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Foreword: Where Do Mathematical Theorems Come From?

“How could you,” began Mackey, “how could you, a mathematician, a man
devoted to reason and logical proof .. how could you believe that
extraterrestrials are sending you messages? How could you believe that you
are being recruited by aliens from outer space to save the world? How could
you ... ?”

Nash looked up at last and fixed Mackey with an unblinking stare as
cool and dispassionate as that of any bird or snake. “Because,” Nash said
slowly in his soft, reasonable southern drawl, as if talking to himself, “the ideas
I had about supernatural beings came to me the same way that my
mathematical ideas did. So I took them seriously.”

Mathematics, which at its core is all about formulating and proving theorems, has
this peculiarity to it: mathematical theorems come first, and proofs follow. Examples
are Fermat’s “Last Theorem” (asserting that there are no whole-number solutions to
any equation of the form a” + b" = ¢ when is n > 2), formulated in 1637 by Pierre de
Fermat, and proved only in 1994 by Andrew Wiles; the Prime Number Theorem
(describing the asymptotic distribution of prime numbers among the positive whole
numbers), first expressed by Gauss in 1792 or 1793, and proved in 1896 by
Hadamard and de la Vallée-Poussin; or Goldbach’s Conjecture from 1742 (every
integer can be written as the sum of two primes), and the Riemann Hypothesis of
1859 (the T-function has zeros only at the negative even integers and the complex
numbers with real part %2), both of which remain as yet unproved.

Mathematical theorems are, by general consent, non-trivial—they generate
new information not contained in earlier theorems, lead to unsuspected new
insights, and result in novel applications.? But any novelty issuing from a theorem is
acceptable to the scientific community only, once a logically rigid, and therefore
irrefutable, proof has been established:3 the theorem then results, as it were, from
the proof—there now is, so to speak, a direct route from easy-to-understand
definitions, axioms, common notions (if one would take Euclid as a model), and so
on, to more complex statements, onwards to the theorem—a route from the trivial
to the non-trivial. But this is not how the theorem originated: theorems always come
first, and proofs always follow. Since theorems are non-trivial, and do not originate
from proof, many mathematicians have felt compelled to ask the question: where do
theorems come from?

“It is a mystery where they come from,” Andrew Wiles said of the
intermediate theorems that he came up with in his proof of Fermat.* This seems an
innocent statement, with a somewhat romantic ring to it, and claiming no more than
the odd bit of poetic license - but is Wiles’ statement really that innocent? For in the
same vein, Villani called the theorem that earned him the Fields Medal a “miracle,”

1 Nasar 1998, p. 11 (my italics).

2 Cf. Poincaré 1910, p. 325.

3 Dedekind 1893, p. vii.

4 Quoted from a BBC Horizon documentary, directed by John Lynch: Fermat’s Last Theorem,
broadcasted 15 January, 1996 (quote starts at 22:39).



» o«

the result of “divination,” “divine inspiration,” “illumination,” and “magic”;> Gauss
wrote that he owed a certain theorem, not to his own “painful efforts,” but to “the
grace of God”;® Ramanujan stated time and again that he received his insights from
the Hindu goddess Namagiri;” and Nash claimed that theorems came to him in ways
similar to how he once believed to have received messages from extraterrestrials.8
All were serious when they said these things, and in good mental health (including
Nash).?

These are no isolated examples, nor do they represent a phraseology that is
only figurative and therefore innocuous. Literature on the history of mathematics is
rife with “mystery talk.” While preparing for this thesis, I read dozens of biographies
on mathematicians (Newton, Riemann, Ramanujan, Gédel, Turing, Nash, and Erdos,
to name only a portion), autobiographies and miscellanies by mathematicians
themselves (Hadamard, Hardy, Littlewood, Poincaré, Ulam, and Villani), and read
and watched interviews with mathematicians (such as Conway, Mazur and Wiles).
Time and again, the word ‘mystery’ was mentioned, as well as other expressions
with a similar drift, and always in reference to the fact that mathematical theorems
come first, and proofs follow.

What, then, is this so-called “mystery”? As said, a theorem will be welcomed
as true only when proof has been established. But once a theorem, often after
decades or even centuries of immense labour, finally has its proof, and therefore is
demonstrably true... Well then (so mathematicians appear to argue) it must have
been true all the way from its inception. This would mean that even though the
theorem, before proof was settled, was not admissible as a truth according to
scientific standards, it was actually (and not just potentially) true all along. In that
case, the mathematician who came up with the theorem, in some sort of way, will be
considered to have “partaken of” something true (i.e. the theorem). But since proof
is the only way in which members of the scientific community can make sense of a
theorem, this partaking can’t be called anything else but “mysterious.”

The “mystery,” then, is inexplicable access to truth before proof. Such a view
is of course highly problematic. But my point is not that allowing “mystery talk”
would open the door to pseudo-scientists who then can claim all kinds of truth
without adducing proof. In the 18t century, this type of impostor was a serious
problem for Kant (for example in Trdume eines Geistersehers and, decades later still,
in Von einem vornehmen Ton);10 but in the 20t and 215t centuries, such people are
simply no longer taken seriously by the scientific community. My point is more
subtle: it is that mathematicians today freely utter “mystery talk” while strenuously
continuing to find proofs for their theorems—that mathematicians today seem to
feel that their scrupulous inclination towards rigid proof discharges them from any
obligation to give a serious answer to the question: where do theorems come from?

5Villani 2015, pp. 19, 126, 135, 137, 142-143, 184-185, 200, 203.

6 Quoted from Hadamard 1945, p. 15.

7 Kanigel 1991, pp. 4, 20, 30, 36, 281, 283, 335.

8 Op. cit., loc. cit. footnote 1.

9 Nash was diagnosed with paranoid schizophrenia in 1959: see Nasar 1998, pp. 308-319.
TG, e.g. pp. 5, 6,57; vT, e.g. p. 390.



Even Hardy, who may have been the biggest stickler for proof in the history
of mathematics,!! called the origin of mathematical theorems a “mystery”;12 in the
same breath, however, he heartily admitted his “distaste for all sorts of
mysticism.”3 In discussing his collaboration with Ramanujan, Hardy commented
how “it seemed ridiculous to worry about how [Ramanujan] had found this or that
theorem, when he was showing me a dozen new ones every day”; “anxious to get on
with the job [...],” Hardy and Ramanujan “[...] had more interesting things to think
about than historical research.”1# In other words: Hardy believed it was quite fine to
call the origin of mathematical theorems a “mystery,” but that it was of no
importance to inquire there any further. The moniker “historical research” was
intended in a derogatory way (historians should take offence from Hardy, and not
from me): this arrogance, I feel, exhibits the ultimate forsaking of the question,
where theorems come from.

Plato seems to have experienced a similar “mystery” with respect to the fact that
theorems come first, and proofs follow. His Meno is the earliest surviving written
source in which mathematics is expressly linked to the word ‘mystery’: Plato uses it
in the sense of the Eleusinian Mysteries (t6n mustérién, 76E9), and in the context of
the main question of the Meno, “What is virtue?” (ti esti areté, 71A9). The emphasis
lies on Meno’s reluctance to be initiated (muétheiés, 76E10), which, in the context of
the dialogue, points to Meno’s unwillingness to face an aporia. The aporia is an
unpleasant, yet inevitable part of a larger quest: finding a zétoumenon (e.g. 79D7-8),
i.e. something which one believed to know, but realizes one does not know, and has
to search for while not knowing it. The possibility of inquiring into such a
zétoumenon is established by the famous mathematical passage, in which Socrates
confronts a slave with a problem from geometry (82A-86B). As will be
demonstrated below, what happens there—the actual finding of a zétoumenon (or of
a theorem, according to one’s taste)—is nothing “mysterious” in the torpid sense of
Hardy and Wiles, but the result of Socrates’ unusual treatment of the problem of
“Doubling the Square”, in inciting misleading thought tendencies, employing opaque
features of mathematical diagrams, and avoiding mathematical vocabulary.

As will be demonstrated, Plato’s references to what could be called
“mysterious” about finding the solution to the geometrical problem—his quotation
of Pindar (81B-C), which implies a link between the solution on the one hand, and a
myth about Persephone (concerning the immortality and remigration of souls) on
the other; the explanation of this link within the context of Plato’s theory of
remembrance (anamnésis, 81C9 ff.); the concept of aléthés doxa (85C8 ff.), or true
opinion, i.e. something that can be called true but not yet knowledge, and which is
the result of a divine dispensation (99E8 ff.)—all pertain to Socrates’ clever
treatment of the mathematical problem, to a degree where it can be said that the

11 Kanigel 1991, p. 151,
12 Hardy 1946, p. 112.

13 Hardy, op. cit., p. 113.
14 Kanigel 1991, p. 279.



“mystery” surrounding the mathematics actually issues from the mathematics in the
very way in which it is employed in the dialogue.

Introduction: The Incompleteness of Approaches to the Meno, either Strictly
Philosophical or Strictly Mathematical

The main focus of this thesis will be on the mathematical passage in the Meno, which
deals with the problem of doubling the square.1> It should, however, be pointed out
that it makes little sense to take a strictly mathematical approach to that section,
and discuss the problem of doubling the square in separation from the main issue of
the dialogue (ti esti areté), as happens in many textbooks on the history of ancient
Greek mathematics.1® Vice versa, it makes just as little sense to take a strictly
philosophical approach by discussing the main problem of the Meno separately from
the mathematical exercise, or by viewing this exercise simply as one example of
anamnésis out of many, deriving no significance from the mathematics as such.l”
Both the mathematical approach, or the philosophical approach, when taken
independently, will remain incomplete.

15 There is of course mention of a second mathematical problem in the Meno (87A-B); this
appears to revolve around finding a geometrical construction through which a given area
(of unspecified geometrical shape) can be transformed into a triangle of identical area, so
that the triangle can be inscribed inside a circle with a given diameter. Since Plato’s
phrasing of the problem is unclear, and historians of mathematics are divided on its exact
content, this problem will be ignored here. See Lloyd 1992, pp. 166-175, for a detailed
discussion of at least six different interpretations of the problem.

16 Heath 1921, pp. 297-298, mentions anamnésis, which is described as “the reawakening of
the memory of something,” apparently regarding this as a philosophical notion that has no
bearing on mathematics, since Heath moves on to discuss the problem of doubling the
square in complete separation from Socrates’ thoughts on remembrance (as well as from
the main question of the dialogue, ti esti areté, which Heath ignores); Knorr 1975, pp. 26, 53
(note 23), 71, 73, 90, 104 (note 72), discusses the historical origins of the problem of
doubling the square, and several other historical issues, such as ways in which the solution
to the problem of doubling the square can be proved, while such proof is entirely omitted
from the Meno (we will return to this in Chapter 2); the continuity of magnitude; and the
position of mathematics in the Meno within the “metrical tradition” (we will return to this in
Chapter 1). Fowler 1999 ignores the philosophical content of the Meno, to focus on the
dialogue as the earliest available written source on ancient Greek mathematics, especially
with regard to the development of mathematical terminology; the relationship between
arithmetic and geometry; the use of anthyphairesis; incommensurability; the relation of the
problem of doubling the square to that of the duplication of the cube; and the relation of
mathematics in the Meno to later developments in Greece, especially Euclid; see Fowler
1999, pp. 3-10, 13-14, 30-31, 33, 65, 70, 101, 114, 148, 366 note 12, 367, 387 (Fowler also
describes an entirely fictional dialogue between Socrates and the slave: page numbers on
which this invented conversation occurs have been omitted here).

17 Scott 2009 deals with the mathematics passage entirely as one case of anamnésis out of
many, without much regard for the mathematics involved: see Scott 2009, pp. 98-112.



The problem of doubling the square would have to be considered trivial
when discussed from a strictly mathematical point of view. As is well known to Plato
scholars, historians of mathematics, and philosophers alike, the problem in Meno
82A-86B bears on irrational numbers, the so-called “surds” or “immeasurables,” in
particular v2.18 Allegedly, these numbers caused a “foundation crisis,” which during
some period in ancient Greek mathematics seemed insurmountable,1® but had been
sufficiently resolved by the time of Plato.2? This leads to the question why Plato
bothered to discuss the problem of doubling the square at all, since it no longer was
fundamental in his day—unless that would have been what he wanted to point out.
This, however, does not follow from the Meno. Fowler, in his study The Mathematics
of Plato’s Academy, has forwarded the thesis that irrationals never led to a
“foundation crisis”:21 if he is right, the triviality of the mathematics in Meno 82A-86B
is even more striking.

The triviality of the problem of doubling the square, or rather of dealing with
irrational numbers in general, is underscored by Plato himself in several other
dialogues. Most explicitly this happens in the Laws, where people with no
understanding of irrational numbers, or more precisely, who are helpless in the face
of immeasurable line segments, are considered “detestable” (phaulés, 820A), and
are even compared to pigs (huénén, 819D).22 Elsewhere, in the Theaetetus, two men
handle irrational numbers with ease and with no hint at a “foundation crisis” (147D-
148A).23 But it could be counter-productive to dismiss the notion of a “foundation
crisis” too quickly: the aporia from which this crisis supposedly resulted may be
relevant to the present discussion of the Meno. If the problem of doubling the square
is considered trivial, and therefore of no mathematical interest, the danger arises
that the meaning of anamnésis, as it occurs in the mathematical passage, will be
based entirely on the “mysterious” thoughts of Socrates on remembrance, as
professed in those parts of the dialogue which immediately precede and follow the
mathematical passage, and which have promoted the notion that Plato must have
felt there was something truly mysterious about the origin of mathematical
thought—which, if correct, would place Plato on a par with the likes of Hardy and
Wiles.

18 Klein 1965, pp. 99-101, 185; Knorr 1975, p. 26.

19 Burkert 1972, pp. 455-456; Dunham 1991, pp. 1-2, 8-10; Hardy 1940, pp. 100-101; Heath
1921, p. 155; Struik 1987, p. 43.

20 Dunham 1991, p. 9; Heath 1921, p. 155; Klein 1965, p. 107; Knorr 1975, pp. 22, 40-41;
Woodbridge 1965, p. 39.

21 Fowler 1999, pp. 356-359; Knorr does not entirely reject the notion of a “foundation
crisis,” but is skeptical about its occurrence: see Knorr 1975, pp. 2-4, 39-42, 49-50.

22 For brief treatments of this passage within the history of mathematics, see Fowler 1999,
pp- 290, 360, and Heath 1921, p. 156.

23 Cf. Fowler 1999, pp. 290, 359-360, 362-365. Another passage in which Plato
demonstrates perfect comfort in dealing with irrational numbers, even though little detail is
provided and calculations are omitted, can be found in Republic XIIl, 546C, where the
diameter of the square with sides of 5 units in length is mentioned, i.e. the diameter with
length V50 or 5V2. For an overview of other examples of comfortable dealings with
irrational numbers in Plato, see Ast 1835, vol. I, p. 486 (under the lemma diametros).



Perhaps it is hard indeed to see how Socrates’ thoughts on anamnésis can be
regarded as anything other than “mysterious.”2# They are often called “mysterious”
because Socrates announces them by calling on the authority of “priests, priestesses,
many other divine poets (hieredn te kai hiereion ... kai alloi polloi tén poiétén, hosoi
theioi eisin, 81A10-B1), and by quoting Pindar (81B9-C4), who sings of a “requital”
for an “ancient wrong,” in return for which “souls are restored” by Persephone to
mankind (this being the parallel to anamnésis). He repeats the same position later
on in the dialogue, when he compares the rulers of city states to soothsayers and
prophets (chrésméidoi te kai .. theomanteis, 99C3-4), who are “divine,”
“enraptured,” “inspired,” and “possessed by the god” (theious te einai kai
enthousiazein, epipnous ontas kai katechomenous ek tou theou, 99D3-5). With this in
mind, the characterization of virtuous behaviour as a “divine dispensation” (theiai
moirai, 99E8, 100B3) towards the end of the dialogue quite naturally comes across
as “mystery talk” pur sang.

Therefore, this thesis faces a twofold task. In order to avoid the shortcomings
of either a strictly mathematical or a strictly philosophical approach, it needs to
show, firstly, that the geometrical problem is not just one example of anamnésis out
of many, and secondly, that Socrates’ thoughts on anamnésis amount to more than
“mystery.” Therefore, one part of the task is to demonstrate that the mathematics
passage, as a geometrical exposition, adds to the meaning of anamnésis in such a
way that Socrates’ thoughts on remembrance are lifted above mere “mystery talk.”
Vice versa, it needs to show that Socrates’ citation of Pindar, and his mentioning of
“priests, priestesses, and many other divine poets” together with “soothsayers and
prophets,” as well as the reference to the Eleusinian Mysteries, carry over into the
mathematical passage in such a way that the mathematics can no longer be regarded
trivial. Then, by consequence, it should be possible to demonstrate that—the
mathematics in the Meno being anamnésis, and anamnésis being more than
“mystery”—the question where the slave’s mathematical insights come from can be
answered in a way that steers clear from the torpid “mystery talk” of Hardy and
Wiles.

24 Klein 1965, pp. 26, 100, 178-183, 186, 188-190, 201, calls Socrates’ thoughts on
anamnésis “mythical”; Klein remarks that even after the mathematical passage, when talking
about anamnésis, “Socrates is merely expanding on the myth of recollection previously
reported by him. The mythical way of speaking prevails throughout.” For this see Klein
1965, p. 178; the present thesis strongly disagrees with Klein in this respect. Sesonske
1965, p. 91, speaks of the “mystery of recognition” in the context of the slave’s anamnésis,
without elaborating any further on his use of the word ‘mystery’. Brown 1967, p. 76, hints at
the possibility of the mathematics passage constituting a “mystery,” without elaborating on
this any further. Vlastos 1994, pp. 103-104, calls Socrates’ references to mythology in the
Meno “religious” and attributes this religiousness to a personal faith in reincarnation
privately held by Plato; we will return to Vlastos’ thesis in Chapter 3. Scott 2009, pp. 1, 92-
94, also calls Socrates’ references “religious,” probably because of Socrates’ mentioning of
priests and priestesses. Shapiro 2000, p. 52, calls the connection of the mathematics in the
Meno to anamnésis “mythical”, which suggests that he too refuses to see any internal
connection between anamnésis and the mathematics as such.



In Chapter 1, the role of V2 in the Meno will be discussed, as well as several of its
mathematical characteristics, such as its so-called “immeasurability,” and the
opaque matter of its constructibility. Attention will also be paid to the geometrical
representation of numbers as this was common, but also potentially problematic, in
ancient Greek mathematics. Chapter 2 will highlight the diagrams drawn by Socrates
in the Meno, and investigate some particularly surprising features of the final
diagram, which are cleverly exploited by Socrates; also, it will be demonstrated how
Socrates avoids the use of certain mathematical expressions. In Chapter 3, it will be
shown, mainly through a detailed analysis of Plato’s Greek, how Socrates prepares
the ground for the slave’s actual anamnésis; most importantly, it will be discussed in
what sense this anamnésis, indeed, is a “mystery”—consisting, as it does, in the
sudden recognition of the zétoumenon being the diagonal, which, while coming as a
stunning surprise to the slave, is the result of Socrates’ peculiar treatment of the
mathematical problem.
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Chapter 1: The Slave’s Aporia and the Square Root of Two

1.1 The Slave’s Aporia, 1

In Meno 84A, the slave admits that he has no answer to the problem of doubling the
square (egdge ouk oida, 84A3-4), and enters into an aporia (aporein, 84A10 and
11):25 he is at a loss for words, and does not know how to bring the task to an end. In
some sense, the slave’s aporia has to do with \/2, or to be precise, with a multiple of
V2, i.e. 2v/2 (which, like any multiple of an irrational number, is itself irrational).
Because of the apparent triviality of the problem of doubling the square, it is not
easy to see why the slave has an aporia. As mentioned in the Introduction, the
problem of doubling the square pertains to an alleged “foundation crisis” in ancient
Greek mathematics, which had been resolved in Plato’s time. For this reason, the
problem was trivial to Plato’s contemporaries, and to Plato himself; but it also
appears trivial to us, for reasons which are quite different from Plato’s. So first,
before properly situating the problem of doubling the square within the context of
ancient Greek mathematics, we should try to get a sense of why the problem is, or
seems, trivial to ourselves.

We nowadays deal with the problem of doubling the square in a
straightforward manner, without much ado. Not only does the task appear easy,
soluble to anyone possessing basic knowledge of high-school arithmetic, algebra,
and geometry: it is, from the point of view of present-day mathematics, not much of
a problem at all. The assignment is to double a square with a surface area of 4 units,
i.e. to construct a square with an area of 8 units, using the smaller square as a point
of departure. The first issue to arise is the computation of the sidelength of the
larger square; the second is to determine what line in the original square
corresponds in length to the side of the larger square. In order to calculate the side
of a square with an area of 8 units, we simply extract the square root of 8. In
algebraic notation, this is V8 (the solution -V8 being irrelevant in this case), which
can be simplified to 2vV2. We determine this root, because we know that the surface
area A = 8 results from multiplying two sides of the square, a and b; since a and b are
identical, we have: A = a-b = a-a = a? = 8, and therefore V(a?) = a = V8 = 2V2. It
follows from the Pythagorean Theorem that this is the length of the diagonal of the
smaller square;2¢ therefore, we are able to quickly realize that the 8-unit square can
be constructed on the diagonal of the 4-unit square.

In the solution above, a problem from geometry was tackled with the help of
basic arithmetical and algebraic operations (addition, multiplication, raising
numbers to a power, and root extraction). To us, it seems obvious that we can leave
the geometrical context of the problem of doubling the square behind; perform
algebraic computations using elementary rules of arithmetic, without reference to
the geometrical figure; and return to the geometrical problem with the solution in
hand. But that is not what we were asked to do. The task was to construct a square

25 Cf. aporein, 84B6; aporian, 84C6; aporias, 84C11.
26 Let c and d be the sides of the smaller square, and e its diagonal; then, since ¢ = d, we get c2
+d2=c2+ c2=e? and since ¢ = 2, we have 4 + 4 = 8 = e2; hence Ve2 is V8 = 2V2 =e.
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with an area of 8 units from a square with an area of 4. And construction, in the
ancient Greek sense of the word, allows only the use of a straightedge, compass,
marker (e.g. a stylus, reed pen, or stick), and a surface on which to draw lines (e.g. a
wax tablet, papyrus, or layer of sand).2” It was by starting from certain given lines
(those of the smaller square), and by adding extra lines through the extension or
transposition of these given lines (or of lines acquired by extending or transposing
the given lines, etc.)—that is: by constant reference to, and elaboration of, the
geometrical figure—that the problem was supposed to be solved. Such are the rules
of the game in ancient Greek geometry.

Meno states explicitly that the slave was never taught geometry,28 so we can
safely assume that the boy was not in the least aware of these rules. But Socrates,
throughout the conversation, gently (yet consistently) incites the slave to employ
those rules, not by explicitly stating them, or at least by silently ensuring the slave
would adhere to them, but rather by immediately connecting words used by him or
the slave to elements of the diagrams, in a colloquial, “point-and-see” kind of way.
We will return to the colloquial nature of the conversation in chapter 3; for now, the
important thing to realize is that Meno’s slave, indeed, never abandons the
geometrical context of the problem. Of course, the mathematics in the Meno is not
devoid of arithmetic: the slave performs arithmetical operations, primarily those of
counting and addition, and (perhaps) also multiplication and division. But he does
so with uninterrupted reference to the diagrams: what he counts, adds up, multiplies
or divides are always elements of the geometrical figures drawn by Socrates—and
precisely that lies at the heart of the slave’s aporia with respect to 2v2. All the
slave’s arithmetical calculations are suggested by the diagrams, and verified or
rejected with reference to the figures. There is no rigid distinction between numbers
on the one hand, and elements of the figures, such as lines and areas, on the other—
in short, no distinction is maintained between number and magnitude.2® Geometry,
it seems, is considered a seamless extension of arithmetic, and vice versa. The result
is that for specific numbers (the integers), the slave derives arithmetical properties
from elements of the geometrical figure; he then carries these properties over into
other parts of the diagram, i.e. into particular other numbers (the irrationals)—or
into one such number, to be precise: 2v2—to which those properties do not apply.

27 Netz 2003, pp. 14-17. It is often believed that straightedges used in ancient Greek
geometrical proofs were always unmarked. Fowler discusses evidence against this; see
Fowler 1999, pp. 283-289.

28 Socrates asks Meno: “Or has someone taught [the boy] how to do geometry?” (é dedidache
tis touton gedmetrein, 85E1); to which Meno responds: “Well, I know that nobody ever
taught him [geometry]” (All'oida egdge hoti oudeis pépote edidachen, 85E7-8).

29 Knorr 1975, p. 90.
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1.2: Doubling the Square

In Meno 82B, Socrates draws a square, and adds one vertical and one horizontal line,
dividing the figure into four smaller squares (fig. 1).3° He then asks the slave if it is
true whether the six lines are equal in size, and if the whole figure can be either
smaller or larger: the slave replies, correctly, in the affirmative (82C). The slave is
then asked to calculate the area of the entire square, on the premise that the
sidelength is 2 feet: he does this accurately by multiplying 2 by 2 feet: 4 feet—or in
fact, all he needs to do is count the four smaller squares.3! Next, Socrates asks to
calculate the area of a square double in size: the slave simply multiplies 4 by 2 feet,
and arrives at the right answer, 8 feet (82D)—or rather, he mentally adds up four
additional small squares to the four original ones, which is to have an important
implication soon.

{__

Fig. 1: the initial 4-foot square drawn by Socrates (82B).

Socrates, fully deliberately, then poses a trick question:32 if the area of the larger
square were double to that of the smaller square, what would be the sidelength of
this larger square, compared to that of the smaller? The slave gives the wrong
answer, by saying that the requested length, clearly (délon), must also be double
(82E), that is 4 feet (fig. 2):

Fig. 2: the slave proposes to generate the 8-foot square from a side twice the length of
the side of the original 4-foot square (82E).

30 According to Boter 1988, pp. 209 ff, Socrates does not draw two perpendicular
transversals inside the initial square, but two diagonals. Boter was apparently unaware of
Ebert’s earlier (but less elaborate) rendering of the same opinion; see Ebert 1973, pp. 178-
179. 1 fully disagree with Ebert and Boter, for reasons that will become apparent in the
course of this thesis.

31 In line with the text in the Meno itself, | will take the liberty to quantify areas as surfaces
of 1 foot, 4 feet etc., without each time adding the word ‘square’ (as in “8 square feet”),
which would make the present text rather unpleasant to read.

32 Cf. Vlastos 1994, p. 98.
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Socrates demonstrates that the square resulting from sides with a length of 4 feet
has an area of 16 feet, for it consists of sixteen 1-foot squares (83C, fig. 3). So if the
sidelength of the square with a surface area of 8 is larger than 2 feet, Socrates says,
and smaller than 4, what must it be? This, again, is a trick question, and once more
the slave answers incorrectly: 3 feet (83E, fig. 4). And this, together with the
preceding answer, reveals the problem with the slave’s calculations: he is looking
for a whole-number solution to the problem of doubling the square, and that is what
twice has led him into falsehood.

Fig. 3: the square with sides of 4 feet, Fig. 4: the square with sides of
as proposed by the slave (82E). 3 feet, as proposed by the slave (83E).

The slave’s tendency to go after whole-number solutions can be represented
geometrically. As mentioned earlier, the slave does not maintain a strict distinction
between number and magnitude. Where this distinction is not upheld, whole
numbers can be expressed as geometrical shapes consisting of units representing
the number 1, for example as squares or oblong rectangles built from unit squares
(figs. 1-3); using these shapes, problems of arithmetic and algebra can be
formulated and solved, as in the following example, in which the equation 32 + 42 =
c? is solved for c (fig. 5):

+ I =

Fig. 5: an example of a whole-number solution in geometry (32 + 42 = 52).

In the problem of doubling the square, algebraically speaking, the slave is looking
for a solution to the following equation: I-u + (m-u)-(n-u) = p-u, where u is the unit, or
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number 1, I-u equals four, and m, n and p are whole numbers; all products (I-u, m-u,
n-u, and p-u) share the common unit u, that is: they are measurable by the same unit,
and can be represented as squares or oblong rectangles. Remember that p-u is a
square, i.e. should be represented as a square in a diagram.33 Stepwise, this means
that:

+ (m-u)(n-u) =p-u=8.

Fig. 6.

If we now solve (m-u)-(n-u), it is clear that this product must be equal to 4, which
can again be expressed as a square, so that we have:

+ =p-u=8.

Fig. 7.

Because u is the unit, p equals 8; p is also the sum of two squares that each consist of
4 units; and p-u is a square: from this it should follow that we can construct a square
from 8 units. But of course, from 8 units, no square can be formed (fig. 8):

Fig. 8: a square with an area of 8 square units cannot be assembled from eight unit
squares.

33 The equation contains a product (m-u)-(n-u) with two unknowns, m and n, because the
slave’s tendency to look for whole-number solutions, as suggested by the initial diagram
(fig. 1), does not necessarily imply that he is looking (or must look) for the sum of two
squares; the second figure, described by (m-u)-(n-u), could (in principle) be an oblong, i.e. a
figure with sides m and n differing in length.
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This exposition may seem contrived and roundabout, but the point is to bring out
the basic assumptions that lead the slave in his calculations; only once these have
been exposed, will we be able to understand why the boy enters into an aporia. In
summary: the initial diagram drawn by Socrates, and consisting of four unit squares,
suggests to the slave that he must look for a whole-number solution to the problem
of doubling the square (fig. 1); the boy’s first two attempts at calculating the sides of
the square with an area of 8 feet confirm that, indeed, he does so (figs. 2, 3, 4). Soon,
after having performed only a few calculations, the slave runs into an aporia: the
side of the 8-foot square has no unit u in common with the smaller, initial square
that should be doubled (fig. 8). This means that the slave’s aporia centers on the
irrational number 2v2. Since 2V?2 is only a multiple of V2—i.e. twice V2—and for its
properties depends entirely on V2, we will, for now, continue by focusing on some
characteristics of V2.

1.3: Locating V2 on the Number Line

Several historians of mathematics have pointed out that Plato’s thoughts about
numbers, at least until the Theaetetus, are characteristic of what can be called “the
metrical tradition.”3* The lack of distinction between number and magnitude, as at
least is witnessed by the calculations of the slave in the Meno, certainly places the
boy in that tradition. His ready acceptance of the foot as a unit, instead of an abstract
unit, further strengthens the point: the unit equally represents 1, a number, and the
foot, a magnitude.3> The metrical tradition almost certainly evolved from applied
mathematics, likely from land measurement;3¢ from this connection with
measurement, and the use of the foot as a concrete unit, it could follow that the
problem regarding V2 is one of “immeasurability.” Numbers that can be measured
against the foot, then, would be rational and measurable numbers; numbers which
cannot be measured against the foot, would be irrational and immeasurable. The
notion of immeasurability will be discussed below, using a concept from current-day

34 Knorr 1975, pp. 25-26,90-91. On Plato’s development away from the metrical tradition as
from the Theaetetus, see Knorr 1975, pp. 91-92. Fowler goes further than Knorr in calling
ancient Greek mathematics as a whole “non-arithmetised,” naming the Meno in particular as
an example; see Fowler 1999, pp. 10, 366.

35 Knorr, op. cit., p. 90.

36 Cf. Dunham 1991, pp. 2-3. The supposed connection of ancient Greek geometry (and of
the “metrical tradition”) to land measurement likely stems from Herodotus, Histories 11, 109,
in which the Egyptian practice of re-measuring land after a flood is discussed (“It seems to
me that from this, the Greeks found out about geometry, dokeei de moi entheuten gedbmetrié
heuretheisa es tén Hellada epanelthein”). Fowler attempts to discredit Herodotus’ opinion;
see Fowler 1999, pp. 279-281. Whether or not the origins of Greek geometry lie in Egyptian
land measurement, it is certain that the Greeks in general considered the Egyptians as the
ultimate source of Greek mathematics; it is also certain that Egyptian mathematics evolved
from entirely practical concerns, as is for example witnessed by the Papyrus Rhind
(nowadays also known as the Ahmes Papyrus): see Heath 1921, pp. 120-128.
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mathematics: the number line. But let us first look at how Greek mathematicians
conceived of the irrationality of V2.

d

a b b

k a
Fig. 9: an infinite-descent proof demonstrating the irrationality of V2.

The proof represented in fig. 9 works by infinite descent. The diagram shows several
squares and their diagonals; we know that the ratio of each diagonal to the side of
its square is V2 : 1. Let us assume that V2 is rational. Based on that assumption, and
starting with the largest square, there must be a smallest number u, representable
as a line segment of length u, such that the magnitude of the side as well as that of
the diagonal are both multiples of u. Let the side of this square have magnitude a.
Next, a point x is chosen on the diagonal such that the segment of the diagonal below
x has magnitude ¢, and ¢ = a. Let the segment of the diagonal above x have
magnitude b: since the magnitude of the diagonal as a whole is considered a
multiple of u, it can be deduced that b must also be a multiple of u. From this
segment with magnitude b, a second square is constructed. Since the magnitude of
the diagonal of this second square is V2-b, and V2 is assumed to be rational, the
magnitude of the diagonal must again be a multiple of u. Next, a point y is chosen on
this diagonal, such that d is a segment of the diagonal with magnitude b. From the
segment above y, a third square is constructed, and by the same reasoning as before,
the sides and diagonal of this square must be multiples of u too. Continuing the
procedure, the fourth square is constructed; a fifth square can be formed, and a sixth
square, and so on: at some point, a square will be constructed with sides of a
magnitude smaller than u. This contradicts the initial assumption that a and c are
multiples of a smallest line segment u, and that V2 is rational. Therefore, V2 must be
irrational.3”

The irrationality of V2, as announced earlier on, can also be demonstrated
using the concept of the number line. Suppose that we were asked to indicate V2 on
the number line, using only a sheet of paper, a pencil, and a marked ruler. Let us
posit familiarity with 99/70 as an approximation of V2. We would locate 99/70 on

37 Cf. Knorr 1975, pp. 35-36, for a (too) brief treatment of this proof; Fowler 1999, pp. 33
and 300, for an alternative version of this proof.
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the number line by drawing a horizontal from 0 to 99/70 with the aid of our pencil
and ruler; this can be done easily if the ruler at hand were precise enough (let’s
assume it pre-scaled to a sufficient degree). We could then say: “V2 is just to the left
0of 99/70 on the number line.” To that, of course, it may be objected that “to the left
0f 99/70” is not an indication of V2 at all: V2 must be a fixed point on the number
line, and it is this point which must be located exactly. Therefore, it would be useless
to find a more precise approximation of V2, such as 577/408; nor would it help to
say that V2 lies between 576/408 and 577/408, since there are infinitely many
other numbers between those two fractions.38 In short: as long as we continue to
extend a line towards the left, e.g. from 99/70 to 577/408, from 577/480 to
665857/470832,3% and so on, we will never reach the fixed point V2.

The question is: why? Is it because V2 is “immeasurable”? Perhaps V2 could
be called “immeasurable” in the sense that there exists no ruler, however finely
scaled to whatever unit—say unit C—so that C goes a p number of times into a
length of line AB, this length AB being a whole number or fraction, and into a line of
length V2 a ¢ number of times, p and q being whole numbers. In other words: there
is no unit C so that, when p-C (being AB) divided by g-C (being v2), and C is factored
out, AB divided by V2 equals p/q.4° It is for this reason that, since no such ratio p/q
can be found, V2 is called an irrational number. This immediately leads to another
mathematical characteristic of V2. Since there is no product g-C which equals V2 (g
and C defined as above), V2 cannot be expressed as a whole-number fraction,!
however large its numerator and denominator; and any number which cannot be
expressed as a whole-number fraction has an infinite number of decimals, which
also happen to continue unpredictably (i.e. they contain no repetend).*? Therefore,

38 Derbyshire 2004, p. 179.

39 The large fraction 665857/470832 may seem a bit of a jump from 577/480, but it is the
approximation of V2 which immediately follows 577/408 if one uses the computation
algorithm ((an + 1) = ((an/2) + (1/an)), which in consecutive calculations, starting with a
guess and then using the outcome as an input to generate a new outcome (e.g. uses 3/2 to
generate 17/12, which in turn generates 577/408, and so on), yields ever more accurate
approximations of V2.

40 Compare Dunham 1991, pp. 8-9. This algebraic proof of the irrationality of V2 basically
repeats the argument of the geometrical proof represented in fig. 9.

41 For it is always possible to rewrite g-C as a fraction (with g and C as defined above). For
another way to demonstrate that V2 cannot be written as a fraction, see Hardy 1940, pp. 94-
6, who discusses a proof mentioned by Aristotle, An. Pr., .23, 41a21-30.

42 The fraction 1/3 can be written as 0,333..., with the decimal 3 occurring an infinite
number of times; therefore, 1/3 has 3 as a repetend. The fraction 3226/555 can be written
as 5.8144144144144... and has the repetend 144 after the first decimal 8 that occurs only
once. V2 cannot be written as a fraction, i.e. a common fraction such as in the two preceding
examples (with one numerator, being a whole number, and one denominator, being a whole
number); but V2 can be represented as a nested (or continued) fraction, which goes on
without end:
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there is a sense in which we will never know the number V2, since we will never be
able to list all its decimals (or, as far as the ancient Greeks were concerned, never be
able to draw both the side of a square and its diagonal as multiples of a smallest
common unit u, see fig. 9). All we will ever know, in a strictly numerical sense, are
approximations of v2.43

The observations made so far may be helpful in taking the slave’s aporia
seriously—with regard to V2, especially in the compelling context of mathematical
diagrams, it is pretty easy to get confused; and as we will see in the next paragraph,
the way to dispel this confusion is not very evident.

1.4: Constructing V2 on the Number Line

We cannot indicate V2 on the number line using only a sheet of paper, a pencil, and a
straightedge. In other words: while we are able to draw lines of 1 unit in length, or
of 2 units, or of any integer or whole-number fraction, we appear to be unable to
draw a line of length V2 (or any other irrational number), even with the help of a
marked ruler. But it can be demonstrated that v2, even though irrational, is not
“immeasurable.” The reason is that V2 can be indicated on the number line, but the
way in which this is to be done is not very obvious: this cannot be emphasized too
strongly, for this lack of self-evidence is crucial to interpreting the mathematics
passage in the Meno. Besides the concept of the number line, we need to add some
plane geometry to our endeavour; also, we need the aid of an additional instrument,
being a compass. The number line becomes an x-axis; an orthogonal is constructed
on the point 0 on the x-axis, and this orthogonal will function as a y-axis. From this, a
plane results, allowing us to construct a diagonal from the origin O (0, 0) to the point
(1, 1) in the plane. One end of the compass is to be placed on this point, and the
other on the origin. From (1, 1), with the help of the compass, a circle segment can
be constructed: this cuts the x-axis at exactly V2 (fig. 10). So it is possible to locate V2

2+

24 .
43 Kanigel 1991, p. 59. As of June 28, 2016, a total of 10,000,000,000,000 decimals of V2 had
been calculated; for this, and examples of other irrationals, see
http://www.numberworld.org/y-cruncher/records.html. Of course, V2 can be defined as
the limit of the sequence 1/1, 3/2,7/5,17/12, 41/29 etc.; see Derbyshire 2004, p. 16. This,
however, presupposes the infinitesimal, of which the Greeks had no concept. For numerical
approximations of V2 in ancient Greek mathematics, see Heath 1921, pp. 91-93, 308.
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on the number line—but the technique used, as forecasted, is not immediately
obvious.**

19
h

T

I
VI A2
Fig. 10: the construction of v2 on the number line.

With the help of the number line, it has now been established that V2 is
constructible. The ancient Greeks did not have the concept of the number line, and
quite possibly did not even consider V2 a number.#5 Rather than as a number, they
viewed V2 as a continuous magnitude, always mentioning it in relation to
geometrical figures (usually as the dunamis, i.e. the side, of the 2-foot square, or as
the diagonal, the diametros, of the 1-foot square). In any case, the fact that V2 is
constructible as a magnitude was established before Plato’s time. And because of
this, the alleged “foundation crisis” was not the reason why Plato chose to center the
conversation between Socrates and the slave on the irrationality of the side of the 8-
foot square in the Meno. It is the constructibility of V2 that Plato was interested in,
and which Socrates and the slave will be seen to utilize in their solution to the
problem of doubling the square—but, more importantly, Socrates will also be found
to deliberately exploit the opaque, non-evident character of the constructibility of

V2.

44 The length of the diagonal in the Meno is not V2 but 2v2, as indicated; however, if V2 is
constructible, then so is 2v2, or any multiple of V2. For the length of the diagonal of a square
with sides of length n is nv2, which follows from the Pythagorean Theorem (let the diagonal
be p; then p2= n2 + n2, or p2 = 2n?; therefore, p = nv2).

45 Aristotle says in the Physics that “there can be nothing between 2 and 1 (ouden gar
metaxu duados kai monados, 227a31),” that is: there are no other numbers between 1 and 2,
ruling out fractions and irrationals (such as V2, which according to current-day number
theory is a number which lies between 1 and 2) as numbers. In the Metaphysics, Aristotle
states that “number is commensurate, and one does not speak of the incommensurate as
number (ho gar arithmos summetros, kata mé summetrou de arithmos ou legetai, 1021a5)”;
with the “incommensurate” Aristotle means irrational numbers.
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Chapter 2: Socrates’ Peculiar Employment of the Diagrams
2.1: The Slave’s Aporia, 11

As discussed in the previous chapter, the first square drawn by Socrates was divided
into four unit squares (fig. 1); the task was to double it to an area of 8 square feet.
When the slave suggested to extend the side of the original square by doubling it in
length, Socrates transformed the smaller square to a 16-foot square (fig. 2),
demonstrating that the slave was wrong. Socrates now again draws a 16-foot square
(84D), this time not subdividing it into 16 unit squares, but into four quadrants
only4¢—which will lead to an important result soon (fig 11):

Fig. 11: the second 16-foot square, subdivided by Socrates into four quadrants.

Socrates asks how much larger this square is compared to the 4-foot square: the
slave answers, correctly, that it is four times larger (84E)—all he needs to do is
count the four quadrants. Socrates repeats that the figure they are searching for—
the 8-foot square—is two instead of four times larger; the slave consents. Without
first telling or asking the slave how much smaller the 8-foot square would be
compared to the 16-foot square (i.e. half), Socrates draws an oblique line in the
lower left quadrant, from top left to bottom right (fig. 12):

Fig. 12: Socrates draws an oblique line in the lower left quadrant.

He prompts the slave if “this line” (hauté grammé, 84E8)—one should duly note that
Socrates does not mention the word ‘diagonal’ at this stage—cuts the lower left

46 Cf. Brown 1967, p. 61.



21

quadrant in half: the slave agrees. Socrates then draws three more oblique lines in
the other quadrants, each time turning the line by 90 degrees (fig. 13):

Fig. 13: in each quadrant, Socrates draws an oblique line from corner to corner,
turning each line at an angle of 90 degrees.

Again without using the word ‘diagonal’, Socrates asks if there are now four such
lines (tettares hautai grammai isai, 85A4-5); while pointing at the figure, he inquires
whether these “contain this area” (periechousai touti to chérion, 85A5): here, one
should observe that Socrates does not call the resulting figure—a tilted square—a
square. The boy confirms that the oblique lines contain the area at which Socrates
just pointed. Socrates then asks how large (pélikon, 85A7) the area is. The slave
replies that he does not understand (ou manthané, 85A9). This lack of
understanding should—however difficult this may be for us—be taken seriously;
the reason for this will be explained in the next paragraphs. For now, it can at least
be surmised that the answer of the slave indicates that, although Socrates has now
completed the final diagram, the boy’s aporia has not evaporated.

2.2: The Diagonal as the Solution to the Problem of “Doubling the Square”

Socrates informs if in each of the quadrants “that line” (hekasté hé grammé,
85A11)—again, he refrains from using the word ‘diagonal’—cuts the quadrant in
half. The slave confirms. Socrates again points at the diagram, and asks how many
half-squares are contained within the tilted area, again not calling the area a square,
but simply “this [figure]” (toutéi, 85A13), nor naming the half-squares, merely
calling them “[figures] of such size” (posa [...] télikauta, 85A13), whereas he could
have easily called them “isosceles triangles” (isoskelés), for example.#” The slave
counts the half-squares and replies, that there are four (tettara, 85A14). Socrates
then informs how many there are in the first quadrant; the slave, of course, says two
(duo, 85A16). The slave is asked, how much four is with respect to two (ta de tettara
toin duoin ti estin, 85A17); the slave answers that four is double (diplasia, 85A18). At
that very moment, the sudden realization dawns on the slave that the tilted area

47 Plato uses the geometrical expression ‘isosceles’ in Timaeus 54B6, for example. For other
examples in Plato, see Ast 1835, vol. II, p. 106.
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must be twice the first quadrant, and has to be the square he had been looking for all
along. When asked to calculate the surface of the tilted area, the slave provides the
right answer: 8 feet (oktépoun, 85B2).

The boy’s identification of the tilted area is not where the problem of
doubling the square ends—Socrates wants to point out one more thing. He asks
through what line (apo poias grammés, 85B3) the area of 8 feet was generated
(gignetai, 85B1). The slave points at the oblique line in the lower left quadrant and,
not knowing the name of the line, answers: “From that one” (apo tautés, 85B4).
Socrates wants to hear this again: “From the line drawn from corner to corner in the
figure measuring 4 feet?” (apo tés ek gonias eis gbénian teinousés tou tetrapodos,
85B5-6)? The slave confirms, and only then, towards the very end of the
mathematical exercise, Socrates says that the line is named “diagonal” (diametros
onoma, 85B9).

The slave’s calculation of the area of the 8-foot square requires proof, as
Socrates indicates by mentioning the necessity of additional akribeia (akribés,
85C13).48 For one thing, it must be demonstrated that the four half-squares indeed
form a square (no matter how evident this may seem to us): the four half-squares
could, in principle, form an oblong rectangle or a variety of parallelograms rather
than a square. In other words, what stands in need of demonstration is that the four
sides of the tilted area are equal; also, and most importantly, the result (in being a
theorem—which, in short, can be formulated as: all squares can be doubled along
their diagonals) needs to be demonstrated for every square, and not just for the 4-
foot square; therefore, a rigid proof would involve, among other things, Pythagoras’
Theorem.*® However, verification in the Meno stops short once the word ‘diagonal’
has been mentioned, and nowhere in the dialogue do we find rigid proof for the
conclusion that the tilted area, indeed, is a square twice the size of the initial square.
Such akribeia, as far as Socrates is concerned, is for another moment—as it appears,
rigid proof is not relevant to what he has been trying to bring across.

48 Cf. Moravcsik 1994, p. 126. What in addition requires proof is the implied assertion that
the diagonal bisects the square into two exactly equal parts.

49 With reference to the diagram on p. 298 in Heath 1921, let the base of the initial square be
AD, the orthogonal side on the left be AB, and the diagonal of the initial square be BD. Then
ADZ + AB2 = BD2is true. Since the lengths of AD and AB are identical (i.e. 2), AD2 + AB2= AD2
+ AD2 = (2 - AD?) = BD2 also holds. Therefore, vV (BD2) = BD = V(2 - AD?) = (V2 - AD). Also,
since AD = AB, the surface area of the initial square is (AD - AB) = (AD - AD) = AD2. Let BL be
the orthogonal side to BD in the tilted square DBLM. Then the surface area of the tilted
square can be calculated by multiplying BL and BD. Since BL and BD are equal in length, (BL
- BD) = (BD - BD) = BD2. We now substitute (V2 - AD) for BD, which gives us (V2 - AD)2 =
2ADz2, Since the surface area of the initial square was established as ADZ, this proves that the
tilted square is twice the initial square.
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2.3: The Element of Surprise

Similar to the construction of V2 on the number line (see §1.4), the construction of
the 8-foot square through the diagonal is not obvious, but remains an opaque
feature throughout almost the entire conversation between Socrates and the slave,
and finally comes as a surprise—Fowler remarks on this as “Socrates [...] conjuring
a clever figure out of thin air.”>? Most readers of the Meno will tend to underestimate
this surprise element, probably because they never set themselves the task of
solving the problem of doubling the square before reading the solution, and because
the solution, once provided, is so handsome, and so intuitively easy to comprehend.
But the solution is simple only with the benefit of hindsight. While writing this
thesis, I asked more than 40 people—friends, relatives, and colleagues, all of them
well-educated adults—to double a square I had jotted down on a napkin, tablecloth,
or piece of paper. I told them to work under certain assumptions (without telling
them, these were the same as in the Meno: in short, I told them to work from the 4-
foot square). Nearly none were able to find the answer, and almost everybody made
the same mistakes as the slave did (in particular the first, that of doubling the side of
the smaller square, 83A and fig. 2), except two people who had read the Meno, and
remembered the solution—but the fact that they remembered it probably means
that the diagram stuck with them because it is so surprising (and strikingly shaped).

Why is the solution surprising? For several reasons. For instance, all
diagrams drawn before the final construction were “stacked” diagrams (figs. 1-4,
11): they resulted from subdividing and dissolving figures into unit squares, and
reassembling those into new figures—a process similar to playing with Lego bricks
(but then, only square Lego bricks).>l More to the point: those first diagrams all
contained straight lines, i.e. horizontals and verticals, and because of that, a bias was
created towards identifying, handling and creating shapes that are contained within
straight lines, i.e. squares and rectangles, themselves positioned at straight or
parallel angles to the other elements of the diagrams. The final diagram, however,
contains oblique parts: the diagonals, and a tilted figure, the 8-foot square. As said,
Socrates enabled the slave to use the half-squares as a unit for counting, but the boy
did not realize what he was doing; to see the half-squares as such would have gone
against the prevailing bias, because they were partly based on the oblique diagonals,
and shaped, not as squares, but as triangles; but the only units, as far as the boy is
concerned, are the stackable, straight-angled 1-foot squares.

Several more things can be said about the surprising nature of the final
diagram. As indicated before, Socrates returned to the 16-foot square, and covertly
suggested that what the slave could attempt, is not to double the 4-foot square, but
cut the 16-foot square in half (84E-85A). But, as discussed, a bias had been induced
towards stacking unit squares, and towards identifying straight lines, i.e. horizontals
and verticals, and objects contained within such lines, by Socrates’ initial diagram of
the 4-foot square (fig. 1). Cutting the 16-foot square in half is naturally conceived of
as cutting the 16-foot square into two equal parts through the middle, either

50 Fowler 1999, p. 367.
51 In the same vein, Klein speaks of the “assemblage” of units; see Klein 1965, p. 100.
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vertically or horizontally. But this leads to either of the following two figures (figs.
14 and 15):

Fig. 14: the 16-foot square cut in half across the middle.

Fig. 15: the 16-foot square cut in half along its length.

These figures are oblongs and not squares, and as we know from fig. 8, they cannot
be dissolved into unit squares and reassembled into a square composed of 8 units.
Most people would briefly consider (but quickly reject) cutting the 16-foot square
along the full diagonal (from the lower right to the upper left, or from the lower left
to the upper right), without giving this idea any further and more refined
consideration. Cutting the 16-foot square in half seems, at first sight, to present no
opportunity, and the slave certainly doesn’t catch on to the occasion: but as Socrates
shows, it can be done by cutting the four quadrants in half along the diagonals,
turning each diagonal by 90 degrees. But, again because of the prevailing bias, this
doesn’t occur naturally to people as “cutting a square in half.”

2.4: Diagrammatic Construction as a Case of Anamnésis
The final diagram in the Meno was found to have several surprising aspects. A

similar phenomenon can be gathered from the Theaetetus: there, the surprising
nature of particular diagrams (schémati, 148A5) is underscored by the verb
eiserchomai. Theaetetus relates how, one day, the mathematician Theodorus was
drawing diagrams in order to demonstrate that the sides or “roots” (dunamedn,
147D3) of several squares, such as those measuring 3 and 5 square feet (tripodos
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[...] kai pentepodos, 147D4), are incommensurable with the unit of the foot (podiaiai,
147D5); in other words, the point was to show that the sidelengths of said figures
are quantifiable only as irrational square roots. Theaetetus, witnessing Theodorus at
work, decided to make an attempt at “embracing” all irrational square roots of
whole numbers under one name (peirathénai sullabein eis hen, 147D9-E1). He soon
realized that integers such as 3 and 5, the square roots of which are irrational, can
only be resolved into factors by multiplying “either a larger [whole number] by a
less[er], or a less[er whole number] by a larger” (é pleién elattonakis é elattén
pleonakis, 148A2-3): when constructed from the unit square, such numbers can only
be geometrically represented by oblong rectangles (rectangles with unequal sides,
compare figs. 14 and 15)—hence, a particular feature of these diagrams, namely
that they are oblong (proméké, 148A5), suddenly jumped at him (eisélthe, 147C8 and
D8), as Theaetetus phrases it. There was no need to determine every single dunamis
by going through all the integers one by one and extracting their square roots
(which is impossible, since there are infinitely many integers, and infinitely many
irrational square roots of whole numbers):>2 all that was necessary was to allow the
oblong shape to emerge, and have it “jump at one.”

In the Meno, direct parallels to eiserchomai are the verbs tunchanein (to hit
upon, encounter; tunchaneis, 86B2),°3 and paragignomai (to advance, come towards;
paragignomené, 99E8).5% An even more significant verb, used in connection with the
surprising occurrence of a particular, previously overlooked trait of the final
diagram in the Meno—of this trait suddenly emerging, and “jumping at” the slave—
is the verb analambanein, ‘to relevate, which Socrates associates directly with
anamnésis: “And is this relevating of knowledge by himself in himself not [the same
as] remembrance?” (to de analambanein auton en hautéi epistémén ouk
anamimnéskesthai estin, 85D7-8)? In the sentence quoted just now, we find a
prepositional prefix, ana- (in analambanein and—crucially—in anamimnéskesthai),
as well as the preposition ev; these can be considered as equivalents of (or at least
as relatable to) the prefix eis- (from eiserchomai) in the Theaetetus, and should be
understood in relation to the diagrams in the Meno, as well as to the slave’s
anamnésis. They signify a movement from inside something, towards something else:
that is, they relate to the sudden and unexpected “leaping to the eye” of certain,
previously overlooked features of diagrams, as much as they do to the slave’s
sudden awareness that the tilted area drawn by Socrates is the 8-foot square. More
such prepositions and prefixes, interchangeably related by Socrates to the diagrams
as well as to the slave’s anamnésis, abound in the Meno: prosana- (‘additional to,’
prosanaplérésaimeth’, 84D12); en- (entos, 85A11; enestin, 85A13); en (‘in,” 85A13
and 15); apo (‘from,” 85B3-5); ek (‘from within,” 85B5); eis (‘through,” 85B5), and
again apo (85B9)—all these referring to the diagram—and ape- (apekrinato,
85B14), en and en- (enésan, 85C5; eneisin, 85C8; en, 85D7), ana- and ane-
(anakekinéntai, 85C11; anerésetai, 85C12; analabén, 85D4; analambanein, 85D7;

52 Their number, as Theaetetus himself notes, is “unbounded” (apeiroi, 147D8).
53 Also entuchois, 80D9.
54 Also paragignétai (100A1); paragignomené (100B3); paragignetai (100B6).
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anamimnéskesthai, 85D8); and ex (‘from,” 85D4)—all those referring to the slave’s
remembrance.

This intricate patchwork of prepositions and prefixes indicates that what
happens in and develops from the diagrams, simultaneously happens with and
within the slave; what happens in the geometrical constructions, is equally
applicable to the slave’s remembrance; the constructions run parallel to the
anamnésis, or rather, they seem to be the anamnésis. But from the things said
previously about Socrates’ treatment of the diagrams, it has become clear that this
construction does not take place in a straightforward manner. In synopsis: Socrates,
after having asked the slave to quantify the side of the 8-foot square, subdivides the
initial diagram into four squares of 1 square foot each, and thus induces a tendency
in the boy to look for a whole-number solution to the mathematical problem. This
leads the slave to presuppose a common unit between the side of the 4-foot square
and that of the 8-foot square to be constructed, which causes an aporia in the boy,
revolving around the so-called “immeasurability” of 2V2. Silently forcing the slave to
remain within the confinements of the strict rules of construction in ancient Greek
geometry, Socrates creates a bias towards identifying, handling, and creating shapes
contained within straight lines, thus exploiting the opaque character of the
constructibility of 2V2. Finally, Socrates avoids mentioning the names of certain
elements of the final diagram.

Because what happens in the diagrams is charged with particular opacities
and thought tendencies, and since what occurs in the diagrams transpires in the
slave’s anamnésis too, this anamnésis must, somehow, be simultaneously suffused
with similar tendencies and opacities. This may be revealing as to what is
“mysterious” about the mathematical passage in the Meno; therefore, the next
chapter will further consider how Socrates’ treatment of the problem of doubling
the square is abnormal, and an attempt will be made to connect Socrates’ treatment
of the mathematical problem with his allusions to mystery. Crucially, these allusions
will be shown to be tied up with a particular paradox mentioned in the dialogue—
the “Learner’s Paradox,” or “Meno’s Paradox”—which, ultimately, will be dissolved
by the slave’s utterance of alétheis doxai or true opinions, in finding a “whole” (the
8-foot square) before one of its “parts” (its side, the diagonal). In that way, this
thesis will finally deal with the task of showing that the geometrical problem is not
treated by Plato as one mere example of anamnésis out of many, and that, vice versa,
Socrates’ thoughts on anamnésis amount to more than sheer “mystery talk.” To be
precise: it will be demonstrated that the “mystery” in the Meno effuses from within
the mathematics itself, that is: the mathematics as this includes Socrates peculiar
treatment of the diagram.
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Chapter 3: Meno’s Paradox and the Slave’s Manifestation of True Opinions

3.1: The Slave’s Aporia, 111

After having discussed the final diagram with the slave, Socrates turns to Meno, in
order to assess the slave’s achievements as a case of anamnésis (85B ff.). Socrates’
wording—especially in contrasting the slave’s nun bios, his current life as a member
of Meno’s household (téi nun biéi, 85D14),°> with “some other time” (alléi tini
chronéi, 86A1), “when [the slave] was not [yet] a human being” (ho chronos, hot’ouk
én anthrépos, 86A4-5)—indicates that this happens in light of his earlier citation
from Pindar (81B ff.). In this quote, the poet relates how men become glorious kings
as a consequence of Persephone returning souls to the living; this “becoming
glorious” is interpreted by Socrates as anamnésis. The slave’s anamnésis therefore is
not “simply” remembrance, but indicates an involvement of the soul, which so far
has not been discussed in the present thesis. Yet it is crucial to investigate the
significance of the soul in the mathematics passage, since Socrates’ exposition of the
Pindar quote in 85B-86C, more than the citation itself, have given rise to countless
“mysterious” interpretations of Plato’s view on anamnésis that completely ignore
the mathematics in the very way in which Socrates employs geometry in the Meno.

In order to understand what share the soul has in the slave’s anamnésis, it is
not only necessary to remember that the mathematics exercise serves as an
elucidation of the Pindar quote, but also that, in turn, this quote is Socrates’ reply to
what has become known as “the Learner’s Paradox” or “Meno’s Paradox.” This
paradox came about as follows. One of Meno’s answers to the question “What is
virtue?” was: “Virtue is the ability to procure things honourable” (egé touto legd
aretén, epithumounta tén kalén dunaton einai porizesthai, 77B5-6). In reply, Socrates
asked if the procuring must be done righteously and devoutly (dikaids kai hosids,
78D4), to which Meno responded that such has to be the case (78E3); hence, justice
and wisdom (tén dikaiousunén kai sophrosunén, 79A 4-5) both became an example
of virtue, or a “part of virtue” (morion aretés, 79A4). Socrates concluded that Meno
claimed to know what certain parts of virtue are (namely justice and wisdom),
without yet knowing what virtue itself is: “But now, dear sir, you should not, while
still searching for what virtue as a whole is, explain [virtue] by replying through its
parts” (Mé toinun, 6 ariste, méde su eti zétoumenés aretés holés ho ti estin oiou dia tén
tautés morion apokrinomenos délésein autén hotbioun, 79D7-9). Meno’s Paradox
revolves around the relationship between whole and parts; and as we will see in the
next paragraphs, this relationship is crucial in interpreting the mathematics
passage.

Socrates’ remark causes Meno to enter into an aporia with respect to the
question ti esti areté (“now I have nothing at all to say about what it is,” nun de oud’
ho ti esti to parapan eché eipein, 80B4-5):°¢ he feels as if his soul and tongue are
stunned (egdge kai tén psuchén kai to stoma narké, 80A10-B1). Meno accuses
Socrates of bewitching and intoxicating him (goéteueis me kai pharmatteis, 80A3),

55 Also téi nun biéi, 85E11.
56 Also aporeis, 80A2; aporein, 80A2; aporias, 80A4.
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and compares Socrates to an electric ray (homoiotatos einai to te eidos kai talla
tautéi téi plateiai narkéi téi thalattiai, 80A 6-7). In turn, Socrates says that he causes
aporiai in others because he himself, more than anyone else, is in doubt about what
virtue is (pantos mallon autos aporén houtés kai tous allous poié aporein, 80C9-
D1).57 Instead of feeling even more despondent, Meno replies sarcastically: “Then in
what way will you search, dear Socrates, for that of which you do not at all know
what it is?” (Kai tina tropon zétéseis, 6 Sokrates, touto, ho mé oistha to parapan ho ti
esti, 80D6-7). Meno tries to rub this in deeper: “What sort of thing, then, among
those that you do not know, will you search for and place before us? Or even if,
when you are lucky, you will hit upon something, how will you know that it is the
thing that you did not know?” (poion gar hén ouk oistha prothemenos zétéseis? é ei
kai hoti malista entuchois autoi, pds eiséi hoti touto estin, ho su ouk éidéstha?, 80D7-
10).

Socrates calls this a “highly contentious argument” (eristikon logon, 80E1),
and rephrases Meno’s “contention” into the Learner’s Paradox: “That a human is not
to search for what he knows or does not know—for he either knows it, in which case
it is not necessary to search for it; or does not know it, in which case he does not
know what it is that he would be searching for” (ouk ara esti zétein anthrépéi oute
ho oiden oute ho mé oiden [...] oute gar an ho ge oide zétoi: oide gar, kai ouden dei t6i
ge toioutd zétésedbs: oute ho mé oiden: oute gar oiden ho ti zétései, 80E1-5). Since
Socrates answers this paradox by citing Pindar, and illustrates his interpretation of
the citation by confronting the slave with the problem of doubling the square, it
follows that the slave’s aporia should be understood in light of Meno’s Paradox.
Meno seems hopelessly stuck with respect to the question ti esti areté, but he
attempts to dispel the gravity of his aporia by pointing out the paradox. As we have
seen, the slave appears to be hopelessly stuck too, with respect to the irrationality of
2v2. But this does not describe the full extent of the comparison between the
aporiai of Meno and the slave. Socrates, as we have seen, states that Meno claims
knowledge of certain “parts” of virtue, without knowing what virtue itself is as a
whole (kata holou, 77A7). The situation of the slave will be similar, albeit in an
inverted sense. The slave utters what Socrates will call alétheis doxai: without
claiming to know what a certain “part” is (the side of the 8-foot square, i.e. the
diagonal), and in spite of not knowing that “part,” he will encounter the zétoumenon
by first being confronted with a “whole” (of which the side is a “part”)—the 8-foot
square. Precisely that event, as Socrates wants to point out, answers Meno’s
Paradox.

Before discussing how the utterance of alétheis doxai sheds light on the role of the
slave’s soul, we will first look into the meaning of aléthés doxa; this will happen with
respect to how the mathematics develops in a peculiar “orderly” fashion.

57 Also aporein, 80C9-10.
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3.2: (Ouk) Eidenai Versus Doxa and Epistémé

Many commentaries on the Meno argue that the conversation between Socrates and
the slave exhibits the pattern of mathematical proof. Socrates, according to that
interpretation, takes the slave through a proof in steps, starting from “logically
primitive propositions,”>® and “axiomatic truths,”>® via the discovery of some
“logical relations of concepts” through “the rules of inference,”®® onwards to the
theorem,®! all this happening, of course, “in the right order.”62 But this
interpretation is problematic, even though certain pronouncements by Socrates can
be considered “primitive propositions” (e.g. that the sides of a square are equal in
length, 83C1-2), and the slave indeed makes logical inferences (e.g. that the tilted
area measures 8 square feet, 85B2). Without denying the logical nature of certain
events in the mathematical passage, it is my opinion that no interpretation of Meno
84B-85B can afford to ignore “the mystery in the maths.” If this passage is
interpreted as following the pattern of mathematical proof—without accounting for
the possibility that the mathematics, in the very way in which it takes place in the
Meno, offers crucial clues as to what is “mysterious” about anamnésis—the exegesis
will end up off track.

This kind of interpretation will either entirely ignore the diagrams, or treat
them as mere illustrations of what is essentially an arithmetical procedure, or even
qualify the diagrams as dispensable.®3 But the diagrams are of crucial importance to
the entire dialogue, since by Socrates’ employment of their opaque features, they
form the indispensable core of his reply to Meno’s Paradox. Also, the interpretation
of the mathematical passage in terms of proof may interpret the slave’s anamnésis
either strictly as a process of logical inference, reducing the part played by the
dream-like state of the slave and his soul to mere embellishments; or it will explain
away the “mysterious” character of the slave’s anamnésis by reference to a religious
belief held by Plato, about which we have no direct statements from Plato himself,

58 Moravcsik 1994, p. 119; Vlastos 1994, p. 96.

59 Vlastos 1994, p. 99.

60 Vlastos 1994, pp. 92,97, 99; Scott 2009, pp. 102, 105.

61 Knorr 1975, p. 90.

62 Scott 2009, p. 102.

63 Vlastos claimed that if the diagrams were deleted from the Meno entirely, and the
geometrical problem were replaced by a strictly arithmetical one, this would not make “any
material change” to the meaning of the dialogue (Vlastos 1994, p. 90). Apart from the fact
that Vlastos apparently was not aware of the crucial role of diagrams throughout ancient
Greek mathematics, he clearly missed the significance of the final diagram in the Meno in
answering Meno’s Paradox. An interesting side-note here is the following. Vlastos asserts
that the content of the Meno would have remained the same if, instead of the slave going
through a geometrical problem, Plato would have staged a blind person solving an
arithmetical problem (Vlastos 1994, p. 95). This would hold if the implicit suggestion that
blind people cannot solve geometrical problems were true. There is, however, a famous
proof of the Pythagorean Theorem by a blind girl, Emma Coolidge, which makes use of
diagrams: see Kaplan & Kaplan 2011, pp. 103-107.
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and which, because his was apparently an unavowed “personal faith,”¢4 is supposed
to have no bearing on the mathematical passage in such a way that it would
undermine the “orderliness” of the geometrical process transpiring independently
from that faith in 84B-85B.%°

That the mathematical passage follows an orderly path is usually gathered
from the adverb ephexés and the impersonal verb dei in 82E,%® where Socrates
remarks to Meno: “And now watch his remembering next, as one should be
remembering” (Theé dé auton anamimnéskomenon ephexés, hés dei
anamimnéskesthai, 82E13-14). Since ephexés is often used to describe an orderly
succession of things or events, such as the succession of natural numbers in
counting (1, 2, 3, 4, 5 etc.),%” the adverb is taken to signify the orderly succession of
first principles,® inferences made from those, and certain analyses (e.g. the solving
of unknown variables); dei is considered to denote the logical necessity involved in
this step-by-step process leading towards the solution of the geometrical problem,®°
as if one gradually moves from darkness to light. But first of all, there is no such
gradual progress, as the slave remains in darkness, and perplexed, until the meaning
of the final diagram (fig. 13) strikes him unsuspectedly and at once. Furthermore, in
what is ephexés, i.e. in what follows next in the passage of the dialogue where the
adverb is used, we do not witness a step towards the light, but yet another mistake
by the slave (his statement that the side of the 8-foot square is 3 feet, 83E and fig. 4),
followed by the ineluctible aporia. Rather than expressing the order and necessity of
rigid logical reasoning, ephexés and dei signify that the slave is bound to make
mistakes, and will have to end up in an aporia.

The fact that ephexés does not imply a gradual ascent from darkness to light,
but rather a sudden turn of events, i.e. an abrupt shift from one stage, sharply
marked off from a next, can be followed in Plato’s Greek. In the quotations discussed
in §3.1, and taken from 77B-80D, forms of (ouk) eidenai were used for ‘knowing’ and
‘not knowing’, while neither Meno nor Socrates used doxa and epistémé (or words
derived from those nouns) anywhere in these passages. This use of (ouk) eidenai to
the exclusion of doxa and epistémé is continued in the first part of the mathematical
passage, up until, and including, 84C. This is significant, for the use of doxa will not
occur until immediately before the final diagram is drawn (fig. 13), in 84D, and there
refers to the alétheis doxai manifested by the slave after the final diagram has been

64 Vlastos 1994, pp. 103-105.

65 Vlastos 1994, pp. 103-105.

66 Scott 2009, p. 101.

67 Cf. Aristotle, Physics V.iii, 226b35-227a9.

68 Klein 1965, p. 173.

69 According to Klein, one does not witness a mathematical proof in Meno 84B-85B, since
the slave, as Klein notes, does “not ascend to those more comprehensive suppositions from
which he would have been able to demonstrate, step by step, in a strictly regulated and
transparent manner, the construction presented to him by Socrates.” Even so, the
mathematical passage neither represents “an initial ‘analytical’ exercise in mathematics,” as
Klein then moves on to claim, since the point of the mathematical passage is not the
mathematics as such, but answering Meno’s Paradox through the employment of certain
misleading or otherwise opaque features of the diagrams. See Klein 1965, pp. 176-177.
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drawn, while epistémé will surface only as from 85C, and there refers to the slave’s
future knowledge, which, as said before, does not materialize in the Meno. The use of
(ouk) eidenai to the exclusion of doxa and epistémé is best illustrated by the two
interjections in which Socrates turns his attention away from the boy, and remarks
to Meno on the slave’s development (82E3-14 and 84A5-D3).

The first interjection occurs after the slave has given Socrates his initial
wrong answer (that the side of the 8-foot square must be double that of the original
square, i.e. 4 feet; 82E, fig. 2), and right before Socrates will draw the diagram of the
16-foot square (fig. 3). The adverb nun (82E5) describes the timespan between
these two moments: “He now supposes he knows of what kind the line is from
which one begets the 8-foot square” (kai nun houtos oietai eidenai, hopoia estin aph’
hés to oktépoun chérion genésetai, 82E5-7). As in 77B-80D, doxa is avoided (one
would consider the use of pseudés doxa appropriate), and instead, eidenai is used.
The next interjection takes place right after Socrates has demonstrated to the slave
that the 3-foot line generates a 9-foot square (fig. 4), and the boy, when asked what
line generates the 8-foot square, exclaims: “But by Zeus, Socrates, I don’t know” (Alla
ma ton Dia, 6 S6krates, egdge ouk oida, 84A3-4); this is characterized by Socrates as
an aporia, as already noted above in §1.1 (aporein, 84A10 and 11). Immediately
after this exclamation, Socrates asks if Meno has seen how the boy is already moving
along in remembering (édé badizén hode tou anamimnéskesthai, 84A5-6)—the
adverb édé here performing the same function as nun just now, marking off a stage
in the slave’s development, a “moving along” (badizén), which can hardly be
considered progress, but rather indicates that the boy’s predicament is intensifying:
besides not knowing, he no longer believes he knows (kai hésper ouk oiden, oud’
oietai eidenai (84A11-B1).

The use of (ouk) eidenai to the exclusion of doxa and epistémé is continued
throughout 84B and C: at first the slave did not know (éidei ou, 84A7), and he does
not know now (oude oiden, 84A8), but believed he knew (eidenai, 84A9); he
answered as if he knew (hds eidds, 84A9-10), whereas now he does not know (ouk
oiden, 84A11) nor assumes he knows (eidenai, 84B1); he is better off now, not
knowing (ouk éidei, 84B4), for he will continue searching while not knowing (ouk
eidds, 84B11), not assuming that he knows (eidenai, 84C5) while not knowing (ouk
eidds, 84C5-6), because after having entered into an aporia and being faced with not
knowing (mé eidenai, 84C6-7), he will be spurred on by a desire to know (eidenai,
84C7). At this stage in the dialogue, the slave does not have opinions, not even false
ones—he simply does not know (ouk eidés). Only once the final diagram has been
drawn, will he begin to utter true opinions, alétheis doxai. That event, even though
logical inferences play their part in it, is not the result of a process that exhibits the
pattern of mathematical proof: in its dependency on particular opaque features and
surprising aspects of the diagram, it marks an abrupt change instead.

3.3: The Slave and His Soul - A Game of Musical Chairs

It could be argued that there is “progress” in Meno 82A-86B, not as a gradual ascent
from darkness to light, or from first principles to a theorem, but as “progress”
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involving the following necessary (but not logically necessary) steps: (1) believing
one knows and giving wrong answers, i.e. not knowing (ouk eidenai); (2) entering
into an aporia; (3) besides not knowing, no longer believing one knows. These
“progressive” steps do not represent “intermediary results” in the mathematical
sense: they do not mark progress along the road towards proof, in which one can
“perceive each successive logical relationship,””® i.e. the logically necessary
relationships between primitive statements, intermediate results, and the theorem.
They are necessary in a different sense, to be understood within the context of
Meno’s Paradox: only after giving wrong answers, entering into an aporia, and
besides not knowing, no longer believing he knows, the slave is forced into a
situation in which, while not knowing, he is to search for what he does not know, the
zétoumenon. The step in the slave’s progress where the zétoumenon is about to be
found, marks a sudden sweep towards a different stage, which is characterized by
the slave manifesting alétheis doxai. Rather than discussing this stage as an
intermediary result in the mathematical sense, Plato characterizes it as a “dreamlike
state,” bringing the slave’s manifesting of alétheis doxai on a par with the way in
which alétheis doxai are discussed later on in the dialogue, in the context of virtue
and with regard to statesmen: as being “enraptured” (enthousiazein, 99D4),
“inspired” (epipnous, 99D4), “possessed” (katechomenous, 99D4), and as an instance
of “divine dispensation” (theiai moirai, 99E8, 100B3).

In what sense the slave is in a “dreamlike state” can be gathered from Plato’s
Greek. As from 85B, in the passage where the second mention of doxa occurs, we can
witness Socrates playing a “game of musical chairs,” speaking about the slave and
the slave’s soul, while much of the time not explicitly distinguishing between the
two. The manifesting of alétheis doxai marks the stage that is current in 85C, as
indicated by the adverb nun (85C10)—the stage where the final diagram has been
drawn, and the tilted area is recognized as the 8-foot square. Precisely there, the use
of (ouk) eidenai is abolished, except when—significantly—Socrates discusses
Meno’s thoughts instead of the slave’s (oisth’, 85C13), or when Meno expresses his
own thoughts (oida, 85E7). Now that (ouk) eidenai is dropped with respect to the
slave, doxa is introduced; and epistémé will be spoken of in the future tense, as a
stage in the slave’s development that, as indicated in §2.2, will not transpire in the
Meno. First, Socrates asks Meno if the slave has given any opinion that is not his
(estin héntina doxan ouch hautou houtos apekrinato, 85B13-14)—the indicative
present tense estin and the noun doxa clearly referring to the phase after the final
diagram has been drawn, indicated, as noted before, by nun (85C10). Meno replies:
“No, on the contrary: [any opinion he gave is] his” (ouk, all’heautou, 85C1). We note
how Meno agrees that the opinions, which were “just now” uttered by the slave
(such as his enunciation that the tilted square measures 8 square feet), are the
slave’s opinions—it is, however, not said that he has them. Then, Socrates interjects
that the slave, “as agreed a little earlier, did not know (kai mén ouk éidei ge, hés
ephamen oligon proteron, 85C2-3): the “little earlier” referring to the phase before
the tilted area was recognized as the 8-foot square, in which forms of eidenai where
used instead of doxa and epistémé (the continued use of éidei in 85C2 being

70 Scott 2009, p. 102.
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consistent with this, and the past perfect tense in éidei referring back in time). With
this interjection, Socrates’ game of musical chairs kicks off properly.

Next, Socrates asks if “these opinions were in the slave” (enésan de ge autodi
hautai hai doxai, 85C5): the indicative past tense referring back to the phase before
the tilted area was recognized as the 8-foot square—this, however, being the phase
from which the use of the noun doxa was advertently barred. So the slave did not
have any opinions at that stage: the opinions were in him—we note the role of ev,
here as a prepositional prefix, and sense that enésan expresses that the doxai were
in the soul of the slave, so that when Socrates says that the opinions were “in him,”
i.e. in the slave, he is not being precise, speaking of the slave while actually referring
to the slave’s soul. With this lack of akribeia, Socrates’ game of musical chairs is
gaining momentum. From doxai “being in” the slave, Socrates draws a first
conclusion: “So in [the slave], not yet [having reached the stage of] knowing about
the things which he does not know, are true opinions about the things which he
does not know?” (Téi ouk eidoti ara peri hén an mé eidéi eneisin alétheis doxai peri
touton hon ouk oiden, 85C7-8). The several conjugations of eidenai (the single dative
participle (t6i) eidoti, the third person single subjunctive eidéi, and the third person
single indicative oiden), in spite of the present tense of my translation, refer back to
the stage before the tilted area was recognized as the 8-foot square (as indicated,
again, by the use of eidenai), and stress (also through the adverb ara) that true
opinions, though he absolutely did not know (eidenai), were already in the slave. But
again, they “were in” him, i.e. in his soul: he did not “have” them—for then he would
have had epistémé.”! But as said, the use of epistémé is reserved for the slave’s future
development, which we do not witness in the Meno.

From the phase before the tilted area was recognized as the 8-foot square,
when the slave did not know (though true opinions were in him), Socrates shifts
attention to the actuality of what happened just now (indicated by the adverb arti,
“just now”: the moment after the slave realized that the tilted area is the 8-foot
square), and of what is going on right now (indicated by the adverb nun, “at
present”): “And now, to him it is as if [he is] in a dream, after those opinions have
been brought into movement just now” (Kai nun men ge autéi hosper onar arti
anakekinéntai hai doxai hautai, 85C10-11). The doxai that were in the slave have
been stirred up: one should note the prefix ana- in anakined, suggesting, as noted in
§2.4, a movement from something towards something else, a relevating similar to

7t None of the translations that I am aware of maintain the dative in t6i ouk eidoti in respect
of its dependence on the prefix en- in eneisin: they therefore do not distinguish between the
slave and his soul, i.e. do not appreciate the fact that the slave does not have true opinions,
whereas rather the true opinions are “in him,” i.e. in the boy’s soul: thus, these translations
erase Socrates’ game of musical chairs. These translations neither respect the difference
between eidenai on the one hand, and doxa and epistémé on the other, preferring instead to
translate the sentence in 85C7-8 as the slave “having”, i.e. being in full possession of, true
opinions. But this, of course, begs the question of what the difference is between having true
opinions and having knowledge: there may be none. But there is a difference between
manifesting true opinions and having knowledge, and in order to appreciate this, the dative
in téi ouk eidoti should be respected, as it communicates a peculiar “disconnect” within the
slave; this “disconnect” will be discussed in the next chapter.
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the significance of the prefix eis- in eiserchomai, used in the Theaetetus to indicate
the “jumping at one” of a previously unrealized feature of a diagram. In the Meno, as
we have seen, what “jumps at” the slave is the tilted area, which is ultimately
recognized as the 8-foot square. The dreamlike state of the slave, the being brought
into movement of doxai, and the recognition of the 8-foot square are connected, as
underscored by Socrates’ game of musical chairs: the boy’s doxai are not his, he does
not “have” them, but they are—somehow—in his soul. They “jump at him” from the
diagram as much as from his soul, so that the boy is now able to manifest truths—
but in such a way that, when he points to “that line” (apo tautés [grammés], 85B4),
he almost speaks as if he were an object of ventriloquism.

From the above observations, an opportunity arises to connect Socrates’ game of
musical chairs—a playful hodgepodge that stirs together the utterances of the slave
with events taking place in the slave’s soul as much as in the diagrams—to Socrates’
numerous manipulations of the slave. These manipulations, as will be discussed in
the final paragraph, bring about a peculiar disparity within the slave: they cause a
“disconnect” between the slave on the one hand, and the boy’s soul on the other.

3.4 The Slave’s Manifestation of Alétheis Doxai

The point of Socrates’ game of musical chairs is that the slave does not have true
opinions (which would imply knowledge on the boy’s part), but manifests them:
inducing the slave to manifest alétheis doxai constitutes Socrates’ reply to Meno’s
Paradox. How does this manifesting take shape, and first of all, what precisely are
the slave’s alétheis doxai? One could assume these to be “The tilted area measures 8
feet,” and “The tilted area is the 8-foot square.” Those statements, however, are
inferred from what is said by both Socrates and the slave—the latter’s assumed
alétheis doxai are not what the slave himself literally expresses. What the slave
verbally says goes no further than mentioning outcomes of a number of calculations
(such as diplasia, “double,” and oktdpoun, eight feet), and, more importantly, brief
expressions of consent (such as panu men oun, “well indeed”; and nai, “yes”). These
are words of acquiescence with respect to what Socrates says—but Socrates’
treatment of the diagram, as pointed out previously, is peculiar, and therefore one
could expect the slave’s consent to be affected by this. In this final paragraph, we
will discuss one further peculiarity; at the core of this lies that the words used by
Socrates in discussing the geometrical problem, and to which the slave consents,
were already familiar to the slave in a colloquial sense. In the course of the
mathematics passage, the significance of those words will be stretched by Socrates
beyond their everyday use, as the slave finds out twice, to his surprise—first in the
aporia, and next in the sudden realization that the tilted area must be the 8-foot
square.

The colloquial sense of the vocabulary used is prominent at the beginning of
the conversation, when Socrates asks the slave: “Tell me, boy, do you know that a
square is like this?” (Eipe dé moi, 6 pai, gignéskeis tetragénon chérion hoti toiouton
estin, 82B8-9), to which the boy answers: “I do indeed” (egdge, 82B10). Because we
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are reading about a geometrical problem, we are inclined to assume that we should
read some strict mathematical significance into words such as tetragénon chorion,
and all other subsequent words with a mathematical ring to them: the mathematical
passage would not make sense—we tend to believe, at least—if these words were
not used (or not intended by Socrates to be used) with some strictly defined
geometrical meaning (as is the case, for example, in Euclid’s Elements). But the sense
in which the slave consents to (or utters) “mathematical” expressions need not be
understood within the context of rigid, proof-driven mathematics; rather, their
sense should be gathered from remarks exchanged between Socrates and Meno
right before Socrates begins to address the slave. Socrates corroborates whether the
boy is Greek, and speaks Greek (Hellén men esti kai hellénizei, 82B3), to which Meno
responds: “Very much so, as he was born in the house” (Panu ge sphodra, oikogenés
ge, 82B4). This, and not the first principles of geometry, is the initial background to
the sense in which the words are used in the mathematics passage: the colloquial
Greek language, by which the slave was surrounded from the moment he was born
in Meno’s house.

The expressions used throughout the mathematical exercise are words that
we learn for the first time, not in geometry class, but on our mother’s (or father’s)
lap. In order of first occurrence, the following are the “mathematical” expressions
used by the slave, or gathered by the slave from Socrates: ‘square’ (tetragdnon
chérion, 82B8-9); ‘equal’ (isas, 82C1); ‘line’ (tas grammas, 82C2); ‘four’ (tettaras,
82C2); ‘middle’ (mesou, 82C4); ‘larger’ and ‘smaller’ (meizon and elatton, 82C7-8);
‘two’ (duoin, 82C10); ‘foot’ (podoin, 82C10); ‘one’ (henos, 82C12); ‘double’ (diplasion,
82D10); ‘eight’ (okté, 82D14); ‘how much’ (péliké, 82D15); ‘long’ and ‘short’
(makron and brachu, 83A2-3); ‘half’ (hémiseas, 83C10); ‘three’ (tri[poda], 83E3); ‘to
count’ (arithmein, 84A1); ‘corner’ (géniai, 84D13). That is all - what the slave
expresses or consents to, are words he learned as an infant, as elements of the
colloquial Greek language. But colloquial Greek, like any colloquial language, is ill-
defined, vague, and adaptable to the pressures of what happen to be current
circumstances. But because colloquial words are vague, they are also taken to be
transparent, i.e. easily comprehensible in a point-and-see kind of way, which, as
already discussed in §1.1, is the way in which they are used in the Meno, and in
which they had always been used by the slave in his nun bios. While using the words
in Meno’s household, the slave believed he knew their meaning; due to their
transparency, he assumed that their meaning stretched no further than their
everyday use; and this is what the slave continues to assume throughout his
conversation with Socrates. Through the diagrams, however, Socrates will twice be
seen to infuse the words with diverging meanings that the slave was not yet aware
of in his nun bios; this “infusion” is possible precisely because the words are used
colloquially, i.e. as ill-defined and adaptable vocabulary. Yet the slave, initially at
least, does not notice this: when asked, if he understood what a square was, the boy
looked at the initial diagram (fig. 1)—and what he saw, suited (or at least did not
conflict with) the boy’s colloquial sense of the words tetragénon chérion, isas,
grammé, and tettaros (82B8-C2)—a transparency that Socrates, of course, had
anticipated.



36

In what manner does Socrates infuse the colloquial Greek with diverging meanings?
The first thing to notice is that the words continue to refer to one and the same
subject matter, applying unambiguously to the diagrams and their elements, such as
is the case with “four equal spaces” (tettara isa chéria) in 84D15, referring to the
four quadrants of the 16-foot square, and “those lines” (hautai grammai) in 85A4,
referring to the four oblique lines drawn by Socrates in each quadrant; the same
goes for all other “mathematical” words used throughout the conversation, and
which are immediately verifiable in the “point-and-see” manner of transparent,
colloquial Greek. The second thing to notice is that, due to the vagueness of
everyday Greek, the words are open to becoming infused with two very different
meanings: these can be brought out by again looking at Plato’s choice of words,
especially at two different verbs, gignomai on the one hand, and eneinai on the
other. Roughly speaking, the verb gignomai is applicable to the slave’s ill-starred
attempt at constructing the 8-foot square by doubling the 4-foot square with the
unit squares as a point of departure, while the verb eneinai encompasses Socrates’
concealed strategy of arriving at the 8-foot square by cutting the 16-foot square in
half. From the start of their exchange, Socrates infuses the slave’s colloquial Greek
with the first meaning, that of gignomai; but from a certain moment in the
conversation, Socrates stealthily adds the second meaning, that of eneinai. The use
of gignomai continues, but the vocabulary has now become infused by both
meanings: this goes especially, as we will see, for the word ‘line’ (grammé). This
simultaneous infusion by two meanings will bring us to the core of why the slave
manifests true opinions instead of simply having them—and to what, in a sense, can
be called “mysterious” about the mathematical passage.

As discussed in chapters 1 and 2, Socrates induced particular thought
tendencies in the slave through the first series of diagrams (figs. 1-4). One tendency,
established by the unit squares from which the first diagrams were assembled, led
the boy to assume that the 8-foot square would share a common unit with the initial
4-foot square drawn by Socrates. This tendency can be termed compositive; in the
words of Meno’s Paradox, it can be understood as attempting to arrive at a “whole”
(the 8-foot square) through assumed “parts” (the unit squares) before having
determined the whole in and by itself, i.e. as assembling a whole by simply adding
preselected parts to one another (as if they were Lego bricks) until the whole comes
about. This tendency almost completely marks the first stage of the conversation
between Socrates and the slave (82B8-84A4), in which a total number of 13
inflections of the verb gignomai occurs, always having the first, compositive sense .72
For example, in the first occurrence of gignomai, Socrates discusses how a figure
assembled from two unit squares measures 2 square feet, and if two unit squares
were added, the whole (to holon, 82C11) would become (gignetai, 82D2) 4 square
feet. This immediately leads Socrates to suggest that a larger figure, twice the size of
this 4-foot square (toutou tou chériou heteron diplasion, 82D9-10), can come about
(genoit’, 82D9) as well, i.e. can be assembled compositively as with the 4-foot square

72 Gignetai, 82D2; gignetai, 82D3; gignetai, 82D4; genoit’, 82D9; genésetai, 82E7; gignesthai,
83A2; gignetai, 83A7; gendntai, 83A11; gignetai, 83B8; gignetai, 83C2; gignetai, 83E7;
gignetai, 83E10; gignetai, 83E17.
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just before—a suggestion that ultimately leads to the slave’s aporia. The
compositive character of gignomai as marking the first meaning, i.e. that of the
colloquial Greek exchanged between the slave and Socrates, is further underlined in
83A7-8, where gignomai is coupled with prostithémi (‘to add’; prosthémen, 83A8) in
discussing the doubling of the side of the 4-foot square in the first of the boy’s failed
attempts to arrive at the 8-foot square—a compositive attempt that, as Socrates
demonstrates, brings forth (genésetai, 82E7; gignesthai, 83A2; genéntai, 83A11;
gignetai, 83B8 and 83C2) the 16-foot square instead (fig. 3).

The diagram of the 16-foot square gives rise to the only use of the verb
eneinai in the first stage, there already indicating the second meaning, that of first
arriving at a whole to then determine an included part, which, in opposition to the
compositive tendency, can be called resolutive. The discussion on how the 16-foot
square contains four equal smaller squares of 4 square feet (en autéi esti tauti
tettara etc., 83B5-6) prefigures the resumed discussion of the 16-foot square in the
second phase of the conversation between Socrates and the slave (84D4-85B11). In
this resumed discussion of the 16-foot square, the colloquial Greek is charged with
the second meaning as designated by the preposition en, occurring twice, and by the
adverb entos, the verb eneinai, and the verb periechomai (‘to contain, to embrace’),
each occurring once.”® Simultaneously, however, Socrates continues to infuse the
words with the first meaning, as is indicated by the prolonged use of gignomai,
inflections of which occur 7 times in the second phase of the conversation.”* When
Socrates, after having drawn the first quadrant and using the same everyday
language as before, asks the boy: “Is this before us indeed a 4-foot area? Do you
understand?” (ou to men tetrapoun touto hémin esti chérion, manthaneis? 84D4-5),
the boy’s “understanding,” as far as he himself is concerned, is still in line with the
colloquial meaning of ‘four, ‘foot, and ‘area,’ and in no way dissimilar to his
understanding, earlier on, of the first square drawn by Socrates (fig. 1)—for again,
nothing that he sees conflicts with his colloquial use of the words, in spite of the fact
that Socrates this time, contrary to the first diagram, does not divide this 4-foot
square into unit squares: the slave simply accepts that he is, again, looking at a 4-
foot square. Socrates uses that as an opportunity to show the slave how the three
other quadrants are “added” (again, prostithémi; prostheimen, 84D7), from which, in
sum total, four quadrants “come about” (genoit’, 84D15), which together “assemble”
(gignetai, 84E3; genesthai, 84E5) the 16-foot square. Socrates teasingly adds: “But
we were supposed to bring about only twice [the 4-foot square], or don’t you
remember?” (Edei de diplasion hémin genesthai, é ou memnésai, 84E5-6).

This use of mimnéskein plays on the fact that the mathematical exercise is
supposed to be a case of anamnésis; and it is with this taunting remark of Socrates,
and his drawing of the four oblique lines, that the anamnésis properly starts. In one
and the same sentence, still in colloquial Greek, Socrates expresses the two
meanings, doing so sequentially: he first intimates how the oblique lines add up to a
total of four (gignontai, 85A4), using the first meaning; and then asks if the oblique

73 Periechousai, 85A5; entos, 85A11; enestin, 85A13; en, 85A13 and 15.
74 Genoit’, 84D15; gignetai, 84E3; genesthai, 84E5; gignontai, 85A4; gignontai, 85A6;
gignetai, 85B1; gignoit’, 85B10.
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lines contain a tilted area (periechousai, 85A5), using the second meaning.
Revealingly, the slave answers by repeating “gignontai” (85A6), and not by
consenting to periechousai, thus staying with the first meaning. Nonetheless, the
slave has just been shown that the four lines are not randomly distributed
throughout the diagram (compare fig. 16). They are arranged in a particular way, as
discussed in §2.1: Socrates has turned them at an angle of 90 degrees for every
successive quadrant. Thus, the slave has been made aware of the fact that the lines
are not only divisors, dividing each quadrant in two (as is indicated by temnousa,
85A1), but also boundaries (indicated by periechousai, 85A5), which outline a figure
that has now emerged and “jumps at him” (compare fig 18 as opposed to fig. 17). As
we have seen, the slave does not yet recognize the tilted area as the 8-foot square,
for when asked what the area of the tilted figure is, he answers “I do not
understand” (ou manthand, 85A9).

Fig. 16: one example of a random distribution of the oblique lines in the four quadrants
of the 16-foot square.
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Fig. 17: from a random distribution of diagonals, no figure emerges.

Fig. 18: from Socrates’ distribution of the diagonals, a figure emerges: the tilted area.

Socrates, as we have seen, leads the slave towards the realization that the tilted area
has four units (half-squares), twice the number of the initial 4-foot square, and so
the slave finally identifies the tilted area as the 8-foot square. This should be
interpreted in terms of Meno’s Paradox. The crucial tipping-point in the
conversation was the slave’s unwitting discovery of the half-square as a counting
unit. But the possibility to use the half-square as such depended entirely on first
having seen the tilted area as an area, and this depended on the word ‘line’ having
the second meaning in addition to the first, i.e. that of boundary, and not only of
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divisor. Because of the first meaning, it was possible to see how “that line” divides
each quadrant into two; because of the second meaning, it was possible to see that
in each quadrant, one half falls within the respective quadrant as well as within the
tilted area. The identification of the tilted area as the 8-foot square in turn led to the
determination of the oblique line as the side of the 8-foot square, which only from
there on was called by a “technical,” i.e. non-colloquial word, the name ‘diagonal’
(diametros, 85B8).75 In short: first a whole was found (the tilted area), and then a
part (the side)—in entirely the opposite working order from when compared to
how the slave dealt with the first series of diagrams. But because the slave had
found the whole, the tilted area, without first recognizing that the tilted area was in
fact the 8-foot square, it can be said that he found the whole without (yet) knowing
it. Precisely this proves Socrates’ point with respect to Meno’s Paradox: that it is
possible to find a whole before the part.

Conclusion

In what sense is the mathematical exercise in the Meno “mysterious”? This boils
down to asking how the slave’s soul participates in the actual mathematics—which,
in turn, acuminates as the question about how the boy manifests alétheis doxai while
dealing with the problem of doubling the square. As demonstrated, what happens in
the diagrams simultaneously happens in the slave—what becomes relevated in the
geometrical figures and “jumps at” the slave, coincidentally emerges from the boy’s
soul. The part played by the soul signifies a peculiar “disconnect” within the slave:
when the boy speaks, his words express more than he himself realizes, since his
vocabulary is stretched by Socrates beyond its colloquial use in the boy’s nun bios.
This goes especially for when the final diagram is drawn: from that moment, it is as
if not only the slave has the word, but something else speaks through him
simultaneously. The boy starts speaking polyphonically, as it were, with two voices
that act largely independently: the first voice, ringing with the meaning of gignomai,
is induced by the first series of diagrams, and continues to sound throughout the
entire conversation. But with the final diagram, it is joined by another voice, tuned
to the second meaning, that of eneinai: this provides a counterpoint, so to speak, to
the first voice. This contrapuntal occurrence of two meanings at once marks how the
slave manifests true opinions.

The slave, however, remains oblivious to this. Once Socrates has drawn the
final diagram, the boy’s attempt at solving the geometrical problem continues as a
compositive endeavour: the slave still counts or adds up preselected elements (the
half-squares, this time), hoping that these will somehow, haphazardly, gel together
into the 8-foot square—but to the boy’s great surprise, they had already been
assembled into the 8-foot square. The slave sees this belatedly, only once he realizes
that the tilted area must be the 8-foot square: this occurrence of a delay, of a lag,
creates a sense of there having been something independent from the slave, yet
active within him—*“something” that led the slave towards the solution, “something”

75 Cf. Brown 1967, p. 71.
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affecting his calculations by providing them with a sense of unity and direction, and
“something” which finally, after the first abortive attempts (figs. 2-4), breathed life
into his calculations. This “something independent” is what I described as the
second, resolutive meaning; and that, as far as I am concerned, is what Socrates
comes to call the slave’s soul. Thus what happens to, and within, the slave—the
manifesting of alétheis doxai as the coincidental occurrence of two meanings, one
signifying the slave’s compositive endeavour, the other an “independent” resolutive
activity—is the result of several peculiarities in Socrates’ treatment of geometry:
Socrates seizes on thought patterns that lead the slave into an aporia; employs
opaque features of the diagrams; avoids the use of certain words; and utilizes the
ostensible transparency of colloquial Greek, thus infusing the slave’s vocabulary
with two different meanings coincidentally. So the “mystery” in the mathematics
passage of the Meno issues from the mathematics, i.e. results from certain peculiar
features of the geometry as these are seized upon by Socrates.

But still: doesn’t Socrates literally say that the slave’s true opinions “were in”
the boy already “at the time when he was not a human (ho chronos hot’ouk én
anthropos, 86A4-5), i.e. when he was soul, and before he became the boy that was
born into Meno’s household? Well, not quite—or not necessarily. At the end of the
mathematical passage, Socrates remarks to Meno: “And don’t you agree that, if the
truth of the things is always with us in the soul, the soul must then be immortal? So
that you should be confident, that what there is to know, but do not hit upon now—
that is, what is not being remembered [i.e. the zétoumenon]—you should endeavour
to search and remember?” (Oukoun ei aei hé alétheia hémin tén ontén estin en téi
psuchéi, athanatos an hé psuché eié, hiéste tharrounta chré, ho mé tunchaneis
epistamenos nun, touto d’estin ho mé memnémenos, epicheirein zétein kai
anamimnéskesthai, 86A14-B4). The crucial thing to notice here is that, while in 81C-
D, Socrates tried to answer Meno’s Paradox by deriving the possibility of
remembrance from the immortality of the soul (i.e. from the Pindar quote), he now
argues for the immortality of the soul by reasoning from the actual remembrance
that just took place in the slave. Several commentators have noticed this turnabout,
without however providing a plausible explanation for it.”¢ The reason for this lack
is probably the failure to notice in what way the mathematics passage is a reply to
Meno’s Paradox—yet this is the crucial point. The fact that the slave was able to find
a “part”, the zétoumenon (the side of the 8-foot square)—“that what there was to
know, but [he] did not hit upon” first—through first finding a “whole” (the tilted
area, surprisingly turning out to be the 8-foot square), takes precedence over the
immortality of the soul, i.e. over the mystery, in the Meno.””

76 Klein notices the turnabout without explaining it, arguing that the result in either case
(i.e. whether or not the slave’s anamnésis takes precedence over Pindar’s Persephone myth)
is the same: see Klein 1965, p. 180. Ebert notices the turnabout too: see Ebert 1973, pp.
179-180, and note 78 below. Scott mentions it, and offers no further comment: see Scott
2009, p. 93.

77 This point is strengthened by Ebert’s analysis of Socrates’ Greek in the latter’s elaboration
on the Pindar citation right before and right after the geometrical exercise. Ebert notices
how in the context of yet another, earlier citation of Pindar (76D6-7), Socrates had already
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Even though the theorem on doubling the square had long been proved by Plato’s
time, the Meno does not discuss it in terms of proof; nor does it describe its origin as
a mere mystery. And as far as there is talk of mystery, the mystery issues, first and
foremost, from Socrates’ peculiar employment of mathematics, which seizes on
misleading thought tendencies, the apparent transparency of colloquial Greek,
opaque features of diagrams, and the avoidance of certain words—and so makes it
possible to find a “whole” before its “part”, to hit upon an aléthés doxa, i.e. upon
something true that cannot yet be called knowledge, and to find a theorem before
proof. As such, and in a more serious fashion than mathematicians seem to do
nowadays, Plato gave an answer to the question where mathematical theorems come
from.

remarked how “the style of tragedy” (tragiké [...] hé apokrisis, 76E3) seemed agreeable to
Meno (areskei soi mallon, 76E4), while not being preferable to himself (all’ekeiné beltion,
76E7). Through a careful examination of Socrates’ use of homoioteleuta and alliterations,
Ebert is able to forward the hypothesis that Socrates, while discussing the slave’s anamnésis
with Meno, assumes “the style of tragedy” in order to cater to Meno's taste, providing a
“parody of a Gorgian epideictic logos”: like my analysis of Socrates’ smart employment of
mathematics, Ebert’s (very different) approach explains why the actual anamnésis in the
slave takes precedence over the myth as derived from the Pindar quote in the Meno. See
Ebert 1973, pp. 176-178.
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