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Abstract

Heavy Neutral Leptons are well-motivated candidates for ex-

plaining beyond Standard Model phenomena such as dark

matter, baryon asymmetry of the Universe and neutrino os-

cillations. A variety of probes, ranging from collider-based to

cosmological, explore regions of their parameter space in a

complementary way. This work will delve into the possibil-

ity that Big Bang Nucleosynthesis has to offer in constrain-

ing their lifetime based on cosmological measurements of the

Helium-4 abundance. Results are derived for masses up to

100 MeV and a framework is laid for extending the analysis

to higher masses.
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1
INTRODUCTION

1.1 Relevance of this work

A variety of cosmological, astrophysical and collider based probes can be used to

put bounds on parameters of HNLs (Figure 1.1). Since the lifetime of an HNL is

inversely proportional to the square of the mixing angle, a smaller mixing angle

will lead to a longer lifetime, which means that such particles could be present at

times relevant for BBN processes. An addition of HNLs to the Universe affects

its cosmological expansion and the particle physics processes within compared to

the standard case. Therefore, BBN provides a suitable probe for HNLs and gives a

lower bound in the aforementioned parameter space.

Previous works [10–14, 17–19, 28] have studied the implications of HNLs on

primordial nucleosynthesis for masses up to a couple hundreds of MeV. These

results are then extrapolated to higher masses by assuming a certain maximum

lifetime of HNLs and using the relation between mass, lifetime and mixing angle.

In this way physical processes that may start to occur at higher masses are not

taken into account, making the current bounds not so reliable. This work will

review and revise the analysis of the effects of HNLs on BBN up to masses ∼100

MeV and will provide a framework to extend this analysis to higher masses.
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CHAPTER 1. INTRODUCTION

FIGURE 1.1: Current limits on the mixing between muon neutrino and
a single HNL up to mass of 500 GeV. The brown region labeled ‘Seesaw’
corresponds to a naive estimate of the mixing scale in the canonical seesaw.
The grey region labeled ‘BBN’ corresponds to an HNL lifetime >1 s, which
is disfavored by BBN. Figure from [6].

1.2 Overview

This work will be more of a review that highlights the relevant points in this topic,

rather than an extensive, repetitive study of what has come before. The interested

reader is referred to [9] for a more deep dive into the subject of BBN.

Before jumping right into the new physics part, it is important to understand

BBN within the framework of the Standard Model. Chapter 2 is dedicated to this.

Chapter 3 introduces HNLs to the system and elaborates on some of their relevant

properties. A brief description of the code that is used for simulating BBN together

with some results are given in Chapter 4. The results are discussed in Chapter 5.

Some technicalities will be expanded upon in the appendices.
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2
THE STANDARD CASE

The origin of primordial elements goes back to the early Universe. When going

backwards in time, the Universe can be considered as a shrinking volume with

increasing temperature. Naively, once this temperature exceeds the binding energy

of a particle, be it element or hadron, it will be destroyed into its constituents. At

some temperature one therefore expects a plasma of elementary particles that is

in thermodynamic equilibrium. Now, going forward from this point in time, the

Universe will be expanding and cooling down. This is the starting point of this

chapter.

2.1 Defining the system

The main system is a plasma in an expanding universe. This system can be divided

into two subsystems, based on the following processes:

• Cosmology & particle physics (denoted as background physics)

• Nuclear physics

Due to the smallness of the baryon-to-photon ratio, ηB ∼ 10−10 [9], the influence of

the second subsystem on the first one can be neglected; but not vice versa.

3



CHAPTER 2. THE STANDARD CASE

2.1.1 The background

At temperatures below QCD-scale, T <ΛQCD ∼ 150 MeV [1], the dominant compo-

nents of the background plasma are photons, charged leptons and active neutrinos,

with here and there some traces of neutrons and protons. The expansion is gov-

erned by the energy density of the plasma and is described by the Friedmann

equation

H2 ≡
(

ȧ
a

)2
= 8πG

3
ρ , (2.1)

with H the Hubble parameter, a the scale factor and ρ the energy density.

In the case of radiation domination, this equation can be written as

H = 1.66
p

g?
Mpl

T2 , (2.2)

with g? the effective number of relativistic degrees of freedom and Mpl the Planck

mass.

The background is assumed to be homogeneous and isotropic. The energy density

ρ together with the total pressure P then satisfy the energy conservation law

dρ
dt

+3H(ρ+P)= 0 . (2.3)

While the Universe is expanding and cooling down, some species can get out of

equilibrium (also known as decoupling). This happens at a temperature defined

when the inequality

Γ(T) < H(T) (2.4)

starts to hold. Here Γ(T) is the rate of the reaction that keeps the particle in

equilibrium. Relevant events during cooldown are [22]:

1.5 MeV

ν decoupling

0.8 MeV

n decoupling

0.5 MeV

e± annihilation

T

• Active neutrino thermal decoupling at T ≈ 1.5 MeV.

4



2.1. DEFINING THE SYSTEM

• Baryon chemical decoupling at T ≈ 0.8 MeV. This value is estimated by

considering the reactions

n ↔ p+ e−+ ν̄e (2.5)

n+νe ↔ p+ e− (2.6)

n+ e+ ↔ p+ ν̄e (2.7)

• Electron-positron annihilation at T ≈ 0.5 MeV.

Temperatures higher than ΛQCD are not considered in the SM, since before neu-

trino decoupling the plasma is in equilibrium and nothing of importance for BBN

happens.

2.1.2 Nuclei

Once neutrons decouple around T ≈ 0.8 MeV, they will decay according to Eq. 2.5.

This will go on until production of deuterium starts through the reaction

n+ p ↔ D+γ (2.8)

Due to the small baryon-to-photon ratio, the production of deuterium will not

start at temperatures close to its binding energy ∆D ≈ 2.2 MeV. Indeed, at such

temperatures there are many photons with energies higher than ∆D , which will

destroy the deuterium nuclei immediately after they are created. This is also

known as the deuterium bottleneck. Production of deuterium will become effective

at temperatures much lower:

nbaryons = ηBnγ = nγ(E >∆D) (2.9)

Solving this equation gives an estimate for the temperature of start of BBN,

TBBN ≈ 70 keV.

Once deuterium is formed, a series of nuclear reactions will lead to production of

mainly 4He. Heavier nuclei are produced in much smaller abundances, because

• there are no stable elements with mass number 5 and 8.

5



CHAPTER 2. THE STANDARD CASE

• the lack of sufficient densities of lighter nuclei diminishes the rates of nuclear

reactions that produce heavier nuclei. Such processes are on the verge of

decoupling around BBN temperatures.

• the Coulomb barrier causes electrostatic repulsion.

The last point is the main reason for decoupling of reactions involving heavier

nuclei. Therefore, 4He will be the most abundant element created during BBN,

with here and there traces of heavier elements [9].

Following the previous discussion, the observables of BBN are abundances of

light elements. In the Standard Model the only free parameter is the baryon-to-

photon ratio ηB [9]. Thus, measuring this quantity (by abundance measurements

or CMB measurements) leads to predictions of all primordial element abundances.

The most relevant abundance is that of 4He, which can be described by the mass

fraction Y4He =
2 nn

np

∣∣
TBBN

1+ nn
np

∣∣
TBBN

. This quantity is determined by:

• Neutron-to-proton ratio nn
np

at time of neutron decoupling. Using equilibrium

physics:

nn

np

∣∣∣∣
Tndec

= (mnTndec)3/2e−mn/Tndec

(mpTndec)3/2e−mp/Tndec
≈ e−(mn−mp)/Tndec (2.10)

Tndec can be determined by equating the weak reaction rate in Fermi theory,

Γ∼G2
FT5, to the Hubble rate in Equation 2.2, which gives

Tndec ≈ 0.8 MeV⇒ nn

np
(Tndec)≈ 0.16

• Time ∆t between neutron decoupling and start of deuterium production.

During this period neutrons will decay with mean lifetime τ:

nn

np

∣∣∣∣
TBBN

≈
(

nn
np

(Tndec)
)

e−∆t/τ

1+ nn
np

(Tndec)
[
1− e−∆t/τ

] (2.11)

∆t can be obtained from Equation 2.2, which gives ∆t ≈ 150 s. Plugging this

in the equation above gives nn
np

(TBBN)≈ 0.13 and therefore Y4He ≈ 0.23.

6



2.2. REGIMES OF PARTICLES

Important quantities to keep in mind when studying BSM physics are therefore:

• Neutron-to-proton ratio at time of neutron decoupling.

• Hubble parameter H.

Chapter 4 will elaborate a little more on computations involving nuclei.

2.2 Regimes of particles

It is useful to categorize particles in the plasma in the following way:

• Massless & in-equilibrium (photons)

• Massive & in-equilibrium (charged leptons)

• Massless & out-of-equilibrium (active neutrinos)

• Massive & out-of-equilibrium (protons, neutrons and nuclei)

The first two groups of particles can be treated using equilibrium expressions.

Using equilibrium physics for particles in the latter two groups gives incorrect

abundances of heavy elements [20]. Instead, distributions of particles in the latter

two groups are prone to distortions due to interactions around decoupling. These

particles must therefore be treated properly within the framework of the Boltzmann

equation.

2.3 Boltzmann equations in the SM

For the time being, only active neutrinos will be considered here. The baryons and

nuclei will be dealt with in Chapter 4. Throughout this work no lepton asymmetry

is assumed. At temperatures higher than the neutrino decoupling temperature,

neutrinos will have a Fermi-Dirac distribution. At lower temperatures, a set of

three Boltzmann equations must be solved [25]:

d fνα
dt

= H
d fνα
dlna

=∑
β

IαPβα , (2.12)

7



CHAPTER 2. THE STANDARD CASE

with α,β ∈ {e,µ,τ}, Pβα time averaged transition probabilities and Iα the collision

term, which encodes the details of interactions. The terms Pβα account for neutrino

oscillations; more details and expressions are given in Appendix D. The collision

term Iα for particle να in the reaction

να+2+3+ ...+K ⇐⇒ (K +1)+ (K +2)+ ...+Q

has the general form [20]

Iα = 1
2gαEα

∑
in,out

∫ Q∏
i=2

d3 pi

(2π)32E i
S|M |2F[ f ](2π)4δ4(Pin −Pout) , (2.13)

with gα the degrees of freedom of να, ‘in’ the initial states {να,2, ...,K}, ‘out’ the

final states {(K +1), (K +2), ...,Q}, S the symmetry factor, |M |2 the unaveraged,

squared matrix element summed over helicities of initial and final states and F[ f ]

the functional describing the particle population of the medium, given by

F[ f ]= (1± fνα)...(1± fK ) fK+1... fQ − fνα ... fK (1± fK+1)...(1± fQ) . (2.14)

Here (1− f ) is the Pauli blocking factor used for fermions and (1+ f ) the Bose

enhancement factor used for bosons. The sum in Eq. 2.13 runs over all possible

initial and final states involving να.

2.4 Relevant interactions in the SM

All relevant reactions with active neutrinos should be considered:

• Neutrino pair annihilation into neutrino pair and neutrino-neutrino scatter-

ing: ν+ν⇔ ν+ν and ν+ν⇔ ν+ν

• Neutrino-charged lepton scattering: ν+`± ⇔ ν+`±

• Neutrino pair annihilation into charged lepton pair and vice versa:

ν+ν⇔ `±+`∓

All these reactions happen through charged current and neutral current weak

interactions. Leading order diagrams at tree-level are given in Figure 2.1.

8



2.4. RELEVANT INTERACTIONS IN THE SM

FIGURE 2.1: Leading order diagrams contributing to the collision integral
in the Boltzmann equation for active neutrinos.

The squared matrix element in Fermi theory is of the following form for all reactions

considered:

|M |2 = ∑
i 6= j 6=k 6=l

[
K1(pi · p j)(pk · pl)+K2mim j(pk · pl)

]
, (2.15)

with K1, K2 constants. Expressions for |M |2 of all relevant SM interactions involv-

ing active neutrinos are given in Table A.1. Since the baryon-to-photon ratio is very

small, the assumption is made that Eqs. 2.5 - 2.7 do not alter the electron-neutrino

distribution and are therefore neglected in the collision integral.

2.4.1 Four-particle collision integral

In the case of four-particle interactions, like

να+2⇔ 3+4

and similar crossing processes, the nine-dimensional collision integral can be

reduced to a two-dimensional one. Using Eq. 2.15 in 2.13, the collision integral for

a single reaction will be of the form

Iα,single =
1

64π3 gαEαpα

∫
dp2dp3

p2 p3

E2E3
SF[ f ]D(pνα , p2, p3, p4)θ(E4 −m4) , (2.16)

where the D-function is a conditional polynomial function of the four momenta

pνα , p2, p3 and p4. The total collision term is then given by the sum of Iα,single for

each reaction. The derivation of this equation is given in Appendix B.

9



CHAPTER 2. THE STANDARD CASE

2.5 Temperature evolution

The conservation of energy equation 2.3 can be used to derive an equation for the

temperature evolution of the plasma. Using ρ = ρeq+ρnoneq (energy densities of par-

ticles in (non-)equilibrium) in Eq. 2.3 together with the fact that the temperature

of the plasma is only defined for particles in equilibrium gives(dρeq

dT
dT
dt

+ dρnoneq

dt

)
=−3H

(
ρ+P

)
dT
dt

=−3H(ρ+P)+ dρnoneq
dt

dρeq
dT

. (2.17)

Expressions for ρeq and ρnoneq can be substituted in this equation to obtain an

explicit formula for the temperature evolution. This is done in Appendix C.

2.6 System of equations

There are five equations that describe the primordial plasma and which have to be

solved:

• Three Boltzmann equations for active neutrinos

• Friedmann equation

• Temperature evolution equation

These equations contain five unknowns - three active neutrino distribution func-

tions fνα(t, p), scale factor a(t) and temperature T(t). Neutrinos and anti-neutrinos

participate in similar reactions (charge conjugated channels for anti-neutrinos)

and, since no lepton asymmetry is assumed, distribution functions of both are the

same. Same principle holds for all other leptons. Initial distributions are taken

as equilibrium distributions at time of decoupling. This system of equations is

therefore closed and can be solved numerically.

10
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3
INTRODUCING HEAVY NEUTRAL LEPTONS

Over the last few years a plethora of extensions to the SM have been proposed

to solve the yet unexplained observations of dark matter, baryon asymmetry of

the Universe and neutrino masses. One of those ambitious extensions that aims

to take down all of these problems at once is the νMSM. Introduced in [2, 3],

this model adds three Heavy Neutral Leptons (HNLs) to the SM, making them

the right-handed counterparts of active neutrinos. This chapter will explore the

possibilities that BBN offers in constraining some of the parameters in this model.

3.1 The type I seesaw Lagrangian

The most general renormalizable Lagrangian that includes three right-handed

neutrinos to the SM Lagrangian has the form [7]

L =LSM + iN I∂µγ
µNI −

(
FαILαφ̃NI + MI

2
N c I NI +h.c.

)
, (3.1)

with I = {1,2,3}, α = {e,µ,τ}, NI right-handed neutrinos (also known as HNLs

or sterile neutrinos), FαI Yukawa couplings, MI HNL Majorana masses, Lα the

SM lepton doublet and φ̃≡ iσ2φ
∗ the conjugated Higgs doublet. Without loss of

generality, the Majorana mass matrix can be chosen diagonal.

After electroweak symmetry breaking, the Dirac mass matrix can be defined as

(MD)αI = 〈φ〉FαI = vp
2
FαI , with v = 246 GeV.

11



CHAPTER 3. INTRODUCING HEAVY NEUTRAL LEPTONS

The mass terms can then be rewritten as

Lmass =−1
2

(
ν N c

)(
0 MD

MT
D MI

)(
νc

N

)
+h.c. , (3.2)

where N = (N1 N2 N3)T , ν= (
νe νµ ντ

)T and c indicates charge conjugation. Block-

diagonalizing the mass matrix and assuming MD << MI yields the type 1 seesaw

formula

(Mν)αβ =−∑
I

(MD)αI M−1
I (MT

D)Iβ , (3.3)

where Mν is the 3×3 active neutrino mass matrix, which can be diagonalized by a

unitary transformation with the PMNS-matrix VPMNS. Defining the mixing angle

matrix as

θαI ≡ (MD)αI M−1
I , (3.4)

the charge eigenstates ν and N in Eq. 3.2 can be written in terms of the mass

eigenstates νm and Nm of the matrix diag(V T
PMNSMνVPMNS, MI ) up to leading order

in θ:

ν=VPMNSνm +θN c
m (3.5)

N = Nm −θ†VPMNSν
c
m . (3.6)

The light mass eigenstates νm almost correspond to active neutrinos, while the

heavy mass eigenstates Nm almost correspond to sterile neutrinos. The expression

for ν can then be substituted in the weak interaction part of the SM Lagrangian,

which gives the interaction of HNLs with SM particles:

LHNL,int =− g
4cosθW

Zµ

∑
I

∑
α

(N c
m)Iθ

∗
Iαγ

µ(1−γ5)να

− g
2
p

2
W+
µ

∑
I

∑
α

(N c
m)Iθ

∗
Iαγ

µ(1−γ5)`−α+h.c. (3.7)

Therefore, HNLs couple to SM fields in a similar way as active neutrinos, but with

an additional mixing angle that suppresses the interaction.

3.2 Properties of HNLs

For notational clarity, (Nm)I is written as NI , while keeping in mind that the latter

is almost a charge eigenstate.

12



3.2. PROPERTIES OF HNLS

3.2.1 Roles of the individual HNLs

Among the three HNLs, N1 serves as a dark matter candidate, which means it

must be light, stable and very weakly interacting. In this scenario, the Yukawa

coupling constants Fα1 in Eq. 3.1 are required to be very small. As a result, this

particle gives a negligible contribution to the active neutrino mass matrix (Eq. 3.3)

as well as the baryon asymmetry of the Universe [7]. Therefore, only N2 and N3

are responsible for these two phenomena and N1 will be neglected from this point

forward. In order to achieve successful baryogenesis, the masses of N2 and N3 are

required to be close to degenerate.

3.2.2 Dirac spinor from two Majorana spinors

For the sake of convenience, both N2 and N3 are assumed to have the same mass

MN and same set of mixing angles {θe,θµ,θτ}. Since both spinors are two-component

Majorana spinors, it is possible to combine them into one Dirac spinor with four

degrees of freedom. The HNL mass terms are approximately given by

LHNL,mass ≈−1
2

MN

(
N c

2 N2 +N c
3 N3 +h.c.

)
. (3.8)

Constructing two Majorana spinors χ and ξ out of N2 and N3,

χ= N c
2 +N2 (3.9)

ξ= N c
3 +N3 , (3.10)

and substituting this in Eq. 3.8 gives

LHNL,mass =−1
2

MN

(
χχ+ξξ

)
. (3.11)

Define the Dirac spinor as

ND = 1p
2

(
χ+ iξ

)
(3.12)

N c
D = 1p

2

(
χ− iξ

)
(3.13)

and Eq. 3.11 becomes

LHNL,mass =−1
2

MN

(
NDND +N c

DN c
D

)
=−MN NDND . (3.14)

Therefore, from this point on, a Dirac particle (and its charge conjugate) with two

degrees of freedom, mass MN and three mixing angles θα will be considered.

13



CHAPTER 3. INTRODUCING HEAVY NEUTRAL LEPTONS

3.2.3 Shortcut for calculation matrix elements of HNLs

Expressions for N c
I in terms of ND and N c

D,

N2 +N c
2 = 1p

2

(
ND +N c

D
)

(3.15)

N3 +N c
3 = 1

i
p

2

(
ND −N c

D
)

, (3.16)

together with θ2α = θ3α = θα can be substituted in Eq. 3.7 to give

LHNL,int =− g
4cosθW

Zµ

∑
α

1p
2

(ND +N c
D − iND + iN c

D)θ∗αγ
µ(1−γ5)να

− g
2
p

2
W+
µ

∑
α

1p
2

(ND +N c
D − iND + iN c

D)Iθ
∗
αγ

µ(1−γ5)`−α+h.c.

=− g
4cosθW

Zµ

∑
α

(e−i π4 ND + ei π4 N c
D)θ∗αγ

µ(1−γ5)να

− g
2
p

2
W+
µ

∑
α

(e−i π4 ND + ei π4 N c
D)Iθ

∗
αγ

µ(1−γ5)`−α+h.c.

=− g
4cosθW

Zµ

∑
α

(ND +N c
D)θ∗αγ

µ(1−γ5)να

− g
2
p

2
W+
µ

∑
α

(ND +N c
D)Iθ

∗
αγ

µ(1−γ5)`−α+h.c. , (3.17)

where the e±i π4 are absorbed in the ND fields. It can be seen now that the charac-

teristics of the Majorana particles have not disappeared: particle and its charge

conjugate still interact in the same way. Since no lepton asymmetry is assumed,

both particle and its charge conjugate can be treated on an equal footing. Therefore,

it is enough to compute only one matrix element, which can be obtained by

|M |2N = |θα|2 |M |2ν (3.18)

The effect of the charge conjugated particle is then taken into account through the

degrees of freedom. As long as the Dirac particle has the same lifetime, mixing

pattern and spectrum as the Majorana particle, the two cases are equivalent.

3.2.4 Decoupling temperature

An initial condition must be provided when solving the Boltzmann equation. This

is chosen as the Fermi-Dirac distribution at a temperature little higher than HNL

decoupling temperature.
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3.2. PROPERTIES OF HNLS

A naive approach for determining the decoupling temperature is to equate the

weak interaction rate in Fermi theory in the ultra-relativistic limit to the Hubble

rate for a radiation dominated universe:
1.66

p
g∗

Mpl
T2 = θ2

M(T)G2
FT5 , (3.19)

where θM(T) is the effective mixing angle in a medium, which arises from a self-

energy term induced by interactions of active neutrinos with particles in the

medium. An explicit expression is given by [5, 7, 23]

θ2
M(T)= θ2(

1+ 2p
M2

N

(
16G2

F
αW

p
(
2+cos2θW

) 7πT4

360

))2
+θ2

, (3.20)

with θ the mixing angle in vacuum and αW the weak coupling constant. Plugging

θ2 = 10−6, g∗ = 20 and p ∼ πT in Eq. 3.19 yields a decoupling temperature of

Tdec ∼ 160 MeV for MN ∼ 100 MeV. For higher masses or larger mixing angles this

approach becomes less credible, because at some point the HNLs will decouple

non-relativistically.

More sophisticated approaches have been developed in [15, 16, 27] and found

decoupling temperatures of O (1) GeV for masses 0.5 ≤ MN ≤ 1 GeV. It has been

shown in [15] that HNLs with such masses will always enter equilibrium at

temperatures above T ∼ 5 GeV.

This work will use these results as a guide by looking at what temperatures the

distribution function will start to differ from the equilibrium one. This transition

point should give an estimation for the decoupling temperature.

3.2.5 Dependence of mixing angle on temperature

As can be seen in the previous subsection, the mixing angle θM depends on the

temperature of the medium. However, it can be shown that θM differs from θ as

[25]
θM −θ
θ

∼ GFT6

M2
WM2

N
∼ 10−11

(
T

100 MeV

)6 (
10 MeV

MN

)2
, (3.21)

which means that for temperatures relevant for BBN, T ∼ 1 MeV, and masses of

interest, up to MN ∼ 1 GeV, the mixing angle is not altered significantly in the

plasma and medium effects are negligible.
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CHAPTER 3. INTRODUCING HEAVY NEUTRAL LEPTONS

3.2.6 Contribution to energy density of the Universe

The inclusion of an HNL to the background described in subsection 2.1.1 has

consequences for its expansion. Assuming the HNL decouples non-relativistically,

its energy density at temperatures T < Tdec < TNR ∼ M is given by

ρN(T)∼ MN nN(Tdec)
(adec

a

)3 ∼ MN nN(Tdec)
g∗(T)T3

g∗(Tdec)T3
dec

∼ 4
(

MNTdec

2π

) 3
2

e−MN /Tdec
g∗(T)T3

g∗(Tdec)T3
dec

, (3.22)

where entropy conservation, g∗(T1)a3
1T3

1 = g∗(T2)a3
2T3

2 , is used. Equating this

density to the energy density of radiation gives

4
(

MNTdec

2π

) 3
2

e−MN /Tdec
g∗(T)T3

g∗(Tdec)T3
dec

= g∗(T)
π2

30
T4 =⇒ T ∼ 30 keV (3.23)

for MN ∼ 50 MeV, θ2 ∼ 10−4, Tdec ∼ 30 MeV and g∗(Tdec)∼ 10.

This means that the Universe will become matter dominated at the time nu-

clear reactions are taking place. Therefore, if the HNL has not decayed yet long

before this time, it could have a direct impact on the abundances of primordial

elements.

3.2.7 Contribution to temperature evolution

The HNL here belongs in the category ‘massive and out-of-equilibrium’ and will

only add a term to the numerator in Eq. 2.17. An interpretation of this term is

that interactions involving HNLs will lead to final particle states that have higher

energies than those in the plasma. Only final particle states that equilibrate with

the plasma will heat up the background. This means that, e.g., active neutrinos

coming from decay of HNLs will not contribute to the temperature evolution after

neutrino decoupling.
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3.3. RELEVANT INTERACTIONS OF HNLS

3.3 Relevant interactions of HNLs

All interactions of HNLs with SM particles are mediated by charged and neutral

currents. The higher the mass, the more channels will be available. All relevant

interactions together with the corresponding matrix elements for HNL masses up

to ∼ 1 GeV are summarized in A.2 and A.3.

Since HNLs can decouple at temperatures higher than ΛQCD ∼ 150 MeV, interac-

tions above and below this border must be distinguished.

3.3.1 Interactions above QCD-scale

At temperatures T >ΛQCD no bound states of quarks exist and only two types of

reactions should be considered:

• Interactions with active neutrinos and charged leptons.

• Interactions with free quarks. Here, only interactions with two quarks are

considered, since multiquark final states are suppressed by higher orders of

the coupling αs in perturbative QCD [8].

Contributing diagrams are of the following form:

FIGURE 3.1: Leading order diagrams contributing to the collision integral
in the Boltzmann equation for an HNL at temperatures T >ΛQCD.

3.3.2 Interactions below QCD-scale

At temperatures T <ΛQCD quarks are confined within bounds states. All reactions

in the previous section are four-particle interactions. In this case three- and four-

17



CHAPTER 3. INTRODUCING HEAVY NEUTRAL LEPTONS

particle interactions are considered:

• Interactions with active neutrinos and charged leptons like before.

• Interactions with a single meson in the final state. Only HNL decays are

considered here, since the creation of a meson h in the reaction N +v/`→ h
is only possible when MN < Mh. Moreover, at temperatures of O (1) MeV the

rate of this reaction is much smaller than the decay rate of HNLs. The only

contributing diagram is therefore:

FIGURE 3.2: Leading order diagram for three-particle reactions con-
tributing to the collision integral in the Boltzmann equation for an
HNL at temperatures T <ΛQCD.

The branching ratios of the relevant HNL decay channels are plotted in Figure 3.3.

FIGURE 3.3: The branching ratios of relevant HNL decay channels. Figure
from [6].
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Interactions with more than two mesons in the final state are not considered, except

for reactions with two pions in the final states, such as N → ν+π++π−. These reac-

tions are taken into account by resonance of ρ meson, i.e., N → ν+ρ0 → ν+π++π−.

It has been shown in [6] that the decay width of both two reactions coincide and,

therefore, decay into two pions happens predominantly via decay into ρ meson. The

decay channel to two pions is also open for 2mπ < MN < mρ, but this contribution

is negligible.

The contribution of decays into multi-meson final states to the full hadronic decay

width can be estimated by comparing the combined decay width of single-meson

final states with the full hadronic decay width. The full hadronic decay width can

be estimated by considering the total decay width into quarks. The result can be

seen in Figure 3.4. Multi-meson final states become important for masses MN > 1

GeV, while for masses smaller it is enough to consider only single-meson channels

as the hadronic decay modes.

FIGURE 3.4: HNL decay widths of channels with single meson final states
divided by the total decay width into quarks with QCD corrections (dashed
lines). The two blue lines are the sum of these ratios, where QCD correc-
tions were (solid line) and were not (dotted line) applied to the total decay
width into quarks when computing the ratios. Figure from [6].

19
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3.3.3 Interactions of unstable decay products with plasma

HNLs with masses MN < 105 MeV will decay into stable particles. HNLs with

higher masses will have decay products that are unstable. Some of these unstable

decay products will interact with the plasma before they decay. The analysis here

will be done for muons, but can be applied to all other particles as well.

There are three important events to consider:

1. µ± is created from HNL decay

The distribution function of these muons is a non-thermal distribution fnoneq.

2. µ± thermalizes

The muon-photon scattering rate is higher than the muon decay rate:

Γγµ ∼ α2

mµEγ
T3
γ ∼ 10−9 MeV vs. Γµ,decay ∼ 10−16 MeV. This means that the

muons will release their energy into the plasma and equilibrate before they

decay. This process increases the temperature of the plasma and makes the

muons non-relativistic. After thermalization the muons will share the same

temperature as the plasma and will have a thermal distribution

fthermal = e−
mµ−µ

T e−
p2

2mµT , where µ is determined by the condition that the

number density before and after thermalization must be equal. The collision

term corresponding to this process is then estimated as

Ithermalization ≈ fthermal − fnoneq

∆t
,

with ∆t the timestep of the simulation. The same procedure is followed for

charged pions and charged kaons.

3. µ± decays

The main decay channel of muons is µ− → e−+νe+νµ. The muon has a lifetime,

τµ ∼ 10−6 sec., that is much smaller than the timestep of the simulation. This

poses a problem right away: when the evolution of the distribution function

for the muon and active neutrinos is computed as ∆ f = Icoll∆t, the behaviour

of Icoll is not resolved. It is assumed to be constant during the whole timestep

∆t, which is not true; the created muons have already decayed well within

this timestep. What therefore happens is that the amount of muons that have

decayed and the amount of neutrinos that are created, are overestimated.
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This issue can be solved by using dynamical equilibrium. Consider the chain

HNL µ ν
+∆N −∆N

The timestep ∆t is much smaller than the lifetime of the HNL, which means

that there is approximately a constant inflow of muons during each timestep.

Since the amount of muons created ∆N decays almost instantaneously, the

same number of active neutrinos is created: for each muon that decays, one

electron neutrino and one muon neutrino is created. Now a scaling α can be

introduced in ∆ f = Icoll∆tα such that
∫

d3 p∆ f /(2π)3 =∆N.

3.4 Boltzmann equation for HNLs

In this model, one more equation must be added to the system of equations in

Section 2.6. At temperatures below the HNL decoupling temperature, the HNL

distribution function fN can be obtained by solving the Boltzmann equation
d fN

dt
= IN , (3.24)

with IN the collision term. Besides the four-particle collision integral in Eq. 2.16

there is also a three-particle collision integral.

3.4.1 Three-particle collision integral

In the case of a two-body decay

N → 2+3 , (3.25)

the six-dimensional collision integral in Eq. 2.13 can be reduced to a one-dimensional

integral. Since the matrix element for three-particle interactions does not depend

on the four-momenta of the particles, it has the simple form

IN,single =
πS|M |2

4gNEN pN

∫
dp2

p2

E2
F( f )X θ

(
(ẼN − Ẽ2)2 − x2

M2 m2
3

)
(3.26)

for each reaction taken into account. Here, X is given by

X = π

8
(−Sgn[p1 − p2 − p3]+Sgn[p1 + p2 − p3]+Sgn[p1 − p2 + p3]−1) , (3.27)

with Sgn the Signum function.
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3.5 Influence of HNLs on BBN

Subsection 2.1.2 listed the two main points that determine the course of BBN. If

HNLs decay before neutrino decoupling, the plasma will just re-equilibrate and

nothing will change. But if decay happens after neutrino decoupling, then HNLs

can influence BBN by

• their contribution to the cosmological energy density.

An increase in the energy density leads to a higher expansion rate according

to the Friedmann equation 2.1. The decoupling temperature of weak inter-

actions, determined by H = Γ ∼ T5
dec, will then be higher compared to the

standard case. Therefore, the nn
np
−ratio at time of neutron decoupling, Eq.

2.10, will be larger. This will lead to a larger helium mass fraction Y4He.

• their decay products.

HNL decay injects active neutrinos and electrons/positrons into the plasma

with energies that may be different from typical energies of plasma particles.

– Decay into νµ and ντ will increase the expansion rate with respect to the

standard case and this will therefore increase the nn
np
−ratio at neutron

decoupling and thus increase Y4He.

– Decay into νe has two effects: (I) it will increase the expansion rate

similarly to above and (II) it will preserve equilibrium between neutrons

and protons for a longer time, since they participate in the reactions

in Eqs. 2.5 - 2.7. The latter effect would make the nn
np
−ratio at neutron

decoupling smaller. Effect (II) is stronger than (I) [10] and the net effect

will be a decrease of Y4He.

– Decay into e± will inject more energy into electromagnetic part of the

plasma and heat it up, which increases the expansion rate and increases

Y4He.

The net effect is of course an interplay between all above mentioned effects, each

of which is influenced by the HNL mass and mixing pattern. BBN will therefore

provide a lower bound on the mixing angles or, equivalently, an upper bound on

the lifetime.
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4
RESULTS

This chapter will present results for neutrino decoupling spectra in the SM and

bounds on HNL lifetime as a function of its mass. The latter is done for HNL

masses up to MN = 100 MeV where mixing with only electron neutrino is turned

on. The bounds are obtained by comparing the 4He mass fraction obtained from

simulations with measurements done in [4].

4.1 Simulating BBN with PYBBN

The computational scheme of the code (PYBBN) used to do the simulations will be

briefly summarized here. An extensive user guide with schemes, approximations,

results and comparisons with literature will be available soon on the homepage1 of

the code.

Simulations are done in two steps: (I) The background physics and the rates

of the reactions in Eqs. 2.5 - 2.7 are computed in PYBBN. This involves solving the

system of equations in Section 2.6 for the evolution of temperature, scale factor

and distribution functions of decoupled species. (II) The cosmological quantities

1https://github.com/ckald/pyBBN
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CHAPTER 4. RESULTS

together with the aforementioned rates are tabulated and passed to an external

code, the modified KAWANO code [25], that takes care of the nuclear part of the

simulation and outputs the light element abundances.

The 4He abundance can then be compared with what is determined by [4] as

Y4He = 0.2452−0.2696 (2σ interval) (4.1)

4.2 Results for Standard Model BBN

The temperature evolution is the first interesting point to consider, since it will

show the heat up of the plasma due to electron-positron annihilation. The result is

shown in Figure 4.1.

FIGURE 4.1: The photon temperature divided by active neutrino tem-
perature. The increase here is due to electron-positron annihilation into
photons. Dashed curve is from [25].

The theoretical value is obtained by using entropy conservation:

Tγ

Tν
= aTγ

aTν
=

(
g∗(Tbefore)
g∗(Tafter)

) 1
3 =

( 7
8 ·4+2

2

) 1
3

≈ 1.401 (4.2)
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The next step is to compare the active neutrino spectra at the end of electron-

positron annihilation with their equilibrium distribution at high temperature. The

result is shown in Figure 4.2.

FIGURE 4.2: Ratio of active neutrino decoupled spectra to their equilibrium
distribution before the onset of BBN. The upper curves show the distortion
of the electron neutrino spectrum and the lower of muon and tau neutrinos.
Neutrino flavour oscillations are not taken into account here. Dashed
curves are from [25], dotted from [21].

In Fermi theory the cross section increases with momentum as σ∝G2
F p2, which

means that neutrinos with higher momenta stay longer in equilibrium. Since these

neutrinos decouple later, they will briefly experience the heat-up of the plasma

due to electron-positron annihilation, shown in Figure 4.1, and the corresponding

increase in aT. Their equilibrium distribution function, given by

fν = 1

e
p
T +1

= 1

e
y

aT +1
,

increases then accordingly.

At temperatures of O (1) MeV electron neutrinos interact through both charged

and neutral current, while muon and tau neutrinos only interact through neutral

current. The temperature is too low for muons and tau leptons to be present in the
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plasma or to be created from muon and tau neutrinos. The cross section of electron

neutrinos is therefore larger and they stay longer in equilibrium.

When the relevant cosmological quantities are passed to the modified KAWANO

code, a value of Y4He = 0.24793 is obtained; in agreement with the result in Eq. 4.1.

4.3 Results for νMSM

Results are shown here for HNLs with masses up to 100 MeV that mix with

electron neutrino only. There are four channels through which the HNL can decay,

N → νe +νe +νe N → νe +νµ+νµ
N → νe +ντ+ντ N → νe + e++ e− ,

and from which the lifetime can be computed as

τN =Γ−1
N = 192π3

G2
F |θe|2 M5

N

(1
4

(
1+4sin2θW +8sin4θW

)+1
) (4.3)

This equation is used to obtain the plot in Figure 4.3.

FIGURE 4.3: Bounds on the lifetime of HNLs that mix only with electron
neutrino. The 4He abundance in Eq. 4.1 is used to obtain a bound on the
mixing angle, which is then converted to a lifetime constraint by Eq. 4.3.
Dashed curve is from [25], dotted from [11].
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5
DISCUSSION AND PROSPECTS

The results in Figures 4.1, 4.2 and 4.3 are all consistent with the literature. A

number of deviations have been found between the code used in this work and the

code of [25], but these do not affect the bounds significantly. All these deviations

will be included in the user guide of pyBBN.

The bounds obtained in this work are for HNLs that mix only with electron

neutrinos. In general, the mixing pattern can be random. However, it turns out that

for masses MN up to ∼ 105 MeV the mixing pattern is not very important, as can

be seen in Figures 4, 5 and 6 of [25]. Mixing with muon neutrino only changes the

lifetime bound subtly. Once neutrino oscillations are included, the mixing pattern

becomes even less important. Therefore, it is the amount of energy injected in the

plasma that is more relevant, which depends on the lifetime and mass of the HNL.

For higher masses the contribution of HNLs to the expansion rate will probably

be an increasingly important factor, since they will dominate the energy density

at some point if they have not decayed yet. It is unknown at the moment what

holds for masses exceeding 105 MeV, because the decay products themselves will

be unstable. For high masses one can therefore expect a shower of decay products,

each of which will influence the course of BBN in its own way.

The next step is therefore to apply the machinery discussed in Chapter 3 to HNLs

with masses exceeding the muon mass. For masses higher than 1 GeV, the process

of hadronization and its inclusion in pyBBN will be the most important procedures

to deal with, both of which are as of yet unexplored.
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RELEVANT MATRIX ELEMENTS

The matrix elements listed here are not averaged over any helicities. Subsection

A.1 contains the reactions involving SM particles only, Subsection A.2 the reactions

involving HNLs above QCD-scale and Subsection A.3 the reactions involving HNLs

below QCD-scale. HNL decay channels with a branching ratio of at least 1% for

some mass below ∼1 GeV are considered in this work (see Figure A.1). The results

for HNLs do not take into account charge conjugated channels, which are possible

if they are Majorana particles.

The explicit determination of matrix elements involving multiple mesons can

be extremely challenging. Therefore, an approximation has been used by assuming

the matrix element to be constant and using the definition of decay width,

Γ= 1
2gM

∫ (∏
i

d3 yi

(2π)32E i

)
|M |2(2π)4δ4(P −∑

i
Pi) ,

together with its measured value (from e.g. [24]) to solve for |M |2. For three-particle

reactions this method gives the exact matrix element.

The values of the meson decay constants used in Subsection A.3 are from [6]

and summarized below.

fπ0 fπ± fη fρ0 fρ± fω fη′ fφ
130.2 130.2 81.7 208.9 208.9 195.5 -94.7 229.5 MeV
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FIGURE A.1: List of HNL decay channels with branching ratios more than
1% for some HNL mass below ∼ 1 GeV. The left border indicates the HNL
mass where the branching ratio exceeds 1%, the right border when it falls
below the 1 % threshold. In this plot a model was assumed where all three
mixing angles are equal to each other.
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A.1. MATRIX ELEMENTS IN THE SM

A.1 Matrix elements in the SM

A.1.1 Four-particle processes with leptons

Process (1+2→ 3+4) S SG2
Fa−4 |M |2

να+νβ→ να+νβ 1 32(Y1 ·Y2) (Y3 ·Y4)

να+νβ→ να+νβ 1 32(Y1 ·Y4) (Y2 ·Y3)

να+να→ να+να 1
2 64(Y1 ·Y2) (Y3 ·Y4)

να+να→ να+να 1 128(Y1 ·Y4) (Y2 ·Y3)

να+να→ νβ+νβ 1 32(Y1 ·Y4) (Y3 ·Y2)

νe +νe → e++ e− 1 128
[
g2

L (Y1 ·Y3) (Y2 ·Y4)+ g2
R (Y1 ·Y4) (Y2 ·Y3)

+gL gRa2m2
e (Y1 ·Y2)

]
νe + e− → νe + e− 1 128

[
g2

L (Y1 ·Y2) (Y3 ·Y4)+ g2
R (Y1 ·Y4) (Y3 ·Y2)

−gL gRa2m2
e (Y1 ·Y3)

]
νe + e+ → νe + e+ 1 128

[
g2

L (Y1 ·Y4) (Y3 ·Y2)+ g2
R (Y1 ·Y2) (Y3 ·Y4)

−gL gRa2m2
e (Y1 ·Y3)

]
νµ/τ+νµ/τ→ e++ e− 1 128

[
g̃L

2 (Y1 ·Y3) (Y2 ·Y4)+ g2
R (Y1 ·Y4) (Y2 ·Y3)

+ g̃L gRa2m2
e (Y1 ·Y2)

]
νµ/τ+ e− → νµ/τ+ e− 1 128

[
g̃L

2 (Y1 ·Y2) (Y3 ·Y4)+ g2
R (Y1 ·Y4) (Y3 ·Y2)

− g̃L gRa2m2
e (Y1 ·Y3)

]
νµ/τ+ e+ → νµ/τ+ e+ 1 128

[
g̃L

2 (Y1 ·Y4) (Y3 ·Y2)+ g2
R (Y1 ·Y2) (Y3 ·Y4)

− g̃L gRa2m2
e (Y1 ·Y3)

]
TABLE A.1: Squared matrix elements for weak processes involving active
neutrinos and electrons/positrons. S is the symmetry factor and α,β ∈
{e,µ,τ}, where α 6=β. Here: gR = sin2θW, gL = 1/2+sin2θW and g̃L =−1/2+
sin2θW, with θW the Weinberg angle.
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A.1.2 Three-particle and four-particle meson decays

Process (1→ 2+3) S |M |2

π0 → γ+γ 1 α2
emm4

π

[
2π2 f 2

π

]−1

π+ →µ++νµ 1 2G2
F |Vud|2 f 2

πm4
µ

[
m2
π

m2
µ
−1

]
TABLE A.2: Squared matrix elements for pion decays.

Process (1→ 2+3+4) |M |2

K+ →π0 + e++νe 1.42906 ·10−13

K+ →π++π−+π+ 1.85537 ·10−12

K0
L →π±+ e∓+νe 2.80345 ·10−13

K0
L →π±+µ∓+νµ 3.03627 ·10−13

K0
L →π0 +π0 +π0 1.05573 ·10−12

K0
L →π++π−+π0 8.26989 ·10−13

η→π0 +π0 +π0 8.70984 ·10−2

η→π++π−+π0 6.90629 ·10−2

η→π++π−+γ 4.66530 ·10−3

ω→π++π−+π0 1.14569 ·103

η′ →π++π−+η 4.38880 ·101

η′ →π0 +π0 +η 2.00986 ·101

Process (1→ 2+3) |M |2 [MeV2]

K+ →π++π0 3.28177 ·10−10

K+ →µ++νµ 8.78918 ·10−10

K0
S →π++π− 1.53713 ·10−7

K0
S →π0 +π0 6.71800 ·10−8

η→ γ+γ 1.42174 ·101

ρ0 →π++π− 1.86839 ·107

ρ+ →π++π0 1.86390 ·107

ω→π0 +γ 8.55086 ·104

η′ → ρ0 +γ 8.04463 ·103

φ→ K++K− 1.28798 ·106

φ→ K0
L +K0

S 1.03471 ·106

φ→ ρ0 +π0 2.86706 ·105

TABLE A.3: Squared matrix elements for meson decays, where the constant
matrix element approximation is used. For Majorana particles that can
also decay through the charge conjugated channel, the factor of 2 in the
decay width is already taken into account here.
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A.2 Matrix elements for HNLs above ΛQCD

A.2.1 Four-particle processes with leptons only

Process (1+2→ 3+4) S SG−2
F a−4 |M |2

N +νβ→ να+νβ 1 32 |θα|2 (Y1 ·Y2) (Y3 ·Y4)

N +νβ→ να+νβ 1 32 |θα|2 (Y1 ·Y4) (Y2 ·Y3)

N +να→ να+να 1
2 64 |θα|2 (Y1 ·Y2) (Y3 ·Y4)

N +να→ να+να 1 128 |θα|2 (Y1 ·Y4) (Y2 ·Y3)

N +να→ νβ+νβ 1 32 |θα|2 (Y1 ·Y4) (Y3 ·Y2)

N +νe → e++ e− 1 128 |θe|2
[
g2

L (Y1 ·Y3) (Y2 ·Y4)+ g2
R (Y1 ·Y4) (Y2 ·Y3)

+gL gRa2m2
e (Y1 ·Y2)

]
N + e− → νe + e− 1 128 |θe|2

[
g2

L (Y1 ·Y2) (Y3 ·Y4)+ g2
R (Y1 ·Y4) (Y3 ·Y2)

−gL gRa2m2
e (Y1 ·Y3)

]
N + e+ → νe + e+ 1 128 |θe|2

[
g2

L (Y1 ·Y4) (Y3 ·Y2)+ g2
R (Y1 ·Y2) (Y3 ·Y4)

−gL gRa2m2
e (Y1 ·Y3)

]
N +νµ/τ→ e++ e− 1 128

∣∣θµ/τ
∣∣2 [

g̃L
2 (Y1 ·Y3) (Y2 ·Y4)+ g2

R (Y1 ·Y4) (Y2 ·Y3)

+ g̃L gRa2m2
e (Y1 ·Y2)

]
N + e− → νµ/τ+ e− 1 128

∣∣θµ/τ
∣∣2 [

g̃L
2 (Y1 ·Y2) (Y3 ·Y4)+ g2

R (Y1 ·Y4) (Y3 ·Y2)

− g̃L gRa2m2
e (Y1 ·Y3)

]
N + e+ → νµ/τ+ e+ 1 128

∣∣θµ/τ
∣∣2 [

g̃L
2 (Y1 ·Y4) (Y3 ·Y2)+ g2

R (Y1 ·Y2) (Y3 ·Y4)

− g̃L gRa2m2
e (Y1 ·Y3)

]
TABLE A.4: Squared matrix elements for weak processes involving HNLs
and leptons. S is the symmetry factor and α,β ∈ {e,µ,τ}, where α 6= β.
Here: gR = sin2θW, gL = 1/2+sin2θW and g̃L =−1/2+sin2θW, with θW the
Weinberg angle.
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Process (1+2→ 3+4) S SG−2
F a−4 |M |2

N +νµ→ e−+µ+ 1 128 |θe|2 (Y1 ·Y4) (Y2 ·Y3)

N +νe → e++µ− 1 128
∣∣θµ∣∣2 (Y1 ·Y3) (Y2 ·Y4)

N + e− → νe +µ− 1 128
∣∣θµ∣∣2 (Y1 ·Y2) (Y3 ·Y4)

N + e+ → νµ+µ+ 1 128 |θe|2 (Y1 ·Y4) (Y3 ·Y2)

N +νµ→µ++µ− 1 128
∣∣θµ∣∣2 [

g2
L (Y1 ·Y3) (Y2 ·Y4)+ g2

R (Y1 ·Y4) (Y2 ·Y3)

+gL gRa2m2
µ (Y1 ·Y2)

]
N +νe/τ→µ++µ− 1 128 |θe/τ|2

[
g̃L

2 (Y1 ·Y3) (Y2 ·Y4)+ g2
R (Y1 ·Y4) (Y2 ·Y3)

+ g̃L gRa2m2
µ (Y1 ·Y2)

]

Process (1→ 2+3+4) S SG−2
F a−4 |M |2

N → να+νβ+νβ 1 32 |θα|2 (Y1 ·Y4) (Y2 ·Y3)

N → να+να+να 1
2 64 |θα|2 (Y1 ·Y4) (Y2 ·Y3)

N → νe + e++ e− 1 128 |θe|2
[
g2

L (Y1 ·Y3) (Y2 ·Y4)+ g2
R (Y1 ·Y4) (Y2 ·Y3)

+gL gRa2m2
e (Y1 ·Y2)

]
N → νµ/τ+ e++ e− 1 128

∣∣θµ/τ
∣∣2 [

g̃L
2 (Y1 ·Y3) (Y2 ·Y4)+ g2

R (Y1 ·Y4) (Y2 ·Y3)

+ g̃L gRa2m2
e (Y1 ·Y2)

]
N → νµ+ e−+µ+ 1 128 |θe|2 (Y1 ·Y4) (Y2 ·Y3)

N → νe + e++µ− 1 128
∣∣θµ∣∣2 (Y1 ·Y3) (Y2 ·Y4)

N → νµ+µ++µ− 1 128
∣∣θµ∣∣2 [

g2
L (Y1 ·Y3) (Y2 ·Y4)+ g2

R (Y1 ·Y4) (Y2 ·Y3)

+gL gRa2m2
µ (Y1 ·Y2)

]
N → νe/τ+µ++µ− 1 128 |θe/τ|2

[
g̃L

2 (Y1 ·Y3) (Y2 ·Y4)+ g2
R (Y1 ·Y4) (Y2 ·Y3)

+ g̃L gRa2m2
µ (Y1 ·Y2)

]
TABLE A.5: Squared matrix elements for weak processes involving HNLs
and leptons. Note: low temperatures are assumed here. At high tempera-
tures, reactions such as N +µ− → e−+νµ are possible. The corresponding
matrix elements can be trivially deduced from the ones given above.
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A.2.2 Four-particle processes with leptons and quarks

Process (1+2→ 3+4) S SG−2
F a−4 |M |2

N +`+α →U +D 1 128 |θα|2 |Vud|2 (Y1 ·Y4) (Y2 ·Y3)

N +D → `−α+U 1 128 |θα|2 |Vud|2 (Y1 ·Y2) (Y3 ·Y4)

N +U → `−α+D 1 128 |θα|2 |Vud|2 (Y1 ·Y4) (Y3 ·Y2)

N +να→U +U 1 32
9 |θα|2

[
16g2

R (Y1 ·Y4) (Y2 ·Y3)

+ (3−4gR)2 (Y1 ·Y3) (Y2 ·Y4)

+4gRθW (4gR −3)a2m2
U (Y1 ·Y2)

]
N +U → να+U 1 32

9 |θα|2
[
16g2

R (Y1 ·Y4) (Y2 ·Y3)

+ (3−4gR)2 (Y1 ·Y2) (Y3 ·Y4)

−4gR (4gR −3)a2m2
U (Y1 ·Y3)

]
N +U → να+U 1 32

9 |θα|2
[
16g2

R (Y1 ·Y2) (Y3 ·Y4)

+ (3−4gR)2 (Y1 ·Y4) (Y3 ·Y2)

−4gR (4gR −3)a2m2
U (Y1 ·Y3)

]
N +να→ D+D 1 32

9 |θα|2
[
4g2

R (Y1 ·Y4) (Y2 ·Y3)

+ (3−2gR)2 (Y1 ·Y3) (Y2 ·Y4)

+2gR (2gR −3)a2m2
D (Y1 ·Y2)

]
N +D → να+D 1 32

9 |θα|2
[
4g2

R (Y1 ·Y4) (Y2 ·Y3)

+ (3−2gR)2 (Y1 ·Y2) (Y3 ·Y4)

−2gR (2gR −3)a2m2
D (Y1 ·Y3)

]
N +D → να+D 1 32

9 |θα|2
[
4g2

R (Y1 ·Y2) (Y3 ·Y4)

+ (3−2gR)2 (Y1 ·Y4) (Y3 ·Y2)

−2gR (2gR −3)a2m2
D (Y1 ·Y3)

]
TABLE A.6: Squared matrix elements for weak processes involving HNLs,
leptons and quarks. Here: U are up-type quarks, D down-type quarks and
gR = sin2θW.
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Process (1→ 2+3+4) S SG−2
F a−4 |M |2

N → `−α+U +D 1 128 |θα|2 |Vud|2 (Y1 ·Y4) (Y2 ·Y3)

N → να+U +U 1 32
9 |θα|2

[
16g2

R (Y1 ·Y4) (Y2 ·Y3)

+ (3−4gR)2 (Y1 ·Y3) (Y2 ·Y4)

+4gR (4gR −3)a2m2
U (Y1 ·Y2)

]
N → να+D+D 1 32

9 |θα|2
[
4g2

R (Y1 ·Y4) (Y2 ·Y3)

+ (3−2gR)2 (Y1 ·Y3) (Y2 ·Y4)

+2gR (2gR −3)a2m2
D (Y1 ·Y2)

]
A.3 Matrix elements for HNLs below ΛQCD

In addition to interactions with leptons, HNLs will also decay into mesons.

A.3.1 Three-particle processes with single mesons

Process (1→ 2+3 or 1+2→ 3) S SG−2
F M−4

N |M |2

N → να+π0 1 |θα|2 f 2
π

[
1− m2

π

M2
N

]
N → `∓α+π± 1 2 |θα|2 |Vud|2 f 2

π

[(
1− m2

`α

M2
N

)2
− m2

π

M2
N

(
1+ m2

`α

M2
N

)]
N → να+η 1 |θα|2 f 2

η

[
1− m2

η

M2
N

]
N → να+ρ0 1 |θα|2

(
1−2sin2θW

)2 f 2
ρ

[
1+2

m2
ρ

M2
N

][
1− m2

ρ

M2
N

]
N → `∓α+ρ± 1 2 |θα|2 |Vud|2 f 2

ρ

[(
1− m2

`α

M2
N

)2
+ m2

ρ

M2
N

(
1+ m2

`α

M2
N

)
−2

m4
ρ

M4
N

]
N → να+ω 1 |θα|2

(4
3 sin2θW

)2 f 2
ω

[
1+2 m2

ω

M2
N

][
1− m2

ω

M2
N

]
N → να+η′ 1 |θα|2 f 2

η′

[
1− m2

η′
M2

N

]
N → να+φ 1 |θα|2

(4
3 sin2θW −1

)2 f 2
φ

[
1+2

m2
φ

M2
N

][
1− m2

φ

M2
N

]
TABLE A.7: Squared matrix elements for HNL decays into mesons.
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COLLISION INTEGRALS

Consider the Boltzmann equation in comoving coordinates:

d f1

dt
= d f1

dlna
dlna

dt
= d f1

dlna
H = ∑

reactions
Icoll , (B.1)

with

Icoll =
a7−2Q

2gẼ1

∑
in,out

∫ (
Q∏

i=2

d3 yi

(2π)32Ẽ i

)
S|M |2F[ f ](2π)4δ4(Yin −Yout) (B.2)

The delta function can be rewritten as

δ4(Yin −Yout)= δ4(s1Y1 + s2Y2 + ...+ sQYQ) , (B.3)

with si = {−1,1} if particle i is on the {left, right}-hand side of the reaction. The

Yi = aPi here are the comoving four-momenta.

B.1 Three-particle collision integral

Icoll =
a

2Ẽ1

∫
d3 y2d3 y3

(2gπ)62Ẽ22Ẽ3
S|M |2F[ f ](2π)4δ4(s1Y1 + s2Y2 + s3Y3) (B.4)
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B.1.1 Case y1 6= 0

Since a homogeneous and isotropic universe is assumed, only absolute values of

momenta are relevant. Moreover, the matrix element in three particle interactions

is independent of the four-momenta.

Icoll =
S|M |2a

8(2π)2 gẼ1

∫ dy2dy3dΩ2dΩ3 y2
2 y2

3

Ẽ2Ẽ3
F[ f ]δ4(s1Y1 + s2Y2 + s3Y3) (B.5)

Using the identity

δ3(s1y1+ s2y2+ s3y3)= 1
(2π)3

∫
dλdΩλλ

2ei(s1y1+s2y2+s3y3)·λ (B.6)

gives

Icoll =
S|M |2a

8(2π)5 gẼ1

∫ dy2dy3 y2
2 y2

3

Ẽ2Ẽ3
F[ f ]δ(s1Ẽ1 + s2Ẽ2 + s3Ẽ3) ·

·
∫

dλλ2
∫

dΩλeis1 y1λcosθλ
∫

dΩ2eis1 y2λcosθ2

∫
dΩ3eis1 y3λcosθ3

= S|M |2a

8(2π)5 gẼ1

∫ dy2dy3 y2
2 y2

3

Ẽ2Ẽ3
F[ f ]δ(s1Ẽ1 + s2Ẽ2 + s3Ẽ3) ·

·
∫

dλλ2
(
4π

sin(y1λ)
y1λ

)(
4π

sin(y2λ)
y2λ

)(
4π

sin(y3λ)
y3λ

)
= S|M |2a

(2π)2 gẼ1 y1

∫
dy2dy3 y2 y3

Ẽ2Ẽ3
F[ f ]δ(s1Ẽ1 + s2Ẽ2 + s3Ẽ3) ·

·
∫

dλ
λ

sin(y1λ)sin(y2λ)sin(y3λ) (B.7)

Rewrite the delta function of energies as∫
dy3 y3

Ẽ3
δ(s1Ẽ1 + s2Ẽ2 + s3Ẽ3)=

∫
dy3

y3

Ẽ3

δ
(
y3 − y∗3

)
y∗3
Ẽ∗

3

θ
((

(s1Ẽ1 + s2Ẽ2
)
)2 −a2m2

3
)

=
∫

dy3
y3

Ẽ3

Ẽ∗
3

y∗3
δ(y3 − y∗3 ) θ

((
Ẽ∗

3

)2 −a2m2
3

)
, (B.8)

where
(
Ẽ∗

3

)2 = (
y∗3

)2 + x2

M2 m2
3 =

(
s1Ẽ1 + s2Ẽ2

)2
and y∗3 =

√
(s1Ẽ1 + s2Ẽ2)2 −a2m2

3.

Plugging Eq. (B.8) in Eq. (B.7) above:
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Icoll =
S|M |2a

(2π)2 gẼ1 y1

∫
dy2 y2

Ẽ2
F[ f ]

∫
dλ
λ

sin(y1λ)sin(y2λ)sin(y∗3λ)θ
((

Ẽ∗
3

)2 −a2m2
3

)
Now, the integral over λ is equal to

X = π

8
(−Sgn[y1 − y2 − y∗3 ]+Sgn[y1 + y2 − y∗3 ]+Sgn[y1 − y2 + y∗3 ]−1

)
, (B.9)

with Sgn the signum function and where y1 ≥ y2 ≥ y3 is assumed.

The final form is then

Icoll =
S|M |2a

(2π)2 gẼ1 y1

∫
dy2 y2

Ẽ2
X θ

((
s1Ẽ1 + s2Ẽ2

)2 −a2m2
3

)
(F[ f ])

∣∣∣
y3=y∗3

(B.10)

B.1.2 Case y1 = 0

Icoll =
S|M |2a

8(2π)2 gam1

∫
d3 y2d3 y3

Ẽ2Ẽ3
F[ f ]δ

(
s1am1 + s2Ẽ2 + s3Ẽ3

)
δ3 (s2y2+ s3y3)

= S|M |2
8(2π)2 gm1

∫
d3 y2F[ f ]δ

(
s1am1 + s2

√
y2

2 + (am2)2 + s3

√
y2

2 + (am3)2
)
·

·
(√

y2
2 + (am2)2

√
y2

2 + (am3)2
)−1

= S|M |2
8πgm1

∫
dy2 y2

2F[ f ]δ
(
y2 − y∗2

)∣∣∣∣∣∣∣
s2 y∗2√

(y∗2 )2 +a2m2
2

+ s3 y∗2√
(y∗2 )2 +a2m2

3

∣∣∣∣∣∣∣
−1

·

·
(√

y2
2 + (am2)2

√
y2

2 + (am3)2
)−1

θ
((

s1am1 + s2Ẽ2
)2 −a2m2

3

)
= S|M |2

8πgm1
y∗2

∣∣∣∣s2

√(
y∗2

)2 + (am3)2 + s3

√(
y∗2

)2 + (am2)2
∣∣∣∣−1

θ

((
Ẽ∗

3

)2 −a2m2
3

)
·

· (F[ f ])
∣∣∣
y1=0, y2=y∗2 , y3=−y∗2

= S|M |2
8πgm1

y∗2 |s1s2s3am1|−1θ

((
Ẽ∗

3

)2 −a2m2
3

)
(F[ f ])

∣∣∣
y1=0, y2=y∗2 , y3=−y∗2

= S|M |2
8πgm2

1

y∗2
a
θ

((
Ẽ∗

3

)2 −a2m2
3

)
(F[ f ])

∣∣∣
y1=0, y2=y∗2 , y3=−y∗2

, (B.11)

with
(
Ẽ∗

3

)2 = (
s1am1 + s2Ẽ2

)2
and y∗2 = a

√ (
m2

1−m2
2−m2

3
)2−4m2

2m2
3

4m2
1

.
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B.2 Four-particle collision integral

Icoll =
1

2gẼ1

1
a

∫ d3 y2d3 y3dy3
4

(2π)98Ẽ2Ẽ3Ẽ4
S|M |2F[ f ](2π)4δ4(s1Y1 + s2Y2 + s3Y3 + s4Y4)

(B.12)

As can be seen in Appendix A, |M |2 can be written as

|M |2 = 1
a4

∑
i 6= j 6=k 6=l

[
K1(Yi ·Y j)(Yk ·Yl)+K2a2mim j(Yk ·Yl)

]
(B.13)

A similar procedure as with the three-particle case is followed here.

B.2.1 Case y1 6= 0

Icoll =
S

16(2π)5 gẼ1a

∫ dy2dy3dy4 y2
2 y2

3 y2
4

Ẽ2Ẽ3Ẽ4
F[ f ]δ

(
s1Ẽ1 + s2Ẽ2 + s3Ẽ3 + s4Ẽ4

) ·

·
∫

dΩ2dΩ3dΩ4 |M |2 |δ3 (s1y1+ s2y2+ s3y3+ s4y4)

= S

64π3 gẼ1 y1a5

∫
dy2dy3dy4 y2 y3 y4

Ẽ2Ẽ3Ẽ4
F[ f ]δ

(
s1Ẽ1 + s2Ẽ2 + s3Ẽ3s4Ẽ4

) ·

·D(Y1,Y2,Y3,Y4) , (B.14)

with

D(Y1,Y2,Y3,Y4)= y1 y2 y3 y4

64π5

∫
dΩ2dΩ3dΩ4 |M |2 |δ3 (s1y1+ s2y2+ s3y3+ s4y4)

= y1 y2 y3 y4

64π5

∫
dλλ2

∫
dΩλeis1y1·λ

∫
dΩ2eis2y2·λ

∫
dΩ3eis3y3·λ ·

·
∫

dΩ4eis4y4·λ ∑
i 6= j 6=k 6=l

[
K1(Yi ·Y j)(Yk ·Yl)+K2a2mim j(Yk ·Yl)

]
= y1 y2 y3 y4

64π5

∑
i 6= j 6=k 6=l

∫
dλλ2

∫
dΩλeisi yiλcosθi

∫
dΩ j eis j yjλcosθ j ·

·
∫

dΩkeisk ykλcosθk

∫
dΩl eisl ylλcosθl

[
K1(Yi ·Y j)(Yk ·Yl) +

+ K2a2mim j(Yk ·Yl)
]

(B.15)

Working out the inner products

Yi ·Y j = Ẽ iẼ j −yi ·yj = Ẽ iẼ j − yi yj cosθi j

= Ẽ iẼ j − yi yj
(
cosθi cosθ j +cos(φi −φ j)sinθi sinθ j

)
, (B.16)
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where θi j is the angle between vectors yi and yj, and using that∫ π

0

∫ 2π

0
dθidφi eisi yiλcosθi sin2θi cos(φi −φ j)= 0 (B.17)

gives

D(Y1,Y2,Y3,Y4)= y1 y2 y3 y4

64π5

∑
i 6= j 6=k 6=l

∫
dλλ2

∫
dθidφi sinθi eisi yiλcosθi · (B.18)

·
∫

dθ jdφ j sinθ j eis j yjλcosθ j

∫
dθkdφk sinθkeisk ykλcosθk ·

·
∫

dθldφl sinθl eisl ylλcosθl
[
K1

(
Ẽ iẼ j − yi yj cosθi cosθ j

) ·

· (
ẼkẼ l − yk yl cosθk cosθl

)+K2a2mim j
(
ẼkẼ l − yk yl cosθk cosθl

)]
The integrals over the angles are given by∫ π

0

∫ 2π

0
dθdφsinθeisyλcosθ = 4π

sin(yλ)
yλ

(B.19)∫ π

0

∫ 2π

0
dθdφsinθ cosθeisyλcosθ = 4π

isyλ

[
cos(yλ)− sin(yλ)

yλ

]
(B.20)

(B.21)

and working out all the brackets gives

D(Y1,Y2,Y3,Y4)= ∑
i 6= j 6=k 6=l

[
K1

{
Ẽ1Ẽ2Ẽ3Ẽ4D1 (y1, y2, y3, y4)+ Ẽ iẼ jD2

(
yi, yj, yk, yl

) +

+ ẼkẼ lD2
(
yk, yl , yi, yj

)+D3 (y1, y2, y3, y4)
} +

+ K2a2mim j
{
ẼkẼ lD1 (y1, y2, y3, y4)+D2

(
yi, yj, yk, yl

)}]
, (B.22)

with

D1
(
yi, yj, yk, yl

)=4
π

∫
dλ
λ2 sin(yiλ)sin(yjλ)sin(ykλ)sin(ylλ) (B.23)

D2
(
yi, yj, yk, yl

)=sksl
4yk yl

π

∫
dλ
λ2 sin(yiλ)sin(yjλ)

[
cos(ykλ)− sin(ykλ)

ykλ

]
·

·
[
cos(ylλ)− sin(ylλ)

ylλ

]
(B.24)

D3
(
yi, yj, yk, yl

)=sis jsksl
4yi yj yk yl

π

∫
dλ
λ2

[
cos(yiλ)− sin(yiλ)

yiλ

][
cos(yjλ)− sin(yjλ)

yjλ

]
·

·
[
cos(ykλ)− sin(ykλ)

ykλ

][
cos(ylλ)− sin(ylλ)

ylλ

]
(B.25)
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All these three functions are symmetric under the exchange yi ↔ yj and yk ↔ yl ,

which then allows to take yi > yj and yk > yl . Integrating out λ gives the functions

in terms of polynomials for all possible cases (factors sksl and sis jsksl omitted):

• yi > yj + yk + yl or yk > yi + yj + yl :

D1 = D2 = D3 = 0

• yi + yj > yk + yl and yi + yl < yj + yk:

D1 =yl

D2 =1
3

y3
l

D3 = 1
30

y3
l

[
5

(
y2

i + y2
j + y2

k

)
− y2

l

]
• yi + yj > yk + yl and yi + yl > yj + yk:

D1 =1
2

(yj + yk + yl − yi)

D2 = 1
12

[
(yi − yj)

{
(yi − yj)2 −3

(
y2

k + y2
l
)}+2

(
y3

k + y3
l
)]

D3 = 1
60

[
y5

i − y5
j − y5

k − y5
l +5

(
−y3

i y2
j + y2

i y3
j − y3

i y2
k + y2

i y3
k

− y3
i y2

l + y2
i y3

l + y3
j y2

k + y2
j y3

k + y3
j y2

l + y2
j y3

l + y3
k y2

l + y2
k y3

l

)]
• yi + yj < yk + yl and yi + yl > yj + yk:

D1 =yj

D2 =1
6

yj

[
3

(
y2

k + y2
l − y2

i
)− y2

j

]
D3 = 1

30
y3

j

[
5

(
y2

i + y2
k + y2

l
)− y2

j

]
• yi + yj < yk + yl and yi + yl < yj + yk:

D1 =1
2

(yi + yj + yl − yk)

D2 =− 1
12

[
(yi + yj)

{
(yi + yj)2 −3

(
y2

k + y2
l
)}+2

(
y3

k − y3
l
)]

D3 = 1
60

[
y5

k − y5
i − y5

j − y5
l +5

(−y3
k y2

l + y2
k y3

l − y3
k y2

i + y2
k y3

i

− y3
k y2

j + y2
k y3

j + y3
l y2

i + y2
l y3

i + y3
l y2

j + y2
l y3

j + y3
i y2

j + y2
i y3

j

)]

44



B.2. FOUR-PARTICLE COLLISION INTEGRAL

Going back to the collision integral, the same trick as before can be applied to the

delta function of energies, which then gives:

Icoll =
S

64π3 gẼ1 y1a5

∫
dy2dy3

y2 y3

Ẽ2Ẽ3
D(Y1,Y2,Y3,Y4) ·

·θ
((

(s1Ẽ1 + s2Ẽ2 + s3Ẽ3
)2 −a2m2

4

)
(F[ f ])

∣∣∣
y4=y∗4

, (B.26)

with y∗4 =
√(

s1Ẽ1 + s2Ẽ2 + s3Ẽ3
)2 −a2m2

4.

B.2.2 Case y1 = 0

Icoll =
S

64π3 gam1

1
a5

∫
dy2dy3dy4 y2 y3 y4

Ẽ2Ẽ3Ẽ4
F[ f ]δ

(
s1am1 + s2Ẽ2 + s3Ẽ3 + s4Ẽ4

) ·

·B(Y1,Y2,Y3,Y4) , (B.27)

with

B(Y1,Y2,Y3,Y4)= y2 y3 y4

64π5

∫
dΩ2dΩ3dΩ4 |M |2 |δ3 (s2y2+ s3y3+ s4y4)

= y2 y3 y4

64π5

∫
dλλ2dΩλ

∫
dθ2dφ2 sinθ2eis2 y2λcosθ2 ·

·
∫

dθ3dφ3 sinθ3eis3 y3λcosθ3

∫
dθ4dφ4 sinθ4eis4 y4λcosθ4 ·

· ∑
i 6= j 6=k 6=l

[
K1

(
Ẽ iẼ j − yi yj cosθi cosθ j

) · (ẼkẼ l − yk yl cosθk cosθl
) +

+K2 a2mim j
(
ẼkẼ l − yk yl cosθk cosθl

)]
(B.28)

Consider the case that i = 1 in one of the terms of |M |2. Then the B−function can

be written as:

Bi=1(Y1,Y2,Y3,Y4)= y2 y3 y4

64π5 4π
∫

dλλ2 ∑
j 6=k 6=l

∫
dθ jdφ j sinθ j eis j yjλcosθ j ·

·
∫

dθkdφk sinθkeisk ykλcosθk

∫
dθldφl sinθl eisl ylλcosθl ·

· [
K1am1Ẽ j ·

(
ẼkẼ l − yk yl cosθk cosθl

) +
+K2 a2m1m j

(
ẼkẼ l − yk yl cosθk cosθl

)]
(B.29)
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Bi=1(Y1,Y2,Y3,Y4)= K1am1
∑

j 6=k 6=l

[
Ẽ jẼkẼ lB1

(
yj, yk, yl

)+ Ẽ jB2
(
yj, yk, yl

)]+
+K2am1

∑
j 6=k 6=l

am j
[
ẼkẼ lB1

(
yj, yk, yl

)+B2
(
yj, yk, yl

)]
, (B.30)

with B1
(
yj, yk, yl

)
given by Eq. (B.9) and

B2
(
yj, yk, yl

)= sksl
4yk yl

π

∫
dλ
λ

sin(yjλ)
[
cos(ykλ)− sin(ykλ)

ykλ

][
cos(ylλ)− sin(ylλ)

ylλ

]

=


1
2

[
y2

k + y2
l − y2

j

]
, yj + yk ≥ yl & yj + yl ≥ yk & yk + yl ≥ yj

0, otherwise
(B.31)

This procedure can be done for all the other terms in |M |2. If j = 1, the result is

the same, but with i ↔ j. Note that if k = 1 or l = 1, there is no B2-term in the part

with K2. The collision integral then becomes

Icoll =
S

64π3 gm1a6

∫
dy2dy3

y2 y3

Ẽ2Ẽ3
B(Y1,Y2,Y3,Y4) ·

·θ
((

(s1âm1 + s2Ẽ2 + s3Ẽ3
)2 −a2m2

4

)
(F[ f ])

∣∣∣
y4=y∗4

, (B.32)

with y∗4 =
√(

s1am1 + s2Ẽ2 + s3Ẽ3
)2 −a2m2

4.
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Consider a plasma in an expanding universe consisting of four particle species, one

out of each category in Section 2.2. For example, the four species here are photons,

electrons, active neutrinos and HNLs. The addition of other species (e.g. muons)

will then follow a similar procedure. In what follows: T̃ = aT, Ẽ = aE. The total

energy density and total pressure in comoving coordinates are given by

ρtot = ργ+ρe +ρν+ρN Ptot = Pγ+Pe +Pν+PN

ργ = gγ π
2

30
1
a4 T̃4 Pγ = 1

3ργ

ρe = ge
2π2

1
a4

∫
dyy2 Ẽe

e
1
T̃

Ẽe+1
Pe = ge

6π2
1
a4

∫
dy y4

Ẽe

1

e
1
T̃

Ẽe+1

ρν = gν
2π2

1
a4

∫
dyy3 fν Pν = 1

3ρν

ρN = gN
2π2

1
a4

∫
dyy2

√
y2 +a2m2

N fN PN = gN
6π2

1
a4

∫
dy y4

ẼN
fN

The energy conservation law (Eq. 2.3) in the variables considered here is

dρtot

dlna
dlna

dt
+3H

(
ρtot +Ptot

)= 0=⇒ dρtot

dlna
+3

(
ρtot +Ptot

)= 0
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Taking derivatives:

dργ
dlna

= gγ
π2

30

(
−4

1
a4 T̃4 +4

1
a4 T̃3 dT̃

dlna

)
=−4ργ+4

ργ

T̃
dT̃

dlna

dρe

dlna
=−4ρe + ge

2π2
1
a4

∫
dyy2


(
e

1
T̃

Ẽe +1
)

a2m2
e

Ẽe
− Ẽee

1
T̃

Ẽe
(

a2m2
e

T̃Ẽe
− Ẽe

T̃2
dT̃

dlna

)
(
e

1
T̃

Ẽe +1
)2



=−4ρe + ge

2π
1
a4

∫
dyy2

a2m2
e

Ẽe

1

e
1
T̃

Ẽe +1
−

(
a2m2

e

T̃
−

(
Ẽe

)2

T̃2

dT̃
dlna

)
e

1
T̃

Ẽe(
e

1
T̃

Ẽe +1
)2


dρν

dlna
=−4ρν+ gν

2π2
1
a4

∫
dyy3 d fν

dlna
=−4ρν+ gν

2π2
1
a4

∫
dyy3 1

H
Iν

dρN

dlna
=−4ρN + gN

2π2
1
a4

∫
dyy2

[
a2m2

N

ẼN
+ ẼN

d fN

dlna

]

=−4ρN + gN

2π2
1
a4

∫
dyy2

[
a2m2

N

ẼN
+ ẼN

1
H

IN

]
Doing the individual species first:

dργ
dlna

+3
(
ργ+Pγ

)= 4
ργ

T̃
dT̃

dlna
dρe

dlna
+3

(
ρe +Pe

)= 1
a4

[
−a2m2

e

T̃
R1 + 1

T̃2

{
R2 +a2m2

eR1
} dT̃

dlna

]
dρν

dlna
+3

(
ρν+Pν

)= gν
2π2

1
a4

∫
dyy3 1

H
Iν

dρN

dlna
+3

(
ρN +PN

)= gN

2π2
1
a4

∫
dyy2ẼN

1
H

IN ,

with

R1 = ge

2π2

∫
dyy2 e

Ẽe
T̃(

e
Ẽe
T̃ +1

)2

R2 = ge

2π2

∫
dyy4 e

Ẽe
T̃(

e
Ẽe
T̃ +1

)2

Adding all these terms together and solving for the temperature change gives:

dT̃
dlna

=
a2m2

e
T̃

R1 − gν
2π2

∫
dyy3 1

H Iν− gN
2π2

∫
dyy2ẼN

1
H IN

2π2 gγ
15 T̃3 + 1

T̃2 R2 + a2m2
e

T̃2 R1

(C.1)
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The active neutrinos in the flavour basis |να〉 are related to the mass basis |νi〉 via
νe

νµ

ντ

=VPMNS


ν1

ν2

ν3

 ,

with VPMNS the non-diagonal Pontecorvo-Maki-Nakagawa-Sakata matrix, given by

VPMNS =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13

0 eiφ 0

−s13 0 c13




c12 s12 0

−s12 c12 0

0 0 1


Here ci j = cosθi j, si j = sinθi j and θi j are the active neutrino mixing angles. Char-

acteristic time scale of oscillations between two flavours consisting of mass eigen-

states |νi〉 and |ν j〉 for neutrinos with energy E is [29]

τi j ∼ 4πE∣∣∣m2
i −m2

j

∣∣∣ ∼ 8 ·10−6 s
E

MeV
10−3 eV2∣∣∣m2

i −m2
j

∣∣∣
Assuming propagation in vacuum with E ≈ πT and using the measured mass

differences |m2
2 −m2

1| ≈ 7.6 ·10−5 eV2 and
∣∣m1

3 −m2
1

∣∣≈ 2.5 ·10−3 eV2 [26], the time

scales are
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τ12 ≈ 3 ·10−4 s
T

MeV

τ13 ≈ 10−5 s
T

MeV

The Hubble time at temperature of 1 MeV and for g∗ = 11 is given by

τH = Mpl

1.66
p

g∗
1

T2 ≈ 1.4 s
(
MeV

T

)2

The characteristic oscillation time scales τ12 and τ13 are much smaller than the

Hubble time. At temperatures T ≈ 1 MeV, weak reaction rates are of the same

order as the Hubble rate. Therefore, active neutrinos will oscillate many times

between subsequent reactions that involve them. In reality, active neutrinos are

created in wave packets that consist of superposition of states, each of which has

its own definite momentum and own characteristic oscillation time as shown above.

Between two reactions these states will oscillate many times and the phases of

the superpositions of these states will not be correlated. Therefore, it is possible

to describe this oscillation phenomenon by means of time-averaged transition

probabilities Pαβ, given by [29]

Pee = 1− 1
2

[
sin2 (2θ13)+cos4 (θ13)sin2 (2θ12)

]
Peµ = Pµe = 1

2
cos2 (θ13)sin2 (2θ12)

Peτ = Pτe = sin2 (θ13)cos2 (θ13)
[
2− 1

2
sin2 (2θ12)

]
Pµµ = 1− 1

2
sin2 (2θ12)

Pµτ = Pτµ = 1
2

sin2 (θ13)sin2 (2θ12)

Pττ = 1−sin2 (θ13)
[
2cos2 (θ13)+ 1

2
sin2 (θ13)sin2 (2θ12)

]
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