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Abstract

The Vicsek model offers a phenomonologically rich set of
behaviours while maintaining simple rules of interaction. By
introducing a convex hull as a means of providing cohesion
within the system, we have been able to probe the behaviour of
this model as it is moved off of the usual periodic boundary
conditions, to the infinite plane. We present the findings of 4
different schemes that introduce this cohesive effect by way of
deflecting Boids on the convex hull back into the bulk. In one such
scheme, a new phase transition is found, between a state wherein
the flock has a constant direction of motion, and a state where this
direction precesses. The rate of precession is found to be
dependent on both the noise level and the deflection coupling.
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Chapter

Introduction

1.1 Swarming

Flocking, herding, schooling or, more generally, swarming, is the collec-
tive behaviour of groups of animal groups. It has long been studied by
biologists in a multitude of environments and with a wide array of organ-
isms.

On and above the human length scale, a large variety of subjects exhibit-
ing this behaviour can be found, e.g. bird flocks, fish schools, land animal
herd behaviour, and even large masses of humans. However, the same
phenomenon is known to occur on scales far smaller than our own, such
as in bacterial colonies and even within the cells of organisms: a well-
known in-vivo example of this is the assembly of a cytoskeletal framework
by means of microtubules, a lattice of tubulin dimers that is responsible for
maintaining the structural integrity and coordinating the division of cells.
In the field of active matter, these microtubules, when mixed with motor
proteins such as kinesin, form an oft-used medium of liquid crystals that
display interesting topological features, e.g. nematic, smectic or chiral or-
dering, due to their ability to convert the chemical energy from a substrate
(such as a solution of ATP) into sliding movement. The elongated nature
of these microtubules, coupled with the longitudinal motion caused by ki-
nesin motor proteins stuck to these tubules, causes them to flow and fold.
At the same time, topological features such as defects are kept intact, as
the 2D surface they are kept on forces tubules to align locally.

Whatever the length scale may be, swarming behaviour (henceforth in
this thesis referred to as “flocking”) typically occurs in groups of agents
(“flocks”) that comprise a volume orders of magnitude larger than the vol-
ume of a single agent (“boid”).
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2 Introduction

Figure 1.1: Some examples of flocking behaviour with systems of length scales larger
than humans. Top left: A school of Bigeye scad near Hawaii form schools to minimise
their chance of being caught by predators. The size of the “baitball” can exceed that of a
typical house, containing hundreds of thousands of individuals. Top right: A murmura-
tion, or flock of starlings. Like the Bigeye Scad, these birds band together to ward off their
chances of being struck by a nearby predator, such as a falcon. These flocks can contain
on the order of a tens of thousands of individuals, taking up volumes in the tens of thou-
sands of cubic meters. Bottom left: A stampeding herd of African Buffalo. Stampedes
are typically instigated by the perception of danger by few individuals. This information
travels through the herd at a speed much greater than the animals themselves and causes
a quick alignment. Such herds can contain on the order of hundreds of thousands of
individuals and span multiple square kilometers. Bottom right: A highly ordered flock
of humans forming a military parade. In this case, not only is directional alignment im-
portant, but also position, gait, posture and the positions of all limbs are expected to be
roughly the same in the entire flock.

From a physicist’s perspective, this presents an interesting phenomenon:
how can such long-range orientational order arise so far from equilibrium,
when objects as simple and small as molecules can exhibit it? In most
cases, it is impossible for a boid to sense the behaviour of the flock as a
whole: a buffalo on one end of a 100,000-strong herd will be hard-pressed
to account for the movement of all other buffalo, if it was even able to
observe them all. Furthermore, there is no indication that there is some
sort of central director “calling the shots” and orienting all boids, such as

2
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1.1 Swarming 3

Kinesin motor clusters

Surfactant

Figure 1.2: Some examples of flocking behaviour with systems on length scales smaller
than humans. Top left: An “ant mill.” This phenomenon happens in certain species
of ants whose primary mode of sensing is through smell rather than sight. If the
pheromones they follow dilute too much, they may start following one another in a cir-
cular manner, sometimes until dying of exhaustion. Bottom left: Myxococcus Xanthus, a
Gram-negative rod bacterium that starts to behave in a cooperative fashion when nearing
starvation. Right: A schematic of how microtubules are used as a basis for an experiment
in active nematics. The kinesin motor proteins cause the different microtubules to slide
along one another whereby the elongated nature of the microtubules forces alignment in
the 2D plane they are kept in. From [1]

a central computer as used for research in cooperative drone behaviour.
As such, it seems reasonable to assume that, barring the possibility of the
boids sensing some quantity that is directly related to the behaviour of
the flock as a whole, each boid will instead make a “first-order” estimate,
observing the behaviour of its direct neighbours by way of sight, sound,
haptic or chemical senses.

The ubiquity of this phenomenon raises some interesting questions:

e How complex can the “rules of interaction” between agents be, if this
phenomenon is to be found in entities as simple as microtubules?

e How robust is this behaviour if we perturb or drive the system in a
certain manner, and what is the nature of the change in behaviour

3
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4 Introduction

when perturbed?

e Is there a limit to the size of these flocks, i.e., how does the coopera-
tion correlate in space?

A great effort has been made to answer these questions, both experimen-
tally and theoretically, with simulations and analytical work to explain the
phenomena found. These include empirical measurements in natural (e.g.
starling flocks [2], fish schools[3] and herds of zebra [4]), and laboratory
(bacterial colonies[5], migrating tissue cells [6] and army ants [7]) envi-
ronments. As these all involve complex agents, better controlled experi-
ments, attempting to boil these questions down to elementary problems
have been done by:

e Placing thousands of apolar rods (made of brass or simply rice grains)
on a bowl, and then vibrating the bowl[8]. To lower the energy of
the system, rods must align locally to minimise the empty space and
amount of overlap in the xy-plane. This in turn may cause the for-
mation of topological defects.

e Creating a 2D interface of water and oil, on which a solution of
ATP, microtubules and kinesin motor proteins is located (see Fig. 1.2
right). The kinesin attaches to the microtubules and, burning ATP,
causes them to slide along eachother. Due to the elongated nature of
the tubules and the fact that they stay on the interface, they tend to
align locally. On large scales, they too can form topological defects.

1.2 Boids and the Vicsek model

One of the first steps toward simulating collective motion, “Boids” (hence
our use of the term), was made by Reynolds[9], implementing rules that
allow for repulsion, attraction and alignment. It has since found use in
the coordination of physical swarms such as large numbers of areal and
terrestrial drones. However, the program was not made for measurement,
but for the creation of realistic behaviour in computer graphics, and to this
end it has seen use in some video games and feature films in the 1990s.

The first step toward a quantitative simulation was done in 1995, when
Tamés Vicsek et al. published Novel type of phase transition in a system of
self-driven particles[10]. In it, they introduced a minimal model (now re-
ferred to as the “Vicsek model”) of flocking, based on a simple rule of
alignment: each boid, initially placed randomly to achieve a desired num-
ber density p, moves with constant speed vy in a certain, initially random,

4
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1.2 Boids and the Vicsek model 5

direction 6) on a periodic boundary system with volume V = %. Each
timestep, the boids synchronously update their direction according to the
average direction of agents within a radius r( of itself, plus an error term.
In mathematical terms,

(vy)
64! = (6),, + el = atan ( ] g
X 70

(1.1)
= atan ( (Z<b/b,> Vb/)y> + Ugltaﬂ

(Z<b,b’> Vb’)x

where the subscript rp and the sum over < b, b’ > both indicate that only
those boids b’ whose distance dj, ;y = |1}, 1| = |1, — 1| to boid b are equal
to or below rq. The error term ¢! € U (—m, 7r) is a white noise distributed
number with neither spatial nor temporal memory. The position is then

updated according to
ry7 = rj + oot (6571 (1.2)
Where i (8) = (cos 01 + sin 6j) is a unit vector in direction 6. To differen-

tiate states wherein the system was organised and disorganised, Vicsek et
al. introduced an order parameter

AL

b

, (1.3)

1
fﬁ‘=:|PT|:=|<Vb>|=:jq

which goes to zero for disorder and approaches 1 for full order. We will
use the same parameter, but we will call it the total polarisation parameter
Pr for reasons that will become apparent later.

The Vicsek model is similar to the XY model, a U (1) rotationally symmet-
ric version of the Ising model, which is a staple of statistical mechanics. It
differs from this in that it is off-lattice, and the objects move. Indeed, if we
were to set the speed to zero, it would reduce to an off-lattice XY model,
with behaviour dependent on the noise level of the boids, as well as the
density: a percolation threshold of p = 1 exists, below which no ordered
behaviour would be exhibited.

The Vicsek model displays different behaviour for different parameters:
for very low density (p < 1), small noise levels can induce disorder, simi-
lar to a percolation threshold: if boids are to rarely encounter neighbours,
their trajectories will devolve into random walks. For high density, there

5
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6 Introduction

is a much larger range of noise levels before boids no longer move collec-
tively. Still, there is always a transition from high order to low order, when
the noise levels are raised beyond a certain critical noise value #¢ (p).

In their 1995 paper, Vicsek et al. concluded the transition to be of second
order, motivated by a smooth decrease in the order parameter (See Fig.
1.3) as function of noise. even when increasing the number of boids in the
system, which seemed to converge the steepness to a certain infinite sys-
tem value. Consequently, they calculated critical exponents for both the
density and noise which were not reproduced by others.

1.0 4
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Ua/ DXL |
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Figure 1.3: Order parameter Pr (Vicsek et al. called it v,) as function of noise level 1
(multiplied by 27t compared to our definition)

The nature of the transition was later contested by Grégoire et al. in
[11], who claimed that the transition is of first order in all cases of local
alignment, in 2D. Only in 2015 was this matter settled, with the publication
of [12] by Solon et al., where it was found that there is a coexistence phase
consisting of one or multiple high-density ordered bands (2D) or sheets
(3D) of boids, all moving in the same direction, with low-density disor-
dered voids inbetween. Consequently, they found the following phase
diagram:

6
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1.2 Boids and the Vicsek model 7
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Figure 1.4: Left: Phase diagram of the Vicsek model. Between the states of full order
(polar liquid) and full disorder (disordered gas, though there is no distribution of speeds
as all Boids move at the same speed), a region of phase space exists where the system
is divided into sections that are highly polarised and sections that are not: a microphase
state. Right: Snapshot of the microphase state. A number of high density ordered bands
(coloured green), moving parallel to one another, move through the lower density system
(blue). They are locally highly ordered, while the “void” between is not. Proportional to
the initial density, the number of bands increases until the system contains enough bands
such that the entire system is ordered.

In between the regions of disorder (Pr — 0) and order (Pr — 1, up to
some error, dependent on 7 and N) lies a regime of microphase separation.
This microphase separation allows for the existence of highly polarised or-
dered bands traveling in the same direction, where the number density of
Boids is greater than in the unpolarised “voids” between these bands. As
the initial density is increased, the number of bands increases, until finally,
the system is entirely polarised. These polarised bands lead to so-called
Giant Density Fluctuations (GDF), where the notion of density is no longer
well-defined: normally a region of volume V having on average N parti-
cles enclosed would display density fluctuations with standard deviation
AN proportional to v/N. Thus, increasing the volume measured in would
decrease these fluctuations as 1/+/V. In these strongly polarised phases of
active matter, however, Toner and Tu predicted these fluctuations to grow
faster than /N, in some cases as fast as N (See [13] and [14]).

1.2.1 Continuum treatment: Toner and Tu

The fact that long-range orientational order could arise at all in the 2D ver-
sion of the Vicsek model was in itself a surprise, as it seems to violate the
Mermin-Wagner theorem, which states that no continuous symmetry (the

7
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8 Introduction

polarisation direction) can be broken spontaneously at a finite tempera-
ture (noise level) in systems with short-range interactions. We will first
briefly give a rough explanation of the motivation for this intuition, and
then show why it is not the case.

Let us first take the difference in direction between consecutive timesteps
for a single boid:

0,7 = (), + 18"
0" — 0 = (0),, — Oy + 18"

o

(1.4)

Now, we rewrite some terms on both sides by coarse graining, i.e. we
look at behaviour on length and time scales far larger than microscopic
interactions. The lhs becomes the partial derivative with respect to time:

Oitt —0f — 0 (r,t+dt) —0(r,t) =00 (1,1) (1.5)
while the rhs resembles the discrete version of the Laplacian:
1
(O)r, =0 =55 2 (O —6) +n8" (1.6)
(b,b")
= DV?20} + ¢t (1.7)

To see this, consider having a lattice of 4 boids surrounding boid b:

4
®
IR — ® )
1
®
3
Then
ot —0t) = —9.,0!
( h l;> ! (1.8)
(62— 6;) = 9x,
and
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1.2 Boids and the Vicsek model 9

The same happens for boids 3 and 4 in the y—direction, and so we recover
the Laplacian

So now we have
0,0 = DV?0 4 1€ (1.11)

which describes a noisy diffusion. Thus, if we now let a single boid make
a departure 6y from the flock average at t = 0, this offset spreads through
the rest of the system by diffusion, and so the mean-square spread of this
error will scale as /7.

This error is also conserved: the sum of all offsets induced by this single
error must equal 0p:

) / 6d'r — D / V20d% = D / V0 -dS (1.12)

Which is zero when the flock size is much larger than NG
At a time ¢, then, all boids within this area will have been given an offset

6 _ 6o
0 (t) ~ N~ @ (1.13)
For all d > 2, this decays sufficiently such that long-range order can arise,
purely due to the fact that the error is spread out quickly to enough neigh-
bours such that this new direction will be assumed by the flock.

This analysis only applies to a single error, however. In reality, errors are
being made by all boids at each timestep. In order for the errors to propa-
gate to the arbitrarily large total system size r, a time tp (r) « r? is required
to pass. During this time, each boid makes tp errors. Assuming a homo-
geneous and isotropic system, the number of boids scales as the volume,
r?, and so the total number of errors is proportional to rtp = 2. Then
the RMS error per boid 60 is proportional to r1=4/2 For d < 2, if we take
r — oo, this value becomes arbitrarily large, and so no long-range order
should be possible.

The reason for this apparent violation was given by Toner and Tu in [13],
where they explained that distinction lies in the fact that the boids initially
move already: The Mermin-Wagner theorem applies to equilibrium sys-
tems, which the Vicsek model decidedly is not. Due to the fact that the
motion is implied in the model, the propagation of errors is not isotropic:
in the direction of motion, the effect of errors is smaller than in the trans-
verse direction, i.e. the departure from the original transverse position is

9
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10 Introduction

proportional to the RMS error in the transverse speed, which is propor-
tional to the RMS error in the direction:

x| o« 6v |t o< vyobt (1.14)

As 60 o r1=4/2 o f1/2-d/4 5y o $3/2-4/4 n the transverse direction,
the error has propagated to a width #!/2, and so in fact the actual spatial
deviation of a boid, caused by its error, will overtake the speed at which
the error diffuses. This means that, in d < 4, it is the transport of the boid
itself that influences other, initially far-off boids, rather than a passing on
of the error. This thus means that the volume of the region to which errors
have spread in a time t, is given by the product of the lateral direction in
which it has spread diffusively, V/t, and the transverse width in which the
boid has moved, w, (t). In this region, again the total number of errors
made is proportional to the volume and ¢. It thus grows as sufficiently so
that in d < 4, rather than diffusion dominating the change in direction, it
is in fact the transverse motion itself that propagates errors. Now, if we
look at the volume of a region affected by the error of a boid, it is given
by a diffusive length ~ 1/t in the direction of motion, and a width w (t).
The number of errors made in this region is again given by the product
of the volume of this region and the time it has taken to become this size:
w, (t)t*2. Then the RMS error per boid should be given again by the
square root of the number of errors, divided by the amount of boids: J6 «

wuf(g)f/;/z o~ wjt/:m' Now we already know that w, (t) o vgd6t o %//42
and so w, (f) « 56, much faster than the /f of pure diffusion. Finally,
we can plug this dependency of w, (¢) on t back in the equation for 66 and
see that

4
50 o S g1/6 (1.15)

Which clearly goes to zero as t — co. Thus true long range order indeed is
possible. Before finding this argument, Toner and Tu also introduced hy-
drodynamic equations[14] for flocking by giving it a continuum treatment.

10
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1.3 Changes to the Vicsek model 11

They are given by

P4V () =0, (116)

v+ A (V- V)Vv+ A (V- -v)v+ A3V <|v|2>

—av—Bv]*v—VP+DgV (V-v)+DrV3v+D,(v-V)?v+f
(1.17)

P=P(o)= Y on(p—po)" (118)

n=1

Where p (r) is the density local boid density, v (r) is the velocity field (the
first equation simply enforces the conservation of bird numbers), and P (p)
is a pressure that aims to maintain the number density at a mean value py.
B, D, Dy and Dr are positive constants and « < 0 in the disordered phase
and « > 0 in the ordered phase. The different A constants are comparable
to those used in the Navier-Stokes equation. As this model does not have
Galilean invariance (all boids move at the same speed and so not all frames
of reference are equal), A, and A3 are not zero, as is the case in the Navier-
Stokes equation, and Aj is not equal to 1. Their values are instead set by the
microscopic rules. The « and B terms cause the velocity field v (r) to have

a finite magnitude |v (r)| = ,/%. Dy, Dy and D, are diffusion constants
& B

that can be seen as viscosities (i.e. cause local alignment), which allow the
fluctuations of the velocity field to spread out. Finally, f is a driving force
that simulates the noise, i.e. the errors that boids make when picking a
new direction. As mentioned before, it is a white noise with neither spatial
nor temporal memory.

1.3 Changes to the Vicsek model

Being a minimal model of flocking, the Vicsek model has been modified
copious times to introduce more complex phenomena that have been ob-
served in nature, e.g. by reintroducing the attractive and repulsive compo-
nents that were originally included in the Boids program [15], or a more
realistic interaction that includes the limited eyesight of organisms [16].
While delivering quantitatively different results, the main properties of a
phase transition and its order remain. In 2004, Grégoire et al. published
results of a variant of the Vicsek model, where the implementation of noise
was given by way of adding a random vector with length proportional to

11
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12 Introduction

the amount of neighbours, rather than a random term added to the direc-
tion:

Vil = [ Y vy +npyh (gg“)] (1.19)
<bb'>
with NV [u] = ru] @ normalisation operator and 7 the number of boids

within the interaction radius. A priori, this seems to disproportionately
distort the direction of boids in high density sections of the flock, and this
indeed was the intention: rather than assuming boids make the same mis-
take, regardless of the amount of neighbours (i.e. after having measured
the average direction), they instead assume that an error is made with each
measurement of the neighbours’ directions. As mentioned in the previous
section, the nature of the phase transition was contested by Grégoire et
al. They reported on a different behaviour of the polarisation while using
this form of noise, henceforth called “vectorial” noise, as opposed to the
“scalar” noise of the original model, as seen in 1.5.

1

0.5

Figure 1.5: Behaviour of the polarisation Pr (called ¢ in [11]) as function of the
noise level 17 using L = 32 and p = 2 in both simulations: circles for scalar noise,
squares for vectorial noise. As N increases, the sharpness of the scalar noise tran-
sition also increases. This requires systems of N = 10° boids and more to become
apparent.

Compared to the scalar noise implementation, the vectorial noise more
accurately describes this transition while using far fewer numbers of boids.
For this reason, we opted to use the vectorial noise in our simulations, as
it allowed us to greatly speed up the computations and thus perform mea-
surements on more combinations of parameters.

12
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1.4 Moving the Vicsek model to the infinite plane 13

1.4 Moving the Vicsek model to the infinite plane

In Linear Response to Leadership[17], Pearce and Giomi introduced “leader-
ship” to the Vicsek model. A subset of N; boids is then given a constant
offset ¢; to the updated 92“, resulting in a precession of the polarisation
vector at a rate proportional to T = N;¢;. To measure this precession, they
introduced a “curvature” observable:

K(t) =2 (N [P(t—1)] x N'[P(£)]) (1.20)
= sin (0p — 057") ~ 0p — 0F ! (1.21)

with the approximation holding due to the fact that the observed preces-
sion is small (on the order of 1072). In analysing this model’s changes to
the Toner-Tu equations, they came across an integral of the form [dAV -
L, where X is an effective stress tensor that distorts the polarisation of the
flock. As this integral must be zero by the divergence theorem on a pe-
riodic boundary, these stresses cancel out, with the dynamics of the total
polarisation being purely diffusive when T = 0.

To probe the contribution of this term to the model, we opted to move
the model to a system with no periodic boundaries, i.e. on an infinite
plane. As the Vicsek model does not contain any mechanisms to preserve
the number density of boids, we introduced various methods that caused
boids to stay together. These are given in the next section. In the end, the
behaviour we found with some of these methods was interesting enough
that we actually dispensed with performing simulations involving lead-
ership, and instead focussed only on the phenomena fed by moving the
model to the infinite plane.

1.4.1 Convex Hull Force Recipes

In the infinite plane, any collection of boids under the subject of noise is
going to diffuse until becoming sufficiently separated as to never interact
again. In order to combat this, we introduced some cohesive components
which we call force recipes. These forces act only upon those boids that
make up the convex hull of the group, i.e. that convex set of boids that
contains all boids within it. It can be seen as the set of boids at which a
rubber band, released around the entire flock, would be attached to and
make a corner: See Fig. 1.6. Finding this set of points can be done in a
variety of ways, some more involved than others. We found an algorithm
that strikes a balance between simplicity and computational speed called

13
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14 Introduction

“Monotone chain” or “Andrew’s algorithm” In Chapter 2, we give a pseu-
docode version of this algorithm.

Figure 1.6: The convex hull visualised by the rubber band analogy. If we were to release
a rubber band (with equilibrium length smaller than the length of the convex hull), the
convex hull would consitute those points at which the rubber band makes a turn.

After calculating the force, it is applied by altering the direction of the
boid, prior to moving it in that new direction:

v2+1 =N [N [ Z vy + npyh <§Z+1>

<b,b'>

+ 'ny“] (1.22)

Rather than including the force within the first normalisation operator, the
new direction based on neighbours and noise is first normalised before
being updated with the force. This was done to make the influence of the
convex hull independent of local boid density in the bulk. We decided on
4 different implementations of keeping boids within range of one another,
each with its own motivation, which we will expand on below per recipe.
From now on, we will omit the time-index for clarity.

Local Curvature

In the local curvature force recipe, we implement a discrete analogue of the
surface tension of, for instance, a droplet of water. This surface tension is
minimised when the curvature of the droplet is minimised. Thus, we point
the force on a boid on the hull inward by taking the average normalised
direction of neighbouring boids on the hull, and make it proportional to

14
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1.4 Moving the Vicsek model to the infinite plane 15

the local curvature:

fh = Kyny, = E (123)
1 ~ A~ fh+1 - z:h

=__ (¢t —f)=2—"_ 1.24

\th+1|2+|th\ ( htl h> [tn1| + [t ( )

Where h € H is an index pointing to a boid on the hull. This list of indices
is ordered counter-clockwise with respect to the position on the hull and so
h + 1 for the final value of h refers to the start of the list. t;, is the tangential
vector of the convex hull pointing at boid 1, i.e. the difference vector of the
position of boid 4 and the position of boid & — 1, and f;, is its normalised
version.

b,

Figure 1.7: The local curvature (left) and flock mean (right) force recipes visualised.
The length of the force vector is not necessarily representative of the actual force as it is
implemented.

Flock Mean

In the flock mean recipe, the boid is forced toward the average position of
all boids. It is thus given simply by

fh = (% Zrb> — Iy (1.25)
b

Far-Neighbour

In the Far-Neighbour force recipe, boids are pointed toward that neigh-
bour on the hull that is furthest away. It attempts to preserve a density, be-

15
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16 Introduction

ing at the same time an attractive as well as a repulsive force. It is similar
to the Local Curvature recipe, except difference vectors are not normalised
prior to use. It is given by:

thg—t
f, =2 h (1.26)
|ty | + [t

Near-Neighbour

Where the Far-Neighbour force recipe attempts to preserve the density

along the hull by pointing away from the nearest neighbour, the Near-

Neighbour recipe does the opposite: it uses the length of the Far-Neighbour
recipe, and mirrors it along the direction given by the local curvature force

recipe. This way; it is purely an attractive recipe, simulating the wishes of

boids to stay close to its closest neighbour on the hull. It is then given by

th1 —ty }

f,=M; [2— (1.27)
et | Pt | + [t

with M 4 [u] a mirroring operator that works by projecting u on the nor-

mal vector

n=N1[o— b (1.28)

and on a vector 71+ orthogonal to i (chosen such that 7i* - u > 0). Then

’

Moo [u] =7 (7-u) — At (ﬁL : u) (1.29)

o, ey

Figure 1.8: The far-neighbour (left) and near-neighbour force recipes visualised. The
length of the force vector is not necessarily representative of the actual force as it is im-
plemented.
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1.4 Moving the Vicsek model to the infinite plane 17

1.4.2 Observables

With the introduction of the convex hull, new possibilities for measure-
ments are also introduced. Aside from measuring the total polarisation Pt
of the flock and its rate of precession x7, we can separate these values up
into contributions from boids on the hull and boids in the bulk, i.e. those
not on the hull. These quantities will be denoted with a subscript H and B
respectively and are given by

Pp=—")v 1.30

H= N ; h (1.30)
NPt — NyPy

Py = 1.31

B N _Np (1.31)

where Ny is the number of boids on the hull. In principle these polari-
sations should not differ greatly, as the boids will still be moving in a co-
operative fashion, however the force acting on boids on the hull does act
as a kind of nontrivial source of noise, even if their contribution is minor:
typical simulations of 2000 boids tended to have on the order of 30 to 40
boids on the hull at all times, and so the total polarisation is still affected
somewhat. To mitigate this, measurements involving the polarisation or
curvature of the flock will be given by those of the bulk unless otherwise
noted.

The convex hull itself also introduces the opportunity to perform measure-
ments on its effects: the shape of the hull is usually a good indicator of the
shape of the flock as a whole, and the force imparted by the hull affects the
positions of boids relative to the bulk. We opted to measure the following
properties of boids on the hull, as a function of angular position ¢ (see Fig.
1.9) relative to the centre of the hull, zeroed on the polarisation direction:

e The distance ry (¢) of boids to the centre of the hull rgc. This al-
lowed us to construct the shape of the hull, and to compute the
length of the perimeter.

e The number of boids ny (¢) on the hull. Combined with knowing
the shape of the hull, this leads to a local density pg (¢).

e “Transport” on the hull: if boids stayed on the hull for multiple con-
secutive timesteps, they made a change A¢ (¢) in angle relative to
the centre of the hull.

All of these measurements were done with histograms of bin size d¢ =
27
1000°

17
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18 Introduction

Figure 1.9: Diagram of how the hull observables’ position ¢ is found and how the
change in angle was calculated.

The centre of the hull, however, is typically not best given by the mean
geometric mean of all boids or of the boids on the hull, as both are not
uniformly spread about the bulk. Instead, we opted to use a measure we
will call the Geometric Centre,

1 14
rec = - Y (rp+ 1p4) Eh (1.32)
)

where ¢, = |r;, —1;.1]| is the distance between consecutive boids on the
hull and Ly is the total length of the perimeter of the hull, i.e. ), ¢}.

We measured the surface area of the convex hull by using the “shoe-lace
formula:”

1
A==
2 Yo Yn+1

Zdet( X Xntl )‘ (1.33)
h

Finally, we can reconstruct the forces experienced by Boids on the hull.
One way is to calculate the shape of the hull using 7y (¢) and ny (¢), and
for each bin, calculate the forces if the neighbouring bins were also pop-
ulated with a Boid. For a typical hull, this results in a set of force vectors
such as in Fig. 1.10.

18
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1.4 Moving the Vicsek model to the infinite plane 19

0.2

0.1

-0.1

—0.2

-02 -01 0 0.1 0.2

Figure 1.10: Example of a reconstruction of the forces on the hull, using the local curva-
ture force recipe and purely the shape of the hull.

Clearly, this method is rather inaccurate and subject to the minute vari-
ations in the shape of the reconstructed hull. Furthermore, it distorts the
strength of the forces by removing information on the distances between
Boids. We can get rid of these errors by instead “placing” the correct num-
ber of Boids on the hull with the distribution given by p (¢). This is done

by performing an integral ¢ (¢, ®) = f;,) g P (¢) d¢ over the density on

the hull, starting at a neighbouring position ¢’ 4+ d¢ and ending at the near-
est position ® that gives o (¢, @) > 1. We then assume the neighbouring
Boid is placed at position ®, repeat the process on the other side of ¢’ and
use those positions to calculate the forces. This gives us the forces found
in Fig. 1.11.

0.08
0.06 L Ty
0.04 L .
0.02

0

—0.02 [k

—0.04 G

~0.06 S

~0.08

—-02 —-015 —0.1 —005 0 005 01 015 02

Figure 1.11: Example of a reconstruction of the forces on the hull, using the local curva-
ture force recipe and taking into the account the density on the hull.
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20 Introduction

If we put the flock into a disordered state by raising the noise level
beyond a critical value 77¢, we can assume Boids to make trajectories that
approach a random walk. The equilibrium shape of the convex hull will
become circular, and we can make some estimations on the forces experi-
enced by Boids on the hull. From this, we can derive an equation relating
the force, noise level and surface area. For this, we need only assume that
the shape of the convex hull is a regular polygon with

n=z Y () (1.34)
¢

vertices. From this it follows that, in the disordered regime, all force
recipes employed in this thesis will point radially inward, and be of equal
magnitude at each point on the hull, i.e. f; = —ar?, with ar a value de-
pendent on the force recipe employed.

For the local curvature force recipe, we have

A~ ~

£ —1;
fi =21 L. 1.35
l [ti] + [ti1] (1.3
= |
=27 (1.36)
27R
2(50)
Now, as the hull is a regular n-gon, the angle between #; and #; 1 is
A 2
0= /0h | = 7” (1.37)
From this, we find that
|t —Fiq| = [0 — Re [1]] (1.38)
with Ry [11] a rotation operator. Then
b= b | = \/Z—Zﬁ “Re [1] (1.39)
=+v2—2cosf (1.40)
6
=2 |sin — .
sin > (1.41)
Plugging in 6, we get
2 |sin X
2(55)
inZ
= —‘STR” (1.43)
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1.4 Moving the Vicsek model to the infinite plane 21

For large 11, we can linearise this and get

== 1.44
ac =g (1.44)
Which is to be expected from a force given by the curvature of the hull.
The Near-Neighbour and Far-Neighbour force recipe calculations are es-
sentially the same, replacing |f; — ;_1| with |t; —t;_1| = 2t;| |sin Z| and
resulting in

2 (ZR) |sin Z|
AFN = ANN = 2 211(27;1{) L (145)
. T
=2 ‘sm; (1.46)
T
~ 2; (1.47)

Finally, the mean position force recipe simply has as magnitude the radius
of the hull, i.e. a); = R.

Armed with these expected forces, we can relate the inward force on a
boid, vy |£;| to the outward pressure p multiplied by the section of the hull
that this boid occupies, Al = % This pressure presumably grows as the
“temperature” of the flock, or some power of the noise level 7. We then
have

v |f| ~ pAL (1.48)
27TR
— B[ 2
i < ” ) (1.49)
For the local curvature, we then have
Y6 (2R Tk
R 17(”)—”114 1 (1.50)

While the Far-Neighbour and Near-Neighbour force recipes would have
2

L (_ZNR) LY (1.51)

and finally the mean position force recipe should follow

2nR
YR ~ 17’3 (T) — yn ~ nﬁ (1.52)
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Chapter 2

The simulation

We programmed the simulation using C++ in combination with Qt, a platform-
independent interface framework that allows one to easily create an XML-
based GUI through drag-and-drop functionality. This enabled us to quickly
construct a program that allowed for run-time entry of the system param-
eters, visualisation of the system, direct plotting of observables and per-
forming a Fast Fourier Transform of these observables where such analysis
could prove fruitful.

For further analysis, a history of the observables could be printed to a
plaintext data file, while saving checkpoint files containing only the cur-
rent state allowed us to continue running a particular instance at a later
time, or to use a thermalised state with certain parameters as the initial
state of another run with similar parameters.

The C++ language, while relatively high-level, is also useful for high-
performance computing, which was a requirement to run a large number
of instances of the model. In combination with the OpenMP multithread-
ing library, additional speedups could be gained at portions of the code
where this was possible, such as interacting boids and updating their posi-
tions. Furthermore, the object-oriented nature of the language lends itself
to create code that is both compact and efficient.

2.1 The program

To execute the Vicsek model, we needed to turn the rules into a set of pro-
gramming routines. A large portion of this code is trivially implemented
and has a computational complexity of O (N) to O (N log N). Written suc-
cintly, the entire program can be written as follows:
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-
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Figure 2.1: Left: A visualisation of the simulation. On the left of the visualisation,
model parameters are displayed and can be altered, while on the right there are
options for different visual aids such as showing boid directions and histories
of positions relative to the center of the hull. Right: Built-in plot window of
time-dependent observables such as the surface area of the convex hull or the
curvature, or time-averaged histograms of boids on the hull, such as the change
in angle or distance to the geometric center. In this case, a histogram of boids on
the hull as function of coordinate relative to the polarisation direction.

Set the initial state
Find the Convex Hull
Find the polarisations Pr, P and Py
for T timesteps do
Interact boids
Update boids
Find the Convex Hull and update hull histograms
Find the new polarisations and curvatures
end for

O PN

We will expound on the portions of the code dealing with interaction, up-
dating of orientation and positon and finding the new convex hull. For the
rest of this chapter, boid-specific variables are written, using C++ member
variable notation, as “b.x”, e.g. 1, = b.r, v;, = b.v, etc.

2.1.1 Interaction algorithms

The Interaction algorithm, which entails checking pairs of boids (b, b’) for
their distance ry,, = |1, | = |b.r — b'.r|, can be implemented in multiple
ways and will offer the most gains in terms of speed when programmed
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2.1 The program 25

optimally, as the remainder of the code has a complexity of O (NlogN)
at the worst (caused by the algorithm that finds the convex hull). We will
explain all three of the algorithms used in this section.

Brute-force algorithm

The brute-force algorithm is an easily implemented way of running the
Vicsek model, whereby each individual boid b checks the distance 7y
between every boid V' (including itself). If r,; (t) < fo, the boids “inter-
act”, i.e. boid b adds the velocity vector b'.9 (t) of b’ to a temporary vector
b.sumV and increments its variable b.numNeighbours by one. In pseu-
docode, this algorithm can be written in the following way:

1: for Each boid b do

2:  for Each boid V' do

3 if |rbb’| < £0 then

4 Add V' .v to b.sumV

5: Increment b.numNeighbours by 1
6 end if

7 end for

8: end for

While the original paper by Vicsek et al. states that the angle 0 is averaged
to find the new direction, this method removes the need for computation-
ally costly operations to find the angle from Cartesian coordinates and
properly averaging this to find the new direction: one need now only nor-
malise sumV when all boids have been considered, add noise and the new
direction is found.

Whatever the exact way of finding the new direction may be, this algo-
rithm has a complexity of O (N?). If, rather than allowing each boid
b to consider every boid b, b were to consider only boids b’ that them-
selves have not yet looked for neighbours, the runtime could be halved by
adding b.v (t) to b’.sumV and b’.v (t) to b.sumV at the same time. Never-
theless, this algorithm would still be of complexity O (N?), which makes
running large systems or probing a large portion of the parameter space in
reasonable time intractable. Luckily, there is another way, which produces
the exact same results without sacrificing precision.

25
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26 The simulation

Box algorithm

Like in many simulations where the interaction range varies with a dis-
tance metric, we can implement a better way to handle our model. In
N — body simulations where the interaction falls off smoothly, this can be
accomplished by approximations such as the Barnes-Hut tree, which par-
titions the system into cells with a center of mass given by the particles in-
side it. For particles whose distance from this center of mass is larger than
a certain threshold, the contributions of individual particles in the cell can
be replaced by a single term, resulting in an algorithm of O (Nlog N) com-
plexity. Implementing this algorithm is quite involved, however, and in
the case of the Vicsek model, unnecessary. As the interaction immediately
falls away when two boids are further removed than /), we can instead
subdivide the system into boxes of size ¢3. This way, each boid need only
consider those boids that are in the same box, and those boids that are in
boxes neighbouring its own box. Under ideal circumstances, this also re-
sults in O (N log N) performance. In pseudocode, this algorithm is given

1: for Each box B do

2 for Each boid b do

3 for Each boid V' € B do

4 if ’rbb’| < EO then

5: Add velocity b'.v to b.sumV

6 Increment b.numNeighbours by 1
7 Add velocity b.v to b'.sumV

8 Increment b'.numNeighbours by 1
9

: end if
10: end for
11:  end for
12:  for each of 27 specific neighbouring boxes B’ do
13: for Each boid b € B do
14: for Each boid V' € B’ do
15: if |rbb" < 50 then
16: Add velocity V'.v to b.sumV
17: Increment b.numNeighbours by 1
18: Add velocity b.v to b’.sumV
19: Increment b'.numNeighbours by 1
20: end if
21: end for
22: end for
23:  end for
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2.1 The program 27

24: end for

25: [Update locations]

26: for Each boid b do

27:  Add reference to b to box Bb.rx,b.ry
28: end for

where the sum over neighbouring boxes is such that each pair of boxes is
only considered once, much like in the Ising model one can choose to sum
only over half the neighbours and still obtain each term: see Fig 2.2.

Figure 2.2: The box interaction algorithm visualised. Boids in the center box
itself compare distances with boids in boxes coloured green, while boids in boxes
coloured red compare distances with boids in the center box.

An additional ring of empty boxes is placed around the system to avoid
addressing invalid memory while looping over neighbouring boxes. We
ran the model on both algorithms with full noise to study the time required
per step and found performance as expected. This can be seen in Fig 2.3.
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Figure 2.3: Time required to compute a timestep with both algorithms for various
numbers of boids

While possibly a vastly superior algorithm compared to the Brute-force
implementation, there are two caveats:

e For extremely sparse systems, the algorithm will waste time running
over empty boxes, again increasing the amount of time required to
complete a single timestep.

e For extremely dense systems, the algorithm reduces to O (N?) per-
formance, if a large fraction of the boids is concentrated within an
area of size ~ Eg.

As our system has a convex hull forcing boids to coalesce, the first situ-
ation is not an issue and can only happen during thermalisation with a
very low initial density. The second situation, on the other hand, occurs
in most positions of the parameter space: only in the case of a disordered
system does the majority of boids not coalesce in a small region. For a
typical equilibrium state in the ordered regime, we found that the surface
area of the convex hull was on the order of 3, if not smaller.

Full Interaction Algorithm

There is a trick, however, that allows us to vastly speed up computation
in some of these high-density cases: for a low enough level of noise, the
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2.1 The program 29

largest separation between boids is actually smaller than fy, meaning all
boids have the same average direction after the interactions have taken
place. This means we can simply replace the entire algorithm of interac-
tion by using the polarisation vector from the previous timestep, resulting
in an algorithm of complexity O (N):

1: for Each boid b do

2. SetbsumVto N Pr(f—1)
3:  Setb.numNeighbours to N
4: end for

2.1.2 Updating positions

After all boids have interacted, updating the positions consists almost en-
tirely of adding a form of noise to the boid’s local average direction and
applying the force if the boid is on the hull. For the box algorithm, some
additional operations are required to keep the dimensions of the array of
boxes correct. Updating the positions of boids is inherently an operation
of linear complexity, and can at most be improved upon by multithreading
the operations.

1: for Each boid b do
2:  if Using “Scalar noise” then
3 Compute new direction 6, = arctan2 (b.sumV,, b.sumVy)
4 Add error term 7¢;, to 6y,
5: Set b.v to normal vector 7 (6,) = < cos O >
sim 91,
6 else
7 Add error vector 7 - b.numNeighbours - 11 (¢) to b.sumV
8 Normalise b.sumV
9: Set b.v to b.sumV + - b.f
10: Normalise b.v
11:  endif
12:  Adduoy-b.vtob.r
13:  if b.ry < X, then

14: Set xyi, to | b.ry |

15:  elseif b.ry > x,,,, then
16: Set Xpax to [b.ry]

17:  endif
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30 The simulation
18:  if b.ry < yjin then

19: Set Yyin to [b.ry |

20:  elseif b.ry > yyay then

21: Set Ymax to [b.ry |

22:  endif

23: Set b.sumV to zero vector

24:  Set b.force to zero vector

25:  Set b.numNeighbours to 0

26: end for

27:

Create new system of Xyuux — Xpmin + 2 BY Yimax — Ymin + 2 boxes

2.1.3 Finding the new convex hull

Finally, the updated system requires the convex hull to be calculated again,
which is done using Andrew’s Monotone Chain Algorithm[18], of com-
plexity O (Nlog N). After constructing the hull, forces can be calculated,
as well as the different polarisation vectors and the curvature. Addition-
ally, by looping only over boids on the hull, information on the shape of
and transport on the hull can be gained.

S S S gy
O ©® NI Ul W N

—_
e

Sort boids lexicographically
for Each boid b, increasing in lexicographical order do
while [H| > 2 && ZHp|.x Hy|_1.1 b.r is not counter-clockwise do
Remove H\y from H
end while
Append b to H
end for
for Each boid b, decreasing in lexicographical order do
while |H| > 2 && /H y).r Hyj_;.x b.r is not counter-clockwise do
Remove H\y| from H
end while
Append b to H

: end for
: for Each boid b € H do

Calculate b.f
Calculate the angle ), that b makes relative to rgc w.r.t. Op,
Update histograms in the bin containing 6,

: end for
: Remove last entry in H
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2.1 The program 31

Now, as said, this algorithm of complexity O (N log N), which is due to
the sorting of boids by x-position (and by y-position if two boids have the
same x-position). The standard C + + implementation sorting algorithm
is guaranteed to have Nlog N performance, and so we can expect this to
be the case for the entire algorithm, as all other operations happen in linear
time.
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Chapter

Results

In this chapter, we present the results of our simulations. These results
are divided chiefly into the force recipe employed. Within those sections,
we further divide up the results into those gained from states wherein the
polarisation of the bulk approached unity, i.e. the system was moving col-
lectively, and those disordered states wherein the polarisation vanishes.
This disorder was induced purely by raising the noise level # beyond the
critical value of 77¢ ~ 0.66, removing the possibility for local order, rather
than by putting the value of oy on a suitably low value to allow the convex
hull to balloon to arbitrary size. We will first present the order parameter
Pp as function of noise level for various force constants to compare against
the results of the model with periodic boundary conditions.

After this, results on the convex hull, such as its shape and size, local den-
sity and transport will be presented. Finally we present the effects of noise
on the direction of the flock.

Each section concludes with the results of the disordered regime, showing
the dependence of the surface area A on the two control parameters 7 and
7. After this, a short conclusion on the force recipe is given.

In the Far-Neighbour recipe, we present additional results pertaining to a
novel behaviour found exclusively using that mechanism: the properties
of the rotational state.

Dimensions are scaled to interaction radii ¢y, e.g. speeds are in £y per
timestep, lengths in £y and area in ¢3. Unless otherwise noted, the number
of boids in the simulation N was set to 2000, the initial number density p to
5.0¢, 2, the speed of the boids vy = 0.03¢, per timestep and the boids were

distributed uniformly on a disk with radius R = %50, with uniformly

random initial directions.
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Simulations were run by either (i) setting the parameters, allowing it to
thermalise for 2 - 10° timesteps, clearing all data and running it again for
10° timesteps or (ii) loading a state with similar parameters, allowing it to
thermalise for 10° timesteps, clearing all data and running it again for 10°
timesteps.

3.1 Local Curvature

3.1.1 Ordered regime

Using the local curvature as a means of keeping the flock intact, we found
that noise levels below 7 = 0.3 caused the majority of the flock to con-
verge to a very small point, forming a circular front, but keeping 2 boids
trailing ever further behind, as shown in Fig. 3.1. This happens quickly
after the flock reaches full polarisation, while the shape of the flock is not
yet equilibriated: boids on the rear segment of the hull are pushed inward,
sharpening the shape of the rear.

As fewer and fewer boids form the convex hull on this segment, those
boids remaining will experience their force pulling them to the sides, rather
than to the centre of the hull. Ultimately, two boids, very closely together
and essentially mirrorring their directions along the polarisation, will per-
manently be slightly deflected, causing them to move slower relative to
the boids in front of them. This effect does not diminish, as the width of
the front cluster of boids reaches a finite value by means of the transverse
spread induced by the noise.

Conversely, at the front of the flock, those boids forming the hull will also
teel a slight lateral force, allowing the bulk of the boids to catch up. They
will then lag behind slightly as well, moving along the hull to the back of
this cluster, until being pushed off the hull and moving forward unencum-
bered, repeating the cycle.

As a result of this effect, measurements on the shape of the convex hull
were not representative of the behaviour of the bulk of the flock, and the
box algorithm was reduced to running in O (N?) speed. Because of this,
we focussed only on combinations of parameters with #7 = 0.3 and higher,
as this allowed the boids to stay together.
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3.1 Local Curvature 35

Figure 3.1: The local curvature force recipe’s effect on the shape of the convex hull. Top:
the flock becomes mostly concentrated at the front of the hull, with the exception of two
boids at the back trailing behind. The distance between these two boids and the bulk of
the flock increases permanently, as the width of the flock reaches a finite value, which in
turn is given by the transverse spread in position as a result of the noise. Bottom: The
steps during which this occurs: as the width of the flock decreases, the number of boids at
the back of the flock that are on the convex hull decreases. These boids are then allowed
to assume the direction of polarisation. At some point, two boids will form a spike, as
the force gives them a slight transverse direction. This causes them to permanently lag
behind the bulk. The dashed line with the arrow is a guide for the eye to show the
symmetry axis, and the polarisation.
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36 Results

Turning our attention to the noise levels that kept the convex hull in
a representative state, we first plot the polarisation as function of noise
level, for various force constants in Fig. 3.2.
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Figure 3.2: Order parameter P as function of noise level 1, for various force constants
7, using the local curvature force recipe.

As can be seen, the polarisation is very weakly dependent on the force

constant, but the overall behaviour is not different from that found in the
original Vicsek model employing vectorial noise: a sharp transition occurs
around 7¢ ~ 0.66, between an ordered state and a disordered state.
Next, we present the shape of the convex hull as it was during simulations
for various combinations of force constants and noise levels. In Fig. 3.3,
we show the shape of the hull, colour-coded to the density of boids. In
this force recipe, the front (i.e. the side that points toward the direction of
motion) is placed at the top.
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Figure 3.3: Shape of the convex hull, colour-coded to Boid density p (¢), for varying
noise levels, with the polarisation pointing up. Each figure contains plots for multiple
force constants, starting at various values 7,,;, and ending at v = 10, where the higher
force constants settled to a smaller hull. Top left: 1 = 0.3, v,,;; = 0.0625, top right:
n = 04, vy = 0.125, bottom left: 4 = 0.5, v,,;,;, = 0.225, bottom right: 1 = 0.6,
Ymin = 0-45

In Fig. 3.4, we plot the shape of the hull again, with colours now indi-
cating the transport of boids along the hull, to the back. In this force recipe,
we use the absolute value of A¢ (¢), to negate the sign difference between
both sides of the polarisation direction. Furthermore, we plot force vectors
on the smallest and largest convex hulls, based on the found densities on
the hull.
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Figure 3.4: Shape of the convex hull, colour-coded to Boid transport vy, (¢) =
|AG (¢)| 7 (¢). We also plot the force vectors for 2 hulls, normalised to only represent
relative strength as it relates to the local curvature. The layout is the same as in Fig. 3.3

The first thing we must explain is the overal shape of the hull. In any
strongly polarised state of the Vicsek model, the noise added to a Boid’s
new direction affects mainly the component transverse to the polarisation
direction, and so slightly reduces the group velocity parallel to the polar-
isation. Thus, we can expect the flock to move somewhat slower than the
absolute Boid velocity, and to find a larger spread in positions of Boids
transverse to the direction of motion. The reduced flock speed also gives
way to the possibility for Boids at the back to move toward the front, if
their movement is roughly parallel to the direction of motion in multiple
consecutive timesteps. The convex hulls found in the local curvature force
recipe reflect this, as they are larger in the transverse direction, and track-
ing single Boids as they moved through the flock revealed some noisy
circulatory effects, allowing Boids to visit all positions in the hull if given
enough time.

We can see that the density at the back of the hull is lowest. This is due
to the fact that (i) Boids at the back of the hull experience a force roughly
toward the direction of motion, and so are unable to linger for an extended
amount of time, and (ii) Boids that are moving opposite to the direction of
motion for a single timestep are usually entirely swayed to move forward
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3.1 Local Curvature 39

the next timestep, before ever reaching the back. In the lower noise levels,
there is also an apparent concave section at the back of the flock for high
force constants. This is not actually the shape of the convex hull at any
point during the simulation, rather it is a result in the variability of the
direction of the polarisation distorting the angle ¢ that the boids on the
hull make. As can be seen in the variable distance to the centre of the con-
vex hull, these sections of the hull were sparsely populated relative to the
front and sides of the hull, and so the distortion is more prominent here
compared to the front and sides.

Figure 3.5: Snapshots of the convex hull (polarisation pointing up) with v = 10 and
n = 0.30, with a time trace of 500 relative positions of two separate boids showing the
possibility for boids to become trapped at the sides. The points outside the convex hull
are not indicative of a boid being outside the hull. Rather, it shows the variable natures
of the shape of the convex hull and the direction of motion.

For 1 = 0.30, we find that the front, though visited much more often
than the back, is still relatively sparse compared to the rear sides of the
hull. This is a result from the reduced freedom of motion a Boid experi-
ences while moving in the side of the bulk, as its transverse movement
through the bulk to the front is constrained to mostly moving to the cen-
tre. If a Boid does happen to move further toward the side, it is quickly
deflected toward the rear side of the hull, while the bulk moves further
with enough distance for this single deflection to result in a place on the
rear side of the hull. Being released from the hull again, the Boid again
finds its movement constrained, and so it becomes trapped at the sides
for multiple timesteps, often visiting the hull at this region and thus in-
creasing its density. Conversely, the centre of the hull is somewhat longer
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in the direction of motion, and so the deflection at the front generally re-
sults in an unencumbered diffusion to the front, which happens on a larger
timescale. Both these circulatory phenomena are shown in Fig 3.5.

As the noise level is increased, the size of the hull is increased transversely
purely by an increasing transverse spread. The lateral movement is more
strongly affected because of this, which diminishes the effectiveness of for-
ward circulation once a boid has been deflected to the back. The density
on the hull lowers because of this increase in size, and the length of the
hull in the direction of motion increases, giving rise to more paths leading
from the side to the front.

In Fig. 3.6, we plot the surface area of the convex hull as function of force
constant and as function of noise level. As a function of v, this saturates
at a certain value, given by the noise level. The dependence of this satura-
tion level is plotted as well, where, at least in the lower noise regime, there
appears to be a power law with exponent 3.5.
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Figure 3.6: Left: Surface area A as function of force constant vy for various noise levels.
Right: Surface area A as function of noise level yj for various force constants. The power
law drawn corresponds to an exponent of 3.5

While the mean of the curvature itself vanishes for all instances (i.e.
no consistent precession occurs), higher levels of noise (7 = 0.4 and up)
cause the flock to drastically readjust its direction of motion in some ~1000
timesteps, a feature inherent to the Vicsek model. In Fig. 3.7, we present
some snapshots of the flock as this occurs. Initially, the distribution of
boids in the bulk becomes asymmetrical along the direction of polarisa-
tion. In turn, the density of Boids on the hull reflects this, and the curva-
tures at the sides start to differ strongly, triggering a turn toward the side
with highest curvature. This rapid change in direction at the hull occurs
on a comparable timescale to the bulk’s ability to diffuse into a symmetric
shape and uniform direction, and so the flock is often subjected to these
phenomena, resulting in an often changing direction of motion.
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3.1 Local Curvature 41

Figure 3.7: Snapshots of the convex hull with v = 10 and y = 0.50, taken every 400
timesteps during a change in direction, starting at the top left and going right each row.

In Fig. 3.8, we plot the mean squared value of the bulk’s curvature,
<K%>. This value increases as the noise level grows, reflecting the increas-
ing variability in direction that the flock takes. For the most part, this be-
haviour is unaffected by the force constant, though values start diverging
as the noise is driven up.
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Figure 3.8: Average squared bulk curvature (k%) as function of noise level for
multiple force constants. The power law corresponds to an exponent of 2.5.
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Combining the dependence of A and (%) on 7, we plot in Fig. 3.9 the
surface area as function of squared curvature. Curiously, the exponent in
this power law is not the difference between the exponents of A (1) and
(x%) (17), indicating some hidden behaviour that cannot be attributed to
the noise level alone.
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Figure 3.9: Surface area A as function of average squared bulk curvature (x}).
The power law corresponds to an exponent of 1.4.

3.1.2 Disordered regime

Finally, we present the results of the behaviour of the local curvature recipe
when the system is in a disordered state. We induced this disorder purely
by raising the noise level above the critical value of ¢ ~ 0.66, rather than
lowering the force constant such that the density of the system becomes
suitably low for global disorder while allowing local order. In this regime,
the convex hull becomes roughly circular (as seen in Fig. 3.10) in shape,
and no net motion occurs, up to some random walk behaviour.
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Figure 3.10: Shape of the convex hull, colour-coded to Boid density p (¢) for varying
noise levels above the critical value. Each figure contains plots for multiple force con-
stants, starting at values v = 0.5 and ending at v = 1000, where the higher force con-
stants settled to a smaller convex hull. Top left: 3 = 0.7, top right: 1 = 0.8, bottom left:
1 = 0.9, bottom right: n = 1.0.

In Fig. 3.11, we plot the surface area of the convex hull as function of
force constant, for various noise levels.

43

Version of May 31, 2017—- Created May 31, 2017 - 17:35



44 Results

=07

% 17 p— 0-9

7 =10
10 é
- !

3
i .
- 100 1000

i

Figure 3.11: Surface area as function of force constant for various noise levels in the
disordered regime, using the local curvature force recipe.

As 7y is increased, the surface area of the flock becomes of order 3 and
the giant density fluctuations die out. Though Boids do not have an ex-
cluded volume in this model, the result is that the flock becomes “incom-
pressible” and the convex hull settles to a minimum value, dependent on
the noise level.

Strangely, we see that the surface area is greatest when the noise level is
lowest, which may seem contradictory if we view the noise as analogue to
the temperature of the system. The cause of this lies in the fact that raising
the noise level in the disordered regime amounts to lowering the persis-
tence length ¢, of Boids’ trajectories as £, ~ 772[19]. As a result, their
ability to “push out” against the convex hull in consecutive timesteps is
reduced, and the surface area is lowered at the same force constant.

In Fig. 3.12, we plot the surface area of the convex hull as function of noise
level for various force constants.
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Figure 3.12: Surface area as function of noise level above 1 for various force constants,
using the local curvature force recipe. The power law has exponent — %

We find a relation A ~ 17’%. This is surprising: one usually associates
a relationship of p ~ T ~ vary, or A ~ 72. One explanation could be the
fact that our assumption that n stays constant is incorrect: in fact, n does
scale with A, as can be seen in Fig. 3.13
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Figure 3.13: Number of Boids n on the hull as function of surface area A for several
instances in the disordered regime using the local curvature force recipe.
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This should not be surprising: as the surface area increases, so too must
the convex hull’s perimeter, and in turn, so must the number of Boids on
the hull, lest the flock’s distribution of Boids change. In the end, we cannot
properly explain why the surface area scales with # in the way that it does.
In order for the relationship 2 ~ #? to hold for A ~ 17_%, n must scale as
A~°, which it decidedly does not.

Another possibility is that the pressure of the flock is not given by a power
law in 7, which would be equally surprising. To compare, we plot in Fig.
3.14 the fit of a linear function and find a coefficient of —1.35.
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Figure 3.14: Surface area as function of noise level above 1¢ for various force constants,
using the local curvature force recipe. The coefficient for the fit is -1.35.

This too, appears to reproduce the behaviour of the flock, at least in this
regime of 17, and therein lies the problem: in order to show the existence of
a scaling law, multiple orders of magnitude in area need to be probed to
properly see the relation. Perhaps with careful fine-tuning of the value of
7, or an increase in the number of Boids, this can be realised.

3.1.3 Conclusion

The local curvature recipe presents a mechanism to simulate the flocking
behaviour of the Vicsek model in the infinite plane based on the minimi-
sation of local curvature, much like the surface tension of a liquid droplet
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3.1 Local Curvature 47

is minimised when it assumes its optimal shape. We have shown the de-
pendence of this shape on the force constant v and the noise level 7, and
presented some qualitative findings on the motility of Boids in the bulk.
While the observables we used were able to capture this, there are phe-
nomena that are better examined by introducing more measurements on
the behaviour of the bulk: both the distribution of density and velocity of
Boids in the bulk are not properly reflected by those on the hull, as the
snapshots in Fig. 3.5 display a definite arc of high density. One shortfall
of this force recipe is its inability to coalesce the flock at low noise levels,
precluding probes into the behaviour below r = 0.3. Furthermore, the
reaction of the convex hull to changes in direction actually amplify this
behaviour. In order to properly capture the relationship between noise
level and surface area, far greater system sizes must be simulated.
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3.2 Flock Mean

The Flock Mean force recipe grants Boids an ability that is usually not
given: the means to detect a global quantity of the flock. In this way, it
stands out, compared to the other force recipes. Superficially, however,
it behaves similarly to the previous force recipe, in that Boids are kept
together in a flock that is spread out more in the transverse direction than
in the lateral direction, and the dimensions of the flock are increased and
decreased as noise level and force constant respectively are raised.

3.21 Ordered regime

In Fig. 3.15, we plot the polarisation as function of # for various levels of
¥.
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Figure 3.15: Order parameter Py as function of noise level 17, for various force constants
<, using the local curvature force recipe.

As can be expected, the behaviour is qualitatively the same as in the
local curvature recipe and the periodic Vicsek model, with the same phase
transition from an ordered state to a disordered state at - ~ 0.66. In Fig.
3.16, we plot the shapes of the convex hulls as function of force constant
for various noise levels.
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Figure 3.16: Shape of the convex hull using the boid mean position force recipe for
various noise levels and force constants between v = 0.1002 and 7y = 631, colour-coded
to local hull density. The front of the hull is at the top.

Again, the shape of the hull is widened in the direction transverse to
the polarisation, for all values of 77, much like in the local curvature force
recipe. Where the behaviour starts to diverge, however, is in the finer de-
tail of the shape of the convex hull and distribution of boids within the
bulk: the hull approaches the shape of an ellipse for all #, and at low lev-
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els of noise, the density of Boids on the hull and in the bulk is much more
uniform than at comparable noise levels in the local curvature recipe. As
the strength of this force recipe is proportional to the separation from the
mean position of all boids, boids deflected near the front are influenced
less by the hull, compared to the sides. This, coupled with the lack of re-
sponse to the curvature, preclude the circulatory phenomena found in the
local curvature force recipe.

Furthermore, for low noise (7 = 0.10 and 1 = 0.20), a very high value of
7 actually deforms the shape of the hull to such a degree that it is longer
than it is wide. The cause of this is a combination of the low noise level
giving way to a small convex hull (of order ~ ¢ in the direction of polarisa-
tion), and the high force constant pointing strongly into the direction of the
mean position. The result is that boids at the front and sides of the hull are
strongly displaced toward the mean position, overshooting the center as
the bulk moves and reaching the back of the hull and displacing the mean
position from the center of the hull to the back, where the force on the hull
becomes much weaker due to its proximity to the mean position of Boids.
In Fig. 3.17, we plot the dependence of the surface area on 1 and 7, and
find quantitatively different behaviour from the local curvature recipe.
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Figure 3.17: Area as function of force constant in the flock mean force recipe. The slope
in the lower y regime corresponds to an exponent of -3, while the dependence on 7 is
stronger than a power law.

In the low 7 regime, the surface area decreases with a power law of —2
before settling to a finite minimum, given by the noise. The deformation in
the lower noise ranges is also reflected in a slight increase in this saturation
value when the shape of the hull becomes elongated in the direction of
motion. As a function of 7, the surface area increases faster than a power
law.

In Fig. 3.18, we plot the transport of Boids along the hull.
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Figure 3.18: Shape of the convex hull using the boid mean position force recipe for
various noise levels and force constants, colour-coded to Boid transport. The layout is
the same as in Fig. 3.16.

At low force levels, transport on the hull is caused in spite of the force
experienced by Boids, rather than because of it. Due to the low influence
of the hull, high value of Pr and low density on the hull, boids can be de-
flected inward somewhat and still become part of the convex hull the next
timestep at an angle very close to the previous position. For high values
of 7, the transport on the hull happens due to boids overshooting their
targeted mean position, resulting in relatively high speeds perpendicular
to the centre of the hull. This does, however, prevent specific regions from
being starting points for transport, as shown by the empty space at the
sides of the front, which are too far away from other parts of the hull for
Boids to be deflected toward: Boids on the convex hull in those regions
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never landed on the convex hull a timestep afterward. In Fig. 3.19, we
show the relative positions of Boids as they moved through the hull.

Figure 3.19: Snapshots of the convex hull (polarisation pointing up) with y = 0.10,
v = 100 (left) and v = 1 (right), with time traces of a boid as it moved relative to the hull.

In the mean force recipe, no net precession occurs, much like the lo-
cal curvature recipe. Its response to sudden changes in direction induced
by high levels of noise, however, is much less dramatic: the hull adapts
rapidly to changes in direction, and does not amplify the volatility of the
direction of motion. In Fig. 3.20, we plot the dependence of the mean
squared curvature on the noise level for various force constants.
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Figure 3.20: Mean squared curvature as function of noise level in the flock mean force
recipe.

Here, the power law corresponds to an exponent of 2, as opposed to
2.5 in the local curvature.
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In Fig.3.21, we plot the surface area A of the convex hull as function of the
bulk’s mean squared curvature (k% ).

100 [
101 £
< ) )
102 .
’)/ = 1 +
- ’)/ = 2 x
1073 L r=3 .
- ,)/ — 4
Y=5

10-© 107>
(x5)

Figure 3.21: Convex hull surface area as function of mean squared curvature in the flock
mean force recipe.

We find that the area grows linearly in the squared curvature, again a
surprising result considering the lack of a power law relationship between
A and 7.

3.2.2 Disordered regime

Finally, we present the results of the behaviour of the local curvature recipe
when the system is in a disordered state. We induced this disorder purely
by raising the noise level above the critical value of 7c ~ 0.66, rather than
lowering the force constant such that the density of the system becomes
suitably low for global disorder while allowing local order. In this regime,
the convex hull becomes roughly circular (as seen in Fig. 3.22) in shape,
and no net motion occurs, up to some random walk behaviour.

53

Version of May 31, 2017—- Created May 31, 2017 - 17:35



54

15 05 15 0.6
P 0.45 S R

1 / ~ = \ 04 1 //"\\ 05

05 / / \\ 035 05 04

I \)
0 | | 0.25 0 { | 03
\ i 1\ //
05 —05 0.2
0.15

1 \ / 0.1 -1 \\—// 0.1
— 0.05 —

-15 0 ~15 0

-15 -1 =05 0 05 1 15 -15 -1 -05 0 05 1 15

15 0.6 15 0.6
S B [

1 e 05 1 AT 0.5

05 / / \\ 04 05 / \ 0.4

0 \\ / / 03 0 \/ > / 03

05 02 —05 02

-1 N 0.1 -1 S 01
= —

-15 0 ~15 0

-15 -1 =05 0 05 1 15 -15 -1 -05 0 05 1 15

Figure 3.22: Shape of the convex hull using the boid mean position force recipe for vari-
ous noise levels above 1¢ and force constants between v = 0.3 and y = 10, colour-coded
to local hull density Top left: n = 0.7, top right: 1 = 0.8,bottom left: 7 = 0.9,bottom
right: 7 = 1.0.

The surface area is quickly minimised to a finite value as 7 is raised,
which is only weakly dependent on #: in Fig. 3.23 we plot these depen-
dencies.
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Figure 3.23: Left: Surface area as function of force constant for various noise levels
above 1c. Right: Surrface area as function of noise level above 1 for various force con-
stants.

We find A ~ 5~1/4, similar to the local curvature force recipe. Presum-
ably, the same reason why we found such an unexpected exponent in the
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local curvature force recipe, namely the lack of range in A, is why we find
this value here. In the low values of y, we find A ~ ¢~ 11,

3.2.3 Conclusion

The mean position force recipe presents a very simple, if nonlocal, imple-
mentation to prevent a flock from dissipating in the Vicsek model. We
have found the quantitative behaviour to be quite different from the local
curvature force recipe, and to remain stable in all regimes of 7 that would
in a high-density periodic boundary version of the Vicsek model turn into
an ordered state. In this force recipe, too we find some aberrant behaviour
in the disordered state relating to the surface area A as function of noise
level 17. We expect probes with larger system sizes and force constants vy
chosen such that the response of the flock is stronger to shed light on this
behaviour.
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3.3 Near Neighbour

We found the Near Neighbour force recipe to not actually compress the
convex hull. Rather, boids on the hull spaced very close together will
move toward one another, increasing the distance between their far neigh-
bours. This in turn increases the force vector’s length, eventually causing
the force vector to point to the outside of the hull, ballooning the convex
hull to arbitrary size. Because of this, we did not further pursue probes
using this force recipe.
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3.4 Far Neighbour

We now move on to the recipe we investigated most, the Far-Neighbour
force. This recipe is phenomenologically the most interesting, as it con-
tains an additional symmetry breaking: a phase transition occurs, between
a stationary state, where the distribution of boids and the shape of the con-
vex hull are symmetric along the lateral axis, going through the center of
the hull in the direction of the polarisation, and one whereby this symme-
try is broken and the flock rotates.

N LB 5
R e 5
=

I T

(a) The symmetric, straight path phase (b) The asymmetric, rotating phase. In this
case, the polarisation precesses clockwise.

Figure 3.24: An instance of our model with identical parameters v = 2.5, = 0.1. While
both phases are well in the ordered regime, the behaviour of the flock is different: the
surface area of the stationary phase is smaller, as can be seen by the scale bars in the top
left corner (bottom bar in the left image corresponds to top bar in the right image), and
the distribution of boids, both in the bulk and on the hull varies wildly.

Furthermore, in the ordered regime, the convex hull does not decrease
in size as vy is raised. On the contrary: it increases, due to an elongation in
the direction of motion. We have plotted the shape of the convex hull for
various force constants while keeping the noise constant in Fig. 3.25.
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Figure 3.25: Shape of the stationary phase convex hull for multiple noise levels and force
constants, colour-coded to density. Starting with a low force constant, the hull is smallest.
As the force constant is increased, the dimensions first grow equally, until reaching a
maximum width. After this, the length of the hull keeps increasing to a finite value while
the width decreases to another finite value, dependent on the noise level. Top: 1 = 0.05,
middle: 7 = 0.10, bottom left: 7 = 0.15, bottom right: 1 = 0.20.

For very low values of 7, the surface area does indeed decrease in size
as the force is raised, as a vanishing force constant will allow the flock
to balloon to an arbitrary size and cause a vanishing polarisation, even
with very low levels of noise. We chose to restrict our probe to values
of v where disorder was caused only by a high noise level and found 2
regimes of change in the size of the convex hull. In the stationary state,
the hull first increases in both directions roughly at the same rate, until the
transverse dimension saturates to some value set by the noise level. At the
same time, the lateral dimension asymptotically increases to some finite
maximum, while the transverse dimension decreases again until reaching
a nonvanishing minimum, again given by the noise level. This is sum-
marised in Fig. 3.26
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3.4 Far Neighbour
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Figure 3.26: Length and width of the stationary state for y = 0.05 and 7 = 0.10 for
various force constants .

A similar behaviour is found in the rotating phase, though its depen-
dence on vy is of a smaller power. In Fig. 3.27, we present the shape of
various rotating states.
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Figure 3.27: Shape of the rotating phase convex hull for various force constants, colour-
coded to density. Starting with a low force constant, the hull is smallest. As the force con-
stant is increased, the dimensions first grow equally, until reaching a maximum width.
After this, the length of the hull keeps increasing to a finite value while the width de-
creases to another finite value, dependent on the noise level. Top left: 3 = 0.05, top
right: 1 = 0.10, bottom left: 1 = 0.15, bottom right: 1 = 0.20.

In the rotating phase, the hull becomes wider in the long side than on
the side in which the polarisation rotates. The density is highest at this
point, both on the hull and in the bulk. As the noise level is raised, the
entire hull becomes more rounded, though in the direction of motion, it
remains larger. In Fig. 3.28, we plot the dimensions of the rotating phase
as function of «y, for # = 0.05 and # = 0.10.
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Figure 3.28: Length and width of the rotating. state for § = 0.05 and 1 = 0.10 for various
force constants vy.

Concatenating these results, we present in Fig. 3.29 the surface area as
function of force constant for various noise levels. Both the stationary and
rotating phases are displayed, showing the clear jump in surface area at
low 7.
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Figure 3.29: Surface area A of the convex hull as function of force constant vy, for various
noise levels 1. Both the stationary and the rotating phases are plotted in the same colours,
showing the clear jump in surface area. This gap is decreased as 1 increases, and for
higher noise levels, it disappears entirely.

As 1 increases, it becomes apparent that a region of exclusive existance
of either phase starts to occur. While # = 0.05 and 1 = 0.10 still allow the
flock to eventually collapse back to a stationary phase, as 7 is increased,
this no longer occurs: raising the value of v simply keeps the flock in
a rotating phase of equal surface area. Furthermore, the phases become
exclusively stable in specific regions until finally the distinction is blurred
by a state that displays neither a definite direction nor a steady rotation.
In Fig. 3.30 and Fig. 3.31, we plot the transport of boids along the hull of
the stationary state.
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Figure 3.30: Transport along the symmetric hull in the Far-Neighbour force recipe. The
layout is the same as in Fig. 3.25

In the stationary phase, symmetric along the sides, and seemingly takes
place most intensely at a place of low density. Here, the force vector points
toward a gradient in density, as the neighbouring boids become scarcer
along the sides to the back. Eventually, boids reach a point of minimum
density on the hull, and they are forced inward, to recombine with the
bulk and restart the circulation. In Fig. 3.31, we plot the transport of the
flock in a rotating phase.
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Figure 3.31: Transport along the asymmetric hull in the Far-Neighbour force recipe. The

layout is the same as in Fig. 3.27

Similar to the stationary phase, transport occurs mostly from regions
of high to low density. Furthermore, along the side that points outward
during rotation, where the density is lower than on the other side of the
hull, it is strongest. In Fig. 3.32, we plot simulated forces on the hull in
both the stationary and rotating phases.
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Figure 3.32: Simulated forces on the convex hull in both the rotating and stationary
phases.

As we have seen in the results, in the stationary phase, transport is
strongest along the sides of the front, where density experiences a gradi-
ent from high in the front to low on the sides. The force vector becomes
strongly parallel to the hull, as neighbouring Boids are further away at the
back than Boids closer to the front. Forces also appear to be strong in back,
though these are in the direction of motion and in the direction of the ge-
ometric centre, and so this is not reflected in the transport found on the
hull. Near the geometric centre, the forces on the hull start pointing back
into the hull, as a result of the density reaching a minimum. This causes
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a circulatory phenomenon: as Boids enter the bulk here, they are able to
catch up with the hull, reaching the front again and restarting the process.
In the rotating phase, a similar situation exists, though the circulatory ef-
fect is asymmetrical: boids on the side of the hull facing inward during
rotating can be moved to the back of the hull, and move toward the side
facing outward. From here, they are diffused into the bulk. While this
happens, the bulk rotates, and these boids can migrate toward the inner
side again. This is shown in Fig. 3.33

Figure 3.33: Snapshot of the rotating phase, with a time trace of 6500 relative positions
of a single boid as it moves through the flock.

In the asymmetric phase, the polarisation precesses as the flock moves

in a circular motion with a finite radius of curvature that is larger than the
size of the hull, while the former causes the flock to move in a constant
direction. The underlying cause behind this rotational state appears to be
the interplay between the diffusive nature of the far-neighbour recipe try-
ing to maintain a uniform density on the hull, and the bulk of the flock
attempting to compensate for these changes in direction.
As the noise level is increased (beyond r7 = 0.20), this distinction is blurred,
with the polarisation vector becoming variable purely due to noise itself.
The asymmetry in the distribution of boids on the hull, however, remains.
If we now focus on the regime of noise where this variability is minimal,
some boundaries in the parameter space of vy, which themselves are de-
pendent on #, can be identified:

® Yumin, Which is the minimum force constant required to keep the flock
from ballooning to arbitrary size. Starting from here, the flock will
assume the stationary state.

* e above which the rotating phase is also stable.

* el above which the stationary state is unstable. Using a stationary
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state thermalised to a slightly lower force constant as initial condi-
tion for simulations with ¢ > Tl will cause it to become rotational.

* Ve above which the stationary state again coexists with the rota-
tional state.

* Y above which the rotational state is no longer stable. Using a

rotational state thermalised to a slightly lower force constant as ini-
tial condition for simulations with ¢ > gl will cause it to become

stationary.

The dependence of these values on 7 is not easily discerned: <y, sim-
ply increases as 7 is increased, which can be intuitively understood: as
the noise of the system increases, greater influence from the hull must be
exerted in order to keep the flock from ballooning up. However, C} de-
creases as 7y becomes larger, allowing the existence of the rotational phase
for lower 7 at higher 77. However, at very low noise, there is actually no
region at which the stationary state is unstable: a region of coexistence ex-
ists, after which the stationary state becomes becomes the sole stable state
again. Aty = 0.10, a range of y exists in which the rotating phase is prefer-
able, but eventually the stationary state again becomes the only possible
configuration to keep the flock in. As 7 is raised, this is no longer the case,
and the rotating phase becomes preferable as y — co. At the same time,
the phases become exclusive to their values of <, until finally the noise is
high enough that no clear rotation or steady movement occurs. The hull
remains asymmetric for some range of #, however, until finally the flock
is wider than it is long in the direction of polarisation, and the flock often
changes its direction randomly.

This asymmetry is also reflected in the density of boids on the hull on
both sides of the symmetry axis, as shown in Fig. 3.34.
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Figure 3.34: Boid Density as function of position on the hull for equal values of noise
and force constants (1 = 0.1, v = 2.5) in the Far-Neighbour force recipe.

The speed at which the rotating phase precesses is dependent on both
the force constant and the noise level: as a function of 7, it decreases, until
finally the asymmetric phase becomes highly variable in direction, with no
clear rotation taking place. In the low noise levels, the rate of precession
tirst climbs up to a maximum, and then monotonically decreases, while
the higher noise levels leave no clear behaviour to be found, and the rate

of precession appears to plateau. These results are summarised in Fig.
3.35.
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Figure 3.35: Time-average of curvature kg in the rotating phase as function of
force constant vy for various noise levels. As 1 is raised, the shape of the hull still
stays similarly asymmetric, however its precession becomes less stable.

This net rotation also leads to some different behaviour of the mean
squared curvature compared to the irrotational state: in Fig. 3.36, we plot
(x%) as function of 7 in both the stationary and the rotating states.
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Figure 3.36: Mean squared curvature of the far-neighbour force recipe as function of vy,
in both the stationary (Left) and rotating (Right) phase.

The peaks of (%) coincide at the peaks of (xp), and the lowest values
of 17 have the lowest value of mean squared curvature, further showing
the lower noise in the rotation. In the stationary phase, the peak in mean
squared curvature coincides with the start of the coexistence with the ro-
tating phase, which is surprising, considering the stability of either phase
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for a large range beyond this peak.

Disordered regime

In this section, we present results of the model while the system has a
vanishing polarisation, i.e. 7 > 7. With a suitably large number of boids
and speed much lower than 1, the convex hull then takes the shape of a
disk, the surface area of which is dependent on the noise level 7, the force
constant 7, the number of Boids N and the speed of the Boids vy. In Fig.
3.37, we plot the dependence on vy, and find a power law with exponent
2.11.
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Figure 3.37: Surface area A as function of boid speed vy, with § = 1.0 The exponent of
this power law is 2.11

in Fig. 3.38 we plot the dependence of the surface area on vy, for various
values of # above the critical theshold 7.
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Figure 3.38: Surface area A as function of force constant -y in the disordered regime, for
different values of § > 1. Before settling to a finite value, the surface area obeys a power

law with A ~ 472

In contrast with the ordered phase, a higher force constant here does
imply a smaller surface area. Furthermore, as the surface area decreases,
it does so with a power law of 7 ~2. In Fig. 3.39, we plot the surface area A

as function of noise level 17 above 7.
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Figure 3.39: Surface area A as function of noise level 1 > 1j¢ in the disordered regime,

for different values of y. The exponent of the power law is f%

Again, the surface area decreases as 7 is raised. The power law here,
too corresponds to an exponent of —%. Again, we expect this not to be
accurate, as it does not fit into the idea that the pressure of the flock grows

as the variance of the noise.
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Figure 3.40: Surface Area A as function of force constant vy with = 1.0, for different
numbers of boids N
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Conclusion

The Far-Neighbour force recipe presents an interesting new broken sym-
metry, presumably caused by the interplay between the diffusive mecha-
nism of boids being deflected toward their farthest neighbours, attempt-
ing to maintain a uniform density on the hull, and the bulk’s tendency to
favour alignment. This interplay culminates in a rotation, the existence
and dependence of which on 7 and v is not trivial. We have shown the
dependence of the surface area on the force constant and noise level, the
transport of boids on the hull, in both the symmetric and the antisym-
metric phases, as well as some simulated forces on both phases, further
explaining the transport of Boids on the hull. Furthermore, in the disor-
dered regime, the surface area of the convex hull again decreases as the
noise is increased, with an exponent that does not seem to be dependent
on the variance of the noise. Further investigations utilising a larger num-
ber of boids and a carefully chosen value of v may offer insights into the
behaviour of A.
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