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1
I N T R O D U C T I O N

Over the past decades, the interaction between knot theory and phys-
ics has been of great interest. Both integral curves and zero sets
that form knots, as well as invariants from knot theory, have arisen
in physical theories. Particularly interesting is the occurrence of the
Hopf fibration in many different areas of physics [22]. In electromag-
netism, the Hopf fibration arises as the field line structure of an elec-
tromagnetic field, which we will refer to as the Hopf field. Its math-
ematical elegance, and its physical relevance in relation to plasma
physics were the main motivation for our research.

One of our initial goals was to derive the Hopf field in a way not
relying on the topological model of electromagnetism by Ranada [17,
18], or the ad hoc choice of Bateman variables in [12]. Employing a
construction by Synge [21] allowed us to achieve this goal and gave
rise to Bateman variables for the Hopf field. Then, during a study
of generalisations of the Hopf field proposed by Kedia et al. in [12],
we discovered a way of constructing electromagnetic fields such that
the intersection of their zero set with an arbitrary spacelike slice in
Minkowski space is a given algebraic link. These linked zero sets of
electromagnetic fields in spacelike slices, also called optical vortices in
physics, have already been studied both experimentally and theoretic-
ally in [5, 7, 13]. The main difference between this previous work and
our result lies in the fact that our construction yields exact solutions to
the Maxwell equations, while this prior work concerns paraxial fields.
We should note that an exception is a paper by Bialynicki-Birula [6],
upon which we build.

This thesis starts with a study of Minkowski space and operators in-
duced by its pseudo-Riemannian metric in chapter 2. Then we go
on to formulate electromagnetism in terms of differential forms in
chapter 3. Chapter 2 and 3 show how many well known and some
less well known results from physics arise naturally from this math-
ematical formalism. Furthermore, these chapters provide the neces-
sary background for our treatment of the main results in chapter 4.
In this chapter, we show how the Hopf field can be derived from a
solution of the scalar wave equation. Finally, after a short digression
on algebraic links, we show how self-dual electromagnetic fields can
be derived such that its optical vortices are a given algebraic link.
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2
M I N K O W S K I S PA C E

In the absence of gravitational effects, Minkowski space is the appro-
priate mathematical description of spacetime. It combines the spatial
dimensions and time into a single four-dimensional whole with a
non-Euclidian geometry. This geometry contains information about
important physical concepts as we will see in section 2.1. Apart from
the study of Minkowski space itself, we will also study operators on
Minkowski space in section 2.2 and section 2.3. These operators will
allow us to formulate electromagnetism in the formalism of differen-
tial forms in chapter 3.

2.1 the geometry of minkowski space

An understanding of Minkowski space can help us understand elec-
tromagnetism or any other theory of physics compatible with the
special theory of relativity. Therefore we devote this section to a dis-
cussion of the geometry of Minkowski space and its phyiscal inter-
pretation.

definition 2 .1 .1: Let V be an n-dimensional real vector space and
let g be a bilinear form on V. Then g is said to be

• symmetric if g(v, w) = g(w, v) for all v, w ∈ V.

• non-degenerate if g(v, w) = 0 for all w ∈ V implies that v = 0.

A symmetric non-degenerate bilinear form on a real vector space V
is called a pseudo-Riemannian metric on V.

Note that a pseudo-Riemannian metric is very similar to a metric,
only it need not be non-negative or satisfy the triangle inequality.

theorem 2 .1 .2: Let V be an n-dimensional real vector space and
let g be a pseudo-Riemannian metric on V. Then there exists a basis
{e1, . . . , en} for V such that g(ei, ej) = ±δij; such a basis is called
orthonormal. Furthermore, the number of elements ej in different or-
thonormal bases that satisfy g(ej, ej) = 1 is the same.

Proof. See, for example, theorem 1.1.1 in [16].

The final property in theorem 2.1.2 allows us to unambiguously define
the following property of pseudo-Riemannian metrics.
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4 minkowski space

definition 2 .1 .3: Let V be an n-dimensional real vector space, let
g be a pseudo-Riemannian metric on V, and let {e1, . . . , en} be an
orthonormal basis for V. Then the signature of g is a doublet of num-
bers (p, q) where p and q are equal to the number of elements of
{e1, . . . , en} such that g(ei, ei) is −1 and 1 respectively.

definition 2 .1 .4: Minkowski space M is a four-dimensional real
vector space endowed with a pseudo-Riemannian metric η of signa-
ture (1, 3). An element v ∈ M is said to be timelike if η(v, v) < 0,
lightlike if η(v, v) = 0, and spacelike if η(v, v) > 0.

To see how the geometrical structure of Minkowski space is consistent
with our every day experience of three-dimensional space and time
as seperate entities, we investigate special subspaces of Minkowski
space.

definition 2 .1 .5: A linear subspace T ⊂ M is timelike if it is
spanned by a timelike vector t ∈ M. Furthermore, a linear subspace
S ⊂ M is spacelike if it is the orthogonal complement of a timelike
subspace.

Since the pseudo-Riemannian metric on Minkowski space restricted
to a timelike subspace T of M is non-degenerate, we can conclude
from proposition 8.18 in [20] that M = T ⊕ T⊥. Now, since η has
signature (1, 3), we can conclude that T⊥ is spanned by three space-
like vectors, so that the restriction of η to this subspace is Euclidian.
Therefore, we would like to identify a spacelike subspace with our
spatial dimensions, but there are infinitely many spacelike subspaces.
This multitude of choices for a spatial dimension will turn out to be
the mathematical equivalent of the principle of relativity. However,
despite suggestive nomenclature, it remains unclear how the evolu-
tion of time is incorporated in the geometry of Minkowski space. To
this end we will consider more general subsets ofM.

definition 2 .1 .6: An affine subspace ∑ ofM is said to be a space-
like slice if it can be written as ∑ = t + S, where t ∈ M is timelike,
and S = 〈t〉⊥ is a spacelike subspace ofM.

Thus, given a fixed t ∈ M that is timelike, we get an orthogonal
spacelike subspace S = 〈t〉⊥ and we can write

M =
⊔

λ∈R

λt + S

Such a way of writing M as a disjoint union of spacelike slices is
called a splitting of Minkowski space. Given such a splitting of Minkow-
ski space, we can interpret the spacelike slices as the spatial dimen-
sions parametrised by the timelike direction which we identify with
time. However, the issue that there are infinitely many different ways
of writing Minkowski space as the disjoint union of spacelike slices
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of this form remains. We will resolve this issue after studying the
geometry of Minkowski space with respect to charts.

definition 2 .1 .7: A frame of reference is a chart (M, h, R4), in-
duced by a choice of basis {e0, . . . , e3} forM, where h is given by

h :M→ R4, xµeµ 7→ (x0, . . . , x3)

Furthermore, we note that xµeµ is supposed to denote the summation
of xµeµ over µ from zero to three. The omission of summation signs
is common practice in physics and is called the Einstein summation
convention. It states that if an index appears both in an upper and a
lower position, it should be summed over.

Note that theorem 2.1.2 implies that there exists an orthonormal basis
{e0, . . . , e3} for M, which we order such that η(e0, e0) = −1. Then,
any v, w ∈ M can be written as v = vµeµ and w = wνeν and η(v, w)

is given by

η(v, w) = −v0w0 + v1w1 + v2w2 + v3w3

With respect to such a basis the matrix representation of η is diagonal
with η00 = −1 and ηii = 1 for 1 ≤ i ≤ 3. Thus, using the Einstein sum-
mation convention, we may write η(v, w) = vµηµνwν. As is common
in physcis textbooks, we will use greek letters to denote summation
over all four coordinates of Minkowski space, and latin letters to de-
note summation over x1, x2, x3.

definition 2 .1 .8: An inertial frame of reference is a chart on M
induced by an ordered orthonormal basis such that the first element
of the basis e0 satisfies η(e0, e0) = −1.

Note that choosing an ordered orthonormal basis (e0, . . . , e3) such
that η(e0, e0) = −1, induces a splitting of Minkowski space by taking
the spacelike subspace to be spanned by e1, e2, and e3 and by taking
e0 as the timelike element in the splitting. Conversely, a splitting of
spacetime gives an orthonormal basis. To see this, note that we can
take the timelike element of M in the splitting of spacetime to be e0,
and obtain three orthonormal basis vectors from the corresponding
spacelike subspace S using the Gram-Schmidt procedure.

definition 2 .1 .9: Let V be an n-dimensional real vector space en-
dowed with a pseudo-Riemannian metric g. Then a diffeomorphism
f : V → V is called an isometry if g( f (v), f (w)) = g(v, w) holds for
all v, w ∈ V.

The set of isometries together with composition forms a group, which
in the case of Minkowski space is called the Poincaré group. The sub-
group of linear isometries of the Poincaré group is called the Lorentz
group.
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proposition 2 .1 .10: Let V be an n-dimensional real vector space
endowed with a pseudo-Riemannian metric g and let f : V → V be a
linear map. Then f is an isometry if and only if f maps orthonormal
bases to orthonormal bases.

Proof. Let {e1, . . . , en} be an orthonormal basis, and suppose f maps
orthonormal bases to orthonormal bases. Then it follows that

g( f (ei), f (ej)) = g(e′i, e′j) = δij

Since f is linear and g is bilinear we can conclude from this that f is
an isometry. Conversely, suppose that f is an isometry. Then we have

g( f (ei), f (ej)) = g(ei, ej) = δij

This shows that { f (e1), . . . , f (en)} is orthonormal.

Thus different inertial frames and hence different splittings of Minkow-
ski space, are related to each other by isometries. Choosing an iner-
tial frame for Minkowski space is thought of in physics as putting an
observer with a clock and a set of rulers somewhere in space. Differ-
ent observers with consistently oriented directions of space and time
are related to each other by Lorentz transformations that are posit-
ive definite on the first component of any inertial frame and preserve
the orientation on Minkowski space. The group of such transforma-
tions is a subgroup of the Lorentz group called the restricted Lorentz
group. In their classical form, the laws of physics are stated in terms
of derivatives with respect to time and space as measured by such
observers. However, we just discussed the ambiguity there is in this
description. This problem is resolved by demanding that the laws of
physics have the same ’form’ in different inertial frames, i.e. that the
laws of physics are symmetric under the restricted Lorentz group. In
the formalism of differential forms which we will employ throughout
this thesis, this comes down to the following: if F is a solution of a
physical law, and f :M→M is an element of the restricted Lorentz
group, then f ∗(F) also has to be a solution of the equation. Often the
laws of physics have more symmetry than required by this discussion,
but we will not go into this deeply. For example, we will not determ-
ine the most general groups under which an equation is symmetric,
but if it is just as easy to prove that an equation is symmetric under
the entire Lorentz group instead of just the restricted Lorentz group,
we will show this instead.

2.2 the hodge star operator

The pseudo-Riemannian metric that Minkowski space is endowed
with, induces an operator on differential forms called the Hodge star
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operator. This operator will be necessary to formulate the wave equa-
tion and Maxwell’s equations in terms of differential forms.

proposition 2 .2 .1: Let V be an n-dimensional real vector space
and let g be a pseudo-Riemannian metric on V. Then the map T :
V → V∗, v 7→ g(v, .) is an isomorphism.

Proof. Because V is finite dimensional we know that dim V = dim V∗

so that it is sufficient to show that T is linear and injective. Let v, w ∈
V and λ, µ ∈ R, then by bilinearity of g we have that

T(λv + µw) = g(λv + µw, .) = λg(v, .) + µg(w, .)

This shows that T is linear. Now let v ∈ V and suppose that T(v) = 0,
then it must hold for every w ∈ V that g(v, w) = 0 which is the case
if and only if v = 0 by the non-degeneracy of g. This shows that T is
injective and concludes the proof.

This isomorphism between V and V∗ induced by the pseudo-Riemannian
metric g on V, induces a pseudo-Riemannian metric on Ω1(V). To see
this, note that

〈·|·〉 : Ω1(V)×Ω1(V) 7→ R, (ω, τ) 7→ g(T−1(ω), T−1(τ))

satisfies the required properties. It can be shown that this induces a
pseudo-Riemannian metric on Ωk(V) by using the universal property
of Λk(V∗) = Ωk(V).

lemma 2 .2 .2: Let V be an n-dimensional real vector space and let
g be a pseudo-Riemannian metric on V. Then there is a pseudo-
Riemannian metric 〈·|·〉k on Ωk(V), such that for one-forms ω1, . . . , ωk,
τ1, . . . , τk ∈ Ω1(V) we have

〈ω1 ∧ · · · ∧ωk|τ1 ∧ · · · ∧ τk〉k = det[〈ωi, τ j〉]

Proof. See, for example, lemma 9.14 as well as the remarks preceeding
and following it in [14].

theorem 2 .2 .3: Let V be an n-dimensional real vector space, let g
be a pseudo-Riemannian metric on V, and fix an orientation Vol ∈
Ωn(V). Then there is a unique linear map ? : Ωk(V) → Ωn−k(V),
called the Hodge star operator, such that for any ω, τ ∈ Ωk(V) it
satisfies

ω ∧ ?τ = 〈ω, τ〉k ·Vol

Proof. See, for example, theorem 9.22 in [14].

Even though this is a nice coordinate-independent definition of the
Hodge star operator, in calculations it is convenient to have a more
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concrete expression for the Hodge star operator. The following pro-
position shows that for orthonormal bases such an explicit descrip-
tion is particularly simple. Since we will only consider orthonormal
bases, we will not require a more general explicit description.

proposition 2 .2 .4: Let V be an n-dimensional real vector space en-
dowed with a pseudo-Riemannian metric g on V with signature (p, q),
and fix an orientation Vol ∈ Ωn(V). Furthermore, let (e1, . . . , en) be an
ordered orthonormal basis that is positively oriented, let (e1, . . . , en)

be a corresponding ordered dual basis, and let {i1, . . . , ik} and {ik+1, . . . , in}
be disjoint subsets of {1, . . . , n}. Then we have

?(ei1 ∧ · · · ∧ eik) = ±(−1)peik+1 ∧ · · · ∧ ein

where we take the plus sign if ei1 ∧ · · · ∧ eik ∧ eik+1 ∧ · · · ∧ ein is equal
to the orientation on V, and the minus sign otherwise.

Proof. See, for example, proposition 9.23 in [14].

Proposition 2.2.4 allows us to easily see how the Hodge star operator
acts on Minkowski space, and spacelike subspaces thereof.

example 2 .2 .5: First we choose an inertial frame and agree to de-
note the coordinate functions corresponding to our choice of ordered
orthonormal basis (e0, e1, e2, e3) by (t, x, y, z). Then the natural orient-
ation on V corresponding to this choice of basis, is dt ∧ dx ∧ dy ∧ dz.
Now we can apply proposition 2.2.4 to determine explicitly how the
Hodge star acts on the basis for the differential forms induced by the
coordinate functions. For the bases of the one-forms and three-forms
induced by the chosen coordinate functions we get

?dt = −dx ∧ dy ∧ dz

?dx = −dy ∧ dz ∧ dt

?dy = −dz ∧ dx ∧ dt

?dz = −dx ∧ dy ∧ dt

?(dx ∧ dy ∧ dz) = −dt

?(dx ∧ dy ∧ dt) = −dz

?(dz ∧ dx ∧ dt) = −dy

?(dy ∧ dz ∧ dt) = −dx

Furthermore, the natural basis for the two-forms induced by our
choice of coordinate functions satisfies

?(dx ∧ dt) = dy ∧ dz

?(dy ∧ dt) = dz ∧ dx

?(dz ∧ dt) = dx ∧ dy

?(dx ∧ dy) = −dz ∧ dt

?(dz ∧ dx) = −dy ∧ dt

?(dy ∧ dz) = −dx ∧ dt

Finally, the natural bases for the zero-forms and the four-forms satisfy

?1 = −dt ∧ dx ∧ dy ∧ dz and ? (dt ∧ dx ∧ dy ∧ dz) = 1

The spacelike subspace S ofM induced by this choice of orthonormal
basis is spanned by e1, e2, and e3. This subspace is naturally enowed
a with pseudo-Riemannian metric given by η|S, and we can take its
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orientation to be dx ∧ dy ∧ dz. These choices induce a Hodge star
operator on S which we will denote by ?S. This restricted Hodge star
operator acts on the bases of one-forms and two-forms on S induced
by the coordinate functions as

?Sdx = dy ∧ dz

?Sdy = dz ∧ dx

?Sdz = dx ∧ dy

?S(dx ∧ dy) = dz

?S(dz ∧ dx) = dy

?S(dy ∧ dz) = dx

Finally, we have that

?S1 = dx ∧ dy ∧ dz and ?S (dx ∧ dy ∧ dz) = 1

Furthermore, since S can be viewed as a three-dimensional Euclidian
space in its own right, there is an exterior derivative operator for
forms on S which we will denote by dS. Since we will be working
exclusively in Minkowski spacetime, this example allows us to com-
pute the Hodge star of any differential form we will be interested in
without having to refer to the abstract definitions.

In example 2.2.5, we see that applying the Hodge star operator twice
either gives the identity on Ωk(V) or the identity multiplied by a
minus sign. This result turns out to be true in general, and whether
we get a this extra minus sign or not, is determined by the signature
of the metric as well as what type of form we start with.

proposition 2 .2 .6: Let V be an n-dimensional real vector space,
and let g be a pseudo-Riemannian metric on V with signature (p, q).
Then for any ω ∈ Ωk(V) it holds that

?2ω = (−1)p+k(n−k)ω

Proof. See, for example, proposition 9.25 in [14].

In particular, proposition 2.2.6 implies that the Hodge star operator
is an isomorphism with inverse given by

?−1 : Ωk(V)→ Ωn−k(V), ω 7→ (−1)p+k(n−k) ? ω

It turns out that isometries not only play a special role with respect
to the pseudo-Riemannian metric g that V is endowed with, but also
with respect to the Hodge star operator through its dependence on g.

proposition 2 .2 .7: Let V be an n-dimensional real vector space, let
g be a pseudo-Riemannian metric, and let f : V → V be an isometry.
Then for any ω ∈ Ωk(V) we have

f ∗(?ω) = ? f ∗(ω) or f ∗(?ω) = − ? f ∗(ω)

if f is orientation preserving or orientation reversing respectively.
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Proof. Let (e1, . . . , en) be a positively oriented orthonormal basis for
V with corresponding ordered dual basis (e1, . . . , en). Then a basis of
the forms is given by {ei1 ∧ · · · ∧ eik} if we let i1 through ik take on
all possible values in {1, . . . , n}. Therefore, it is sufficient to prove the
proposition for forms of this type. Let f : V → V be an isometry, then
it maps (e1, . . . , en) to another orthonormal basis ( f (e1), . . . , f (en))

as shown in proposition 2.1.10. This new basis ( f (e1), . . . , f (en)) is
positively oriented if f is orientation preserving and negatively ori-
ented otherwise. First we suppose that f is orientation preserving.
Let {i1, . . . , ik} and {ik+1, . . . , in} be disjoint subsets of {1, . . . , n}, then
proposition 2.2.4 tells us that

f ∗(?(ei1 ∧ · · · ∧ eik)) = f ∗(±(−1)peik+1 ∧ · · · ∧ ein)

= ±(−1)p f ∗(eik+1) ∧ · · · ∧ f ∗(ein)

= ?( f ∗(ei1) ∧ · · · ∧ f ∗(eik))

= ? f ∗(ei1 ∧ · · · ∧ eik)

Here p denotes the first component of the signature (p, q) of g. Noting
that we get an extra minus sign if f is orientation reversing because of
the definition of the ±1 in proposition 2.2.4 concludes the proof.

Having introduced the Hodge star operator, we are ready to formu-
late the theory of electromagnetism in chapter 3. However, as is often
the case, things will simplify if we make the right definitions. There-
fore we will first introduce two more operators, the codifferential op-
erator in this section and the Laplace-Beltrami operator in section 2.3.

definition 2 .2 .8: Let V be an n-dimensional real vector space and
let g be a pseudo-Riemannian metric on V. Then the codifferential
operator is defined to be

δ : Ωk(V)→ Ωk−1(V), ω 7→ (−1)k ?−1 d ? ω

Here the seemingly arbitrary factor of (−1)k is introduced so that δ

is the adjoint of the induced pseudo-Riemannian metric we have on
the space of k-forms by proposition 2.2.2.

proposition 2 .2 .9: Let V be an n-dimensional real vector space, let
g be a pseudo-Riemannian metric, and let f : V → V be an isometry.
Then for any ω ∈ Ωk(V) we have f ∗(δω) = δ f ∗(ω).

Proof. First we note that the codifferential is just ?d? with possibly
an extra factor of −1 depending on the metric and the type of form
we let it act on. Let f : V → V be an isometry and note that if f
is orientation preserving, the pullback with respect to f commutes
with the Hodge star operator and hence the codifferential operator
according to 2.2.7. Now suppose that f is orientation reversing, then
the same proposition implies that we get an extra minus sign every
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time we interchange the pullback with respect to f and the Hodge star
operator. Since the codifferential contains the Hodge star operator
twice, these minus signs cancel.

As mentioned, we will formulate electromagnetism in terms of differ-
ential forms in chapter 3. However, we will do so in terms of complex-
valued differential forms onM instead of the real-valued differential
forms discussed here. Therefore we note that in such cases we take
the linear extension of the Hodge star operator to Ωk(M, C), i.e. the
space of complex-valued differential k-forms. Furthermore, we note
that all the results from this section are also valid for this linear ex-
tension.

2.3 the laplace-beltrami operator

In the previous section, we introduced the Hodge star operator and
showed how it gave rise to the codifferential operator. There is a cer-
tain combination of the codifferential operator and the exterior deriv-
ative that we will encounter in this thesis. Therefore, we devote this
section the study of this new operator called the Laplace-Beltrami op-
erator, which on Minkowski spacetime acts as a generalisation of the
wave equation for differential forms.

definition 2 .3 .1: Let V be an n-dimensional real vector space and
let g be a pseudo-Riemannian metric. Then the Laplace-Beltrami op-
erator is a linear map ∆ : Ωk(V, C)→ Ωk(V, C) given by ∆ = dδ + δd.

Before continuing, we will show that for zero-forms on Minkowski
space the Laplace-Beltrami operator gives rise to the wave equation
we are familiar with. Let W ∈ C∞(M, C), then we get

∆W = (dδ + δd)W = δdW = (−1)4 ?−1 d ? dW

because ?W is a four-form, and taking the exterior derivative gives a
five-form which is zero on Minkowski space showing that δW = 0.
Also, since ?−1 is an isomorphism, it follows that ∆W = 0 if and only
if d ? dW = 0. Calculating d ? dW explicitly gives

d ? dW = d ? (∂xWdx + ∂yWdy + ∂zWdz + ∂tWdt)

= d(∂xWdy ∧ dz ∧ dt + ∂yWdz ∧ dx ∧ dt

+ ∂zWdx ∧ dy ∧ dt + ∂tWdx ∧ dy ∧ dz)

= (∂2
x + ∂2

y + ∂2
z − ∂2

t )Wdx ∧ dy ∧ dz ∧ dt

So we see that ∆W = 0 if and only if (∂2
x + ∂2

y + ∂2
z − ∂2

t )W = 0. We
will refer to a smooth function W ∈ C∞(M, C) satisfying ∆W = 0 as
a solution of the wave equation. Solutions of the wave equation will
turn out the be useful in section 3.5 which is why we consider an
important example here.
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example 2 .3 .2: Let W̃ :M→ C be given by

W̃(t, x, y, z) = (r2 − t2)−1

where r2 = x2 + y2 + z2. Then we can check that W is a solution of
the wave equation, but it will have singularities. Therefore we shift
the time variable by a constant imaginary factor, which we choose to
be −i, giving W :M→ C given by

W(t, x, y, z) = (r2 − (t− i)2)−1

Here the denominator is given by

r2 − (t− i)2 = r2 − t2 + 1− 2it

Thus the imaginary part is zero if and only if t = 0, but in this case
the real part reads r2 + 1 which is never zero, showing that W has
no singularities. Now let us check that W is a solution to the wave
equation. The first derivatives of W are given by

∂tW = 2(t− i)(r2 − (t− i)2)−2

∂xiW = −2xi(r2 − (t− i)2)−2

Here xi denotes x,y or z. The second derivatives can be found with
the chain rule giving

∂2
t W = 2(r2 − (t− i)2)−2 + 8(t− i)2(r2 − (t− i)2)−3

= (2r2 + 6(t− i)2)(r2 − (t− i)2)−3

∂2
xi

W = −2(r2 − (t− i)2)−2 + 8x2
i (r

2 − (t− i)2)−3

= (−2(r2 − (t− i)2) + 8x2
i )

So we see that

∂2
xW + ∂2

yW + ∂2
zW = (−6(r2 − (t− i)2) + 8r2)(r2 − (t− i)2)−3

= (2r2 + 6(t− i)2)(r2 − (t− i)2)−3 = ∂2
t W

This shows that W is indeed a solution of the wave equation.

Now let us return to our general discussion of the Laplace-Beltrami
operator. Due to the symmetry in its definition, it behaves nicely
with respect to the exterior derivative and the Hodge star operator
as shown in the next proposition.

proposition 2 .3 .3: Let ω ∈ Ωk(V, C), then the Laplace-Beltrami
operator satisfies ∆dω = d∆ω and ?∆ω = ∆ ? ω.

Proof. Let ω ∈ Ωk(V), where the symmetric non-degenerate bilinear
form on V has signature (p, q) and dimension n, Then we have

∆dω = (dδ + δd)dω = dδdω

= d(dδ + δd)ω = d∆ω
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because d2 = 0 = δ2. Now we note that

?δdω = ?(−1)k+1 ?−1 d ? dω

= (−1)k+1+n−k+p+(k+1)(n−k−1)d(−1)n−k ?−1 d ? ?−1ω

= (−1)k+1+n−k+p+(k+1)(n−k−1)dδ ?−1 ω

= (−1)k+1+n−k+p+(k+1)(n−k−1)+p+k(n−k)dδ ? ω

= dδ ? ω

Similarly we can prove that ?dδω = δd ? ω. Combining these facts
gives

?∆ω = ?(dδ + δd)ω

= δd ? ω + dδ ? ω

= ∆ ? ω

This concludes the proof.

The final property of the Laplace-Beltrami operator we will need is
the following.

proposition 2 .3 .4: Let A ∈ Ω1(M, C) then we have that ∆A = 0 if
and only if the components of A with respect to some basis satisfy the
wave equation, i.e. if A = Aµdxµ then ∆A = 0 if and only if ∆Aµ = 0
for all µ ∈ {0, 1, 2, 3}.

Proof. The proof of this proposition is a matter of applying example
2.2.5 a number of times. Despite being straightforward, the expres-
sions become tedious. Therefore the proof is omitted.





3
E L E C T R O M A G N E T I S M

In this chapter, we will formulate electromagnetism in the language
of differential forms. Since we will be interested in electromagnetic
fields in vacuum, we will not incorporate source terms in our treat-
ment. Furthermore, we will not take into account any curvature of
spacetime due to the energy density of the electromagnetic field as
predicted by the general theory of relativity. Instead, we will assume
that spacetime is modelled by Minkowski space as described in chapter
2. Finally, we note that parts of section 3.1, 3.2, and 3.3 are based on
[2] and exercises therein.

3.1 maxwell’s equations

In electromagnetism, the objects of study are electric and magnetic
fields, which were classically viewed as distinct time-dependent vec-
tor fields on R3. However, it turned out that this description was less
adequate in the context of special relativity because the electric and
magnetic fields change according to the inertial frame of reference
we choose. This observation indicated that the electric and magnetic
fields are part of the same phenomenon called the electromagnetic
field, which we will describe by smooth complex-valued two-forms
on Minkowski space.

definition 3 .1 .1: A complex-valued two-form F ∈ Ω2(M, C) is
called an electromagnetic field if

dF = 0 and δF = 0

These equations are called the first and second Maxwell equation re-
spectively. After choosing an inertial frame of reference for M, we
can write

F =
1
2

Fµνdxµ ∧ dxν = E ∧ dt + B

provided that we define E = (Fi0 − F0i)dxi and B = 1
2 Fijdxi ∧ dxj.

Furthermore, we define Ek and Bk to be the complex-valued functions
on M such that E = Ekdxk and ?SB = Bkdxk for any k ∈ {1, 2, 3}.
From this we see that the real parts of E and B can be identified
with vector fields on R3, which we will refer to as the electric and
magnetic field respectively. We will denote the electric field by ~E and
the magnetic field by ~B.

15
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With the choice for E and B as in definition 3.1.1, we can write down
four equations for E and B equivalent to Maxwell’s equations. To find
the first two of these equations, we plug F = E ∧ dt + B into the first
Maxwell equations giving

0 = dF = d(E ∧ dt + B) = dSE ∧ dt + ∂tB ∧ dt + dSB

Thus we see that the first Maxwell equation corresponds to

dSE + ∂tB = 0 and dSB = 0

Noting that δF = 0 is equivalent to d ? F = 0 because ?−1 is an
isomorphism, we plug F = E ∧ dt + B into d ? F. With example 2.2.5,
this can be seen to give

0 = d(?SE− ?SB ∧ dt)

= dS ?S E + ∂t ?S E ∧ dt− dS(?SB) ∧ dt

Thus the second Maxwell equation corresponds to

∂t ?S E− dS ?S B = 0 and dS ?S E = 0

These four equations for E and B to which Maxwell’s equations as
defined in 3.1.1 are equivalent, are closer to the form in which one
usually first encounters Maxwell’s equations. However, one of the
several disadvantages of this formulation is that symmetry of Max-
well’s equations under the restricted Lorentz group is not manifest.

proposition 3 .1 .2: Maxwell’s equations are symmetric under the
Lorentz group.

Proof. Let f : M → M be a diffeomorphism and let F ∈ Ω2(M, C)

be an electromagnetic field. Then f ∗(F) also solves the first Maxwell
equation because the pullback commutes with the exterior derivative
giving

d( f ∗F) = f ∗(dF) = f ∗(0) = 0

However, the second Maxwell equation is not invariant under general
diffeomorphisms. Therefore we now assume f to be an isometry, in
which case proposition 2.2.9 implies that

δ f ∗(F) = f ∗(δF) = f ∗(0) = 0

This concludes the proof.

definition 3 .1 .3: Let F be an electromagnetic field and choose a
frame of reference giving E and B as in definition 3.1.1. Then the field
lines of the electromagnetic field are the integral curves of the vector
fields corresponding to the real parts of E and B in R3 at a fixed time.

Since we know from definition 3.1.1 that E and B depend on the
choice of basis, we know that the field lines will depend on our choice
of basis.
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remark 3 .1 .4: The first Maxwell equation states that an electromag-
netic field is in particular a closed complex-valued two-form. Since
Minkowski space is a vector space, it follows that Hk(M, C) = 0 for
any k ∈ Z≥1. Therefore, there exists an A ∈ Ω1(M, C) such that
F = dA for any electromagnetic field F.

definition 3 .1 .5: Let F ∈ Ω2(M, C) be an electromagnetic field
and let A ∈ Ω1(M, C) be such that F = dA. Then A is called a
potential for F.

It turns out that all the information of an electromagnetic field F is
contained in a potential for F, and that we can write down an equa-
tion for complex-valued one-forms that is equivalent to Maxwell’s
equations.

proposition 3 .1 .6: Let F ∈ Ω2(M, C), and let A ∈ Ω1(M, C) such
that F = dA. Then F is an electromagnetic field if and only if δdA = 0.
If A ∈ Ω1(M, C) satisfies δdA = 0 we call it a potential.

Proof. Suppose we have an electromagnetic field F ∈ Ω2(M, C) and
let A ∈ Ω1(M, C) be a potential for F. Plugging F = dA in Maxwell’s
equations gives

ddA = 0 and δdA = 0

This shows the implication from left to right. Conversely, let A ∈
Ω1(M, C) such that δdA = 0 and take F = dA. Then we get

dF = ddA = 0 and δF = δdA = 0

This concludes the proof.

3.2 gauge freedom

It turns out that an electromagnetic field does not correspond to a
unique potential. This freedom in the choice of potential is called
gauge freedom and can be used to make a potential satisfy additional
conditions. When sufficient conditions have been imposed to remove
any freedom in the choice of the potential, we say that the gauge has
been fixed.

proposition 3 .2 .1: Let F ∈ Ω2(M, C) be an electromagnetic field,
let A ∈ Ω1(M, C) be a potential for F, and let C ∈ Ω1(M, C).
Then A + C is a potential for F if and only if C = dc for some
c ∈ C∞(M, C).

Proof. Let F ∈ Ω2(M, C) be an electromagnetic field, let A ∈ Ω1(M, C)

be a potential for F, let C ∈ Ω1(M, C), and suppose A + C is also a
potential for F. Then it must hold that

F = d(A + C) = dA + dC = F + dC
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implying that dC = 0. Since H1(M, C) = 0, there exists a c ∈ C∞(M, C)

such that C = dc proving the implication from left to right. Con-
versely, let c ∈ C∞(M, C) and let A ∈ Ω1(M, C) be a potential for an
electromagnetic field F ∈ Ω2(M, C). Then A + dc is a potential for F
because we have

d(A + dc) = dA + ddc = dA = F

This concludes the proof.

Thus a potential for an electromagnetic field is only determined up
to the addition of a closed complex-valued one-form. There are many
additional conditions one can impose, but we will only make use of
the Lorentz gauge which is defined as follows.

definition 3 .2 .2: Let A ∈ Ω1(M, C) then it is is said to be in the
Lorentz gauge if δA = 0.

In general, when a gauge is chosen in one inertial frame, it need not
necessarily be satisfied in another. This is the case if the gauge con-
dition is not symmetric under the restricted Lorentz group. However,
the Lorentz gauge does have this property.

proposition 3 .2 .3: The Lorentz gauge condition is symmetric un-
der the Lorentz group.

Proof. Let f : M → M be an isometry, and let A ∈ Ω1(M, C) be a
potential in the Lorentz gauge. Then f ∗(F) satisfies the Lorentz gauge
because proposition 2.2.9 implies that

δ f ∗(A) = f ∗(δA) = f ∗(0) = 0

This concludes the proof.

Even though a potential in the Lorentz gauge satisfies an additional
condition, it does not fix the gauge entirely, i.e. there is still some
freedom in the choice of potential. To see this, let A ∈ Ω1(M, C) be
a potential in the Lorentz gauge and let c ∈ C∞(M, C) be a func-
tion satisfying ∆c = 0. Then A + dc also satisfies the Lorentz gauge
condition because of the remark following definition 2.3.1 we have

δ(A + dc) = δA + ∆c = 0 = ∆c = 0

Thus A + dc and A correspond to the same electromagnetic field.

remark 3 .2 .4: Let A ∈ Ω1(M, C) and suppose that it satisfies the
Lorentz gauge condition. Then we know from proposition 3.1.6 that
A is a potential if and only if

δdA = 0 = (δd + dδ)A = ∆A = 0

Thus by propostion 2.3.4 we see that in the Lorentz gauge the com-
ponents of a potential have to satisfy the wave equation.
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3.3 self-duality

In dimension four the Hodge star operator has the special property
that it maps two-forms to two-forms. Furthermore, we know by pro-
position 2.2.6 that for any F ∈ Ω2(M, C) we have that ?2F = −F.
Thus as a linear operator on Ω2(M, C) the Hodge star operator has
±i as its eigenvalues.

definition 3 .3 .1: Let F ∈ Ω2(M, C) then it is is called self-dual if
?F = iF and anti-self-dual if ?F = −iF.

Since we are ultimately interested in electromagnetic fields, we will
use the conventions established in section 3.1 even though the complex-
valued two-forms we consider in this section need not be electromag-
netic fields unless stated otherwise. Thus we write any F ∈ Ω2(M, C)

as F = E ∧ dt + B where E and B are defined as in 3.1.1. Now the
Hodge dual of F is given by ?F = ?SE− ?SB ∧ dt. Thus we see that
F is self-dual if and only if ?SB = −iE and anti-self-dual if and only
if ?SB = iE. More explicitly, F is self-dual if and only if Bk = −iEk
and anti-self-dual if and only if Bk = iEk for all k ∈ {1, 2, 3}. Further-
more, we note that if F ∈ Ω2(M, C) is a self-dual or anti-self-dual
complex-valued two-form that solves the first Maxwell equation, it
also automatically satisfies the second Maxwell equation.

proposition 3 .3 .2: Let F ∈ Ω2(M, C), then we can write F as a
sum of self-dual and anti-self-dual two-forms F+ and F− respectively.

Proof. Let F ∈ Ω2(M, C) and define

F− =
1
2
(F + i ? F) and F+ =

1
2
(F− i ? F)

Note that
?F+ =

1
2
(?F + iF) =

i
2
(F− i ? F) = iF+

as well as

?F− =
1
2
(?F− iF) = − i

2
(F + i ? F) = −iF−

This shows that F+ is self-dual and F− is anti-self-dual. Noting that
F = F+ + F− concludes the proof.

Proposition 3.3.2 implies that, in principle, it is sufficient to consider
self-dual and anti-self-dual electromagnetic fields since any solution
can be written as a sum of such fields.

proposition 3 .3 .3: Let F ∈ Ω2(M, C) and consider the parity in-
version map P : M → M, (t, x, y, z) 7→ (t,−x,−y,−z). Then P∗(F)
is anti-self-dual if and only if F is self-dual.
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Proof. Note that pullback by a parity transformation leaves differen-
tial forms of the form dxi ∧ dxj unchanged, and flips the sign of
differential forms of the form dxi ∧ dx0. Therefore, the the compon-
ents of E gain a minus sign with respect to the components of B
after pullback by a parity transformation. This observation, combined
with the proof below definition 3.3.1 that F is self-dual if and only if
Bk = iEk and anti-self-dual if and only if Bk = −iEk, proves the pro-
position.

The dimension of Ω2(M, C) is six, and by the previous proposition
we know that P∗ maps from self-dual elements of Ω2(M, C) to anti-
self-dual elements of Ω2(M, C). Furthermore, we know that

idΩ2(M,C) = (P ◦ P)∗ = P∗ ◦ P∗

showing that P∗ is a bijection. This observation, combined with the
result from proposition 3.3.2 that any element of Ω2(M, C) can be
written as a sum of self-dual and anti-self-dual two-forms, shows that
the dimension of the subspace of self-dual two-forms in Minkowski
spacetime is three just like the dimension of the subspace of anti-self-
dual two-forms.

For the remainder of this thesis we will only consider self-dual two-
forms because we can obtain the corresponding anti-self-dual two-
form by pullback with the parity inversion map. Furthermore, all the
results we derive for self-dual electromagnetic fields in this section,
also hold for anti-self-dual fields with similar proofs.

definition 3 .3 .4: Let F ∈ Ω2(M, C) be an electromagnetic field,
then the invariants of F are ?(F ∧ F) and ?(F ∧ ?F).

Taking an orthonormal basis for M and writing F = E ∧ dt + B as
introduced in definition 3.1.1 allows us to rewrite the fundamental
invariants of F in terms of the components of E and B. Then ?(F ∧ F)
is given by

?(F ∧ F) = −2(ExBx + EyBy + EzBz)

and ?(F ∧ ?F) is given by

?(F ∧ ?F) = −(E2
x + E2

y + E2
z − B2

x − B2
y − B2

z)

Furthermore, it turns out that

?(?F ∧ ?F) = ?(F ∧ F)

The reason that these quantities are interesting is that they are Lorentz-
invariant scalars. This means that they take the same value in inertial
frames related by elements from the restricted Lorentz group. To see
this, we first recall that different inertial frames are related by ele-
ments in the Lorentz group. We know from proposition 2.2.7 that the
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pullback with respect to such a map commutes with the Hodge star
operator, so that we get

f ∗(?(F ∧ F)) = ?[ f ∗(F ∧ F)] = ?[( f ∗F) ∧ ( f ∗F)]

as well as

f ∗(?[F ∧ ?F]) = ?[ f ∗(F ∧ ?F)] = ?[( f ∗F) ∧ ( f ∗ ? F)]

It turns out that the invariants of an electromagnetic field F vanish if
F is self-dual.

proposition 3 .3 .5: Let F ∈ Ω2(M, C) be a self-dual electromag-
netic field then the fundamental invariants of F vanish.

Proof. Let F ∈ Ω2(M, C) be a self-dual electromagnetic field, then we
have

?(F ∧ F) = ?(?F ∧ ?F) = ?(iF ∧ iF) = − ? (F ∧ F)

This shows that ?(F ∧ F) = 0, but we also have

?(F ∧ ?F) = i ? (F ∧ F) = 0

Thus both the fundamental invariants of a self-dual electromagnetic
field are zero.

As a consequence, the electric and magnetic field corresponding to
self-dual electromagnetic fields are orthogonal. To see this, note that

?(F ∧ ?F) = Re[Ex]
2 − Im[Ex]

2 + 2iRe[Ex]Im[Ex] + . . .

Here we did not write down the similar terms we get for the y and
z components of E and the components of B. Due to self-duality we
know that for any k ∈ {x, y, z} we have Bk = −iEk which implies that

Im[Ek] = Re[Bk]

Combining this with the fact that ?(F ∧ ?F) = 0 gives

Re[Ex]Re[Bx] + Re[Ey]Re[By] + Re[Ez]Re[Bz] = 0

i.e. ~E · ~B = 0. We know that ~E and ~B depend on the inertial frame
chosen. However, we only used the Lorentz-invariant expression ?(F∧
?F) = 0, and the self-duality condition to show that ~E · ~B = 0. There-
fore we can conclude that this holds regardless of the inertial frame
we choose. As a consequence of this, [10] implies that a self-dual elec-
tromagnetic field without zeros satisfies something called the frozen
field condition. This condition means that the field lines are not ’broken’
under the time evolution, but deform smoothly. The evolution of the
field is then described by a conformal deformation of space, i.e. a
map that does preserves the metric up to scaling.
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3.4 the bateman construction

In this section we will discuss a method of constructing self-dual elec-
tromagnetic fields that is commonly referred to as the Bateman con-
struction since it is originally due to Bateman [4]. This construction
will be essential to our method of constructing self-dual electromag-
netic fields with linked optical vortices.

Let α, β : M → C be two smooth complex functions on Minkowski
space, then F := dα ∧ dβ is a closed two-form onM. Hence it solves
the first Maxwell equation. Note that F also solves the second Max-
well equation if F is self-dual. Writing out the self-duality condition
?F = iF for F = dα ∧ dβ gives that the self-duality condition is equi-
valent to the Bateman condition for α and β:

∇α×∇β = i(∂tα∇β− ∂tβ∇α)

Though this construction gives a different way of obtaining electro-
magnetic fields, we must admit that to use it we still have to solve
a difficult equation. However, once we have found solutions to these
equations, we have the freedom to construct a whole family of other
self-dual solutions as explained in the next proposition.

proposition 3 .4 .1: Let α, β : M → C be smooth functions satisfy-
ing the Bateman condition and let f , g : C2 → C be arbitrary smooth
functions. Then F = d f (α, β) ∧ dg(α, β) is a self-dual electromagnetic
field.

Proof. Let α, β ∈ C∞(M, C) such that dα ∧ dβ is a self-dual electro-
magnetic field, and let f , g : C2 → C be smooth. Then d f (α, β) ∧
dg(α, β) is a closed two-form onM that can be written as

d f (α, β) ∧ dg(α, β) = (∂α f dα + ∂β f dβ) ∧ (∂αgdα + ∂βgdβ)

= ∂α f ∂βgdα ∧ dβ + ∂β f ∂αgdβ ∧ dα

= (∂α f ∂βg− ∂β f ∂αg)dα ∧ dβ

Since dα ∧ dβ is self-dual we also know that

?d f (α, β) ∧ dg(α, β) = ?(∂α f ∂βg− ∂β f ∂αg)dα ∧ dβ

= (∂α f ∂βg− ∂β f ∂αg) ? (dα ∧ dβ)

= (∂α f ∂βg− ∂β f ∂αg)idα ∧ dβ

= id f (α, β) ∧ dg(α, β)

Thus d f (α, β) ∧ dg(α, β) is also a self-dual electromagnetic field.

It turns out that any self-dual electromagnetic field can be obtained
by the Bateman construction.
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theorem 3 .4 .2: Let F ∈ Ω2(M, C) be a self-dual electromagnetic
field, then there are α, β : M → C satisfying the Bateman condition
such that F = dα ∧ dβ holds.

Proof. This result is due to Hogan who showed it, albeit using a dif-
ferent formalism, in [9].

3.5 superpotential theory

It turns out that one can obtain solutions to the Maxwell equations by
combining solutions to the wave equation with constant two-forms.
Our treatment of this method in this section is based on the approach
taken by Synge in section 13 of chapter 9 of [21], although he uses a
different formalism.

proposition 3 .5 .1: Let K ∈ Ω2(M, C) be a constant two-form and
let W ∈ C∞(M, C) be a solution of the wave equation. Then A =

?(dW ∧ K) is a potential, i.e. F = dA is an electromagnetic field.

Proof. First note that A is in the Lorentz gauge because

δA = δ ? (dW ∧ K) = ?−1d ? ?(dW ∧ K) = ?−1dd(WK) = 0

by proposition 2.2.6 and the fact that d2 = 0. Now we know from
section 3.2 that A is a potential if and only if ∆A = 0.

∆A = ∆ ? d(WK) = ?d∆(WK)

Here we could swap ∆ with d as well as ? by proposition 2.3.3. Now
note that ∆(WK) = 0 if and only if the components of WK satisfy
the wave equation by proposition 2.3.4. This condition is satisfied be-
cause W satisfies the wave equation and K has constant components
concluding the proof.

Because of the special properties of self-dual electromagnetic fields,
we would like to know when the electromagnetic fields correspond-
ing to potentials as constructed in 3.5.1 are self-dual. It turns out that
if we write out ?d ? (dW ∧K) = id ? (dW ∧K) respectively ?d ? (dW ∧
K) = −id ? (dW ∧ K), we find that K has to satisfy

Kxy = −iKzt, Kzx = −iKyt, Kyz = iKxt

in the self-dual case and

Kxy = iKzt, Kzx = iKyt, Kyz = −iKxt

in the anti-self-dual case.
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K N O T S I N E L E C T R O M A G N E T I S M

The purpose of this chapter is to derive the Hopf field, and to show
how knot theory can be implemented in electromagnetism. To this
end, we will first review the main result from the bachelor thesis of
Ruud van Asseldonk [1] in section 4.1. We will then use the results
from this section to show how the Hopf field can be obtained from
the construction discussed in section 3.5. Finally, after a digression
on algebraic links, we will arrive at the main result of this thesis in
section 4.4. Here, we will give a constructive proof that self-dual elec-
tromagnetic fields exist with the special property that the intersection
of their zero set with an arbitrary spacelike slice in Minkowski space
is a given algebraic link.

4.1 solenoidal vector fields

In this section we will discuss a method of constructing solenoidal
vector fields on R3, i.e. vector fields ~B : R3 → R3 that satisfy ∇ · ~B =

0. Furthermore, we will show how this construction can be used
to derive a vector field with the property that its integral curves
are all linked circles. However, as we did throughout this thesis, we
will work with differential forms instead of vector fields. Therefore
we note that solenoidal vector fields correspond to two-forms B ∈
Ω2(R3) that satisfy dB = 0, or one-forms E ∈ Ω1(R3) that satisfy
d ?S E = 0. The treatment we present in this section is based on sec-
tion 4.3 of [1], the bachelor thesis of Ruud van Asseldonk.

remark 4 .1 .1: From the discussion following definition 3.1.1, we
know that a magnetic field is a solenoidal vector field, but to get a
solution to Maxwell’s equations we also need a solenoidal electric
field that is coupled to the magnetic field in the correct way. Since the
construction we will discuss in this section gives only one solenoidal
field, it is not a method of constructing electromagnetic fields. The
reason we decided to include this section is that it does give a good
handle on the structure of the field lines, which will prove useful in
section 4.2.

remark 4 .1 .2: Let N be a two-dimensional manifold, then any ω ∈
Ω2(N) is closed. Now let f : R3 → N be a smooth map, then f ∗(ω) is

25
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a closed form on R3, because the pullback and the exterior derivative
commute, i.e.

d f ∗(ω) = f ∗(dω) = f ∗(0) = 0

Thus this gives a method of constructing closed two-forms on R3.
This remark in itself is rather trivial, but it turns out to be interesting
because the fibre structure of f is closely related to the structure of
the field lines as shown by theorem 4.1.3.

theorem 4 .1 .3: Let N be a two-dimensional smooth manifold, let
ω ∈ Ω2(N), and let f : R3 → N be a smooth map. Then the fibres of
f coincide with the field lines of f ∗(ω) where the latter is non-zero.

Proof. Let N be a two-dimensional manifold, let f : R3 → N be a
smooth map, and let ω ∈ Ω2(N). Let (U, h, R2) be some chart, where
h : U → R2 is given by p 7→ (q1, q2). Then we can write

ω|U = ωU · dq1 ∧ dq2

for some ωU ∈ C∞(U). Now, on f−1(U), which is open because f is
smooth, so in particular continuous, f ∗(ω) is given by

f ∗(ω|U) = (ωU ◦ f ) · d f 1 ∧ d f 2

The vector field on V corresponding to this form on V is given by
(ωU ◦ f )∇ f 1 × ∇ f 2. Unless this vector field is zero at some point,
which corresponds to f ∗(ω) being zero on this point, the vector field
is orthogonal to the integral curves of f . To see this, note that the
gradients of f 1 and f 2 are orthogonal to the level curves of f , so the
outer product of these gradients at a point will be a tangent vector
of the level curve of f through this point provided that this outer
product is non-zero. Thus the integral curves of the vector field cor-
responding to the form f ∗(ω) correspond to the level curves of f
where the former is non-zero.

There are many possibilities for the two-manifold N and the map
f : R3 → N in theorem 4.1.3. However, we will restrict our attention
to the specific case where N = S2, and the map f : R3 → S2 is derived
from a map called the Hopf map. The Hopf map is the restriction of

H̃ : C2 → P1(C), (z1, z2) 7→ (z1 : z2)

to S3 viewed as the subset of C2 of unit norm. Since we can identify
P1(C) with S2, we can view this as a map from S3 to S2. Composing
the Hopf map with the inverse stereographic projection from R3 to
S2, gives the map

φ : R3 → S2,

x

y

z

 7→


4(y(x2+z2−1)−2xz+y3)
(x2+y2+z2+1)2

− 4(z(x2+y2−1)+2xy+z3)
(x2+y2+z2+1)2

8(x2+1)
(x2+y2+z2+1)2 − 8

x2+y2+z2+1 + 1


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The fibres of this map are circles which are all linked with each other.
We will formally introduce linking in definition 4.3.4, the intuitive
notion of linking should suffice for now. However, there is also one
fibre that is not a circle, but a straight line. For more details on this
map and its fibre structure see chapter 3 of [1]. Note that forms on S2

can be viewed as forms on R3. If we do this, one of the orientation
forms on S2 is given by

ω = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy

Taking the pullback of ω with φ gives

φ∗(ω) = − 32(xz + y)

(x2 + y2 + z2 + 1)3 dx ∧ dy

− 32(xy− z)

(x2 + y2 + z2 + 1)3 dz ∧ dx

−
16
(

x2 − y2 − z2 + 1
)

(x2 + y2 + z2 + 1)3 dy ∧ dz

Though we have taken the same approach as in [1], we end up with a
form that differs by a minus sign and a transformation x 7→ −x. This
difference is due to the choice we made in identifying R4 with C2.

4.2 the hopf field

The Hopf field is a self-dual electromagnetic field such that at t = 0
the field lines of both the electric and the magnetic field have the
structure of the Hopf fibration, and are mutually orthogonal. In this
section, we will show a new way of constructing the Hopf field using
the method discussed in section 3.5.

To obtain an electromagnetic field from the construction in section
3.5, we need a solution to the wave equation. We take this to be the
solution without singularities found in example 2.3.2, i.e.

W(t, x, y, z) = (x2 + y2 + z2 − (t− i)2)−1

The construction also requires a K ∈ Ω2(M, C) with constant coeffi-
cients, which we choose to be

K = −dz ∧ dx− i · dy ∧ dz− dx ∧ dt + i · dy ∧ dt

This choice of K guarantees that the resulting electromagnetic field
will be self-dual by the discussion following proposition 3.5.1. Fur-
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thermore, proposition 3.5.1 guarantees that A = ?(dW ∧ K) is a po-
tential, which is given by

A =
−2(y + ix)

(x2 + y2 + z2 − (t− i)2)2 dz +
2(y + ix)

(x2 + y2 + z2 − (t− i)2)2 dt

+
−2it + 2iz− 2

(x2 + y2 + z2 − (t− i)2)2 dx +
−2t + 2z + 2i

(x2 + y2 + z2 − (t− i)2)2 dy

Now the electromagnetic field corresponding to A is

F =
4(t− x + iy− z− i)(t + x− i(y + 1)− z)

(x2 + y2 + z2 − (t− i)2)3 dy ∧ dz

− 4i(t− ix− y− z− i)(t + ix + y− z− i)

(x2 + y2 + z2 − (t− i)2)3 dz ∧ dx

− 8i(t− z− i)(y + ix)

(x2 + y2 + z2 − (t− i)2)3 dx ∧ dy + . . .

Here we did not write down the terms determining the electric field,
because they are fixed by self-duality when the terms determining
the magnetic field are given. Note that at t = 0 we have 4Re[B] =
φ∗(ω), where φ∗(ω) is the two-form we determined in section 4.1.
This shows that the field lines of the magnetic field have the same
structure as the field lines of the vector field corresponding to φ∗(ω),
which is that of the Hopf fibration. The same holds for the electric
field by self-duality, which also implies that the field line structure is
preserved in time due to the final result of section 3.3. We would now
like to determine Bateman variables for this electromagnetic field, i.e.
maps α̃, β̃ : M → C such that F = dα̃ ∧ dβ̃. Note that for such a
field, a potential is given by A = α̃dβ̃ = −β̃dα̃, so we might hope to
obtain Bateman variables for the Hopf field from the potential. If we
compare the components of the potential, we see that two of them
differ by a minus sign, and the other two differ by a factor of i. Thus,
this gives us two natural choices to take for α̃, β̃, but these can never
be Bateman variables for the field since it would give a field with a
factor (r2 − (t − i)2)−4. Therefore, we take the components without
the square in the denominator, i.e.

α̃(t, x, y, z) =
2i− 2t + 2z
r2 − (t− i)2 and β̃(t, x, y, z) =

2(ix + y)
r2 − (t− i)2

It turns out that these do, indeed, function as Bateman variables for
the Hopf field, but we have some freedom here. We can take a factor
of i from α̃ to β̃ and add 1 to iα̃ without changing the field. This gives
new Bateman variables given by

α(t, x, y, z) =
r2 − t2 − 1 + 2iz

r2 − (t− i)2 and β(t, x, y, z) =
2(x− iy)

r2 − (t− i)2

These are the form of Bateman variables used in [12], and will form
the basis of our discussion in section 4.4.
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4.3 algebraic links

In this section, we will give a short exposition on algebraic link the-
ory. We will only cover parts of the theory that are relevant for our
construction in section 4.4. More information can be found in the ref-
erences used to write this section, which are [3, 8, 15, 19, 23].

definition 4 .3 .1: A link is a pair (X, L), where X is an oriented
manifold diffeomorphic to R3, and L is an one-dimensional submani-
fold of X diffeomorphic to tn

i=1S1 for some n ∈ Z≥1 with the orienta-
tion induced by the standard orientation on S1. If n = 1, a link is said
to be a knot.

We should note that whenever we refer to the main result of section
4.4, we identify links with one-dimensional manifolds diffeomorphic
to tn

i=1S1 for some n ∈ Z≥1. This is done for brevity, but in all theor-
ems, propositions, and proofs we will use the precise definition of a
link stated above.

definition 4 .3 .2: Two links (X, L) and (X′, L′) are said to be equi-
valent if there exists an orientation preserving diffeomorphism ϕ :
X → X such that ϕ(L) = L′, and such that ϕ∗(ω) = ω′, where ω and
ω′ are the orientations on L and L′ respectively. Two equivalent links
are denoted by (X, L) ∼= (X′, L′).

In section 4.2, we encountered the concept of linking in our brief
description of the Hopf fibration. Even though, intuitively, it is clear
what is meant by this, we will now formally define the notion of
linking. To do so, we need the notion of a Seifert surface.

theorem 4 .3 .3: Let (X, K) be a knot, then there is a compact, two-
dimensional orientable submanfold S of X, such that ∂S = K. We
take S to have the orientation induced by the orientation on K. Such
a surface S is called a Seifert surface for the knot (X, K).

Proof. See chapter 5 in [19]

Even though there can be multiple Seifert surfaces for a given knot,
it can be used to unambiguously define the linking number of two
knots as we will now show.

definition 4 .3 .4: Let (X, K) and (X, K′) be knots such that K′ ∩
K = ∅, and let S be a Seifert surface for K. We may assume that S
intersects K′ transversely in finitely many points, because if it does
not we can deform its interior until it does. Let ϕ : X → R3 be a
diffeomorphism between X and R3, and let ω be the orientation on X
induced by the standard orientation on R3. Now, let p ∈ K′ ∩ S, and
take v1, v2 ∈ TpS such that ϕ∗(v1), and ϕ∗(v2) are right-handed with
respect to the standard orientation on R3. Also take a w ∈ TpK such
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that ω′(w) > 0 for the orientation ω on S1. Finally, we define σ(p) to
be equal to one if ω(v1, v2, w) > 0, and to be equal to −1 otherwise.
Then the linking number of the knots is defined to be

L(K, K′) = ∑
p∈K′∩S

σ(p)

Note that this definition is independent of the chosen Seifert surface
for K. To see this, let S′ be another Seifert surface for K, and reverse
the orientation on S′. Then S ∪ S′ is a closed surface in X, and hence
for any p ∈ K′ ∩ (S ∪ S′) such that σ(p) = 1, there is another p′ ∈
K′ ∩ (S ∪ S′) such that σ(p′) = −1.

In section 4.4, we will show how we can implement a certain class of
links in electromagnetism. Therefore we will restrict our attention to
this subclass, called the algebraic links. However, before being able to
say what makes a link algebraic, we need the notion of a plane curve.

definition 4 .3 .5: A complex plane curve is the zero set of a poly-
nomial h ∈ C[v, w] viewed as a map h : C2 → C, (v, w) 7→ h(v, w)

that satisfies h(0, 0) = 0 and has an isolated singularity or a simple
point in the origin. We will always work in C2, so we will simply refer
to such a zero set as a plane curve.

Note that C[v, w] is a unique factorisation domain, i.e. any h ∈ C[v, w]

can be written as a product of irreducible elements and a unit in
C[v, w]. Furthermore, this factorisation is unique up to ordering of
the irreducible factors and multiplication of the irreducible factors by
unit elements.

definition 4 .3 .6: Let C be a plane curve associated to a h ∈ C[v, w],
then a branch of C is the zero set of an irreducible factor of h.

Now we are ready to define algebraic links, but before we do so, we
should say that we will denote the three-sphere of norm ε in C2 by S3

ε.
Furthermore, we note that for any p ∈ S3 the stereographic projection
gives a diffeomorphism between S3

ε\{p} and R3.

definition 4 .3 .7: A link (X, L) is said to be algebraic if there exists
a plane curve C, an ε ∈ R>0, and a p ∈ S3

ε\C such that

(X, L) ∼= (S3
ε\{p}, C ∩ S3

ε)

remark 4 .3 .8: Instead of describing an algebraic link as the inter-
section of a plane curve C with a sphere S3

ε, it can also be described
by the intersection of a plane curve with

∂(D2(ε)× D2(δ)) = {(v, w) ∈ C2||v| = ε, |w| ≤ δ or |v| ≤ ε, |w| = δ}

Here ε and δ can be chosen such that the square sphere intersects
with C in a solid torus, where |x| = ε. This alternative description of
algebraic links was proposed by Kähler in [11] and will prove useful
when describing the topology of algebraic links.
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It turns out that every polynomial h ∈ C[v, w] that satisfies h(0, 0) = 0
and has an isolated singularity or a simple point in the origin gives
rise to a link.

proposition 4 .3 .9: Let h ∈ C[v, w] such that h(0, 0) = 0 and such
that h has an isolated singularity or a simple point in the origin and
let C denote the plane curve corresponding to h. Then there is an
ε ∈ R>0 and a p ∈ S3

ε such that (S3
ε\{p}, C ∩ S3

ε) is a link. Such a link
is algebraic by construction.

Proof. See lemma 5.2.1 and the remarks following it in [23].

The ε in the definition of an algebraic link is necessary because there
may be other singularities in the plane. The idea is to choose ε small
enough such that S3

ε does not enclose any singularity outside of the
origin. However, this still leaves a range of choices for ε, but we will
now see that all values in this range give equivalent links.

lemma 4 .3 .10: Let C be a plane curve, then for ε, ε′ ∈ R>0 small
enough, there are p ∈ S3

ε and p′ ∈ S3
ε′ such that

(S3
ε\{p}, C ∩ S3

ε)
∼= (S3

ε′\{p′}, C ∩ S3
ε′)

Proof. See, for example, lemma 5.2.2 in [23].

Having discussed how algebraic links arise from zero sets of polyno-
mials, we will now elaborate on how a polynomial determines the
topology of the algebraic link it induces.

proposition 4 .3 .11: Let (X, L) be an algebraic link induced by a
plane curve C corresponding to a polynomial h ∈ C[v, w]. Then the
number of connected components of L is equal to the number of irre-
ducible factors into which h can be decomposed.

Proof. See the paragraph following lemma 5.2.1 in [23].

It turns out that every component of an algebraic link is completely
determined by a corresponding irreducible factor of the polynomial
that induces it; see section 2.3 in [23]. Therefore, we will restrict our
treatment to knots corresponding to irreducible polynomials. To say
more about the topology of the knot that an irreducible polynomial
h ∈ C[v, w] induces, we will solve h(v, w) = 0 for w in terms of v.
That such a solution can be obtained is a result due to Newton, and
convergence of the solution for w was later shown by Puiseux’.

theorem 4 .3 .12: Let h ∈ C[v, w] such that h(0, 0) = 0, then the
equation h(v, w) = 0 has a convergent power series solution of the
form v = tn, w = ∑∞

k=1 aktk for some n ∈ N. Such a solution is called
a Puiseux’ expansion.
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Proof. See, for example, theorem 2.2.1 and section 2.2 in [23].

The proof to theorem 4.3.12 gives successive approximations for w in
terms of v of the form

w0 = a0v
p0
q0

w1 = v
p0
q0 (a0 + a1v

p1
q1 )

...

Such an expression for w in terms of fractional powers of v will be
reffered to as a Newton expansion. The corresponding Puiseux’ ex-
pansion is then obtained by taking v = tn and substituting it into the
expansion for w. Here n is chosen to be equal to n = q0 · q1 · · · which
is finite as shown in the proof. Thus, such a solution is characterised
by the exponents, determined by (pi, qi) in the successive approxim-
ations. We can take these pairs to be coprime, and we will refer to
them as the Newton pairs.

We will now give a description of the topology of a knot based on
the Newton pairs and remark 4.3.8. Before doing so, we note that a
knot (X, K) is equivalent to the embedding ιK : K → X of K in X.
This description of a knot is better suited to describe the topology
of a knot, so we will use it for now. First consider the simplest case,
where there is only one Newton pair (p, q), where we take p and
q to be coprime as noted before. Then the corresponding Newton
expansion is w = vp/q, and substituting v = εeiθq gives w = εp/qeiθp/q.
With these choices for v and w, we have a parametrisation (v, w) of
the knot that lies on a torus. As v goes around the circle of radius
ε once, v goes p/q times around the circle of radius εp/q. The curve
(εeiθq, εp/qeiθp/q) describing the knot, closes after v has gone around
the toroidal direction of the torus p times, and w has gone around the
toroidal direction of the torus q times. Such a knot is called a (p, q)
torus knot. To deal with the more general situation with more than
one Newton pair, we need the concept of a cable knot.

definition 4 .3 .13: Let (X, K) be a knot with corresponding em-
bedding ιK. Then a tubular neighbourhood of ιK is an embedding of
the solid torus τ : S1 × D2 → X in X such that τ(t, 0) = ι(t) for all
t ∈ S1.

It turns out that such a tubular neighbourhood always exists, but it is
not unique. To see this, note that given a tubular neighbourhood τ of
a knot ιK, we can obtain another as follows. Define

ϕt : S1 × D2 → S1 × D2, (s, d) 7→ (s, std)

for any t ∈ Z. Then ιK ◦ ϕt is also a tubular neighbourhood of ιK,
which is not equal to ιK. The difference between both embeddings is
a t-fold twist in the toroidal direction.
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definition 4 .3 .14: Let (X, K) be a knot with corresponding em-
bedding ιK, and let τ be a tubular neighbourhood of ιK such that the
restriction of τ to S1× {(0, 1)}, viewed as a knot, has linking number
equal to zero with ιK. Then, if ι′ : S1 → R3 is a (p, q) torus knot on
S1 × D2, τ ◦ ι′ is a (p, q) cable knot on ι.

Suppose we have more general Newton pairs (pi, qi), then the first
term in the expansion still describes a (p0, q0) torus knot. Now con-
sider the next successive approximation

w1 = v
p0
q0 (a0 + a1v

p1
q1 )

The additional term can be seen as perturbation to the (p0, q0) torus
knot by substituting v = εeiθ , where ε is small. The resulting knot
can then be seen as lying on a tubular neighbourhood of the (p0, q0)

torus knot, going around its poloidal direction p1 times, and its tor-
oidal direction q1 times. However, we should stress that (v1, w1) need
not describe a (p1, q1) cable knot over a (p0, q0) torus knot. This is
due to the fact that the toroidal direction of the embedded torus is in
general not unknotted as required in the definition of a tubular neigh-
bourhood. What kind of knot we do get is discussed in theorem 4.3.17.
We should note that there is another problem with this description of
the topology of a knot. Namely, this description seems to imply that
every successive Newton pair changes the knot. It turns out that this
is not the case, as we will now go on to show.

definition 4 .3 .15: Let h ∈ C[v, w] be irreducible such that h(0, w) 6=
0 and let v = tn, w = ∑∞

k=1 aktk be a solution of h(v, w) = 0. Now we
define

γ1 = min{k|ak 6= 0 and k - n} and e1 = gcd{n, β1}

as well as

γi+1 = min{k|ak 6= 0 and ei - n} and ei+1 = gcd{ei, βi+1}

until eg = 1 which always happens; see for example section 2.3 in [23].
Then the Puiseux’ characteristic of h is defined to be (n; γ1, . . . , γg)

It turns out that the Puiseux’ characteristic determines the topology of
the link completely. This fact is of great practical use when we would
like to determine topology of a knot corresponding to the zero set of
an irreducible polynomial h ∈ C[v, w], because it implies that we only
need to determine finitely many terms of the Puiseux’ expansion.

lemma 4 .3 .16: Let h, h′ ∈ C[v, w] be irreducible with corresponding
zero sets C and C′ respectively. If h and h′ have the same Puiseux’
characteristic, then there is an ε ∈ R>0 and a p ∈ S3

ε such that

(S3
ε\{p}, C ∩ S3

ε)
∼= (S3

ε\{p}, C′ ∩ S3
ε)
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Proof. See proposition 5.3.1 in [23].

Let h ∈ C[v, w], and suppose we have a solution for h(v, w) = 0 for w
in terms of v with Newton pairs (pi, qi). Note that this solution can
equivalently be described by an expansion of the form

w = v
m1
n1 + v

m2
n1n2 + . . .

The pairs (mi, ni) are called the Puiseux’ pairs. The Newton pairs are
related to the Puiseux’ pairs by pi = ni, q1 = m1, and qi = mi−mi−1ni.

theorem 4 .3 .17: Let h ∈ C[v, w] be irreducible, with Puiseux’ pairs
(m1, n1), . . . , (mg, ng). Then the algebraic knot induced by h is equi-
valent to an iterated torus knot of type (ri, ni), where r1 = m1, and
ri = mi −mi−1ni + ri−1ni−1ni for i ≥ 2.

Proof. See proposition 2.3.9 in [3]

Thus far we have shown that an irreducible polynomial induces a
knot and we have discussed how this polynomial determines the to-
pology of this knot. We will now see that given a Puiseux’ expansion
we can also construct an irreducible polynomial h ∈ C[v, w] such that
the given expansion solves h(v, w) = 0.

theorem 4 .3 .18: Let v = tn, w = ∑∞
k=1 aktk be a Puiseux’ expansion

and define
us = − ∑

k ≡ s (mod n)
akx(k−s)/n

for any s ∈ {0, . . . , n − 1}. Then there is an irreducible h ∈ C[x, y]
such that h(v, w) = 0. Furthermore, this polynomial h is given by

h(x, y) = det



y + u0 u1 u2 · · · · · · un−2 un−1

xun−1 y + u0 u1 u2 · · · · · · un−2

xun−2 xun−1
. . . . . . . . .

...
... xun−2

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . u2

xu2
...

. . . . . . . . . u1

xu1 xu2 · · · · · · xun−2 xun−1 y + u0


Proof. See the corollary on page 57 of [8].

Having introduced all the elements from algebraic link theory that
we will require for the rest of this thesis, we will now treat some
examples.
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example 4 .3 .19: Let p, q ∈ Z be coprime, then h ∈ C[v, w] given by
h(v, w) = vp +wq is irreducible. Note that vp +wq = 0 is easily solved
to give w = −vp/q so that the Newton pair corresponding to h is (p, q).
Therefore, we can conclude from the discussion preceding definition
4.3.13 that (S3

ε\{s}, h−1(0)∩ S3
ε) describes a (p, q) torus knot for some

s ∈ S3
ε and some ε ∈ R>0 small enough.

example 4 .3 .20: Consider h ∈ C[v, w] given by h(v, w) = v2 +w2 =

(v + iw)(v− iw). Since h factors into two irreducible components, it
describes a link. Each of the components is easily seen to describe a
circle and it turns out that these circles are linked. This link is called
the Hopf link.

The previous two examples illustrate how we can determine the to-
pology of the link induced by its zero set. However, due to theorem
4.3.18, we can also start with the Newton pairs of a knot in mind and
construct the corresponding polynomial. We will now show how this
can be used to construct the polynomial corresponding to an iterated
torus knot.

example 4 .3 .21: In this example we will show explicitly how an
irreducible polynomial h ∈ C[x, y] can be constructed given the New-
ton pairs (2, 3) and (3, 2). The zero set of h will then correspond to an
iterated torus knot of type (3, 2),(13, 3) by theorem 4.3.17. Given the
Newton pairs, we have a Newton expansion of the form

y = x3/2(1 + x2/3) = x3/2 + x13/6

This gives the following Puiseux’ expansion:x = t6

y = t9 + t13

Then, according to theorem 4.3.18, the irreducible polynomial corres-
ponding to this Puiseux’ expansion is given by

h(x, y) =



y −x2 0 −x 0 0

0 y −x2 0 −x 0

0 0 y −x2 0 −x

−x2 0 0 y −x2 0

0 −x2 0 0 y −x2

−x3 0 −x2 0 0 y


= y6 − 3y4x3 + 3y2x6 − 6y2x8 − x9 − 2x11 − x13

4.4 linked optical vortices

In this section we will show how the freedom in the Bateman con-
struction can, in combination with the Bateman variables for the Hopf



36 knots in electromagnetism

field from [12], be used to construct a family of self-dual electromag-
netic fields with linked optical vortices. To be more precise, the inter-
section of the zero set of an electromagnetic field in this family with
any spacelike slice in Minkowski space will have the same structure,
and can be that of any algebraic link.

theorem 4 .4 .1: Let (X, L) be an algebraic link, and let t ∈ M
which, as described in section 2.1, induces a splitting of Minkowski
space

M =
⊔

λ∈R

λt + 〈t〉⊥ :=
⊔

λ∈R

Σλ

Then there is a self-dual electromagnetic field F such that

(X, L) ∼= (Σλ, {p ∈ M|F(p) = 0} ∩ Σλ)

for any λ ∈ R.

Proof. Let (X, L) be a link, with corresponding h ∈ C[v, w] and ε ∈
R>0 such that

(X, L) ∼= (S3
ε\{p}, h−1(0) ∩ S3

ε)

for some p ∈ S3
ε. Also, let t ∈ M and denote the spacelike slices of

the induced splitting of Minkowski space by Σλ for λ ∈ R.

Now, let α, β : M → C be the Bateman variables for the Hopf field
from [12]. Then we can obtain Bateman variables for a scaled version
of the Hopf field by taking αε, βε : M→ C to be α and β multiplied
by
√

ε/2. Then it can be checked that for any t∗ ∈ R it holds that

|αε(t∗, x, y, z)|2 + |βε(t∗, x, y, z)|2 = ε

This shows that (αε, βε)|Σt∗ maps into S3
ε. Since dαε ∧ dβε is a scaled

version of the Hopf field, it is in particular an electromagnetic field
without zeros. Now we take f , g : C2 → C to be given by

f (z1, z2) =
∫

h(z1, z2)dz1 and g(z1, z2) = z2

Then proposition 3.4.1 implies that F = d f (αε, βε) ∧ dg(αε, βε) is a
self-dual electromagnetic field given by

F = d f (αε, βε) ∧ dg(αε, βε)

= (∂αε f ∂βε
g− ∂βε

f ∂αε g)dαε ∧ dβε

= h(αε, βε)dαε ∧ dβε

Restricted to Σ0, the map (αε, βε) : M → S3
ε is the inverse stereo-

graphic projection, which is a diffeomorphism from R3 to S3\{(0, i)}.
Therefore we can conclude that

(Σ0, {p ∈ Σ0|h(αε(p), βε(p)) = 0} ∩ Σ0) ∼= (X, L)
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provided that two conditions are satisfied. The first condition is that
(0, i), the point not in the image of the inverse stereographic projec-
tion, is not mapped to zero under h. If this is the case, we choose
another h′ ∈ C[v, w] that corresponds to an equivalent link but does
not map (0, i) to zero and replace h by h′ in the discussion above. The
second condition is that Σ0 and {p ∈ Σ0|h(αε(p), βε(p)) = 0} ∩ Σ0

have the right orientations for the diffeomorphism to be orientation
preserving. Since we have not specified their orientations yet, we have
the freedom to choose them in such a way that this condition is satis-
fied.

Now we will show that the same result holds if we replace Σ0 with a
general spacelike slice Σλ. First we note that we calculated the rank
of (αε, βε)|Σλ

to be equal to three for any λ ∈ R. This shows that
(αε, βε) has at least rank three, but since the three-sphere is a three-
dimensional manifold, the rank of (αε, βε) is also at most three. There-
fore we can conclude that the rank of (αε, βε) is precisely three. Fur-
thermore, we note that h|S3

ε
has rank two, as shown in the proof of

lemma 6.1 in [15]. Thus, 0 ∈ C is a regular value of h(α, β), which
together with the regular value theorem, implies that the zero set of
h(α, β) in Minkowski space is a two-dimensional manifold. For nota-
tional convenience we define

Lλ = {p ∈ Σλ|h(αε(p), βε(p)) = 0} ∩ Σλ

From the observation that the rank of (αε, βε)|Σλ
is equal to three it

also follows that this map is a local diffeomorphism. This implies that
Lλ is empty or diffeomorphic to a disjoint union of circles. Suppose
that Lλ is empty, then there must be a T ∈ R such that LT is a discrete
set because the zero set of F is a two-dimensional manifold and we
know its intersection with L0 to be non-empty. However, this gives a
contradiction with the fact that (αε, βε)|ΣT is a local diffeomorphism
and h has no isolated zeros in S3

ε. Furthermore, the fact that the zero
set of F inM is a two-dimensional submanifold implies that for any
λ′ ∈ R and any p′ ∈ Lλ′ there is an open neighbourhood Up′ of p′

in the zero set of h. The intersection of the union of these opens for
all p′ ∈ Lλ′ with Σλ′+ε′ is then equal to Lλ′+ε′ for ε′ ∈ R>0 small
enough. This implies that there is a diffeomorphism from (Σλ′ , Lλ′)

to (Σλ′+ε′ , Lλ′+ε′). If we now choose the orientations of Σλ and Lλ

such that this diffeomorphism is orientation preserving for all λ ∈ R

and ε′ ∈ R>0, we can conclude that

(Σλ′ , Lλ′) ∼= (Σλ′+ε′ , Lλ′+ε′)

for some ε′ ∈ R>0. This concludes the proof.

Due to the constructive nature of our proof to theorem 4.4.1, we can
explicitly write down expressions for self-dual electromagnetic fields
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with linked optical vortices. We will now apply this to some specific
examples, and visualise their zero sets numerically. This numerical
visualisation was done using Mathematica, which calculated the sur-
faces in R3 at which the real and imaginary parts of h(αε, βε) are zero.
These surfaces are the transparent orange surfaces in the figures we
will encounter in the section. The zero sets of F = h(αε, βε)dαε ∧ dβε

are then determined by numerically computing the intersection of
these surfaces, which are indicated in blue.

example 4 .4 .2: Here we will consider the case where the link (X, L)
in theorem 4.4.1 is a torus knot. From example 4.3.19 we know that a
polynomial h ∈ C[v, w] corresponding to a (p, q) torus knot is given
by h(v, w) = vp + wq. Hence we choose

f (α, β) =
1

p + 1
αp+1 + βqα and g(α, β) = β

Then a self-dual electromagnetic field with a (p, q) torus knot as its
zero set is given by

F = d f (α, β) ∧ dg(α, β)

= (αp + βq)dα ∧ dβ

Numerical visualisations of the zero set of F for the case where p = 3
and q = 2 at t = 0 and t = 3 are shown in figure 1 and 2 respectively.

Figure 1: Numerical visualisation
of the optical vortex at t = 0.

Figure 2: Numerical visualisation
of the optical vortex at t = 3.

example 4 .4 .3: In this example we will consider the case where the
link (X, L) in theorem 4.4.1 is the Hopf link. From example 4.3.20 we
know that the polynomial h ∈ C[v, w] corresponding to the Hopf link
is given by h(v, w) = v2 + w2. Hence we choose

f (α, β) =
1
3

α3 + β2α and g(α, β) = β
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Then a self-dual electromagnetic field with the Hopf link as its zero
set is given by

F = d f (α, β) ∧ dg(α, β)

= (α2 + β2)dα ∧ dβ

Numerical visualisations of the zero set of F at t = 0 and t = 3 are
shown in figure 3 and 4 respectively.

Figure 3: Numerical visualisation
of the optical vortex at t = 0.

Figure 4: Numerical visualisation
of the optical vortex at t = 3.

example 4 .4 .4: In example 4.3.21 we showed how an irreducible
polynomial h ∈ C[x, y] could be constructed with Newton pairs (2, 3)
and (3, 2). The zero set of h has been shown to correspond to an
iterated torus knot of type (3, 2), (13, 3). By taking f and g as in
the proof to theorem 4.4.1 we obtain a self-dual electromagnetic field
F = h(αε, βε)dαε ∧ dβε. The zero set of this field at t = 0 as well as
a parametrisation of the knot are visualised in figure 5 and 6 respect-
ively.

Figure 5: Numerical visualisation
of the optical vortex at t = 0.

Figure 6: An iterated torus knot of
type (2, 3), (3, 13).





5
C O N C L U S I O N

In this thesis, we have studied Minkowski space, operators induced
by its pseudo-Riemannian metric, and formulated electromagnetism
in the language of differential forms. Using this formalism, we have
shown how the Hopf field can be derived from a solution of the scalar
wave equation, and we have shown how Bateman variables for the
Hopf field arise from this derivation. Our final result is that we have
have constructively proven that self-dual electromagnetic fields exist
such that the intersection of the zero set of the field with any space-
like affine subspace of Minkowski space describes an arbitrary algeb-
raic link. In other words, we have discovered a new class of electro-
magnetic fields with knotted and linked optical vortices that preserve
their structure under the time evolution.

Several directions for future research present themselves. First of all,
it would be interesting to study the surfaces to which the field lines
of the electromagnetic fields discussed in section 4.4 are constrained.
We have obtained implicit expressions for these surfaces in some
cases, but we have not been able to describe their structure in detail.
It would also be interesting to see if electromagnetic fields exist for
which the field lines form iterated torus knots or non-algebraic knots.
Last, but certainly not least, it would be interesting to see if the elec-
tromagnetic fields with linked optical vortices discussed in section 4.4
could be created in the lab. Creating the exact electromagnetic fields
we propose is not an experimental possibility, but it could be possible
to create approximations to the exact solutions with the same vor-
tex structure. We are looking into this question in collaboration with
experimental physicists in the Quantum Optics Group.
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