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Abstract

We have extended measures of bipartite entanglement to measures of
multipartite entanglement for pure states. To better grasp the different

ways in which a multipartite state may be entangled, we first give a more
general definition of entanglement that is based on partitions of the

particles. Then we present a measure corresponding to this definition and
use both analytic and computational methods to gain insight in the

manner in which the Wn and GHZn states are entangled. Although the
overall entanglement of two general multipartite states is not

straightforwardly comparable we conclude that the Wn states are less
entangled than GHZn states for every partition of the particles.
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Chapter 1
Introduction

Quantum entanglement is a resource for quantum computing. Quantum
computing is a vast and highly active field of research in contemporary
theoretical physics as well as in contemporary theoretical computer sci-
ence. Since entanglement is one of the keystone principles in building a
quantum computer, it is useful to know about properties of the distribu-
tion of entanglement in multipartite states. Because of the potentially vast
processing power of quantum computers, quantum computers may in the
future enable us to find cures for diseases by doing advanced simulations
which are currently not yet feasible. Furthermore, research into entangle-
ment generally contributes to our knowledge about the quantum theoret-
ical description of nature. For these reasons it is useful and interesting to
look at aspects of higher order entanglement in detail.

In this thesis we investigate the distribution of entanglement between sub-
systems in pure entangled states of multiple parts. First, we will gain
a general insight into entanglement by looking at well established theo-
retical matter, which is part of most master programmes in Theoretical
Physics. Concretely, definitions and useful as well as required properties
of some quantitative measures of entanglement will be acquired, both for
the bipartite case and the more general multipartite case. Then explicit cal-
culations for concrete measures of α-entanglement are performed, specif-
ically for the symmetric states GHZn and Wn. A comparison is made be-
tween the entanglement of the GHZn states and the Wn states, facilitated
by computational methods as well as analytical results.
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Chapter 2
The basics of quantum mechanics

In Quantum Mechanics, the state of a system is described by a state vector.
A state vector is a normalized vector in a complex Hilbert space. A Hilbert
space H is a vector space with an inner product defined on its elements,
which is complete with respect to the norm induced by the inner product.
This means that the limit of any Cauchy sequence in H converges in H.

We make use of the following conventions, which are widely used in physics:
A vector in H is called a ket and is denoted by |a〉 ∈ H, and its con-
jugate transpose is called bra and denoted by 〈a|. The inner product of
|a〉 , |a′〉 ∈ H is then defined as 〈|a〉 , |a′〉〉 := 〈a| · |a〉, and removing redun-
dant symbols, normally written as 〈a|a′〉. In addition, if a state |c〉 ∈ H
can be denoted as |c〉 = λ1 |a〉+ λ2 |b〉 for some λ1, λ2 ∈ C, |a〉 , |b〉 ∈ H,
physicists tend to say that |c〉 is in a superposition of |a〉 and |b〉.

If H is a complex Hilbert space, we have that the following properties
need to hold for all |a〉 , |b〉 , |c〉 ∈ H and λ ∈ C:
〈a|b〉 = 〈b|a〉 (where the overline denotes complex conjugation)
〈a|b + λc〉 = 〈a|b〉+ λ 〈a|c〉 and consequently 〈λa|b〉 = λ 〈a|b〉.
We define the norm as ‖a‖ :=

√
〈a|a〉. Then also:

〈a|a〉 = ‖a‖2 = 0 ⇐⇒ |a〉 = 0 ∈ H holds.

H additionally needs to be complete which means that given a Cauchy se-
quence {|ai〉}i∈N ⊆ H, it needs to be the case that limi→∞ |ai〉 = |a〉 exists
in H.

Finally, we note that if two Hilbert spaces H and H′ are of equal dimen-
sion, then they are isomorphic.
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10 The basics of quantum mechanics

Qubits and qudits An object of great interest in the field of quantum
physics, and especially in quantum computing, is the qubit. A qubit is
defined as a system that is described by the following state vector:

|ψ〉 := c1 |0〉+ c2 |1〉 ∈ C2,

where |c1|2 + |c2|2 = 1 and c1, c2 ∈ C[1]. Almost all explicit calcula-
tions that will be performed in this bachelor thesis, will be calculations
on qubits.
Somewhat more generally, a qudit is defined as:

|ψd〉 :=
d

∑
i=1

ci |i〉 ,

Again with ∑d
i=1 |ci|2 = 1 and ci ∈ C for all i. In case of d = 3 a qudit is

often called a qutrit. So |ψ3〉 = 1√
3
|0〉+ 1√

3
|1〉+ 1√

3
|2〉would be an exam-

ple of a (state vector describing a) qutrit.
So far we have only seen Hilbert spaces suited for describing systems that
consist of only one single part. In order to approach the concept of Quan-
tum entanglement, we will define the tensor product H1 ⊗ H2 of two Hilbert
spaces.

Tensor products: a practical approach We are given two Hilbert spaces
H1, H2 with (finite) dimensions dim(H1) = N and dim(H2) = M. We
may keep the dimensions finite, as we are mainly interested in qudits (or
even only qubits). For the same reason, we only have to consider Hilbert
spaces of the form Cd. We will define the tensor product of H1 and H2 in a
minute, but first we give a short motivation as to why we want to use this
product.

Suppose |a〉 ∈ H1 were to describe the state of system 1, and |b〉 ∈ H2
were to describe the state of system 2. If we would be asked to describe the
state of the combined system, it seems reasonable to simply take the tuple
(pair) {|a〉 , |b〉}. We want the tuple {|a〉 , |b〉} to live in a Hilbert space
again, because if we had not known anything about the two distinct parts
of the combined system beforehand, we would have intended to describe
it with a state vector from a single Hilbert space. Applying the principle of
success through simplicity, perhaps H1 × H2 = CN ×CM = CN+M contains
what we need to properly describe the joint system. Its addition and scalar
multiplication are defined component-wise, and its zero vector is just the
tuple {0H1 , 0H2}1. Sadly, we run into a problem: The kets |a〉 and λ |a〉 (for

1This space is also called the direct sum of H1 and H2 and denoted H1 ⊕ H2.

10
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11

λ ∈ C \ {0}) describe the same state. Our scalar multiplication cannot
handle that: As per definition, (λ |p〉 , λ |q〉) = λ(|p〉 , |q〉) holds, whereas
we actually need the equality (λ |a〉 , |b〉) = λ(|a〉 , |b〉) to be true, in or-
der to be able to properly normalize our states. This definition of scalar
multiplication also doesn’t leave room for superpositions of states. Since
experimental results do indicate the existence of superposition, the space
H1 × H2 cannot adequately describe quantum states.

We instead introduce the tensor product of H1 and H2, which does nicely
meet our requirements. In order to construct it, choose an orthonormal
basis B1 := {|1〉1 , ..., |n〉1} for H1 and B2 := {|1〉2 , ..., |m〉2} for H2. Then
the space that has B := B1× B2 as its basis2, is called the tensor product of
H1 and H2. We denote it by H1 ⊗ H2. We continue to use the bra-ket nota-
tion for elements of B, and write |i〉 ⊗ |j〉 for the element {|i〉1 , |j〉2} ∈ B.
The symbol⊗ used here is just there for notation and has no further mean-
ing. Note that at this stage we are not finished. First and foremost, it is not
clear whether there is a corresponding element from the tensor product
for two states |a〉 ∈ H1, |b〉 ∈ H2. Secondly, we have not yet defined an
inner product on H1 ⊗ H2. An arbitrary element |c〉 ∈ H1 ⊗ H2 looks like
this:

|c〉 = ∑
|i〉⊗|j〉∈B

cij |i〉 ⊗ |j〉 =
N

∑
i=1

M

∑
j=1

cij |i〉 ⊗ |j〉 ,

for some scalars cij ∈ C. We can now define a product of vectors |a〉 ∈ H1,
|b〉 ∈ H2, productively also denoted with ⊗. Decompose |a〉 in the basis
B1 and |b〉 in the basis B2. So |a〉 = ∑N

i=1 ai |i〉1 and |b〉 = ∑M
j=1 bi |j〉2. The

tensor product of vectors is then simply defined as

|a〉 ⊗ |b〉 := ∑
|i〉⊗|j〉∈B

aibj |i〉 ⊗ |j〉 =
N

∑
i=1

M

∑
j=1

aibi |i〉 ⊗ |j〉 .

A relevant fact which we will not prove here, is that the tensor product of
two Hilbert spaces is independent of the bases chosen in its construction.
Lastly a remark about notation: We often abbreviate |a〉 ⊗ |b〉 as |a⊗ b〉 or
sometimes even as |ab〉.

If A is a linear operator on H1, and B is a linear operator on H2, then
we define A⊗ B such that A⊗ B |a⊗ b〉 = |Aa⊗ Bb〉.

2B1 × B2 is the Cartesian product of B2 and B2; the set of all tuples {|i〉1 , |j〉2} with
|i〉1 ∈ B1 and |j〉2 ∈ B2.
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12 The basics of quantum mechanics

Inner product on H1 ⊗ H2 We would like H1 ⊗ H2 to be a Hilbert space,
and not merely a vector space. To achieve that, all we have to do3 is define
an inner product on it. Given orthonormal bases B1 := {|1〉1 , ..., |n〉1} for
H1 and B2 := {|1〉2 , ..., |m〉2} for H2, we define the inner product of basis
vectors |i⊗ j〉 , |k⊗ l〉 ∈ H1 ⊗ H2 as:

〈i⊗ j|k⊗ l〉 := 〈i|k〉 〈j|l〉 = δi,kδj,l.

Then the definition of the inner product of arbitrary vectors in H1 ⊗ H2
follows from the sesquilinearity of the inner products on Hi. Note that al-
though given |ψi〉 , |χi〉 ∈ Hi, this reduces to 〈ψ1 ⊗ ψ2|χ1 ⊗ χ2〉 = 〈ψ1|χ1〉 ·
〈ψ2|χ2〉, not every element of H1 ⊗ H2 can be written as such a product.

Entanglement It is high time to give a definition of entanglement. We
say that |Φ〉 ∈ H1 ⊗ H2 is an entangled state, if it can not be written as a
product |ψ1 ⊗ ψ2〉 for any |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2.[1]

Bear in mind that a state vector can always be denoted as a sum of
multiple terms, depending on the basis chosen. This means that a state
being denoted with more than one term does not imply that it be entangled
per se, for example:

|ψ1〉 =
1
2
(|00〉+ |01〉+ |10〉+ |11〉) = 1

2
(|1〉+ |0〉)⊗ (|1〉+ |0〉).

Extending this definition to tensor products of more than two Hilbert spaces,
we say that |Φ〉 ∈ ⊗n

i=1 Hi is an entangled state, if it can not be written as a
product

⊗n
i=1 |ψi〉 for any |ψi〉 ∈ Hi.

Finally, a vector is called separable if it can be written as a tensor product
of vectors |ψi〉 ∈ Hi.

Density matrices Sometimes we don’t know which state a system is in,
and we only know a that is in one of a handful of states with associated
probabilities. In this situation the concept of a density matrix is useful.

Given states |ψi〉 ∈ H and associated probabilities {p1, ..., pn} ⊆ [0, 1]
(so that ∑n

i=1 pi = 1) we define the corresponding density matrix as:

ρ := ∑
i

pi |ψi〉 〈ψi| .

3If the obtained space turns out not to be complete with respect to the distance induced
by this inner product, we take the completion. The completeness of the tensor product is
immediate in case of finite-dimensional Hilbert spaces, which is always the case in this
thesis.

12
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13

Mixed and pure states In case ρ is of the form ρ = |ψ〉 〈ψ| for some state
|ψ〉 ∈ H, we call it a pure state. Otherwise, ρ is called a mixed state.4 At
this point we are calling both vectors and matrices a kind of state. If it’s
not specified explicitly which is meant (by writing |a〉 ∈ H or ρ : H → H),
the bra-ket notation will still indicate which object we are dealing with.
Moreover, the use of the term ”state” when considering matrices can be
justified as well. If two systems are described by the same density matrix,
then the probability distributions of the outcomes of measurements on the
two systems will also be equal. Consequently it makes sense to say that
the two systems are in the same state.

The partial trace and reduced density matrices The following two def-
initions will soon prove useful: Given a density matrix ρ : H1 ⊗ H2 →
H1 ⊗ H2 and orthonormal bases B1 for H1 and B2 for H2, we define the
partial trace over subsystem 2:

Tr2(ρ) = ∑
a,a′∈B1

∑
b∈B2

|a〉 〈ab| ρ |a′b〉 〈a′| .

We also define the reduced density matrix of subsystem 1: ρ1 := Tr2(ρ).
The partial trace over subsystem 1 and reduced density matrix of subsys-
tem 2 are defined analogously.

The generalisation for density matrices on tensor products of more
than two Hilbert spaces goes as follows: Given a density matrix ρ :

⊗n
i=1 Hi →⊗n

i=1 Hi and a subsystem K - i.e. some of the Hi, let K be the set containing
their indices - we define the partial trace over subsystem K:

TrK(ρ) = ∑
a,a′∈BK

∑
b∈BK

|a〉 〈ab| ρ |a′b〉 〈a′| ,

where BK is some orthonormal basis for subsystem K (explicitly: span(BK) =⊗
i∈K Hi), and K is the subsystem complement to K.

Then again, the associated reduced density matrix is defined as ρK := TrK(ρ).

4Perhaps it is more sensible to say ”mixture of states”, but we will stick to the conven-
tional term.
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14 The basics of quantum mechanics

The Schmidt decomposition theorem A theorem about pure bipartite
states that will be essential later in this thesis, is the Schmidt decomposition
theorem. It states: Given a state vector |a〉 ∈ H1⊗H2 in a bipartite quantum
system, there exist orthonormal states |i1〉 for H1 and |i′2〉 for H2 such that:

|a〉 =
k

∑
i=1

√
pi |i1〉 |i′2〉 ,

where pi ∈ R>0 are uniquely determined up to order, and ∑k
i=1 pi = 1,

and k ≤ min{dim(H1), dim(H2)}. We call pi the Schmidt coefficients and k
the Schmidt rank of |a〉[1, 2]. We will not prove this theorem here, but it is
worth mentioning that the pi turn out to be the eigenvalues of the reduced
density matrix ρ1 of the state. This also immediately shows that there is
no basis dependency in the determination of the pi.

Lemma Expressing a state in its Schmidt decomposition can greatly sim-
plify the calculation of a partial trace. We can use the Schmidt decomposi-
tion of a given state as follows: Consider a state vector in a bipartite hilbert
space H = HK ⊗ HK and find its Schmidt decomposition. The basis vec-
tors |iK〉 for HK and |i′K〉 for HK obtained from the Schmidt decomposition
theorem can then be extended to orthonormal bases BK of HK and BK of
HK. If we then take the partial trace over K using precisely those bases, we
obtain that the reduced matrix ρK expressed in the basis BK is the diago-
nal matrix with pi on the i-th row (and zeros on any rows after the k-th).
Equally, when we take the partial trace over K using BK and BK, we obtain
ρK expressed in the basis BK is also a diagonal matrix with pi on the i-th
row (and zeros after the k-th row).

14
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Chapter 3
Measures of bipartite entanglement

The definition of entanglement we currently have, only enables us to make
a distinction between states that are entangled, and states that are not en-
tangled. Perhaps we should be a little more demanding than that.

To magnify the inadequacy of our current definition of entanglement,
consider the following states for ε ∈ [0, 1]:

|Ψ〉ε :=
√

1− ε |01〉+
√

ε |10〉 ∈ C2 ⊗C2.

The vectors |Ψ〉ε are normalized for all ε ∈ [0, 1], as (
√

1− ε)2 + (
√

ε)2 = 1.
Note that only for ε = 0 ∨ ε = 1 we have a separable state, as we then
obtain |Ψ〉0 = |01〉 and |Ψ〉1 = |10〉. The state is entangled for all ε ∈ (0, 1)
though.

Now consider the analogous definition of ”nonzeroness” of a number.
Using this reasoning we would say that the number 2 is just as nonzero as
the number 12; they would both just be called nonzero. But we do of course
distinguish them. The absolute value serves as our measure of ”nonze-
roness”, even for complex numbers, and in a similar manner it would be
nice if we had some measure of ”nonseparableness”.

Needless to say, a measure of entanglement should not depend on the
basis chosen to represent a state. We can fortunately make use of the
Schmidt decomposition to avoid that.

Participation ratio Let |a〉 be a pure state in H1⊗ H2. We then define the
participation ratio to be:

pr(|a〉) :=
1

∑k
i=1 p2

i

,
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16 Measures of bipartite entanglement

where pi are the Schmidt coefficients of |a〉 and k is the Schmidt rank of
|a〉[2].

Since the eigenvalues of the square of a matrix are equal to the squares
of the eigenvalues, and the trace of a matrix is equal to the sum of its
eigenvalues, we can rewrite this to get:

pr(|a〉) = 1
Tr(ρ2

1)
.

Since the Schmidt coefficients add up to 1, or equivalently since Tr(ρ1) =
1, it is easy to see that the participation ratio takes values in [1, k]. It is equal
to k precisely when ρ1 has 1

k as its only eigenvalues (with multiplicity k),
and it is equal to 1 when ρ1 has 1 as its only nonzero eigenvalue (with
multiplicity 1).

Calculating the participation ratio for our exemplary state |Ψ〉ε we get
pr(|Ψ〉ε) = 1

(1−ε)2+ε2 . In the following graph we see what this expression
looks like:

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

pr
(|

)

Figure 3.1: The participation ratio of |Ψε〉 as a function of ε.

Figure 3.1 shows us that the participation ratio satisfies at least the min-
imal demand we would like a measure of entanglement to satisfy, namely
that it is minimal for separable states (ε = 0, 1).

fact: mixedness of reduced states corresponds to entangledness of whole state.[3]
Some insight into why this is the case can be provided by the property that
when a reduced density matrix is a pure state, then it is associated with a
single state vector. Then there is no entanglement present between the

16
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17

part associated with that reduced density matrix and the rest of the sys-
tem. Because of this fact, we are able to define measures of mixedness of
reduced states as measures of entanglement of the whole state.

Let in the following part ρ : H1 ⊗ H2 → H1 ⊗ H2 be an arbitrary pure
density matrix describing a bipartite system.

Von Neumann entropy Possibly the most well known measure of mixed-
ness is the von Neumann entropy, given by:

SvN(ρ) := −Tr(ρ ln(ρ)).

Here, ln(ρ) is the matrix logarithm of ρ. It is defined as follows:
Since ρ is Hermitian, it is diagonalisable. Writing P for the matrix of

eigenvectors and ρD for the corresponding diagonal matrix, we define
ln(ρ) := P ln(ρD)P−1, where ln(ρD) is defined by ln(ρD)ii := ln(ρii). This
logarithm is ill-defined in case there are zeros on the diagonal. Fortunately,
in case of the von Neumann entropy the problem can be evaded by impos-
ing a continuity condition. To achieve this we will rewrite the von Neu-
mann entropy in terms of the eigenvalues of ρ.

Since the trace of a matrix is equal to the sum of its eigenvalues, we
have that:

SvN(ρ) = −∑
i

λi ln(λi),

where λi are the eigenvalues of ρ. In order not be hindered by infinities
and to preserve continuity we define λ ln(λ) to be zero, or equivalently we
only take the sum over the nonzero eigenvalues of ρ. A significant physical
argument in favour of defining λ ln(λ) equal to zero, is that adding states
that occur with probability zero to a system should not affect the entropy
of the system.

If ρ is a pure state, the corresponding measure of entanglement is thus
given by:

ESvN(ρ) := SvN(Tr2(ρ)) = SvN(ρ1).

Again rewriting this to a sum of the eigenvalues gives us:

ESvN(ρ) = −∑
i

pi ln(pi),

where pi are the eigenvalues of ρ1, which are the Schmidt coefficients of ρ.
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18 Measures of bipartite entanglement

Tsallis entropies For q ∈ R>0 we define the Tsallis entropies[3, 4]:

Tsq(ρ) :=
1

1− q
(Tr(ρq)− 1)

A fact we will not show here is that the limit case q→ 1 coincides with the
von Neumann entropy. The case where q = 2 is called the linear entropy,
which is worth noting since it is a built-in function in QuTiP, a Python
library we will use later on in this thesis.

In fact, the Tsallis entropy can be expressed in terms of eigenvalues of
ρ as well:

Tsq(ρ) =
1

1− q
(∑

i
(λ

q
i )− 1).

This is the case since if A is a matrix and λ is an eigenvalue of A, then An

has eigenvalues λn.
Analogous to the definition of entanglement based on the von Neu-

mann entropy we get for a pure state ρ:

ETsq(ρ) := Tsq(Tr2(ρ)) = Tsq(ρ1),

and this measure of entanglement can therefore also be expressed in terms
of the Schmidt coefficients:

ETsq(ρ) =
1

1− q
(∑

i
(pq

i )− 1).

LOCC Any viable measure of the entanglement of a system shall not in-
crease on average by means of local operations (i.e. operations on the dis-
tinct parts of the system) and classical communications (i.e. using informa-
tion about the result of an earlier operation carried out on one part of the
system in performing an operation on another part of the system)[3, 5, 6].
We abbreviate local operations and classical communications by LOCC.
Unfortunately there is no simple way to mathematically capture the con-
cept of LOCC, but fundamentally both the von Neumann entropy and the
Tsallis entropies (for q > 0) satisfy the imposed condition. In chapter 5 we
will elaborate on this.

18
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Chapter 4
Partitions and α-entangledness

A better definition of multipartite entanglement We might have a rea-
son to doubt the usefulness of our current definition of entanglement,
when applied to systems consisting of more than two parts. Consider the
following entangled state:

|ψ2〉 =
1√
2
(|010〉+ |100〉).

We can rewrite it at such:

|ψ2〉 =
1√
2
(|01〉+ |10〉)⊗ |0〉 .

So far we denoted the standard basis of C2 as {|0〉 , |1〉}, and the stan-
dard basis of C2 ⊗C2 as {|00〉 , |01〉 , |10〉 , |11〉}. A particle that can classi-
cally be in four states, would be described by a state living in C4 and anal-
ogously we would denote the standard basis vectors as {|0〉 , |1〉 , |2〉 , |3〉}.
But nothing stops us from using the notation {|00〉 , |01〉 , |10〉 , |11〉}. With
that in mind, we might just as well view |ψ2〉 as a state living in C4 ⊗C2.
But then it isn’t entangled anymore!

Partitions. This idea of grouping certain particles can be formalized by
looking at partitions of the particles. Given a set L, we call α a partition of L
if it is a set of subsets of L and the following properties are satisfied:

1. ∅ /∈ α

2.
⋃

K∈α K = L

Version of July 11, 2018– Created July 11, 2018 - 20:01
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20 Partitions and α-entangledness

3. K, K′ ∈ α : K 6= K′ =⇒ K ∩ K′ = ∅

Given some set L, we call the partition α = {L} the trivial partition.
Next, we will apply this definition and create a more general definition

of entanglement based upon it. Say we look at a system of n particles. Let
|Ψ〉 ∈ ⊗n

i=1 Hi be the (a) state vector associated with these particles.

Definition: α-entangled. First, we label our n particles. We write L :=
Z∩ [1, n] = {1, 2, . . . , n} for the set of labels. Then let α be a partition of L.
We say that |Ψ〉 is α-separable, if for every K ∈ α there exists a state vector
|ψK〉 ∈

⊗
i∈K Hi such that |Ψ〉 = ⊗

K∈α |ψ〉K holds.

|Ψ〉 is called α-entangled, if it cannot be expressed as a tensor product
|Ψ〉 = ⊗

K∈α |ψ〉K of states |ψK〉 ∈
⊗

i∈K Hi.

Examples Before we continue, we wish to get rid of the excess of brackets
when writing out our partitions of particles. From now on we denote a
partition α = {K1, . . . , Ki, . . . } as α = K1| . . . |Ki| . . . . Any case where we
will explicitly write out α will involve at most n = 9 particles, so we will
then also leave out the commas and brackets which are part of the usual
notation of K ∈ α.

In the case of two particles, there exists only a single nontrivial parti-
tion of the labels. Then we have n = 2 and therefore L = {1, 2}, so the
one nontrivial partition is α = 1|2. This means that for n = 2, the new
definition of α-entanglement brings nothing new compared to our origi-
nal definition of entanglement.

Things get a bit more interesting if we look at n = 3. There are 5 differ-
ent partitions, namely α = L, α = 12|3, α = 13|2, α = 1|23, and α = 1|2|3.
The state |ψ2〉 is then indeed α-separable for α = 12|3, since 1√

2
(|01〉+ |10〉)

is a state in
⊗

i∈12 Hi = H1 ⊗ H2, and |0〉 lives in
⊗

i∈3 Hi = H3. It is also
α-entangled for all other nontrivial α.

20
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Chapter 5
Quantifying multipartite
entanglement

As we have seen, depending on the way in which the parts of a system get
partitioned, it can change if we call a given state entangled or not. For this
reason it is unreasonable to try to assign a single number to a given state,
that is supposed to represent the ”degree of entanglement” of said state.
Nonetheless, we could attempt to quantify the degree of α-entanglement.
That would mean that given some state, we obtain a number for every
partition of its parts. We will denote the degree of α-entanglement of a
given pure state ρ as fα(ρ).

Defining fα Given a pure state ρ :
⊗n

i=1 Hi →
⊗n

i=1 Hi and a partition α
of its parts L = Z∩ [1, n], we define its fα as follows:

fα(ρ) := ∑
K∈α

F(TrK(ρ)),

Where F is an entropy such as the von Neumann entropy or a Tsallis-q
entropy. In this expression, each term F(TrK(ρ)) can be interpreted as the
(bipartite) entanglement of ρ, where the system is perceived as the bipar-
tition HK ⊗ HK. In that respect, fα is a multipartite analogue to the previ-
ously defined measures of bipartite entanglement.

Apart from the analogy with the bipartite approach, there are a number
other of reasons for defining a measure of multipartite entanglement the
way we do here. We stress that this thesis only covers the description of
the entanglement of pure states. In that case the most important require-
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22 Quantifying multipartite entanglement

ment for fα to be a good measurement of entanglement, is that f should
be an entanglement monotone[3].

Entanglement monotone Given an arbitrary pure state ρ which becomes
ρ′ = ∑i p′iρ

′
i through applying some pure1 LOCC operations, a function

f : (
⊗n

i=1 Hi →
⊗n

i=1 Hi) → R that assigns a real number to a density
matrix2 is called an entanglement monotone, if f (ρ) ≥ ∑i p′i f (ρ′i) holds.

From theorem 3 in Szalay it follows that for some K ∈ α the function
F ◦ TrK is an entanglement monotone if F is the von Neumann entropy,
and if F is a Tsallis-q entropy for q > 0 as well. He also shows that sums of
entanglement monotones again are entanglement monotones. As a con-
sequence, fα in the way we have defined above is also an entanglement
monotone.

Some further properties a good measure of α-entanglemend should
satisfy, is that it is zero for α-separable states, and larger than zero for
α-entangled states. Finally, we want that fα is larger than fβ if and only if
the partition α is finer than the partition β. To illustrate what finer means:
1|2|34|567 is finer than 12|34|567 which in turn is finer than 1234|567, and
1|23|4567 is neither finer nor coarser (i.e. less fine) than any of the former
three partitions. This also illustrates the fact that we cannot orden parti-
tions linearly by their coarseness, since some partitions can simply not be
compared. It turns out that fα indeed has this property when F is taken to
be the von Neumann entropy or the Tsallis-q entropy for q > 1 (not q > 0).

fα can also be interpreted as a measure of statistical distinguishability[3].
For this thesis the concept of statistical distinguishability has not been ex-
amined, but we think it should still be referenced here as it is another
argument for defining fα in this manner.

Symmetric states The number of partitions of n particles grows extremely
fast. For only 5 particles, there are already 52 different partitions. For state
vectors that are symmetric under permutations of the particles, it is not
necessary to consider all partitions, since many of them are then equiva-
lent and will give the same result for fα. The number of partitions of a set
of n elements up to permutations is equal to the number of ways n can be
written as a sum of positive integers, which still grows very rapidly. But

1This means that ρ′i have to be pure states.
2We actually don’t need to define f for every density matrix - only for pure states. We

might abuse this fact to write f (|a〉) where it should be f (|a〉 〈a|). Wherever we write
f (|a〉), read f (ket2dm(|a〉)) where ket2dm(|a〉) := |a〉 〈a|.

22
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for 5 particles, there are only 7 inequivalent partitions. The following table
shows that the number of partitions modulo permutations is still manage-
able for the first few n, whereas the total number of partitions is not:

|L| = n number of partitions[7] up to permutations[8]
0 1 1
1 1 1
2 2 2
3 5 3
4 15 5
5 52 7
6 203 11
7 877 15
8 4140 22
9 21147 30
10 115975 42

Now if we look at the actual partitions up to permutations, the relation
with the integer partitions becomes more clear:

n = 4: n = 5:
1234 12345

1234|5
123|4 123|45

123|4|5
12|34 12|34|5
12|3|4 12|3|4|5
1|2|3|4 1|2|3|4|5

As we can see, the integer partition of n is found in the number of
elements in each part of a partition. Explicitly, 5 = 5, 5 = 4 + 1, 5 =
3 + 2, 5 = 3 + 1 + 1 and so on. The map the other way is given as follows:
Let a be an integer partition of n and write it as a sequence with elements
ordened by their size (so e.g. a = {1, 1, 3} when n = 5). Then the partition
of L corresponding to this integer partition is given by

α =
|αint|⋃
j=1

{
Z∩ (

j−1

∑
i=1

ai,
j

∑
i=1

ai]

}
,

where we follow the common convention that the empty sum is taken
equal to zero (∑0

i=1 ai = 0). Writing this out for a = {1, 1, 3} yields α =
{Z ∩ (0, 1], Z ∩ (1, 2], Z ∩ (2, 5]} = {{1}, {2}, {3, 4, 5}} = 1|2|345, for ex-
ample.
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Chapter 6
Analytical results for the
α-entanglement of Wn and GHZn

As the von Neumann entropy and the Tsallis-q entropy for q > 1 satisfy
all the requirements for a proper measure of multipartite entanglement
of pure states, we will now investigate the associated functions fα and
attempt to conclude whether they are able to adequately distinguish the
entanglement of the GHZ and W states and their n-dimensional generali-
sations.

The GHZ and W states are defined as follows:

|GHZ〉 :=
1√
2
(|000〉+ |111〉),

and
|W〉 :=

1√
3
(|100〉+ |010〉+ |001〉).

Both live in (C2)⊗3. These states are symmetric under permutation of
their parts. Also, both states are α-entangled for all nontrivial partitions α.
This means that in order to get a good picture of the manner in which these
states are entangled, it is not necessary to consider all partitions of the
particles, and considering for instance only the following three suffices:
1|2|3, 1|23 and 123. Since the trivial partition is really uninteresting, we
will leave it out from now on.
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26 Analytical results for the α-entanglement of Wn and GHZn

It is quite straightforward to generalize the GHZ and W states from 3
to general dimension n ≥ 2. for readability we will write |0n〉 := |0〉⊗n

and |1n〉 := |1〉⊗n in the following parts. We have:

|GHZn〉 :=
1√
2
(|000 . . . 0〉︸ ︷︷ ︸

n

+ |111 . . . 1〉︸ ︷︷ ︸
n

) =
1√
2
(|0n〉+ |1n〉),

and

|Wn〉 :=
1√
n
(|100 . . . 0〉︸ ︷︷ ︸

n

+ |010 . . . 0〉+ ... + |000 . . . 1〉) = 1√
n

n

∑
i=1

n⊗
j=1

|δij〉 .

These states live in H = (C2)⊗n.

If we want to know values for the α-entanglement for these states, we
will have to find the eigenvalues of the reduced density matrices. It’s not
needed to take into account which particles exactly we trace out, because
of the permutational symmetry of the states. Explicitly:

Like before, we label the particles with L := Z ∩ [1, n]. Let K ( L be
arbitrarily given, and K 6= ∅, and write |K| = p, |K| = n − p = q. We
will first calculate the eigenvalues of the partial trace tracing out K for the
GHZn state, and then do the same for the Wn state.

If we view H as the bipartite Hilbert space HK ⊗ HK, then the GHZn
state can be expressed as follows:

|GHZn〉 =
1√
2
|0p〉 ⊗ |0q〉+

1√
2
|1p〉 ⊗ |1q〉 .

Now we note that the state is written in its Schmidt decomposition, since
the states |1p〉 and |0p〉 are orthonormal and the states |1q〉 and |0q〉 as well.
Therefore our lemma in chapter 2 implies that the nonzero eigenvalues of
the reduced matrix TrK(|GHZn〉 〈GHZn|) are simply p1 = p2 = 1

2 .

We can rewrite the Wn states to obtain a Schmidt decomposition for it

26
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as well:

|Wn〉 =
1√
n

n

∑
i=1

n⊗
j=1

|δij〉

=
1√
n

 p

∑
i=1

n⊗
j=1

|δij〉+
n

∑
i=p+1

n⊗
j=1

|δij〉


=

1√
n

p

∑
i=1

p⊗
j=1

|δij〉 ⊗ |0q〉+
1√
n

q

∑
i=1
|0p〉 ⊗

q⊗
j=1

|δij〉

=

√
p
n
|Wp〉 ⊗ |0q〉+

√
q
n
|0p〉 ⊗ |Wq〉 .

Because |Wp〉 and |Wq〉 are normalized sums of only terms of the form
|00 . . . 1 . . . 0〉, it is the case that |Wp〉 is orthonormal to |0p〉 and |Wq〉 is
orthonormal to |0p〉. Thus we have indeed written |Wn〉 in its Schmidt
decomposition. With this fact we can use our lemma again and conclude
that the nonzero eigenvalues of TrK(|Wn〉 〈Wn|) are given by p1 = p

n and
p2 = q

n .
Now we can calculate the measures of bipartite entanglement for any

bipartition H as HK ⊗ HK, and then use them to find expressions for the
measures of α-entanglement. Remember how the von Neumann entropy
and Tsallis-q entropies were formulated in terms of eigenvalues:

SvN(ρ) = −
k

∑
i=1

λi ln(λi),

and

Tsq(ρ) =
1

1− q
(

k

∑
i=1

(λ
q
i )− 1).

Using F = SvN we then obtain the following expression for fα in terms
of the Schmidt coefficients. We have:

fα(ρ) = ∑
K∈α

F(TrK(ρ)) = − ∑
K∈α

kK

∑
i=1

pK,i ln(pK,i),

where kK is the Schmidt rank and pK,i are the Schmidt coefficients of ρ
following from the Schmidt decomposition where the bipartition of H is
given by HK ⊗ HK.
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28 Analytical results for the α-entanglement of Wn and GHZn

Likewise, we can obtain an expression for fα in terms of the Schmidt
coefficients using F = Tsq:

fα(ρ) = ∑
K∈α

F(TrK(ρ)) = ∑
K∈α

1
1− q

(
kK

∑
i=1

(pq
K,i)− 1).

We have now come to the point where we are able to give explicit expres-
sions for both fα(GHZn) and fα(Wn) for both entropies. Using the von
Neumann entropy we obtain for ρ = |GHZn〉 〈GHZn|:

fα(GHZn) = − ∑
K∈α

(
1
2

ln(
1
2
) +

1
2

ln(
1
2
)

)
= −|α| ln(1

2
) = |α| ln(2),

and for ρ = |Wn〉 〈Wn| the expression becomes:

fα(Wn) = − ∑
K∈α

( pK

n
ln(

pK

n
) +

qK

n
ln(

qK

n
)
)

,

where pK and qK are defined by pK,1 = pK
n and pK,2 = qK

n .

Likewise, using the Tsallis-a entropy (where we write a to avoid using
q twice) the GHZn state gives us:

fα(GHZn) = ∑
K∈α

1
1− a

(
(

1
2
)a + (

1
2
)a − 1

)
=

1
1− a ∑

K∈α

(21−a− 1) = |α|2
1−a − 1
1− a

,

and finally for the Wn state we get:

fα(Wn) =
1

1− a ∑
K∈α

(
(

pK

n
)a + (

qK

n
)a − 1

)
.
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Chapter 7
Computational results for the
α-entanglement of Wn and GHZn

In the previous chapter we have derived concrete expressions for the α-
entanglement of a given pure state, when we choose F to be either the von
Neumann entropy or a Tsallis-q>1 entropy. However, other functions F
need not be expressable in terms of eigenvalues per se. But even if that
were possible, for an arbitrary (pure) state it is impractical to calculate fα

for a given α by hand, as determining the Schmidt coefficients for even
a single K ∈ α may already be a great challenge - not to mention cal-
culating fα for all partitions, even when only permutationally symmetric
states would be considered. For this reason, we have written a program in
Python 3 thankfully making use of the QuTiP 4 library (Quantum Toolbox
in Python)[9, 10]. Our program is in principle capable of calculating fα(ρ)
for any F1 and any partition α, and any pure state ρ. In case of permuta-
tionally symmetric states, it can generate all partitions α and thus give a
complete picture of how the entanglement is distributed over all α.

1F needs to be expressable in python code, such that e.g. infinite series may only be
approximated
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30 Computational results for the α-entanglement of Wn and GHZn

As the time it takes to generate the data increases substantially with the
number of partitions, we have limited ourselves to n = 14. Beyond n = 6
it is not possible to give a (readable) explicit display of all partitions α on
the horizontal axis2. These have been the determining factors for which n
we generate plots for. Hence we only consider n = 3 for historical reasons,
and n = 6 and n = 14 for the reasons pointed out here. We have decided
against displaying graphs for other n < 14, because all observations can
already be made from the cases n = 6 and n = 14. For the same reason we
omit graphs where F = Tsq for q 6= 2, 3 is chosen. The corresponding data
has been generated though, and this data (as well as the code generating
it) can be requested from the author. For readability, the von Neumann
entropy is calculated (in essence just scaled) using the binary logarithm
instead of the natural logarithm. Finally, as this is a lot more convenient
in Python, the particles are labeled from 0 through n− 1 instead of from 1
through n.

In figures 7.1, 7.2 and 7.3 we show the values fα takes for all permutation-
ally different partitions α for several different n, using the von Neumann
entropy as our function F. In figure 7.1 we show the results for the original
GHZ and W states (n = 3).

Then in figures 7.4 and 7.5, to better observe effects of the size of ele-
ments of the partitions, we have generated plots displaying fα

|α| . In this way
we eliminate the effect that the number of elements of a partition may have
on the α-entanglement.

Figures 7.6 and 7.7 were generated to display for all permutationally
different partitions α the α-entanglement of |GHZ6〉 and |W6〉 as figure
7.2, but with the Tsallis-2 entropy as F in figure 7.6, and with the Tsallis-3
entropy in figure 7.7.
Similarly 7.8 and 7.9 were generated show the same data as 7.2, but with
the Tsallis-2 entropy as F in figure 7.6, and with the Tsallis-3 entropy in
figure 7.7.

2Instead, we have ordened the partitions lexicographically and labeled them accord-
ingly.
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Figure 7.1: The original states
GHZ and W (n = 3).
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Figure 7.2: n = 14, the largest n where
we can still do the calculation.
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Figure 7.3: n = 6, the largest n where displaying all α is still possible.
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32 Computational results for the α-entanglement of Wn and GHZn
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Figure 7.4: fα/|α| for the von Neumann
entropy and n = 6.
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Figure 7.5: fα/|α|, n = 14.

0|1|2|3|4|5
0|1|2|3|45

0|1|2|345
0|1|23|45

0|1|2345
0|12|345

0|12345
01|23|45

01|2345
012|345

012345

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f

f  with F = Ts2, |GHZ6 , |W6

|GHZ6
|W6

Figure 7.6: fα for Tsallis-2 and n = 6.
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Figure 7.7: fα for Tsallis-3 and n = 6.
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Figure 7.8: fα for Tsallis-2 and n = 14.
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Figure 7.9: fα for Tsallis-3 and n = 14.
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Chapter 8
Conclusion and discussion

In figure 7.1 we can readily observe that lower entanglement corresponds
with coarser partitions. As it should be, fα is strictly positive for both
states for all α except α = {L}, where it is zero. This behaviour continues
to be observable in figures 7.2 and 7.3. There it also becomes clear that
fα(Wn) ≤ fα(GHZn) holds for all α, with equality when α = {L} and
when α is a partition of two equally sized parts. This is in accordance with
the analytic expressions we found in the previous chapter. A partition of
two parts of equal size namely gives us Schmidt coefficients for the Wn
state of p1 = p2 = 1

2 , equal to those of the GHZn state.
The fact that fα(Wn) = fα(GHZn) holds when α is a partition of two
equally sized parts also means that for odd n, the Wn states are always
(for all nontrivial partitions α) less α-entangled than the GHZn states. Fur-
thermore, we observe in figure 7.3 that any chain of partitions α1, α2, . . . or-
dened from crude to fine corresponds with a chain of inequalities fα1(|ψ〉) ≤
fα2(|ψ〉) ≤ . . . , for both |ψ〉 = |GHZn〉 and |ψ〉 = |Wn〉.

In the previous chapter we derived that the dependency of fα(GHZn) on
α is completely given by the partition size |α|, which is clearly reflected in
the figures. Interestingly, figure 7.4 shows us that for the Wn state a lower
value for fα seems to correspond to a large difference in size of the ele-
ments of the partition, or just to the presence of small and large elements
compared to n. This may be explained by the fact that when a Schmidt co-
efficient of the Wn state is very close to either 0 or 1, then the term F(TrK)
for the corresponding K becomes very small.
Figure 7.5 on the other hand shows the general trend that the degree of
”α-entanglement per part” appears to be higher for partitions with less
parts. Note that the partitions 0|1|234 and 0|12345 break this pattern. We
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34 Conclusion and discussion

conjecture that partitions with very large and/or small elements generally
do this.

Finally, by means of figures 7.6, 7.7, 7.8 and 7.9 we can somewhat examine
the effect of the particular function we choose for F on the α-entanglement
as calculated. This might tell us whether we are actually observing prop-
erties of the states or if we are merely seeing properties of our F. We
note that everything we have observed so far using figures 7.1, 7.2 and 7.3
(where F was the von Neumann entropy), continues to be true using ei-
ther the Tsallis-2 or the Tsallis-3 entropy. We do note that statements about
α-entanglement for differing partitions α and different states may change
depending on which F we choose. For example, comparing figures 7.3 and
either 7.6 or 7.7, we can see that

f0|1|2345(GHZn) < f0|1|23|45(Wn)

holds true in case we use the von Neumann entropy, and in contrast

f0|1|2345(GHZn) > f0|1|23|45(Wn)

is the case when we choose either the Tsallis-2 or the Tsallis-3 entropy.
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