C2a ∼ C2b ∼ C3a ∼ C3b, C2sa ∼ C2sb ∼ C3sa ∼
C3sb and Ct , C2a > C1 > C2sa. The parameters V1, V2 and V3 are also still free
but in principle, in order to make the system scalable, they have to be equal.
Nevertheless, I will assume that they can be slightly different –to check whether
the system can be improved by not making it scalable– and at the end of the
calculations, if it is possible, they will be made equal. For these potentials I have
assumed the following quantized form

V1 =−
ih̄

2ϕ0
A1/4

1 (b1−b†
1) (3.20)

V2 =−
ih̄

2ϕ0
A1/4

2 (b2−b†
2) (3.21)

V3 =−
ih̄

2ϕ0
A1/4

3 (b3−b†
3). (3.22)

To derive the quantized form of the Hamiltonian H3 as a function of the ladder
operators I have also used the rotating wave approximation.The final expression
reads

H3 =
3

∑
i=1

((
µ1a,i−3µ1b,i

)
a†

1b1 +3µ1b,1a†
1a†

1a1b1

+µ1b,1a†
1

3
b1 +∑

k
µk,ia

†
kbi

)
+h.c. (3.23)

Here the index k runs over {2a,2b,3a,3b}. The most relevant coefficients µi, j that
appear in this expression are displayed below. Those that are small enough to be
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3.1 Quantizing the Hamiltonian 35

ignored are not shown.

µ1a,1 =2C1ET A1/4
1

(
ĒJ

2ET

)1/4

(3.24)

µ1b,1 =2C1ET A1/4
1

(
2ET

ĒJ

)1/4

(3.25)

µ2a,1 =2C1ET A1/4
1

(
ĒJ

2ET

)1/4(EJ2a

ĒJ

C2sa

C2a +C2sa

)1/2

(3.26)

µ2a,2 ≈2C2aE2aA1/4
2

(
ĒJ

2ET

)1/4(EJ2a

ĒJ

C2sa

C2a +C2sa

)1/2

(3.27)

µ2b,1 =2C1ET A1/4
1

(
ĒJ

2ET

)1/4(EJ2b

ĒJ

C2sb

C2b +C2sb

)1/2

(3.28)

µ2b,2 ≈2C2bE2bA1/4
2

(
ĒJ

2ET

)1/4(EJ2b

ĒJ

C2sb

C2b +C2sb

)1/2

(3.29)

µ3a,1 =2C1ET A1/4
1

(
ĒJ

2ET

)1/4(EJ3a

ĒJ

C3sa

C3a +C3sa

)1/2

(3.30)

µ3a,3 ≈2C3aE3aA1/4
3

(
ĒJ

2ET

)1/4(EJ3a

ĒJ

C3sa

C3a +C3sa

)1/2

(3.31)

µ3b,1 =2C1ET A1/4
1

(
ĒJ

2ET

)1/4(EJ3b

ĒJ

C3sb

C3b +C3sb

)1/2

(3.32)

µ3b,3 ≈2C3bE3bA1/4
3

(
ĒJ

2ET

)1/4(EJ3b

ĒJ

C3sb

C3b +C3sb

)1/2

. (3.33)

Previously I had to make the capacitances C2sa smaller than C2a [for the Taylor
expansion of the Hamiltonian in Eq. (2.31)] and I found that the energies EJ2a
and ET are smaller than ĒJ [see Eq. (3.10) to (3.12) and also Eq. (3.15)]. Using
these conditions the interaction strengths µ1a,2 and µ1a,3 become much smaller
than µ1a,1, so they can be ignored. The same happens with µ1b,2 and µ1b,3. This
means that the transmon is strongly coupled to the incoming transmission line but
weakly coupled to the outgoing transmission lines, so a photon absorbed by the
transmon will modify the energy levels of the SQUIDs –as described by H2– but
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36 Analysis of the model and further considerations

will not be transmitted forward. Similarly, the interaction strength µ2a,3 is smaller
than µ2a,1 and µ2a,2. This indicates that the SQUID 2a can absorb a photon from
the incoming transmission line and emit it into its nearest transmission line, but
not into the other. This is exactly the behavior expected for the quantum switch.
For the other SQUIDs the same applies, so µ2a,3, µ2b,3, µ3a,2 and µ3b,2 can be
disregarded.

3.2 Dynamics of operation and a problem with the
transmon

In the previous sections I have introduced a model for a quantum switch using su-
perconducting qubits. The proposed device (FIG. 2.6) consists of a semi-infinite
incoming transmission line coupled to a system composed of four SQUIDs and a
transmon. Two outgoing transmission lines couple the SQUIDs to the next quan-
tum switch as incoming transmission lines in a tree-like network. The model I
propose is described by a Hamiltonian that can be divided in three parts. The first
part of that Hamiltonian [H1, see Eq. (3.13)], describe the energy level of each of
the artificial atoms. All the levels are supposed to have a different energy. The
second part is more interesting [H2, see Eq. (3.19)]. It describes a density-density
interaction between the energy levels of different atoms. That is, when a trans-
mon level is excited, this part of the Hamiltonian contributes to modify the energy
levels of all the other atoms. Ideally, an incoming photon will have the energy to
excite only the first or third level of the transmon (the second level is not coupled
to the transmission lines, as shown by the third part of the Hamiltonian, H3). If
a second photon comes in, it will not be possible to excite further levels of the
transmon –the photon will not have enough energy to do so. Instead, the photon
will excite one of the SQUIDs. Since the excitation of the transmon modifies the
energy spectrum of the SQUIDs, now this will be possible. We have to make sure
that, if the first photon excites the first transmon level (or the third) the second
only excites the SQUIDs leading to the second transmission lines (or the third).
This way, the first photon decides which paths the other photons will follow.

Up to this point I have assumed that the lifetimes of the transmon excitations
are large compared to those of the SQUIDs. Otherwise the transmon will decay to
its ground state and the other photons will not be routed forward, but this is some-
thing that will be determined by H3, the third and last part of the Hamiltonian [see
Eq. (3.23)]. This last expression tells us that the transmon is only coupled to the
incoming transmission lines (both levels) thus, a photon absorbed by the trans-
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3.2 Dynamics of operation and a problem with the transmon 37

mon can only be reflected back into the incoming transmission line. It cannot be
transmitted. The SQUIDs, on the other side, are coupled to both the incoming
transmission lines and to the closest outgoing transmission line, but not the other.
Therefore, the second photon –which cannot be absorbed by the transmon– will be
absorbed by the SQUID. After some time this photon will be emitted into a trans-
mission line, either back or forward to the next node in the network of switches.
The constraints I have imposed before force the excited SQUID to emit a photon
into the outgoing transmission lines.

3.2.1 Operation
The operation of the quantum switch is represented in FIG. 3.1. This scheme
shows how a register of photons is routed by the device. In the ideal case, a
register of photons sent through the incoming transmission line will arrive at the
first node of the network, where the first photon of the register is absorbed by the
transmon. The photons in the register can be in two different states (or a superpo-
sition), each with energies ωa and ωb. When the first photon arrives at the switch
it encounters a system with the energy spectrum shown in the top left box (A).
The switch is in the ground state, with the paths closed (i) and the first incoming
photon can be absorbed by the device by exciting the first level of the transmon
(red) if it has energy ωa = ωT 1 or the third level (green) if it has energy ωb = ωT 3.
The other levels depicted in this box are not accessible for a photon that can only
be in the states ωa or ωb. In the box (A), the left upright arrow contains the energy
of the incoming photon. The levels next to it describe the spectrum of the trans-
mon in the range of possible energies the incoming photons can have. The lowest
level, labeled with |GS〉, is the ground state.

Once the transmon is excited, a new set of energies is accessible for the next
incoming photons (B). Although ω2a 6= ωT 1, the Hamiltonian H2 gives an extra
contribution to the energy levels (Ji,k) such that if the first level of the transmon
is excited, an incoming photon with energy ωa can be absorbed by the SQUID 2a
(or the SQUID 3a, if the third level of the transmon is excited) or by the SQUID
2b if the energy of the photon is ωb. Thus, the transmon opens one or the other
path (ii) according to the state of the first photon absorbed.

After being absorbed by the corresponding SQUID, the second photon is emit-
ted into the open outgoing transmission line and the system goes back to the state
with just one excited state (either |ωT 1〉 or |ωT 3〉), waiting for the next photon of
the register. If the first incoming photon has energy ωa, then all the successive
photons will be absorbed by either 2a or 2b and will be transmitted through the
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ω3b
ω2b
ωT 3

ω3a
ω2a
ωT 1ωa

ωb

E
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ω3b
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ω3a
ω2a
ωT 1ωa

ωb

E

|GS〉

ωT 1 +ω2a− J12aωa

ωb

E

ωT 1

ωT 2

ωT 4

ωT 1 +ω3a− J12a

ωT 1 +ω3b− J12b
ωT 1 +ω2a− J12b

A B C

i ii iii iv

Figure 3.1: In this figure I schematically show the expected behavior of the quantum
switch based on the interactions contained in the Hamiltonians. The upper part of the
figure contains a set of diagrams with the energy levels of the device at each step of the
process of routing a register of photons. The lower part contains a graphic representation
of the behavior of the device at each step of the process. In (A) the system is in its ground
state and an incoming photon (i) comes in. This can excite any of the energy levels and
“open” the path (ii) to any (or both) of the outgoing transmission lines. Once the transmon
is excited, a second incoming photon can only excite a selection of states (B) and decay
into the path opened by the transmon (iii). A third, fourth, etc. photon experiences the
same process while the transmon is excited. At the end of the process (iv), when all the
photons have gone through, the transmon emits a photon into the first transmission line
(where the photons came in) and the system goes back to the ground state (C), waiting for
the process to start over again. For a more detailed explanation see the text.
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3.2 Dynamics of operation and a problem with the transmon 39

same transmission line, independently of their state (iii).

In the inset (B), the third level of the transmon does not appear. This is be-
cause in order to excite this level –assuming that the first level of the transmon is
already excited–, the photon would have to create two elemental excitations, but
according to H3, it can only create either one or three. That is why the second and
a hypothetical fourth level is displayed. Nevertheless, these levels do not have
enough energy to become excited.

Finally, when the whole register has gone through, the first photon is emitted
into the ingoing transmission line and the rest of the register continues its way to
the next quantum switch (iv). The device, after being relaxed, comes back to the
ground state, with all the paths closed (iv), waiting for another register to come in
(C).

During all of this process, if the first photon is in a superposition of states, say
ψ = (|ωa〉+ |ωb〉)/

√
2, then the photons that follow will all be forwarded through

both the second and third outgoing transmission lines.

3.2.2 Scalability
In order to make a system composed of a tree-like network with one of these de-
vices in each node, the transmon energy levels must coincide with those of the
“open” SQUIDs (ωT 1 = ω2a− J12a). Unfortunately, this is not the case with the
present system. The energies of the transmon excitations are some orders of mag-
nitude larger than the SQUID excitations and the energy separation is also larger.
To solve this problem an external device can be added before each switch that in-
creases the energy of only the first photon without measuring it. Another solution
would be to add another element in the SQUIDs that increases the energy of its
excitations. This could be a simple inductor connected to the point labeled as ϕ2a
in FIG. 2.6 on one end, and to the ground at the other end. Since it is an inductive
element, it can be straightforwardly added to the Hamiltonian. This element will
generate a term raising the energy of the SQUID, but also another term contain-
ing a†

2aa†
2a and a2aa2a. These two last elements cannot be suppressed using the

rotating wave approximation because they are large compared to the energy of
the excited levels of the SQUID –the main contribution to its energy would come
from this expression. Moreover, the density-density interaction strength (in the
expression H2) will be too small compared to the energy of the excitations.

Nevertheless, I will assume that a solution can be found to this drawback and
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40 Analysis of the model and further considerations

continue with the analysis (I will come back to this in Section 5.1). In the worst
case, it will not be possible to construct a QRAM using a network of quantum
switches, but a fully operational quantum switch that routes many-photons regis-
ters can still be found.

3.3 The final Hamiltonian

So far, a transmon-based quantum switch has been presented and his Hamiltonian
has been analyzed, hypothesizing about its expected behavior in an idealized case.
Nevertheless, the form of the Hamiltonian is not the most suitable to work with. It
would be convenient to use a simpler notation. In previous chapters I have claimed
that terms containing a†

1a1 describe the first level of the transmon and terms with
(a†

1)
3a3

1 describe the third level. The first statement is right, but the last in incom-
plete. a†

1a1 acting on a ket that describes the third transmon excitation gives a
non-zero contribution. The notation I use in this chapter makes a clear distinction
between levels. From the resulting equations I have obtained the expressions for
the energy of each of the excitations and the coupling strengths.

Let me start by writing the Hamiltonian as a sum of all the contributions found
previously plus an expression describing the transmission lines

H = Hsys +HJ +HC +HT . (3.34)

This is the full Hamiltonian that completely describes the routing device. In this
expression Hsys is the part of the Hamiltonian that describes the energy levels, HJ
contains the interaction between the energy levels, HC describes the coupling to
the transmission lines and HT is the Hamiltonian of the transmission lines. The
first part can be reduced to

Hsys =ωT 1 a†
T 1aT 1 +ωT 2 a†

T 2aT 2 +ωT 3 a†
T 3aT 3

+ω2a a†
2aa2a +ω2b a†

2ba2b +ω3a a†
3aa3a +ω3b a†

3ba3b. (3.35)

In this equation I have used three new (projection) operators. In a 4D Hilbert
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3.3 The final Hamiltonian 41

space (only three excited levels) these are defined as

a†
T 1 =

1
6

a2
1a†

1
3
=


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , (3.36)

a†
T 2 =

1
3
√

2
a1a†

1
3
=


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , (3.37)

a†
T 3 =

1√
6

a†
1

3
=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 . (3.38)

They excite the first, second and third energy levels of the transmon, respectively,
from the ground state. These operators do not satisfy the usual commutation rela-
tions. The reason to choose them is to simplify the notation and to easily identify
the energy of each transmon level. The energy of each of these excitations is

ωT 1 =2
√

2ĒJET −7ET +90ET

√
2ET

ĒJ
(3.39)

ωT 2 =2ωT 1 +2
(

90ET

√
2ET

ĒJ
− 7

2
ET

)
(3.40)

ωT 3 =3ωT 2−3ωT 1 +120ET

√
2ET

ĒJ
(3.41)

ω2a =4
EJ2aE2a√

2ĒJET
+2

EJ2aC2sa

C2a +C2sa

√
2ET

ĒJ
, (3.42)

and similar expressions for ω2b, ω3a and ω3b. Using the same notation, the inter-
action Hamiltonian reads

HJ =−
3

∑
i=1

∑
k

Jik a†
TiaTi a†

kak, with k ∈ {2a,2b,3a,3b}, (3.43)
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with interaction strengths

J12a =

(
1−
(

180
EJ2a

ĒJ
+

1
2

)√
2ET

ĒJ
+7560

ET EJ2a

Ē2
J

)
2ETC2sa

C2a +C2sa
(3.44)

J22a = 2J12a−
((

90
EJ2a

ĒJ
+

1
4

)√
2ET

ĒJ
+7560

ET EJ2a

Ē2
J

)
4ETC2sa

C2a +C2sa
(3.45)

J32a = 3J22a−3J12a +20160
E2

T EJ2a

Ē2
J

C2sa

C2a +C2sa
. (3.46)

The other nine expressions are found by substituting 2a by 2b, 3a and 3b in
Eq. (3.44) to (3.46). With the current set of capacitors, the interaction strengths
are two orders of magnitude smaller that the energies of the SQUIDs, just like in
other similar works [17].

The following is the Hamiltonian that describes the coupling to the transmis-
sion lines.

HC =
∫

∞

−∞

d p

[
a†

T 1b1(p)
√

πτT 1
+

a†
T 3b1(p)
√

πτT 3

+

(√
3

πτT 1
−3
√

2
πτT 3

)
a†

T 3aT 2b1 +

(√
2

πτT 1
−
√

3
πτT 3

)
a†

T 2aT 1b1

+
a†

2ab1(p)
√

πτ2a,1
+

a†
2ab2(p)
√

πτ2a,2
+

a†
2bb1(p)
√

πτ2b,1
+

a†
2bb2(p)
√

πτ2b,2

+
a†

3ab1(p)
√

πτ3a,1
+

a†
3ab3(p)
√

πτ3a,3
+

a†
3bb1(p)
√

πτ3b,1
+

a†
3bb3(p)
√

πτ3b,3
+h.c.

]
. (3.47)

Here I have introduced the parameters τi, j to stress that the exchange interaction
strengths are related to the lifetime of the excitations. These τi, j are related to µi, j
as (only for the transmon)

1
√

πτT 1
=µ1a,1−3µ1b,1 (3.48)

1
√

πτT 3
=
√

6µ1b,1. (3.49)

For the SQUIDs this relation is simpler:

1
√

πτi, j
=µi, j, with i ∈ {2a,2b,3a,3b} and j ∈ {1,2,3}. (3.50)
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3.4 Relaxation and dephasing 43

Let me focus for a second on Eq. (3.47). In the second line there are two expres-
sions with a different form. The first (actually its hermitian conjugate) implies that
the third excited level of the transmon can decay into the second excited level and
emit a photon. This process makes the switch stop working. The other expression
is not that harmful. It says that an incoming photon can excite the second level of
the transmon if the first is already excited, but this will not happen if the energy
of the photon does not coincide withe the energy gap between the first and second
levels of the transmon. The hermitian conjugate of this expression describes how
the second level of the transmon decays into the first one by emitting a photon.
Regarding this last process, since the second level cannot possibly be excited, it
will just not happen. Moreover, if by any chance the second level is excited, the
switch will not work, so there is no need to worry about this process.

Only one of the coefficients multiplying these two expressions can be canceled
and, given the nature of the interactions I decided to cancel the first. I do not expect
the second to affect the functioning of the device. In order to cancel it the lifetimes
have to satisfy τT 3 = 6τT 1 or, equivalently,

αt h̄2

ϕ2
0

=
γ3

324 Ct
. (3.51)

This constraint on αt implies that ĒJ > ET , which is a condition I already had
to impose before. Moreover, in this way the lifetimes of both transmon levels
are of the same order of magnitude, which is necessary for a device that does not
make a distinction between left-steering or right-steering photons.

Finally, the Hamiltonian describing the transmission lines, derived assuming
that the superconducting wires behave as the continuum limit of an infinite chain
of LC oscillators‡, reads

HT =
∫

∞

−∞

d p p
(

b†
1(p)b1(p)+b†

2(p)b2(p)+b†
3(p)b3(p)

)
. (3.52)

3.4 Relaxation and dephasing
In this chapter I derive the coupling of the system to an external bath following
Ithier et al. [44] to take into account relaxation and dephasing processes. Recall

‡see the Appendix A.
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that the Hamiltonian contains ωa†a and µb†a+ h.c [Eq. (3.35) and (3.47)]. For
simplicity, let me consider its analogy to a two-level system. Consider the follow-
ing Hamiltonian, which describes a two-level system not coupled to any external
field.

H =~n(0) ·~σ = nzσz +n⊥σ⊥, (3.53)

where σ⊥ contains σx and σy or σ− and σ+ and ~n is a field that contains infor-
mation about how the system interacts with its environment. At ~n(0) it does not
interact at all.

Let ~n be a function that depends on two parameters, ~n(λ ,ρ), where λ is a
variable related to the coupling to the transmission lines and ρ is a variable related
to the coupling to an external source of decoherence. In the Hamiltonian, if the
coupling of the transmon with the external bath is neglected, then~n(0,0) = nz and
n⊥ = 0. A perturbation of the Hamiltonian by δλ –but keeping ρ = 0– gives

~n(δλ ,0) =~n(0,0)+
d~n
dλ

δλ +O
(
δλ

2)
=nz(0,0)+

dnz

dλ
δλ · n̂z +

dn⊥
dλ

δλ · n̂⊥+O
(
δλ

2) . (3.54)

During the derivation of the Hamiltonian the following quantities are obtained

δλ =b+b† (3.55)
dn⊥
dλ

=
1√
πτ

(3.56)

dnz

dλ
=0 (3.57)

nz(0,0) =ω. (3.58)

Now let’s do the same with ρ and λ simultaneously. By perturbing our Hamil-
tonian, we obtain

~n(δλ ,δρ) =nz(0,0)+
dn⊥
dλ

δλ · n̂⊥+
dnz

dρ
δρ · n̂z +

dn⊥
dρ

δρ · n̂⊥+O
(
δ

2) .
(3.59)

The first two terms of this expansion give the Hamiltonian previously found.
The other two terms describe the interaction with the external bath. Let d~n

dρ
be a

bath coupling rate ~K(p) and δρ the operators that describe this decoherence in
the form d +d†. The Hamiltonian describing the decoherence is given by

Hd =
∫

d p
(

Kz(p)(d +d†)σz +K⊥(p)(d +d†)σ⊥

)
. (3.60)
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3.4 Relaxation and dephasing 45

Let me analyze how this Hamiltonian acts on any state in the z-basis. The first
term of the Hamiltonian acting on a state |↑〉 (|↓〉) gives a constant times d† |↑〉
(d† |↓〉). Thus the initial state is only modified by a phase change plus the creation
or annihilation of an external bath mode. This term describes a dephasing pro-
cess. The second term flips the initial state from |↑〉 (or |↓〉) to |↓〉 (or |↑〉) and also
gives an external mode excitation. Thus, it describes the relaxation/excitation of
the two-level system.

Now this has to be generalized to a multilevel system. In our proposed de-
vice, whose energy levels are schematically represented in FIG. 3.1, there are six
possible processes involving the relaxation of the transmon. These are

|ωT 3〉 −→|ωT 2〉 |ωT 2〉 −→|ωT 1〉
|ωT 3〉 −→|ωT 1〉 |ωT 2〉 −→|GS〉
|ωT 3〉 −→|GS〉 |ωT 1〉 −→|GS〉 ,

where |ωT 3〉, |ωT 2〉 and |ωT 1〉 are kets representing the third, second and third
excited states of the transmon, respectively. |GS〉 is the ground state.

For simplicity, I only consider the process on the last row. The reason for in-
troducing this extra Hamiltonian is to quantify the effect of an external bath on the
successful operation of the device. By considering only two out of the six possible
processes, nothing relevant is being omitted, because the relaxation ratio can be
increased so that the relaxation of the excited states described by these two pro-
cesses actually contains the sum of all the possible relaxation processes of these
states. With this simplification, the information on what state the transmon decays
into is lost, but I am not interested in the final state. I only want to know whether
the device works (no relaxation) or it does not (relaxation).

The relaxation terms involve the creation of an external bath mode and an
operator or product of operators that describe the annihilation of one excitation
(and its hermitian conjugate). Other possible combinations are suppressed by
the rotating wave approximation. The dephasing terms contain a creation of an
external bath mode and a projector operator of an excited state. Furthermore,
commutation of the dephasing and relaxation operators has to be imposed, since
these elements belong to different Hilbert spaces. The resulting Hamiltonian is

Hd =
∫

d p∑
i

[
Kr i(p)r†

i (p)ai +Kd i(p)d†
i (p)a†

i ai

+p
(

r†
i (p)ri(p)+d†

i (p)di(p)
)]

, (3.61)
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where r(p) are the relaxation modes and d(p) are the dephasing modes. Here the
index i runs over {T 1,T 2,2a,2b,3a,3b}. It is important to notice that the vacuum
|0〉 is still an eigenstate of the Hamiltonian with zero energy. The coupling func-
tions K(p) can be approximated as constants [45] (first Markov approximation).

Kr(p)≈
√

γr

2π
(3.62)

Kd(p)≈
√

γd

4π
. (3.63)

Up to this point I have derived all the formulas with all the factors of h̄ although
in some equations I have set implicitly h̄= 1 –by giving to the frequencies ωi units
of energy. From now on I will consider h̄ = 1 to simplify the notation.

3.5 Equations of motion
In the previous sections we have found a Hamiltonian that describes a quantum
switch including relaxation and dissipation processes. This Hamiltonian has been
expressed in a quantized notation. The next step towards studying the dynamics
of operation of the quantum switch consists of obtaining, from the Hamiltonian,
the equations of motion. With these equations, the probabilities of reflection and
transmission of photons are obtained and the performance of the device is evalu-
ated. Since the Hamiltonian contains different operators, it is not easy to diago-
nalize, so working in the Schrödinger picture may not be the best option. Instead
I work in the Heisenberg picture.

In this model, a photon comes in, interacts with something and a photon comes
out. The only element that has to be computed to be sure that the device works is
the probability of the photon being reflected or transmitted. What happens during
the interaction is irrelevant. For this reason it is convenient to work with the in-
put/output formalism [45, 46] (or just in/out). Within this formalism, a quantum
state in the asymptotic limit t→ ∞ (|ψout〉) is related, by a unitary operator, to the
same state in the opposite asymptotic limit t→−∞ (|ψin〉) [47, 48]. This formal-
ism is very convenient when the photons can be considered as free particles in the
limit t→±∞ –far away from the scattering center–, in the sense that they are not
influenced by the interaction part of the Hamiltonian.

The in/out operators are defined by [17, 45, 48]

b1in/out(p) = lim
t0→±∞

e−iHt0eiHT t0b1(p)e−iHT t0eiHt0. (3.64)
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3.5 Equations of motion 47

By making use of the Baker-Campbell-Hausdorff formula together with the Hamil-
tonian HT from Eq. (3.52), this becomes

b1in/out(p) = lim
t0→±∞

e−ipt0e−iHt0b1(p)eiHt0

= lim
t0→±∞

e−ipt0b1H(p, t0), (3.65)

where b1H(p, t0) is an initial value of the operator b1H(p, t) in the Heisenberg
picture. In time space the in/out operators are related to the momentum space
ladder operators as [17, 45, 48]

b1in/out(t) =
1√
2π

∫
d pb1H(p, t0)e−ip(t−t0/1), (3.66)

where t0→−∞ and t1→ ∞. These in/out operators will be inserted in the equa-
tions of motion to facilitate the calculations.

The equation of motion of an operator A(t) is found, in the Heisenberg picture,
by using

d
dt

A(t) = i [H,A(t)]+
∂A
∂ t

. (3.67)

The equations of motion of the transmission line modes are

ḃ1(ω) =− iωb1(ω)− i

(
aT 1√
πτT 1

+
aT 3√
πτT 3

+

(√
2

πτT 1
−
√

3
πτT 3

)
a†

T 1aT 2

+
a2a√
πτ2a,1

+
a2b√
πτ2b,1

+
a3a√
πτ3a,1

+
a3b√
πτ3b,1

)
(3.68)

ḃ2(ω) =− iωb2(ω)− i
(

a2a√
πτ2a,2

+
a2b√
πτ2b,2

)
(3.69)

ḃ3(ω) =− iωb3(ω)− i
(

a3a√
πτ3a,3

+
a3b√
πτ3b,3

)
. (3.70)

From these differential equations the relation between the in/out operators is
obtained by integrating them and introducing bin and bout in the initial condi-
tions [46] using Eq. (3.64-3.66). A full derivation of these equations can be found
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in Appendix C. Here I give the results:

b1out(t) =b1in(t)− i
√

2

(
aT 1√
τT 1

+
aT 3√
τT 3

+

(√
2

τT 1
−
√

3
τT 3

)
a†

T 1aT 2

+
a2a√
τ2a,1

+
a2b√
τ2b,1

+
a3a√
τ3a,1

+
a3b√
τ3b,1

)
(3.71)

b2out(t) =b2in(t)− i
√

2
(

a2a√
τ2a,2

+
a2b√
τ2b,2

)
(3.72)

b3out(t) =b3in(t)− i
√

2
(

a3a√
τ3a,3

+
a3b√
τ3b,3

)
. (3.73)

Similar relations hold for the decoherence operators. Finally, the evolution of
the ladder operators describing the transmon and the SQUIDs is also found by
using the Heisenberg equation. For the operator aT 1 this is

ȧT 1 =− iωT 1aT 1 + i∑
k

J1kaT 1a†
kak

+ i
∫

d p


(

a†
T 1aT 1−aT 1a†

T 1

)
b1(p)

√
πτT 1

+
a†

T 3aT 1b1(p)
√

πτT 3

+

(√
3

πτT 3
−
√

2
πτT 1

)
b†

1(p)aT 2

+

√
γrT 1

2π

(
a†

T 1aT 1−aT 1a†
T 1

)
rT 1(p)+

γrT 3√
2π

a†
T 3aT 1rT 3(p)

+ −
√

γdT 1

4π

(
aT 1dT 1(p)+d†

T 1(p)aT 1

) . (3.74)

The input operators are introduced in this equation by making use of Eq.(C.7) in
the Appendix C. This gives a coupled equation of motion that contains the input
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operators as well as all the other ak ladder operators:

ȧT 1 =−
(

iωT 1 +
1

τT 1
+

1
2

γrT 1 +
1
4

γdT 1

)
aT 1−

1
√

τT 1τT 3
aT 3 + i∑

k
J1kaT 1a†

kak

+
2
√

τT 1

(√
2

τT 1
−
√

3
τT 3

)
a†

T 1aT 2 +
2
√

τT 3

(√
2

τT 1
−
√

3
τT 3

)
a†

T 3aT 2

+

(
1
√

τT 1

(
a†

T 1aT 1−aT 1a†
T 1

)
+

1
√

τT 3
a†

T 3aT 1

)
×(

a2a√
τ2a,1

+
a2b√
τ2b,1

+
a3a√
τ3a,1

+
a3b√
τ3b,1

)
+

(√
2

τT 1
−
√

3
τT 3

)(
a†

2a√
τ2a,1

+
a†

2b√
τ2b,1

+
a†

3a√
τ3a,1

+
a†

3b√
τ3b,1

)
aT 2

+ i

√
2

τT 1
a†

T 1aT 1b1in(t)− i

√
2

τT 1
aT 1a†

T 1b1in(t)

+ i

√
2

τT 3
a†

T 3aT 1b1in(t)− i
√

2

(√
2

τT 1
−
√

3
τT 3

)
b†

1in(t)aT 2

+ i
√

γrT 1

(
a†

T 1aT 1−aT 1a†
T 1

)
rT 1in(t)+ i

√
γrT 3a†

T 3aT 1rT 3in(t)

− i

√
γdT 1

2

(
aT 1dT 1in(t)+d†

T 1in(t)aT 1

)
. (3.75)

Similarly, the other operators satisfy the equations:

ȧT 2 =−

iωT 2 +

(√
2

τT 1
−
√

3
τT 3

)2
aT 2 + i∑

k
J2kaT 2a†

kak

+

(
1
√

τT 1
a†

T 1aT 2 +
1
√

τT 3
a†

T 3aT 2−

(√
2

τT 1
−
√

3
τT 3

)
aT 1

)
×(

a2a√
τ2a,1

+
a2b√
τ2b,1

+
a3a√
τ3a,1

+
a3b√
τ3b,1

)
+ i

√
2

τT 1
a†

T 1aT 2b1in(t)+ i

√
2

τT 3
a†

T 3aT 2b1in(t)

− i
√

2

(√
2

τT 1
−
√

3
τT 3

)
aT 1b1in(t)

+ i
√

γrT 1a†
T 1aT 2rT 1in(t)+ i

√
γrT 3a†

T 3aT 2rT 3in(t) (3.76)
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ȧT 3 =−
(

iωT 3 +
1

τT 3
+

1
2

γrT 3 +
1
4

γdT 3

)
aT 3−

1
√

τT 1τT 3
aT 1 + i∑

k
J3kaT 3a†

kak

+

(
a†

T 1aT 3√
τT 1

+
a†

T 3aT 3−aT 3a†
T 3√

τT 3

)(
a2a√
τ2a,1

+
a2b√
τ2b,1

+
a3a√
τ3a,1

+
a3b√
τ3b,1

)
+ i

√
2

τT 1
a†

T 1aT 3b1in(t)+ i

√
2

τT 3

(
a†

T 3aT 3−aT 3a†
T 3

)
b1in(t)

+ i
√

γrT 1a†
T 1aT 3rT 1in(t)+ i

√
γrT 3

(
a†

T 3aT 3−aT 3a†
T 3

)
rT 3in(t)

− i

√
γdT 3

2

(
aT 3dT 3in(t)+d†

T 3in(t)aT 3

)
(3.77)

ȧ2a =−
(

iω2a +
1

τ2a,1
+

1
τ2a,2

+
1
2

γr2a +
1
4

γd2a

)
a2a + i

3

∑
j=1

J j2aa†
T jaT ja2a

− i

√
2

τ2a,1
b1in(t)− i

√
2

τ2a,2
b2in(t)

−
(

1
√

τ2a,1τ2b,1
+

1
√

τ2a,2τ2b,2

)
a2b−

1
√

τ2a,1τ3a,1
a3a−

1
√

τ2a,1τ3b,1
a3b

− 1
√

τ2a,1

(√
2

τT 1
−
√

3
τT 3

)
a†

T 1aT 2−
1

√
τ2a,1τT 1

aT 1−
1

√
τ2a,1τT 3

aT 3

− i
√

γr2ar2ain(t)− i

√
γd2a

2

(
a2ad2ain(t)+d†

2ain(t)a2a

)
. (3.78)

Similar expressions hold for the operators a2b, a3a and a3b. Eq. (3.75) to (3.78) are
the Langevin equations for the transmon and SQUID operators [45]. Now the b(t),
r(t) and d(t) operators could be expressed as the inverse Fourier transformation
of b(p), r(p) and d(p). This will introduce an integral into our equations of
motion, but the time dependence of the in and out operators will disappear. In
some calculations this may be useful, but in others it may not, so I am leaving it
as it is, by now.
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Chapter 4
Dynamics of operation of the Quantum
Switch

One of the advantages of studying a system analytically is that its analysis holds
for any value of the parameters that appear in the equations. Thus, the values
of these parameters can be obtained after the analytical calculations have been
performed and can be chosen to give the desired results. Since at the time of
writing this text I already knew which conditions these parameters had to satisfy,
I have imposed some constraints during the derivation of the equations in the
previous chapters. In this section I compute the scattering amplitudes of some
relevant processes and announce the remaining constraints to be imposed to the
parameters that, at this point, remain free.

4.1 Scattering of a single photon

The proposed quantum switch is a physical system that, in the first step, absorbs
a single photon and modifies its own energy spectrum according to the state of
the absorbed photon. Thus, it is convenient to start studying what happens when
a single photon comes in. For a correct performance of the quantum device, an
incoming photon should only be absorbed if it has the right energy –that is, ωT 1
or ωT 3– and reflected if it does not. In case the photon is absorbed, it has to be
emitted back, never forward. The probability of transmission and reflection are
the functions that have to be minimized or maximized and their values will reveal
whether the device works properly or not.

When a photon (b†
1in(k) |0〉) is sent in, the system can respond in four different

ways:
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52 Dynamics of operation of the Quantum Switch

1. The photon is absorbed and emitted back (or just reflected) as b†
1out(k

′) |0〉.

2. The photon is absorbed and emitted forward as b†
2out(k

′) |0〉 or b†
3out(k

′) |0〉.

3. The photon is absorbed but decays into an external bath mode (relaxation).

4. The photon is absorbed but the system experiences dephasing due to the
coupling with the external bath.

The last two processes cannot be controlled by the experimentalist, so my
efforts will be concentrated on the first two. The probability amplitude for an
incoming photon with frequency k being reflected with frequency p is

S1(p,k) =〈0|b1out(p)b†
1in(k) |0〉 . (4.1)

Similarly, the probability amplitudes for an incoming photon being transmitted
into the second and third transmission lines are, respectively,

S2(p,k) =〈0|b2out(p)b†
1in(k) |0〉 , (4.2)

S3(p,k) =〈0|b3out(p)b†
1in(k) |0〉 . (4.3)

Let me start for the first process. After making use of the in/out relations
in Eq. (3.71), (3.72), (3.73) and introducing inverse Fourier transformations, the
probability amplitude S1(p,k) can be transformed to an equation containing only
the in operators and the time-dependent operators that describe the transmon and
SQUIDs excitations. This expression reads

S1(p,k) =〈0|b1in(p)b†
1in(k) |0〉 (4.4.a)

− i

(
2
√

τT 1
−
√

6
τT

)
1√
2π

∫
dt eipt 〈0|a†

T 1(t)aT 2(t)b
†
1in(k) |0〉

(4.4.b)

− i

√
2

τT 1

1√
2π

∫
dt eipt 〈0|aT 1(t)b

†
1in(k) |0〉 (4.4.c)

− i

√
2

τT 3

1√
2π

∫
dt eipt 〈0|aT 3(t)b

†
1in(k) |0〉 (4.4.d)

− i

√
2

τ2a,1

1√
2π

∫
dt eipt 〈0|a2a(t)b

†
1in(k) |0〉 (4.4.e)

+(2a→ 2b, 3a, 3b) .

The first element of this equation, Eq. (4.4.a), is δ (p−k). The second element,
Eq. (4.4.a), vanishes because in this expression there is a creation operator acting
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4.1 Scattering of a single photon 53

on the vacuum by the left-hand side. The other six terms have to be transformed
into a differential equation and solved using the Langevin equations∗. This gives

S1(p,k) = δ (p− k)

−
δ (p− k)

(
2

τT 1
+ 2

τT 3
α1(p)

)
T1(p)+ 1

τT 1
+ α1(p)

τT 3
+
(

1
τ2a,1

+ α2(p)
τ2b,1

)
T1(p)
T2(p) +

(
1

τ3a,1
+ α3(p)

τ3b,1

)
T1(p)
T3(p)

−
δ (p− k)

(
2

τ2a,1
+ 2

τ2b,1
α2(p)

)
T2(p)+ 1

τ2a,1
+ α2(p)

τ2b,1
+
(

1
τT 1

+ α1(p)
τT 3

)
T2(p)
T1(p) +

(
1

τ3a,1
+ α3(p)

τ3b,1

)
T2(p)
T3(p)

−
δ (p− k)

(
2

τ3a,1
+ 2

τ3b,1
α3(p)

)
T3(p)+ 1

τ3a,1
+ α3(p)

τ3b,1
+
(

1
τT 1

+ α1(p)
τT 3

)
T3(p)
T1(p) +

(
1

τ2a,1
+ α2(p)

τ2b,1

)
T3(p)
T2(p)

,

(4.5)

with

T1(p) =i(ωT 1− p)+
γrT 1

2
+

γdT 1

4
(4.6)

T2(p) =i(ω2a− p)+
1

τ2a,2
+

√
τ2a,1

τ2b,1τ2a,2τ2b,2
α2(p)+

γr2a

2
+

γd2a

4
(4.7)

T3(p) =i(ω3a− p)+
1

τ3a,3
+

√
τ3a,1

τ3b,1τ3a,3τ3b,3
α3(p)+

γr3a

2
+

γd3a

4
, (4.8)

and

α1(p) =
i(ωT 1− p)+ γrT 1

2 + γdT 1
4

i(ωT 3− p)+ γrT 3
2 + γdT 3

4
(4.9)

α2(p) =
i(ω2a− p)+ 1

τ2a,2
−
√

τ2b,1
τ2a,1τ2a,2τ2b,2

+ γr2a
2 + γd2a

4

i(ω2b− p)+ 1
τ2b,2
−
√

τ2a,1
τ2b,1τ2a,2τ2b,2

+ γr2b
2 + γd2b

4

(4.10)

α3(p) =
i(ω3a− p)+ 1

τ3a,3
−
√

τ3b,1
τ3a,1τ3a,3τ3b,3

+ γr3a
2 + γd3a

4

i(ω3b− p)+ 1
τ3b,3
−
√

τ3a,1
τ3b,1τ3a,3τ3b,3

+ γr3b
2 + γd3b

4

. (4.11)

∗For the complete derivation, see Appendix D.
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Similarly, the other two amplitudes are given by

S2(p,k) =−
δ (p− k)

(
2√

τ2a,1τ2a,2
+ 2√

τ2b,1τ2b,2
α2(p)

)
T2(p)+ 1

τ2a,1
+ α2(p)

τ2b,1
+
(

1
τT 1

+ α1(p)
τT 3

)
T2(p)
T1(p) +

(
1

τ3a,1
+ α3(p)

τ3b,1

)
T2(p)
T3(p)

,

(4.12)

S3(p,k) =−
δ (p− k)

(
2√

τ3a,1τ3a,3
+ 2√

τ3b,1τ3b,3
α3(p)

)
T3(p)+ 1

τ3a,1
+ α3(p)

τ3b,1
+
(

1
τT 1

+ α1(p)
τT 3

)
T3(p)
T1(p) +

(
1

τ2a,1
+ α2(p)

τ2b,1

)
T3(p)
T2(p)

.

(4.13)

The amplitude in Eq. (4.5) contains information about three processes: (1) the
photon is absorbed by the transmon and is reflected, (2) the photon is absorbed
by the SQUIDs in the second branch and is reflected, (3) the photon is absorbed
by the SQUIDs in the third branch and is reflected. The first possible process is
described by the second line together with the first. We neglect, for a moment, the
decoherence parameters γr and γd . If, in addition, τ2a,1 = τ2b,1 and τ2a,2 = τ2b,2
(likewise for 3a, 3b) and also τ2a,1 = τ2a,2, these amplitudes become much simpler
and relevant information can be obtained. In this scenario, near p = ωT 1 (p is the
momentum of the photon), α1 and T1 go to zero and S1 goes to 1, thus the photon
is reflected. The contributions of the processes (2) and (3) are very small because
the denominator in the third and four lines are large when p 6= ω2a, ω3a. In case
the incoming photon has energy ωT 3, then α1 diverges and the amplitude goes to
1− 2α1/τT 3

α1/τT 3
=−1 again (the amplitude squared goes to 1).

Near p = ω2a [this is the process (2)], the second and fourth line do not
contribute, thus the amplitude is given by the first and third lines. In this re-
gion of the momentum space, α2 goes to zero and so does the amplitude (S1 ∼
1− 2/τ2a,1

1/τ2a,1+1/τ2a,2
). Something similar happens with ω2b, ω3a and ω3b. In any

other case, when the momentum is far from any of the energies of the excited
levels, the three denominators in Eq. (4.5) grow and the amplitude goes to 1.

All this means that, in the ideal case where there is no decoherence and any
value can be imposed on the lifetimes of the excitations, a photon that has mo-
mentum

• p = ωT 1 or p = ωT 3 is always reflected,

• p = ω2a, ω2b, ω3a, ω3b is never reflected,

• p that do not coincide with the energy of any excitation is always reflected.
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4.1.1 Probability

The amplitude itself is not an observable and, therefore, is not suitable for de-
termining the performance of the quantum switch. The probability, on the other
hand, is a real number and its values can be contrasted to the results of experi-
mental realizations. The probability is the quantity that has to be maximized (or
minimized) to obtain a proper quantum switch and is derived from the scattering
amplitudes.

The scattering amplitudes computed in the previous section (and the ones that
will be computed next) are valid for an incoming photon with any frequency,
but these photons are sent with a definite momentum (or a superposition). I
will assume that the incoming photons have a frequency distribution given by a
Lorentzian centered at k =ωt and with width 1/τt (just like in similar works [17]).
Hence, given an amplitude S(p,k) describing any single-photon process involving
an incoming particle with momentum k and an outgoing particle with momentum
p, β (p) refers to the convolution of the Lorentzian frequency distribution of the
incoming photon with the amplitude of the process S(p,k).

β (p) =
∫ dk
√

πτt

1
i(ωt− k)+ 1

τt

S(p,k). (4.14)

Now the incoming photon has a definite frequency –not just any– given by a
Lorentzian curve in momentum space. With this, the probability of a process
with an amplitude given by β (p) is

P =
∫

d p |β (p)|2 . (4.15)

The probabilities of the single-photon processes discussed previously cannot
be obtained analytically and will be evaluated numerically in Sections 4.3.1 and
4.3.2.

4.2 Two-photon processes
Once the first photon is absorbed, the second step in the operation of the quantum
switch consists of absorbing a second photon and forwarding it into an outgoing
transmission line, according to the state of the first absorbed photon. The first
photon must remain in the device (the transmon must remain excited) until the
full process has finished and only then it can be emitted back to the incoming
transmission line, where it came from. The amplitude of this scattering process,
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where a photon is transmitted to the second outgoing transmission line, is given
by

S12(p1, p2,k1,k2) = 〈0|b1out(p1)b2out(p2)b
†
1in(k2)b

†
1in(k1) |0〉 , (4.16)

that is, two photons come in and one of them is reflected and the other is transmit-
ted. Since the two photons are not sent in at the same time, some delay between
the incoming pulses have to be imposed onto these equations. This delay ∆t be-
tween pulses can be taken into account by introducing the Heaviside function
Θ(t ′2− (t ′1 +∆t)). That is, the operators b†

1in(k1) and b†
2in(k2) would become

b†
1in(k2) =

1√
2π

∫
dt ′2e−ik2t ′2b†

1in(t
′
2)Θ(t ′2− (t ′1 +∆t)), (4.17)

b†
1in(k1) =

1√
2π

∫
dt ′1e−ik1t ′1b†

1in(t
′
1). (4.18)

To evaluate S12(p1, p2,k1,k2), I have tried to follow the same procedure as in
the previous section, but the complexity of the equations to be evaluated made
it impossible to find the scattering amplitude by using the Langevin equations. I
have tried different methods to solve the problem:

1. In the first place, I tried to solve the system numerically, but the dimension
of the Hilbert space and also the form of the differential equations made this
attempt fruitless. This attempt is expanded in the Appendix E.

2. I have also tried to use propagators and Green’s functions to evaluate the
expression in brackets that gives the scattering amplitude, but without suc-
cess. Appendix F contains all the steps I have followed in this attempt to
derive the scattering amplitude.

3. Another failed attempt to derive the scattering amplitude is described in the
Appendix G, where I have made use of quantum field theory techniques
to obtain the desired propagators. In this appendix, I derived the Feynman
rules for the Hamiltonian I have proposed, but the results were not good
either.

4. Finally, I have decided to assume that the lifetime of the transmon excita-
tions is infinite and I have computed the scattering amplitude following the
procedure described in the previous section. The validity of this assumption
is discussed in Chapter 5.

A transmon excitation fixed in time implies that the transmon operators aT 1,
aT 2 and aT 3 (together with their hermitian conjugate) are constant and, thus, the
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Langevin equations do not satisfy the same differential equations as before. The
transmon excitations cannot decay into an outgoing photon in the transmission
lines anymore so, in this case, b1in(t) and b1out(t) do not depend explicitly on aT 1,
aT 2 and aT 3 anymore. This assumption makes sense if the lifetime of the transmon
is larger than that of the SQUIDs, which is required for a good performance of the
quantum switch†. With this assumption, now the b1in(t) and b1out(t) operators
become

b1out(t) =b1in(t)− i
√

2
(

a2a√
τ2a,1

+
a2b√
τ2b,1

+
a3a√
τ3a,1

+
a3b√
τ3b,1

)
, (4.19)

b1in(t) =
1√
2π

∫
d pb1(p)

+
i√
2

(
a2a√
τ2a,1

+
a2b√
τ2b,1

+
a3a√
τ3a,1

+
a3b√
τ3b,1

)
. (4.20)

Nevertheless, the transmon has to be coupled to the SQUIDs, otherwise it will
disappear completely from the system. The modified equations of motion of the
transmon and the SQUIDs once the transmon has been decoupled from the trans-
mission lines read

ȧT 1 = ȧT 2 = ȧT 3 = 0 (4.21)

ȧ2a =−
(

iω2a +
1

τ2a,1
+

1
τ2a,2

+
γr2a

2
+

γd2a

4

)
a2a + i

3

∑
j=1

J j2aa†
T jaT ja2a

− i

√
2

τ2a,1
b1in(t)− i

√
2

τ2a,2
b2in(t)

−
(

1
√

τ2a,1τ2b,1
+

1
√

τ2a,2τ2b,2

)
a2b−

1
√

τ2a,1τ3a,1
a3a−

1
√

τ2a,1τ3b,1
a3b

− i
√

γr2ar2ain(t)− i

√
γd2a

2

(
a2ad2ain(t)+d†

2ain(t)a2a

)
. (4.22)

The expressions for 2b, 3a and 3b can be easily deduced from Eq. (4.22).

In the case that the transmon is already excited, the probability amplitude for a
photon with momentum k being transmitted through the second transmission line

†The last n−1 photons of a n-photon register have to interact with the device while the trans-
mon is excited.
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with momentum p is

S12(p,k) =〈0|aT 1b2out(p)b†
1in(k)a

†
T 1 |0〉

=〈0|aT 1b2in(p)b†
1in(k)a

†
T 1 |0〉

− i

√
2

τ2a,2

1√
2π

∫
d peipt 〈0|aT 1a2a(t)b

†
1in(k)a

†
T 1 |0〉

− i

√
2

τ2b,2

1√
2π

∫
d peipt 〈0|aT 1a2b(t)b

†
1in(k)a

†
T 1 |0〉 . (4.23)

The second line gives zero because the two operators describing the incoming
photons (in two different transmission lines) commute and, since aT 1 is not cou-
pled to the transmission lines, b2in cannot annihilate a transmon excitation. It acts
on the vacuum instead, giving b2in |0〉= 0.

A simple way to see how the second line in Eq. (4.23) vanishes is the follow-
ing: as I said before [in Section 3.5, Eq. (3.66)], the b1in(t) operator –and the same
for b2in and b3in– is defined as

b1in(t) =
∫

∞

−∞

d pe−ip(t−t0)b1(p, t0), (4.24)

where b1 is evaluated at some t0 such that [aT 1,b1] = 0, thus, the following rela-
tions are obtained:

[aT 1,b1in] =
[
a†

T 1,b
†
1in

]
= 0 (4.25)

[aT 1,b2in] =
[
a†

T 1,b
†
2in

]
= 0 (4.26)

[aT 1,b2in] =
[
a†

T 1,b
†
3in

]
= 0, (4.27)

and the same for aT 2 and aT 3. Using these relations and following the same pro-
cedure as in the previous section (see also Appendix D) the scattering amplitude
becomes

S12(p,k) =−
δ (p− k)

(
2√

τ2a,1τ2a,2
+ 2√

τ2b,1τ2b,2
α ′2(p)

)
T ′2(p)+ 1

τ2a,1
+

α ′2(p)
τ2b,1

+
(

1
τ3a,1

+
α ′3(p)
τ3b,1

)
T ′2(p)
T ′3(p)

, (4.28)

where now, the α ′ and T ′ operators are

T ′2(p) =i(ω2a− J12a− p)+
1

τ2a,2
+

√
τ2a,1

τ2b,1τ2a,2τ2b,2
α
′
2(p)+

γr2a

2
+

γd2a

4
(4.29)

T ′3(p) =i(ω3a− J13a− p)+
1

τ3a,3
+

√
τ3a,1

τ3b,1τ3a,3τ3b,3
α
′
3(p)+

γr3a

2
+

γd3a

4
(4.30)

58

Version of June 29, 2015– Created June 29, 2015 - 21:15



4.3 Numerical integration 59

and

α
′
2(p) =

i(ω2a− J12a− p)+ 1
τ2a,2
−
√

τ2b,1
τ2a,1τ2a,2τ2b,2

+ γr2a
2 + γd2a

4

i(ω2b− J12b− p)+ 1
τ2b,2
−
√

τ2a,1
τ2b,1τ2a,2τ2b,2

+ γr2b
2 + γd2b

4

(4.31)

α
′
3(p) =

i(ω3a− J13a− p)+ 1
τ3a,3
−
√

τ3b,1
τ3a,1τ3a,3τ3b,3

+ γr3a
2 + γd3a

4

i(ω3b− J13b− p)+ 1
τ3b,3
−
√

τ3a,1
τ3b,1τ3a,3τ3b,3

+ γr3b
2 + γd3b

4

. (4.32)

A similar expression holds for the case where the photon is emitted into the third
transmission line and also in the case where the third level of the transmon is ex-
cited.

The expression for the transmission of a photon when the transmon is excited
is very similar to that of the transmission of a photon where the transmon is not
excited, shown in Eq. (4.12), the main difference being the frequency threshold
at which the photon is absorbed. In this case, due to the presence of a transmon
excitation, the second photon can be absorbed by one of the SQUIDs (if it has
the right energy) and be transmitted forward whereas, in the previous case (no
transmon excitation) a photon with the very same energy cannot be absorbed and,
thus, is reflected. For a more detailed analysis of this result, the reader is referred
to the following section, where numerical results have been obtained and the two
cases (presence and absence of a transmon excitation) are compared.

4.3 Numerical integration

Analytical expressions have been found –not free from approximations– for the
scattering amplitudes of one and two photons. These amplitudes, once convoluted
with the pulse shape in Eq. (4.14), give the probability of transmission of a photon
within the different processes that can occur. However, these probabilities cannot
be obtained analytically. Instead, some numerical values have to be introduced in
the equations in order to make them numerically integrable. In this section I com-
pute the squared amplitude (real numbers) of the different processes discussed
previously and I also evaluate the probability that these processes take place.

The free parameters that are left in the equations derived in the previous sec-
tions are the capacitances, although some constraints have to be imposed on them.
The values they take must satisfy:
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60 Dynamics of operation of the Quantum Switch

a) C2sa <C2a. This condition is used to impose a cutoff in the Taylor expansion
of the Hamiltonian, to ensure that the rotating wave approximation holds and
to decouple the transmon to the outgoing transmission lines.

b) τT 3 = 6τT 1. This condition is already satisfied if h̄2
αt/ϕ2

0 = γ3/(324Ct) is
imposed.

c) Similarly, τ2a,1 = τ2b,1 (and the same for 3a, 3b). With these conditions, the
scattering amplitude for a photon being transmitted –when it has the right
energy– is maximized.

d) For the same reason, τ2a,1 = τ2a,2 has also to be imposed.

e) τT 1 and τT 3 have to be much larger than the lifetimes of the SQUIDs.

f) Finally, and possibly more important, the energy of the SQUID levels and
the coupling strengths have to be such that ω2a− J12a = ω3a− J33a and also
ω2b− J12b = ω3b− J33b. They also have to satisfy ω2a 6= ω2b 6= ω3a 6= ω3b.

With these conditions is not possible to obtain an explicit set of values for the
capacitances. Multiple choices can be made, but none of them completely satisfies
these constraints. The set of capacitances I propose is

Ct = 0.1 C1

C2a = 1.2 C1 C2sa = 0.1824 C1

C2b = 1.1 C1 C2sb = 0.1934 C1

C3a = C1 C3sa = 0.1650 C1

C3b = C1 C3sb = 0.1799 C1, (4.33)

with C1 = 10−9 e2

h F . So the capacitances take values of the order of picofarads
and femtofarads, which are realizable values [49]. With this set of variables, the
energies of the transmon excitations are

ωT 1 =7.18884 ·109 Hz (4.34)

ωT 2 =1.43829 ·1010 Hz (4.35)

ωT 3 =2.19266 ·1010 Hz, (4.36)

and for the SQUIDs, the excitation energies are

ω2a =1.0277 ·109 Hz (4.37)

ω2b =1.1615 ·109 Hz (4.38)

ω3a =1.05288 ·109 Hz (4.39)

ω3b =1.18562 ·109 Hz. (4.40)
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4.3 Numerical integration 61

The coupling strengths are also obtained from the capacitances

J12a = 1.85615 ·107 Hz J22a = 3.14956 ·107 Hz J32a = 4.09808 ·107 Hz
J12b = 2.09586 ·107 Hz J22b = 3.43797 ·107 Hz J32b = 4.32139 ·107 Hz
J13a = 1.90274 ·107 Hz J23a = 3.29556 ·107 Hz J33a = 4.37402 ·107 Hz
J13b = 2.13998 ·107 Hz J23b = 3.54703 ·107 Hz J33b = 4.50719 ·107 Hz.

The values of the energies are in a range common in the related literature [49–51]
and the values of the coupling strengths, two orders of magnitude smaller than the
energies of the SQUID excitations, are also usual in other similar works (see, e.g.,
Neumeier et al. [17]). These values of the capacitances also satisfy:

i) C2sa ≈C2a/5. If the difference were larger, then the lifetime of the transmon
would be much smaller than it is now. In this case, the transmon might also
be coupled to the outgoing transmission lines.

ii) τ2a,1 ≈ 400τT 1. This is exactly the opposite of the expected behavior. To ob-
tain this relation between τ2a,1 and τT 1 I have assumed that V1 –and thus, A1–
are the same for any incoming pulse, but they may depend on the frequency
of the pulse and also on other quantities, such as the cavity quality factor Q
of the transmission line, related to the Purcell effect [52]. Although I do not
expect this relation to be much different after considering a non constant A1,
I will consider that, in the case of the two-photon scattering, the lifetime of
the transmon is infinitely larger than that of the SQUIDs. This assumption
simplifies the calculations.

iii) τ2a,1 ≈ 4
3τ2b,1. This is because different capacitances have to be given to the

SQUID’s capacitors. Otherwise they all would have the same energy. This
small difference does not have a big influence in the scattering amplitudes, as
will be shown in the next sections.

iv) The last condition is identically satisfied: ω2a− J12a = ω3a− J33a and also
ω2b−J12b = ω3b−J33b. Although it may seem that the energy of the SQUID
excitations are similar, they are different enough , as will be seen during the
numerical integration.

Regarding the relation between τ2a,1 and τ2a,2, it can be imposed by hand be-
cause they are independent, but their values have to be chosen wisely. Recall that,
from Eq. (3.24) to (3.33), the lifetimes depend on some variables A1, A2 and A3. If
we want to make the system scalable, these have to be the same. Imagine that they
are not, and imagine that the lifetimes satisfy τ2a,2 = ρτ2a,1 for some ρ which, in
case the system is scalable, is ρ ≈ 25 [with the capacitances given in Eq. (4.33)].
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62 Dynamics of operation of the Quantum Switch

Near p = ω2a, the scattering amplitude for the transmission of a photon would go
as S ∼ 2

√
ρ

ρ+1 , which goes to 0.38 for ρ ≈ 25. In the following calculations, I will
consider ρ = 1, so the amplitude will be maximized.

The values I have taken for the lifetimes are

τT 1 =1 ·10−7 s (4.41)

τT 3 =6 ·10−7 s (4.42)

τ2a,1 =τ2a,2 = τ3a,1 = τ3a,3 = 4 ·10−5 s (4.43)

τ2b,1 =τ2b,2 = τ3b,1 = τ3b,3 = 3 ·10−5 s. (4.44)

These values –both their magnitude and their ratio to the energy of the excitations–
are common in the related literature [49–51].

Now that a choice for the capacitances and, thus, the energies and all the other
parameters of the system have been presented, the scattering amplitudes can be
evaluated numerically and their behavior as a function of the momentum of the
photons can be analyzed. Besides these amplitudes, the probabilities are also
obtained in the next sections.

4.3.1 Without decoherence
For the sake of simplicity, I will first consider an ideal case where decoherence
is not present in the system. The following figures contain the probability ampli-
tude squared (to make it real) without being convoluted with the Lorentzian pulse
shape, but I do have considered that the momentum of the incoming photon is
equal to the momentum of the outgoing photon‡.

Reflection

When a photon is sent through the transmission line 1, it can be either transmit-
ted or reflected, as show the Hamiltonian previously derived. Let us focus on
the case where the photon is reflected. It can be reflected in two different ways:
the photon can reach the end of the transmission line and come back or it can
be absorbed by the device and be emitted into the transmission line again. In or-
der to study the two different cases, the incoming transmission line can be split
(or unfolded) is such a way that it is extended from −∞ to ∞, as in FIG. 4.1.

‡This comes from the momentum conservation imposed by the Dirac delta function in the
scattering amplitudes.
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Device Device Device

Transmission line 1

Figure 4.1: This figure shows how the transmission line have to be transformed. The
first picture represents the actual device introduced in the previous chapters and, in the
incoming transmission line, the arrows show the path followed by a right-moving photon
that is reflected without being absorbed. The transmission lines have to be split (sym-
bolically, not physically) in the way shown by the second and third pictures. This way,
a right-moving photon that is reflected without being absorbed always goes to the right
whereas a right-moving photon that is reflected after being absorbed, first go to the right,
is absorbed and then is emitted back as a left-moving photon (and goes to the left).

An incoming photon that is reflected without interacting with the device goes,
in this new representation, from −∞ to ∞, whereas a photon that is reflected by
the device goes from −∞ to 0 (the position of the device), is absorbed and then
is emitted back into the transmission line heading to −∞ again. This is real-
ized by considering “left-moving” and “right-moving” modes within the incom-
ing pulse: b1in(k) = (r1in(k)+ l1in(−k))/

√
2 [48], where r1in stands for incoming,

right-moving mode in the first transmission line (not to be confused with the re-
laxation operators) and l1in stands for left-moving. The amplitude for a photon
that is absorbed and emitted back in the same transmission line is

S1I(p,k) =−
δ (p− k)

(
1

τT 1
+ 1

τT 3
α1(p)

)
T1(p)+ 1

τT 1
+ α1(p)

τT 3
+
(

1
τ2a,1

+ α2(p)
τ2b,1

)
T1(p)
T2(p) +

(
1

τ3a,1
+ α3(p)

τ3b,1

)
T1(p)
T3(p)

−
δ (p− k)

(
1

τ2a,1
+ 1

τ2b,1
α2(p)

)
T2(p)+ 1

τ2a,1
+ α2(p)

τ2b,1
+
(

1
τT 1

+ α1(p)
τT 3

)
T2(p)
T1(p) +

(
1

τ3a,1
+ α3(p)

τ3b,1

)
T2(p)
T3(p)

−
δ (p− k)

(
1

τ3a,1
+ 1

τ3b,1
α3(p)

)
T3(p)+ 1

τ3a,1
+ α3(p)

τ3b,1
+
(

1
τT 1

+ α1(p)
τT 3

)
T3(p)
T1(p) +

(
1

τ2a,1
+ α2(p)

τ2b,1

)
T3(p)
T2(p)

,

(4.45)
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whereas the amplitude for a photon being reflected without interaction is

S1N(p,k) = δ (p− k)+S1I(p,k) (4.46)

with the α’s and T ’s the same as before. The difference between these expressions
and the full scattering amplitude with only even modes (b1in) is that, in these two
expressions, the factors of two in the numerators have disappeared.

The total amplitude for a photon being transmitted, independently of how this
happens, is S1 = S1N + S1I . The curves in FIG. 4.2 and FIG. 4.3 show the mo-
mentum dependence of S1 and also S1I . In the first figure, the red curve shows
the amplitude for a photon with energy around ωT 1 and ωT 3 being reflected (in
any way). The green curve shows the probability that the photon is absorbed and
reflected. The data in red is completely flat whereas the data in green is zero ev-
erywhere except for two peaks that go up to 1. This means that if a photon with
energies around ωT 1 and ωT 3 but not exactly ωT 1 or ωT 3 is sent to the switch it
will just be reflected without interacting with the device. If the photon has en-
ergy ωT 1 or ωT 3, it will always be absorbed by the transmon. Moreover, this also
shows that if the photon is absorbed by the transmon, it is always reflected.

Consider an incoming pulse shaped as a Lorentzian curve (in momentum
space) with width 1/τ1 and momentum ω1. If τ1 is much larger than τT 1 –it
can be up to three or four orders of magnitude larger, with the numbers I have
introduced§ – then the integral of the product of the Lorentzian times the curve
S1I –that is, the probability that a photon is absorbed and reflected– goes to one.

Take a look at Eq. (4.45). Near p→ ωT 1 the amplitude goes to one, but near
p→ ωT 3 it only goes to one if τT 3 = 6τT 1. Something similar happens with all
the other lifetimes. This is the reason why the constraints (b), (c) and (d) had to
be imposed

In FIG. 4.3 the behavior is quite different. The red curve tells us that the pho-
ton will be reflected as long as its energy does not coincide with the excited state
of the SQUIDs (ω2a, ω2b, ω3a or ω3b). If it coincides with one of these energies,
the incoming photon will not be reflected. That means that it will be absorbed by
the SQUIDs and transmitted forward into one of the outgoing transmission lines.

Regarding the green curve, its explanation is more complex. In FIG. 4.3, 4.4
and 4.5 the red curve shows that a photon with enough energy to excite any of

§A single photon pulse of these characteristics can be obtained by the emission of a photon by
a single-mode cavity with resonant frequency ωt and spontaneous emission lifetime comparable
to τt [53]. Artificial atoms with this lifetime have been recently demonstrated [49, 50].
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Figure 4.2: These curves describe the probability amplitude squared for the reflection of
a photon by the proposed device in the high energy range (around ωT 1 and ωT 3). The
red line gives the probability of reflection of an incoming photon as a function of the
momentum, and the green curve gives the probability that a photon is absorbed by the
transmon and reflected back.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.04e+09  1.08e+09  1.12e+09  1.16e+09  1.2e+09

A
m

p
li
tu

d
e
 s

q
u
a
re

d

Frequency (Hz)

Re ection
Absorption

 + Re ection

Figure 4.3: This figure describes the reflection of a photon by the quantum switch in the
low energy range (around ω2a, ω2b, ω3a and ω3b). The red line gives the probability of
reflection of an incoming photon as a function of the momentum, and the green curve
gives the probability that a photon is absorbed by the SQUIDs and reflected back (only
right-moving or left-moving modes).
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the SQUIDs is never reflected. The same figures also tell us (green curves) that
if the transmission line is split in a way such that right- and left-moving photons
can be considered, if a left-moving photon –or a right-moving photon– is sent to
the device there is a non-vanishing probability that the photon is reflected. This
seems to contradict the previous statement, but it does not. In the first case an
even photon, defined by b†

in = (r†
in + l†

in)/
√

2 is absorbed, and the amplitude prob-
ability squared of obtaining a reflected even photon is computed. In the second
case, a right-moving photon r†

in is absorbed and the amplitude probability squared
of obtaining a reflected right-moving photon is computed. This amplitude, be-
fore squaring, is 0.5. The amplitude for a left-moving photon being obtained after
sending a right moving photon gives−0.5. The total amplitude of reflection is the
sum of the two processes, which gives identically zero, but the figure only shows
the square of one of the processes.

Hence, we can conclude that if an incoming photon has enough energy to ex-
cite a SQUID, it is always transmitted as long as it is described by an even mode,
otherwise there is a probability of being reflected. In the case of an odd mode
b†

in = (r†
in− l†

in)/
√

2 [48], the photon is always reflected.

The curves in FIG. 4.4 and FIG. 4.5 show the same as those in FIG. 4.3 but
with a closer look at the energies ω2a and ω3a in the first of the figures, and around
ω2b and ω3b in the second. In all these figures, and also the ones that follow, it
is very important to notice that there is no overlap between the peaks in the am-
plitudes, except in the case when a perfect overlap is needed (last figures). This
means that the separation between the energy levels is just right and that a photon
that is meant to excite one definite energy level will not excite any other than that.

Transmission

FIG. 4.6 and FIG. 4.7 show the probability amplitude of a photon being transmit-
ted to the second (and third) transmission line in three different cases. In the first
case (red line) the photon is transmitted only if its energy is ω2a or ω2b (ω3a or
ω3b). In the second case (green line), the first level of the transmon is excited and,
because of this, the photon can only be transmitted if its energy is ω2a− J12a or
ω2b− J12b (ω3a− J13a or ω3b− J13b, for the other figure). In the third case (blue
line), the third level of the transmon is excited and, because of this, the photon
can only be transmitted if its energy is ω2a− J32a or ω2b− J32b (ω3a− J33a or
ω3b− J33b).

The most interesting curves are those in FIG. 4.8 and FIG. 4.9. When a photon
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Figure 4.4: Reflection of a photon by the quantum switch in the low energy range. In this
case the probability amplitude ranges within energies around which the SQUIDs labeled
with an a are excited (ω2a and ω3a).
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Figure 4.5: Reflection of a photon by the quantum switch in the low energy range. In this
case the probability amplitude ranges within energies around which the SQUIDs labeled
with a b are excited (ω2b and ω3b).
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Figure 4.6: The probability amplitude for the transmission of a photon to the second
transmission line is plotted in this figure. The red curve gives the probability of trans-
mission of an incoming photon as a function of the momentum, the green curve gives
the probability of transmission when the first transmon level is excited and the blue curve
gives the probability of transmission when the third level of the transmon is excited.
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Figure 4.7: The probability amplitude for the transmission of a photon to the third trans-
mission line is plotted in this figure. The red curve gives the probability of transmission
of an incoming photon as a function of the momentum, the green curve gives the proba-
bility of transmission when the first transmon level is excited and the blue curve gives the
probability of transmission when the third level of the transmon is excited.
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Figure 4.8: The probability amplitude for the transmission of a photon to the second and
third transmission lines through the SQUIDs labeled by a is shown in this figure. The
red curve gives the probability of transmission of an incoming photon as a function of the
momentum, the green curve gives the probability of transmission through 2a when the
first transmon level is excited, the dark blue curve gives the probability of transmission
through 3a when the first level of the transmon is excited, the magenta curve gives the
probability of transmission through 2a when the third level of the transmon is excited and
the cyan curve gives the probability of transmission through 3a when the third level of the
transmon is excited. The green curve cannot be seen because it is behind the cyan curve
(full overlap).

is sent in, it can be sent with only four different frequencies: if it has frequencies
ωT 1 or ωT 3 the photon will excite the first or third energy levels of the transmon;
if we want them to be transmitted the photon has to be sent with enough energy
to excite either the SQUIDs labeled with a or the SQUIDs labeled with b. The
device is designed in such a way that the energy needed to send a photon through
2a when the first level of the transmon is excited is exactly the same as the energy
needed to send a photon through 3a when the third level is excited. This way
it is the transmon –or the first photon, which is absorbed by the transmon– who
decides to which transmission line the following photons are transmitted.

Let me consider first FIG. 4.8. In this figure there is a red curve that shows the
probability amplitude for a photon being transmitted through a to the second or
third transmission line. There is also a green line that shows the probability for a
photon being transmitted through a to the second transmission line when the first
level of the transmon is excited. The blue line gives the probability that a photon
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Figure 4.9: Transmission of a photon to the second and third transmission lines through
the SQUIDs labeled by b. The lines represent the same as in the previous figure. The
green curve cannot be seen because it is behind the cyan curve.

is transmitted through a to the third transmission line while the first level of the
transmon is excited. There is also a magenta line that gives the probability for a
photon being transmitted through a to the second transmission line while the third
level of the transmon is excited. Finally, the cyan curve shows the probability that
a photon is transmitted through a to the third transmission line when the third en-
ergy level of the transmon is excited. The cyan and the green curve are perfectly
overlapping.

Imagine that an incoming photon (the second) is absorbed, and that this pho-
ton is supposed to excite the first level of the transmon on the next node of the
network. This means that it has to be transmitted through either the low energy
SQUID that leads to the second transmission line or the low energy SQUID that
leads to the third transmission line. This is, the SQUIDs labeled with a, so this
photon is sent with some energy ωa. In this plot we expect to see two red, sep-
arated peaks that must not be excited. These have energy ω2a and ω3a. We also
expect to see a blue and a magenta peak, separated as well. They have energy
ω3a− J13a and ω2a− J32a, respectively. These are not supposed to be excited
either. Finally, we expect to see two overlapping peaks (green and cyan) with en-
ergy ωa = ω2a− J12a = ω3a− J33a corresponding to the energy of the SQUID 2a
when the first transmon level is excited (green) and to the energy of the SQUID 3a
when the third transmon level is excited (cyan). Summarizing, when an incoming
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photon (the second) goes to the switch with energy ωa it is transmitted through 2a
if the first energy level of the transmon is excited or through 3a if the second level
of the transmon is excited. The last figure displays the same behavior but with the
other two SQUIDs.

As I said before, the probability is found by calculating the convolution of
these curves together with a Lorentzian curve centered at ωt and with width 1/τt .
For the variable τt I have taken τt = 10−4 s, which is a realizable value [49, 50, 53].
With this value, which is much larger that the lifetimes of the excitations, the
shape of the incoming pulse is a curve much narrower than those in the FIG. 4.2
to 4.9, so the convolution will give a probability as large (or small) as the value the
scattering amplitude (squared) takes for the frequency ωt of the incoming photon.
In the next section, where dephasing is considered, the probabilities are computed
to give the exact value they take (not just one or zero, as in this section) for each
possible process.

4.3.2 With decoherence

The decoherence processes are present in the expressions for the scattering am-
plitudes with the parameters γr, γd (relaxation and dephasing). I have assumed
that both take the same value γ = 104 s−1, for the transmon excitations and
γ = 103 s−1, for the SQUID excitations. These are realizable values in systems
with similar energy scales [51, 54]. Moreover, I have considered τT 3 = 3τT 1 to
account for all the possible relaxation processes that may experience the third ex-
cited level of the transmon (see Section 3.4).

The scattering amplitudes computed before [in Eq. (4.5) and (4.28)] become,
in the presence of dephasing and relaxation processes and near ωT 1− p→ 0 and
ω2a− p→ 0,

S1 ∼−
1− 3

4γτT 1

1+ 3
4γτT 1

(4.47)

S12 ∼
1

1+ 3
8γτ2a,1

. (4.48)

If we consider a transmission line split like in Fig. 4.1, then Eq. (4.46) and (4.45)
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become (near ωT 1− p→ 0, as well):

S1N ∼
3
4γτT 1

1+ 3
4γτT 1

(4.49)

S1I ∼−
1

1+ 3
4γτT 1

. (4.50)

The full scattering amplitude for all these processes will not be derived again.
These are just the same as in the previous section (see FIG. 4.2 to 4.9) but with
smaller peaks (and slightly wider). Instead, in this section, the probability of re-
flection and transmission of photons through the quantum switch in a few different
cases is computed. These probabilities now include the possible decoherence pro-
cesses.

Single-photon processes

The probability p1,T 1 for an incoming photon with frequency ωt = ωT 1 being re-
flected by the quantum switch is expected to go to one. The same behavior is
expected for a photon with frequency ωt = ωT 3, both in the case the photons are
even modes or just right- or left-moving particles. However, with the introduction
of the dephasing processes, these probabilities are slightly different. The proba-
bilities p1,T 1 and p1,T 3 are, for even modes,

p1,T 1 =0.997 (4.51)
p1,T 3 =0.947. (4.52)

This is the total probability: it accounts for the process where the photon is ab-
sorbed and reflected and also for the process where the photon is just reflected
without being absorbed. If the incoming photon is a right- or a left-moving mode,
these probabilities are slightly larger:

p1,T 1 =0.998 (4.53)
p1,T 3 =0.973. (4.54)

Thus, even modes are more likely to experience a decoherence process. Neverthe-
less, these are quite large values, if we take into account that the dephasing ratios
have been taken larger than usual.

If the incoming photon has enough energy to excite a SQUID (without the
presence of a transmon excitation), that is ωt = ω2a, the probabilities that it is
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reflected by the device (p1,2a,e) as an even mode or absorbed and reflected (p1,2a,l)
as a left-moving or right-moving mode are

p1,2a,e =1.92 ·10−2 (4.55)
p1,2a,l =0.238. (4.56)

Photons with enough energy to excite the SQUIDs should not be reflected, so it is
advisable to work with only even modes, although this makes the probability of
reflection of the photons with larger energy (ωT 1 or ωT 3) smaller.

In our scheme, the incoming photons can have energy ωT 1 or ωT 3 if they
are the first to arrive at the switch, and energies ωa = ω2a− J12a = ω3a− J33a or
ωb = ω2b− J12b = ω3b− J33b for the rest of the photons. Therefore, we have to
make sure that a photon with energies ωa or ωb are not transmitted if the transmon
is not excited. The probabilities of transmission of a photon with energy ωa being
emitted into the second transmission line (p2,a) or into the third transmission line
(p3,a) are

p2,a =9.80 ·10−6 (4.57)

p3,a =2.31 ·10−6. (4.58)

These are virtually zero.

Two-photon processes

More interesting is the case where the transmon is excited, either its first level or
the third. In the case the first level of the transmon is excited, the next incoming
photon must be transmitted only into the second outgoing transmission line, inde-
pendently of whether its energy is ωa or ωb. The probabilities for the transmission
of a photon in any possible case where the first transmon level is excited are

p2,a(T 1) =0.952 (4.59)
p2,b(T 1) =0.964 (4.60)

p3,a(T 1) =1.63 ·10−6 (4.61)

p3,b(T 1) =1.47 ·10−6, (4.62)

where the first of them is the probability that an incoming photon with energy ωa
is transmitted to the second transmission line, p2,b(T 1) is the probability that an
incoming photon with energy ωb is also transmitted to the second transmission
line and p3,a(T 1) and p3,b(T 1) are the probabilities that an incoming photon with
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energy ωa or ωb are transmitted to the third transmission line while the first, and
not the third, transmon level is excited. In the absence of decoherence, the first
two probabilities [Eq. (4.59) and (4.60)] are expected to go to 1 because the in-
coming photon has the right energy to excite the SQUID labeled with 2a and 2b,
respectively, and thus, be transmitted to the second transmission line. The other
two probabilities [Eq. (4.61) and (4.62)], on the other hand, are expected to go
to zero because in that case, the incoming photons do not have enough energy to
excite the SQUIDs that are coupled to the third transmission line.

If the third level of the transmon is excited, the behavior should be the oppo-
site. The probabilities found in this situation are

p2,a(T 3) =7.12 ·10−7 (4.63)

p2,b(T 3) =2.94 ·10−7 (4.64)
p3,a(T 3) =0.952 (4.65)
p3,b(T 3) =0.964. (4.66)
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Chapter 5
Implementation of the Quantum
Switch into a QRAM

5.1 Not all the requirements can be fulfilled
In the previous chapters I have introduced and analyzed a superconducting device
capable of routing photons through different paths. The purpose of this quantum
switch is to route an n-photon register from a root node to the memory cells in
a quantum random access memory. In order to perform this function, the device
must satisfy some requirements already discussed previously. These include:

1. A multilevel device coupled to three transmission lines. The proposed
device must be coupled to an incoming transmission line, where the photons (ad-
dress register in a QRAM) come from, and also to two outgoing transmission
lines, thus creating the bifurcating path needed to build up a QRAM. This device
must work independently, in the sense that an external interaction to control it
(opening/closing the switch) is not needed. This device is the one proposed in
FIG. 2.6, and is operated solely with the incoming photons it absorbs and emits.
Moreover, this must have different energy levels (see the different energy spec-
tra in the plots in Section 4.3.1) that interact differently with the photons and the
transmission lines, as shown in FIG. 3.1.

2. Excitation of higher levels. In order to achieve the desired transmon-SQUID
interactions that modify the energy spectrum of the device when two photons are
absorbed, the higher levels of the transmon must be accessible by the absorption
of a single photon. This is realized by introducing a nonlinear capacitor in the
transmon (Sections 2.2 and 2.3).
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3. Perfect absorption. The incoming photons have energy ωT 1 or ωT 3 to match
the two accessible energy levels of the transmon (in case it is the first photon to
be absorbed by the switch) or energy ωa or ωb if the photons are to be transmitted
after the transmon has been excited. An incoming photon with the right energy
is always absorbed by the device. This behavior is shown in Section 4.3.1 and
it is due to an adequate energy spectrum of the device and the right value of the
lifetimes of both the transmon and SQUIDs.

4. Reflection/transmission when necessary. After the incoming photon is ab-
sorbed it must be emitted back into one of the transmission lines, or the other,
depending on the energy of the photons and the state of the excited transmon. The
plots in Section 4.3.1 also show this behavior, which is described by the Hamilto-
nian in Eq. (3.47).

5. The transmon decides. After the first photon is absorbed (always by the
transmon), the following photons are also absorbed by the device but they are
only emitted into one of the outgoing transmission lines. It is the transmon which,
according to the level that is excited, modifies the energy spectrum of the SQUIDs
and forces the photons to be absorbed by only the SQUIDs that lead to one of the
transmission lines, as is described in FIG. 3.1. This transmon-SQUID interaction
is contained in the Hamiltonian in Eq. (3.43).

6. Scalability. In order to make the system scalable, which is necessary if we
want to construct a QRAM based on a network of these quantum switches, there
can only be two different energies: ωa and ωb. In a QRAM, when the second pho-
ton is transmitted it becomes the first of the new address register and, thus, will be
absorbed by the transmon at the next quantum switch it will encounter in its way
to the memory cells. It is necessary, therefore, that the second photon (and also
all the rest) have the same possible energies as the first (ωT 1 or ωT 3), but with the
proposed device, the flux ϕ1 (see FIG. 2.6) is influenced by the transmon and all
the SQUIDs, whereas the other four fluxes are only influenced by the elements in
their nearest SQUIDs. This is what makes the energy of the transmon (atom-like
element described by the flux ϕ1) larger than the energy of the SQUIDs for any
choice of the capacitances and Josephson energies.

A possible solution to this problem may be to add another device between
the nodes that enlarges the energy of only the first photon (without measuring
it, otherwise the wave function will collapse) and leaves the others with the same
energy. Simulated Raman Adiabatic Passage (STIRAP) processes may be a candi-
date for a device capable to transfer the population of a quantum state (with lower
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energy) into another (with higher energy). These processes have been studied in
circuit-QED systems in [55, 56].

7. Lifetime relations. Since the transmon has to remain excited while all the
photons go through the device, its lifetime must be larger than the lifetimes of the
SQUIDs, but for the same reason described in the previous paragraph, the behav-
ior is totally the opposite [see Eq. (3.24) to (3.33) and also Eq. (3.48) and (3.50)].
Thus, for a correct performance of the quantum switch, a way to extend the life-
time of the transmon must be found. One possibility may consist of making use of
the Purcell effect, which can be used to extend the lifetime of the transmon [52]
and also to reduce the lifetime of the SQUIDs [57]. Moreover, if the system is
scalable then τ2a,1 6= τ2a,2. These two lifetimes must be equal or similar for a
good performance of the device, as discussed in Chapter 4 (Section 4.3).

8. Absence of undesired interactions. The Lagrangian derived for the device
in FIG. 2.6 led to a Hamiltonian with many interactions that should be canceled in
order to obtain a quantum switch that routes the address registers without losing
information by means of undesired processes such as e.g., a transmon excitation
that decays into a SQUID excitation plus a photon. All these processes have been
successfully canceled (or minimized) in Section 2.5 by introducing some extra
inductors, by tuning the Josephson energies and by imposing some constraints to
the capacitances (see also Section 3.1).

9. Low decoherence. Finally, any quantum device suffers from decoherence
and this is not an exception. Nevertheless, with the values for the decoherence
parameters used in Section 4.3.2, the quantum switch I propose can perform the
work it is designed for with a small probability of failure.

Almost all of these requirements have been successfully satisfied, and those
that cannot be realized may be amended by introducing extra elements into the
system. Let us assume that these elements exist and can be easily implemented.
Now that we know which are the basic elements needed to fabricate a QRAM, it
is time to ask ourselves how can a register of photons arrive at the memory cells
and come back with the information they contain.

5.2 How to get to the memory cells
In this section I consider two cases: (1) the lifetime of the transmon is very large
(τT 1 >> τ2a,1), and (2) it is smaller than that of the SQUIDs but large enough to
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make the quantum switch work (τT 1 . τ2a,1).

Consider, for simplicity, a QRAM formed by a root node, a quantum switch
and a memory array with only two memory cells (c1 and c2), each containing a
classical bit (either 1 or 0). For this device, the address register consists of two
photons: the first of the photons is the one that excites the transmon, and the sec-
ond (the bus photon) is the photon that interacts with the memory cell to extract
its content. Each of the photons can be either in the state |a〉 or |b〉, with energies
ωa or ωb, respectively∗, but I will consider that the bus photon is always in the
lowest energy state.

If we want to extract, from the QRAM, a wave function containing a superpo-
sition of the content of the cells c1 and c2, a superposition of address registers have
to be sent to the QRAM. This will consist of a photon in the state |a〉 together with
a bus photon –in the state |a〉 as well– in a quantum superposition with a photon in
the state |b〉 together with another bus photon. The wave function of this address
register is

|ψ〉= 1√
2
(|a〉 |a〉+ |b〉 |a〉) . (5.1)

When the register arrives at the switch, the first photon is absorbed and the second
is transmitted, as described in the previous chapters, but the wave function is not
modified. Since the address register is in a superposition of states, the second
photon will be in a superposition of states, also, between the transmission lines
leading to c1 and c2. When the second photon arrives at the memory cells, they
encounter an operator

U(x) = (1− x)1⊗1+ x 1⊗ (|a〉〈b|+ |b〉〈a|) , (5.2)

where x is the content of the memory cell and can be either 0 or 1. The first
identity acts on the space of the first photon and the second acts on the space of
the second photon. Thus, if the content of the cell is 0, the state of the photon does
not change and if the state is 1, it does. In a QRAM with c1 = 1 and c1 = 0, after
reaching the memory cells, the wave function |ψ〉 becomes∣∣ψ ′〉= 1√

2
(|a〉 |b〉+ |b〉 |a〉) . (5.3)

If the QRAM contains n levels of nodes (2n−1 quantum switches, the root node
is the first level), then n+ 1 photons are needed and the wave function |ψ〉 can
∗Imagine that either the transmon and the SQUIDs have the same energies or that there is an

element before the switch that enlarges the energy of the first incoming photon.
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contain the superposition of up to 2n address registers.

Let us consider now the case (2) where τT 1 < τ2a,1, but considering that these
lifetimes are such that when the transmon is excited, the second photon has enough
time to be absorbed before it decays. In this case, after the two photons have
been absorbed, the transmon excitation decays emitting a photon with energy
ω ′T 1 < ωT 1 (or ω ′T 3 < ωT 3), whereas the SQUID will emit a higher energy photon.
This energy difference may not be a problem if there is a device before each node
that rescales the energies of the incoming photons. The problem is that, in this
case, no more than one photon can be transmitted. This can be amended by send-
ing more photons: if we want to send two photons through one of the switches
we will need to send one photon (this will excite the transmon and decay while
the second photon is absorbed), then a second photon will be absorbed and trans-
mitted; after this another photon equal to the first –it has to excite the transmon in
exactly the same way as the first– will be absorbed, and finally a fourth photon will
be absorbed and transmitted (second transmitted photon). For an n-level QRAM,
since only half of the photons are transmitted (the other half are absorbed by the
transmon and reflected), 2n photons will be needed. For large QRAMs this is not
optimal because it may not be possible to keep 2n photons coherently coupled.

In any case, since the reflected photons are all identical, the wave function of
the photon that has arrived at the memory cells is the same as before.

5.3 Retrieval of information

Now a photon (or a superposition) has reached the memory cells, but this is not
enough. This photon has to come back. It cannot be reflected to the same path
it came because the transmon have already decayed and emitted a photon (the
switches are closed), so the bus photon must go through another path. Once the
photon has interacted with the memory cell, it can be routed via superconducting
hybrid ring couplers [27]†. A schematic representation of this QRAM is shown in
FIG. 5.1. The output will be a single photon whose state is a superposition of the
content of the memory cells that have been evaluated, weighted by the amplitudes
given by the states of the other incoming photons (that excited the transmon): just
the wave function described in Eq. (5.3).

†These devices can route a photon through different paths according to their energy. They can
be fabricated in a way that route all the photons (with any of the two possible frequencies) to the
same path. For more information see [27].
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Input Output

Flow of the bus photon

c1

c2

c3

c4

Figure 5.1: This is a schematic representation of a 4-bit QRAM containing a mechanism
to extract the bus photons once they have interacted with the memory cells. This is com-
posed of an input bifurcation path with quantum switches at its nodes, an array of memory
cells, each labeled with c1 to c4 and another bifurcation path. This last element contains a
superconducting hybrid ring coupler at each node, and its function is to route the photons
from the memory cells to the rightmost node. While the first (two) photons of the address
register are absorbed and reflected, the bus photon goes all the way from the left to the
right of the picture.

This photon can be used to do calculations where a superposition of the input
data is needed, but it could also be used to read the information of a single mem-
ory cell with complete privacy [16].

In the latter, a question is sent in (address register) and an answer is obtained
(bus photon), but in order to read the answer, which can be in a superposition
of states, the complete initial register (question) is needed. That is, the photons
absorbed and reflected by the transmons are needed. These can be recovered by
making use of the same superconducting hybrid ring couplers, but they can also
be obtained if, at the beginning of the whole process, two identical instances of
each photon are created. One of each pair is sent to the QRAM (and lost) whilst
the other is kept to decode the output information. This may not be suitable if the
address register is constructed using the output of a quantum computation (e.g.,
a wave function describing a mixed state) because the wave function that has to
generate the address register cannot be copied‡. But in case we want to create a
“hand made” quantum register, we can as well create two of them.

‡The No-cloning theorem does not allow to make copies of arbitrary unknown quantum
states [11].

80

Version of June 29, 2015– Created June 29, 2015 - 21:15



5.3 Retrieval of information 81

Whether the photons absorbed by the transmon are recovered or are lost, the
process of reading the content of a memory cell without anyone knowing which
cell has been evaluated consists in the following steps: imagine that Alice wants
to evaluate the content of the cell c j located in a QRAM in Bob’s computer, but
she does not want Bob to know which cell is evaluated.

• Alice prepares an (n+ 1)-photon register with a superposition of the ad-
dresses to m different memory cells and sends it to Bob. The first n photons
contain the instructions to arrive to the memory array, and the last photon is
the bus photon. The wave function is given by |ψ1〉 = 1√

m(|c1〉 |a〉+ · · ·+
|cm〉 |a〉), where |ci〉 contains the instructions to arrive to the memory cell ci
and |a〉 is the bus photon (always initialized to |a〉).

• Bob sends the register into the memory array and obtains an output photon,
given by |ψ ′1〉=

1√
m (|c1〉 |a〉+ · · ·+ |cm〉 |b〉). Now the bus photon contains

the information previously stored in the memory cells (either a or b). He
sends this photon back to Alice. In case the other photons can be recovered,
he sends them to Alice as well.

• Alice constructs a new register |ψ2〉 with the photons reflected by the trans-
mon, in case they could be recovered, or the other copies of the same pho-
tons, in case the first register is lost. At the end of the register, instead of
adding a bus photon, she adds the photon she received from Bob, which
contains a superposition of the content of m memory cells. Since the ad-
dress photons of this register are the same (or identical) to those in |ψ1〉,
this state is the same as |ψ ′1〉

• In order to read the content of c j, she needs a QRAM with the same charac-
teristics as Bob’s. Alice sends the new register to her own QRAM, and the
last photon arrives at the memory array.

• If Alice wants to read the content of the c j memory cell in Bob’s QRAM,
she only has to evaluate the state of the photon in the cell c′j on her own
QRAM. This way she is collapsing the wave function in the c j direction,
leaving only one single ket with the content of the cell she wants to evaluate.

If Bob reads the register Alice sent him, the wave function will collapse and Alice
can detect it by measuring other memory cells. Thus, Alice can detect if her
privacy has been violated§. The full process is depicted in FIG. 5.2.

§More details on how to detect Bob’s intrusion can be found in [16].
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c1

c j
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(
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+ · · ·+ |bm〉

)

|ψ2〉
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+ . . .

+ b a b . . . a m

)

|ψ2〉= 1√
m

(
a b b . . . a 1
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Figure 5.2: This figure shows a schematic representation of the procedure Alice has to
follow to read the content of one of the memory cells in Bob’s QRAM. (1) Alice prepares
a register of photons containing a superposition of the address of the memory cells that
she wants to evaluate. (2) Alice sends the register to Bob and he introduces it into the
QRAM. (3) Bob obtains a photon containing a superposition of the content of the memory
cells. He sends this register to Alice. (4) Alice uses the register she received from Bob to
create a new register. (5) This register is sent to a QRAM identical to that of Bob’s but
with measuring devices instead of memory cells. (6) By measuring the cell c′j, Alice is
collapsing the wave function, revealing the content of Bob’s c j memory cell.
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Chapter 6
The Switch beyond the QRAM

Within a network, the quantum switch proposed and analyzed in the previous
chapters has outstanding applications such as a QRAM, needed for the Grover
search or the Deutsch-Jozsa algorithms [11] and also for quantum private queries
(QPQ) [16], provided that mechanisms are found to enlarge the energy of the
photons that have to be absorbed by the transmon and to extend the lifetime of
the transmon far beyond the lifetime of the SQUIDs (both discussed in Chapter 5,
Section 5.1). The QRAM can e.g., operate within the bucket brigade architecture
proposed in [15].

Besides these significant applications, the quantum switch, by itself, has other
remarkable uses. Some of them make this device different to any other similar
quantum switch or router.

6.1 The switch as a single element
As discussed previously, this element can absorb two photons and transmit one of
them (the second) in one outgoing transmission line or the other, according to the
state of the first photon. This property has some relevant applications:

1. The switch can be used to create an entangled state out of two photons.

2. It can also be used to amplify an arbitrary one-photon signal describing a
quantum state in a two-dimensional Hilbert space.

3. The quantum switch can be used to measure the frequency of a single pho-
ton, provided that only two different (and previously known) frequencies
are possible.
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In the next sections I discuss these three possible applications of the quantum
switch.

6.1.1 Creation of entanglement

Quantum entanglement is a key element in quantum teleportation, quantum algo-
rithms and quantum error-correction, thus is of great utility in quantum computa-
tion and quantum in formation [11]. Entanglement between two photons can be
created using the device proposed in FIG. 2.6. Imagine that a state

|ψ〉= 1√
2
(|a〉 |a〉+ |b〉 |b〉) (6.1)

has to be created, where a and b label two possible states, one being a low energy
state and the other a high energy state. To create this entangled state two photons
are needed. The first should be in the superposition

|φ1〉=
1√
2
(|a〉+ |b〉) , (6.2)

while the other can be in the state

|φ2〉= |a〉 . (6.3)

Consider an individual quantum switch with a device in one of the outgoing trans-
mission lines that changes the energy of the transmitted photon (a NOT gate) but
nothing in the other outgoing transmission line. After the first photon is absorbed,
since it is in a superposition of states, the switch will forward the second photon
into a superposition of the second and the third outgoing transmission lines. The
output state will be given by

|ψ〉= 1√
2
(|a〉 |a〉2 + |b〉 |a〉3) , (6.4)

where the subscripts describe at which transmission line the second photon can be
found. Since there is a NOT gate in one of the transmission lines that acts on, e.g.,
|a〉3 , at the very end of the process, the output state will be

|ψ〉= 1√
2
(|a〉 |a〉+ |b〉 |b〉) . (6.5)

Thus a two-photon entangled state will be created.
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6.1.2 Amplification of single-photon signals

When two people want to communicate through a noisy channel some mechanism
has to be introduced to preserve the information to be transmitted. If a single pho-
ton is sent, there is a non-zero probability for the photon to be lost. It is convenient,
for this reason, to amplify the signal. That is, to send, not one, but lots of pho-
tons carrying the same information. This can be achieved by creating an n-photon
entangled state∗ using the same procedure as in the previous section but sending
more than one photon while the transmon is excited.

Even in the case that some of the photons are lost, a group of them may arrive
at the final destination and transmit the information contained in the first photon
absorbed by the quantum switch (provided that the wave function has not been
collapsed due to the noise in the channel). The performance of this process can be
quantified by the number of photons that the quantum switch can transmit while
the transmon is excited, that is, by the ratio τT 1/τ2a,1.

These cat states are also important for open-destination teleportation [59],
quantum secret sharing [11] and fault-tolerant quantum computing [11], among
others.

6.1.3 Measurement of the frequency of a single photon

Single-photon detectors are devices that can detect the presence of a photon and
also measure its energy, but most of the current detectors have a finite probability
of recording false counts [61].

The device I propose can detect single photons with a high probability of suc-
cess provided that the photons can have only two previously known frequencies.
In this scheme, if a photon with energy ωT1 is sent to an individual quantum switch
with detectors in the outgoing transmission lines, the switch will forward other
photons (with any frequency) to the second (and not the third) outgoing transmis-
sion line, thus only one of the detectors will be triggered. Since many photons
can be transmitted, the signal-to-noise ratio can be made small. Besides detecting
the presence of a photon (absorbed by the transmon), given that only the detector
in the second outgoing transmission line has been triggered, we also know the
frequency of that photon.

∗These states are called Schrödinger cat states or Greenberger–Horne–Zeilinger (GHZ) states
and have been realized in multiple systems [58–60].
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86 The Switch beyond the QRAM

For any of these three applications only two SQUIDs are needed, each coupled
to a different outgoing transmission line.
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Chapter 7
Conclusions

This project was aimed at proposing and analyzing a quantum random access
memory based on circuit QED, including possible relaxation and dephasing pro-
cesses during the operation of the device.

In this thesis I have introduced the quantum switch, a central element in a
QRAM. This circuit QED-based device, capable of routing an address register
composed of photons in exactly the way required by the bucked brigade archi-
tecture [15], has been proposed and analyzed. It is composed of SQUIDs and a
transmon (see FIG. 2.6), all of them capacitively coupled, with the peculiarity that
the transmon contains a capacitor whose capacitance does not depend linearly on
the applied potential. This capacitor –which is relatively easy to fabricate [42]–
gives rise to a new set of interactions that I believe have never been studied before
in cQED: with this capacitor, a single photon can be absorbed by the third energy
level of a transmon that was, previously, in the ground state (see Chapters 2 and 3).

The excitation of the third level of the transmon by a single photon was just
one of the challenges I had to face. Others were the difference between the energy
levels of the SQUIDs and the transmon, the relation between τT 1 and τ2a,1 and the
difficulties in analyzing, analytically, two-photon processes. These last obstacles
have been partially solved (this is discussed in Chapter 4), but a more detailed
analysis is needed and more imaginative solutions have to be found.

Beside these drawbacks, a quantum switch that fulfills (at least partially) all
the requirements to be part of a QRAM has been studied, including relaxation
and dephasing processes. This device has proved (in Chapter 4) to operate as ex-
pected, giving probabilities of success above 94% in all the possible processes.
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88 Conclusions

Applications for this quantum switch have been discussed both in case the
switch is connected to other similar devices to form a QRAM (in Chapter 5) and
in case a single instance of this device is considered (in Chapter 6).

This work must not be regarded as a full study of a quantum switch, yielding
an optimized device capable of routing photons. Much more work has to be done
to improve the switch. A proper way to enlarge the lifetime of the transmon still
has to be found, as well as a device capable of minimizing the consequences of
having two different energy scales in the system (transmon levels and SQUID lev-
els). The two-photon problem has to be solved in order to find the most optimal
time delay between the emission, into the system, of two consecutive photons. If
this is achieved, the number of photons that can be transmitted by the switch while
the transmon is excited can be obtained. This will give a quantitative limit of how
large the QRAM can be (in number of memory cells).

Other systems to extract the information of the memory cells should also be
studied. It is important to recover all the photons that are reflected by each individ-
ual switch, but in this thesis I only give some ideas on how to do it (in Chapter 5).

And last but not least, the dynamics –and also the possibilities– of a single
transmon containing a non-linear capacitor should be studied with much more de-
tail. New interactions and capabilities may emerge, yielding devices such as –and
now I am just speculating– a transmon whose first excited level is not coupled to
the transmission lines. In this device, if an excitation in the second level decays
into the first level, it will remain there for a long time (or infinite time, if the cou-
pling to an external bath is neglected). This may be a good candidate for storing
both classical and quantum information.

I have started this thesis claiming that the forthcoming development of a quan-
tum computer is just a matter of time. Now, at the end of this research project, after
reading and studying lots of papers about quantum processors, quantum memo-
ries, quantum information, etc., I have some more reasons to support my state-
ment. I do not see any impediment for building a quantum processor or a QRAM
(I just proposed one). It is true that state-of-the-art processors contain only few
qubits but, in the last years, the numbers of qubits in these devices have been
slowly increasing. Also, these qubits have been realized in multiple, different
fields (see Chapter 1). I do not think that a quantum computer will be realized any
time soon, but I am fully convinced that it will be realized some day.
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Appendix A
Lagrangians and Hamiltonians in
cQED

Lagrangians are essential elements to study any system within the framework of
circuit quantum electrodynamics. Circuit QED Lagrangians are derived in exactly
the same way as in circuit theory. They are constructed by adding the energy of the
capacitative elements and subtracting the energy of the inductive elements [30].
The only difference is that there is an element in cQED that is not present in classi-
cal circuitry: the Josephson junction. This element, inductive, has energy [29, 30]

E =−EJ cos
(

ϕ

ϕ0

)
, (A.1)

where ϕ0 is the flux quantum divided by 2π and the variable ϕ is the flux across
the two ends of the Josephson element (the difference between the flux at two
nodes of the circuit diagram). The flux ϕ is defined as the time integral of the
potential across the element considered [30],

ϕ(t) =
∫ t

−∞

V (t ′)dt ′. (A.2)

Josephson junctions are usually integrated in circuits with the form of the device
shown in FIG. A.1. This consists of a pair of Josephson junctions connected in
parallel and with a potential difference between the two ends of the circuit.

The diagram in FIG. 2.1, containing four capacitors, two Josephson elements
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92 Lagrangians and Hamiltonians in cQED

Figure A.1: This is the circuit diagram of two Josephson junctions connected in parallel.
Each of the Josephson junctions is represented by a cross.

and two node variables ϕ1 and ϕ2, is completely described by the Lagrangian

L =
C1

2
(ϕ̇1−V1)

2 +
C2

2
(ϕ̇2−V2)

2 +
Cs

2
(ϕ̇1− ϕ̇2)

2 +
Ct

2
ϕ̇

2
1

+Etcos
(

ϕ1

ϕ0

)
+Escos

(
ϕ1−ϕ2

ϕ0

)
. (A.3)

The first line describes the energy of each of the capacitances and the second
line describes the energy of the Josephson elements. Recall that, from Eq. (A.2),
the time derivative of ϕi is the potential at the i-th node of the circuit.

The dynamical variables in this Lagrangian are ϕ1, ϕ2 and their time deriva-
tives. The Hamiltonian is obtained from this equation by means of a Legendre
transformation

H = p1ϕ̇1 + p2ϕ̇2−L, (A.4)

with the conjugate momenta

p1 =
∂L
∂ ϕ̇ 1

= (C1 +Cs +Ct) ϕ̇1−Csϕ̇2−C1V1 (A.5)

p2 =
∂L
∂ ϕ̇ 2

= (C2 +Cs) ϕ̇2−Csϕ̇1−C2V2. (A.6)

In phase space, the Hamiltonian reads

H =
1
2γ

(
p2

1 +
C1 +Cs +Ct

C2 +Cs
p2

2 +
2Cs

C2 +Cs
p1 p2

+2C1V1 p1 +2
C2Cs

C2 +Cs
V2 p1

+2C2
C1 +Cs +Ct

C2 +Cs
V2 p2 +2

C1Cs

C2 +Cs
V1 p2

)
−Et cos

(
ϕ1

ϕ0

)
−Es cos

(
ϕ1−ϕ2

ϕ0

)
+Const, (A.7)
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A.1 Quantization of the Hamiltonian 93

where γ =C1 +Ct +
CsC2

Cs+C2
. The expression Const contains all the terms with V 2

1 ,
V 2

2 and V1V2 (they are not dynamical variables). Although these potentials may
depend on time –since an incoming pulse, a photon, can modify them– it is safe
to consider them constant and take this Hamiltonian as a particular case, where a
more general Hamiltonian contains the sum of the particular ones with different
values of V1 and V2. In any case, all these expressions will be rearranged and
added later.

A.1 Quantization of the Hamiltonian

Before proceeding to the quantization of the Hamiltonian, some transformations
should be done. In order to simplify the notation, it is convenient to work with
the flux φi = ϕi/ϕ0. With this transformation, the canonical commutation relation
becomes [φi, pi] = ih̄/ϕ0.

The fluxes and their conjugate momenta, expressed as a function of some lad-
der operators, can be written as

p1 =−
ih̄

2ϕ0

(
ĒJ

2Ec1

)1/4(
a1−a†

1

)
(A.8)

p2 =−
ih̄

2ϕ0

(
Es

2Ec2

)1/4(
a2−a†

2

)
(A.9)

φ1 =

(
2Ec1

ĒJ

)1/4(
a1 +a†

1

)
(A.10)

φ2 =

(
2Ec2

Es

)1/4(
a2 +a†

2

)
, (A.11)

with ĒJ = Et +Es, Ec1 =
h̄2

8γϕ2
0

and Ec2 =
h̄2(C1+C2+Ct)

8γϕ2
0 (C2+Cs)

. The interactions between
the transmon and the SQUID levels show up after separating the cosines in local
and non-local terms and expanding them in Taylor series of φ1 and φ2.

Hcos =− ĒJ cosφ1−Es cosφ2

−Es ((cosφ1−1)(cosφ2−1)+ sinφ1 sinφ2)+Const.

≈ ĒJ

2
φ

2
1 +

Es

2
φ

2
2 −

Es

2
φ

2
1 φ

2
2 −Esφ1φ2 +Const. (A.12)
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94 Lagrangians and Hamiltonians in cQED

After plugging the Eq. (A.8-A.11) into the Hamiltonian, its quantized form reads

H =
√

2Ec1ĒJa†
1a1 +

√
2Ec2Esa

†
2a2

− ∑
i, j∈{1,2}

Di j

(
bi−b†

i

)(
a j−a†

j

)
−Es

(
Ec1

ĒJ

Ec2

Es

)1/4(
a1 +a†

1

)2(
a2 +a†

2

)2

−Ec1
2Cs

C2 +Cs

(
ĒJEs

4Ec1Ec2

)1/4(
a1−a†

1

)(
a2−a†

2

)
−Es

(
4Ec1Ec2

ĒJEs

)1/4(
a1 +a†

1

)(
a2 +a†

2

)
+Const. (A.13)

The second line in this expression is obtained by imposing, on the operators V1
and V2, a similar quantization form as in the momenta operators. Thus, the oper-
ators b†

1 and b†
2 create photon modes in the different transmission lines. The form

of the Coupling strength Di j of each term is irrelevant, by now.

Let us focus on the last two lines. These expressions allow the exchange of an
excitation between the transmon and the SQUID. Since the photon absorbed by
the transmon has to be reflected, this interaction must be canceled. The main con-
tribution to these processes com from the term containing a†

1a2 and its hermitian
conjugate, and it can be eliminated by imposing

C2
s

(C1 +C2 +Ct)(C2 +Cs)
=

Es

ĒJ
. (A.14)

The other terms coming from this expression vanish when the rotating wave ap-
proximation is assumed. Coming back to the Eq. (A.13) and making use of the
rotating wave approximation again –in the third line, now–, the quantized Hamil-
tonian becomes

H =

(√
2Ec1ĒJ−2Es

(
Ec1Ec2

ĒJEs

)1/4
)

a†
1a1

+

(√
2Ec2Es−2Es

(
Ec1Ec2

ĒJEs

)1/4
)

a†
2a2

+ ∑
i, j∈{1,2}

Di j

(
bi−b†

i

)(
a j−a†

j

)
−4Es

(
Ec1Ec2

ĒJEs

)1/4

a†
1a1a†

2a2 +Const. (A.15)
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Ln−1

Cn−1

Ln Ln+1 Ln+2

Cn Cn+1 Cn+2

ϕn−2 ϕn−1 ϕn ϕn+1 ϕn+2

Figure A.2: A broadly used model for a superconducting transmission line in cQED
consists of an infinite chain of LC resonators [30].

Now, the expression Const also includes small terms that hardly contribute to the
Hamiltonian. In this new expression, the first and second lines describe the energy
levels of the transmon and the SQUID, respectively. The third line contains the
interaction between the two atom-like elements of the circuit and the incoming
and outgoing transmission lines. The last expression gives the coupling between
the transmon and the SQUID. Within this Hamiltonian, exchanges between the
transmon and the SQUID excitations are forbidden.

A.2 Transmission lines
A Hamiltonian describing the transmission lines has also to be added to the previ-
ously derived equation to obtain a general Hamiltonian capable of describing the
process of transmission and reflexion of photons through the quantum switch. The
derivation of such Hamiltonian is not much different to the previous procedure. A
transmission line [30] can be modeled as the continuum limit of an infinite chain
of LC resonators. Once the transmission line is short-circuited (what is propagated
are the quantum fluctuations of the flux defined at every node of the system), these
resonators become independent and its Hamiltonian is just the sum of the inde-
pendent Hamiltonians of each independent circuit. FIG. A.2 shows this broadly
used model for the transmission lines. In the continuum limit, this Hamiltonian is
expressed as [30, 48]

HT =
∫

∞

−∞

dω ω b†
ωbω , (A.16)

for each semi-infinite transmission line. In case the transmission lines are infi-
nite, with left-moving and right-moving modes, the transmission line Hamiltonian
reads [48]

HT =
∫

∞

−∞

dω ω

(
r†

ωrω − l†
ω lω
)
. (A.17)

The terms that I have omitted in the Hamiltonian in Eq. (A.7) containing V1
and V2 are absorbed by the Hamiltonian of the transmission lines. Regarding
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the terms containing V1V2, these can be omitted if the capacitance Cs, located at
halfway between the two transmission lines, is small enough, given that the result-
ing term will be negligible compared to the other expressions in the Hamiltonian.
This will prevent the transmission of a photon without interacting at all with the
quantum switch. Finally, since an incoming photon –described by V1 and V2– can
have multiple frequencies, not just those given by a fixed V1 and V2, an integral
over all possible momenta has to be added to the final Hamiltonian, which reads

H =

(√
2Ec1ĒJ−2Es

(
Ec1Ec2

ĒJEs

)1/4
)

a†
1a1

+

(√
2Ec2Es−2Es

(
Ec1Ec2

ĒJEs

)1/4
)

a†
2a2

+
∫

d p ∑
i, j∈{1,2}

Di j(p)
(

bi(p)−b†
i (p)

)(
a j−a†

j

)
−4Es

(
Ec1Ec2

ĒJEs

)1/4

a†
1a1a†

2a2

+
∫

d p p
(

b†
1(p)b1(p)+b†

2(p)b2(p)
)
, (A.18)

plus an irrelevant constant.
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Appendix B
Coefficients in the Hamiltonians

Within the main text large equations do not fit nicely. In order to keep the text clear
and give all the necessary information I have decided show symbolic expressions
within the main chapters and the full equations and coefficients in the Appendices.

B.1 Hamiltonian in Section 2.3

In Section 2.3 I have derived a Hamiltonian for a device containing a non-linear
capacitor. This Hamiltonian have been split in different parts, each containing in-
teractions of a different nature, to simplify the analysis. Some of these equations
are too long to write them explicitly, so I have decided to write them more sym-
bolically by introducing some coefficients in the Eq. (2.18). These coefficients
are

A1211 =−
β

2γ4

(
Cs2

Cs2 +C2

)2

A1311 =−
β

2γ4

(
Cs3

Cs3 +C3

)2

A2311 =−
β

2γ4

(
Cs2Cs3

(Cs2 +C2)(Cs3 +C3)

)2
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A1222 =−
35β 3

9γ10

(
Cs2

Cs2 +C2

)4

A1322 =−
35β 3

9γ10

(
Cs3

Cs3 +C3

)4

A2322 =−
35β 3

9γ10

(
Cs2Cs3

(Cs2 +C2)(Cs3 +C3)

)4

A1233 =−
7007β 5

81γ16

(
Cs2

Cs2 +C2

)6

A1333 =−
7007β 5

81γ16

(
Cs3

Cs3 +C3

)6

A2333 =−
7007β 5

81γ16

(
Cs2Cs3

(Cs2 +C2)(Cs3 +C3)

)6

A1212 =
5β 2

6γ7

(
Cs2

Cs2 +C2

)4

A1221 =
5β 2

6γ7

(
Cs2

Cs2 +C2

)2

A1312 =
5β 2

6γ7

(
Cs3

Cs3 +C3

)4

A1321 =
5β 2

6γ7

(
Cs3

Cs3 +C3

)2

A2321 =
5β 2

6γ7

(
Cs2

Cs2 +C2

)4( Cs3

Cs3 +C3

)2

A2312 =
5β 2

6γ7

(
Cs2

Cs2 +C2

)2( Cs3

Cs3 +C3

)4
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A1212 =−
14β 3

9γ10

(
Cs2

Cs2 +C2

)2

A1221 =−
14β 3

9γ10

(
Cs2

Cs2 +C2

)6

A1312 =−
14β 3

9γ10

(
Cs3

Cs3 +C3

)2

A1321 =−
14β 3

9γ10

(
Cs3

Cs3 +C3

)6

A2321 =−
14β 3

9γ10

(
Cs2

Cs2 +C2

)6( Cs3

Cs3 +C3

)2

A2312 =−
14β 3

9γ10

(
Cs2

Cs2 +C2

)2( Cs3

Cs3 +C3

)6

A1212 =
385β 4

27γ13

(
Cs2

Cs2 +C2

)4

A1221 =
385β 4

27γ13

(
Cs2

Cs2 +C2

)6

A1312 =
385β 4

27γ13

(
Cs3

Cs3 +C3

)4

A1321 =
385β 4

27γ13

(
Cs3

Cs3 +C3

)6

A2321 =
385β 4

27γ13

(
Cs2

Cs2 +C2

)6( Cs3

Cs3 +C3

)4

A2312 =
385β 4

27γ13

(
Cs2

Cs2 +C2

)4( Cs3

Cs3 +C3

)6

.
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The equation H4 has also been simplified using the following coefficients

B211 =
1
γ

(
Cs2

Cs2 +C2

)
B311 =

1
γ

(
Cs3

Cs3 +C3

)
B212 =−

β

3γ4

(
Cs2

Cs2 +C2

)3

B312 =−
β

3γ4

(
Cs3

Cs3 +C3

)3

B213 =
β 2

3γ7

(
Cs2

Cs2 +C2

)5

B313 =
β 2

3γ7

(
Cs3

Cs3 +C3

)5

B221 =−
β

3γ4

(
Cs2

Cs2 +C2

)
B321 =−

β

3γ4

(
Cs3

Cs3 +C3

)
B222 =

10β 2

9γ7

(
Cs2

Cs2 +C2

)3

B322 =
10β 2

9γ7

(
Cs3

Cs3 +C3

)3

B223 =−
28β 3

9γ10

(
Cs2

Cs2 +C2

)5

B323 =−
28β 3

9γ10

(
Cs3

Cs3 +C3

)5

B231 =
β 2

3γ7

(
Cs2

Cs2 +C2

)
B331 =

β 2

3γ7

(
Cs3

Cs3 +C3

)
B232 =−

28β 3

9γ10

(
Cs2

Cs2 +C2

)3

B332 =−
28β 3

9γ10

(
Cs3

Cs3 +C3

)3

B233 =
154β 4

9γ13

(
Cs2

Cs2 +C2

)5

B333 =
154β 4

9γ13

(
Cs3

Cs3 +C3

)5

.

The following is the Hamiltonian H5, containing processes that destroy the
information (see Section 2.3).

H5 =−
β

γ4

(
C1V1 +

Cs2

Cs2 +C2
C2V2 +

Cs3

Cs3 +C3
C3V3

)
×(

2
Cs2

Cs2 +C2

Cs3

Cs3 +C3
p1 p2 p3 +

(
Cs2

Cs2 +C2

)
p2

1 p2

+

(
Cs2

Cs2 +C2

)2

p1 p2
2 +

(
Cs3

Cs3 +C3

)
p2

1 p3 +

(
Cs3

Cs3 +C3

)2

p1 p2
3

+

(
Cs2

Cs2 +C2

)2( Cs3

Cs3 +C3

)
p2

2 p3 +

(
Cs2

Cs2 +C2

)(
Cs3

Cs3 +C3

)2

p2 p2
3

)
.

(B.1)
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B.2 Hamiltonian in the Section 2.5
Section 2.5 contains the Hamiltonian (or a part of it) I have used to model a quan-
tum switch. This Hamiltonian have been divided in few expressions to simplify
the notation, and these expressions, in turn, have been simplified by adding some
coefficients. The following is a list of the coefficients used in the Eq. (2.33), that
is, in H2

A′12a =−
β

12γ4

(
C2sa

C2a +C2sa

)2

A′12b =−
β

12γ4

(
C2sb

C2b +C2sb

)2

A′22a =
5β 2

6γ7

(
C2sa

C2a +C2sa

)2

A′22b =
5β 2

6γ7

(
C2sb

C2b +C2sb

)2

A′32a =−
14β 3

9γ10

(
C2sa

C2a +C2sa

)2

A′32b =−
14β 3

9γ10

(
C2sb

C2b +C2sb

)2

A′13a =−
β

12γ4

(
C3sa

C3a +C3sa

)2

A′13b =−
β

12γ4

(
C3sb

C3b +C3sb

)2

A′23a =
5β 2

6γ7

(
C3sa

C3a +C3sa

)2

A′23b =
5β 2

6γ7

(
C3sb

C3b +C3sb

)2

A′33a =−
14β 3

9γ10

(
C3sa

C3a +C3sa

)2

A′33b =−
14β 3

9γ10

(
C3sb

C3b +C3sb

)2

.

The interaction with the transmission lines (H3) is completely described by the
coefficients

B′11 =C1
1
γ

B′13 =−C1
β

3γ4

B′21 =

(
C2aC2sa

C2a +C2sa
+

C2bC2sb

C2b +C2sb

)
1
γ

B′23 =−
(

C2aC2sa

C2a +C2sa
+

C2bC2sb

C2b +C2sb

)
β

3γ4

B′31 =

(
C3aC3sa

C3a +C3sa
+

C3bC3sb

C3b +C3sb

)
1
γ

B′33 =−
(

C3aC3sa

C3a +C3sa
+

C3bC3sb

C3b +C3sb

)
β

3γ4

B′12a =C1
C2sa

(C2a +C2sa)γ

B′22a =

(
C2aC2sa

C2a +C2sa
+

C2bC2sb

C2b +C2sb
+

C2aγ

C2sa

)
C2sa

(C2a +C2sa)γ

B′32a =

(
C3aC3sa

C3a +C3sa
+

C3bC3sb

C3b +C3sb

)
C2sa

(C2a +C2sa)γ
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B′12b =C1
C2sb

(C2b +C2sb)γ

B′22b =

(
C2aC2sa

C2a +C2sa
+

C2bC2sb

C2b +C2sb
+

C2bγ

C2sb

)
C2sb

(C2b +C2sb)γ

B′32b =

(
C3aC3sa

C3a +C3sa
+

C3bC3sb

C3b +C3sb

)
C2sb

(C2b +C2sb)γ

B′13a =C1
C3sa

(C3a +C3sa)γ

B′23a =

(
C2aC2sa

C2a +C2sa
+

C2bC2sb

C2b +C2sb

)
C3sa

(C3a +C3sa)γ

B′33a =

(
C3aC3sa

C3a +C3sa
+

C3bC3sb

C3b +C3sb
+

C3aγ

C3sa

)
C3sa

(C3a +C3sa)γ

B′13b =C1
C3sb

(C3b +C3sb)γ

B′23b =

(
C2aC2sa

C2a +C2sa
+

C2bC2sb

C2b +C2sb

)
C3sb

(C3b +C3sb)γ

B′33b =

(
C3aC3sa

C3a +C3sa
+

C3bC3sb

C3b +C3sb
+

C3bγ

C3sb

)
C3sb

(C3b +C3sb)γ
.

Two more expressions conform the total Hamiltonian of the device in FIG. 2.5.
These are H5 and H6, defined below. These two expression carry interactions
that must be either canceled or neglected for a good performance of the quantum
switch:

H5 =

(
− β

6γ4 p2
1 +

5β 2

3γ7 p4
1−

28β 3

9γ10 p6
1

)
C2sa

C2a +C2sa

C2sb

C2b +C2sb
p2a p2b

+

(
− β

6γ4 p2
1 +

5β 2

3γ7 p4
1−

28β 3

9γ10 p6
1

)
C3sa

C3a +C3sa

C3sb

C3b +C3sb
p3a p3b

+

(
− β

6γ4 p2
1 +

5β 2

3γ7 p4
1−

28β 3

9γ10 p6
1

)
C2sa

C2a +C2sa

C3sa

C3a +C3sa
p2a p3a

+

(
− β

6γ4 p2
1 +

5β 2

3γ7 p4
1−

28β 3

9γ10 p6
1

)
C2sb

C2b +C2sb

C3sb

C3b +C3sb
p2b p3b

+

(
− β

6γ4 p2
1 +

5β 2

3γ7 p4
1−

28β 3

9γ10 p6
1

)
C2sa

C2a +C2sa

C3sb

C3b +C3sb
p2a p3b

+

(
− β

6γ4 p2
1 +

5β 2

3γ7 p4
1−

28β 3

9γ10 p6
1

)
C2sb

C2b +C2sb

C3sa

C3a +C3sa
p2b p3a, (B.2)
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H6 =−
((

C2aC2sa

C2a +C2sa
+

C2bC2sb

C2b +C2sb

)
V2 +

(
C3aC3sa

C3a +C3sa
+

C3bC3sb

C3b +C3sb

)
V3

)
×

β p2
1

γ4

(
C2sa p2a

C2a +C2sa
+

C2sb p2b

C2b +C2sb
+

C3sa p3a

C3a +C3sa
+

C3sb p3b

C3b +C3sb

)
−

βC1V1 p2
1

γ4

(
C2sa p2a

C2a +C2sa
+

C2sb p2b

C2b +C2sb
+

C3sa p3a

C3a +C3sa
+

C3sb p3b

C3b +C3sb

)
. (B.3)
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Appendix C
Equations of motion within the in/out
formalism

In this appendix, some equations of motion are derived using the in/out formalism
of quantum optics [45, 47, 48]. The procedure followed is similar to [17, 45,
46, 48] Using the Hamiltonian in Eq. (3.34), and the Heisenberg equation, the
equation of motion of the b1(ω) operator is found

ḃ1(ω) = i [H,b1(ω)]

=− iω b1(ω)− i

(
aT 1√
πτT 1

+
aT 3√
πτT 3

+

(√
2

πτT 1
−
√

3
πτT 3

)
a†

T 1aT 2

+
a2a√
πτ2a,1

+
a2b√
πτ2b,1

+
a3a√
πτ3a,1

+
a3b√
πτ3b,1

)
. (C.1)

The formal solution of this differential equation is

b1(ω, t) =e−iω(t−t0)b1(ω, t0)

− i
∫ t

−∞

dt ′ eiω(t ′−t)

(
aT 1√
πτT 1

+
aT 3√
πτT 3

+

(√
2

πτT 1
−
√

3
πτT 3

)
a†

T 1aT 2

+
a2a√
πτ2a,1

+
a2b√
πτ2b,1

+
a3a√
πτ3a,1

+
a3b√
πτ3b,1

)
, (C.2)

where the ak operators are also time-dependent. b1(p, t0) is an initial value of the
Heisenberg operator defined at a time t0→−∞. Consider also the same equation
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106 Equations of motion within the in/out formalism

expressed with the opposite boundary condition

b1(ω, t) =e−iω(t−t1)b1(ω, t1)

− i
∫

∞

t
dt ′ eiω(t ′−t)

(
aT 1√
πτT 1

+
aT 3√
πτT 3

+

(√
2

πτT 1
−
√

3
πτT 3

)
a†

T 1aT 2

+
a2a√
πτ2a,1

+
a2b√
πτ2b,1

+
a3a√
πτ3a,1

+
a3b√
πτ3b,1

)
. (C.3)

Here b1(ω, t1) is a final value of the Heisenberg operator defined at a time t1→∞.
Now take these equations and integrate them over ω together with a factor of
1/
√

2π . The homogeneous part of the equation becomes, using Eq. (3.66)

1√
2π

∫
∞

−∞

dω e−iω(t−t1)b1(ω, t1) = b1in(t). (C.4)

The particular part of the differential equation can also be integrated using the
properties [45] ∫

∞

−∞

dω e−iω(t−t1) = 2πδ (t− t ′) (C.5)∫ t

−∞

dt ′ f (t ′)δ (t− t ′) =
1
2

f (t). (C.6)

The same procedure is applied to the Eq. (C.3) yielding

1√
2π

∫
∞

−∞

dω b1(ω, t) =b1in(t)

− i
1√
2

(
aT 1√
τT 1

+
aT 3√
τT 3

+

(√
2

τT 1
−
√

3
τT 3

)
a†

T 1aT 2

+
a2a√
τ2a,1

+
a2b√
τ2b,1

+
a3a√
τ3a,1

+
a3b√
τ3b,1

)
, (C.7)

and

1√
2π

∫
∞

−∞

dω b1(ω, t) =b1out(t)

+ i
1√
2

(
aT 1√
τT 1

+
aT 3√
τT 3

+

(√
2

τT 1
−
√

3
τT 3

)
a†

T 1aT 2

+
a2a√
τ2a,1

+
a2b√
τ2b,1

+
a3a√
τ3a,1

+
a3b√
τ3b,1

)
. (C.8)
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By combining the two equations one obtains

b1out(t) =b1in(t)− i
√

2

(
aT 1√
τT 1

+
aT 3√
τT 3

+

(√
2

τT 1
−
√

3
τT 3

)
a†

T 1aT 2

+
a2a√
τ2a,1

+
a2b√
τ2b,1

+
a3a√
τ3a,1

+
a3b√
τ3b,1

)
. (C.9)

This equation relates the input and output operators. Similar expressions can be
found for all the other operators describing moving particles:

b2out(t) =b2in(t)− i
√

2
(

a2a√
τ2a,2

+
a2b√
τ2b,2

)
(C.10)

b3out(t) =b3in(t)− i
√

2
(

a3a√
τ3a,3

+
a3b√
τ3b,3

)
. (C.11)

And for the decoherence operators

rT 1out(t) =rT 1in(t)− i
√

γrT 1aT 1(t) (C.12)
rT 3out(t) =rT 3in(t)− i

√
γrT 3aT 3(t) (C.13)

r2aout(t) =r2ain(t)− i
√

γr2aa2a(t) (C.14)
r2bout(t) =r2bin(t)− i

√
γr2ba2b(t) (C.15)

r3aout(t) =r3ain(t)− i
√

γr3aa3a(t) (C.16)
r3bout(t) =r3bin(t)− i

√
γr3ba3b(t) (C.17)

dT 1out(t) =dT 1in(t)− i

√
γdT 1

2
a†

T 1(t)aT 1(t) (C.18)

dT 3out(t) =dT 3in(t)− i

√
γdT 3

2
a†

T 3(t)aT 3(t) (C.19)

d2aout(t) =d2ain(t)− i

√
γd2a

2
a†

2a(t)a2a(t) (C.20)

d2bout(t) =d2bin(t)− i

√
γd2b

2
a†

2b(t)a2b(t) (C.21)

d3aout(t) =d3ain(t)− i

√
γd3a

2
a†

3a(t)a3a(t) (C.22)

d3bout(t) =d3bin(t)− i

√
γd3b

2
a†

3b(t)a3b(t). (C.23)
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Appendix D
Derivation of single-photon scattering
amplitudes

This appendix contains the derivation of some of the scattering amplitudes dis-
cussed in Chapter 4. To derive these quantities I have made use of the Langevin
equations in Eq. (3.75) to (3.78). Recall that, using the in/out formalism, the
probability amplitude for a photon being reflected is

S1(p,k) =〈0|b1out(p)b†
1in(k) |0〉 . (D.1)

This expression can only be evaluated by expressing the out operator as a function
of the in and the other ladder operators that describe the transmon and SQUID
excitations. In the previous appendix, the relation between these operators in time
space is found, so they must be transformed to momentum space via a Fourier
transform. Within this work, the convention I have used for the Fourier transform
is the following:

F [b(t)] (p) =
1√
2π

∫
dt eiptb(t),

F
[
b†(t)

]
(p) =

1√
2π

∫
dt e−iptb†(t). (D.2)
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110 Derivation of single-photon scattering amplitudes

By using the aforementioned relations and the Fourier transforms, the scattering
amplitude of a photon being reflected is given by

S1(p,k) =〈0|b1in(p)b†
1in(k) |0〉

− i

(
2
√

τT 1
−
√

6
τT

)
1√
2π

∫
dt eipt 〈0|a†

T 1(t)aT 2(t)b
†
1in(k) |0〉

− i

√
2

τT 1

1√
2π

∫
dt eipt 〈0|aT 1(t)b

†
1in(k) |0〉

− i

√
2

τT 3

1√
2π

∫
dt eipt 〈0|aT 3(t)b

†
1in(k) |0〉

− i

√
2

τ2a,1

1√
2π

∫
dt eipt 〈0|a2a(t)b

†
1in(k) |0〉 (D.3)

+(2a→ 2b, 3a, 3b) .

The first element in this expression gives just a Dirac delta function δ (p−k). The
second element vanishes because there is a creation operator acting on the vacuum
by the left-hand side. Six more elements remain in the expression. These have to
be evaluated one by one by making use of the Langevin equations.

The first element to be evaluated is 〈0|aT 1(t)b
†
1in(k) |0〉. The way to proceed

consists of taking the time derivative of these expression and plug in the Langevin
equations. The solution of the system of differential equations that has been gener-
ated gives the elements that conform the Eq. (D.3). After disregarding all the terms
that vanish due to the presence of the vacuum bras and kets (such as 〈0|a†

T 1 = 0
or 〈0|b2in(k)b

†
1in(k) |0〉= δ (p− k)δ1,2 = 0) the considered element reads

d
dt
〈0|aT 1(t)b

†
1in(k) |0〉=

−
(

iωT 1 +
1

τT 1
+

1
2

γrT 1 +
1
4

γdT 1

)
〈0|aT 1(t)b

†
1in(k) |0〉

− 1
√

τT 1τT 3
〈0|aT 3(t)b

†
1in(k) |0〉

− 1
√

τT 1
〈0|aT 1(t)a

†
T 1(t)

(
a2a(t)√

τ2a,1
+

a2b(t)√
τ2b,1

+
a3a(t)√

τ3a,1
+

a3b(t)√
τ3b,1

)
b†

1in(k) |0〉

− 1
√

πτT 1
〈0|aT 1(t)a

†
T 1(t) |0〉e

−ikt . (D.4)
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Similarly, five other expressions are found for the five last lines in Eq. (D.3).

d
dt
〈0|aT 3(t)b

†
1in(k) |0〉=

−
(

iωT 3 +
1

τT 3
+

1
2

γrT 3 +
1
4

γdT 3

)
〈0|aT 3(t)b

†
1in(k) |0〉

− 1
√

τT 1τT 3
〈0|aT 1(t)b

†
1in(k) |0〉

− 1
√

τT 3
〈0|aT 3(t)a

†
T 3(t)

(
a2a(t)√

τ2a,1
+

a2b(t)√
τ2b,1

+
a3a(t)√

τ3a,1
+

a3b(t)√
τ3b,1

)
b†

1in(k) |0〉

− 1
√

πτT 3
〈0|aT 3(t)a

†
T 3(t) |0〉e

−ikt , (D.5)

d
dt
〈0|a2a(t)b

†
1in(k) |0〉=

−
(

iω2a +
1

τ2a,1
+

1
τ2a,2

+
1
2

γr2a +
1
4

γd2a

)
〈0|a2a(t)b

†
1in(k) |0〉

−
(

1
√

τ2a,1τ2b,1
+

1
√

τ2a,2τ2b,2

)
〈0|a2a(t)b

†
1in(k) |0〉

− 1
√

τ2a,1τ3a,1
〈0|a3a(t)b

†
1in(k) |0〉

− 1
√

τ2a,1τ3b,1
〈0|a3b(t)b

†
1in(k) |0〉

− 1
√

τ2a,1τT 1
〈0|aT 1(t)b

†
1in(k) |0〉

− 1
√

τ2a,1τT 3
〈0|aT 3(t)b

†
1in(k) |0〉

− 1
√

πτ2a,1
e−ikt , (D.6)

and three more expressions that are found by replacing 2a→ 2b, 3a, 3b. This
last equation contains a set of terms that also appear in all the other five equations,
hence this can be solved, in principle, as a linear system of differential equation.
However, the Eq. (D.4) and (D.5) contain other terms that have to be explicitly
evaluated. These are in the two last lines of both equations. Let me start with
〈0|aT 1(t)a

†
T 1(t) |0〉. This can be written as

〈0|aT 1(t)a
†
T 1(t) |0〉= 〈0|e

iHtaT 1a†
T 1e−iHt |0〉 , (D.7)
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112 Derivation of single-photon scattering amplitudes

where aT 1 and a†
T 1 are the Schrödinger picture operators defined in Eq. (3.36)-

(3.38). Since the vacuum is an eigenstate of the Hamiltonian with eigenvalue 0
(H |0〉= 0), this expression becomes

〈0|aT 1(t)a
†
T 1(t) |0〉= 〈0|aT 1a†

T 1 |0〉= 1. (D.8)

The same applies to 〈0|aT 3(t)a
†
T 3(t) |0〉 and also to the remaining two expressions

which, in this case yield

〈0|aT 1(t)a
†
T 1(t)

(
a2a

τ2a,1
+

a2b

τ2b,1
+

a3a

τ3a,1
+

a3b

τ3b,1

)
b†

1in(k) |0〉=

〈0|
(

a2a

τ2a,1
+

a2b

τ2b,1
+

a3a

τ3a,1
+

a3b

τ3b,1

)
b†

1in(k) |0〉 , (D.9)

〈0|aT 3(t)a
†
T 3(t)

(
a2a

τ2a,1
+

a2b

τ2b,1
+

a3a

τ3a,1
+

a3b

τ3b,1

)
b†

1in(k) |0〉=

〈0|
(

a2a

τ2a,1
+

a2b

τ2b,1
+

a3a

τ3a,1
+

a3b

τ3b,1

)
b†

1in(k) |0〉 . (D.10)

Now the system can be solved. Given that only the Fourier transform of the so-
lution is needed, the calculations can be much simplified by taking the Fourier
transform of the differential equations. This gives the following linear system of
equations.(

i(ωT 1− p)+
1

τT 1
+

1
2

γrT 1 +
1
4

γdT 1

)
x1(p,k) =

− 1
√

τT 1

(
x2(p,k)
√

τT 3
+

x3(p,k)
√

τ2a,1
+

x4(p,k)
√

τ2b,1
+

x5(p,k)
√

τ3a,1
+

x6(p,k)
√

τ3b,1

)
− i

√
2

τT 1
δ (p− k) (D.11)

(
i(ωT 3− p)+

1
τT 3

+
1
2

γrT 3 +
1
4

γdT 3

)
x2(p,k) =

− 1
√

τT 3

(
x1(p,k)
√

τT 1
+

x3(p,k)
√

τ2a,1
+

x4(p,k)
√

τ2b,1
+

x5(p,k)
√

τ3a,1
+

x6(p,k)
√

τ3b,1

)
− i

√
2

τT 3
δ (p− k) (D.12)
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(
i(ω2a− p)+

1
τ2a,1

+
1

τ2a,2
+

1
2

γr2a +
1
4

γd2a

)
x3(p,k) =

− 1
√

τ2a

(
x1(p,k)
√

τT 1
+

x2(p,k)
√

τT 3
+

x5(p,k)
√

τ3a,1
+

x6(p,k)
√

τ3b,1

)
−
(

1
√

τ2a,1τ2b,1
+

1
√

τ2a,2τ2b,2

)
x4(p,k)− i

√
2

τ2a,1
δ (p− k) (D.13)

(
i(ω2b− p)+

1
τ2b,1

+
1

τ2b,2
+

1
2

γr2b +
1
4

γd2b

)
x4(p,k) =

− 1
√

τ2b

(
x1(p,k)
√

τT 1
+

x2(p,k)
√

τT 3
+

x5(p,k)
√

τ3a,1
+

x6(p,k)
√

τ3b,1

)
−
(

1
√

τ2a,1τ2b,1
+

1
√

τ2a,2τ2b,2

)
x3(p,k)− i

√
2

τ2b,1
δ (p− k) (D.14)

(
i(ω3a− p)+

1
τ3a,1

+
1

τ3a,3
+

1
2

γr3a +
1
4

γd3a

)
x5(p,k) =

− 1
√

τ3a

(
x1(p,k)
√

τT 1
+

x2(p,k)
√

τT 3
+

x3(p,k)
√

τ2a,1
+

x4(p,k)
√

τ2b,1

)
−
(

1
√

τ3a,1τ3b,1
+

1
√

τ3a,3τ3b,3

)
x6(p,k)− i

√
2

τ3a,1
δ (p− k) (D.15)

(
i(ω3b− p)+

1
τ3b,1

+
1

τ3b,3
+

1
2

γr3b +
1
4

γd3b

)
x6(p,k) =

− 1
√

τ3b

(
x1(p,k)
√

τT 1
+

x2(p,k)
√

τT 3
+

x3(p,k)
√

τ2a,1
+

x4(p,k)
√

τ2b,1

)
−
(

1
√

τ3a,1τ3b,1
+

1
√

τ3a,3τ3b,3

)
x5(p,k)− i

√
2

τ3b,1
δ (p− k), (D.16)
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where the functions xi(p,k) are defined as

x1(p,k) =F
[
〈0|aT 1(t)b

†
1in(k) |0〉

]
(p,k) (D.17)

x2(p,k) =F
[
〈0|aT 3(t)b

†
1in(k) |0〉

]
(p,k) (D.18)

x3(p,k) =F
[
〈0|a2a(t)b

†
1in(k) |0〉

]
(p,k) (D.19)

x4(p,k) =F
[
〈0|a2b(t)b

†
1in(k) |0〉

]
(p,k) (D.20)

x5(p,k) =F
[
〈0|a3a(t)b

†
1in(k) |0〉

]
(p,k) (D.21)

x6(p,k) =F
[
〈0|a3b(t)b

†
1in(k) |0〉

]
(p,k). (D.22)

This system of six coupled equations can be reduced to a system of three linearly
independent (coupled) equations, because three of the variables are not indepen-
dent. Let me discard e.g., x2, x4 and x6 using the functions introduced in the main
text [in Eq. (4.9), (4.10) and (4.11)].

x2(p,k) =
√

τT 1

τT 3
α1(p)x1(p,k) (D.23)

x4(p,k) =
√

τ2a,1

τ2b,1
α2(p)x3(p,k) (D.24)

x6(p,k) =
√

τ3a,1

τ3b,1
α3(p)x5(p,k). (D.25)

Now the system can be easily solved by using linear algebra, but the solution is a
set of long equations. The solution of x2, x4 and x6 is

x1(p,k) =−
i
√

2
τT 1

δ (p− k)

T1(p)+ 1
τT 1

+ α1(p)
τT 3

+
(

1
τ2a,1

+ α2(p)
τ2b,1

)
T1(p)
T2(p) +

(
1

τ3a,1
+ α3(p)

τ3b,1

)
T1(p)
T3(p)

(D.26)

x2(p,k) =−
i
√

2
τ2a,1

δ (p− k)

T2(p)+ 1
τ2a,1

+ α2(p)
τ2b,1

+
(

1
τT 1

+ α1(p)
τT 3

)
T2(p)
T1(p) +

(
1

τ3a,1
+ α3(p)

τ3b,1

)
T2(p)
T3(p)

(D.27)

x3(p,k) =−
i
√

2
τ3a,1

δ (p− k)

T3(p)+ 1
τ3a,1

+ α3(p)
τ3b,1

+
(

1
τT 1

+ α1(p)
τT 3

)
T3(p)
T1(p) +

(
1

τ2a,1
+ α2(p)

τ2b,1

)
T3(p)
T2(p)

.

(D.28)
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In this expressions, the functions in Eq. (4.6), (4.7) and (4.8) have been used
to simplify the notation. The scattering amplitudes are recovered by using the
solution to the Fourier-transformed system of equations, yielding

S1(p,k) =δ (p− k)− i

√
2

τT 1
x1(p,k)− i

√
2

τT 3
x2(p,k)− i

√
2

τ2a,1
x3(p,k)

− i

√
2

τ2b,1
x4(p,k)− i

√
2

τ3a,1
x5(p,k)− i

√
2

τ3b,1
x6(p,k), (D.29)

for the reflection of a photon, and

S2(p,k) =− i

√
2

τ2a,2
x3(p,k)− i

√
2

τ2b,2
x4(p,k), (D.30)

S3(p,k) =− i

√
2

τ3a,3
x5(p,k)− i

√
2

τ3b,3
x6(p,k), (D.31)

for the transmission of a photon through the second and third transmission line,
respectively.
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Appendix E
Failed attempts (1): numerical
integration

The equations of motion found in Chapter 4 together with the Hamiltonian of the
system [Eq. (3.34) together with Eq. (3.35), (3.43), (3.47) and (3.52)] are the nec-
essary tools to study the dynamics of operation of the quantum switch. To check
that the device works as expected, the probabilities of transmission and reflection
of photons under different conditions have to be found. This can be done, in prin-
ciple, analytically, but the complexity of the system of differential equations that
has to be solved makes it impossible in the case where two photons are sent to
the quantum switch. After dismissing this option, a numerical approach has been
considered. Numerical calculations are performed to obtain the desired scattering
amplitudes and probabilities. In this Appendix I give a short description of the
steps I have followed to derive the expressions for the scattering amplitudes nu-
merically.

In order to find the scattering probabilities numerically we should reconsider
whether we want to work within the Schrödinger picture or the Heisenberg pic-
ture. In any case, the Hilbert space has to be bounded. Both on the Hamiltonian
and in the equations of motion there is a large number of different operators, and
some of them are under an integral sign. The elements under the integrals are
supposed to belong to different Hilbert spaces for each of the value the integra-
tion variable takes, thus making the Hilbert space infinitely large. Since it is not
possible to work, numerically, with an infinite Hilbert space, we have to consider
just one or some representative elements inside the integral. Afterwards, the sim-
ulations can be repeated with other values for the integration variables.
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118 Failed attempts (1): numerical integration

E.1 Schrödinger picture
The equations of motion in Chapter 4 have been derived in the Heisenberg picture
because of the impossibility to diagonalize the Hamiltonian. This difficulties only
arise when working analytically, but numerically, one can find fast algorithms to
exponentiate –that is, diagonalize– any matrix. Let’s see how the in/out formal-
ism looks like in this picture. Consider the probability amplitude of an incoming
photon being absorbed by the system and reflected back.

S = 〈0|bout(p)b†
in(k) |0〉 . (E.1)

The b†
in(k) operator acting on the initial state |0〉 represents a photon that has been

created far away from the influence of the system we are considering –it is, thus,
a free moving photon– but acting on the present time. The vacuum |0〉 is a wave
function defined at the present time. The action of the free moving photon on the
vacuum is given by

lim
t0→∞

b†
ke−iHT t0eiHt0 |0〉 , (E.2)

where H is the total Hamiltonian and HT is the Hamiltonian of the transmission
lines, a Hamiltonian that describes the dynamics of a free moving photon. In this
expression I have brought the vacuum to −∞ with the full Hamiltonian, then I
have driven it back to the present time with the free Hamiltonian and finally a
photon has been created. After this, the system has to be brought back to−∞ with
the free Hamiltonian and again to the present with the full Hamiltonian. This way
we will have a ket describing the a free photon at time t = 0.

|ψin〉= lim
t0→∞

e−iHt0eiHT t0b†
ke−iHT t0eiHt0 |0〉 . (E.3)

Similarly, an out operator acting on the vacuum gives∗

|ψout〉= lim
t0→∞

eiHt0e−iHT t0b†
keiHT t0e−iHt0 |0〉 . (E.4)

With this notation, the probability amplitude reads

S =〈ψout |ψin〉
= lim

t0→∞
〈0|eiHt0e−iHT t0bp eiHT t0e−iHt0e−iHt0eiHT t0b†

ke−iHT t0eiHt0 |0〉 . (E.5)

Given that in these equations there are lots of oscillating functions that have to
be evaluated at large t, the numerical algorithm will not be stable. Moreover, the
largest values of t that a computer can handle are far from infinity, given that the
exponential function is a function that grows very fast.

∗Compare these two expressions with Eq. (3.64).
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E.2 Heisenberg picture 119

E.2 Heisenberg picture

Given that the numerical simulations within the Schrödinger picture do not seem
to give a reliable answer we can try it within the Heisenberg picture. In this pic-
ture the operators evolve with time so, in order to find the probability amplitude,
the Langevin equations of motion have to be solved.

Before doing any calculation with our system it is convenient to try it first with
a simpler Hamiltonian. If it works then the algorithm can be generalized to our
more complicated device. Consider the Hamiltonian describing a single-photon
transistor composed of two transmon qubits and a SQUID [17].

H =
ω1

2
σ

z
1 +

ω2

2
σ

z
2− Jσ

z
1σ

z
2

+
∫

d p
(

σ
+
1 (rp + lp)√

2πτ1
+

σ
+
2 bp√
2πτ2

+h.c.
)

+
∫

d p p
(

r†
prp− l†

plp +b†
pbp

)
. (E.6)

This Hamiltonian has some similarities with the Hamiltonian described in E. (3.34).
I will work with 9 operators: σ

−
1 , σ

+
1 , σ

−
2 , σ

+
2 , σ

z
1, σ

z
2, r, l and b. In order to keep

the Hilbert space small, I have imposed that the incoming pulse has frequency ωt
(not a distribution in the momentum space).

The problem with the Langevin equations is that most of the algorithms used
to solve them are numerically unstable because the exponential function grows
very fast †. So far I have not been able to find a solution for these equations for
large t. Nevertheless, the solution I have found shows the behavior of the system
within a time range large enough (at least for a one-photon interaction).

Before plotting the results let me compute, analytically, what is expected to be
found numerically, so we can have enough information to tell whether the numer-
ical calculations are right (and useful) or not.

Since the Langevin equations give us a set of functions that depend on time and
we are working at a small time scale, the Fourier transform cannot be performed
on the results. Moreover, since the incoming photons have one definite frequency,
it makes no sense to find a result that depends on the frequency. For the process
involving an incoming photon moving to the right and an outgoing photon moving

†Equations of this kind are called stiff equations.

Version of June 29, 2015– Created June 29, 2015 - 21:15

119



120 Failed attempts (1): numerical integration

to the right (transmission), this element of the scattering matrix reads

S = 〈0|rout(t)r†
in(t
′) |0〉 (E.7)

= 〈0|
(

rin(t)−
i
√

τ1
σ
−
1 (t)

)
r†

in(t
′) |0〉 (E.8)

= 1− eikt ′

τ1

e−ikt− e−(iω1+2iJ+ 1
τ1
)t

i(ω1 +2J− k)+ 1
τ1

(E.9)

Let me separate this equation in two parts, the first part being

S1 = 1− 1
τ1

e−ik(t−t ′)

i(ω1 +2J− k)+ 1
τ1

, (E.10)

and the second part

S2 =
eikt ′

τ1

e−(iω1+2iJ+ 1
τ1
)t

i(ω1 +2J− k)+ 1
τ1

, (E.11)

with S1 + S2 = S. By imposing the same parameters as in the numerical calcula-
tions (t = t ′, k =ωt =ω1+2J) these two equations become S1 = 0 and S2 = e−t/τ1 .
Now we can compare the curve describing the numerical result with the expres-
sion we have just found. These curves are plotted in FIG. E.1.

The numerical integration may seem right because the results agree with the
analytic calculations, but if the analytic expression are computed again without
imposing any condition to the pulse shape and frequency, we will see that S2 do
not contribute to the final expression and is S1 the term that contains the informa-
tion of the scattering process. So, these plots should actually be completely flat
(after taking the Fourier transform).

It can not be solved in the Schrödinger picture because it may give large nu-
merical errors. In the Heisenberg picture we have to face the numerical errors
(for large times) and also some extra contributions coming from expressions that
within the analytical derivation do not exist. For these reasons I believe that the
numerical integrations are not a good approach, at least at this stage.
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Figure E.1: This figure contains the probability amplitude computed using numeri-
cal methods (red points) and also analytical methods (green curve) for a photon being
transmitted. For these curves I have used ω1 = ω2 = π · 10−10 Hz, J = 0.01ω1 and
τ1 = τ2 = 100/ω1.

Version of June 29, 2015– Created June 29, 2015 - 21:15

121





Appendix F
Failed attempts (2): propagators and
Green’s functions

In Chapter 4 I have explained that the amplitude probabilities for a photon being
reflected and transmitted are, respectively

S1(p,k) =〈0|b1out(p)b†
1in(k) |0〉 , (F.1)

S2(p,k) =〈0|b2out(p)b†
1in(k) |0〉 , (F.2)

S3(p,k) =〈0|b3out(p)b†
1in(k) |0〉 . (F.3)

Eq. (F.1) to (F.3) have been derived by quantizing the Hamiltonian in Eq. (2.31),
but another approach can be considered. The scattering amplitude in Eq. (F.1)
can also be expressed, up to a constant factor, using some variable ψ1(t), whose
quantized form is given by

ψ1(t) = A−1/4
1 (b1(t)+b†

1(t)). (F.4)

This yields the expression for S1:

S1 ∼ lim
t→∞

t ′→−∞

〈0|ψ1(t)ψ1(t ′) |0〉 , (F.5)

in the Heisenberg picture, as well. The scattering amplitudes can now be solved
by using Green’s functions. The advantage of working with the flux ψ1 instead of
the ladder operators is that, in this case, the equations of motion do not contain as
much products of operators as before.

This Appendix contains a glimpse of this attempt to derive an expression for
the scattering amplitudes discussed in Chapter 4 by making use of Green’s func-
tions in the Lagrangian formalism.
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124 Failed attempts (2): propagators and Green’s functions

The Lagrangian in Eq. (2.24) only described the system containing the trans-
mon and SQUIDs, but not the transmission lines or the extra inductors. Given that
the transmission lines behave like an infinite chain of oscillators, we can guess the
extra terms that need to be added into the Lagrangian. The full Lagrangian now
reads

L =+
1
2
(
A′1ψ̇

2
1 −A1ψ

2
1
)
+

1
2
(
A′2ψ̇

2
2 −A2ψ

2
2
)
+

1
2
(
A′3ψ̇

2
3 −A3ψ

2
3
)

+
C2a

2
(ϕ̇2a− ψ̇2)

2 +
C2b

2
(ϕ̇2b− ψ̇2)

2 +
C3a

2
(ϕ̇3a− ψ̇3)

2 +
C3b

2
(ϕ̇3b− ψ̇3)

2

+
C2sa

2
(ϕ̇1− ϕ̇2a)

2 +
C2sb

2
(ϕ̇1− ϕ̇2b)

2 +
C3sa

2
(ϕ̇1− ϕ̇3a)

2 +
C3sb

2
(ϕ̇1− ϕ̇3b)

2

C1

2
(ϕ̇1− ψ̇1)

2 +
Ct

2
(
ϕ̇

2
1 +αt ϕ̇

4
1
)
+EJt cos

(
ϕ1

ϕ0

)
+EJ2a cos

(
ϕ1−ϕ2a

ϕ0

)
+EJ2b cos

(
ϕ1−ϕ2b

ϕ0

)
+EJ3a cos

(
ϕ1−ϕ3a

ϕ0

)
+EJ3b cos

(
ϕ1−ϕ3b

ϕ0

)
− 1

2
ϕ

2
3a

(
1
L1

+
1
L2

+
1
L3

)
− 1

2
ϕ

2
3b

(
1
L1

+
1
L5

+
1
L6

)
− 1

2
ϕ

2
2a

(
1
L3

+
1
L4

+
1
L6

)
− 1

2
ϕ

2
2b

(
1
L2

+
1
L4

+
1
L5

)
+

ϕ3aϕ3b

L1
+

ϕ3aϕ2b

L2
+

ϕ3aϕ2a

L3
+

ϕ2aϕ2b

L4
+

ϕ3bϕ2b

L5
+

ϕ3bϕ2a

L6
. (F.6)

In this expression, the potentials V1, V2 and V3 that appeared in Eq. (2.24) now
are substituted by ψ̇1 = V1, ψ̇2 = V2 and ψ̇3 = V3. In this Lagrangian, Ai and A′i
are just constants. Although some expressions have been added and the Vi’s are
treated as variables instead of constants, this Lagrangian is assumed to lead to the
Hamiltonian found in Eq. (2.31), plus the expressions that describe the transmis-
sion lines.

With this Lagrangian, the equations of motion of the time-dependent fluxes
are found using the Euler-Lagrange equation:

(C1 +C2sa +C2sb +C3sa +C3sb +Ct) ϕ̈1 +6αtCt ϕ̇
2
1 ϕ̈1

−C2saϕ̈2a−C2sbϕ̈2b−C3saϕ̈3a−C3sbϕ̈3b−C1ψ̈1

+EJtsin
(

ϕ1

ϕ0

)
+EJ2asin

(
ϕ1−ϕ2a

ϕ0

)
+EJ2bsin

(
ϕ1−ϕ2b

ϕ0

)
+EJ3asin

(
ϕ1−ϕ3a

ϕ0

)
+EJ3bsin

(
ϕ1−ϕ3b

ϕ0

)
= 0 (F.7)
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(C2a +C2sa) ϕ̈2a−C2saϕ̈1−C2aψ̈2

+EJ2asin
(

ϕ1−ϕ2a

ϕ0

)
+ϕ2a

(
1
L3

+
1
L4

+
1
L6

)
− ϕ3a

L3
− ϕ2b

L4
− ϕ3b

L6
= 0 (F.8)

(C2b +C2sb) ϕ̈2b−C2sbϕ̈1−C2bψ̈2

+EJ2bsin
(

ϕ1−ϕ2b

ϕ0

)
+ϕ2b

(
1
L2

+
1
L4

+
1
L4

)
− ϕ3a

L2
− ϕ2a

L4
− ϕ3b

L5
= 0 (F.9)

(C3a +C3sa) ϕ̈3a−C3saϕ̈1−C3aψ̈3

+EJ3asin
(

ϕ1−ϕ3a

ϕ0

)
+ϕ3a

(
1
L1

+
1
L2

+
1
L3

)
− ϕ3b

L1
− ϕ2b

L2
− ϕ2a

L3
= 0 (F.10)

(C3b +C3sb) ϕ̈3b−C3sbϕ̈1−C3bψ̈3

+EJ3bsin
(

ϕ1−ϕ3b

ϕ0

)
+ϕ3b

(
1
L1

+
1
L5

+
1
L6

)
− ϕ3a

L1
− ϕ2b

L5
− ϕ2a

L6
= 0, (F.11)

and also

Ã1ψ̈1 +A1ψ1 = C1ϕ̈1 (F.12)

Ã2ψ̈2 +A2ψ2 = C2aϕ̈2a +C2bϕ̈2b (F.13)

Ã3ψ̈3 +A3ψ3 = C3aϕ̈3a +C3bϕ̈3b. (F.14)

In these last three equations I have introduced the variables Ã1 = C1 +A′1, Ã2 =
C2a +C2b +A′2 and Ã3 =C3a +C3b +A′3.

Now, the way to proceed consists in solving this system of coupled equations
and plug the solution into Eq. (F.5) to obtain the scattering amplitude for the re-
flection of a single photon. If the system can be solved, two-photon processes
could be easily found, but this system of coupled, second-order differential equa-
tion is not easy to solve, although the equations are much simpler than those in
Chapter 3 (Section 3.5).

Let me try now a different approach. Consider the time-ordered propagator:

〈0|G(t, t ′) |0〉= 〈0|T{ψ1(t)ψ1(t ′)}|0〉 , (F.15)

where T is the time-ordering operator and G(t, t ′) is defined as

G(t, t ′) = Θ(t− t ′)ψ1(t)ψ1(t ′)+Θ(t ′− t)ψ1(t ′)ψ1(t). (F.16)
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126 Failed attempts (2): propagators and Green’s functions

In this expression the function Θ(t− t ′) is the Heaviside step function. I want to
find (and solve) the equation of motion of this propagator. Its solution will give
the scattering amplitude we are looking for. The time derivative of this operator
is:

d
dt

G(t− t ′) =δ (t− t ′)ψ1(t)ψ1(t ′)+Θ(t− t ′)
dψ1(t)

dt
ψ1(t ′)

−δ (t− t ′)ψ1(t ′)ψ1(t)+Θ(t ′− t)ψ1(t ′)
dψ1(t)

dt

=Θ(t− t ′)
dψ1(t)

dt
ψ1(t ′)+Θ(t ′− t)ψ1(t ′)

dψ1(t)
dt

, (F.17)

and the second derivative

d2

dt2 G(t− t ′) =δ (t− t ′)
[

dψ1(t)
dt

,ψ1(t ′)
]

t=t ′

+Θ(t− t ′)
d2ψ1(t)

dt2 ψ1(t ′)+Θ(t ′− t)ψ1(t ′)
d2ψ1(t)

dt2 . (F.18)

If we neglect C1 [in the Eq. (F.12)] and impose the quantization of the fluxes
and momenta, the commutator in the previous expression becomes[

ψ̇1(t),ψ1(t ′)
]

t=t ′ ≈−ih̄. (F.19)

With this, the equation of motion of the propagator reads(
d2

dt2 +
A1

Ã1

)
〈0|G(t− t ′) |0〉 ≈ −ih̄δ (t− t ′)+

C1

Ã1
〈0|T

{
ϕ̈1(t)ψ1(t ′)

}
|0〉 .

(F.20)

Now, the value of 〈0|T {ϕ̈1(t)ψ1(t ′)}|0〉 has to be found, but this will not give
a simple and short differential equation. With this procedure a highly coupled sys-
tem of differential equations is obtained, so we have the same problem as before.
Thus, another mechanism to find the scattering amplitudes has to be found.
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Appendix G
Failed attempts (3): Feynman
diagrams

The last fruitless attempt I have made to find an expression for the scattering
amplitudes of the single- and two-photons processes discussed in Chapter 4 is de-
scribed in this Appendix. Here I make use of quantum field theory techniques to
obtain an expression for the propagator in Eq. (F.15) by using Feynman diagrams.
The notation in this Appendix is the same as in Appendix F.

The derivation of all the necessary tools to construct the Feynman rules is a
long procedure and, since this section is just illustrative and will not bring any-
thing new to this research project, I will skip some steps and give only the rele-
vant results. The first of these results is the Hamiltonian I will work with. In the
Interaction picture, the total Hamiltonian of the system has to be split into an in-
teracting part HI and a part that describes the free, non-interacting system H0. The
non-interacting part of the Hamiltonian, derived from the Lagrangian in Eq. (F.6),
is

H0 =4ET q2
1 +

1
2

ĒJφ
2
1

+

(
1

2ϕ2
0 (C2a +C2sa)

+4ET
C2

2sa

(C2a +C2sa)
2

)
q2

2a +
1
2

EJ2aφ
2
2a

+{2a→ 2b,3a,3b}

x+
1
2

χ2
1

Ã1
+

1
2

χ2
2

Ã2
+

1
2

χ2
3

Ã3
+

1
2

A1ψ
2
1 +

1
2

A2ψ
2
2 +

1
2

A3ψ
2
3 , (G.1)

where, in this expression, the variables χ1, χ2 and χ3 are the conjugate momenta
of the fluxes ψ1, ψ2 and ψ3 (the cosines have been expanded in a power series).
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128 Failed attempts (3): Feynman diagrams

The interaction part of the Hamiltonian, HI , contains all the other expressions,
each of them with a coupling constant different for every term. This expression
contains the couplings between the transmon and SQUIDs with the transmission
lines and also between themselves. Each of these coupling constants will be re-
ferred as λi and will be considered small.

Following [62], the propagator in Eq. (F.15), in the interaction picture, reads

〈Ω|T {ψ1(t1)ψ1(t2)}|Ω〉=

lim
T→∞(1−iε)

〈0|T
{

ψI1(t1)ψI1(t2)exp
[
−i
∫ T
−T dtHI(t)

]}
|0〉

〈0|T
{

exp
[
−i
∫ T
−T dtHI(t)

]}
|0〉

, (G.2)

where the subscript I stands for Interaction picture and |Ω〉 is the ground state
of the interaction theory, which is generally different from |0〉. Moreover, the
Hamiltonian HI(t) is

HI(t) = eiH0tHIe−iH0t = λeiH0tH ′Ie
−iH0t . (G.3)

By expanding the propagator in Eq. (G.2) as a Taylor series in small λ we obtain

〈Ω|T {ψ1(t1)ψ1(t2)}|Ω〉 ≈

lim
T→∞(1−iε)

〈0|T
{

ψI1(t1)ψI1(t2)+ψI1(t1)ψI1(t2)
[
−i
∫ T
−T dtHI(t)

]
+ . . .

}
|0〉

〈0|T
{

exp
[
−i
∫ T
−T dtHI(t)

]}
|0〉

,

(G.4)

which can be evaluated by using free-field propagators such as DF(t1− t2) =
〈0|T {ψI1(t1)ψI1(t2)}|0〉 together with Wick’s theorem [62].

G.1 Propagators within the free field theory
In this section only the Hamiltonian H0 [Eq. (G.1)] will be considered. I am
interested in computing two-point propagators within this theory. Let me start
with

DF1(t1− t2) = 〈0|T {ψ1(t1)ψ1(t2)}|0〉 . (G.5)

In order to find this propagator, its equation of motion has to be solved, but first,
the equations of motion of the flux and momentum involved in this expression
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have to be found. These are

ψ̇1 =
∂H0

∂ χ1

χ̇1 =−
∂H0

∂ψ1
, (G.6)

which gives

ψ̈1 =−ω
2
1 ψ1, (G.7)

where ω2
1 = A1/Ã1. The quantization condition [ψ1,χ1] = ih̄ must be imposed, as

well. Consider also the operator

O1(t1− t2) = T {ψ1(t1)ψ1(t2)}
= Θ(t1− t2)ψ1(t1)ψ1(t2)+Θ(t2− t1)ψ1(t2)ψ1(t1), (G.8)

whose second derivative gives

d2

dt2
1
O1(t1− t2) =δ (t1− t2)

[
dψ1(t1)

dt1
,ψ1(t2)

]
t1=t2

+Θ(t1− t2)
d2ψ1(t1)

dt2
1

ψ1(t2)+Θ(t2− t1)ψ1(t2)
d2ψ1(t1)

dt2
1

.

(G.9)

Recall that, within the free theory, the conjugate momentum of the field ψ1(t) is
χ1(t) = Ã1ψ̇1(t). With this, the equation of motion of the operator O1 becomes(

− d2

dt2
1
−ω

2
1

)
O1(t1− t2) =

ih̄
Ã1

δ (t1− t2). (G.10)

Since the vacuum ket |0〉 does not depend on time, the propagator DF1(t1− t2)
follows the same equation of motion. Its solution in Fourier space it is

DF1(k1) =
ih̄

Ã1
√

2π

1
k2

1−ω2
1 + iε

. (G.11)

Similarly, for the propagators

GF1(t1− t2) =〈0|T {χ1(t1)ψ1(t2)}|0〉 , (G.12)
HF1(t1− t2) =〈0|T {χ1(t1)χ1(t2)}|0〉 , (G.13)
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similar expressions are found:

GF1(k1) =
h̄√
2π

k1

k2
1−ω2

1 + iε
, (G.14)

HF1(k1) =
ih̄A1√

2π

1
k2

1−ω2
1 + iε

. (G.15)

For any other combination of fields and momenta –like ψ1φ2a or q1ψ3a, etc.–
the propagators vanish, in Fourier space.

G.2 From n-point correlation functions to the S-matrix
In this Appendix I make use of a theory where, by making use of the two-point
propagators, any n-point correlation function can be found. In this theory, a free
particle propagating from t2 to t1, represented by the diagram

t2 t1

is given by

DF1(t1− t2) =
ih̄

Ã1
√

2π

∫
∞

−∞

dk
e−ik(t1−t2)

k2−ω2 + iε
. (G.16)

I am interested in a scenario where t1→ ∞ and t2→−∞. I also want to make
this particle that goes from t1 to t2 a real particle, and not a virtual one. This
means that it has to be on-shell. Particles on-shell satisfy the relation k2−ω2 = 0,
as can be seen by solving the equations of motion of the fields [in Eq. (G.7)]
in Fourier space. To transform this equation –and the diagram– into something
physical, I will make use of the LSZ reduction formula [62–64], which states that
the scattering amplitude 〈p1 . . . pn|S |k1 . . .km〉 containing m incoming particles
and n outgoing particles is related to the (n+m)-point correlation function (in
Fourier space) as

〈p1 . . . pn|S |k1 . . .km〉= lim
on−shell

n

∏
i=1

p2
i −ω2 + iε

i
√

Z

m

∏
j=1

k2
j −ω2 + iε

i
√

Z

×
n

∏
i=1

∫ dti√
2π

e−ipiti
m

∏
j=1

∫ dt ′j√
2π

e+ik jt ′j

×〈Ω|T
{

φ(t1) . . .φ(tn)φ(t ′1) . . .φ(t
′
m)
}
|Ω〉 ,
(G.17)
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where Z is the field renormalization strength. It is defined as the residue of the
single-particle pole in the two-point function of fields. As can be seen in [62, 63],
Eq. (G.17) is a function of the interaction strengts λi whose value as λi→ 0 goes
to 1. Hence we can safely assume Z = 1 if we restrict ourselves to low orders of
λi in the computation of the scattering amplitudes. Actually this is the result for
〈p1 . . . pn|S−1 |k1 . . .km〉, but since the initial state and the final stare are different
(and orthogonal), the 1 can be omitted.

Notice also that the exponent in the Fourier transform of the incoming fields
has a plus sign whereas the Fourier transform of the outgoing fields has a minus
sign.

Given that the factors introduced in Eq. (G.17) go to zero when the on-shell
condition is imposed, the only diagrams that contribute to any scattering processes
are the fully connected diagrams, since the n factors of zero only cancel when the
diagram generates n factors of zero in a denominator, and this only happens when
there are n external points in the same diagram.

G.3 Feynman rules
At this point we have enough elements to write down the Feynman rules, which
are indispensable to extract physical information from the Feynman diagrams.
Given a scattering diagram

k3

p k ,

where the arrows indicate the propagation of a photon, the symbols p, k and k3
are the momentum of each particle (either real or virtual) and the black dot is a
vertex, the rules to construct the S-matrix elements for any scattering processes
are, in momentum space,

1. For each internal propagator, add DF(k);

2. For n vertices, add
(−2πi)n

n!
λ1λ2 . . .λn;

3. For each external line, −iD0;
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4. Impose momentum conservation at each vertex: δ (∑ki);

5. Integrate over each undetermined momentum:
∫ dk√

2π
;

6. Multiply by the number of equivalent contractions.

G.4 Scattering processes

Now that we know how to express a scattering amplitude in Feynman diagrams
and find its expression using the Feynman rules, processes involving one and two
incoming photons can be computed. Let me start with an incoming photon that is
reflected.

By looking at the interaction Hamiltonian we can see that scatterings of order
O(λ ) are not possible. The lowest order at which something happens is O(λ 2).
At this order, the following are the only possible diagrams with two vertices:

2×
GF(ψ1→ χ1) HF(q2a→ q2a) GF(χ1→ ψ1)

(G.18.a)

2×
GF(ψ1→ χ1) HF(q1→ q1) GF(χ1→ ψ1)

(G.18.b)

12×
GF(ψ1→ χ1) HF(q1→ q1)

HF(q1→ q1)

GF(χ1→ ψ1)

(G.18.c)

132

Version of June 29, 2015– Created June 29, 2015 - 21:15



G.4 Scattering processes 133

12× +
GF(ψ1→ χ1) HF(q1→ q1)

HF(q1→ q1)

HF(q1→ q1)

GF(χ1→ ψ1)

+18×
GF(ψ1→ χ1) HF(q1→ q1)

HF(q1→ q1) HF(q1→ q1)

GF(χ1→ ψ1)

(G.18.d)

For the transmission of a photon from transmission line 1 to transmission line
2 there is only one diagram at O(λ 2).

GF(ψ1→ χ1) HF(q2a→ q2a) GF(χ2→ ψ2)
(G.19)

The factor in front of each diagram is the number of contractions of the fields
that give the same diagram, and the relation between the diagrams and the fields
is the following: consider the external fields to be at the points t1 and t2, and the
intermediate vertices at t3 and t4.

• The diagram in (G.19) is generated by contracting
ψ1(t1)ψ2(t2)χ1(t3)q2a(t3)χ2(t4)q2a(t4).

• The diagram in (G.18.b) is generated by contracting
ψ1(t1)ψ1(t2)χ1(t3)q1(t3)χ1(t4)q1(t4).

• The diagram in (G.18.c) is generated by contracting
ψ1(t1)ψ1(t2)χ1(t3)q1(t3)χ1(t4)q3

1(t4).

• The diagrams in (G.18.d) are generated by contracting
ψ1(t1)ψ1(t2)χ1(t3)q3

1(t3)χ1(t4)q1(t4).

• The diagram in (G.18.a) is generated by contracting
ψ1(t1)ψ1(t2)χ1(t3)q2a(t3)χ1(t4)q2a(t4). Three more diagrams can be gener-
ated by substituting q2a→ q2b, q3a, q3b.

After a careful examination it can be seen that the diagrams with loops such as
G.18.c or the second part of G.18.d represent a small contribution to the scattering
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amplitude, so they can be omitted. Nevertheless, the scattering amplitude at such
low orders give something different to what we obtained previously in Chapter 4
[scattering amplitude of single-photon processes, Eq. (4.5), (4.12) and (4.13)].
Moreover, the expressions obtained from these diagrams do not converge after in-
tegrating them for all the incoming and outgoing momenta.

The diagram in G.18.b gives an expression that goes as p2

p2−ω2+iε , and the first

diagram in G.18.d gives an expression that goes as p2

p2−(3ω)2+iε . After squaring
it and integrating over p, the final expression diverges. Also, it does not contain
the energy of the transmon excitation nor its lifetime. ω is the frequency of the
incoming pulse.

If we go to higher orders of the coupling constant (more vertices), then the
assumption we made stating that Z ≈ 1 does not hold anymore.

For these reasons I believe that this in not a good approach to derive the ex-
pressions for the scattering amplitudes for the two-photon processes.
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[48] S. Fan, Ş. E. Kocabaş, and J.-T. Shen, Input-output formalism for few-photon
transport in one-dimensional nanophotonic waveguides coupled to a qubit,
Phys. Rev. A 82, 063821 (2010).

[49] C. Rigetti, J. M. Gambetta, S. Poletto, B. L. T. Plourde, J. M. Chow, A. D.
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