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Abstract

Phase-based conductivity mapping using MRI data contains an
assumption of locally constant complex permittivity and use of a

differential operator which result in significant inaccuracies at tissue
boundaries and amplification of noise in data. This work focuses on the

implementation of an iterative model-based nonlinear optimization
algorithm that aims to surpass these rising inaccuracies. The algorithm is
designed to optimize conductivity maps using phase data acquired from
MRI. In addition to optimization, the algorithm focuses on regularization
which further improves the optimized outcome of the conductivity maps.

Successful results are demonstrated using both simulated as well as
phantom data. The comparison between results of a conventional

phase-based conductivity mapping and the iterative algorithm shows
improved accuracy for the latter. In addition, the model-based algorithm

possesses potential for reduced acquisition time as it is capable of
reconstructing accurate conductivity maps with relatively low SNR. In

the future, experiments on in-vivo data can be performed. Additionally,
to improve the accuracy of the conductivity maps even further,

implementation of optimal methods to determine regularization
parameters and regularization functions is possible.
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Chapter 1
Introduction

Magnetic Resonance Imaging or MRI is an imaging technique which probes
the spin dynamics of atoms within the bodies using strong magnetic fields.
These dynamics can then be detected and the information can be exploited
to produce images of the soft tissue throughout the entire body. The main
advantage of the technique is that it is practically harmless for the patients
as the radiation used is non-ionizing. Initially named Nuclear Magnetic
Resonance (NMR), the MRI was later introduced to its current name as it
revoked unease in the patients [1].

MRI was developed by Paul Lauterbur together with Peter Mansfield
in 1970s nearly 40 years after the nuclear resonance was first observed by
Isidor Rabi [2]. Along with the imaging of the different types of tissue in
the human body, it was quickly discovered that characterization of the di-
electric tissue properties with the data from the MRI system was possible
[3]. These dielectric properties, mainly, are the electrical characteristics of
tissue called permittivity and conductivity which depend on water con-
tent, cell size and the mobility of ions in the tissue [4].

In 1991, first publications were made with relevant results on measur-
ing the electrical properties exploiting radiofrequency magnetic fields in
MRI [5]. However, it was not until 2009 that the concepts of reconstruct-
ing electrical properties from radiofrequency field data were advanced [6].
Such concepts to reconstruct conductivity maps are a part of electrical
properties tomography (EPT) branch of studies which aims to establish
effective and accurate ways to create conductivity maps of different types
of tissue.

EPT using data from MRI has been demonstrated in phantoms, volun-
teers and limited patient studies [7,8]. Main applications of the conduc-
tivity maps are hyperthermia treatment planning, transcranial magnetic

Version of November 1, 2019– Created November 2, 2019 - 00:01

7



8 Introduction

stimulation and transcanial current stimulation, specific absorption rate
calculations, and diagnostics [9,10,11,12]. The absorption rate calculation
is particularly important as it is one of the key factors in high field MRI ap-
plications. In the diagnostic context, it has been shown that conductivity
increases in tumor cells which adds the contrast for tumor detection [4,13].

The EPT, thus far, involves assumptions which violate inhomogeneities
of the electrical properties within the tissue and the use of the differen-
tial operators in calculations which amplifies the impurities in the data.
Therefore, the main disadvantages in the EPT have been rising bound-
ary errors as well as noise amplification effects resulting in relatively low
signal-to-noise ratio (SNR) [8]. There have been several proposed methods
to solve these issues [8,14,15]. A few attempts concerning integral opera-
tors have been made to avoid the homogeneous assumptions. However,
these methods suffer from an increased computational complexity while
solving either permittivity or conductivity from combined Maxwell equa-
tions involving vortices of the complex data [16,17].

In this work, we focus on the regularized inverse approach as opposed
to forward conductivity mapping approach. The novel method was first
introduced by Kathleen Ropella, et al., in 2016 [9]. The aim of this method
is to reduce the noise amplification factors and minimize the boundary
errors. We use the method to program an algorithm designed to recon-
struct three dimensional conductivity maps from numerical simulations
and MRI scan data on phantoms.

In the future, additional experiments of the algorithm of the inverse
approach can be made with in-vivo data.

8
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Chapter 2
Mathematical & Physical concepts

In this chapter, we introduce several mathematical as well as physical con-
cepts which we will discuss briefly yet thoroughly. We will limit the num-
ber of the concepts to only the ones that are relevant and helpful for our
work. For the purpose of simplicity, we leave the proofs of the follow-
ing concepts and their identities for the reader to find in the references for
further reading.

2.1 Mathematical concepts

2.1.1 Convolution

In computer science and image processing within the medical world con-
cerning mapping different properties in various subjects and patients, deep
knowledge of mathematical analysis is required in which, more precisely,
the functional analysis is focused on [18]. Medical images as well as di-
verse range of filters required to enhance or clear out these images can be
represented as matrices or, more accurately, as functions. These filters and
images must be combined together in order to produce a new image. In
other words, two functions must be combined in a way so that they pro-
duce a third function. This is done by a mathematical operation known as
convolution which is a vital element in the field of signal processing [19].

Convolution can be viewed as the following equation:

h(x) = f (x) ∗ g(x) (2.1)

where f is our input function i.e. our initial image, g is characterization of
the kernel or filter applied to our image and h is the new produced image
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10 Mathematical & Physical concepts

function. Here, the asterisk, ∗, symbolises the convolution operation. In
this operation, the input is decomposed into an infinite number of individ-
ual delta functions each of which produces a shifted and scaled version of
the response to the kernel. The final output is then a summed combination
of all the individual responses.

Due to the dual nature of signals in the field of signal processing, op-
erations can be either continuous or discrete. In both of these cases, each
individual value in the output image is affected by a section of the input
image which is weighted by the kernel response flipped from one side to
another. In the continuous case, the input and the responding filter are
multiplied and integrated over infinite distance while in the the discrete
case, the two are multiplied and summed instead. This can be visualised
by the following equations corresponding to the continuous and the dis-
crete cases, respectively:

h(x) = f (x) ∗ g(x) =
∫ ∞

−∞
f (x− y)g(y)dy, (2.2)

h[n] = f [n] ∗ g[n] =
∞

∑
m=−∞

f [n−m]g[m]. (2.3)

In addition to the information above, we demonstrate algebraic prop-
erties of the convolution. We limit our selection to only the properties that
are relevant for this work.
Commutativity:

f ∗ g = g ∗ f , (2.4)

Associativity with and without a scalar multiplication, respectively:

a( f ∗ g) = (a f ) ∗ g = f ∗ (ag), (2.5)

( f ∗ g) ∗ h = f ∗ (g ∗ h), (2.6)

Distributivity:
f ∗ (g + h) = ( f ∗ g) + ( f ∗ h), (2.7)

Relation with differentiation:

( f ∗ g)′ = f ′ ∗ g = f ∗ g′, (2.8)

Complex conjugation:
f ∗ g = f ∗ g. (2.9)

10
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2.1 Mathematical concepts 11

2.1.2 Fourier transform

In image processing, the Fourier Transform is an important tool. It is used
to decompose an image, which can be described as a function of spatial
coordinates, into a number of sine and cosine components. This, in the
field of image processing, corresponds to moving the input image from its
spatial domain into the spatial frequency domain which can also be called
the Fourier domain. The Fourier domain consists of a set of points each of
which represents a particular spatial frequency contained in the image.

The continuous Fourier Transform (CFT) of a function f (t) which may
be composed of both real and complex components, is defined as follows
[20]:

F(x) = F{ f (t)} =
∫ ∞

−∞
f (t)e−2πitxdt. (2.10)

To observe the reversibility of the transform, another transform with e2πitx

is applied to already existing Fourier Transform which yields the original
function. This is known as the inverse Fourier Transform [21]:

f (t) = F−1{F(x)} =
∫ ∞

−∞
F(x)e2πitxdx. (2.11)

The exact definitions of the CFT may vary in literature, mainly by drop-
ping 2π from the exponent and adding a coefficient in front of the integral
to honour energy conservation principles. However, for simplicity of no-
tation, we stick to the definitions above.

In the realm of digital images, the discrete Fourier Transform (DFT) is
used as the images consist of a number of discrete pixels and not continu-
ous signals. The DFT and the inverse DFT of an N-element-long sequence
{xn} := x0, x2, ..., xN−1 are defined, respectively, as:

Xk =
N−1

∑
n=0

xne−2πikn/N, (2.12)

xn =
1
N

N−1

∑
k=0

Xke2πikn/N. (2.13)

Furthermore, as the images are hardly ever one dimensional, we define
the DFT and inverse DFT for an N-dimensional case, respectively:

Xa,...,b =
N−1

∑
n=0

...
M−1

∑
m=0

xn,...,me−2πi(an/N+...+bm/M), (2.14)
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12 Mathematical & Physical concepts

xn,...,m =
1
N

...
1
M

N−1

∑
a=0

...
M−1

∑
b=0

Xa,...,be2πi(an/N+...+bm/M). (2.15)

The DFT converts a sequence of equally spaced samples of a function into
a new sequence of samples which are equally spaced resulting in a se-
quence of the same length. This means that the DFT includes all the fre-
quencies forming the image and therefore it is a direct reason why the DFT
produces a new image in the frequency domain without changing its size
[22].

In the image reconstruction and analysis, the explicit calculation of the
DFT can be computationally rather heavy even when the exponential fac-
tors are precomputed. Henceforth, in this work, we will use the computa-
tionally more efficient fast Fourier Transform (FFT) which is an algorithm
that can compute DFT and inverse DFT. We will not specify any of the FFT
algorithms in this work as the functions for the FFT are easily accessible
in nearly every mainstream programming language and the sole purpose
of understanding of the FFT, in this work, is its ability of moving a func-
tion into the Fourier domain faster than the calculation of the regular DFT.
Nonetheless, a list of various FFT algorithms and their descriptions can be
found in Ref. [23].

2.1.3 Convolution theorem

Now that both the Fourier Transform and the Convolution have been ex-
plained, we can move on to the convolution theorem which states that un-
der appropriate circumstances, the Fourier Transform of the convolution
of two signals or images equals an operation of pointwise product of both
images in the Fourier domain. This can be elucidated with the following
equation:

F{ f ∗ g} = F{ f } · F{g}, (2.16)

which showcases that a convolution in one domain is just a pointwise
product in the Fourier domain. This can obviously be reversed in which
case we get that a pointwise product is a convolution in another domain:

F{ f · g} = F{ f } ∗ F{g}. (2.17)

These two properties do not change under the operation of the inverse
Fourier Transform as they only depend on the fact that the domain must
change. The direction of the domain change is irrelevant and hence we can
write out nearly identical properties with the inverse Fourier Transform:

F−1{ f ∗ g} = F−1{ f } · F−1{g}, (2.18)

12
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2.1 Mathematical concepts 13

F−1{ f · g} = F−1{ f } ∗ F−1{g}. (2.19)
The convolution theorem is useful for this work mostly from the com-

putational point of view as the pointwise multiplication is obviously much
faster to perform than a lengthy decomposition and assembly of individ-
ual delta functions that produce various versions of responses required for
the complete convolution.

2.1.4 Finite difference

Boundary value problems are frequent in image processing which is why
different finite difference methods are commonly used to approximate
derivatives in order to obtain numerical solution of the differential equa-
tions. One such finite difference takes the mathematical expression of
f (x + b) − f (x + a). Since the method presents an approximation of a
derivative, the term finite difference approximation is also often used. The
relation of the methods with derivatives can be found in Ref. [24].

Depending on the applications used, three forms of finite differences
are commonplace. Forward ∆h[ f ](x), Backward ∇h[ f ](x), and Central
δh[ f ](x) differences on an arbitrary function are displayed in the equa-
tions (2.20)− (2.22), respectively [25].
Forward difference shows the difference value in the form of subtraction
between a function value at a selected point and another function value at
a new point with added spacing h:

∆h[ f ](x)
h

=
f (x + h)− f (x)

h
. (2.20)

Backward difference shows a value of the difference between function val-
ues at a selected point and at a point x− h instead of x + h:

∇h[ f ](x)
h

=
f (x)− f (x− h)

h
. (2.21)

Finally, in Central difference, a point of interest is taken and two points are
taken around it with equal spacing and then the function values at both of
these points are subtracted:

δh[ f ](x)
h

=
f (x + h)− f (x− h)

h
. (2.22)

The spacing h can be either a variable or a constant depending on the
application. In this work, we operate mainly with discrete functions since,
in the image processing, the function values are spatially restricted by res-
olution values and therefore h will be a constant as it is dependent on
factors of resolution.

Version of November 1, 2019– Created November 2, 2019 - 00:01
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14 Mathematical & Physical concepts

Figure 2.1: Backward, Central and Forward finite differences on a function at a
selected point x and a random spacing value h. Out of the three approximations,
the Central difference is the most accurate [26]. Plot obtained and modified from
https://www.wikiwand.com/en/Finite difference, 16/09/2019.

2.2 Physical concepts

2.2.1 Principles of MRI and SE scan

In order to explain the type of data we acquire, we need to have a general
description of the techniques and physics behind the source of images. In
this project, the data is obtained from a clinical imaging modality called
magnetic resonance imaging (MRI).

MRI is non-invasive imaging technology which creates a spatial map
of nuclei of hydrogen atoms (mostly in water and lipids). The images can
be acquired in both two-dimensional as well as three-dimensional geome-
tries. The intensity of the image depends on the density of protons in a
bounded spatial area [27]. Using a strong magnetic field and radiofre-
quency current pulses directed to go through the object, the MRI alters the
spin directions of the protons within the tissue of the object. The relaxation
times, i.e. the time it takes the spins to point in their initial directions, can
be obtained which will provide information about the physical properties
of the tissue.

14
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2.2 Physical concepts 15

Figure 2.2: Three major parts of the MRI system. Superconducting magnet, RF
transmitter and receiver, and, for simplicity, only one gradient coil.

The MRI system consists of three major parts: a superconducting mag-
net, radiofrequency transmitter and receiver, and three different magnetic
field gradient coils. The simplified schematic image of the system can be
found in Figure 2.2. Clinical field strengths of, B0, are 1.5 and 3 T which
are 60 000 and 140 000 times stronger than the earth’s magnetic field, re-
spectively. Research systems at higher field strengths are coming up.

The protons, being charged particles in different types of tissue, can
be thought of as small magnets as they carry spins which are an intrinsic
form of describing an angular momentum, P, characterized by quantum
numbers. Due to this spin, each particle also has a magnetic moment µ
which gives them magnetic properties. The magnetic moment µ is directly
proportional to the magnitude of the angular momentum of the proton:

|~µ| = γ|~P|, (2.23)

where γ is gyromagnetic ratio. While being outside the magnetic field, the
magnitude of each magnetic moment is fixed. However, their orientation
is completely random resulting in the net magnetization M being zero.
When the protons are in the magnetic field, due to the nature of quantum
mechanics, the magnetic moment can have only two quantized values.
These values are the alignments at angles θ = ±54.7◦ with respect to the
direction of the B0 field [27]. The positive value is termed as parallel and
negative as anti-parallel which refer to the z-component of the magnetic
moment µ and to the fact that µ is aligned with respect to the direction of
B0.

When the magnetic moment of the protons is aligned with respect to
B0 at an angle of 54.7◦, the B0 field tries to align the magnetic moment with
itself creating a torque, C, which is a cross product of both magnetic fields
µ and B0:

Version of November 1, 2019– Created November 2, 2019 - 00:01
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16 Mathematical & Physical concepts

(a) (b)

Figure 2.3: (a) Precessing movement of the spins around the B0 field at an angle
θ. (b) The flip of the spin direction to the xy-plane as RF pulse is applied to the
system along x-axis.

~C = ~µ× ~B0 = |µ||B0|sinθk̂, (2.24)

where k̂ is unit vector perpendicular to both ~µ and ~B0. The torque then
forces the protons into the precessing movement around B0. This is due
to the tangential direction of the torque with respect to magnetic moment
shown in Figure 2.3a. The frequency of the precess is directly proportional
to the B0 field:

ω = γ|B0|. (2.25)

This frequency is called Larmor frequency, ω0. Its derivation is irrelevant
for our work but can be found in Ref. [27].

While in the magnetic field, B0, all the protons are precessing in the
parallel or anti-parallel directions creating a net magnetization along the
z-axis parallel to the B0 field. This net magnetization is calculated by the
vector sum of individual components. The magnetization only has the
z-component as the components along the x- and y-axes cancel each other.

The net magnetization can be rotated by applying short radiofrequency
(RF) pulses perpendicular to the static field B0. The magnetic component
of these pulses called B1 field creates a torque that forces the net magneti-
zation to rotate towards the xy-plane without affecting Larmor frequency.
This process is demonstrated in Figure 2.3b. After these energy pulses are
being turned on and off, an electrical signal can be detected due to Fara-
day’s law of induction which states that the varying magnetic flux over

16
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2.2 Physical concepts 17

time induces an electrical voltage. However, these signals do not yet con-
tain any spatial information. In order to gain spatial information, the three
gradient coils are, in turns, switched on to generate magnetic field gradi-
ents along the three axes independently. The Larmour frequency describ-
ing the precess motion of the protons depends on the magnitude of B0 field
and consequently on its gradients in independent directions encoding the
spins spatially [27].

Before the RF pulses are applied, the system is in the equilibrium mag-
netization state with a sole Mz-component. When the pulses are switched
on, they create a non-equilibrium system where both Mx- and My-compo-
nents are non-zero. After the pulses are switched off, the system decays
back into the equilibrium which is characterized by two relaxation times:
spin-lattice, T1, and spin-spin, T2, relaxations. T1 governs only the z-
component of magnetization and T2 governs the x- and y-components.
Relaxation times alter greatly depending on the consistency of the object
which is why they can be used to classify the type of the tissue [27,28,29].

The sequence used to acquire data in this work is called Spin Echo (SE).
In order to explain it, first consider only Mz-component of the net magne-
tization without B1 field in the system. As the first step, an RF pulse is
applied so that it flips the net magnetization to xy-plane without losing
the value in comparison to the initial Mz. This pulse is termed 90 degree
pulse. Due to inhomogeneities in strength of local magnetic field in the
system, some spins speed up and some slow down, as the net moment
precesses. This is what makes the signal decay. Another pulse, a 180 de-
gree pulse, is applied to flip the spins around so that the slower ones are
ahead of the main moment and faster ones are behind. At last, the fast mo-
ments catch up with the main moment, while the main moment catches up
with the slow ones.

In this work, we need the transmit phase data required for conductiv-
ity calculations. This data can be extracted from the measured transceive
phase acquired from SE sequence [27]. This transceive phase is the signal
phase received when measuring at the magnetic center of the RF pulse. In
this work, the transmit phase can be approximated as half of the transceive
phase [9] due to homogeneous assumption of the complex permittivity
which we will discuss in the next chapter. In addition, the signal mag-
nitude is acquired to improve phase-based conductivity reconstructions
[28]. This electrical signal is caused by varying net magnetization. If the
RF pulses are turned off, an alternative electric current at Larmour fre-
quency is generated due to the precessing movement of the magnetic mo-
ment. The application and utilization of these data are explained in detail
in the following chapter.
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Chapter 3
Theory & Methods

In this chapter, we will present, in detail, a theory of phase-based conduc-
tivity mapping using data from magnetic resonance imaging (MRI) appa-
ratus with Helmholtz equation and a model-based approach with regular-
ization proposed by Kathleen Ropella, et al. [9]. This method will be in the
centre of our work, as its main purpose and goal is to create the conductiv-
ity maps using a method involving the inverse Laplacian approach which
should create maps with more accuracy than with the approach that uses
Helmholtz equation.

3.1 Phase-based conductivity mapping

In the highlight of the phase-based conductivity mapping is the complex
permittivity which defines the electrical properties of tissue:

κ := ε− i
(

σ

ω

)
, (3.1)

where ε is permittivity, σ is conductivity, and ω is the resonant angular
frequency introduced in section 2.2 as Larmor frequency. Here, the ma-
terial’s ability to conduct electric current is described by the conductivity
while material’s ability to resist the creation of an electric field within itself
is described by permittivity.

First, by combining Faraday’s and Ampere’s laws from Maxwell equa-
tions, we are able to derive the following relation between the magnetic
flux density, B, and complex permittivity shown in the equation (3.1):

−∇2B =
∇κ

κ
× [∇× B] + ω2µκB, (3.2)
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20 Theory & Methods

where ∇2 is so-called Laplacian operator and µ is permeability which de-
scribes a material’s ability to support the formation of the magnetic field
within itself [9].

Here, we bring out our first assumption that will contribute to inac-
curacies in our conductivity map reconstructions − we assume that the
complex permittivity κ is locally constant (assumption of homogeneity).
This directly results in the gradient of the complex permittivity becoming
zero, and thus:

∇κ

κ
× [∇× B] = 0, (3.3)

which, on its part, drops out the first term on the right hands side in the
equation (3.2). Therefore, our now simplified equation takes the following
form:

−∇2B = ω2µκB. (3.4)

Now, we can relate the magnetic flux density to square of the complex
wave number which is defined as follows [30]:

k2 = µεω2 − iµσω, (3.5)

which gives us the final Helmholtz equation:

∇2B + k2B = 0, (3.6)

which is generally used to reduce the complexity of the analysis after the
separation of variables in physical problems.

The Helmholtz equation can be rewritten with a harmonic magnetic
field and it is valid for each Cartesian component so the magnetic field
can be expressed as the effective magnetic field

B+
1 = (Bx + iBy) = |B+

1 |e
iφ+

, (3.7)

since this transmit radiofrequency (RF) field is used in the MRI [9,30].
Here, φ+ is the phase of the B+

1 field which is affected by the conductivity
of the measured object [13].

Now, we can rewrite the Helmholtz equation in (3.6) in the following
form:

∇2B+
1 + k2B+

1 = 0, (3.8)

The core idea of using the Helmholtz equation for the phase-based con-
ductivity map reconstruction is that both magnitude of the magnetic field

20
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3.1 Phase-based conductivity mapping 21

and its phase are known in order to calculate the conductivity as well as
permittivity of an object.

With the use of the definition of the RF field presented in the equation
(3.7), we can expand the Helmholtz equation into the following form using
product rule:

∇2B+
1

|B+
1 |

+
2∇|B+

1 |eiφ+

|B+
1 |eiφ+ +

∇2eiφ+

eiφ+ = −k2. (3.9)

From the definition of the squared complex wave number in the equa-
tion (3.5), it is almost trivial to specify that conductivity is in the imagi-
nary part of it and therefore solving the conductivity is done by taking the
imaginary part of the expanded Helmholtz equation in (3.9) resulting in

Im
(

2∇|B+
1 |∇eiφ+

|B+
1 |eiφ+ +

∇2eiφ+

eiφ+

)
= σµω, (3.10)

where the first term on the left hand side ∇
2B+

1
|B+

1 |
∈ R and consequently

was dropped out. In addition to the conductivity, it might be already clear
that the EPT using Helmholtz equation can also compute the permittivity
ε using a similar procedure. In order to solve the expanded Helmholtz
equation (3.9) for ε, the real part of the equation must be taken in the simi-
lar fashion as the imaginary part, since the permittivy can be found in the
real part of k2. However, the permittivity is not of great importance to our
work and hence we will not proceed with solving the equation for ε.

In the continuation with the imaginary part in the equation (3.10), the
first term of the left hand side is small enough in comparison to the second
term for us to approximate the equation into the following form [30]:

Im
(
∇2eiφ+

eiφ+

)
≈ σµω. (3.11)

This approximation contributes to a relatively small error in our conduc-
tivity calculation, and we, therefore, choose to neglect it.

What is now left is the expansion of the numerator in order to write
out the solution for the conductivity in as simple form as possible

∇2eiφ+
= i∇(eiφ+∇φ+) = i(eiφ+∇2φ+ +∇eiφ+∇φ+)

= ieiφ+∇2φ+ − eiφ+
(∇φ+)2 (3.12)
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where we have clear distinction between real and imaginary parts which
finally allows us to write the final approximation for the conductivity:

σ ≈ ∇
2φ+

µ0ω
. (3.13)

Here, the permeability was chosen to be a vacuum permeability as it is an
acceptable approximation for the human body [30].

The result is the equation used for the phase-based conductivity map-
ping which is extremely time efficient since the magnitude of the field is
not required at all for the computation. The transmit phase data is ac-
quired from the spin echo (SE) sequence. This method is valid as long as
the curvature of the B+

1 field is small which increases with the strength of
the static magnetic field B0 [13].

The main issues in the Helmholtz-based EPT as well as in the EPT
in general are boundary errors and low signal-to-noise ratio (SNR). The
boundary errors, as the name suggests, arise at the boundaries of scanned
materials due to the assumption that the permittivity is locally constant in
a material while the low SNR arises from the heavy reliance on the Lapla-
cian operator highlighted in the equation (3.2). The electrical properties
of the material are proportional to the Laplacian of the magnetic fields re-
sulting in the amplification of all types of noise produced by the MRI scan.
Multiple methods have been proposed to tackle these issues including the
inverse approaches into which we will dive in the following section as
we present a proposed method of inverse Laplacian to create conductivity
maps more accurate than those created using the Helmholtz-based EPT
method [9].

3.2 Inverse Laplacian approach

In this work, we present a model-based reconstruction approach (pre-
sented by Ropella, et al. in Ref. [9]) that uses regularization in order to
decrease the number of factors contributing to edge artifacts and noise
amplification. In this method, inverse Laplacian,∇−2, is used for the min-
imization of the difference to acquired phase data from the SE scans. Apart
from the transmit phase data, the method also uses information about ge-
ometry of the object to confine the calculations within a certain area by
introducing boundaries using support and edge masks. The method deals
with 3D maps created from the collected MRI data, so all of the data will
be presented as three-dimensional tensors or as in this case, we can call
them three-dimensional matrices or arrays.

22
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The proposed method to reconstruct the conductivity map using regu-
larized least-squares method is as follows

σ′ = argmin
σ

1
2
|| φ+

µ0ω
− Lσ||2W1

+ λW2R(σ), (3.14)

where we denote the optimal conductivity with σ′, L is the matrix repre-
sentation of the differential inverse Laplacian operator, ∇−2, W1 and W2
are binary matrices used to mask out relevant areas in the reconstructed
map, λ is regularization parameter, and R(σ) is regularization function.

The first term is a quadratic function which is minimized resulting in
enforced relationship between the acquired phase data and reconstructed
conductivity map leading the reconstruction in the correct direction. This
is done within the domain of the binary mask W1 which will be show-
cased in the more detailed optimization analysis. The second term, is the
regularizing term used to minimize the rising edge artifact and to smooth
the image in the area restricted and defined by the mask W2 in the same
manner as W1.

Before defining L, we need Laplacian operator, ∇2, which is defined

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 , (3.15)

with, if we denote a 3D matrix as a function f (x, y, z)

∂2

∂x2 f (x, y, z) =
f (x− hx, y, z)− 2 f (x, y, z) + f (x + hx, y, z)

h2
x

, (3.16)

∂2

∂y2 f (x, y, z) =
f (x, y− hy, z)− 2 f (x, y, z) + f (x, y + hy, z)

h2
y

, (3.17)

∂2

∂z2 f (x, y, z) =
f (x, y, z− hz)− 2 f (x, y, z) + f (x, y, z + hz)

h2
z

, (3.18)

where hx,y,z are the voxel dimensions. These equations are essentially
second-order central finite differences which are an approximation of the
second order derivative which Laplacian operator represents in three di-
mensions [25]. If in the image all the voxels are identical (isotropic unit
voxels) and the origin of the matrix is at its center, the resulting matrix
representation of ∇2 is R3×3×3 array with the following values

∇2(0, 0, 0) = −6,

∇2(±1, 0, 0) = ∇2(0,±1, 0) = ∇2(0, 0,±1) = 1,
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else zero. (3.19)

This is a representation when the voxel dimensions hx,y,z = 1. In other
cases, these resolution parameters must be added to the values of the array
elements according to equations (3.16)-(3.18).

The matrix form of the inverse Laplacian, L, is first calculated by zero-
padding the kernel ∇2(x, y, z) to match the dimensions of the magnitude
and phase data. Next, we take its 3D fast Fourier Transform (FFT) and
invert each individual component value in the resulting matrix. However,
before inverting the components, a small offset δ must be added to the zero
valued DC term in the origin of the matrix in order to avoid zero division
upon the inversion of the matrix components. After the offset is added
and the components are inverted, we take the inverse FFT of the resulting
kernel and we obtain the final form of the matrix L.

The reason this procedure is done is the fact that the inverse transform
is given by the inverse of the matrix in question as shown in equation
(2.13). If we invert every element of this matrix in Fourier domain, the
outcome of the inverse Fourier Transform is, then, inverse of the matrix
that the Fourier Transform was initially applied to.

The matrix L can be thought of as a filter and just as explained in the
section 2.1.1, the filter is applied to an image or in our case, to the map
using convolution. So, essentially, the Lσ representation in the equation
(3.14) is the convolution operation between the two 3D arrays:

Lσ := L ∗ σ = F−1{F{L} · F{σ}}. (3.20)

where ”·” denotes pointwise multiplication and therefore it is important
that both L and σ are of the same dimensions. Since, in the entirety of this
work, we will be dealing with 3D arrays, for the sake of simplicity, we will
continue using this notation in the further calculations.

The support mask W1 is created by defining a certain threshold in the
data of the magnitude of data. The values equal and above this threshold
value will equal 1 while the rest will be turned to zero. This creates a
binary map which will dictate the location where the reconstruction of the
conductivity map will be done. The rest of the area will be neglected in
the calculations due to the zero values in the mask.

The edge mask W2 can be created using different edge detection meth-
ods and in this work we specifically used Canny edge detection operator
that uses multiple stages in its algorithm [31]. This operator is applied to
the magnitude map which produces a clear image of the edges of an ob-
ject. These edges are then converted to zero values and the rest to equal
value 1. Lastly, it is combined with W1 mask in order to mask only the

24

Version of November 1, 2019– Created November 2, 2019 - 00:01



3.2 Inverse Laplacian approach 25

Figure 3.1: Reconstruction process from the data acquisition to conductivity map
reconstruction. Phase and magnitude data are acquired from SE sequence. Masks
W1 and W2 are obtained from geometry data and subsequently combined with
phase data in IL algorithm to construct a conductivity map of the object.

object area excluding the edges within the object. The resulting mask dic-
tates where the regularization will be applied. Examples of both W1 and
W2 masks are shown in Figure 3.1.

The regularization function, R(σ), consists of a squared Euclidian norm
of potential function Ψ(Cσ) where C is the first order finite difference oper-
ator in the matrix form which gives out smoother conductivity map. When
the regularization function is multiplied with W2, it calculates a weighted
sum of the differences between a voxel and its adjacent neighbour in every
direction.

The optimal conductivity, σ′ in equation (3.14) is solved with the use
of nonlinear conjugate gradient method (NCGM) [32,33,34]. This method
generalizes the conjugate gradient method which solves unconstrained
optimization problems such as ours with an iterative algorithm [33,34].

In order to illustrate the method in a more simplistic manner, we break
the optimization problem into two cases − reconstructing the conductiv-
ity without and with the regularization term which are presented in the
following sections.
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3.2.1 Approach without regularization

If the regularization is not included in the reconstruction of the conductiv-
ity map, the problem reduces to

f (σ) =
1
2
|| φ+

µ0ω
− Lσ||2W1

. (3.21)

Since NCGM is a gradient-based method, the main idea of it is to find a
local minimum of a nonlinear function using its gradient, ∇σ f , which in-
dicates the direction of the maximum ascent. In order to show the opposite
− maximum descent (or the steepest descent), simply the negative of the
gradient, −∇σ f , is taken. The form of solving the iterative optimization
problem is as follows:

σn+1 = σn + αndn, (3.22)

where αn is a step size which varies at each step of the iteration n and is
obtained by a line search, and dn is the search direction defined as

dn =

{
−∇σ f , for n = 0;
−∇σ f + βndn−1, for n ≥ 1,

(3.23)

where βn is a direction parameter (not to be confused with regularization
parameter).

The algorithm itself can be broken down into five general steps:
1) Calculation of the steepest descent: ∆σn = −∇σ f (σn),
2) Computation of βn with one of the two methods shown below:

βFR
n = ∆σT

n ∆σn
∆σT

n−1∆σn−1
,

βPR
n = ∆σT

n (∆σn−∆σn−1)

∆σT
n−1∆σn−1

,

3) Update of the conjugate direction: dn = ∆σn + βndn−1,
4) A line search: Optimization of αn := argminσ f (σn + αdn),
5) Update of the map: σn+1 = σn + αndn,
where β0 is set to zero, so that the result is correct for n = 0 in the equation
(3.23), and σ0 is an initial educated guess of the conductivity map.

The two formulas in the second step of the algorithm are named after
Fletcher-Reeves and Polak-Ribiere methods, respectively [33,35]. Both of
these formulas help the algorithm achieve the same result. However, the
speed or the number of steps at which the algorithm converges may vary
for these methods. In addition to the two methods presented, there are

26
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other methods [33]. Regardless, in this work, we focus on and utilize only
the two presented methods.

Some steps, namely the first and the fourth steps require more par-
ticular look into the more detailed way of computing the gradient and
performing a line search, respectively.

First, the algorithm requires the gradient of our function, ∇σ f (σn),
which is the essential part of the minimization. Its calculation is fairly
simple when the 3D arrays in the function are vectorized. We first expand
the function, f (σ), in the following way

f (σn) =
1
2

[
|| φ+

µ0ω
||2W1
−
〈 φ+

µ0ω
, Lσn

〉
W1
−
〈
Lσn,

φ+

µ0ω

〉
W1

+ ||Lσn||2W1

]
,

(3.24)
where due to the fact that φ+, L, and σ are real, we are allowed to exploit
the commutative property

〈 φ+

µ0ω
, Lσn

〉
=
〈
Lσn,

φ+

µ0ω

〉
, (3.25)

which allows writing the function as

f (σ) =
1
2

[
|| φ+

µ0ω
||2W1
− 2
〈
Lσn,

φ+

µ0ω

〉
W1

+ ||Lσn||2W1

]
. (3.26)

Now, we can take the gradient of this function resulting in

∇σ f (σn) =
1
2

[
− 2
〈
L,

φ+

µ0ω

〉
W1

+
〈
L, Lσn

〉
W1

+
〈
Lσn, L

〉
W1

]

:= L
(

Lσn −
φ+

µ0ω

)
W1

, (3.27)

where we used the property identical to the one in equation (3.25) and the
final notation with reshaped matrices was written with the accordance to
the rules we previously set. The reason we were able to rewrite it in the
final form was due to the fact that three-dimensional maps are convoluted
with the inverse Laplacian, L, which is a self-adjoint matrix. A detailed
view on derivation of the gradient of the 2-norm of vector residual can be
found in Appendix A.

In order to perform a line search, we need to optimize step size α in
accordance to the fourth step of the algorithm. To obtain the solution for
αn, we have to solve

∂α(σn + αndn) = 0. (3.28)
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Here, we use inner product also known as dot product notation which
is more optimal for solving scalars. First, we expand the function as:

f (σn + αndn) =
1
2
|| φ+

µ0ω
− Lσn − Lαndn||2W1

=
1
2
||rn − Lαndn||2W1

, (3.29)

where rn = φ+

µ0ω − Lσn denotes the residual between the phase map ac-
quired from MRI and phase map calculated using convolution between
inverse Laplacian and conductivity map of iteration step n, and αn is a
scalar. Further expansion takes form

f (σn + αndn) =
1
2

[
||rn||2W1

−
〈
rn, αnLdn

〉
W1
−
〈
αnLdn, rn

〉
W1

+ α2
n||Ldn||2W1

]
.

(3.30)
Since we are optimizing αn which is a scalar, we are allowed to vector-

ize both rn and Ldn and they both are real valued (L, φ+, σn, dn ∈ R). In
addition, L is a self-adjoint matrix giving us the following commutative
relation:

αn
〈
rn, Ldn

〉
) = αn

〈
Ldn, rn

〉
. (3.31)

Using the property in equation (3.31), we are finally able to write the
function in (3.30) in the following form

f (σn + αndn) =
1
2

[
||rn||2 − 2αn

〈
Lrn, dn

〉
+ α2

n||Ldn||2
]

W1

, (3.32)

where it is good to note that Lrn is the gradient required for computation
of the direction for the steepest descent in the first step of the algorithm.
Next, we take the derivative of the function with respect to α

∂α f (σn + αndn) = −
〈
Lrn, dn

〉
W1

+ αn||Ldn||2W1
, (3.33)

which allows us to obtain the final formula for the optimized α

αn =

〈
Lrn, dn

〉
W1

||Ldn||2W1

, (3.34)

where, dot product between Lrn and dn, and squared norm of Ldn are kept
within the domain of support mask W1.

As the final remark, we note that in order to keep the calculations
and reconstruction within the desired domain, we must apply the sup-
port mask W1 to the algorithm of the NCGM as previously stated. To do

28
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so, we apply the mask to the initial form of the conductivity σ0 in equation
(3.22) using pointwise multiplication. In next steps of the iteration process,
we apply the mask only to the gradient of the entire function in the similar
fashion. Since the outcome of every step of the algorithm depends on the
gradient, the effect of the application of the mask will automatically trans-
fer to the outcomes of these steps as shown in derivations above. Hence
the mask is applied only once which significantly reduces the computation
complexity of the algorithm.

3.2.2 Approach with regularization

Upon having the regularization term in equation (3.14), adding the reg-
ularization to the algorithm is not as difficult of a task as might seem at
first. The only parts of the algorithm that need to be modified are the first
and the fourth steps which were inspected closely in the previous section.
The regularizing term is added to the data term, minimum of which the
algorithm strives to find. This means that we do not need to perform the
calculations for the gradient and the step size from the very beginning.
Instead, we can take readily calculated parts from the data term in the
previous section and add differentiated terms to it.

Before presenting formulas for the gradient of the function and the step
size, we define the regularization function

R(σ) = ||Aσ||2W2
, (3.35)

where the use of such regularization function is called Tikhonov’s regu-
larization. The first finite difference operator, A, is picked to be suitable
regularization matrix [34]. This way, values of the regularization function
grow in the manner of a quadratic function which allows to penalize the
roughness in the conductivity map in nonlinear fashion [9]. Depending on
the data and the object we are dealing with, occasionally Laplacian (sec-
ond order finite difference) can also be used as the regularization matrix.
However, it is of great rarity that Laplacian produces better results than
the first order finite difference operators [36].

Matrix form of the first finite difference operator, A, is constructed the
same way as the Laplacian operator in the previous section. Only this
time, we follow the rules of operators introduced in Chapter 2 in equations
(2.20)-(2.22). The three finite difference operators take the following matrix
forms:
Central finite difference:

C(±1, 0, 0) = C(0,±1, 0) = C(0, 0,±1) = ±1,
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else zero, (3.36)

Forward finite difference:

F(0, 0, 0) = −3

F(1, 0, 0) = F(0, 1, 0) = F(0, 0, 1) = 1,

else zero, (3.37)

Backward finite difference:

B(0, 0, 0) = 3

B(−1, 0, 0) = B(0,−1, 0) = B(0, 0,−1) = −1,

else zero. (3.38)

Essentially, we use these matrices as any other operator in this work by
convoluting them together with our 3D maps representation of which is
shown in equation (3.20). However, these finite difference operators are
not self-adjoint matrices forcing us to define their adjoints separately in
our calculations.

Now, we compute the gradient of the function with the regularization.
We take the calculated gradient from the equation (3.27) and add the gra-
dient of the regularization term to it

∇σ f (σn) = L
( φ+

µ0ω
− Lσn

)
W1

+ λ∇σ

(
||Aσn||2W2

)
= L

( φ+

µ0ω
− Lσn

)
W1

+ λW2adj(A)
(
Aσn

)
, (3.39)

where adj(A) is adjoint of A which in three dimensional case does not
equal the transpose of A unlike in two-dimensional case.

Computing the step size can be done in the similar manner by taking
already existing calculations from the equation (3.32), adding the regular-
ization term to it, and expanding it

f (σn + αndn) =
1
2

[
||rn||2 − 2αn

〈
Lrn, dn

〉
+ α2

n||Ldn||2
]

W1

+λ||A
(
σn + αndn

)
||2W2

=
1
2

[
||rn||2W1

− 2αn
〈
Lrn, dn

〉
W1

+ α2
n||Ldn||2W1

]
30
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+ λ
(
||Aσn||2W2

+ αn
〈
Aσn, Adn

〉
W2

+ αn
〈
Adn, Aσn

〉
W2

+ α2
n||Adn||2W2

)
,

(3.40)
where rn = φ+

µ0ω − Lσn is the residual. Next, we take the derivative of the
function with respect to α

∂α f (σn + αndn) = −
〈
Lrn, dn

〉
W1

+ αn||Ldn||2W1

+ λ
(〈

Aσn, Adn
〉

W2
+
〈
Adn, Aσn

〉
W2

+ 2αn||Adn||2W2

)
. (3.41)

Unlike in the case with Laplacian, the finite difference operator is not self-
adjoint, 〈

Aσn, Adn
〉
6=
〈
Adn, Aσn

〉
, (3.42)

and therefore equation (3.41) remains unchanged. The final stage of opti-
mization is done by solving step size, α, from ∂α f (σn + αndn) = 0

αn =

〈
Lrn, dn

〉
W1
− λ

(〈
Aσn, Adn

〉
W2

+
〈
Adn, Aσn

〉
W2

)
||Ldn||2W1

+ 2λ||Adn||2W2

. (3.43)

We see that the only difference to the corresponding step size for the case
without regularization in equation (3.34) is a subtracted term in the nom-
inator and an added term in the denominator. This allows the compen-
sation of the step size with different regularization parameter values as
the step size becomes inversely proportional to the parameter which, in
principle, avoids the errors in each step size of the iteration.
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Chapter 4
Results & Discussion

In this chapter, we will present our results of conductivity map reconstruc-
tions introduced and discussed in Chapter 3. Apart from demonstrating
the reconstruction for both cases: without and with regularization, respec-
tively, we will show different ways of determining parameters needed in
the algorithm along with functionality and practicalities of the algorithm
itself. We perform first analysis on simulated data where real conductivity
of an object is known in order to estimate the accuracy of the reconstructed
conductivity values before moving onto experimental data.

4.1 Approach without regularization

The conductivity map of the simulated object can be found on the left hand
side of Figure 4.1 and the map on the right side displays the outcome of
the time efficient Helmholtz-based conductivity reconstruction of equa-
tion (3.13) where we convolute Laplacian with acquired phase data. We
show central slices of the reconstructed maps in order to demonstrate the
results in two dimensions.

As can be clearly seen, the Helmholtz-based approach produces a map
of the object with fairly accurate geometry with moderate inaccuracies in
conductivity values and edge artifacts arising in places where sharp tran-
sitions between the conductivity values occur. Like mentioned before,
these edge artifacts arise from the assumption that the complex permit-
tivy is locally constant. In addition, ringing effect can be observed within
the outer tubes by visual analysis while small oscillations in data values
can be observed within the inner tubes as well. This is called the Gibbs
Phenomenon. It arises due to the fact that we are using the convolution
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Figure 4.1: Conductivity maps for the simulated data. First image is real conduc-
tivity of the simulated object and the second is reconstruction using Helmholtz-
based EPT. X and Y -axes indicate number of pixels in proprietary direction.
Colour scale indicates the intensity of the conductivity values in siemens per me-
ter.

theorem introduced in section 2.1.3 where the Fourier series on piecewice
differentiable function starts behaving peculiarly as it sums overshoot at
sharp transitions in values. The series has high oscillations at the sharp
edges which do not die out when more terms are added to the overshoot
and hence we see the boundary artifacts [37]. The ringing within the in-
ner tubes remains due to the fact that the number of added terms is finite
and therefore the values between higher edge transitions remain oscilla-
tory. We will observe the SNR later on in this chapter as initially we did
not add noise to the phase data used for the reconstruction.

We start our reconstructions with initial phase data from the simula-
tion without the regularization term. We kept the data noise free in order
to observe possible benefits of the inverse Laplacian approach for the com-
parison to the direct Helmholtz approach before diving into the smoothing
abilities of the regularizer.

As the first step, in order to determine useful offset δ for the DC coeffi-
cient of the inverse Laplacian to avoid the division by zero, we tested the
algorithm with a range of offset values δ = [10−1, 104]. The results with
different offset values are displayed in Figure 4.2 for a certain number of
iterations with each value. For δ = 10−1, the conductivity map is severely
underdeveloped displaying large fluctuations in form of rings in values
across the entire domain of W1 mask with high values spread out across
and beyond the boundary artifacts. For δ = 100 and δ = 101, noticeable
cross hatching is present close to the edges of W1 mask domain. Offset

34
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Figure 4.2: Conductivity maps reconstructed using the inverse Laplacian ap-
proach with different δ offset values added to the DC coefficient without regu-
larization. δ was varied between values 10−1 and 104. Every reconstruction was
run over the same number of iteration steps.

δ = 102 seems to have the closest values to those of the map reconstructed
using the Helmholtz EPT equation while δ = 103 and δ = 104 have in-
crease in the conductivity values close to the edges of the outer tube. We,
henceforth, conclude that the most reliable offset value is around δ = 100
and continue performing further experiments using this value.

Throughout our experiments, we noticed that δ value is dependent on
the size of the object as well as the dimensions of the voxels i.e. the resolu-
tion of the image. Therefore, it should be possible to determine a suitable
offset value using these parameters. However, as of the moment this work
is written, we have not focused on determining the optimal δ value by any
other than experimental means.

In Figure 4.3, we display the progress of the reconstruction using the
offset value δ = 102 at different number iterations until the minimization
converged. We clearly see the effect of Gibbs ringing present in the early
stages of the reconstruction. First, rings with extremely high and low val-
ues begin to form. Then, as more terms are added to the reconstruction
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Figure 4.3: Reconstruction of the conductivity map with the initial guess of a
map with nothing but zero values with δ = 102 used for the inverse Laplacian.
The observations were made after 100, 250, 500, 1000, 2000 and 3000 iterations.
In this case, the number of iteration needed before the reconstruction converged
was approximately 3000.

with the number of iterations, the sharp edges between the rings start de-
creasing and finally converge to nearly identical values. However, when
the minimization converges, some ringing is still present due to the fact
that the added terms do not kill the overshoot produced by the Fourier
series as described by the Gibbs phenomenon [37].

In Figure 4.4, we display a normalized cost function which is represen-
tation of functional convergence as a function of number of iteration steps
during this reconstruction. The functional is simply a squared Euclidian
norm of the residual between initial phase data and reconstructed phase
map by applying inverse Laplacian to conductivity map within the W1
domain:

F(σ) = || φ+

µ0ω
− Lσ||2W1

(4.1)

We see a huge drop within 250 iterations which makes sense since the re-
constructions started from a zero-valued conductivity map. Past the point
of 250 iterations, the algorithm mainly works on equalising the difference

36
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Figure 4.4: Normalized cost function of the reconstruction for 250 iteration steps.
Here the functional values are displayed as a function of number of iteration
steps.

Figure 4.5: Step sizes as a function of number of iteration steps. Step size con-
verges to nearly zero for the large number of iteration steps.

between the rings resulting in a smaller drop of the cost function. This
highlights the fact that the sequence is monotonic [38]:

F(σ0) ≥ F(σ1) ≥ ... ≥ F(σn) (4.2)

i.e. the value of the cost function consistently decreases with the number
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Figure 4.6: Comparison between conductivity maps reconstructed using
Helmholtz EPT and inverse Laplacian approach with added noise making SNR=
100. (a) Helmholtz EPT (b) Inverse Laplacian approach.

of iteration steps which indicates that we are moving steadily towards the
local minimum of the functional. Since in our case we have a quadratic
function, it has only one minimum which is the global minimum of the
minimization problem. The step size as a function of iteration steps in
Figure 4.5 further confirms the convergence as it reduces to nearly zero for
a large number of iterations.

As the final analysis for the reconstruction without the regularization
applied to the conductivity, we add the noise to the initial phase data of
the simulation and compare the differences between SNR for both the
Helmholtz EPT and the inverse Laplacian approach. The noise we add
is additive white Gaussian noise (AWGN) to the imaginary part of the
field magnitude with mean value set to 10−8 and standard deviation set to
10−10 making SNR = 100. The results are displayed in Figure 4.6.

The difference between the two methods of reconstruction are nearly
identical with some exceptions in form of higher noise values close to the
edge of the tubes in the inverse approach. The reconstruction using the
unregularized inverse Laplacian approach does not get rid of the noise
at all and reconstructs the image preserving nearly identical SNR to the
one in Helmholtz EPT. Occasional local noise that is higher in the Inverse
Laplacian approach could possibly correspond to the fact that noise can be
amplified even further due to the added terms with amplified noise in the
Fourier series in the reconstruction.

With these arguments, we conclude that the conductivity reconstruc-
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tions obtained using the unregularized inverse Laplacian based method
correspond to the those obtained via conventional deconvolution using
the Laplacian kernel. This is in line with the mathematical formulation,
as no additional constraints or a priori information has been incorporated.
In addition, the unregularized method is more time consuming than the
conventional method.

4.2 Approach with regularization

4.2.1 Simulated data

In this section, we use the same method of reconstruction as in the pre-
vious section, except now we add the regularization term into our func-
tional:

F(σ) = || φ+

µ0ω
− Lσ||2W1

+ λ||Aσ||2W2
. (4.3)

We first look at the results in this approach using four different finite dif-
ference operators A − Laplacian i.e. second order finite difference, and
first order Forward, Backward, and Central finite difference operators. We
add complex white Gaussian noise to the input data making SNR = 100
and compare the results among each other and to the Helmholtz EPT re-
construction. We show the difference between the reconstruction using
only the support mask W1 defining the object domain, and using both the
support mask W1, and the edge mask W2 which delimits inner tubes from
the general domain. Finally, we compare the approach with regulariza-
tion to Helmholtz EPT with applied Gaussian filter to determine whether
the inverse approach with regularization has any advantages over the
Helmholtz EPT.

In order to reconstruct the conductivity map with regularization penalty
from any desired initial guess, a right regularization parameter λ must be
selected. It determines the balance between the term that models accu-
rate data and the smoothing regularization term. While, different ways of
choosing an optimal value for λ exist [9], we set λ = 0.1 and performed
regularization on the initial guess corresponding to the outcome of the
Helmholtz EPT.

Since, the gradients in the approach with regularization require addi-
tional adjoint operators for Forward, Backward, and Central finite differ-
ence operators involved in the regularization term of the cost function, we
determine them in the following way:
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Figure 4.7: Conductivity reconstruction using Laplacian operator and Forward,
Central, and Backward finite difference operators in the inverse Laplacian ap-
proach with regularization on data with SNR = 100.

Adjoint matrix to Forward finite difference:

adj(F)(0, 0, 0) = −3

adj(F)(−1, 0, 0) = adj(F)(0,−1, 0) = adj(F)(0, 0,−1) = 1,

else zero, (4.4)

Adjoint matrix to Backward finite difference:

adj(B)(0, 0, 0) = 3

adj(B)(1, 0, 0) = adj(B)(0, 1, 0) = adj(B)(0, 0, 1) = −1,

else zero. (4.5)

However, as the adjoint operator to Central finite difference operator
turned out not to be trivial to obtain, we used forward differencing at ev-
ery odd iteration step and backward differencing at every even number of
steps. This should, in principle, operate in the same fashion as the central
differencing. This can be seen from a sum of forward and backward dif-
ferences in equations (2.21)-(2.22) resulting in central difference. Hence,
we will keep referring to this operation as central differencing. The Lapla-
cian is a self-adjoint matrix so it does not require separate specification
concerning the adjoint matrix.

Results of the conductivity maps using the four operators in the regu-
larizer can be found in Figure 4.7. Using the Laplacian operator as regu-
larization matrix somewhat smooths the map equally in every direction.
However, it produces severe ringing effect in areas close to the edges set
by the edge mask W2 and does not seem to be able to equalize them. This
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Figure 4.8: The effects of the regularization using Central finite difference opera-
tor with application of different masks. (1) Reconstruction without regularization
with SNR = 100 (2) W1 mask (3) W2 mask (a) Regularization with only W1 mask
(b) regularization with both W1 and W2 masks.

is due to the second order derivative approximation that Laplacian repre-
sents which, in general, is less accurate than first order derivative approx-
imation that the rest of the operators correspond to. The rest of the opera-
tors indeed do not produce such a severe ringing effect at the boundaries
of the edge mask and instead improve the overall uniformity of the re-
constructed conductivity. We see that the main areas within the tubes are
smoothened nicely excluding small areas at the boundaries of the inner
cylinders. Forward difference produces the smoothing in one direction
which is the lower left corner of the map. Backward difference operates in
the similar fashion with the only difference being the inclination into the
opposite direction. These effects result in small imbalance within the tubes
with the edges in the direction of the operators obtaining conductivity val-
ues with more accuracy than the edges on the opposite sides. On its part,
the central difference operates as a middle ground between forward and
backward operators. It smoothens areas evenly without emphasis in one
of the directions and produces slight inaccuracies along the sharp transi-
tion edges in values.

The differences in the results between these operators could potentially
be exploited. For instance, if an area of an object that one wants to focus
on is known, the difference operator can be chosen in such a way that the
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Figure 4.9: Comparison between Gaussian filter and smoothing using inverse
Laplacian approach with regularization with Central finite difference operator.
Error maps between reconstructed conductivity and real conductivity are dis-
played below. These maps confirm that the inverse approach with regularization
reconstructs maps with higher accuracy than Helmholtz EPT.

shift in the accuracy is directed into the desired location.
In order to showcase the importance of the edge mask in the regular-

ization, we show the effect of the smoothing solely by using threshold
mask W1 and by applying both W1 and W2 masks. We choose Central fi-
nite difference operator for this comparison. The comparison is displayed
in Figure 4.8.

As one can see, without the use of the edge mask W2 that would set
boundaries at the edges of the tubes, the difference is also taken with val-
ues outside the object resulting in the wrong values washing into the do-
main of the object as well as the inner tubes. This is precisely what the
edge mask was designed to prevent. We can see when the mask is ap-
plied to the regularization, it preserves the conductivity values near the
edges by preventing the differential operation from applying on the sharp
transitions in conductivity values.
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Figure 4.10: Comparison between direct Helmholtz EPT conductivity map re-
construction and inverse Laplacian approach with data with three different SNR
levels.

Finally, we compare the results from the penalized regularization us-
ing Central difference operator to smoothened outcome of the Helmholtz
EPT with Gaussian filter with standard deviation set to one [39]. In addi-
tion, we demonstrate the amount of difference between the reconstruction
and the real conductivity displayed in the beginning of the chapter. The
comparison is found in Figure 4.9.

We observe that Gaussian filter smooths the conductivity values more
evenly in the areas where conductivity values are supposed to be constant.

However, these values are higher in the comparison to the real con-
ductivity and additionally it creates enormous voids and overshoots at
the sharp transition jumps resulting in more inaccuracies than the regu-
larization especially since these voids in parts overlap with the inner tube
hence removing parts of possibly desired object.

We, therefore, conclude that the inverse Laplacian method has advan-
tages over the Helmholtz EPT with Gaussian filter mainly by produc-
ing clearer and more accurate smoothened conductivity maps using noisy
data. This is significant advantage especially with data with relatively
poor SNR. In addition, data from MRI always possesses noise coming
from the background signal produced by the air surrounding the object
[40]. In order to increase the SNR in MRI, the averaging and more phase
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steps are required which take notable amount of time [40]. For this reason
alone, the MRI acquisition time increases significantly in order to increase
the SNR. By applying the inverse Laplacian approach to the data with rel-
atively low SNR, the acquisition time from MRI and reconstruction time of
more accurate conductivity maps are reduced. This is due to the fact that if
the initial guess in the inverse approach is a map from Helmholtz EPT, the
algorithm reaches the convergence point within 100 iterations which takes
1− 30 seconds depending on the size of the input data and the resolution
of reasonably sized objects.

To further confirm these observations, we compare the results between
the outcome of the Helmholtz EPT and the inverse approach with regu-
larization on the same data with three levels of SNR: 1, 50, and 100. The
comparison is found in Figure 4.10.

In the future, an optimal method to choose the correct regularization
parameter λ could be implemented which would allow the reconstruc-
tion of the maps with regularization from any arbitrary initial guess. On
average, throughout this work, the reconstructions with arbitrary initial
guesses reached the point of convergence within 5 − 10 minutes, again,
depending on the size of the input phase data and image resolution. This
shows that more accurate maps can be acquired faster with regularized
inverse approach than using the additional MRI scans.

4.2.2 Phantom data

In addition to simulated data, we also run the algorithm on data from
two different scans on the same phantom. Table 4.1 provides important
characteristics of the phantom made and extracted from Ref. [41]. For us,
the most important information are the variations in conductivity between
the tubes which are measured to be between 0.11− 2.24 S/m.

Table 4.1: Recipes used for the fabrication of the cylindrical phantom extracted
from Ref. [41]. Important information for our experiments is contained within
the measured conductivity data.
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Figure 4.11: Results of the conductivity map reconstructions using Helmholtz
EPT and Inverse Laplacian approach with data from two different phantom scans.
Scan 1 is multi-slice turbo spin-echo scan and Scan 2 is balanced steady state free
precession scan.

The first scan was multi-slice turbo spin-echo scan (MSTSE) while the
second was balanced steady state free precession scan (BSSFP).

Figure 4.11 shows a comparison of the results between Helmholtz EPT
and the inverse approach with regularization with the data from the two
scans. We first display the images of the MRI signal magnitude to show
the geometry of the phantom and the location of the inner tubes. In ad-
dition, we see the magnitude of the signal which, in principle, should be
proportional to the conductivity of the object.

We see that the Helmholtz EPT produces extremely noisy and unre-
solvable conductivity maps where only the geometries of the phantom
can be resolved. On the contrary, we see that the inverse Laplacian ap-
proach produces smoothened images, confining the different conductivity
values within defined regions of the edge mask W2, proving its functional-
ity. Interestingly, we see clear variations between the desired conductivity
values in the outcomes of both scans although the outcome of the data
from the second scan is more evenly smoothened. As a down side, we
see that in the second scan, the conductivity values do obtain significant
errors close to the edges of the tubes.

Nonetheless, we noticed that these boundary errors are dependent on

Version of November 1, 2019– Created November 2, 2019 - 00:01

45



46 Results & Discussion

Figure 4.12: Comparison of reconstructed conductivity maps using different edge
masks.

how the edge mask is defined. Comparison of the conductivity reconstruc-
tion with two different edge masks is displayed in Figure 4.12.

We see that when the edges of the inner tubes of the edge mask are
more robustly defined, the correct conductivity values spread out more
evenly across the confined areas of the tubes. However, as a trade off,
we observe a rising boundary artifact at the bottom of the map. As of
the moment of this thesis, we are not certain what causes this artifact to
emerge.

Although we present only the center slices of our obtained maps, the
conductivity values do not vary significantly as we inspect other slices
while moving away from the center.

These observations confirm that the algorithm of regularized inverse
Laplacian approach also works on acquired MRI data with phantoms. In
addition, it produces conductivity maps which are more accurate and ro-
bust than those of the Helmholtz EPT. However, dependence of the ac-
curacy of the conductivity on the edge mask was observed which may
require further inspection in the future.
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Chapter 5
Conclusion

In conclusion, we successfully created an optimized phase-based conduc-
tivity map reconstruction algorithm for cases with and without regular-
ization using inverse Laplacian approach. Successful results were demon-
strated with both simulated as well as phantom data. For the optimiza-
tion, we used nonlinear conjugate gradient method which exploited only
the gradient of the nonlinear quadratic function to find its global mini-
mum. For the case with added regularization term, we utilized standard
Tikhonov’s regularization method using approximation of a gradient or
Laplacian operator as suitable regularization matrix operating on recon-
structed conductivity maps. With the help of correctly constructed thresh-
old and edge masks, we managed to constrain the regularization within
the object’s boundaries fairly accurately in contrast to the effects of Gaus-
sian filter on the reconstructed maps.

However, we observed that the inverse approach without regulariza-
tion does not have any advantages over direct Helmholtz-based method as
both methods produced nearly identical conductivity maps without hav-
ing any effect on the edge artifacts nor on the noise in the data. In some
parts, the inverse approach even seemed to amplify the noise and as it is
more time consuming being an iterative method, it was deemed of no use
without regularization.

Nonetheless, the approach presented promising advantages over the
direct method as long as the regularization was implemented. It clearly
smoothened out noise within the areas dictated by the auxiliary masks
more accurately than the Gaussian filter used for the comparison. It also
posed advantages in the acquisition time as regularization was able to
handle and smooth out maps with relatively low SNR values. This promises
great advancement as the longer scan would not be needed in order to in-
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crease the SNR of the reconstructed images. In addition, the algorithm
was relatively fast, taking only 1− 30 seconds to smooth maps with initial
step set from product of the direct method and 5− 10 minutes if the initial
guess was completely arbitrary. Another possible exploitable perk was the
use of different regularization matrices which produced higher accuracies
in the reconstructed maps depending on their operation directions which
could be easily modified. This would allow the observation of desired ar-
eas in inspected object to be more accurately observable in cases where the
location of the desired artifact was known.

In the future, an optimal selection of regularization parameter could
be implemented so that it would pose a constant balance between the
optimization and the regularization terms throughout the iteration pro-
cess. This would allow the regularized reconstructions from any arbitrary
initial guesses. In addition to optimizing the parameter, other, perhaps,
more accurate methods for regularization could be implemented. Some
of them are discussed in Ref. [42]. These methods could possibly mod-
ify the penalty functions dictating the amount of the regularization de-
pending on the severity of the transition in data values due to the noise.
This would allow even more precise smoothing close to the edges of the
reconstructed objects and faster smoothing in general than the quadratic
regularization function used in Tikhonov’s method. Furthermore, the ho-
mogeneous assumption of complex permittivity could be avoided which
would, perhaps, require numerical simulations to find a solution for con-
ductivity in order to implement it into the inverse Laplacian approach and
further improve the accuracy of the results.

Due to the promising results of the algorithm used with phantom data,
we are expecting that similar results with in-vivo data can be achieved.
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Appendix A

Gradients of Inner Products

Let
f (x) = aTx,

where a is a constant vector. The function, then, can be defined

f (x) =
n

∑
i=1

aixi,

where ai and xi are components of the vectors a and x, respectively. If
we take derivative of the function with respect to x, we have

∂ f
∂xj

=
n

∑
i=1

ciδij = cj,

where δij is Kronecker delta

δij =

{
0 if i 6= j;
1 if i = j.

Therefore, the gradient of the function

∇ f (x) = a.

Now, let

g(x) = xT Ax =
n

∑
i=1

n

∑
j=1

bijxixj.

Then
∂g
∂xk

=
n

∑
i=1

n

∑
j=1

bij
∂xixj

∂xk

=
n

∑
i=1

n

∑
j=1

bij(δikxj + xiδjk)

=
n

∑
j=1

bkjxj +
n

∑
i=1

bikxi

= Ax + ATx.

Hence we conclude that

∇g(x) = (A + AT)x.

54
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Gradient of 2-norm of Residual Vector

Definition of a norm is
||x||2 =

√
xTx,

so we can expand squared 2-norm of residual vector

||a− Bx||2 = (a− Bx)T(a− Bx)

= ||a||2 − (Bx)Ta− aT(Bx) + xTBTBx

= ||a||2 − 2aT(Bx) + xTBTBx

= ||a||2 − 2(BTa)Tx + xTBTBx,

where we used property of a transpose (ab)T = bTaT and commut-
tativity assumption.
Using the gradients of inner products specified in the previous page,
mainly

∇(cTx) = c,

where c = BTa and

∇(xT Ax) = (A + AT)x,

where A = BTB giving us

∇||a− Bx||2 = −2BTa + (BTB + (BTB)T)x.

Since
(BTB)T = BT(BT)T = BTB,

the gradient of the squared norm of the vector residual reduces to

∇||a− Bx||2 = −2BTa + 2BTBx = 2BT(Bx− a).

This result applies to two-dimensional maps as well as for the maps
of higher dimensions as long as we remember to replace transpose
with adjoints of the matrices.
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Appendix B

Proof of L
(
a + b

)
= La + Lb

L
(
a + b

)
:= L ∗ (a + b)

= F−1
{
F{L} · F{a + b}

}
= F−1

{
F{L} ·

(
F{a}+F{b}

)}
= F−1

{
F{L} · F{a}+F{L} · F{b}

}
= F−1

{
F{L} · F{a}

}
+F−1

{
F{L} · F{b}

}
= La + Lb (5.1)

where we used simplified notation La := L ∗ a which was mentioned
in equation (3.20).
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