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Abstract
The focus of most RCTs is to find out which treatment works best on average. Patients,
however, benefit most when receiving a treatment that works best based on their own pre-
treatment characteristics. When a subgroup of the population benefits the most from a
treatment different from the treatment that benetits another part of the population most, a
qualitative subgroup-interaction is present. QUINT was developed to find these interactions.
Nevertheless, these interactions are relatively often not found. This makes QUINT inferior to
another tree-based method, MOB. The present study aims to improve QUINT in order to find
those interactions more often. An adapted version of QUINT is compared to MOB, to see if
the methods are now equally effective. The simulation study shows that QUINT now
performs better than MOB in terms of a lower Type I error rate (0.323 versus 0.589) and
similar proportions correctly assigned (0.738 or 0.803 versus 0.793) and Type II error rates
(0.216 versus 0.251). To demonstrate and justify the new version of QUINT, an application
study is performed. This study shows that the adapted version is at least as good as the current
version of QUINT. A limitation of the simulation study is the small sample sizes used. Future
research could address this limitation as well as add an extra evaluation criterion to the
simulation study and compare QUINT to other tree-based methods designed to find treatment-

subgroup interactions. In conclusion, the adaptation of QUINT appears to be successful.
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Introduction
Evidence-based medicine requires researchers and medical practitioners to ask scientific
questions, observe, analyse and record evidence (Peile, 2004). Part of asking scientific
questions is conducting experiments. To this aim, randomized controlled trails (RCTs) are
used. The focus of most RCTs is to find out which treatment works best on average.
According to Epstein and Sherwood (1996), it is difficult to retrieve information about a
patient’s individual outcome from RCTs. A patient’s outcome may depend heavily on
characteristics of the physician and on characteristics of the patient himself (Albisser, 2000).

When subgroups of patients, which differ in their characteristics, vary in the efficacy
of one or more treatments, there is differential treatment efficacy. This interaction between
patient characteristics and treatment efficacy can be either quantitative or qualitative. In a
quantitative interaction, one treatment is always better than the other, but how much better
varies with the patient characteristics. In a qualitative interaction, one treatment is better for
some patients, while the other treatment is better for other patients.

Since the article by Epstein and Sherwood (1996) several tree-based methods have
been developed that can find subgroups of patients with the use of data from RCTs. Most of
those methods make no distinction between quantitative and qualitative interactions, such as
STIMA (simultaneous threshold interaction modeling algorithm; Dusseldorp, Conversano, &
Van Os, 2010; Dusseldorp & Meulman 2004), Interaction Trees (Su, Tsai, Wang, Nickerson,
& Li, 2009), MOB (Model-based recursive partitioning; Zeileis, Hothorn, & Hornik, 2008),
Virtual Twins (Foster, Taylor, & Ruberg, 2011), and SIDES (subgroup identification based on
differential effect search; Lipkovich, Dmitrienko, Denne, & Enas, 2011). However, a patient
and its medical practitioner are usually most interested in which treatment works best for the
patient rather than the efficacy of the treatment compared to another treatment. To this end

QUINT (qualitative interaction trees) was developed: a tree-based method that searches for
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qualitative interactions. Figure 1 shows an example of QUINT used by Dusseldorp, Doove
and Van Mechelen (2015) for comparing two mutually exclusive treatments for depression in
patients with breast cancer. The figure shows that the total group of patients is partitioned into
three classes: P, P> and P3 (see the leaves). A certain group of patients, the group with low
dispositional optimism, many negative social interactions and a low treatment extensiveness,
is better off receiving treatment 1 (partition class 1), a nutrition-based treatment, than
treatment 0. In contrast, patients with a low dispositional optimism score and with few
negative social interactions and patients with a dispositional optimism score between 18.5 and
21.5, are better off receiving treatment 0 (partition class 2), an education-based treatment,
instead of treatment 1. A third group (partition class 3) is indifferent to whether it receives

treatment 0 or treatment 1. In this group (leaves 3 and 5) the nutrition-based treatment is
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Figure 1. Example of a pruned qualitative interaction tree for the outcome Improvement in
depression using the Breast Cancer Recovery Project data, as produced by the package quint.
The splitting variables are: disopt (dispositional optimism), negsoctl (negative social
interaction), and trext (treatment extensiveness index). Each leaf of the tree is assigned to one
of the three subgroups denoted in the figure by Pi, P2, and Ps, respectively, and visualized by
different colors of the leaves (green, red, and grey). P means treatment 1 is best, P> means
treatment 0 is best and P3 means the treatments are equally effective. The vertical axis of the

leaves pertains to the effect size d. Reprinted from Dusseldorp, Doove and Van Mechelen
(2015), p. 3.
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equally effective as the education-based treatment. Without a search for qualitative
interactions, every patient were to receive the nutrition-based treatment, since this treatment is
best overall.

In the present study, QUINT (Dusseldorp & Van Mechelen, 2014) is compared to
MOB (Zeileis et al., 2008) on the effectiveness in assigning patients to the most effective
treatment. Both methods build trees suitable for two alternative treatments and
were compared to each other earlier (Sies & Van Mechelen, 2016; Van der Geest, 2017).
According to Sies and Van Mechelen (2016) QUINT performed worse than MOB, especially
when comparing the Type II error rates. However, Sies and Van Mechelen (2016) used
models with both a qualitative interaction as well as a quantitative interaction. Since QUINT
was built specifically to find qualitative interactions, we performed a pilot simulation study
based on the beforementioned study with the emphasis on qualitative interactions (Van der
Geest, 2017). The results of this pilot study showed that the current version of QUINT
(version 1.2) has a large Type II error rate. A closer inspection of the results revealed that one
of the current stopping rules of QUINT (version 1.2) was too conservative. This stopping rule
is based on the qualitative interaction criterion. Practically, this means a tree is allowed to
grow when the treatment outcomes in each of the leaves difter by a critical minimum absolute
value (dwin). To improve the Type II error rate of QUINT, we propose to apply the qualitative
interaction criterion at a later moment in the pruning process.

The present study consists of three stages. In the first stage, a new version of QUINT
(version 2.0) is presented with an adjusted stopping rule. In the second stage a simulation
study is performed to evaluate the effectiveness of MOB and QUINT (version 2.0). The
following research questions are investigated:

1. Do QUINT (version 2.0) and MOB differ in their proportion of patients

assigned to the best treatment?
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2. Do QUINT (version 2.0) and MOB differ in their Type I error rate and Type 11
error rate?

In the third stage, the results of the adapted version of QUINT (version 2.0) are compared to
the results of QUINT (version 1.2). The latter results were described in Formanoy et al.
(2016) in a study regarding the efficacy of a physical or social environmental intervention in
reducing the need for recovery from work for office workers. For this third stage, the
following research question is formulated:

3. Do the subgroups found by QUINT (version 2.0) differ from the subgroups

found by QUINT (version 1.2)?

Amelioration

Motivation
A requirement to grow a tree by QUINT is that there are at least two subgroups of patients, P;
in which patients are better off receiving treatment 1 than treatment 0 and P> in which patients
are better off receiving treatment 0 than treatment 1, having a certain difference in means of
outcome Y. This difference in means can either be unstandardized or standardized (the latter
being Cohen’s effect size d). Dusseldorp & Van Mechelen (2014) showed that a standardized
difference in means (dmin) With an absolute value of 0.3 or higher accompanies an acceptable
Type I error. Hence a minimal absolute value of 0.3 for dmin is required to grow a tree. This
dmin needs to be present in Py as well as P>. Otherwise, the effect size in the leaf with an
absolute value of dmin below 0.3 is too low to affirm that one treatment is better than the other.
Hence, it is then not allowed to claim a qualitative treatment-subgroup effect exists.

In the present version of QUINT (1.2), the qualitative interaction requirement is
assessed at the first split. This could lead to the rejection of a tree in the earliest stages of

fitting the tree. The change in the QUINT algorithm encompasses delaying the inspection of
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the qualitative interaction requirement to the pruning stage. Hopefully this will result in fewer
incorrect rejections of trees and hence increase the power of QUINT.

Adaptation

To do this, two changes are made in the tree-growing stage. First, the check on the qualitative
interaction is removed. Before, there was a check on the effect size of the differences in
treatment outcomes in the two leaves of the tree after the first split. This hindered QUINT
from returning trees in which the qualitative interaction shows only at a later stage such as in
Figure 2. The effect sizes in the two leaves of this tree after the first split would be too small

(i.e. 0.24 and -0.21) to comply with the check.
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Figure 2. Example of a tree with a qualitative interaction that QUINT (version 1.2) does not
find.

Second, with this check removed, the tree-growing stage does not stop immediately in
the specific situation when all patients actually belong in the root node. After each split in the
tree-growing stage, a value is calculated that takes into account the difference in treatment

outcome between treatment 0 and treatment 1 and the sample sizes of class 1 and 2. Ideally,
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this value is as high as possible (on a scale from 0 to 4). The tree-growing stage continues as
long as this value, C, keeps increasing. With C being 0 after the first split, a second split is
made. However, this was not possible with the qualitative interaction check present in the
tree-growing stage. To prevent QUINT from making a second split in this specific situation,
an adaptation is made. The new algorithm of the tree-growing stage can be found in Appendix
A (with the removed qualitative interaction in red and the added adaptation in green).

In the pruning stage, no part of the algorithm is removed. Instead, two features are
added. One feature deals with the above situation that all patients are actually in the root node
(i.e. there is no subgroup-treatment interaction)!. The adaptation stops the pruning stage and
returns the same tree as the tree-growing stage does. The other feature is a check on the
qualitative interaction that was removed from the tree-growing stage. This time, the effect
sizes of the differences in treatment outcomes in all the leaves present in the pruned tree are
used to check for the presence of a qualitative interaction. If all absolute values of the effect
sizes of the leaves assigned to the first treatment or all absolute values of the effect sizes of
the leaves assigned to the second treatment are smaller than the qualitative interaction
condition requires, all patients should receive the same treatment and the tree is pruned back
to the root node. The new algorithm of the pruning stage can be found in Appendix B (with

the added adaptation in green).

Simulation
Data generation
The rows of each generated data set represent the patients receiving a treatment, and the

columns are the following attributes of the patients:

! This is necessary for the simulation study. In the simulation study, every tree reaches the pruning stage.
Normally, when using patient data in which C is 0, the pruning stage is not being used. If someone were to
accidentally use the pruning stage in this situation, however, no strange error message is returned.
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» the pre-treatment characteristics of the patients, Xj (withj =1, ..., J),
» the treatment alternative A4 to which the patient is randomly assigned (with 4 = 0 being

assigned to treatment 0 and 4 = 1 being assigned to treatment 1),
+ the true optimal treatment (g°"").

Data were generated according the following true model:

Y = w4, X)= 1.0 + 0.25X; + 0.25X, — 0.25Xs - d[4 - g (X)]* + €;.
where Y denotes the outcome variable, i stands for the individual, d equals Cohen's d which
was a design factor, and €; represents the error term, having a standard normal distribution.
From this model, four true scenarios were created, differing in the definition of g°'. Both the
data generation and the scenarios are based on Sies and Van Mechelen (2016) and are exactly
the same as in Van der Geest (2017). The scenarios are:
Scenario (A) gP(X) = I(X; > - 0.545)]I(X, < 0.545),
Scenario (B) g°P'(X) = I(X; < - 0.545)I(X, > 0.545) | [(X; < - 0.545)I(X, < 0.545)[(X5 <
0.545),
Scenario (C) g°P{(X) = I(X; > X2),
Scenario (D) g = 1.

The above-mentioned definitions used for g

make use of a maximum of three
characteristics of a patient: X, X> and X3. In Scenario (A) and (C) X and X> are included, in
Scenario (B) also X3 is included and in Scenario (D) no patient characteristics are included. In
Scenario (D) all patients are better of receiving treatment 1. This scenario is used to estimate
the Type I error of the methods. In Scenario (A), (B) and (C) sometimes treatment 0 is better
and sometimes treatment 1 is better: these scenarios involve qualitative interactions.
However, only Scenarios (A) and (B) are tree-based interactions (i.e., using thresholds). Since

Scenario (B) includes the most person characteristics, this scenario is regarded complex and

Scenario (A) and (C) are considered simple.
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Figure 3. Decision tree of Scenario A Figure 4. Decision tree of Scenario B

Figures 3 and 4 depict Scenario (A) and (B) as a decision tree. For Figure 3, when pre-
treatment characteristic X is -0.545 or lower, treatment 0 is the best alternative. When X is
higher than -0.545 and X> is lower than 0.545, treatment 1 is the best alternative. Treatment 0
is again the best alternative for the situation when X is higher than -0.545 and X is equal to
or higher than 0.545. Figure 4 is the mirror image of Figure 3 made more complex by adding
pre-treatment characteristic X3. Figure 5 visualizes Scenario (C) in two ways: in a grid and as
a decision tree. When pre-treatment characteristic Xi and X2 are equal to or lower than 0 or
equal to or higher than 1, treatment 0 is the best alternative. When X and X> are between 0 and
1, the best treatment depends on the exact combination of the values. Therefore, it is not
possible to show the exact decision tree. In most cases, the bottom right leaf in Figure 5(b) is
split further. Looking at Figure 5(a), one may get the impression that treatment 1 is almost
never preferred above treatment 0. However, since the pre-treatment characteristics have
mean 0 and standard deviation 1, a pre-treatment characteristic has a 34% chance of ranging
between 0 and 1. As said earlier, in Scenario (D) all patients are better of receiving treatment
1. Therefore, no decision tree visualizes this scenario.

The pre-treatment characteristics of the patients are generated from a multivariate
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X2

(@) (b)

Figure 5. Scenario C shown in a grid (a) and as a decision tree (b). In (a) the area inside the
curved shape is assigned treatment 1. Everything outside the shape is assigned treatment 0.

normal distribution N(0, 1) and a varying correlation pjj. The treatment alternative A4 has a
Bernouilli distribution with 8 = 0.50. This means patients are randomly assigned to the
treatments and each patient is equally likely to be assigned to treatment 0 as treatment 1. The

optimal treatment g°

is the treatment regime that maximizes the expected potential outcome.
In other words, the treatment the patient receives if the patient’s characteristics are optimally

used in the decision for a treatment alternative. The optimal treatment values are indicated by

0 and 1 in the leaves of the trees as can be seen in Figure 3 and 4.

Monte Carlo simulation design

Data sets are created based on a full factorial design, including the following factors:
»  Sample size (V) has the values 150 and 300;

*  Number of pre-treatment characteristics (/) has the values 5 and 20;

»  Effect size (Cohen's d) has the values 0.5 and 1;

»  Correlation between the pre-treatment characteristics (p) has values 0, 0.2 and 0.4;
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e Type of scenario based on the true optimal treatment regime, g°™ (four types A, B, C, D,
see Data generation).

Crossing all factors results in 2 (sample size) x 2 (number of pre-treatment characteristics) x 2

(effect size) x 3 (correlations between pre-treatment characteristics) x 4 (optimal treatment

regime) = 96 combinations, with 100 Monte Carlo replications for each cell, resulting in

9,600 data sets. Each of these data sets will be analyzed by QUINT version 2.0 and MOB.

Analysis of simulated data sets
In this paragraph, the options and tuning parameters for the methods MOB and QUINT as
specified in Sies and Van Mechelen (2016) will be described.

Model-based Recursive Partitioning. For estimating the tree-based treatment
regimes with MOB, the R-package 'party' (version 1.3-0) was used (Zeileis et al., 2008) . As
input argument, we used ¥ = 3o + 14 as the model, the possible split variables are the pre-
treatment characteristics X, ..., Xj, and the tuning parameters do not deviate from the default
settings with the exception of the minimum number of persons in a node to split: this number
was set to 40. See Appendix C for example code.

Qualitative Interaction Trees. For estimating the tree-based treatment regimes with
QUINT, the package 'quint' was used with an adaptation of the function quint() and the
pruning function prune.quint(), based on our amelioration (see Amelioration and Appendices
A and B). As mentioned in the paragraph Amelioration, the partitioning criterion used to
grow a tree can be unstandardized (referred to as ‘difference in means’) or standardized
(referred to as ‘effect size’). The default setting is effect size. The tuning parameters do not
differ from the default settings, except for the minimum number of persons with 4 =0 or 4 =

1 in a leaf: this was set at 10 per treatment®. See Appendix C for example code.

2 There are 2 treatments and 2 daughter nodes per split, so 10 persons per treatment results in 2 x 2 x 10= 40
persons per split. This is the same amount required by MOB.
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Evaluation criteria and analysis

The performances of QUINT and MOB were compared based on the following evaluation
criteria:

»  Criterion 1: Proportion of patients assigned to their best treatment alternative;

*  Criterion 2: Type I error rate;

*  Criterion 3: Type II error rate.

Criterion 1 is the proportion of patients assigned to their best treatment alternative and
is estimated with Scenario (A), (B), (C) and (D). The amount of people that are assigned to
the same treatment by the method under study as they should receive according to the true
optimal treatment regime is divided by the total number of patients. The proportion of patients
assigned to the best treatment alternative by QUINT depends on how patients assigned to
class 3 are treated. Those patients benefit equally from both treatments and are thus never
assigned wrongly. To deal with this situation, statistics are given with class 3 included in the
proportion of patients good assigned and with class 3 excluded.

Criterion 2 is the Type I error rate: the probability that the null hypothesis is
incorrectly rejected. The null hypothesis in this situation is that every patient should receive
the same treatment alternative. Hence, in this specific situation a Type I error is present when
a tree with two or more leaves is returned. To estimate this probability only Scenario (D) is
used, since the other scenarios involve a qualitative interaction.

Criterion 3, lastly, is the Type II error rate: the probability that the null hypothesis is
incorrectly accepted. A Type II error is therefore present when no tree is returned whereas a
tree should have been returned. To estimate this probability Scenario (A), (B) and (C) are

used, since these are the scenarios with a qualitative interaction.
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QUINT (version 2.0) and MOB are compared to each other using a repeated measures
analysis of variance (ANOVA) for each of the 3 outcome measures with method as a within-
subjects variable and the design factors as the between-subjects variables. Since we are only
interested in the performance of the methods rather than the overall performance of the design
factors, we only report the within-subjects effects. In order to be reported, a main effect or
interaction effect needs to be substantial, with substantial being defined as accounting for a
certain percentage of the total within-subjects sum of squares. According to Cohen (1988),
n?= .06 is a medium-sized effect size. Therefore, all effects of 1> > .06 are reported. This
means a substantial effect accounts for six percent or more of the total within-subjects sum of
squares. Appendices D-G give an overview of the tests of the within-subjects effects as

provided by SPSS (with n? being calculated separately).

Results

Proportion of patients assigned to the best treatment alternative. Overall, the
mean proportion of patients assigned to the best treatment by QUINT is 0.738 with class 3
excluded and 0.803 with class 3 included. The mean proportion assigned to the best treatment
by MOB is 0.793. According to the ANOVA, there is a main effect of method only when
class 3 is excluded (1*= .08, see Appendix D). In contrast, with class 3 included, the
proportion of patients assigned to the best treatment is influenced by the interaction between
method and scenario (n>= .13, see Appendix E). In scenario A and C, QUINT (0.819 resp.
0.729) performs better than MOB (0.747 resp. 0.668), whereas MOB (0.874 resp. 0.883)
outperforms QUINT (0.837 resp. 0.829) in scenario B and D (see Figure 6).

Type I error rate. The mean of the Type I error rate of QUINT is 0.323, whereas the

Type I error rate of MOB is 0.589. According to the ANOVA, the error rate is influenced by
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Table 1
Effects with i’ > .06 resulting from the ANOVA on the Type I error rates

Effect W

Method .14
Method*effectsize 11
Method*J .09
Method*n .06

the method used, the interaction between method and sample size, the interaction between
method and the number of pre-treatment characteristics and the interaction between method
and effect size (see Table 1). Besides the main effect, there are three interaction effects: (1)
the Type I error rate is lower with a sample size of 150 than of 300, and this difference in
error rate is much larger for MOB (0.399 resp. 0.778) than for QUINT (0.309 resp. 0.337, see
Figure 7); (2) the Type I error rate is lower for QUINT with 5 pre-treatment characteristics
(0.262) than with 20 pre-treatment characteristics (0.384). For MOB, however, it is the other
way around (0.733 resp. 0.445, see Figure 8), and (3) QUINT and MOB differ little in Type I
error rate when the effect size is .5 (0.569 resp. 0.607) and both have a lower Type I error rate
when the effect size is 1 (0.077 resp. 0.570). The difference in Type I error rate, however, is
much higher for MOB than it is for QUINT (see Figure 9). All Type I error rates are above
the reference line, meaning none of the Type I error rate is acceptable.

Type II error rate. The mean of the Type II error rate of QUINT is 0.216, whereas
the Type II error rate of MOB is 0.251. According to the ANOVA, this error rate is influenced
by the interaction between method and sample size (n?=.12). QUINT (0.206) performs better
than MOB (0.443) when the sample size is small. MOB (0.059) outperforms QUINT (0.226)
when the sample size is larger. This is due to a better performance of MOB (see Figure 10).

The reference line shows that the Type II error rate of QUINT with a small sample size and of
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MOB with a higher sample size are acceptable. There is no substantial difference between the

Type II error rate of QUINT and MOB.
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Figure 6. Proportion correctly assigned patients of QUINT and MOB depending on scenario.

Error bars represent the 95% confidence intervals.
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Figure 7. Type I error rate of QUINT and MOB depending on sample size. Error bars
represent the 95% confidence intervals. A reference line with an acceptable Type I error rate

of 0.05 is added.
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Figure 8. Type I error rate of QUINT and MOB depending on the number of pre-treatment
characteristics. Error bars represent the 95% confidence intervals. A reference line with an
acceptable Type I error rate of 0.05 is added.
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Figure 9. Type I error rate of QUINT and MOB depending on effect size. Error bars represen
the 95% confidence intervals. A reference line with an acceptable Type I error rate of 0.05 is
added.
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Figure 10. Type Il error rate of QUINT and MOB depending on sample size. Error bars
represent the 95% confidence intervals. A reference line with an acceptable Type II error rate
01 0.20 is added.

Application
Introduction
The “Be Active & Relax™ study consists of 329 office workers between the ages of 19 and 63
years (M= 42.10, SD= 9.95) of which their need for recovery from work (NFR) is measured.
The office workers partake in a social environmental intervention, a physical environmental
intervention, both or neither to see if it affected their NFR. Hence, there are four conditions.
In order to analyse the data with QUINT, there need to be only two intervention groups. An
evaluation of the data showed that there is no interaction effect between the social
environmental intervention and the physical environmental intervention (Formanoy et al.,
2016). The data is therefore suitable for analysing the unique contribution of both
interventions. This means that the data can be used to investigate whether a subgroup of office
workers is better (worse) off receiving a social environmental intervention instead of
receiving no intervention and whether a subgroup of office workers is better (worse) off

receiving a physical environmental intervention instead of receiving no intervention.
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The social environmental intervention consists of four group sessions in which office
workers of the same team are interviewed and motivated about physical activity and
relaxation. The physical environmental intervention consists of applying changes to the work
environment to increase physical activity and relaxation. This is done by adding table tennis
tables, exercise balls, standing tables, footprints on stairs, posters, bar chairs, lounge chairs
and noise reducing curtains.

Participants were measured at baseline and after 12 months. As evaluation criterion
change in NFR was used. Neither the social environmental intervention nor the physical
environmental intervention led to an overall decrease (increase) in NFR. Thus, neither one of
the interventions made sure the office workers experienced on average less (more) work
related fatigue. The same is true for participants receiving both interventions.

In this study, 25 baseline characteristics of the aforementioned study are used in search
for a possible superior intervention per group of office workers. The baseline characteristics
are NFR at baseline, age, sex, level of education, cohabiting, mother country, BMI, mental
health, detachment at home, relaxation at home, physical activity, vitality, team commitment,
organizational commitment, supervisor support, colleague support, job demands, decision
authority, job insecurity, skill discretion, working overtime, detachment at work, relaxation at
work, walking during lunch and active during lunch. Table 2 shows the baseline
characteristics per condition. As can be seen in Table 2, not all participants were analysed.
Out of the 329 study participants, 304 provided all the data. One moderator variable, general
health, had 8 missing values and was not of any importance. Hence, this variable is removed
and 312 office workers are used in the analyses.

The results of Formanoy et al. (2016) show that subgroups found by QUINT (version
1.2) depend on the partitioning criterion (either difference in means or effect size) used to

grow the tree. Since the change in NFR can be viewed as ordinal as well as numeric, both
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criteria are used. When the criterion is effect size, the qualitative interaction tree for the social
environmental intervention is a pruned tree with two leaves and “Age” as spitting variable.
When using the same criterion for the physical environmental intervention, the result is a
pruned tree with two leaves and “Working overtime” as spitting variable. When the
partitioning criterion is difference in means, both interventions result in a pruned tree with
four leaves and the above-mentioned splitting variables plus the splitting variables
“Organizational commitment” and “Working overtime” respectively “Team commitment”
and “Physical activity”.

The results of Formanoy et al. (2016) are retrieved with a dwin set at 0.299. With a
higher dwin QUINT (version 1.2) is not able to retrieve a tree for the physical environmental
intervention using effect size as the partitioning criterion. This value of dwin is problematic,
since dwin should be based on a balance between the type I error and the type II error.
Dusseldorp and Van Mechelen (2014) showed that with dwi set at 0.3, a good balance

between the two can be obtained.

Analysis strategy

As mentioned earlier, in the present application we use both partitioning criteria in the
analysis: effect size and difference in means. Doing the analysis with both criteria gives
information about the stability of the trees found. As in Formanoy et al. (2016), first the
analyses with the effect size criterion are reported and then the analyses with the difference in
means criterion. Both series of analysis required 25 as the minimum sample size per
intervention group per leaf, dwin was set at 0.3, the default value for maximum number of
leaves (i.e. maxl= 10), and the default values of the weights of the partitioning criterion were
used (i.e. wiis 1/ log(1 + IQR(Y)) if the difference in means criterion is used and 1/ log(1 +

3) if the effect size criterion is used and w» is 1 / log(0.50N)). To grow the tree, 1000 bootstrap
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samples were used, and in pruning the tree, the one-standard-error pruning rule is used. To
test the difference in means of the two groups in each leaf of the pruned tree, independent t-
tests were performed. Since the significance level of the t-tests are inflated, bias-corrected
effect sizes in the leaves are given. These were estimated using a validation procedure for

small data sets found in QUINT.

Results

Trees with criterium Effect size. The qualitative interaction tree for the social
environmental intervention is a pruned tree with two leaves. The variable “Age” is the
splitting variable with a split point of 46.5 years. Figure 11 displays the tree.

The qualitative interaction tree for the physical environmental intervention is a pruned
tree with two leaves. The variable “Working overtime” is the splitting variable with a split

point of 2.25 hours. Figure 12 displays the tree. Table 3 gives the descriptive statistics of the

Table 3

Descriptive statistics in the leaves of the results for QUINT (version 2.0) for the social

environmental intervention (SEI; Figure 11) and the physical environmental intervention
(PEI; Figure 12).

Bias-cor-
Difference in means rected effect
n Mean SD n Mean SD (95 % CI) size d
Fig. 4 SET" SET
Leaf 1 90 829 2227 107 -2.23 23.20 10.52 0.31
(4.12, 16.92)**
Leaf2 59 -3.00 2822 56 7.66 17.89 10.66 -0.27
(-19.35, -1.96)*
Fig. 5 PEI" PET
Leaf1 103 6.15 2390 128 -1.25 25.39 7.40 (0.99, 13.81)* 0.22
Leaf 2 29 -0.94 2090 52 6.01 18.35 6.95 (-16.26, 2.36) -0.05

The mean values and standard deviations on improvement in Need for Recovery (NFR) are
displayed (with a higher score reflecting a larger reduction in NFR from baseline to 12-month
follow-up), and the treatment outcome differences. CI: confidence interval; **p <.01; *p <
.05, estimated with an independent t-test.
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former trees. Comparing this table to Table 3 from Formanoy et al. (2016) shows that the
results for trees with the difference in means criterium are the same for QUINT (version 2.0)
as for QUINT (version 1.2).

Trees with criterium Difference in means. The qualitative interaction tree for social
environmental intervention is a pruned tree with four leaves. The variable “Age” is the first
splitting variable with a split point of 46.5 years, the variables “Organizational commitment”
and “Working overtime” are the second and third splitting variables with split points of 3.94
and 0.75 hours respectively (see Figure 13).

The qualitative interaction tree for physical environmental intervention is a pruned tree
with four leaves. The variable “Working overtime” is the first splitting variable with a split
point of 2.25 hours, the variables “Team commitment” and “Physical activity” are the second
and third splitting variables with split points of 3.83 and 7990 minutes respectively (see
Figure 14). Figure 7 and 8 are the same as Figure 3 and 4 of Formanoy et al. (2016). QUINT
(version 2.0) thus returns the same results as QUINT (version 1.2). Contrary to QUINT
(version 1.2), QUINT (version 2.0) also returns a tree when a minimum effect size of 0.30 is

used.

=465 =465

05 - & 05
0 . R 0
05 - 0.5
Leaf 1 Leaf 2
P1 P2

Figure 11. Pruned tree with splitting variable Age and a split point at 46.5 years. Office
workers younger than 46.5 benefit from the social environmental intervention, but those older
than 46.5 years are better off not receiving the intervention. The criterium used in this tree is
the effect size.
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Working_overtime

=225 >2.25

0.5 —— 05
0 ittt TR 0
05 035

Leaf 1 Leaf 2
P1 P2

Figure 12. Pruned tree with splitting variable Working overtime and a split point at 2.25
hours. Office workers who work fewer hours overtime (< 2.25) have a better outcome with
the physical environmental intervention than without the physical environmental
intervention (Leaf 1) and those who work more hours overtime (> 2.25) have a worse
outcome with the physical environmental intervention than without (Leaf 2). The criterium
used in this tree is the effect size.

15 1.5 1.5

059 = | o057 % 0.5 JJEEEC.

05 o g5 = i 45 T

A Leaf 1 e Leaf 2 | Leaf 3 it Leaf 4
P3 P1 P2 P3

Figure 13. Pruned tree with splitting variables Age, Organizational commitment and
Working overtime and split points at 46.5 years, 3.94 and 0.75 hours. Office workers younger
than 46.5 and committed to the organization benefit from the social environmental
intervention, but those older than 46.5 years and working few hours overtime are better off
not receiving the intervention. The criterion used in this tree is difference in means. The
measurement in the leaves, however, is the effect size.
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=225 >225

Team_commitment

=383 >3.83

Physical_activity

=7990 > 7990
1 1 ® 1 1
0.5 0.5 1 1 05 S 05
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Leaf 1 Leaf 2 Leaf 3 Leaf 4
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Figure 14. Pruned tree with splitting variables Working overtime, Team commitment and
Physical activity and split points at 2.25 hours, 3.83 and 7990 minutes. Office workers who
work few hours overtime, are committed to their team and are not that physical active have a
better outcome with the physical environmental intervention than without. Those who work
few hours overtime and are not that committed to their team or work more overtime have a
worse outcome with the physical environmental intervention than without. The criterion used
in this tree is difference in means. The measurement in the leaves, however, is the effect size.

Discussion
In this paper, QUINT is adapted with the aim to improve its Type II error rate. Subsequently,
a simulation study is used to compare the new version, QUINT (version 2.0), to MOB on
several criteria. The measures of evaluation are the proportion of patients correctly assigned,
the Type I error rate and the Type II error rate. Ultimately, an application study is done to
compare the subgroups that are found by QUINT (version 2.0) to the subgroups that are found

by QUINT (version 1.2). The next paragraphs present the main findings of the simulation and

the application study.
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Findings

To provide an answer to the first research question, the proportion of patients assigned to the
best treatment by QUINT (version 2.0) is compared to the proportion correctly assigned by
MOB. As it turns out, whether there is a difference between the two methods depends upon
the calculation of the proportion correctly assigned by QUINT. QUINT can assign patients to
a subgroup that is indifferent to the assigned treatment alternative. One possibility is to
consider this class incorrectly assigned. A second possibility is to consider this class correctly
assigned. Using the first operationalization, MOB performs better than QUINT. This result
can also be found in earlier studies that compared the methods to each other (Sies & Van
Mechelen, 2016; Van der Geest, 2017). However, whereas other studies use this
operationalization without second thought, it is not so straightforward how the proportion
correctly assigned by QUINT should be calculated. While the first calculation takes into
account that the worst treatment alternative is not ruled out as a possible treatment, the second
calculation takes into account that the best treatment alternative is not ruled out as a possible
treatment. Using the last operationalization, part of the difference between MOB and QUINT
is accounted for by the interaction between method and scenario. This result can be found in
earlier studies as well (Sies & Van Mechelen, 2016; Van der Geest, 2017). Either way the
answer to the research question is not affected by the adaptation of QUINT. If we average the
results of both operationalizations, QUINT and MOB do not differ in the proportion of
patients assigned to the best treatment.

The second research question concerns the Type I error rate and Type II error rate of
QUINT (version 2.0) and MOB. The Type I error rate of QUINT is lower than the Type I
error rate of MOB. These error rates are influenced by interactions between method on one
side and effect size, the number of pre-treatment characteristics and sample size on the other.

These results were not found in the pilot study we performed (Van der Geest, 2017), but the
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first three results were found earlier (Sies & Van Mechelen, 2016). It should be noted that
Sies and Van Mechelen (2016) used a higher cut-off value for the effect size. Using the same
cut-off value in this study means the third and fourth result would not be present.

The Type I error rate of QUINT is much higher in the present study than in the pilot
study (Van der Geest, 2017). The reverse is true for MOB. Since the Type I error rate is
different for QUINT as well as for MOB it is highly likely that this is due to differences in the
simulation design, i.e. smaller sample sizes and more iterations, rather than the adaptation of
QUINT. Although the Type I error rate of QUINT is high, Dusseldorp and Van Mechelen
(2014) show that this kind of error rate is to be expected with a medium- or large-sized effect
size and a small sample size.

The Type II error rate is influenced by the interaction between method and sample
size. This is in line with earlier research (Sies & Van Mechelen, 2016). There is no substantial
difference between the Type II error rate of QUINT and the Type II error rate of MOB. This
contrasts with findings from earlier research (Sies & Van Mechelen, 2016; Van der Geest,
2017). The Type II error rate (0.216) of QUINT (version 2.0) is clearly lower than the Type 11
error rate (0.776) of QUINT (version 1.2) as found in the pilot study. Since the sample sizes
in the simulation study differ, direct comparison of the overall Type II error rate of QUINT is
not appropriate, however. Both simulations do have Type II error rates for datasets consisting
of 300 cases. With this sample size QUINT (version 2.0) still has a much lower Type II error
rate than QUINT (version 1.2) (0.265 versus 0.717). The Type II error rate is changed for the
better by the adaptation.

The third research question is answered by comparing the application of QUINT
(version 2.0) to the application of QUINT (version 1.2) on data used in Formanoy et al.
(2016). When the partitioning criterion is effect size, both versions of QUINT result in the

same trees. When the partitioning criterion is difference in means, QUINT (version 1.2) fails
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to return a tree for the physical environmental intervention when in fact there is a qualitative
interaction. QUINT (version 2.0) does return a tree in this situation. In this respect QUINT
(version 2.0) is better. The application shows QUINT (version 2.0) is at least as good as

QUINT (version 1.2).

Limitation

Although it seems like QUINT (version 2.0) is better than QUINT (version 1.2), the sample
sizes currently used to study the effectiveness of QUINT (version 2.0) are rather small. Earlier
studies have used sample sizes of 300 and 1000 (Sies & Van Mechelen, 2016; Van der Geest,
2017), whereas the present study uses sample sizes of 150 and 300. Using larger sample sizes

could shed more light on the (acceptability of) the Type I error rate of QUINT (version 2.0).

Future research
Future research could expand the present study by adding an extra evaluation criterion. Sies
and Van Mechelen (2016) used an evaluation criterion that takes into account the expected
outcome that patients theoretically could have achieved when all patients receive their optimal
treatment. To achieve this, the benefit of administering the treatments based on the decision
trees over administering the overall best treatment is divided by the benefit of administrating
each patient their optimal treatment over administering the overall best treatment. This
criterion might be the most relevant criterion to the patient himself.

Another issue for future research is the method(s) used to compare QUINT to. MOB is
a tree-based method, but not a method specifically designed to search for treatment-subgroup
interactions. It would be appropriate to compare QUINT to another tree-based method

looking for qualitative interactions, e.g., Interaction Trees (Su et al., 2009).
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Conclusion

The simulation study shows that QUINT (version 2.0) has a lower Type II error rate than
QUINT (version 1.2). The adaptation does not have a negative impact on the proportion good
predicted and the Type I error rate. In addition, the application study shows that QUINT
(version 2.0) is at least as competent as QUINT (version 1.2). Clearly, the adaptation of

QUINT appears to be successful.
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Appendix A: R code quint2()

This appendix shows the code to search for a qualitative interaction tree. Red text is used to
highlight code present in quint() but not in quint2() and green text is used to highlight code

present in quint2() but not in quint().

quint2<- function(formula, data, control=NULL){
#Dataformat without use of formula:
#dat:data; first column in dataframe = the response variable
#second column 1in dataframe = the dichotomous treatment vector
#(coded with treatment A=1 and treatment B=2)
#rest of the columns in dataframe are the predictors
#maxl: maximum total number of Lleaves (terminal nodes) of the final tree

#Lmax

dat <- as.data.frame(data)
if (missing(formula)) {
y <- dat[, 1]
tr <- dat[, 2]
Xmat <- dat[, -c(1, 2)]
dat <- na.omit(dat)
if (length(levels(as.factor(tr))) != 2) {
stop("Quint cannot be performed. The number of treatment conditions
does not equal 2.")
}

} else {
F1 <- Formula(formula)
mfl <- model.frame(Fl, data = dat)
y <- as.matrix(mfi[, 1])
origtr <- as.factor(mfl[, 2])
tr <- as.numeric(origtr)
if (length(levels(origtr)) != 2) {
stop("Quint cannot be performed. The number of treatment conditions
does not equal 2.")
}

Xmat <- mf1l[, 3:dim(mfl)[2]]

dat <- cbind(y, tr, Xmat)

dat <- na.omit(dat)

cat("Treatment variable (T) equals 1 corresponds to",
attr(F1, "rhs")[[1]], "=", levels(origtr)[1], "\n")

cat("Treatment variable (T) equals 2 corresponds to",
attr(F1, "rhs")[[1]], "=", levels(origtr)[2], "\n")

names(dat)[1:2] <- names(mf1l)[1:2]

}

cat("The sample size in the analysis is", dim(dat)[1], "\n")
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N<-length(y)
if(is.null(control)) {
control <- quint.control() #Use default control parameters and criter
ion

}

#specify criterion , parameters a and b (parvec), weights and maximum
#number of Lleaves:

crit <- control$crit

parvec <- control$parvec

w <- control$w

maxl <- control$maxl

#1f no control argument was specified ,use default parameter values
#Default parameters al and a2 for treatment cardinality condition:
if(is.null(parvec)){

al <- round(sum(tr==1)/10)

a2 <- round(sum(tr==2)/10)

parvec <- c(al, a2)

control$parvec <- parvec

}

if(is.null(w)){
#edif=expected mean difference between treatment and control; default
#value for effect size criterion: edif = 3 (=Cohen’'s d),
#and for difference in means criterion: edif= IQR(Y)
edif <- ifelse(crit=="es", 3, IQR(y))
wl <- 1/log(1l+edif)
#bal= balance (ratio) between "difference in treatment outcomes
#component” and "cardinality component"”
w2 <- 1/log(length(y)/2)
w <- c(wl, w2)
control$w <- w

}

##Create matrix for results

allresults <- matrix(@, nrow=maxl-1, ncol=6)
splitpoints <- matrix(@, nrow=maxl-1, ncol=1)
## create a vector for true split points

##Start of the tree growing: all persons are in the rootnode. L=1;
#Criterion value (cmax)=0

root <- rep(1, length(y))

cmax <- @

#Step 1

#Generate design matrix D with admissable assignments after first split
dmatl <- matrix(c(1,2,2,1), nrow=2)

#Select the optimal triplet for the first split: the triplet resulting 1

#the maximum value of the criterion (critmaxl)
#use the rootnode information: cardinality t=1, cardinality t=2, meantl,
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#meanto
rootvec <- c(sum(tr==1), sum(tr==2), mean(y[tr==1])-mean(y[tr==2]))

critmaxl <- bovar(y, Xmat, tr, gm=root, dmatsg=dmatl,
dmatsel=rep(1,nrow(dmatl)), parents=rootvec, parvec, w

nsplit=1, crit=crit)

#Make the first split
if(is.factor(Xmat[,critmax1[1]])==FALSE){
Gmat <- makeGchmat(root, Xmat[,critmax1[1]], critmax1[2]) }
if(is.factor(Xmat[,critmax1[1]])==TRUE){
possibleSplits <- determineSplits(x=Xmat[,critmax1[1]], gm=root)
assigMatrix <- makeCatmat(x=Xmat[,critmaxl[1]], gm=root,
z=possibleSplits[[1]],
splits=possibleSplits[[2]])
Gmat <- makeGchmatcat(gm=root, splitpoint=critmax1[2],
assigMatrix=assigMatrix)

}

cat("split 1","\n")
cat("#leaves is 2","\n")

#itKeep the child node numbers nnum; #ncol(Gmat) is current number of
#ttleaves (=number of candidate parentnodes)=L; #ncol(Gmat)+1l is total
##tnumber of leaves after the split (Lafter)

nnum <- c(2,3)

L <- ncol(Gmat)

#itKeep the results (split information, fit information, end node
#ttinformation) after the first split
if(critmax1[4]!=0){

allresults[1,] <- c(1,critmax1[-3])

#Keep the splitpoints

ifelse(is.factor(Xmat[,critmax1[1]])==F, splitpoints[1] <- critmax1[2]

splitpoints[1] <- paste(as.vector(unique(
sort(Xmat[Gmat[,1]==1, critmax1[1]]))), collapse=", "))
dmatrow<-dmatl[critmax1[3], ]
cmax <- allresults[1l, 4]
endinf <- ctmat(Gmat,y,tr,crit=crit) #it##changed
} else { ##if there is no optimal triplet for the first split:
Gmat <- Gmat*o
dmatrow <- c(90,0)
endinf <- matrix(@, ncol=8, nrow=2)

}

##Check the qualitative interaction condition: Cohen's d in the leafs
#after the first split >=dmin
qualint <- "Present"
if(abs(endinf[1,7])<control$dmin | abs(endinf[2,7])<control$dmin) {
L <- maxl
stop("The qualitative interaction condition is not satisfied: One or
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both of the effect sizes are lower than absolute value",
control$dmin,". There is no clear qualitative interaction present
in the data.","\n")

}

# Return an object of Llength 1 when C is ©
if (cmax == @) {
object <- 1
print("Quint cannot be performed. C is 0.")
class(object) <- "quint"
return(object)
} else {

##Perform bias-corrected bootstrapping for the first split:
if(control$Boot==TRUE&cmax!=0){
#initiate bootstrap with stratification on treatment groups:
indexboot <- Bootstrap(y, control$B, tr)
critmaxlboot <- matrix(@, ncol=6, nrow=control$B)

#initialize matrices to keep results
Gmattrain <- array(@, dim=c(N,maxl,control$B))
Gmattest <- array(@, dim=c(N,maxl,control$B))
allresultsboot <- array(@, dim=c(maxl-1,9,control$B))
#find best first split for the k training sets
for (b in 1l:control$B) {
cat("Bootstrap sample ",b,"\n")
##use the bootstrap data as training set
critmaxlboot[b, ]J<-
bovar(y[indexboot[,b]],Xmat[indexboot[,b], ],
tr[indexboot[,b]],root,dmatl, rep(1,nrow(dmatl)),
rootvec, parvec,w,1,crit=crit)
if(is.factor(Xmat[,critmaxlboot[b,1]])==FALSE){
Gmattrain[,c(1:2),b]<-
makeGchmat(gm=root, varx=Xmat[indexboot[,b],critmaxlboot[b,1]],
splitpoint=critmaxlboot[b,2])
##use the original data as testset
Gmattest[,c(1:2),b]<-makeGchmat(gm=root,
varx=Xmat[,critmaxlboot[b,1]],
splitpoint=critmaxlboot[b,2])
}

if(is.factor(Xmat[,critmaxlboot[b,1]])==TRUE){
possibleSplits <-
determineSplits(x=Xmat[indexboot[,b], critmaxlboot[b,1]],
gm=root)
assigMatrixTrain <-
makeCatmat(x=Xmat[indexboot[,b], critmaxlboot[b,1]], gm=root,
z=possibleSplits[[1]], splits=possibleSplits[[2]])
Gmattrain[,c(1:2),b]<-
makeGchmatcat (gm=root, splitpoint=critmaxilboot[b,2],
assigMatrix=assigMatrixTrain)
##use the original data as testset
assigMatrixTest «<-
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}

makeCatmat(x=Xmat[,critmaxlboot[b,1]], gm=root,
z=possibleSplits[[1]], splits=possibleSplits[[2]])
Gmattest[,c(1:2),b]<-
makeGchmatcat(gm=root, splitpoint=critmaxlboot[b,2],
assigMatrix=assigMatrixTest)

}

End <- cpmat(Gmattest[,c(1:2),b], y, tr, crit=crit)
#select the right row in the design matrix
dmatsel <- t(dmatl[critmaxlboot[b,3],])

allresultsboot[1,c(1:8),b] <- c(1,critmaxlboot[b,c(1:2)],
computeCtest(End, dmatsel, w))

allresultsboot[1,9,b] <- critmaxlboot[b,4]-allresultsboot[1,4,b]

if(critmaxlboot[b,4]==0) {allresultsboot[1,,b]<-NA}

}

#Repeat the tree growing procedure
stopc <- ©

while(L<max1){

cat("current value of C", cmax,"\n")

cat("split", L, "\n")

Lafter <- ncol(Gmat)+1

cat("#leaves is", Lafter, "\n")

##make a designmatrix (dmat) for the admissible assignments of the

#leaves after the split

dmat <- makedmat(Lafter)

dmatsg <- makedmats(dmat)

#make parentnode information matrix, select best observed parent node

#(with optimal triplet)

parent <- cpmat(Gmat,y,tr,crit=crit)

critmax <- bonode(Gmat,y,Xmat,tr,dmatrow,dmatsg,parent,parvec,w,L,
crit=crit)

##Perform the best split and keep results
if(is.factor(Xmat[,critmax[2]])==FALSE){
Gmatch <- makeGchmat(Gmat[,critmax[1]], Xmat[,critmax[2]],
critmax[3])
¥
if(is.factor(Xmat[,critmax[2]])==TRUE){
possibleSplits <- determineSplits(x=Xmat[,critmax[2]],
gm=Gmat[,critmax[1]])
assigMatrix <- makeCatmat(x=Xmat[,critmax[2]], gm=Gmat[,critmax[1]],
z=possibleSplits[[1]],
splits=possibleSplits[[2]])
Gmatch <- makeGchmatcat(gm=Gmat[,critmax[1]], splitpoint=critmax[3],
assigMatrix=assigMatrix)

}

Gmatnew <- cbind(Gmat[,-critmax[1]], Gmatch)
allresults[L,] <- c(nnum[critmax[1]], critmax[2:3], critmax[5:7])
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ifelse(is.factor(Xmat[,critmax[2]])==F,
splitpoints[L] <- round(critmax[3], digits = 2),
splitpoints[L] <-
paste(as.vector(unique(sort(Xmat[Gmatch[,1]==1,critmax[2]])))

collapse=", "))
dmatrownew <- dmatsg[critmax[4], ]

#check i1f cmax new is higher than current value
if(allresults[L,4]<=cmax){
cat("splitting process stopped after number of leaves equals"”,L,
"because new value of C was not higher than current value of
c","\n")
stopc<-1
}

##repeat this procedure for the bootstrap samples
if(control$Boot==TRUE & stopc!=1){
critmaxboot<-matrix(@,nrow=control$B,ncol=7)
for (b in 1:control$B){
cat("Bootstrap sample ",b,"\n")
#make parentnode information matrix pmat
parent <- cpmat(Gmattrain[,c(1l:(Lafter-1)),b], y[indexboot[,b]],
tr[indexboot[,b]], crit=crit)
critmaxboot[b,] <-
bonode(Gmat=Gmattrain[,c(1:(Lafter-1)),b], y=y[indexboot[,b]],
Xmat=Xmat[indexboot[,b],], tr=tr[indexboot[,b]], dmatrow,
dmatsg, parent, parvec, w, nsplit=L, crit=crit)

#best predictor and node of this split for the training samples
if(is.factor(Xmat[,critmaxboot[b,2]])==FALSE){

Gmattrainch <- makeGchmat(Gmattrain[, critmaxboot[b,1],b],
Xmat[indexboot[,b], critmaxboot[b,2]],
critmaxboot[b,3])

Gmattestch <- makeGchmat(Gmattest[,critmaxboot[b,1],b],

Xmat[, critmaxboot[b,2]],
critmaxboot[b,3])
}
if(is.factor(Xmat[,critmaxboot[b,2]])==TRUE){
possibleSplits <-
determineSplits(x=Xmat[indexboot[,b], critmaxboot[b,2]],
gm=Gmattrain[,critmaxboot[b,1],b])
assigMatrixTrain <-
makeCatmat (x=Xmat[indexboot[,b], critmaxboot[b,2]],
gm=Gmattrain[,critmaxboot[b,1],b],
z=possibleSplits[[1]], splits=possibleSplits[[2]])
Gmattrainch <- makeGchmatcat(gm=Gmattrain[,critmaxboot[b,1],b],
splitpoint=critmaxboot[b,3],
assigMatrix=assigMatrixTrain)

assigMatrixTest <-
makeCatmat(x=Xmat[, critmaxboot[b,2]],
gm=Gmattest[,critmaxboot[b,1],b],
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}

z=possibleSplits[[1]],
splits=possibleSplits[[2]])
Gmattestch <- makeGchmatcat(gm=Gmattest[,critmaxboot[b,1],b],
splitpoint=critmaxboot[b,3],
assigMatrix=assigMatrixTest)

}

Gmattrain[,c(1:Lafter),b] <-
cbind(Gmattrain[,c(1:(Lafter-1))[-critmaxboot[b,1]],b],
Gmattrainch)
Gmattest[,c(1:Lafter),b] <-
cbind(Gmattest[,c(1:(Lafter-1))[-critmaxboot[b,1]],b],
Gmattestch)

##compute criterion value for the test sets

End <- cpmat(Gmattest[,c(1l:Lafter),b],y,tr,crit=crit)

#select the right row in the design matrix

if(critmaxboot[b,5]!=0){
dmatsel<-t(dmatsg[critmaxboot[b,4],])
allresultsboot[L,c(1:8),b] <-

c(nnum[critmaxboot[b,1]],critmaxboot[b,2],critmaxboot[b,3],
computeCtest(End, dmatsel, w))

allresultsboot[L,9,b]<-critmaxboot[b,5]-allresultsboot[L,4,b]

}

if(critmaxboot[b,5]==0){
allresultsboot[L,,b] <-NA

}

}

if(sum(is.na(allresultsboot[L,9,]))/control$B > .10 ){
warning("After split ",L,", the partitioning criterion cannot be
computed in more than 10 percent of the bootstrap samples.
The split is unstable." )

}

#update the parameters after the split:
if(stopc==0) {

}

Gmat <- Gmatnew

dmatrow <- dmatrownew

cmax <- allresults[L,4]

L <- ncol(Gmat)

nnum <- c(nnum[-critmax[1]],nnum[critmax[1]]*2,nnum[critmax[1]]*2+1)
else {L <- maxl}

#end of while Loop

}

Lfinal <- ncol(Gmat) #Lfinal=final number of leaves of the tree

#create endnode information of the tree
endinf <- matrix(@,nrow=1length(nnum),ncol=10)
if(cmax!=0){
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endinf[,c(2:9)] <- ctmat(Gmat,y,tr,crit=crit)} #it##tchanged
endinf <- data.frame(endinf)
endinf[,10] <- dmatrow
endinf[,1] <- nnum
index <- leafnum(nnum)
endinf <- endinf[index, ]
rownames(endinf) <- paste("Leaf ",1:Lfinal,sep="")
if(crit == 'es'){ #i## this was added/changed
colnames(endinf) <- c("node","#(T=1)", "meanY|T=1", "SD|T=1","#(T=2)",
"meanY|T=2","SD|T=2","d", "se", "class")}
if(crit == 'dm'){ ### this was added
colnames(endinf) <- c("node","#(T=1)", "meanY|T=1", "SD|T=1","#(T=2)",
"meanY|T=2","SD|T=2","diff", "se", "class")}
if(Lfinal==2){allresults <- c(2,allresults[1,])}
if(Lfinal>2){
allresults <- cbind(2:Lfinal, allresults[1l:(Lfinal-1),])
}

#compute final estimate of optimism and standard error:
if(control$Boot==TRUE){
#raw mean and sd:
opt <- sapply(l:(Lfinal-1),
function(kk, allresultsboot){mean(allresultsboot[kk,9,],
na.rm=TRUE)},
allresultsboot=allresultsboot)
se_opt <- sapply(1:(Lfinal-1),
function(kk,allresultsboot){sd(allresultsboot[kk,9,],
na.rm=TRUE) /
sqrt(sum(!is.na(allresultsboot[kk,9,]1)))},
allresultsboot=allresultsboot)

if(Lfinal==2){allresults <- c(allresults[1:5], allresults[5]-opt,opt,
se_opt, allresults[6:7])
allresults <- data.frame(t(allresults))

}
if(Lfinal>2){
allresults <- cbind(allresults[,1:5], allresults[,5]-opt,opt, se opt

allresults[,6:7])
allresults <- data.frame(allresults)
}
allresults[,3] <- colnames(Xmat)[allresults[,3]]
splitnr <- 1:(Lfinal-1)
allresults <- cbind(splitnr, allresults)
colnames(allresults) <- c("split", "t#leaves", "parentnode",
"splittingvar", "splitpoint", "apparent”,
"biascorrected”, "opt", "se","compdif",
"compcard")

}

if(control$Boot==FALSE){
if(Lfinal>2){
allresults <- data.frame( allresults)
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}
if(Lfinal==2){
allresults <- data.frame(t(allresults))

}

allresults[,3] <- colnames(Xmat)[allresults[,3]]

splitnr <- 1:(Lfinal-1)

allresults <- cbind(splitnr, allresults)

colnames(allresults) <- c("split", "#leaves", "parentnode",
"splittingvar", "splitpoint", ™"apparent”,
"compdif","compcard")

}

colnames(Gmat) <- nnum

##split information (si): also include childnode numbers

si <- allresults[,3:5]

cn <- paste(si[,1]*2, si[,1]*2+1, sep=",")

si <- cbind(parentnode=si[,1], childnodes=cn, si[,2:3],
truesplitpoint=splitpoints[1l:nrow(si)])

rownames(si) <- paste("Split ", 1:(Lfinal-1), sep="")

if(control$Boot==FALSE){
object <- list(call=match.call(), crit=crit, control=control,
data=dat, si=si, fi=allresults[,c(1:2,6:8)], li=endinf,
nind=Gmat[,index])
}
if(control$Boot==TRUE){
nam <- c("parentnode", "splittingvar", "splitpoint",
"C_boot", "C_compdif", "checkdif", "C_compcard”,
"checkcard", "opt")
dimnames(allresultsboot) <- 1list(NULL, nam, NULL)
object <- list(call = match.call(), crit = crit, control = control,
indexboot = indexboot, data = dat, si = si,
fi = allresults[, c(1:2, 6:11)], 1li = endinf,
nind = Gmat[, index], siboot = allresultsboot)
}
class(object) <- "quint"
return(object)
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Appendix B: R code prune.quint2()

This appendix shows the code to prune the qualitative interaction tree. Green text is used to

highlight code present in prune.quint2() but not in prune.quint().

prune.quint2 <- function(tree, pp=1,...){
object <- tree
if(length(object) == 1) {
besttree <- 1
class(besttree) <- "quint"
return(besttree)
} else {

#pp=pruning parameter
if(names(object$fi[4])=="Difcomponent"){
stop("Pruning is not possible; The quint object lacks estimates of t
he
biascorrected criterion. Grow again a large tree using the
bootstrap procedure." )}

object$fi[is.na(object$fi[,4]),4]<-0

object$fi[is.na(object$fi[,5]),5]<-0

maxrow< -which(object$fi[,4]==max(object$fi[,4]))[1]

if(is.na(object$fi[maxrow,6])) maxrow <- maxrow - 1

bestrow<-min( which(object$fi[,4]>=
(object$fi[maxrow,4]-pp*object$fi[maxrow,6]) ) )

con<-object$control

con$Boot<-FALSE

con$maxl <- bestrow + 1

besttree <- quint2(data = object$data, control = con)

besttree$fi <- object$fi[1l:bestrow, ]

objboot <- list(siboot = object$siboot[1:bestrow, , ])

besttree <- c(besttree, objboot)

besttreef$control$Boot <- object$control$Boot

# Check whether there 1is a qualitative interaction
if(colnames(besttree$li)[8]=="d"){ # criterium is es
if((any(abs(subset(besttree$li, class == 1, d)) >= con$dmin) &
any(abs(subset(besttree$li, class == 2, d)) >= con$dmin)) ==
FALSE) {
besttree <- 1
}
} else { # criterium is dm
if((any(abs(subset(besttree$li, class == 1, diff) /
sqrt(((besttree$li[besttree$li[,10]==1, 2] - 1) *
besttree$li[besttree$li[,10]==1, 4] ~ 2 +
(besttree$li[besttree$li[,10]==1, 5] - 1) *
besttree$li[besttree$li[,10]==1, 7] ~ 2) /
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(sum(besttree$li[besttree$li[,10]==1, c(2, 5)]) -
2))) >= con$dmin) &
any(abs(subset(besttree$li, class == 2, diff) /

sqrt(((besttree$li[besttree$li[,10]==2, 2] - 1) *
besttree$li[besttree$li[,10]==2, 4] ~ 2 +
(besttree$li[besttree$li[,10]==2, 5] - 1) *
besttree$li[besttree$li[,10]==2, 7] *~ 2) /
(sum(besttree$li[besttree$li[,10]==2, c(2, 5)]) -
2))) >= con$dmin)) == FALSE) {

besttree <- 1
}
}

class(besttree) <- "quint"
return(besttree)

}
}

41
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Appendix C: Example R code for MOB and QUINT

Example code MOB with Pima Indians diabetes data
# Load MOB
library(party)

# Load Pima Indians diabetes data
data(PimalndiansDiabetes2, package = "mlbench")

PimalndiansDiabetes <- na.omit(PimalndiansDiabetes2[,-c(4, 5)]) # remove missing values

# Create formula with diabetes as outcome variable
fmPID <- mob(diabetes ~ glucose | pregnant + pressure + mass + pedigree + age,

data = PimalndiansDiabetes, model = glinearModel, family = binomial())

# Visualize the model

plot(fmPID)

# Show coefficients and corresponding odds ratios
coef(fmPID)
exp(coef(fmPID)[,2])

Example code QUINT with BCRP data
# Load QUINT
library(quint)

# Read data into memory
data(berp)

ex_data <- subset(bcrp, cond < 3) # exclude the control condition

# Create formula with the change score in depression as outcome variable
formulal <- I(cesdtl - cesdt3) ~ cond | cesdt] + negsoctl + uncomtl +

disoptl + comorbid + age + wchtl + nationality + marital + trext
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# Fix the seed
set.seed(47)

# Analysis with change score in depression as outcome variable

quint] <- quint(formulal, data = ex_data)

# Give a summary of the analysis
summary(quintl)

quint1$fi

quint1$si

quint1$li

# Prune tree to avoid overfitting

quintlpr <- prune(quintl)

# Plot the pruned tree
plot(quint1pr)

# Round the leaf information of the pruned tree at two decimals

round(quint1pr$li, digits = 2)

43
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Appendix D: Repeated measures ANOVA Proportion good predicted (excl. class 3)

This appendix shows the SPSS table of the within-subjects effects with the proportion good

predicted as the dependent variable. Class 3 is considered as predicted incorrectly.

Table D1

Repeated Measures Analysis of Variance of Proportion good predicted with class 3 excluded
(Within-Subjects Effects)

Type III Partial
Sum of Mean Eta Eta

Source Squares df  Square F Sig. Squared Squared
Method  Sphericity 14.417 1 14.417 982.795 .000 .094 .081

Assumed

Greenhouse- 14.417 1.000 14.417 982.795 .000 .094 .081

Geisser

Huynh-Feldt 14.417 1.000 14.417 982.795 .000 .094 .081

Lower-bound 14417 1.000 14.417 982.795 .000 .094 .081
Method * Sphericity 621 1 621 42357 .000 .004 .004
n Assumed

Greenhouse- .621 1.000 621 42357 .000 .004 .004

Geisser

Huynh-Feldt .621 1.000 621 42357 .000 .004 .004

Lower-bound .621 1.000 621 42357 .000 .004 .004
Method * Sphericity 3.700 1 3.700 252.201 .000 .026 021
J Assumed

Greenhouse- 3.700 1.000 3.700 252.201 .000 .026 .021

Geisser

Huynh-Feldt 3.700 1.000 3.700 252.201 .000 .026 021

Lower-bound 3.700 1.000 3.700 252.201 .000 .026 .021
Method * Sphericity 4.356 1 4356 296.938 .000 .030 .025
effect.size Assumed

Greenhouse- 4356 1.000 4.356 296.938 .000 .030 .025

Geisser

Huynh-Feldt 4356 1.000 4.356 296.938 .000 .030 .025

Lower-bound 4356 1.000 4356 296.938 .000 .030 .025
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Table D1 Continued

Type 111 Partial
Sum of Mean Eta Eta

Source Squares df  Square F Sig. Squared Squared
Method *  Sphericity 265 2 133 9.049 .000 .002 .001
rho Assumed

Greenhouse- 265 2.000 133 9.049 .000 .002 .001

Geisser

Huynh-Feldt 265 2.000 133 9.049 .000 .002 .001

Lower-bound 265 2.000 133 9.049 .000 .002 .001
Method * Sphericity 2.180 3 127 49.527 .000 015 012
scenario  Assumed

Greenhouse- 2.180 3.000 727 49.527 .000 015 012

Geisser

Huynh-Feldt 2.180 3.000 127 - 49.527 .000 015 012

Lower-bound 2.180 3.000 727 49.527 .000 015 .012
Method * Sphericity .013 1 .013 861 353 .000 .000
n*]J Assumed

Greenhouse- .013 1.000 013 861 353 .000 .000

Geisser

Huynh-Feldt .013 1.000 .013 861 353 .000 .000

Lower-bound .013 1.000 .013 .861 353 .000 .000
Method *  Sphericity 263 1 263 17.957 .000 .002 .001
n * Assumed
effect.size Greenhouse- 263 1.000 263 17.957 .000 .002 .001

Geisser

Huynh-Feldt 263 1.000 263 17.957 .000 .002 .001

Lower-bound 263 1.000 263 17.957 .000 .002 .001
Method * Sphericity .010 2 .005 346 707 .000 .000
n * rho Assumed

Greenhouse- .010 2.000 .005 346 707 .000 .000

Geisser

Huynh-Feldt .010 2.000 .005 346 707 .000 .000

Lower-bound .010 2.000 .005 346 707 .000 .000
Method * Sphericity 6.771 3 2.257 153.853 .000 .046 .038
n * Assumed
scenario  Greenhouse- 6.771 3.000 2.257 153.853 .000 .046 .038

Geisser

Huynh-Feldt 6.771 3.000 2.257 153.853 .000 .046 .038

Lower-bound 6.771 3.000 2.257 153.853 .000 .046 .038
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Table D1 Continued

Type 111 Partial
Sum of Mean Eta Eta
Source Squares df  Square F Sig. Squared Squared
Method * Sphericity .675 1 675  46.006 .000 .005 .004
J* Assumed
effect.size Greenhouse- .675 1.000 675  46.006 .000 .005 .004
Geisser
Huynh-Feldt .675 1.000 675  46.006 .000 .005 .004
Lower-bound .675 1.000 675 46.006 .000 .005 .004
Method * Sphericity 178 2 .089 6.084 .002 .001 .001
J * tho  Assumed
Greenhouse- 178 2.000 .089 6.084 .002 .001 .001
Geisser
Huynh-Feldt .178 2.000 .089 6.084 .002 .001 .001
Lower-bound .178 2.000 .089 6.084 .002 .001 .001
Method * Sphericity .042 3 .014 954 413 .000 .000
J* Assumed
scenario  Greenhouse- .042 3.000 014 954 413 .000 .000
Geisser
Huynh-Feldt .042 3.000 .014 954 413 .000 .000
Lower-bound .042 3.000 .014 954 413 .000 .000
Method * Sphericity .061 2 .031 2.089 .124 .000 .000
effect.size Assumed
* rho Greenhouse- .061 2.000 .031 2.089 .124 .000 .000
Geisser
Huynh-Feldt .061 2.000 .031 2.089 .124 .000 .000
Lower-bound .061 2.000 .031 2.089 .124 .000 .000
Method * Sphericity 2.006 3 669  45.573  .000 014 011
effect.size Assumed
* Greenhouse- 2.006 3.000 669  45.573 .000 014 011
scenario  Geisser
Huynh-Feldt 2.006 3.000 669  45.573  .000 014 011
Lower-bound 2.006 3.000 669 45573 .000 014 011
Method * Sphericity 337 6 .056 3.829 .001 .002 .002
rho * Assumed
scenario  Greenhouse- 337 6.000 .056 3.829 .001 .002 .002
Geisser
Huynh-Feldt 337 6.000 .056 3.829 .001 .002 .002

Lower-bound 337 6.000 .056 3.829 .001 .002 .002
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Table D1 Continued

Type 111 Partial
Sum of Mean Eta Eta
Source Squares df  Square F Sig. Squared Squared
Method * Sphericity .090 1 .090 6.112 .013 .001 .001
n *J* Assumed
effect.size Greenhouse- .090 1.000 .090 6.112 .013 .001 .001
Geisser
Huynh-Feldt .090 1.000 .090 6.112 .013 .001 .001
Lower-bound .090 1.000 .090 6.112 013 .001 .001
Method * Sphericity .031 2 .015 1.056 .348 .000 .000
n *J* Assumed
rho Greenhouse- .031 2.000 015 1.056 .348 .000 .000
Geisser
Huynh-Feldt .031 2.000 015 1.056 .348 .000 .000
Lower-bound .031 2.000 015 1.056 .348 .000 .000
Method * Sphericity .549 3 183 12476 .000 .004 .003
n *J * Assumed
scenario  Greenhouse- .549 3.000 183 12476 .000 .004 .003
Geisser
Huynh-Feldt .549 3.000 183 12476 .000 .004 .003
Lower-bound .549 3.000 183 12476 .000 .004 .003
Method *  Sphericity .020 2 .010 671 511 .000 .000
n * Assumed
effect.size Greenhouse- .020 2.000 .010 671 511 .000 .000
* rho Geisser
Huynh-Feldt .020 2.000 .010 671 511 .000 .000
Lower-bound .020 2.000 .010 671 511 .000 .000
Method * Sphericity 471 3 157 10.695 .000 .003 .003
n * Assumed
effect.size Greenhouse- 471 3.000 157 10.695 .000 .003 .003
* Geisser
scenario  Huynh-Feldt 471 3.000 157 10.695 .000 .003 .003
Lower-bound 471 3.000 157 10.695 .000 .003 .003
Method * Sphericity 110 6 018 1.246 279 .001 .001
n * rho Assumed
* Greenhouse- 110 6.000 018 1.246 279 .001 .001
scenario  Geisser
Huynh-Feldt 110 6.000 018 1.246 279 .001 .001

Lower-bound 110 6.000 018 1.246 279 .001 .001
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Table D1 Continued

Type 111 Partial
Sum of Mean Eta Eta
Source Squares df  Square F Sig. Squared Squared
Method *  Sphericity 018 2 .009 .600 .549 .000 .000
J* Assumed
effect.size Greenhouse- .018 2.000 .009 .600 .549 .000 .000
* rho Geisser
Huynh-Feldt .018 2.000 .009 .600 .549 .000 .000
Lower-bound .018 2.000 .009 .600 .549 .000 .000
Method * Sphericity .091 3 .030 2.067 .102 .001 .001
J* Assumed
effect.size Greenhouse- .091 3.000 .030 2.067 .102 .001 .001
* Geisser
scenario  Huynh-Feldt .091 3.000 .030 2.067 .102 .001 .001
Lower-bound .091 3.000 .030 2.067 .102 .001 .001
Method * Sphericity .022 6 .004 255 958 .000 .000
J * rho * Assumed
scenario  Greenhouse- .022  6.000 .004 255 958 .000 .000
Geisser
Huynh-Feldt .022 6.000 .004 255 958 .000 .000
Lower-bound .022 6.000 .004 255 958 .000 .000
Method *  Sphericity 141 6 .024 1.602 .142 .001 .001
effect.size Assumed
* tho *  Greenhouse- .141 6.000 .024 1.602 .142 .001 .001
scenario  Geisser
Huynh-Feldt 141 6.000 .024 1.602 .142 .001 .001
Lower-bound 141 6.000 .024 1.602 .142 .001 .001
Method * Sphericity 172 2 .086 5.866 .003 .001 .001
n *J* Assumed
effect.size Greenhouse- 172 2.000 .086 5.866 .003 .001 .001
* tho Geisser
Huynh-Feldt 172 2.000 .086 5.866 .003 .001 .001
Lower-bound 172 2.000 .086 5.866 .003 .001 .001
Method * Sphericity .057 3 .019 1.286 277 .000 .000
n * J * Assumed
effect.size Greenhouse- .057 3.000 .019 1.286 277 .000 .000
* Geisser
scenario  Huynh-Feldt .057 3.000 .019 1.286 277 .000 .000

Lower-bound .057 3.000 .019 1.286 277 .000 .000
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Table D1 Continued

Type 111 Partial
Sum of Mean Eta Eta

Source Squares df  Square F Sig. Squared Squared
Method * Sphericity .030 6 .005 336 918 .000 .000
n *J* Assumed
rho * Greenhouse- .030 6.000 .005 336 918 .000 .000
scenario  Geisser

Huynh-Feldt .030 6.000 .005 336 918 .000 .000

Lower-bound .030 6.000 .005 336 918 .000 .000
Method * Sphericity .160 6 .027 1.821 .091 .001 .001
n * Assumed
effect.size Greenhouse- .160 6.000 .027 1.821 .091 .001 .001
* tho *  Geisser
scenario  Huynh-Feldt .160 6.000 .027 1.821 .091 .001 .001

Lower-bound .160 6.000 .027 1.821 .091 .001 .001
Method * Sphericity .193 6 .032 2.192 .041 .001 .001
J* Assumed
effect.size Greenhouse- .193 6.000 .032 2.192  .041 .001 .001
* tho *  Geisser
scenario  Huynh-Feldt .193 6.000 .032 2.192 .041 .001 .001

Lower-bound .193 6.000 .032 2.192 041 .001 .001
Method * Sphericity .031 6 .005 353 .909 .000 .000
n *J* Assumed
effect.size Greenhouse- .031 6.000 .005 353 .909 .000 .000
* tho *  Geisser
scenario  Huynh-Feldt .031 6.000 .005 353 .909 .000 .000

Lower-bound .031 6.000 .005 353 909 .000 .000
Error(Met Sphericity 139.414 9504  .015 785
hod) Assumed

Greenhouse-  139.414 9504.  .015 185

Geisser 000

Huynh-Feldt  139.414 9504.  .015 785

000
Lower-bound  139.414 9504.  .015 185

000
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Appendix E: Repeated measures ANOVA Proportion good predicted (incl. class 3)

This appendix shows the SPSS table of the within-subjects effects with the proportion good

predicted as the dependent variable. Class 3 is considered as predicted correctly.

Table E1
Repeated Measures Analysis of Variance of Proportion good predicted with class 3 included
(Within-Subjects Effects)

Type III Partial
Sum of Mean Eta Eta

Source Squares df  Square F Sig.  Squared Squared
Method  Sphericity 491 1 491 53.899 .000 .006 .004

Assumed

Greenhouse- 491 1.000 491  53.899 .000 .006 .004

Geisser

Huynh-Feldt 491 1.000 491  53.899 .000 .006 .004

Lower-bound 491 1.000 491  53.899 .000 .006 .004
Method * Sphericity 813 1 813 89.125 .000 .009 .007
n Assumed

Greenhouse- 813 1.000 813 89.125 .000 .009 .007

Geisser

Huynh-Feldt .813 1.000 813 89.125 .000 .009 .007

Lower-bound .813 1.000 813 89.125 .000 .009 .007
Method *  Sphericity 334 1 334 36.587 .000 .004 .003
J Assumed

Greenhouse- 334 1.000 334 36.587 .000 .004 .003

Geisser

Huynh-Feldt 334 1.000 334 36.587 .000 .004 .003

Lower-bound 334 1.000 334 36.587 .000 .004 .003
Method *  Sphericity 2.013 1 2.013 220.774 .000 .023 .017
effect.size Assumed

Greenhouse- 2.013 1.000 2.013 220.774 .000 .023 .017

Geisser

Huynh-Feldt 2.013 1.000 2.013 220.774 .000 023 .017
Lower-bound 2.013 1.000 2.013 220.774 .000 .023 017
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Table E1 Continued

Type 111 Partial
Sum of Mean Eta Eta
Source Squares df  Square F Sig.  Squared Squared
Method *  Sphericity 052 2 026 2.842 .058 .001 .000
rho Assumed
Greenhouse- 052 2.000 026 2.842 058 .001 .000
Geisser
Huynh-Feldt 052 2.000 026 2.842 058 .001 .000
Lower-bound 052 2.000 026 2.842 058 .001 .000
Method *  Sphericity 15.214 3 5.071 556.162 .000 .149 130

scenario  Assumed
Greenhouse- 15.214 3.000 5.071 556.162 .000 .149 .130

Geisser
Huynh-Feldt 15214 3.000 5.071 556.162 .000 149 130
Lower-bound 15214 3.000 5.071 556.162 .000 149 130
Method * Sphericity .007 1 .007 .802 371 .000 .000
n*]J Assumed
Greenhouse- .007 1.000 .007 .802 371 .000 .000
Geisser
Huynh-Feldt .007 1.000 .007 .802 371 .000 .000
Lower-bound .007 1.000 .007 .802 371 .000 .000
Method * Sphericity 367 1 367  40.239 .000 .004 .003
n * Assumed
effect.size Greenhouse- 367 1.000 367  40.239 .000 .004 .003
Geisser
Huynh-Feldt 367 1.000 367  40.239 .000 .004 .003
Lower-bound 367 1.000 367 40.239 .000 .004 .003
Method * Sphericity 124 2 062 6.821 .001 .001 .001
n * rho Assumed
Greenhouse- 124 2.000 062 6.821 .001 .001 .001
Geisser
Huynh-Feldt 124 2.000 062 6.821 .001 .001 .001
Lower-bound 124 2.000 062 6.821 .001 .001 .001
Method * Sphericity 6.496 3 2.165 237.456 .000 .070 .056
n * Assumed
scenario  Greenhouse- 6.496 3.000 2.165 237.456 .000 .070 .056
Geisser
Huynh-Feldt 6.496 3.000 2.165 237.456 .000 .070 .056

Lower-bound 6.496 3.000 2.165 237.456 .000 .070 .056
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Table E1 Continued

Type 111 Partial
Sum of Mean Eta Eta
Source Squares df  Square F Sig.  Squared Squared
Method * Sphericity .046 1 .046 5.023 .025 .001 .000
J* Assumed
effect.size Greenhouse- .046 1.000 .046 5.023 .025 .001 .000
Geisser
Huynh-Feldt .046 1.000 .046 5.023 .025 .001 .000
Lower-bound .046 1.000 .046 5.023 .025 .001 .000
Method * Sphericity .085 2 .042 4.657 .010 .001 .001
J * tho  Assumed
Greenhouse- .085 2.000 .042 4.657 .010 .001 .001
Geisser
Huynh-Feldt .085 2.000 .042 4.657 .010 .001 .001
Lower-bound .085 2.000 .042 4.657 .010 .001 .001
Method * Sphericity 424 3 141 15.506 .000 .005 .004
J* Assumed
scenario  Greenhouse- 424 3.000 141 15.506 .000 .005 .004
Geisser
Huynh-Feldt 424 3.000 141 15.506 .000 .005 .004
Lower-bound 424 3.000 141 15.506 .000 .005 .004
Method *  Sphericity 022 2 011 1.229 293 .000 .000
effect.size Assumed
* rho Greenhouse- .022 2.000 011 1.229 293 .000 .000
Geisser
Huynh-Feldt 022 2.000 011 1.229 293 .000 .000
Lower-bound 022 2.000 011 1.229 293 .000 .000
Method * Sphericity 1.326 3 442 48.465 .000 015 011
effect.size Assumed
* Greenhouse- 1.326 3.000 442 48.465 .000 015 011
scenario  Geisser
Huynh-Feldt 1.326 3.000 442 48.465 .000 015 011
Lower-bound 1.326 3.000 442 48.465 .000 015 011
Method * Sphericity .684 6 114 12.499 .000 .008 .006
rho * Assumed
scenario  Greenhouse- .684 6.000 A14 12.499 .000 .008 .006
Geisser
Huynh-Feldt .684 6.000 114 12.499 .000 .008 .006

Lower-bound 684 6.000 114 12.499 .000 .008 .006
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Table E1 Continued

Type 111 Partial
Sum of Mean Eta Eta
Source Squares df Square F Sig.  Squared Squared
Method *  Sphericity 191 1 191 20.893 .000 .002 .001
n *J* Assumed
effect.size Greenhouse- .191 1.000 191 20.893 .000 .002 .001
Geisser
Huynh-Feldt .191 1.000 191 20.893 .000 .002 .001
Lower-bound .191 1.000 191 20.893 .000 .002 .001
Method * Sphericity .005 2 .002 248 780 .000 .000
n *J* Assumed
rho Greenhouse- .005 2.000 .002 248 780 .000 .000
Geisser
Huynh-Feldt .005 2.000 .002 248 780 .000 .000
Lower-bound .005 2.000 .002 248 .780 .000 .000
Method * Sphericity 468 3 156 17.105 .000 .005 .004
n *J * Assumed
scenario  Greenhouse- 468 3.000 156 17.105 .000 .005 .004
Geisser
Huynh-Feldt 468 3.000 156 17.105 .000 .005 .004
Lower-bound 468 3.000 156 17.105 .000 .005 .004
Method * Sphericity .060 2 .030 3.293 .037 .001 .001
n * Assumed
effect.size Greenhouse- .060 2.000 .030 3.293 .037 .001 .001
* rho Geisser
Huynh-Feldt .060 2.000 .030 3.293 .037 .001 .001
Lower-bound .060 2.000 .030 3.293 .037 .001 .001
Method * Sphericity 139 3 .046 5.089 .002 .002 .001
n * Assumed
effect.size Greenhouse- 139 3.000 .046 5.089 .002 .002 .001
* Geisser
scenario  Huynh-Feldt .139 3.000 .046 5.089 .002 .002 .001
Lower-bound .139 3.000 .046 5.089 .002 .002 .001
Method * Sphericity 101 6 017 1.854 .085 .001 .001
n * rho Assumed
* Greenhouse- 101 6.000 017 1.854 .085 .001 .001
scenario  Geisser
Huynh-Feldt 101 6.000 017 1.854 .085 .001 .001

Lower-bound 101 6.000 017 1.854 .085 .001 .001
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Table E1 Continued

Type 111 Partial
Sum of Mean Eta Eta
Source Squares df  Square F Sig.  Squared Squared
Method *  Sphericity .026 2 013 1.403 246 .000 .000
J* Assumed
effect.size Greenhouse- .026 2.000 013 1.403 246 .000 .000
* rho Geisser
Huynh-Feldt .026 2.000 013 1.403 246 .000 .000
Lower-bound .026 2.000 013 1.403 246 .000 .000
Method * Sphericity 123 3 .041 4.481 .004 .001 .001
J* Assumed
effect.size Greenhouse- 123 3.000 .041 4.481 .004 .001 .001
* Geisser
scenario  Huynh-Feldt 123 3.000 .041 4.481 .004 .001 .001
Lower-bound 123 3.000 041 4.481 .004 .001 .001
Method * Sphericity 062 6 .010 1.137 338 .001 .001
J * rho * Assumed
scenario  Greenhouse- .062 6.000 .010 1.137 338 .001 .001
Geisser
Huynh-Feldt 062 6.000 .010 1.137 338 .001 .001
Lower-bound .062 6.000 .010 1.137 338 .001 .001
Method * Sphericity .050 6 .008 908 488 .001 .000
effect.size Assumed
* tho *  Greenhouse- .050 6.000 .008 908 488 .001 .000
scenario  Geisser
Huynh-Feldt .050 6.000 .008 908 488 .001 .000
Lower-bound .050 6.000 .008 908 488 .001 .000
Method * Sphericity .044 2 022 2.418 .089 .001 .000
n *J* Assumed
effect.size Greenhouse- .044 2.000 022 2.418 .089 .001 .000
* tho Geisser
Huynh-Feldt .044 2.000 022 2.418 .089 .001 .000
Lower-bound .044 2.000 022 2.418 .089 .001 .000
Method * Sphericity .049 3 016 1.796 146 .001 .000
n * J * Assumed
effect.size Greenhouse- .049 3.000 016 1.796 146 .001 .000
* Geisser
scenario  Huynh-Feldt .049 3.000 016 1.796 146 .001 .000

Lower-bound .049 3.000 016 1.796 146 .001 .000
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Table E1 Continued

Type 111 Partial
Sum of Mean Eta Eta

Source Squares df  Square F Sig.  Squared Squared
Method * Sphericity .041 6 .007 752 .607 .000 .000
n *J* Assumed
rho * Greenhouse- .041 6.000 .007 752 .607 .000 .000
scenario  Geisser

Huynh-Feldt .041 6.000 .007 752 .607 .000 .000

Lower-bound .041 6.000 .007 752 .607 .000 .000
Method * Sphericity .048 6 .008 .879 509 .001 .000
n * Assumed
effect.size Greenhouse- .048 6.000 .008 .879 509 .001 .000
* tho *  Geisser
scenario  Huynh-Feldt .048 6.000 .008 .879 509 .001 .000

Lower-bound .048 6.000 .008 .879 .509 .001 .000
Method * Sphericity 129 6 022 2.365 028 .001 .001
J* Assumed
effect.size Greenhouse- 129 6.000 .022 2.365 .028 .001 .001
* tho *  Geisser
scenario  Huynh-Feldt 129 6.000 022 2.365 028 .001 .001

Lower-bound 129 6.000 .022 2.365 .028 .001 .001
Method * Sphericity .046 6 .008 841 538 .001 .000
n *J* Assumed
effect.size Greenhouse- .046 6.000 .008 .841 538 .001 .000
* tho *  Geisser
scenario  Huynh-Feldt .046 6.000 .008 841 538 .001 .000

Lower-bound .046 6.000 .008 .841 538 .001 .000
Error(Met Sphericity 86.661 9504  .009 742
hod) Assumed

Greenhouse- 86.661 9504.  .009 142

Geisser 000

Huynh-Feldt 86.661 9504.  .009 742

000
Lower-bound ~ 86.661 9504.  .009 142

000
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Appendix F: Repeated measures ANOVA Type I error rate

56

This appendix shows the SPSS table of the within-subjects effects with the Type I error rate

as the dependent variable.

Table F1

Repeated Measures Analysis of Variance of Type I error rate (Within-Subjects Effects)

Type 111 Partial
Sum of Mean Eta Eta

Source Squares df Square F Sig. Squared Squared
tree_returned Sphericity 84.801 1 84.801 602.622 .000 202 143

Assumed

Greenhouse- 84.801 1.000 84.801 602.622 .000 202 143

Geisser

Huynh-Feldt 84.801 1.000 84.801 602.622 .000 202 143

Lower-bound 84.801 1.000 84.801 602.622 .000 202 143
tree_returned Sphericity 37.101 1 37.101 263.651 .000 .100 063
*n Assumed

Greenhouse- 37.101 1.000 37.101 263.651 .000 .100 063

Geisser

Huynh-Feldt 37.101 1.000 37.101 263.651 .000 .100 063

Lower-bound 37.101 1.000 37.101 263.651 .000 .100 .063
tree_returned Sphericity 50.430 1 50.430 358.372 .000 131 .085
*] Assumed

Greenhouse- 50.430 1.000 50.430 358.372 .000 131 085

Geisser

Huynh-Feldt 50.430 1.000 50.430 358.372 .000 131 085

Lower-bound 50.430 1.000 50.430 358.372 .000 131 085
tree_returned Sphericity 62.563 1 62.563 444.595 .000 158 106
* effect.size  Assumed

Greenhouse- 62.563 1.000 62.563 444.595 .000 158 .106

Geisser

Huynh-Feldt 62.563 1.000 62.563 444.595 .000 158 .106

Lower-bound 62.563 1.000 62.563 444.595 .000 158 .106
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Table F1 Continued
Type 111 Partial
Sum of Mean Eta Eta

Source Squares df Square F Sig. Squared Squared
tree_returned Sphericity 7.152 2 3,576 25411 .000 .021 012
* tho Assumed

Greenhouse- 7.152 2.000 3.576 25.411 .000 .021 012

Geisser

Huynh-Feldt 7.152 2.000 3.576 25.411 .000 .021 012

Lower-bound 7.152 2.000 3.576 25.411 .000 .021 012
tree returned Sphericity .000 0 .000 .000
* scenario Assumed

Greenhouse- .000 .000 .000 .000

Geisser

Huynh-Feldt .000 .000 .000 .000

Lower-bound .000 .000 ) 3 3 .000 .000
tree returned Sphericity 480 1 480 3411 .065 .001 .001
*n *J Assumed

Greenhouse- 480 1.000 480 3.411 .065 .001 .001

Geisser

Huynh-Feldt 480 1.000 480 3.411 .065 .001 .001

Lower-bound 480 1.000 480 3.411 .065 .001 .001
tree_returned Sphericity 120 1 120 .853 .356 .000 .000
*n * Assumed
effect.size Greenhouse- 120 1.000 120 .853 .356 .000 .000

Geisser

Huynh-Feldt 120 1.000 120 .853 .356 .000 .000

Lower-bound 120 1.000 120 .853 .356 .000 .000
tree returned Sphericity 2.252 2 1.126 8.001 .000 .007 .004
*n * rho Assumed

Greenhouse- 2.252 2.000 1.126 8.001 .000 .007 .004

Geisser

Huynh-Feldt 2.252 2.000 1.126 8.001 .000 .007 .004

Lower-bound 2.252 2.000 1.126 8.001 .000 .007 .004
tree returned Sphericity .000 0 .000 .000
*n * Assumed
scenario Greenhouse- .000 .000 .000 .000

Geisser

Huynh-Feldt .000 .000 .000 .000

Lower-bound .000 .000 .000 .000
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Table F1 Continued
Type 111 Partial
Sum of Mean Eta Eta
Source Squares df Square F Sig. Squared Squared
tree_returned Sphericity 101 1 101 17 397 .000 .000
*Jo* Assumed
effect.size Greenhouse- 101 1.000 101 717 397 .000 .000
Geisser
Huynh-Feldt 101 1.000 101 J17 397 .000 .000
Lower-bound 101 1.000 101 717 397 .000 .000
tree returned Sphericity 3.705 2 1.852 13.164 .000 011 .006
*J * rho Assumed
Greenhouse- 3.705 2.000 1.852 13.164 .000 011 .006
Geisser
Huynh-Feldt 3.705 2.000 1.852 13.164 .000 011 .006
Lower-bound 3.705 2.000 1.852 13.164 .000 011 .006
tree returned Sphericity .000 0 .000 .000
*J o Assumed
scenario Greenhouse- .000 .000 .000 .000
Geisser
Huynh-Feldt .000 .000 .000 .000
Lower-bound .000 .000 . ) ) .000 .000
tree_returned Sphericity 3.307 2 1.653 11.749 .000 .010 .006
* effect.size  Assumed
* rho Greenhouse- 3.307 2.000 1.653 11.749 .000 .010 .006
Geisser
Huynh-Feldt 3.307 2.000 1.653 11.749 .000 .010 .006
Lower-bound 3.307 2.000 1.653 11.749 .000 .010 .006
tree returned Sphericity .000 0 .000 .000
* effect.size  Assumed
* scenario  Greenhouse- .000 .000 .000 .000
Geisser
Huynh-Feldt .000 .000 .000 .000
Lower-bound .000 .000 .000 .000
tree returned Sphericity .000 0 .000 .000
*rtho * Assumed
scenario Greenhouse- .000 .000 .000 .000
Geisser
Huynh-Feldt .000 .000 .000 .000
Lower-bound .000 .000 .000 .000
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Table F1 Continued
Type 111 Partial
Sum of Mean Eta Eta
Source Squares df Square F Sig. Squared Squared
tree_returned Sphericity 521 1 521 3.701 .054 .002 .001
*n *J* Assumed
effect.size Greenhouse- 521 1.000 521 3.701 .054 .002 .001
Geisser
Huynh-Feldt 521 1.000 521 3.701 .054 .002 .001
Lower-bound 521 1.000 521 3.701 .054 .002 .001
tree returned Sphericity 945 2 472 3.358 .035 .003 .002
*n *J* Assumed
rho Greenhouse- 945 2.000 472 3.358 .035 .003 .002
Geisser
Huynh-Feldt 945 2.000 472 3.358 .035 .003 .002
Lower-bound 945 2.000 472 3.358 .035 .003 .002
tree returned Sphericity .000 0 .000 .000
*n * J * Assumed
scenario Greenhouse- .000 .000 .000 .000
Geisser
Huynh-Feldt .000 .000 .000 .000
Lower-bound .000 .000 . ) ) .000 .000
tree_returned Sphericity 1.820 2 910 6.467 .002 .005 .003
*n * Assumed
effect.size * Greenhouse- 1.820 2.000 910 6.467 .002 .005 .003
rho Geisser
Huynh-Feldt 1.820 2.000 910 6.467 .002 .005 .003
Lower-bound 1.820 2.000 910 6.467 .002 .005 .003
tree returned Sphericity .000 0 .000 .000
*n * Assumed
effect.size * Greenhouse- .000 .000 .000 .000
scenario Geisser
Huynh-Feldt .000 .000 .000 .000
Lower-bound .000 .000 .000 .000
tree returned Sphericity .000 0 .000 .000
*n * tho * Assumed
scenario Greenhouse- .000 .000 .000 .000
Geisser
Huynh-Feldt .000 .000 .000 .000
Lower-bound .000 .000 .000 .000
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Table F1 Continued
Type 111 Partial
Sum of Mean Eta Eta

Source Squares df Square F Sig. Squared Squared
tree_returned Sphericity 1.307 2 .653 4.643 .010 .004 .002
*] o* Assumed
effect.size * Greenhouse- 1.307 2.000 .653 4.643 .010 .004 .002
rho Geisser

Huynh-Feldt 1.307 2.000 .653 4.643 .010 .004 .002

Lower-bound 1.307 2.000 .653 4.643 .010 .004 .002
tree returned Sphericity .000 0 .000 .000
*] o* Assumed
effect.size * Greenhouse- .000 .000 .000 .000
scenario Geisser

Huynh-Feldt .000 .000 .000 .000

Lower-bound .000 .000 .000 .000
tree returned Sphericity .000 0 .000 .000
*J * rho * Assumed
scenario Greenhouse- .000 .000 .000 .000

Geisser

Huynh-Feldt .000 .000 .000 .000

Lower-bound .000 .000 .000 .000
tree_returned Sphericity .000 0 .000 .000
* effect.size  Assumed
* tho * Greenhouse- .000 .000 .000 .000
scenario Geisser

Huynh-Feldt .000 .000 .000 .000

Lower-bound .000 .000 . ) ) .000 .000
tree returned Sphericity 1.047 2 523 3.719 .024 .003 .002
*n ¥ ] * Assumed
effect.size * Greenhouse- 1.047 2.000 523 3.719 .024 .003 .002
rho Geisser

Huynh-Feldt 1.047 2.000 523 3.719 .024 .003 .002

Lower-bound 1.047 2.000 523 3.719 .024 .003 .002
tree returned Sphericity .000 0 .000 .000
*n *J* Assumed
effect.size * Greenhouse- .000 .000 .000 .000
scenario Geisser

Huynh-Feldt .000 .000 .000 .000

Lower-bound .000 .000 .000 .000
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Table F1 Continued
Type 111 Partial
Sum of Mean Eta Eta

Source Squares df Square F Sig. Squared Squared
tree_returned Sphericity .000 0 .000 .000
*n *J* Assumed
tho * Greenhouse- .000 .000 .000 .000
scenario Geisser

Huynh-Feldt .000 .000 .000 .000

Lower-bound .000 .000 .000 .000
tree returned Sphericity .000 0 .000 .000
*n * Assumed
effect.size * Greenhouse- .000 .000 .000 .000
rho * Geisser
scenario Huynh-Feldt .000 .000 .000 .000

Lower-bound .000 .000 .000 .000
tree returned Sphericity .000 0 .000 .000
*J o Assumed
effect.size * Greenhouse- .000 .000 .000 .000
rho * Geisser
scenario Huynh-Feldt .000 .000 .000 .000

Lower-bound .000 .000 .000 .000
tree_returned Sphericity .000 0 .000 .000
*n *J* Assumed
effect.size * Greenhouse- .000 .000 .000 .000
rho * Geisser
scenario Huynh-Feldt .000 .000 .000 .000

Lower-bound .000 .000 ) .000 .000
Error(tree_re Sphericity 334350 2376  .141 565
turned) Assumed

Greenhouse-  334.350 2376.  .141 565

Geisser 000

Huynh-Feldt  334.350 2376. .14l 565

000
Lower-bound ~ 334.350 2376.  .141 565

000
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Appendix G: Repeated measures ANOVA Type II error rate
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This appendix shows the SPSS table of the within-subjects effects with the Type II error rate

as the dependent variable.

Table G1

Repeated Measures Analysis of Variance of Type Il error rate (Within-Subjects Effects)

Type 111 Partial  Eta
Sum of Mean Eta  Squar

Source Squares df  Square F Sig. Squared -ed
typell error Sphericity 4.340 1 4.340 33.868 .000 005 .004

Assumed

Greenhouse- 4.340 1.000 4.340 33.868 .000 005 .004

Geisser

Huynh-Feldt 4.340 1.000 4.340 33.868 .000 005 .004

Lower-bound 4.340 1.000 4.340 33.868 .000 005 .004
typell _error Sphericity 146.814 1 146.814 1145.618 .000 138 1122
*n Assumed

Greenhouse- 146.814 1.000 146.814 1145.618 .000 138 122

Geisser

Huynh-Feldt 146.814 1.000 146.814 1145.618 .000 138 122

Lower-bound 146.814 1.000 146.814 1145.618 .000 138 122
typell _error Sphericity 26.694 1 26694 208.302 .000 028 .022
*] Assumed

Greenhouse- 26.694 1.000 26.694 208.302 .000 028 .022

Geisser

Huynh-Feldt 26.694 1.000 26.694 208.302 .000 028 .022

Lower-bound 26.694 1.000 26.694 208.302 .000 028 .022
typell error Sphericity 8.703 1 8.703 67.907 .000 .009 .007
* effect.size  Assumed

Greenhouse- 8.703 1.000 8.703 67.907 .000 .009 .007

Geisser

Huynh-Feldt 8.703 1.000 8.703 67.907 .000 .009 .007

Lower-bound 8.703 1.000 8.703 67.907 .000 .009 .007
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Table G1 Continued
Type 111 Partial  Eta
Sum of Mean Eta  Squar
Source Squares df  Square F Sig. Squared -ed
typell error Sphericity 205 2 .103 .800  .449 .000 .000
* tho Assumed
Greenhouse- 205 2.000 103 .800 .449 .000 .000
Geisser
Huynh-Feldt 205 2.000 103 .800 .449 .000 .000
Lower-bound 205 2.000 103 .800 .449 .000 .000
typell error  Sphericity 19.543 2 9.772 76.251 .000 021 .016
* scenario Assumed
Greenhouse- 19.543 2.000 9.772 76.251 .000 021 .016
Geisser
Huynh-Feldt 19.543 2.000 9.772 76.251 .000 021 .016
Lower-bound 19.543 2.000 9.772 76.251 .000 021 .016
typell error  Sphericity 6.084 1 6.084 47.478 .000 .007 .005
*n *J Assumed
Greenhouse- 6.084 1.000 6.084 47.478 .000 .007 .005
Geisser
Huynh-Feldt 6.084 1.000 6.084 47.478 .000 .007 .005
Lower-bound 6.084 1.000 6.084 47.478 .000 .007 .005
typell error Sphericity 20.702 1 20.702 161.546 .000 022 017
*n * Assumed
effect.size Greenhouse- 20.702 1.000 20.702 161.546 .000 022 .017
Geisser
Huynh-Feldt 20.702 1.000 20.702 161.546 .000 022 .017
Lower-bound 20.702 1.000 20.702 161.546 .000 022 .017
typell _error Sphericity 1.503 2 751 5.863 .003 002 .001
*n * rho Assumed
Greenhouse- 1.503 2.000 751 5.863 .003 002 .001
Geisser
Huynh-Feldt 1.503 2.000 751 5.863 .003 .002 .001
Lower-bound 1.503 2.000 751 5.863 .003 .002 .001
typell error Sphericity 3.810 2 1.905 14.866 .000 .004 .003
*n * Assumed
scenario Greenhouse- 3.810 2.000 1.905 14.866 .000 .004 .003
Geisser
Huynh-Feldt 3.810 2.000 1.905 14.866 .000 .004 .003
Lower-bound 3.810 2.000 1.905 14.866 .000 .004 .003
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Table G1 Continued
Type 111 Partial  Eta
Sum of Mean Eta  Squar
Source Squares df  Square F Sig. Squared -ed
typell error Sphericity 444 1 444 3.468 .063 .000 .000
*J o Assumed
effect.size Greenhouse- 444 1.000 444 3.468 .063 .000 .000
Geisser
Huynh-Feldt 444 1.000 444 3.468 .063 .000 .000
Lower-bound 444 1.000 444 3.468 .063 .000 .000
typell _error Sphericity 676 2 338 2.637 072 .001 .001
*J * tho Assumed
Greenhouse- 676 2.000 338 2.637 .072 .001 .001
Geisser
Huynh-Feldt 676 2.000 338 2.637 .072 .001 .001
Lower-bound 676 2.000 338 2.637 .072 001 .001
typell error  Sphericity 6.393 2 3.196 24.942  .000 .007 .005
*]JO* Assumed
scenario Greenhouse- 6.393 2.000 3.196 24942  .000 .007 .005
Geisser
Huynh-Feldt 6.393 2.000 3.196 24.942  .000 .007 .005
Lower-bound 6.393 2.000 3.196 24.942  .000 .007 .005
typell error Sphericity 5.483 2 2.741 21.392  .000 .006 .005
* effect.size  Assumed
* rho Greenhouse- 5.483 2.000 2.741 21.392  .000 .006 .005
Geisser
Huynh-Feldt 5.483 2.000 2.741 21.392  .000 006 .005
Lower-bound 5.483 2.000 2.741 21.392  .000 006 .005
typell error Sphericity 22.130 2 11.065 86.344 .000 024 018
* effect.size  Assumed
* scenario  Greenhouse- 22.130 2.000 11.065 86.344 .000 024 018
Geisser
Huynh-Feldt 22.130 2.000 11.065 86.344 .000 024 018
Lower-bound 22.130 2.000 11.065 86.344 .000 024 .018
typell error Sphericity 6.374 4 1.593 12.434 .000 .007 .005
*rtho * Assumed
scenario Greenhouse- 6.374 4.000 1.593 12.434  .000 .007 .005
Geisser
Huynh-Feldt 6.374 4.000 1.593 12.434 .000 .007 .005
Lower-bound 6.374 4.000 1.593 12.434 .000 .007 .005
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Table G1 Continued
Type 111 Partial  Eta
Sum of Mean Eta  Squar
Source Squares df  Square F Sig. Squared -ed
typell error Sphericity 284 1 284 2220 .136 .000 .000
*n *J * Assumed
effect.size Greenhouse- 284 1.000 284 2220 .136 .000 .000
Geisser
Huynh-Feldt 284 1.000 284 2220 .136 .000 .000
Lower-bound 284 1.000 284 2220 .136 .000 .000
typell _error Sphericity 2.247 2 1.123 8.766 .000 .002 .002
*n *J * Assumed
rtho Greenhouse- 2.247 2.000 1.123 8.766 .000 002 .002
Geisser
Huynh-Feldt 2.247 2.000 1.123 8.766 .000 002 .002
Lower-bound 2.247 2.000 1.123 8.766 .000 .002 .002
typell _error Sphericity 618 2 309 2.410 .090 .001 .001
*n * J*  Assumed
scenario Greenhouse- 618 2.000 309 2410 .090 .001 .001
Geisser
Huynh-Feldt 618 2.000 309 2410 .090 .001 .001
Lower-bound 618 2.000 309 2410 .090 001 .001
typell error Sphericity 075 2 .038 294 745 .000 .000
*n * Assumed
effect.size * Greenhouse- 075 2.000 .038 294 745 .000 .000
rho Geisser
Huynh-Feldt 075 2.000 .038 294 745 .000 .000
Lower-bound 075 2.000 .038 294 745 .000 .000
typell error Sphericity 2.930 2 1.465 11.433 .000 .003  .002
*n * Assumed
effect.size * Greenhouse- 2.930 2.000 1.465 11.433  .000 003 .002
scenario Geisser
Huynh-Feldt 2.930 2.000 1.465 11.433 .000 .003  .002
Lower-bound 2.930 2.000 1.465 11.433 .000 .003 .002
typell _error Sphericity 176 4 .044 344 849 .000 .000
*n * tho * Assumed
scenario Greenhouse- 176 4.000 .044 344 849 .000 .000
Geisser
Huynh-Feldt 176 4.000 .044 344 849 .000 .000
Lower-bound 176 4.000 .044 344 .849 .000 .000
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Table G1 Continued
Type 111 Partial  Eta
Sum of Mean Eta  Squar
Source Squares df  Square F Sig. Squared -ed
typell error Sphericity 651 2 325 2.540 .079 .001 .001
*J o Assumed
effect.size * Greenhouse- 651 2.000 325 2.540 .079 .001 .001
rho Geisser
Huynh-Feldt .651 2.000 325 2.540 .079 .001 .001
Lower-bound .651 2.000 325 2.540 .079 001 .001
typell _error Sphericity 340 2 170 1.327 .265 .000 .000
*J o Assumed
effect.size * Greenhouse- 340 2.000 170 1.327 265 .000 .000
scenario Geisser
Huynh-Feldt 340 2.000 170 1.327 265 .000 .000
Lower-bound 340 2.000 170 1.327 .265 .000 .000
typell _error Sphericity 207 4 .052 404 806 .000 .000
*J * tho * Assumed
scenario Greenhouse- 207 4.000 .052 404 .806 .000 .000
Geisser
Huynh-Feldt 207 4.000 .052 404 .806 .000 .000
Lower-bound 207 4.000 .052 404 .806 .000 .000
typell error Sphericity 2.147 4 537 4.188 .002 002 .002
* effect.size  Assumed
* rho * Greenhouse- 2.147 4.000 537 4.188 .002 002 .002
scenario Geisser
Huynh-Feldt 2.147 4.000 537 4.188 .002 002 .002
Lower-bound 2.147 4.000 537 4.188 .002 002 .002
typell _error Sphericity 263 2 132 1.028 .358 .000 .000
*n *J * Assumed
effect.size * Greenhouse- 263 2.000 132 1.028 .358 .000 .000
rho Geisser
Huynh-Feldt 263 2.000 132 1.028 .358 .000 .000
Lower-bound 263 2.000 132 1.028 .358 .000 .000
typell _error Sphericity 268 2 134 1.047 351 .000 .000
*n *J*  Assumed
effect.size * Greenhouse- 268 2.000 134 1.047 351 .000 .000
scenario Geisser
Huynh-Feldt 268 2.000 134 1.047 351 .000 .000
Lower-bound 268 2.000 134 1.047 .351 .000 .000
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Table G1 Continued
Type 111 Partial  Eta
Sum of Mean Eta  Squar
Source Squares df  Square F Sig. Squared -ed
typell error Sphericity .866 4 217 1.690 .149 .001 .001
*n *J * Assumed
tho * Greenhouse- .866 4.000 217 1.690 .149 .001 .001
scenario Geisser
Huynh-Feldt .866 4.000 217 1.690 .149 .001 .001
Lower-bound .866 4.000 217 1.690 .149 001 .001
typell _error Sphericity 1.134 4 284 2.213  .065 .001 .001
*n * Assumed
effect.size * Greenhouse- 1.134 4.000 284 2213 .065 .001 .001
rho * Geisser
scenario Huynh-Feldt 1.134 4.000 284 2213 .065 .001 .001
Lower-bound 1.134 4.000 284 2213 .065 .001 .001
typell _error Sphericity 144 4 .036 282 .890 .000 .000
*]JO* Assumed
effect.size * Greenhouse- 144 4.000 .036 282 .890 .000 .000
rho * Geisser
scenario Huynh-Feldt .144 4.000 .036 282 .890 .000 .000
Lower-bound 144 4.000 .036 282 .890 .000 .000
typell error Sphericity 279 4 .070 544 704 .000 .000
*n *J * Assumed
effect.size * Greenhouse- 279 4.000 .070 544 704 .000 .000
rho * Geisser
scenario Huynh-Feldt 279 4.000 .070 544 704 .000 .000
Lower-bound 279 4.000 .070 544 704 .000 .000
Error(typell  Sphericity 913.470 7128 128 157
error) Assumed
Greenhouse- ~ 913.470 7128. 128 157
Geisser 000
Huynh-Feldt ~ 913.470 7128. 128 157
000
Lower-bound  913.470 7128. 128 157

000




