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Abstract

Despite the success of the Standard Model in the last few decades,
we know it is not complete. There is strong motivation for

assuming the existence of aditional heavy neutral leptons, which
can account for active neutrino masses and possibly also have

cosmological implications. In this work I consider the Standard
Model with two neutral lepton singlets (sterile neutrinos) with

degenerated masses in the range 20MeV − 2GeV. The constraints
on the active-sterile neutrino mixing angles are evaluated based
on recent neutrino oscillations data. Using these constraints the
bounds from accelerator experiments are reanalyzed for the case
of the considered model. Finally, the results are compared with
cosmological constraints coming from Big Bang nucleosynthesis

and the νMSM resonant leptogenesis.
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Chapter 1
Introduction

In the recent decades we have witnessed numerous advances in theoretical
physics, broadening our understanding of the Universe from the smallest
to the largest scales. One of the most prominent examples is the estab-
lishment of the Standard Model, which describes interactions of the fun-
damental particles with staggering accuracy. When it was proposed, it
predicted new particles which have all been successfully found in later
accelerator experiments. The final confirmation came in 2013, when the
Higgs boson was detected, making the Standard Model complete and self-
consistent. Cosmology, dealing with the largest scales in the Universe,
also witnessed rapid advances in the recent past. Thanks to precise ob-
servations phenomena like dark matter and dark energy have been estab-
lished. Moreover, successful theoretical model for describing the evolu-
tion of the Universe from the very first moments all the way to the present
was developed, known as the Big Bang theory. Its consistency with the
Standard Model was confirmed by cosmic microwave background ob-
servations (e.g. the baryon acoustic oscillations). Furthermore, an im-
portant bridge between the two fields is the Big Bang nucleosynthesis,
a theory which describes creation of first atomic nuclei from primordial
plasma. The abundances of produced elements strongly depend on parti-
cle physics and cosmology, therefore the excellent agreement with obser-
vations speaks strongly in favor of these two models.

Despite all the success, there are still phenomena which do not fit in
the framework of current theories. For example, there is no candidate for
dark matter particle within the Standard Model, but on the other hand we
know that it constitutes majority of the Universe’s matter component. We
also lack the understanding of how the baryon asymmetry of the Universe
was generated and what is driving the accelerated expansion. The Stan-
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2 Introduction

dard Model actually fails even in describing all known fundamental parti-
cles, since neutrinos are assumed to be massless, which is in contradiction
with well established phenomena of neutrino oscillations This arguments
lead to different proposed extensions of the Standard Model, which could
resolve one or more of the problems and not spoil the experimentally con-
firmed predictions. Examples of such extensions are the super-symmetric
theories, which predict the existence of multiple partners of the Standard
Model particles. The additional super-symmetric particles have been sys-
tematically searched for in accelerator experiments with no positive re-
sult so far. An alternative approach is to assume existence of extremely
weakly interacting particles within the current Standard Model. Very ap-
pealing candidates for such particles are the sterile neutrinos, which can
in some models account for neutrino oscillations, dark matter and baryon
asymmetry at the same time. Furthermore, such sterile neutrinos could
be detected by proposed accelerator experiments allowing for conclusive
results in near future.

The aim of my project was to study sterile neutrinos, in particular a
model of two sterile neutrinos in GeV mass range. This is an interesting
choice, because it can give an explanation to the neutrino oscillations and
origin of baryon asymmetry. Furthermore, results obtained in this the-
sis are also applicable to other models, e.g. the νMSM which contains
additional sterile neutrino neutrino in keV mass range, being the dark
matter candidate. Since the considered model attempts to explain vari-
ous phenomena, we can use independent observations to constrain it. In
this work I use the bounds coming from neutrino oscillations and direct
detection experiments to compute upper bound on coupling strength and
lower bound on lifetime of sterile neutrinos. In addition to that I compare
my results with cosmological constrains.

An introduction to sterile neutrinos and their properties is given in
Chapter 2. Additionally, their role in the Standard Model is discussed, fol-
lowed by an explanation of the see-saw mechanism and definition of the
sterile-active neutrino mixing angles. Chapter 3 is devoted to neutrino os-
cillations. First the theoretical background is discussed, which is followed
by an overview of the most important neutrino oscillation experiments.
Finally the bounds on sterile-active neutrino mixing angle ratios, based on
the neutrino oscillation, are derived. In Chapter 4 the constraints on ster-
ile neutrinos, that come from accelerator direct detection experiments are
presented. The two most important types of experiments for the O(GeV)
mass range, beam dump and peak searches, are considered. Some of the
bounds from beam dump experiments are reinterpreted, since they can
strengthened for the considered model. Cosmological constraint, applica-

2
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3

ble to the two heavy neutrino states, are briefly reviewed in Chapter 5. In
the final Chapter 6 the combination of all discussed bounds is presented.
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Chapter 2
Sterile neutrinos

The Standard Model (SM) of particle physics is a theory describing the
kinematics and interactions of the fundamental particles. The SM, as we
know it today, was developed in the late 1960s by Steven Weinberg [1],
Sheldon Glashow and Abdus Salam with the help of many other con-
tributing scientists. It is based on mathematical framework of quantum
field theory, where the behavior of the system is given by the Lagrangian.
its symmetry under the U(1), SU(2) and SU(3) gauge groups gives rise
to the electromagnetic, weak and strong interactions. The predictions of
the SM have been thoroughly tested and agree with the experiments with
staggering accuracy. This led to general acceptance of the SM and today it
is considered the main theory of particle physics.

Despite all the success, there is a number of observed phenomena,
which tell us that SM is not complete. For example, the neutrino oscil-
lations imply that at least two neutrinos have non-zero masses, while they
are assumed to be massless in the minimal SM. The neutrino masses can
be included by adding a higher dimensional term 1

Λ (L̄CΦ̃)(Φ̃T L), with Λ
being a dimensionful coupling constant, L the lepton doublet and Φ the
Higgs doublet. Such term would spoil the unitarity of the SM and make
the theory non-renormalizable. However, the active neutrino masses are
known to be less than few eV, therefore Λ ≥ O(1013 GeV), which corre-
sponds to energies where quantum field theory is expected to break down.
Further reason why the SM can not be complete is the existence of the dark
matter (DM). It has been shown that it constitutes a vast part of the matter
content of the Universe and can not be constituted by any of the SM par-
ticles. There is also no mechanism that could have lead to the observed
baryon asymmetry of the Universe (BAU). Even though there are CP vi-
olating processes and the baryon number is not strictly conserved in the
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6 Sterile neutrinos

SM, these effects are too small and would be washed out by later thermal
equilibrium. These problems can be addressed by assuming the existence
of heavy neutral lepton singlets, sterile neutrinos. They are right-chiral
neutral particles and therefore do not take part in any of the gauge in-
teractions, making them suitable candidates for DM. By introducing two
right-chiral neutrinos to the SM we can explain the neutrino oscillations
and the smallness of active neutrino masses through the so called see-saw
mechanism. Additionally, if they have degenerate masses greater than few
hundred MeV they could account for BAU through the resonant leptoge-
nesis. This gives us good motivation to consider such extensions of the
SM, as they address multiple important problems at the same time. In
this project I focus on a model with two sterile neutrinos with degener-
ated masses in the range between 20 MeV and 2 GeV. Such model is the
minimal extension of the SM with sterile neutrinos that is capable of ex-
plaining neutrino masses and oscillation and providing a mechanism for
generating the BAU. The particular mass range was considered, because
it corresponds to the energies where the strongest constraints on heavy
neutral lepton coupling strength were obtained.

In the first section 2.1 of this chapter I discuss the properties of sterile
neutrinos and their role in the SM. In section 2.2 I will present the see-
saw mechanism, which can explain the small active neutrino masses. In
the final section 2.3 I will discuss the sterile-active neutrino mixing angles,
which characterize the coupling strength between sterile and active neu-
trinos, and how they are constrained by the see-saw mechanism.

2.1 Sterile neutrinos and the Standard Model

Sterile neutrinos are hypothetical neutral lepton singlets, which implies a
number of interesting properties. First of all, they are not charged under
any of the gauge interactions (zero charge under U(1) and singlets un-
der SU(2) and SU(3) gauge groups) and therefore can not interact through
electromagnetic, weak or strong force. As they are truly neutral particles,
they must be invariant under particle-antiparticle conjugation, associated
with operator Ĉ : Ψ → ΨC = CΨ̄T where Ψ and Ψ̄ are the Dirac 4-spinor
and its adjoint respectively and C is an antisymmetric matrix which can
be written in Weyl basis as C = iγ2γ0. It turns out that fields which fulfill
the condition ΨC = Ψ are special solutions of Dirac equation, known as
Majorana fermions, which obey the Majorana equation

−i/∂Ψ + mMΨC = 0 (2.1)

6
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2.1 Sterile neutrinos and the Standard Model 7

Here mM is the Majorana mass, which does not arise from coupling with
Higgs like Dirac masses. In Weyl basis it is easy to show that Ψ in (2.1)
must take the following form

Ψ =
(

ζ
−iσ2ζ∗

)
(2.2)

where ζ is a 2-spinor and σ2 the second Pauli matrix. From here we can
see that a Majorana fermion can be fully described by a 2-spinor and not a
4-spinor, which is the case for charged fermions. For further discussion it
is important to remember that sterile neutrinos are Majorana fermions, i.e.
they are invariant under particle-antiparticle conjugation, and can have
Majorana masses. A more thorough discussion about Majorana fermions
can be found in [2]

In the context of the SM sterile neutrinos are right-chiral particles, as all
other lepton and quark SU(2) singlets. They are often presented as coun-
terparts to active neutrinos, which are always left-chiral. In analogy to
other fermions in the SM, we can write down an interaction Lagrangian
of the Yukawa type, coupling the sterile neutrinos to a left lepton dou-
blet and Higgs field, which is responsible for mixing of active and sterile
neutrinos. For sterile neutrinos we can also construct a Majorana mass
term, which is absent in the SM since none of its particles are Majorana
fermions. The most general SM Lagrangian including N sterile neutrinos
has the following form

L = LSM + iN̄I /∂NI − (FαI L̄αNIΦ̃ +
MN,I J

2
N̄c

I NJ + h.c.) (2.3)

Here LSM is the Standard Model Lagrangian, NI are the neutrino singlets
(I, J = 1, ...,N ), Lα the lepton doublet (α = e, µ, τ) and Φ the Higgs dou-
blet, where Φ̃ = iσ2Φ∗. F is the Yukawa coupling matrix and MN the Ma-
jorana mass matrix. After the electroweak symmetry breaking lepton dou-
blet and Higgs field become Lα = (να

lα ) and 〈Φ〉 = ( 0
v/
√

2), with MD = F v√
2

being the Dirac mass matrix.
The Neutrino Minimal Standard Model (νMSM) [3] is a particularly

attractive extension of the SM, which can explain the origin of neutrino
masses and oscillations, gives a dark matter candidate and proposes a
mechanism for generating the BAU. It is based on the Lagrangian (2.3)
and assumes the existence of 3 sterile neutrinos, N1 in the keV mass range,
while N2 and N3 must have nearly degenerate masses aboveO(MeV). The
light sterile neutrino plays the role of a DM candidate and must couple
much weaker then the heavier two states. In fact, the absence of any kind
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8 Sterile neutrinos

of DM decay signal implies that lifetime, inversely proportional to the cou-
pling strength, must be many orders of magnitude larger then the Hubble
time. Such sterile neutrinos could not explain the neutrino oscillations
or be observed in accelerators and are therefore neglected in the analysis
of laboratory experimental. The two heavy sterile neutrinos must be cou-
pled stronger, however still very weakly compared to other particles in the
SM. In order to explain the neutrino oscillations lower bound on the mix-
ing angles between active and sterile neutrinos can be derived through
the see-saw mechanism. If the heavy sterile neutrinos have degenerate
masses they could effectively generate the BAU through resonant lepto-
genesis, which has been shown to be possible for masses down to MeV
range [3, 4]. I will discuss this in Chapter 5 along with the effect of sterile
neutrinos on Big Bang nucleosynthesis. Such heavy neutral leptons have
been searched in numerous accelerator experiments, however no events
that could be associated with them were ever found. This allows us to
establish upper bound on their coupling strength and will be discussed
more in detail in Chapter 4.

2.2 The see-saw mechanism

An important feature of sterile neutrinos is that they can explain neutrino
masses and oscillations. This is achieved by additional Yukawa coupling
of active neutrinos to sterile neutrinos and Higgs, generating the Dirac
masses. Furthermore, the existence of Majorana mass term can explain the
smallness of active neutrino masses through the see-saw mechanism. This
can be seen by considering the additional mass terms in the Lagrangian
(2.3), which become after the electroweak symmetry breaking

Lmass = −MD,αI ν̄αNI −
MN,I J

2
N̄c

I NJ + h.c. (2.4)

Such Lagrangian is written in gauge (flavor) basis, which is the eigenbasis
of weak interactions and does not necessarily coincide with mass eigen-
basis. In fact, there must be a non-trivial unitary transformation U (the
PMNS matrix) between the two bases for the theory to explain the neu-
trino oscillations, discussed more in detail in Section 3.1. The sterile neu-
trinos states can be assumed as Majorana mass eigenstates, making MN
diagonal, without loss of generality [3]. Defining the following column

Ψ =
(

ν̄C

N

)
(2.5)

8
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2.3 Sterile-active neutrino mixing angles 9

where ν is a vector of all active neutrino states and N a vector of all sterile
neutrino states. The corresponding Lagrangian and mass matrix are

L =
1
2

Ψ̄CMΨ + h.c. , M =
(

0 MD
MT

D MN

)
(2.6)

This allows us to diagonalize matrix M and obtain the neutrino mass
eigenbasis. Assuming that Dirac masses are much smaller then Majorana
masses, i.e. |MD| � |MN|, which is essential for explaining the smallness
of active neutrino masses and weakness of sterile neutrino coupling, the
diagonalized matrixM takes the following form

M̂ =
(

mν 0
0 mN

)
(2.7a)

mN = MN +O(MDM−1
N ) (2.7b)

mν = −MDM−1
N MT

D (2.7c)

Here the mN is the sterile neutrino mass matrix, which coincides with MN
to the first order in MDM−1

N , and mν the active neutrino mass matrix. An
important consequence is that active neutrino masses are small under the
assumption |MD| � |MN|. Additionally, the experimental evidence for
two mass splittings in active neutrino masses, discussed in Section 3.2,
implies that the rank of active neutrino mass matrix R[mν] is equal to or
greater than 2. From Equation (2.7c) follows

R[mν] = R[MDM−1
N MT

D] = R[MN] ≥ 2 (2.8)

which means that at least two sterile neutrinos are needed to explain ac-
tive neutrinos masses and oscillations. Therefore, in what follows, the ex-
istence of two sterile neutrinos will be assumed (N = 2).

2.3 Sterile-active neutrino mixing angles

As already discussed in beginning of the chapter, sterile neutrinos do
not take part in electromagnetic, weak or strong interactions. However,
they do couple to active neutrinos and the strength of this interaction can
be parametrized by the sterile-active neutrino mixing angles, for which I
will use the following definition

ϑ2
α =

1
2 ∑

I
|(MDM−1

N )αI |2 (2.9)
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10 Sterile neutrinos

The mixing angles are essentially the rotation angles between active neu-
trino flavor states and sterile neutrino states. In the case of this project
I used definition (2.9), where the sterile neutrino mass states are aver-
aged over, since they are assumed to be mass degenerate, therefore MN =
12MN. The square of the mixing angle is equal to the probability for a ster-
ile neutrino to oscillate into an active neutrino (or the other way around).
This kind of process violates the conservation of lepton flavors and is most
likely CP violating. The corresponding Feynman diagram is shown in Fig-
ure 2.1

N ϑα να

H

Figure 2.1: Feynman diagram corresponding to the Yukawa interaction term in
the Lagrangian (2.3)

Using the PMNS matrix U (3.2) we can diagonalize the active neutrino
mass matrix mν

diag(m1e−2iζ , m2e−2iξ , m3) = UTmνU (2.10)

where ζ and ξ are the Majorana phases, which arise due to Majorana mass
term and can not be determined through oscillation experiments, unlike
the PMNS parameters and the active neutrino mass splittings. We can
rewrite this using the see-saw formula (2.7c), which in case of two sterile
neutrinos yields

diag(m1e−2iζ , m2e−2iξ , m3)ij = − M̃D,i2M̃D,j3 + M̃D,i3M̃D,j2

MN
(2.11)

M̃D = UTMD

Here it is important to notice that (2.11) is invariant under (M̃D,i2, M̃D,j3)→
(zM̃D,i2, z−1M̃D,j3), which gives us another free complex-valued parame-
ter z, which is related to the ratio between Yukawa coupling constants of
N2 and N3. In the considered model, with two sterile neutrinos, only two
active neutrinos can have non-zero masses, since R[mν] = R[MN] = 2.

10
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2.3 Sterile-active neutrino mixing angles 11

This implies m1 = 0 for normal hierarchy (NH) and m3 = 0 for inverted
hierarchy (IH). Using the above, we can solve (2.9) explicitly for NH

ϑ2
α =

|z|2
4MN

(∣∣∣√m3Uα3 − ieiξ√m2Uα2

∣∣∣2
+

1
|z|4

∣∣∣√m3Uα3 + ieiξ√m2Uα2

∣∣∣2) (2.12)

and for IH

ϑ2
α =

|z|2
4MN

(∣∣∣√m1Uα1 − iei(ξ−ζ)√m2Uα2

∣∣∣2
+

1
|z|4

∣∣∣√m1Uα1 + iei(ξ−ζ)√m2Uα2

∣∣∣2) (2.13)

From (2.12) and (2.13) we see that the mixing angles are not uniquely de-
termined even if we fix the sterile neutrino mass MN. For successful baryo-
genesis in the νMSM we get a constrain on z [5], being |z|2 � 1, so we can
neglect the term proportional to |z|−4.

It turns out to be useful to define the mixing angle ratio

Tα =
ϑ2

α

∑β ϑ2
β

(2.14)

where the sum in denominator, due to unitarity of U, equals to

∑
β

ϑ2
β =
|z|2
4MS

(m2 + m3) for NH (2.15)

∑
β

ϑ2
β =
|z|2
4MS

(m1 + m2) for IH (2.16)

Together with (2.12) and (2.13) this gives us the following expression for
the mixing angle ratios

TNH
α =

1
1 + m2

m3

(∣∣∣∣Uα3 − ieiξ
√

m2

m3
Uα2

∣∣∣∣2
)

(2.17)

T IH
α =

1
1 + m2

m1

(∣∣∣∣Uα1 − iei(ξ−ζ)
√

m2

m1
Uα2

∣∣∣∣2
)

(2.18)

It can be immediately seen, that these expressions do not depend on MN
and z anymore, but only on the PMNS parameters, active neutrino masses
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12 Sterile neutrinos

and Majorana phases. All of these quantities, except the Majorana phases
ζ and ξ, can be determined through neutrino oscillation experiments (un-
der assumption that lightest active neutrino has zero or negligible mass).
Therefore, we can improve the bounds on mixing angles with preciser
measurements of neutrino oscillations. However, the unconstrained Majo-
rana phases turn out to be the main source of uncertainty, as will be shown
in the neutrino oscillation data analysis in Section 3.4.

12
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Chapter 3
Neutrino oscillations

The first clue for neutrino oscillations was discovered by Ray Davis’ Home-
stake experiment in 1965. It was designed to measure solar neutrino flux
through νe + 37Cl → 37Ar+ + e− reaction. The obtained results were a
big surprise, since they measured only one third of the flux predicted by
the standard solar models of the time. The Homestake experiment was fol-
lowed by many other experiments, such as Kamiokande in Japan, SAGE in
the former Soviet Union, GALLEX in Italy and SNO in Ontario, Canada.
They all measured deficit of electron neutrinos, which lead to establish-
ment of neutrino oscillations. Already in 1957 B. Pontecorvo [6] proposed
a mechanism for neutrino oscillations, similar to the one in the strong sec-
tor, responsible for neutral kaon mixing. The idea behind it is, that neutri-
nos interact through weak force in their flavor (also referred to as gauge)
eigenstates, which are a superposition of the mass eigenstates. However,
neutrinos propagate through vacuum as mass eigenstates, which pick up
different phases from having different masses, resulting in flavor mixing.
This explains the measured deficit of νe coming from the sun, since part of
them oscillates in other flavors, while traveling to earth. As already dis-
cussed, the existence of sterile neutrinos could explain the origin of neu-
trino masses and oscillations. Therefore bounds on sterile-active mixing
angles can be imposed, based on oscillation experiments.

In the first section 3.1 of this chapter I discuss the theoretical back-
ground of the neutrino oscillations and derive the expression for the os-
cillation probabilities. This is followed by section 3.2, which contains a re-
view of neutrino oscillation experiments. In section 3.3 I present the most
recent constraints on the neutrino oscillation parameters, coming from the
combination of the most successful experiments. These constraints can be
used to fix the minimal and maximal values of the mixing angle ratios as
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14 Neutrino oscillations

has been shown in the previous chapter. In the final section 3.4 I discuss
the evaluation of the bounds of mixing angle ratios and present the ob-
tained results.

3.1 Theoretical background

The unitary transformation, postulated by B. Pontecorvo, that relates the
flavor to mass eigenbasis, is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix U. One can use it to transform between flavor |να〉 (with α = e, µ,
τ) and mass eignestates |νi〉 (with i = 1, 2, 3) in the following way

|νi〉 = ∑
α

Uαi|να〉 (3.1a)

|να〉 = ∑
i

U∗αi|νi〉 (3.1b)

The PMNS matrix is a 3× 3 unitary matrix, which has in general 9 real
parameters. However, by redefining the fields we can eliminate 5, which
leaves us with 3 rotation angles θ12, θ13, θ23 and one CP violating phase
δCP. It is usually parameterized as

U =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13
0 eiδCP 0
−s13 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 (3.2)

=

 c12c13 c13s12 s13
−c23s12eiδCP − c12s13s23 c12c23eiδCP − s12s13s23 c13s23
s23s12eiδCP − c12c23s13 −c12s23eiδCP − c23s12s13 c13c23


where sij = sin θij and cij = cos θij.

As I mentioned before, neutrinos propagate through vacuum in mass
eigenstates, i.e. the mass basis diagonalizes the free Hamiltonian. We can
write the time evolution of a free neutrino as follows:

|νi(t)〉 = e−iĤt|νi(0)〉 = e−iEit|νi(0)〉 (3.3)

For shorter notation, I will denote |ν(0)〉 = |ν〉 in the rest of the text. Since
|να〉 is a linear combination of |νi〉, and each mass eigenstate has its own
time evolution, the probability to measure a certain flavor also evolves
with time. Using this, we can calculate the transition amplitude between

14
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3.2 Experiments 15

different flavor states

A(να → νβ; t) = 〈νβ(t)|να〉 = ∑
i
〈νβ|eiĤt|νi〉〈νi|να〉 =

= ∑
i

(
∑

j
〈νj|(U∗jβ)

†eiEit|νi〉
)(
〈νi|∑

j
U∗αj|νj〉

)
=

= ∑
i

eiEitUβiU∗αi (3.4)

In the last step of calculation the orthogonality of the states, 〈νi|νj〉 = δi,j
was used. The probability for oscillation between two flavors is given by
the absolute square of the transition amplitude, which yields

P(να → νβ) = |A(να → νβ)|2 =

= δα,β − 4 ∑
j>i

Re[U∗αjUβjUαiU∗βi] sin2(
∆m2

ji

4E
L)

+ 2 ∑
j>i

Im[U∗αjUβjUαiU∗βi] sin(
∆m2

ji

2E
L) (3.5)

In this derivation we assume neutrinos to be ultra relativistic (E � m)
and denote ∆m2

ji = m2
j −m2

i . The obtained expression turns out to be very
practical for interpreting experimental results, since we usually have in-
formation about the energy of neutrinos and the distance they traveled.
Also, it is useful to write the imaginary term separately, since it is respon-
sible for the CP violating effects. We can see that by considering anti-
neutrinos, which transform between the two bases by complex conjugate
of PMNS matrix and hence the imaginary term gets an opposite sign. It
is also important to notice that from neutrino oscillations we can not mea-
sure neutrino masses directly, but only the differences of their squares.
This leaves the absolute magnitude of neutrino masses undetermined and
there are two possible mass orderings, the so called ”normal hierarchy”
m1 < m2 < m3 and ”inverted hierarchy” m3 < m1 < m2.

3.2 Experiments

Neutrinos are still not fully understood and pose an open question in to-
day particle physics. The minimal standard model (SM) can not explain
the origin of their masses in a renormalizable way and the parameters re-
sponsible for oscillations are known with rather poor precision compared
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16 Neutrino oscillations

to the free parameters of the SM. There have been numerous neutrino ex-
periments, many of which are still running today. They have all confirmed
the existence of neutrino oscillations, however precision measurements of
neutrinos are very hard because of their small masses and neutral electric
charge.

Oscillations between all 3 flavors make determination of parameters
fairly complicated, therefore most of the experiments focus on special cases,
where only certain mass states are relevant. More precisely, experiments
have shown that one mass difference is much smaller the the other two,
∆m2

21 � ∆m2
31 ≈ ∆m2

32. Using this with (3.5), we see that it is sensible to
consider the following two regimes, large and small L/E . In the first case
oscillations mediated by the larger mass splitting average out. This is typ-
ically realized when observing neutrinos coming from the sun or low en-
ergy reactor neutrinos and is referred to as the solar neutrino oscillations.
In the second case the oscillations mediated by the smaller mass splitting
are negligible. This is a good approximation in for the atmospheric and
accelerator neutrinos, as well as short baseline reactor neutrinos and is
referred to as the atmospheric neutrino oscillations. This two regimes al-
low us to measure only a subset of the PMNS parameters and one mass
splitting in a particular experiment, which makes the measurements much
more precise.

3.2.1 Solar and long baseline reactor experiments

As I already mentioned in the introduction, the first clue of neutrino os-
cillations came from solar experiments. One of the most successful ones is
Super-Kamiokande in Japan, which uses 50,000 tons of highly pure water
as a medium for elastic scattering νe + e− → νe + e−. In this process elec-
trons get accelerated to relativistic energies and emit Cherenkov radiation,
which is then detected by scintillators. There are many other experiments,
e.g. SNO and Borexino, which use the same principal and also experi-
ments that utilize different detection methods, e.g. Gallex, which mea-
sured the rate of νe + 71Ga→ 71Ge + e+ process. Same regime of neutrino
oscillations can be also observed in reactor experiments, among which the
most renowned is KamLAND in Japan.

Fusion processes in the sun produce a huge flux of νe, which can be de-
tected on Earth, despite the large distance. The main neutrino production

16
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3.2 Experiments 17

processes are [7]

p + p→ 2H + e+ + νe
3He + p→ 4He + e+ + νe

7Be + e− → 7Li + νe
8B→ 7Be + e+ + νe

13N→ 13C + e+ + νe
15O→ 15N + e+ + νe (3.6)

Nuclear reactors produce large amounts of ν̄e through the fission processes
A
Z X → A

Z+1X + e− + ν̄e which can also be used for neutrino oscillation ex-
periments. The energy of solar neutrinos reaches up to tens of MeV, there-
fore we can safely assume that the oscillations mediated by larger mass
splitting average out. The same is true for long baseline reactor experi-
ments, where typical neutrino energies are around 5 MeV and travel dis-
tances are around few hundred km, so the ratio E/L is still smaller then
∆m2

31/32 (∆m2
31/32 is shorthand notation for when either ∆m2

31 or ∆m2
32 can

be used). Using equation (3.5) along with the approximations

〈sin2(
∆m2

31/32

4E
L)〉 =

1
2

, 〈sin(
∆m2

31/32

2E
L)〉 = 0

we obtain the following survival probability for νe:

P(νe → νe) =1− 1
2

sin2(2θ13)

+ cos4 θ13 sin2(2θ12) sin2(
∆m2

21
4E

L) (3.7)

From here we can see that the full probability for solar oscillations depends
only on two PMNS angles, θ12 and θ13. By reconstructing the energy of in-
coming neutrinos and measuring their flux, the values of these parameters
and mass splitting ∆m2

21 can be determined. The expression (3.7) holds for
neutrinos traveling through vacuum or a medium with negligible den-
sity. However, due to the high electron density inside the sun, neutrinos
experience coherent forward scattering. This phenomenon is known as
the Mikheev-Smirnov-Wolfenstein (MSW) effect and we need to take it
into the account when observing solar neutrino oscillations. To describe
the propagation of neutrinos in medium, we must consider the effective
Hamiltonian and not the free one, as it was the case in vacuum. The in-
teraction between neutrinos and electrons is described by Fermi theory (at
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18 Neutrino oscillations

low energies, that we are interested in), with following Lagrangian

Le f f = −GF√
2

ν̄eγ
µ(1− γ5)e · ēγµ(1− γ5)νe

= −2
√

2GFν̄eγ
µe · ēγµνe

= −2GFneν̄eγ
0νe (3.8)

In the first step we used the fact that active neutrino are left-handed fermions,
i.e. 1

2(1− γ5)νe = νe. In the second step we neglected electric charge cur-
rents (which is indeed a good approximation for non-relativistic matter)
and averaged the electrons over the medium, 〈ēlek〉 = 1

4 γ0
lkne, where ne

is the average electron density. Using this result we can write down the
effective potential that electrons feel, when propagating through medium

Ve f f (L) =
√

2GFne(L) (3.9)

Here ne depends on the traveled distance, since electron density is higher
in the center of the sun and decreases towards surface. To describe the
propagation of neutrinos in the medium, we need to add the potential
term to the free Hamiltonian. For simplicity only 2 neutrino flavors will
be considered, which can be justified by the fact that in first order approx-
imation only νe take part in the interactions and the other flavor can be
thought as average of νµ and ντ. The effective Hamiltonian, written in
flavor basis, then takes the following form

He f f (L) =UH0U† + V(L)

H0 =
(

m1 0
0 m2

)
, V =

(
Ve f f (L) 0

0 0

)
(3.10)

Knowing the effective Hamiltonian, we can now write down the Schrodinger
equation for evolution of states and compute the new eigenvalues in mass
eigenbasis, i.e. the effective masses

i
d
dt

(
ν1

ν2

)
=U†i

d
dt

(
νe

να

)
= U†He f f (L)

(
νe

να

)
(3.11)

⇒ m̃2
1,2(L) =

1
2

[
(m1 + m2 + Ve f f (L))

+
√

(Ve f f (L)− ∆m̃2 sin(2θ))2 + (∆m̃2)2 cos2(2θ)
]

(3.12)

18
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3.2 Experiments 19

Here ∆m̃2 = m̃2
1 − m̃2

2 and θ is the mixing angle that rotates the state be-
tween the flavor and mass basis. Now we can compute the new mixing
angle θm̃, which is the rotation between the new mass eigenbasis and fla-
vor basis. This yields

sin(2θm̃) =
sin(2θ)√

(Ve f f /∆m̃2 − cos(2θ))2 + sin2(2θ)
(3.13)

By analyzing (3.12) and (3.13) we can gain some intuition for neutrino os-
cillations in a medium. We immediately see that oscillations can not occur
when sin 2θ = 0, since then also sin 2θm̃ = 0, which is what we would
naively expect. When Ve f f = 0 the effective masses m̃1,2 = m1,2 and mix-
ing angle θm̃ = θ reduce back to vacuum case, as they should. However, if
Ve f f → ∞, then sin 2θm̃ → 0, meaning that oscillations can not take place.
Another interesting case is, when Ve f f /∆m̃2 = cos 2θ in which the mixing
becomes maximal, i.e. sin 2θm̃ = 1. This is an important result, since it im-
plies that for any non-zero θ, there exists a value of Ve f f /∆m̃2 at which the
oscillation probability equals 1 and is called the MSW resonance. The con-
sequence of the MSW effect in solar oscillations is that a certain amount
of νe oscillates into other flavors already before they leave the surface of
sun. Since Ve f f depends on electron density and neutrino energy the exact
analysis is rather complicated, but must be taken into account when ana-
lyzing solar neutrino oscillation. In the simplified case of two flavors the
relevant oscillation probability becomes [8, 9]

Psun(νe → νe) ≈
{

1− sin2(2θ12) E < ∼ 100keV
sin2 θ12 E > ∼ 1MeV

(3.14)

3.2.2 Atmospheric and accelerator experiments

Experiments with atmospheric and accelerator neutrinos fall into the
second regime, described at the beginning of the section, where L/E is
small. Atmospheric neutrinos are produced by cosmic rays, as they scat-
ter in the atmosphere and create showers of new particles, which decay
into stable particles, including neutrinos. The most important neutrino
production processes are

π+ → µ+ + νµ , π− → µ− + ν̄µ

µ+ → e+ + νe + ν̄µ , µ− → e− + ν̄e + νµ (3.15)

Due to high energy of cosmic rays, the produced neutrinos typically also
have high energies, which allows us to use the approximations in given in
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equation (??). In accelerator experiments, the accelerators are tuned to pro-
duce highly pure νµ and ν̄µ beams, which are then measured in detectors
several hundred kilometers away. Since the produced neutrino energies
are high but well known, the distance between production point and the
detector can be tuned to measure only the atmospheric oscillations. In this
limit we use the following approximations

∆m2
21

4E
L� 1 ⇒ sin2(

∆m2
21

4E
L) ≈ 0 (3.16)

Combining this with (3.5) we obtain the following probabilities for disap-
pearance of the νµ and appearance of ντ

P(νµ → νµ) = 1− sin2(2θobs) sin2(
∆m2

31/32

4E
L) (3.17)

sin θobs = cos θ13 sin θ23

P(νµ → ντ) = sin2(2θ23) cos4 θ13 sin2(
∆m2

31/32

4E
L) (3.18)

The Super-Kamiokande experiment is one of the most successful atmo-
spheric neutrino experiments up to this date. It measures the atmospheric
νe and νµ fluxes and besides that, is also able to reconstruct the energies
and directions of the incoming neutrinos. An interesting result coming
from this measurement is that the measured νµ flux exhibits zenith angle
dependency. This is due to different travel lengths from the production
point, where cosmic ray hit the atmosphere, to the detector as is schemati-
cally shown in Figure 3.1. On the other hand, no such effect was measured
in the νe flux, as can be seen in Figure 3.2. This leads to the conclusion, that
atmospheric neutrinos oscillate mainly between νµ and ντ flavors, while
mixing with the electron flavor is negligible. Another observation was,
that νµ coming from the below (other side of the Earth) was roughly half
of the one coming from above. Since the travel distance is about 10 km in
the first case and 13 000 km in the second and knowing that atmospheric
neutrinos mainly oscillate between the muon and tau flavor, we see that
the mixing must be close to maximal, i.e.

sin2(2θ23) ≈ 1 ⇒ θ23 ≈ 45◦ (3.19)

The accelerator experiments provide a good crosscheck for this results.
The energy of neutrinos produced in accelerators and their travel distance
are well known and therefore they give us better information about the
mass splitting ∆m2

31. Together, this experiments can be used to determine
the values of θ13, θ23 and ∆m2

31/32.

20
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3.2 Experiments 21

Figure 3.1: Schematic image showing the origin of angle dependency in the νµ

flux in the Super-Kamiokande experiment.

Figure 3.2: Measurement results from Super-Kamiokande [10] showing the zenith
angle dependency of νe and νµ fluxes. The predicted number of events in the
absence of neutrino oscillations is marked with blue line, while the red line marks
the predicted number of events when neutrino oscillations are included. The
black dots are the measured data points.
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22 Neutrino oscillations

3.2.3 Short baseline reactor experiments

This is a special case of reactor experiments, where the detector is put
much closer to the reactor, typically around 1 km. This allows us to ne-
glect the solar oscillations mediated by the smaller mass splitting, since
we are again in the small L/E regime, like in the atmospheric neutrino
experiments. However, the probability for survival of νe is much simpler
then in the νµ case. Using equation (3.5) and approximation (3.16) we can
derive

P(νe → νe) = 1− sin2(2θ13) sin2(
∆m2

31/32

4E
L) (3.20)

From this result we see, that the survival probability depends only on
mixing angle θ13 and mass splitting ∆m2

31. This θ13 angle turns out to be
very small, so short baseline reactor experiments are very important, since
they measure it directly. The most successful among them are DayaBay in
China, CHOOZ in France and RENO in South Korea. Their measurements
concluded that θ13 > 0 with more 6σ then certainty [8] and added valuable
data regarding the size of ∆m2

31. In Figure 3.3 the results from DayaBay ex-
periment are presented, where the depth of the well can be related to the
angle θ13 and its broadness to ∆m2

31/32.

Figure 3.3: Measurement results for from DayaBay experiment [11], showing the
ν̄e disappearance probability. The red line shows the best fit theoretical prediction,
while the data points come from detectors placed at different distances from the
reactor.

22
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3.3 Bounds on neutrino oscillation parameters 23

3.3 Bounds on neutrino oscillation parameters

In the previous sections I discussed the theoretical background of neu-
trino oscillations and reviewed the most important experiments. From
there we can see, that neutrino oscillation experiments can be used to de-
termine the values of the PMNS matrix parameters (θ12, θ13, θ23 and δCP)
and the neutrino mass splittings (∆m2

21 and ∆m2
31). However, since the

oscillation parameters are intertwined in different experiments, we need
somewhat more advanced statistical tools in order to correctly interpret
the results. Most commonly the Chi-square (χ2) test is used, which de-
scribed in greater detail in the Appendix A. Its purpose is to characterize
the probability, how well does a certain theoretical prediction fit the obser-
vations. In what follows, I will sum up the oscillation parameter bounds
given by the NuFIT project, which are based on the latest experimental
data available in summer 2014.

3.3.1 NuFIT results

The NuFIT Collaboration [8] provides global analysis of neutrino oscilla-
tion measurements determining the leptonic mixing matrix and the neu-
trino masses in the framework of the Standard Model with 3 massive neu-
trinos. It is based on combination of different experiments, listed in [9],
that cover both, solar and atmospheric oscillation regimes. The NuFIT re-
sults include the global best fit of the oscillation parameters, as well as one
and two parameter projections of ∆χ2. The best fit values for the oscil-
lation parameters are collected in Table 3.1. One parameter and two pa-
rameter projections of ∆χ2 are displayed in Figure 3.4 and Figure 3.5 cor-
respondingly. Based on these neutrino oscillation parameters constraints
we can deduce the constraints on sterile-active neutrino mixing angles, as
was already discussed in Section 2.3.
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Normal Ordering (∆χ2 = 0.97) Inverted Ordering (best f t) Any Ordering
bfp ±1σ 3σ range bfp ±1σ 3σ range 3σ range

0.304+0.013
−0.012 0.270→ 0.344 0.304+0.013

−0.012 0.270→ 0.344 0.270→ 0.344

θ12/ ◦ 33.48+0.78
−0.75 31.29→ 35.91 33.48+0.78

−0.75 31.29→ 35.91 31.29→ 35.91

sin2 θ23 0.452+0.052
−0.028 0.382→ 0.643 0.579+0.025

−0.037 0.389→ 0.644 0.385→ 0.644

θ23/ ◦ 42.3+3.0
−1.6 38.2→ 53.3 49.5+1.5

−2.2 38.6→ 53.3 38.3→ 53.3

sin2 θ13 0.0218+0.0010
−0.0010 0.0186→ 0.0250 0.0219+0.0011

−0.0010 0.0188→ 0.0251 0.0188→ 0.0251

θ13/ ◦ 8.50+0.20
−0.21 7.85→ 9.10 8.51+0.20

−0.21 7.87→ 9.11 7.87→ 9.11

δCP / ◦ 306+39
−70 0→ 360 254+63

−62 0→ 360 0→ 360

∆m2
21

10−5 eV2 7.50+0.19
−0.17 7.02→ 8.09 7.50+0.19

−0.17 7.02→ 8.09 7.02→ 8.09

∆m2
3

10−3 eV2 +2.457+0.047
−0.047 +2.317→ +2.607 −2.449+0.048

−0.047 −2.590→ −2.307 +2.325→ +2.599
−2.590→ −2.307

2 θ12

Table 3.1: Three-flavor oscillation parameters fit to global data after the NOW
2014 conference. The numbers in the 1st (2nd) column are obtained assuming
NO (IO), i.e., relative to the respective local minimum, whereas in the 3rd column
we minimize also with respect to the ordering. Note that as atmospheric mass-
squared splitting we use ∆m2

31 for NO and ∆m2
32 for IO.
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Figure 3.4: Global 3ν oscillation analysis. The red (blue) curves are for Normal
(Inverted) Ordering. For solid curves the normalization of reactor fluxes is left
free and data from short-baseline (less than 100 m) reactor experiments are in-
cluded. For dashed curves short-baseline data are not included. Note that as
atmospheric mass-squared splitting we use ∆m2

31 for NO and ∆m2
32 for IO.
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Figure 3.5: Global 3ν oscillation analysis. Each panel shows a two-dimensional
projection of the allowed six-dimensional region after minimization with respect
to the undisplayed parameters. The different contours correspond to 1σ, 90%, 2σ,
99% and 3σ confidence level (at 2 degrees of freedom). Full regions correspond to
the analysis with free normalization of reactor fluxes and data from short-baseline
(less than 100m) reactor experiments included. For void regions short-baseline
reactor data are not included. Note that as atmospheric mass-squared splitting
we use ∆m2

31 for NO and ∆m2
32 for IO.
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3.4 Bounds on sterile-active neutrino mixing an-
gles

In the previous chapter, Section 2.3, it was shown that the mixing angles
between sterile and active neutrinos depend on free parameters MN and
z. Therefore, it is more sensible to consider the mixing angle ratios, (2.17)
and (2.18), as the do not depend on these two parameters. However, also
the mixing angle ratios can not be uniquely determined, due to Majorana
phases and uncertainties regarding the neutrino oscillation parameters.
Therefore it is common to find their minimum and maximum possible val-
ues at some chosen confidence level. For this purpose I wrote a computer
program that scanned over the all possible values of oscillation param-
eters, within their 3σ intervals, and Majorana phases. The analysis was
performed in two different ways, first neglecting the correlation between
oscillation parameters and second including the pairwise correlations of
the parameters. The latter provide additional information which is lost
when considering only ∆χ2 likelihood of single parameters. For this rea-
son the bounds on mixing angle ratios coming from the correlated analysis
are expected to be stronger.

3.4.1 Evaluation

As already mentioned, the values of mixing angle ratios Tα were obtained
using a custom computer program. The essence of the algorithm is the
evaluation of (2.17) and (2.18) in nested for-loops, where each of them
runs over allowed interval for one of the parameters. In this way one
can obtain the values of the mixing angle ratios over the whole param-
eter space, however such algorithm doesn’t account for the correlations
between parameters. In order to include the correlation information, the
allowed ranges for parameters in sub-loops need to be readjusted at every
step, since they depend on the values of the fixed parameters from higher
level loops.

As discussed in Section 3.2 there are different types of neutrino oscil-
lation experiments, which gives us information about different oscillation
parameters. It was shown that (under the discussed approximations) the
(dis)appearance probability of active neutrinos always depends on mix-
ing angle θ13, which can also be measured independent of other param-
eters in short baseline experiments. The mixing angle θ12 and mass dif-
ference ∆m2

21 can be obtained from solar and long baseline experiments
and are correlated with each-other, as well as with θ13. Similarly, θ23 and
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∆m2
31/32, measured by atmospheric and accelerator experiments, are also

correlated with each-other and θ13. Based on this consideration we can
construct an algorithm that correctly accounts for the correlations of dif-
ferent parameters in the following way. First we take the θ13 range at
chosen certainty level and start iterating over it. For each value of θ13
we can obtain the allowed intervals of θ12 and θ23 from the correlated
data and run the iterations over them (the order doesn’t matter, since
θ12 and θ23 are uncorrelated). More precisely, the allowed intervals are
{θ12/23 ; ∆χ2(θ13, θ12/23) < Λ}, where Λ is the value of the χ2 distri-
bution at the confidence level we are interested in. In each step of itera-
tion over θ12 we then determine the allowed intervals for ∆m2

21 at current
values θ13 and θ12 and similarly allowed intervals for ∆m2

31/32 at current
θ13 and θ23. We could first determine the allowed mass difference inter-
vals at certain θ13 and then look at allowed ranges of θ12 and θ23, how-
ever the result would be the same. This is because the third level inter-
vals are simply a cross section of the intervals given by pairwise correla-
tions with higher level parameters. To be concrete, the range for ∆m2

21 is
{∆m2

21 ; ∆χ2(θ13, ∆m2
21) < Λ} ∩ {∆m2

21 ; ∆χ2(θ12, ∆m2
21) < Λ}, which

applies analogously to ∆m2
31/32, correlated with θ23 instead of θ12. This

ranges have at least the confidence level of ∆χ2 = Λ or higher, since
they are deduced from pairwise correlations. An interval correspond-
ing strictly to chosen confidence level could only be determined by us-
ing information of higher order correlation; in case of ∆m2

21 that would
be {∆m2

21 ; ∆χ2(θ13, θ12, ∆m2
21) < Λ}, however such information was not

available. Finally the ∆m2
21 and ∆m2

31/32 intervals are evaluated over, along
with the δCP and Majorana phases. At each step of evaluation the mixing
angle ratios are stored, if they exceed (are below) the previous maximum
(minimum) value, along with the corresponding parameters

3.4.2 Results

The computations were run using the neutrino oscillation parameters and
their correlations published in [8]. For consistency, I compare the results
with the ones published in [12]. The obtained mixing angle ratios are pre-
sented in Table 3.2. From there we can see that the new oscillation data
puts somewhat stronger constrains on the mixing angle ratios. Difference
is the biggest for the electron flavor, where the upper bound is pushed
down by roughly 3% in case of NH and 2,5% in case of IH. This is due
to much preciser measurement of the θ13 in DayaBay experiment, com-
plemented by RENO and Double Chooz data. On the other hand, the

28
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differences in muon and tau flavor are all less then 1%. From the com-
parison of uncorrelated and correlated analysis we see that the differences
are negligible. The reason for this is, that the uncertainties on oscillation
parameters have much smaller effect on the mixing angle ratios then the
unconstrained Majorana phases ζ and ξ. This can be seen from Equations
(2.17) and (2.17), where particular values of ζ and ξ lead to cancellation of
the two terms within the absolute value squared, resulting in minimal Tα,
while at other values the same terms will add up, giving maximal Tα.

Ratio 2011 Data NuFIT uncorrelated NuFIT correlated

TNH
e 0− 0.17 0.00(2)− 0.14 0.00(3)− 0.14

TNH
µ 0.07− 0.92 0.08− 0.91 0.08− 0.91

TNH
τ 0.06− 0.90 0.06− 0.90 0.07− 0.89

T IH
e 0.02− 0.98 0.02− 0.96 0.02− 0.96

T IH
µ 0− 0.63 0− 0.62 0− 0.62

T IH
τ 0− 0.65 0− 0.65 0− 0.65

Table 3.2: Table with obtained sterile-active neutrino mixing angle ratios, defined
in (2.14), at 3σ confidence level. In the first column there are the results from [12]
obtained with older (2011) constraints on neutrino oscillation parameters. In the
second column are the uncorrelated results and in third the column the correlated
results, obtained with the NuFIT data [8]. The superscript NH and IH denote
normal and inverted hierarchy respectively.

As shown before, the values of the sterile-active neutrino mixing an-
gles can be easily obtained from the mixing angle ratios. Their values,
calculated for MN = 1 GeV and |z| = 10, are presented in Table 3.3. This
results can be simply generalized for other values of MN and |z|2 � 1,

since ϑα ∝ |z|2
MS

.
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Flavor minimum maximum

ϑNO
e 1.3× 10−11 6.1× 10−10

ϑNO
µ 3.8× 10−10 4.2× 10−9

ϑNO
τ 3.2× 10−10 4.1× 10−9

ϑIO
e 1.6× 10−10 7.7× 10−9

ϑIO
µ 0 4.9× 10−9

ϑIO
τ 0 5.2× 10−9

Table 3.3: Table with obtained sterile-active neutrino mixing angles for MS =
1GeV and |z| = 10, calculated from the mixing angle ratios (based on correlated
data) presented in Table 3.2. The superscripts NH and IH denote normal and
inverted hierarchy correspondingly.
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Chapter 4
Direct detection searches

As already discussed in the previous chapters there is strong theoretical
motivation to assume the existence of sterile neutrinos. This led to nu-
merous experimental searches in wide mass ranges, spanning from as low
as eV up to few GeV. The strongest and most reliable constraints come
from direct detection experiments in accelerators. No event associated
with sterile neutrino was ever detected, which gives us an upper bound
on sterile-active neutrino mixing angles defined in (2.9). A thorough re-
view of different possible experiments and their sensitivity can be found
in [13]. The main constrains come from fixed target experiments, while
the constraints from other measurements are weaker. These can be either
peak searches or beam dump experiments, which both study meson de-
cays and were used to establish upper bounds on the mixing angles for
sterile neutrinos in mass range from few tens of MeV up to approximately
2 GeV.

In the following Section 4.1 the peak search experiments are presented
along with the strongest constraints on sterile-active neutrino mixing an-
gles of this type. That is followed by Section 4.2 which discusses the direct
detection experiments. The bounds coming this kind of experiments are
not universal and some of them need reinterpretation for the case of con-
sidered model. Finally, the direct detection experiment bounds are com-
bined with the constraints coming from neutrino oscillations, derived in
3.3, to obtain the lower limits on sterile neutrino lifetimes.
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4.1 Peak search experiments

In peak search experiments leptonic two body decays of π+ or/and K+

mesons are studied. The mesons are produced by hitting a high inten-
sity proton beam into production target and subsequently separated from
other particles using magnetic field. After that they decay and the pro-
duced daughter particles are observed. Particularly interesting are the
two body decays, since the energies of the daughter particles take fixed
values (delta peaks in the energy spectrum), determined solely by energy
and momentum conservation. This allows for searches of sterile neutri-
nos, since they should produce a secondary peak in the charged lepton
energy spectrum, besides the primary peak associated with the decays
into charged lepton and corresponding active neutrino. No suitable events
were ever detected, which puts an upper bound on the active-sterile neu-
trino mixing angle. An advantage of peak search experiments is that their
analysis is based purely on kinematics and therefore model independent
[14], as long as the searched particles are produced in such decays.

In π decays the primary peak comes from π+ → e+νe decay, while the
secondary peak coming from π+ → e+N decay is searched for. Most re-
cent experiment of this type was preformed by PIENU Collaboration [15]
for sterile neutrinos in the mass range 60 - 129 MeV, which puts an upper
bound on ϑ2

e at level of 10−8. Older results for the mass range 50 - 130
MeV can be found in [16], which contains also bounds for smaller masses
(4 MeV - 60 MeV) based on the deviation of the number of events in the
primary positron peak from the predicted SM value. Similar experiments
with charged K mesons were recently preformed by E949 Collaboration
[17] and previously by KEK [18, 19], obtaining upper bounds on ϑ2

e and ϑ2
µ

up to sterile neutrino masses of 340MeV. The summary of the experimen-
tal bounds on ϑ2

e and ϑ2
µ is presented in Figure 4.1 and 4.2.

4.2 Beam dump experiments

This type of experiment relies on high energy proton beam which is
dumped on a solid target producing large amount of daughter particles.
Vast majority of them is stopped by absorber and only neutrinos which
originate from prompt meson decays penetrate through. After the ab-
sorber is the decay chamber in which candidate events for sterile neutrino
decay are searched for. The probability for such an event is proportional
to the product of branching ratio for meson’s leptonic and semileptonic
decays into sterile neutrino Br(X → lαN...) ∝ ϑ2

α and sterile neutrino’s

32
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Figure 4.1: Value of the sterile-active neutrino mixing angle ϑ2
e as a function of

the sterile neutrino mass MN , based on PieNu [15], KEK [17] and Britton et. al.
[16] data.
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Figure 4.2: Value of the sterile-active neutrino mixing angle ϑ2
µ as a function of the

sterile neutrino mass MN , based on KEK [18] and E949 Collaboration [17] data.
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branching ratio for the observed decay channels Br(N → νβlβ...) ∝ ϑ2
β.

Therefore the signal is proportional to ϑ2
αϑ2

β and not just ϑ2
α as in peak

search experiments. The bounds from this type of experiments are how-
ever model dependent, since the heavy neutrino branching ratios may dif-
fer in various models.

Strongest constraints for sterile neutrino masses MN ≤ 400 MeV come
from CERN PS191 experiment [20, 21], where signatures of π and K de-
cays through heavy neutral lepton were searched for. It is important to
note that in the original analysis heavy neutrinos were assumed to inter-
act only through charge-current (CC) processes mediated by W± bosons,
while in case of νMSM Lagrangian (2.3) also neutral-current (NC) inter-
actions mediated by Z bosons are possible. This was already pointed out
in [12, 28], where similar analyses were preformed. Consequently the up-
per bounds on mixing angles are stronger, since the expected number of
events is higher due to additional NC decay channels. The original lim-
its on neutrino mixing angles |UeI |2 that come from π+/K+ → e+N →
e+(νee+e− + c.c) decays did not take into account the N → ναe+e− + c.c.
decays, where α = µ, τ. From the comparison of the assumed and actual
decay widths, given by Equations (B.17) and (B.18), we can see that the
mixing angle from the original interpretation |UeI |2 puts an upper bound
on the following combination of the mixing angles ϑα

|UeI |4 ≥ ϑ2
e (C3ϑ2

e + C1(ϑ2
µ + ϑ2

τ)) (4.1)

where C1 and C3 are constants related to the Weinberg angle. Similarly, the
limits on |UeIUµI | coming from π+/K+ → µ+N → µ+(νee+e− + c.c) did
not include the N → ναe+e− + c.c. decays, which gives us the following
relation ∗

|UµIUeI |2 ≥ ϑ2
µ(C3ϑ2

e + C1(ϑ2
µ + ϑ2

τ)) (4.2)

The bounds |UeI |2 and |UeIUµI | coming from K+ → e+N → e+(e−π+ +
c.c) and K+ → e+N → e+(µ−π+ + c.c) however are possible only through
CC and therefore need no reinterpretation. Same is true for bounds on
|UµI |2, which are based on K+ → µ+N → µ+(µ−e+νe + c.c.) and K+ →
µ+N → µ+(µ−π+ + c.c.) decays. The rescaling relations (4.1) and (4.2) do
not fix the the upper bounds on mixing angles ϑα uniquely, however using
the mixing angle ratios mediated by neutrino oscillations one can find a

∗Here I must add, that it is not perfectly clear, how the different decay channels, which
have the same final states, could have been distinguished. However, assuming this can
be done, as is apparent from [21] data, the preformed analysis provides the most accurate
reinterpretation of the bounds.

34
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lower bound on lifetime τ of sterile neutrinos. It is inversely proportional
to the total decay width Γtotal, which is a linear combination of ϑ2

α with
corresponding mass dependent prefactors fα(MN) (see Appendix B)

τ =
h̄

Γtotal
∝

1
∑α fα(MN) ϑ2

α
(4.3)

In order to obtain the minimal lifetime the ϑα were varied within their al-
lowed 3σ ranges, obeying the constraints from neutrino oscillations data
and direct detection experiments. The resulting lifetimes for original inter-
pretation and the considered model are presented in Figure 4.3, where we
can see that in case of NH the bound gets an order of magnitude stronger,
while for IH it remains unchanged.

Further bounds on mixing angles of heavy neutrino in the mass range
10 MeV - 1.5 GeV come from CHARM Collaboration [22, 23]. Similarly
to the PS191 Collaboration, they searched for D meson decays into heavy
neutrinos and their subsequent decays into leptons. Again only CC inter-
actions were considered, therefore the bounds had to be rescaled similarly
as in the case of PS191 experiment. However, CHARM experiment stud-
ied decays of D mesons, which have much higher mass then pions and
kaons, therefore additional decay channels for sterile neutrinos, discussed
in Appendix B.1.1 and B.1.2, had to be included into the rescaling. The
bounds can be additionally strengthened by more accurate computation
of N production in D meson decays. The original analysis estimated its
rate based on the branching ratio of pure leptonic decays, Br(D+ → l+α N).
Such decays are significant only for heavy neutrinos and become helicity
suppressed as MN → 0 (which is also the case in when να is produced
instead of N). Therefore at MN ≤ 0.7 GeV semi-leptonic decays, e.g.
D+ → K̄0 e+N, become the main source of sterile neutrinos. Additionally,
in the original publication the upper bounds on |UeI |2 and |UµI |2 were ob-
tained by assuming that both processes in decay chain were proportional
to the same mixing angle. We can obtain stronger bounds by taking into
the account that sterile neutrinos can be produced through mixing with
an active neutrino of any flavor. As a consequence the mixing angles can
not be uniquely fixed, however using the constraints from neutrino os-
cillations we can minimize the lifetime of sterile neutrinos, as discussed
before. The original and reinterpreted analysis of CHARM data is show in
Figure 4.4. We can see that the updated bounds form CHARM experiment
become significantly stronger, however it turns out to be important only
for normal hierarchy, since the bounds from NuTeV [24] are stronger in
the inverted case.
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Figure 4.3: Lower bound on sterile neutrino lifetime τ as a function of mass its
MN coming from the PS191 experiment. The blue line and yellow line were ob-
tained using the original and reinterpreted mixing angles correspondingly. The
upper plot is for the case of normal hierarchy and the bottom one for inverted
hierarchy.
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Figure 4.4: Lower bound on sterile neutrino lifetime τ as a function of mass its
MN . The blue line and yellow line were obtained using the original and reinter-
preted CHARM data [23], while green is based on NuTeV experiment [24]. The
upper plot is for the case of normal hierarchy and the bottom one for inverted
hierarchy.
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4.3 Combined direct detection bounds

Combination of neutrino oscillation constraints and direct detection bounds,
coming from peak searches and beam dump experiments were used to in-
fer global lower bounds on sterile neutrino lifetimes. The results obtained
with original and reinterpreted measurements are presented in Figure 4.5.
The corresponding mixing angles, varied in the allowed ranges so that
they minimize the lifetime, from all the considered experiments are pre-
sented in Figure 4.6 for normal and Figure 4.7 for inverted hierarchy.
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Figure 4.5: The lower bound on sterile neutrino lifetime τ as a function of mass its
MN . The blue line and yellow line were obtained using the original and reinter-
preted data correspondingly. The upper plot is for the case of normal hierarchy
and the bottom one for inverted hierarchy.
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Figure 4.6: The upper bounds on sterile neutrino mixing angles ϑe and ϑµ, that
minimize the lifetime, as a function of its mass MN for normal hierarchy. The data
was taken from PS191 [21], CHARM [23], NuTeV [24], PieNu [15], KEK [18], E949
[17] and Britton et. al. [16].
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Figure 4.7: The upper bounds on sterile neutrino mixing angles ϑe and ϑµ, that
minimize the lifetime, as a function of its mass MN for inverted hierarchy. The
data was taken from PS191 [21], CHARM [23], NuTeV [24], PieNu [15], KEK [18],
E949 [17] and Britton et. al. [16].
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Chapter 5
Cosmological constraints

One of the main reasons for considering sterile neutrinos is to breach the
gap between SM and cosmology. As already discussed, sterile neutrinos
can provide a dark matter candidate and could be responsible for the gen-
eration of BAU through resonant leptogenesis. Models that try to explain
these phenomena are therefore additionally constrained by cosmological
observations. For example, the DM candidate should be relatively light
O(keV) and extremely feebly interacting, so same particles could not ex-
plain neutrino masses and oscillations. On the other hand, for successful
BAU mechanism with sterile neutrinos below the electroweak scale, two
mass degenerate states are needed, for which upper and lower bound on
coupling strength (or lifetime) can be obtained. Additionally, such exten-
sions of the SM should not spoil the predictions of Big Bang nucleosyn-
thesis (BBN), which combines particle physics and cosmology to describe
the abundances of primordial nuclei. its predictions are in excellent agree-
ment with the observations, however presence of sterile neutrinos could
spoil them. For the considered model with two O(GeV) mass degenerate
sterile neutrinos the relevant constraints on lifetime come from BBN and
resonant leptogenesis, as will be presented in this chapter.

BBN and the influence of sterile neutrinos on it will be discussed in
Section 5.1. This is be followed by a brief description of resonant lepto-
genesis, in Section 5.2. The cosmological constraints on sterile neutrinos
are discussed only qualitatively, while corresponding bounds on lifetime
taken from [5, 25, 26] are presented in Figure 6.1.
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5.1 Big Bang nucleosynthesis

One of the major successes of modern cosmology and particle physics is
the ability to describe the formation of primordial atomic nuclei in the
early Universe. This process is known as the Big Bang nucleosynthesis
and depends only on the initial conditions, while the rest is set by the
known physics. Cosmology is important because it describes the evolu-
tion of the Universe’s content while the BBN was taking place, while the
particle abundances and interactions are essentially set by the SM. The
only free parameter ηB = nB

nγ
, the baryons per photon ratio which effec-

tively measures they baryon asymmetry, can be determined from the CMB
observations and sky surveys. The predicted nuclei abundances are in ex-
cellent agreement with independent observations of dwarf galaxies, where
the effects of stellar nucleosynthesis are negligible, or extremely old objects
like quasars.

The early Universe consisted of primordial plasma, which before BBN
contained free protons and neutrons in thermal equilibrium. Due to rela-
tively low particle density (compared to the one in stars) the only heavier
element that could have formed was deuterium D, which has character-
istically low binding energy. Therefore significant amounts of D could
only be produced when the temperature of the Universe dropped below
TBBN ≈ 70 keV. At that point the hight energy photons, which could dis-
associate the D, became rare enough, allowing for heavier nuclei to be
formed through fusion. At approximately the same time neutrons de-
coupled from primordial plasma and started decaying, putting an upper
limit on the amount of D that could have been produced. The resulting
abundances of all nuclei therefore strongly depend on the exact timing of
neutron freeze-out and ηB, which is related to the temperature when D
production became effective.

The existence of sterile neutrinos could effect the process of BBN in
multiple ways. First of all, active neutrinos distribution could deviate
from the thermal spectrum due to their production is sterile neutrino de-
cays. This would effect proton and neutron abundances, which are in equi-
librium defined by the following processes

n + e+ ↔ ν̄e + p+

n + νe ↔ p+ + e− (5.1)

As a result, the produced amount of D (and subsequently all other nuclei)
would change, making BBN inconsistent with the observations. Similarly,
if sterile neutrinos would have decayed when the low energy active neutri-
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5.2 Resonant leptogenesis 45

nos was already decoupled, they would have heated the equilibrium part
of plasma and again spoil BBN predictions. Additionally, sterile neutrinos
could influence the thermal history of the Universe by changing its energy
density, which would have an effect on the timing of neutron freeze-out
and D production. All of these problems are avoided if sterile neutrino
lifetimes are τ ≤ 0.1s [25]. In this way they would decay early enough
for their effects to be washed out by thermal equilibrium before BBN took
place.

5.2 Resonant leptogenesis

The origin of BAU poses an open question to modern cosmology and par-
ticle physics. In 1967 A. Sakharov [27] established three conditions, which
need to be fulfilled in order for the Universe to generate baryon asymme-
try. They are

1. Baryon number B must be violated

2. C and CP symmetry must be violated

3. The asymmetry must be produced out of thermal equilibrium

All of these conditions are fulfilled within the SM, however there is no
know mechanism that could produce the observed amount of BAU. To
be more precise, the experimentally measured Higgs mass excludes first-
order phase transition which is needed for departure from thermal equi-
librium. Additionally, the CP violating effects in the SM are too small
to generate enough asymmetry to explain the observations. The non-
conservation ob B in the SM is only possible through anomalous elec-
troweak field configurations, known as sphalerons. They allow the sum
of lepton and baryon number, (L + B), to be violated, while (L − B) re-
mains conserved. Sphalerons can occur at temperatures above Tsph ≈ 100
GeV, therefore baryon asymmetry could have been generated through lep-
ton asymmetry at T ≥ Tsph. This lead to different proposed mechanisms
of baryogenesis through leptogenesis, among which is also the resonant
leptogenesis. It is applicable for the considered case of two sterile neutri-
nos with nearly degenerate masses in O(GeV) [3, 4]. Sterile neutrinos are
assumed to be first produced at reheating, after the cosmic inflation, like
all SM particles. However, their production rate must be small due to their
weak coupling and therefore they would need some time to enter thermal
equilibrium with the surrounding plasma. If sterile neutrinos were out

Version of June 30, 2015– Created June 30, 2015 - 13:13

45



46 Cosmological constraints

of thermal equilibrium all the way down to Tsph, then the coherent oscilla-
tions between the two states could produce lepton asymmetry. This lepton
asymmetry could be then partly converted in baryon asymmetry through
sphalerons. If sterile neutrinos would equilibrate before Tsph all the gen-
erated asymmetry would be washed out by thermal equilibrium, which
restricts sterile neutrinos to O GeV range. Additionally, sterile neutrinos
could introduce an extra source of CP violation in the SM model. In their
raw form this effects are again too small to explain the observed value of
ηB, however they can be enhanced if the neutrinos are mass degenerate.
More precisely, the frequency of oscillations between the heavy neutrino
states ω is proportional to their mass difference ∆M. If the parameters are
tuned, so that ω ≈ H(TB), where H(TB) is the Hubble expansion rate dur-
ing baryogenesis, maximum baryon asymmetry can be produced, which
may be orders of magnitude larger then the observed value. Therefore
sterile neutrino masses and their coupling strengths can be constrained, if
one assumes the BAU was generated through resonant leptogenesis. Such
mechanism puts a lower bound on sterile neutrino lifetimes, while upper
bound can be obtained through the see-saw mechanism and BAU con-
straints on z parameter, which appears in Equations (2.12) and (2.13). More
thorough discussion and updated constraints of this type can be found in
[5].
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Chapter 6
Conclusions

Sterile neutrino parameter space can be constrained by different experi-
ments and observations, as discussed in previous chapters. Neutrino os-
cillations bound the ratios of the sterile-active mixing angles Tα, defined in
Equation (2.14). Such constraints were obtained, using recently published
neutrino oscillation parameters [8]. The results are presented in Table 3.2,
from where it can be seen that the constraints are slightly stronger then the
ones based on older data. The change is the biggest for Te, which is mainly
due to stronger experimental evidence for θ13 6= 0. The correlations be-
tween the parameters were shown to have a negligible effect, compared
to the uncertainties arising from unconstrained Majorana phases. Direct
detection experiments provide an upper bound on the sterile-active neu-
trino mixing angles. The original interpretation of PS191 [21] and CHARM
[23] experiment did not include neutral-current interactions, which were
accounted for in my analysis. Additionally, the expected number of pro-
duced sterile neutrinos in CHARM experiment was calculated with higher
precision, including also semi-leptonic decays of D mesons, which were
neglected in original analysis. The resulting lower bound on sterile neu-
trino lifetimes, based on original and reinterpreted measurements of mix-
ing angles, are presented in Figure 4.5. From there we can see that the
minimum lifetime for IH gets increased by roughly an order of magnitude,
while NH does not get effected by the re-analysis. Resonant leptogenesis,
combined with the see-saw mechanism, can be used to infer a lower and
upper bound on sterile neutrino lifetime. Furthermore, an independent
upper bound on their lifetimes, τ ≤ 0.1s, can be imposed by BBN, since
they should decay fast enough not to spoil its successful predictions.

All of the constraints, discussed above were combined into an exclu-
sion plot presented in Figure 6.1. It was already shown [25, 26] that sterile
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neutrinos with masses below pion mass (Mπ ≈ 140 MeV) are disfavored.
Recent peak search results [17] further excluded most of the parameter
space below 300 MeV for NH, while for IH all MN ≤ 300 MeV are dis-
favored. For higher masses the strongest constraints come from resonant
leptogenesis and see-saw mechanism, since the experimental bounds in
that range are much weaker. This will hopefully change in the near fu-
ture with next generation of accelerator experiments. The most promising
is the proposed Search for Hidden Particles (SHiP) [29] at the CERN SPS
beam. It is expected to probe most of the unrestricted parameter space up
to MN ≈ 2 GeV. This range is phenomenologically the most interesting,
since it coincides with all other lepton masses, however sterile neutrino
masses could be much larger.
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Figure 6.1: The combined bounds on sterile neutrino lifetimes τ as a function of
their mass MN . The blue line represents the lower bounds coming from direct
detection experiments and yellow line the upper bounds from BBN. The lower
bound, derived purely from resonant leptogenesis is marked green, while the
upper bound inferred from BAU and see-saw constraints is marked red. The top
plot is for normal and bottom one for inverted hierarchy.

Version of June 30, 2015– Created June 30, 2015 - 13:13

49





Appendix A
Chi-squared test

The χ2 test is a statistical hypothesis tests, which us tells how well does a
certain hypothesis (i.e. theoretical prediction) fit the observational data. In
case of neutrino oscillations the theoretical predictions vary as we change
the oscillation parameters allowing us to find a set, which fits the best
to the measurements. Furthermore, through the χ2 distribution we can
evaluate the confidence level (CL) of a certain set of parameters.

Having a set of N observables with corresponding experimental values
{Rexp

n }, theoretical predictions {Rthe
n } and uncorrelated errors {un} and K

correlated errors {ck
n} from independent sources, where n ∈ [1, N] and

k ∈ [1, K], we can evaluate the χ2 function in the following way

χ2 =
N

∑
n,m=1

(Rexp
n − Rthe

n )(σ2
nm)−1(Rexp

m − Rthe
m )

σ2
nm = δnmunum +

K

∑
k=1

ck
nck

m (A.1)

This is the so called covariance approach of calculating the χ2. There exists
also the pull approach, however it can be shown the two are strictly equal
[30]. The pull approach turns out to be more useful in practice, since it is
less computational demanding and it allows splitting χ2 into the contri-
butions from residuals of the observable and of the systematics. In order
to calculate it, we first introduce set of new Gaussian variables {ξk} and
preform a shift of the difference between measurements and theoretical
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predictions by ξkck
n and then minimize the χpull with respect to {ξk}

Rexp
n − Rthe

n → Rexp
n − Rthe

n −
K

∑
k=1

ξkck
n

χ2
pull = min

{ξk}

[
N

∑
n=1

(Rexp
n − Rthe

n −∑K
k=1 ξkck

n)2

un
+

K

∑
k=1

ξ2
k

]
(A.2)

This gives us a set of ”pulls” of systematics {ξ̄k}, for which χ2 is mini-
mal. We can now rewrite the χ2, by splitting it into a contribution from
observation and systematics residuals

x̄n =
Rexp

n − (Rthe
n + ∑K

k=1 ξ̄kck
n)

un

χ2 =
N

∑
n=1

x̄2
n +

K

∑
k=1

ξ̄2
k = χ2

obs + χ2
sys (A.3)

In case of neutrino oscillations experiments the rate of neutrino detec-
tion is usually measured. The expression for theoretical prediction of the
event rate depends on the type of experiment and detection methods, but
in general takes the following form

Rthe
n (p) =

∫ Emax

Emin

dE Φν(E)σ(E)Pνα→νβ
(E|p)

p = (θ12, θ13, θ23, δCP, ∆m2
21, ∆m2

31) (A.4)

where Φν(E) is the neutrino flux, σ(E) the process cross-section (here the
efficiency of detector is included in σ) and Pνα→νβ

(E|p) is the oscillation
probability between the relevant neutrino flavors. All of these quantities
generally depend on energy E, while the oscillation probability also de-
pends on the values of the oscillation parameters, collected in p.

Using the above allows us to evaluate the χ2 function. The global best
fit is given by minimization with respect to all parameters p

χ2
global = min

p
χ2(p) (A.5)

The real advantage of using the χ2 test becomes clear when we ask our-
selves, what are the certainty intervals for the oscillation parameters. They
can be determined by looking at the deviation of χ2 for some particular
parameters from the global best fit value

∆χ2(p) = χ2(p)− χ2
global (A.6)

52
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∆χ2 can be then related to confidence levels through the χ2
k distribution

with the corresponding number of degrees of freedom k. We are often
interested in the certainty interval of only a few of the six oscillation pa-
rameters. These can be obtained by marginalizing χ2 with respect to the
parameters we are not interested in

χ2({pi}) = min
{pj}6∈{pi}

χ2(p)

∆χ2({pi}) = χ2({pi})− χ2
global (A.7)
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Appendix B

Scattering processes involving
sterile neutrino

Sterile neutrinos N are coupled to other SM only through mixing with
active neutrinos να. Therefore, all scattering processes involving sterile
neutrinos will consist of mixing between N and να or ν̄α, for which the
probability is proportional to ϑ2

α. Other parts of the scattering processes
can be computed using the ordinary perturbation theory for weak inter-
actions. Since sterile neutrinos are expected to be heavy and they have
no conserved quantum charge they must be unstable particles. Fermi the-
ory is used to determine the decay width of two and three body decays
of sterile neutrinos, which are important for correct interpretation of ex-
perimental searches. Additionally, branching ratios for sterile neutrino
production in pure leptonic and semi-leptonic decays of mesons are eval-
uated. The semi-leptonic decays were usually neglected in the analysis
of experiments, therefore it allows for stronger bounds to be imposed on
sterile-active neutrino mixing angles.
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56 Scattering processes involving sterile neutrino

B.1 Sterile neutrino decays

B.1.1 Three body decay modes

The most important three body decays of sterile neutrinos are the decays
into three leptons of the SM. The possible scatterings are

N → ναν̄βνβ (B.1)

N → l−α l+β νβ (B.2)

N → ναl−β l+β (B.3)

The calculations of decay widths for these processes are similar, however
decay (B.1) is somewhat easier to compute, since one can neglect the active
neutrino masses. In what follows I will reproduce some of the results for
decay width given in [31], beginning with process depicted in Figure B.1.
To do this one needs to consider two distinct cases, one where α = β and
the other, where α 6= β.

N(p) να

να(p′)

Z(q)

ν̄β(k)

νβ(k
′)

ϑα

Figure B.1: The Feynman diagram of the three body N → ναν̄βνβ decay

Lets first consider the α 6= β process. The amplitude for the process is

iMα 6=β = ϑαūs(p′)
(
− ig

2 cos ϑW
γµPL

)
us′(p)

·
(
− igµν

q2 −M2
Z

)
ūr(k)

(
− ig

2 cos ϑW
γµPL

)
vr′(k′)

=
√

2iGFϑα

(
ūs(p′)γµPLus′(p)

) (
ūr(k)γµPLvr′(k′)

)
(B.4)
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B.1 Sterile neutrino decays 57

In the second line we assumed that sterile neutrino is much lighter then
the Z0 boson, i.e q � MZ, and used

√
2GF = ( g

2MZ cos ϑW
)2. The averaged

scattering probability is then〈
|Mα 6=β|2

〉
=

1
2 ∑

s
∑

s′,r,r′
|Mα 6=β|2

= G2
Fϑ2

α ∑
s′,r,r′

∑
s

(
ūs(p′)γµPLus′(p)ūs′(p)γνPLus(p′)

)
·
(

ūr(k)γµPLvr′(k′)v̄r′(k′)γνPLur(k)
)

= G2
Fϑ2

αTr
[

/p′γµ
/pγνPL

]
Tr
[
/kγµ /k′γνPL

]
= 4G2

Fϑ2
α

(
p′µ pν + p′ν pµ − gµν(p′ · p) + iεαµβν p′α pβ

)
·
(

kµk′ν + kνk′µ − gµν(k · k′) + iεσµρνkσk′ρ
)

= 16G2
Fϑ2

α(p′ · k)(p · k′) (B.5)

To obtain the decay rate, we can use the standard three body decay
ansatz [32]

dΓ =
1

16M2(2π)5

〈
|M|2

〉
|p∗1 ||p3|dm12dΩ∗1dΩ3

|p∗1 | =
[
(m2

12 − (m1 + m2)2)(m2
12 − (m1 −m2)2)

]1/2

2m12
=

m12

2

|p3| =
[
(M2 − (m12 + m3)2)(M2 − (m12 −m3)2)

]1/2

2M
=

=
mN

2
(1− m2

12
m2

N
) (B.6)

In (B.6) M stands for the mass of initial particle, which is in our case
the sterile neutrino mass mN, while the masses of the active neutrinos
(m1, m2, m3) are negligible. m12 is defined as m2

ij = p2
ij = (pi + pj)2, where

i and j are the indexes of the particles produced by the decay. By choos-
ing p1 = p′, p2 = k and p3 = k′ and moving to the CMS of the decaying
particle we can rewrite the result of (B.5) using the following relations

m2
12 = (p1 + p2)2 = (p′ + k)2 = p′2 + k2 + 2p′ · k = 2p′ · k

⇒ p′ · k =
m2

12
2

(B.7)

p · k′ = mN|k′| = mN|p3| =
m2

N
2

(1− m2
12

m2
N

) (B.8)
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58 Scattering processes involving sterile neutrino

This yields

〈
|Mα 6=β|2

〉
= 4G2

Fϑ2
αm2

Nm2
12(1− m2

12
m2

N
) (B.9)

Since the expression B.9 depends solely on m12 the space angle integrals
become trivial, i.e.

∫
dΩ∗1 =

∫
dΩ3 = 4π. Using the above, the expression

for decay width yields

dΓα 6=β =
G2

FmN

16(2π)5 ϑ2
αm3

12(1− m2
12

m2
N

)2dm12dΩ∗1dΩ3

Γα 6=β =
G2

FmN

4(2π)3 ϑ2
α

∫ mN

0
m3

12(1− m2
12

m2
N

)2dm12

=
G2

Fm5
N

768π3 ϑ2
α (B.10)

In the case where α = β we get interference of two indistingishable
processes, namely the one shown in Figure B.1 and analogous one, where
να(p′) and νβ(k′) are interchanged. The scattering amplitude is then the
sum of the two processes (here it is important to note that the amplitudes
come with a different sign), written out explicitly

iMα=β = iM1 + iM2

=
√

2iGFϑα

[(
ūs(p′)γµPLus′(p)

) (
ūr(k)γµPLvr′(k′)

)
−
(

ūr(k)γµPLus′(p)
) (

ūs(p′)γµPLvr′(k′)
)]

(B.11)

The averaged scattering probability is then

〈
|Mα=β|2

〉
=

1
2 ∑

s
∑

s′,r,r′
|Mα=β|2

=
1
2 ∑

s
∑

s′,r,r′

(
|M1|2 −M1M†

2 −M†
1 M2 + |M2|2

)
(B.12)

At this point we can simplify the calculation, by realizing that the |M1|2
and |M2|2 terms yield the same result as the |Mα 6=β|2 (with corresponding
substitutions of momenta), so we only need to consider the cross terms,
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B.1 Sterile neutrino decays 59

M1M†
2 and M†

1 M2. The averaged scattering probability for them is

〈
|Mcross|2

〉
=

1
2 ∑

s
∑

s′,r,r′

(
M1M†

2 + M†
1 M2

)
= −G2

Fϑ2
α ∑

s
∑

s′,r,r′

[(
ūs(p′)γµPLus′(p)ūs′(p)γνPLur(k)

· ūr(k)γµPLvr′(k′)v̄r′(k′)γνPLus(p′)
)

−
(

ūr(k)γµPLus′(p)ūs′(p)γνPLus(p′)

· ūs(p′)γµPLvr′(k′)v̄r′(k′)γνPLur(k)
)]

= 2G2
Fϑ2

α

(
Tr
[

/p′/kγν
/p/k′γνPL

]
+ Tr

[
/k /p′γν

/p/k′γνPL
])

= 8G2
Fϑ2

α(p · k′)
(
Tr
[

/p′/k PL
]
+ Tr

[
/k /p′PL

])
= 32G2

Fϑ2
α(p · k′)(p′ · k) (B.13)

In this calculation I used the following properties of the γ-matrices [33]

γαγµγνγργα = −2γργνγµ

γαγµγνγα = 4gµν

Tr [γµγν] = 4gµν

Tr
[
γµγνγ5

]
= 0 (B.14)

The result (B.13) is almost identical to the one we got for the α 6= β case;
the averaged squared matrix element is bigger by a factor 2, however there
is an additional factor of 1

2! in (B.6) (the symmetry factor of the process),
therefore the decay widths must be the same. The total decay width for
α = β therefore equals to

Γα=β =Γ(|M1|2) + Γ(|M2|2) + Γ(|Mcross|2)

=3Γα 6=β =
G2

Fm5
N

256π3 ϑ2
α (B.15)

The total decay width for sterile neutrino decaying in three active neutri-
nos is then

Γ(N → ναν̄βνβ) = Γα 6=β + Γα=β =
G2

Fm5
N

192π3 ϑ2
α (B.16)
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60 Scattering processes involving sterile neutrino

The decay widths for other three body decays are [31]

Γ(N → l−α 6=βl+β νβ) =
G2

Fm5
N

192π3 ϑ2
α(1− 8x2 + 8x6 − x8 − 12x4 log x2)

x =
max[mlα , mlβ

]

mN
(B.17)

Γ(N → ναl+β l−β ) =
G2

Fm5
N

192π3 ϑ2
α

[
(C1(1− δαβ) + C3δαβ)

·
(
(1− 14x2 − 2x4 − 12x6)

√
1− 4x2 + 12x4(x4 − 1)L

)
+4(C2(1− δαβ) + C4δαβ)

·
(

x2(2 + 10x2 − 12x4) +
√

1− 4x2 + 6x4(1− 2x2 + 2x4)L
)]

L = log

1− 3x2 − (1− x2)
√

1− 4x2

x2
(

1 +
√

1− 4x2
)

 , x =
ml
mN

(B.18)

B.1.2 Two body decay modes

N(p) να

να(k)

Z

π0(q)

ϑα

Figure B.2: The Feynman diagram of the two body N → π0 να decay

First let us consider decay of sterile neutrinos into neutral meson π0 and
an active neutrino να, depicted in Figure B.2. The scattering amplitude for

60
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B.1 Sterile neutrino decays 61

the process is

iM = ϑαūs(k)
(
− ig

2 cos ϑW
γµPL

)
us′(p)

(
− igµν

q2 −M2
Z

)
(
− ig

2
√

2 cos ϑW
γµPL

)
fπqµ

= −iGF fπϑα

(
ūs(k)γµPLus′(p)

)
qµ (B.19)

from where we can calculate its average amplitude squared〈
|M|2

〉
=

1
2 ∑

s,s′
|M|2

=
G2

F f 2
π

2
ϑ2

α ∑
s,s′

(
ūs(k)γµPLus′(p)ūs′(p)γνPLus(k)

)
qµqν

=
G2

F f 2
π

2
ϑ2

αTr [/kγµ(/p + mN)γνPL] qµqν

= G2
F f 2

πϑ2
α

(
2(p · q)(k · q)− (k · p)q2

)
(B.20)

We can simplify this expression by using that p2 = m2
N, q2 = m2

π, k2 = 0
and the following kinematic equations

p · q = p · (p− k) = m2
N − p · q

k · q = k · (p− k) = p · k
k · q = (p− q) · q = p · q−m2

π

⇒ p · k = q · k =
1
2
(m2

N −m2
π)

⇒ p · q =
1
2
(m2

N + m2
π) (B.21)

The averaged scattering probability then takes the following form〈
|M|2

〉
=

G2
F f 2

π

2
ϑ2

αm4
N(1− m2

π

m2
N

) (B.22)

To obtain the decay rate, I used the standard two-body decay ansatz [32].

dΓ =
1

32π2 〈|M|
2〉 |p1|

M2 dΩ (B.23)

E1 =
M2 −m2

2 + m2
1

2M
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62 Scattering processes involving sterile neutrino

In our case the initial particle is the sterile neutrino, therefore M = mN,
and we can choose the decay particle 1 to be the neutrino να, so |p1| ≈
E1 = mN

2 (1− m2
π

m2
N
). Since 〈|M|2〉 is a constant, the space angle integral is

simply
∫

dΩ = 4π. Plugging this in (B.23) we obtain

Γ(N → π0να) =
G2

F f 2
π

32π
ϑ2

αm3
N(1− m2

π

m2
N

)2 (B.24)

N(p) να

l−α (k)

W+

H+(q)

ϑα

Figure B.3: The Feynman diagram of the two body N → H+ l−α decay

Now let us consider decay of sterile neutrinos into a charged meson
and a lepton, depicted in Figure B.3. The scattering amplitude for the
process is

iM =ϑαūs(k)
(
− ig√

2
γµPL

)
us′(p)

(
− igµν

q2 −M2
W

)(
g

2
√

2

)
VH fπqµ

=−
√

2GF fHVHϑα

(
ūs(k)γµPLus′(p)

)
(B.25)
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B.1 Sterile neutrino decays 63

from where we can calculate its average amplitude squared〈
|M|2

〉
=

1
2 ∑

s,s′
|M|2

= G2
F f 2

H|VH|2ϑ2
α ∑

s,s′

(
ūs(k)γµPLus′(p)ūs′(p)γνPLus(k)

)
qµqν

= G2
F f 2

H|VH|2ϑ2
αTr [(/k + ml)γµPL(/p + mN)γνPL] qµqν

= G2
F f 2

H|VH|2ϑ2
α (Tr [/kγµ

/pγνPL] + mlmNTr [γµγνPRPL]) qµqν

= G2
F f 2

H|VH|2ϑ2
α2
(

kµ pν + kν pµ − gµν p · k + iεαµβνkα pβ

)
qµqν

= 2G2
F f 2

H|VH|2ϑ2
α

(
2(p · q)(k · q)− (k · p)q2

)
(B.26)

Similarly as in the case of decay into π0, we can simplify this expression
by using that p2 = m2

N, q2 = m2
H, k2 = m2

l and the following kinematic
equations

p · q = p · (p− k) = m2
N − p · q

k · q = k · (p− k) = p · k−m2
l

k · q = (p− q) · q = p · q−m2
H

⇒ p · q =
1
2
(m2

N + m2
H −m2

l )

⇒ p · k =
1
2
(m2

N + m2
H + m2

l )

⇒ q · k =
1
2
(m2

N −m2
H −m2

l ) (B.27)

The averaged scattering probability then takes the following form

〈
|M|2

〉
= G2

F f 2
H|VH|2ϑ2

αm4
N

·
(1− m2

l
m2

N

)2

− m2
H

m2
N

(
1 +

m2
l

m2
N

) (B.28)

Same as before, we use the standard two-body decay ansatz (B.23) to cal-
culate the decay width. In this case both of the produced particles are
massive, therefore

|p1| =
mN

2

√
(1− (mH −ml)2

m2
N

)(1− (mH + ml)2

m2
N

) (B.29)
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64 Scattering processes involving sterile neutrino

Finally we obtain

Γ(N → H+l−α ) =
G2

F f 2
H|VH|2
16π

ϑ2
αm3

N

(1− m2
l

m2
N

)2

− m2
H

m2
N

(
1 +

m2
l

m2
N

)
·

√√√√(1− (mH −ml)2

m2
N

)(
1− (mH + ml)2

m2
N

)
(B.30)

with the relevant constants and CKM matrix elements VH given in Ta-
ble B.1.

H π+ K+ D+ Ds B+ Bs Bc
fH [MeV] 130 159.8 222.6 280.1 190 230 480

VH Vud Vus Vcd Vcs Vub Vus Vcb
Table B.1: Values of constants and relevant CKM matrix elements for the N →
H+l−α decays.

Analogously to the calculations above we can obtain the decay widths
of other two body decays [7]

Γ(N → ηνα) =
G2

F f 2
η

32π
ϑ2

αm3
N

(
1−

m2
η

m2
N

)2

Γ(N → η′να) =
G2

F f 2
η′

32π
ϑ2

αm3
N

(
1−

m2
η′

m2
N

)2

Γ(N → ρ0να) =
G2

Fg2
ρ

16π
ϑ2

α

m3
N

m2
ρ

(
1 + 2

m2
ρ

m2
N

)(
1−

m2
ρ

m2
N

)2

Γ(N → ρ+l−α ) =
G2

Fg2
ρ|Vud|2
8π

ϑ2
α

m3
N

m2
ρ

(1− m2
l

m2
N

)2

+
m2

ρ

m2
N

(
1 +

m2
l − 2m2

ρ

m2
N

)
·

√√√√(1− (mρ −ml)2

m2
N

)(
1− (mρ + ml)2

m2
N

)
(B.31)

where fη = 1.2 fπ, fη′ = −0.45 fπ, gρ = 0.102 GeV2.
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B.2 Sterile neutrino production

B.2.1 Pure leptonic meson decays

In all the considered experiments, sterile neutrinos were produced in me-
son decays. The dominant processes are two body leptonic and three body
semi-leptonic decays of pseudo-scalar mesons. Let us first consider the
two body decay leptonic decay of a charged pseudo-scalar meson H+ as
presented in Figure B.4. It can be immediately seen that the process is
symmetric to the two body decay of a sterile neutrino into charged meson
and lepton, evaluated in Appendix B.1.2.

H+(p) W+

l+α (k)

να

N(q)

ϑα

Figure B.4: The Feynman diagram of the two body H+ → l+α N decay

After analogous calculation the following decay width is obtained

Γ(H+ → l+α N) =
G2

F f 2
H|VH|2
8π

ϑ2
αm3

H

 m2
l

m2
H

+
m2

N
m2

H
−
(

m2
l

m2
H
− m2

N
m2

H

)2


·

√√√√(1− (ml −mN)2

m2
H

)(
1− (ml + mN)2

m2
H

)
(B.32)
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66 Scattering processes involving sterile neutrino

B.2.2 Semi-leptonic meson decays

H+(p)

W+(q)

l+α (k)

να

N(k′)

ϑα

P 0(p′)

|VHP |2

Figure B.5: The Feynman diagram for semi-leptonic decay of pseudo-scalar me-
son H+ → P0 l+α N decay

The computation for three body pseudo-scalar meson decays from Figure
B.5 is somewhat more complicated. It involves the leptonic part, which
is calculable using the Fermi theory, and hadronic part, which involves
the transition of confined quarks. The amplitude for the process takes the
following form [34]

iM =
GFV∗qq′√

2
ϑαūs(k)γµ(1− γ5)us′(k′) · 〈P|q̄′γµ(1− γ5)q|H〉 (B.33)

The hadronic part can be parameterized in the following way

〈P|q̄′γµ(1− γ5)q|H〉 = (p + p′)µ f+(q2) + (p− p′)µ f−(q2) (B.34)

Here f+(q2) and f−(q2) are the form factors, which can be approximated
as

f±(q2) =
f±(0)

1− q2/M2
pol

(B.35)

where f+(0) and f−(0) are constants associated with the decaying meson
and Mpol can be approximated with the mass of nearest resonance to H
with same JP as the hadronic weak current responsible for q → q′ quark
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B.2 Sterile neutrino production 67

transition. After somewhat longer calculation the differential branching
ratio can be shown to equal [31]

dBr(H → P l+α N)
dEN

=
G2

F|Vqq′ |2
64π3τH M2

H
ϑα

·
∫

dq2
[

f 2
−(q2) ·

(
q2(M2

N + M2
l )− (M2

N −M2
l )

2
)

+ 2 f+(q2) f−(q2)
(

M2
N(2M2

H − 2M2
H − 4EN MH −M2

l + M2
N + q2) + M2

l −M2
N − q2

)
+ f 2

+(q2)
(
(4EN MH + M2

l −M2
N − q2)(2M2

H − 2M2
H − 4EN MH −M2

l −M2
N − q2)

−(2M2
H + 2MH − q2)(q2 −M2

N −M2
l )
)]

(B.36)

Here Vqq′ is the CKM matrix element corresponding to the quark transition
and τH the H+ meson’s lifetime.
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