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Abstract

In this thesis, the construction of the supersymmetric non-linear sigma
model is presented. This model is applied to the symmetry group
SU(2N). Several subgroups of this symmetry group are gauged,

whereupon the particle spectrum is determined. The thesis concludes
with an outlook on how to proceed.
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We have to remember that what
we observe is not nature herself,
but nature exposed to our method
of questioning.

Werner Heisenberg,
Physics and Philosophy (1958)
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Chapter 1
Introduction
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All phenomena currently observed can be explained as a result of gravita-
tional, electromagnetic, weak nuclear, or strong nuclear interactions. Of these,
gravity is the most familiar for everyday life, as it keeps the planets in orbit
around the sun. The force of electromagnetism binds molecules to form gases,
liquids, solids, and from these, life. The nuclear forces, as their name implies,
act only over small, subatomic distances. The strong force binds protons and
neutrons into atomic nuclei. The weak force acts on the resultant nuclei, and
causes many to decay. Hence, if fermions and bosons are the building blocks
of nature, these four interactions, called the fundamental interactions, form the
mortar that binds the blocks into a single structure.

The collection of particles and their interactions form the basis of the Standard
Model of elementary particles. Although it provides an extremely accurate
description of nature[1], it is considered to be incomplete. For example, it does
not explain the phenomena of dark matter and dark energy. It is also expected
that new physics is needed at the Planck scale (1019 GeV), since at this scale
gravitational effects become relevant. Although present experiments yield no
conclusive signs of additional structure at at TeV scale, it would be surprising
if no new discoveries would be made between the 16 orders of magnitude
between the electroweak scale and the Planck scale. This by itself is already a
strong suggestion of physics beyond the Standard Model, due to the Hierarchy
Problem.[2–6] This implies that the Higgs potential is sensitive to any additions
to the Standard Model.

Enter supersymmetry. Supersymmetry, which is the set of transformations
relating bosons to fermions and vice versa, was discovered independently by
Gervais and Sakita, Golfand and Likhtman, and Volkov and Akulov in the early
1970s.∗[8–10] As will be explained further in this thesis, supersymmetry neatly
resolves the hierarchy problem.[11] Furthermore, extrapolation of the β-functions
and running coupling constants suggest that an approximately supersymmetric
particle spectrum greatly facilitates the unification of the electro-weak and color
gauge couplings at an energy scale near 1015 − 1016 GeV.[12]

As the Standard Model does not exhibit manifest supersymmetry, any realistic
supersymmetric theory must necessarily be broken. The Minimal Supersym-
metric Standard Model is an example of broken supersymmetry, where all the
elementary particles have complementary partners. However, the mass splittings
are largely achieved by hand, rather than a result of the theory itself.

It was discovered by Zumino that the scalar fields of supersymmetry must
live in a Kähler manifold, with an explicit example being the Grassmannian
manifold U(N + M)/U(N)×U(M).[13] This has since been extended to general

∗An ealy form of supersymmetry was introduced in the mid 1960s by Miyazawa.[7] Unlike
modern supersymmtry, this early supersymmetry did not involve spacetime.
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groups G/H.[14–18] A manifold belongs to the branch of mathematics called
differential geometry, which has been given its own section further in this thesis.
Even so, it is worthwhile to have at least an intuitive picture in mind before
proceeding. A (smooth) manifold is a surface of arbitrary dimension. Examples
include the surface of a sphere or a torus. A Kähler manifold is a complex
manifold which satisfies additional requirements.

The breaking of supersymmetry and the requirement of Kähler manifolds
motivated the development of supersymmetric coset models, in particular the
coset G/H, where the global symmetry group G is broken down to H.† Usually,
these symmetries are non-linear. The manifold parametrising these symmetries
is described by the non-linear sigma model.[20] Research on these construc-
tions have been meticulously studied, and with the completion of consistent
supersymmetric models with non-linear realisations of SU(5), SO(10), E6 or
E8 new possibilities for grand unification are now available.[21–23] However,
there are two problems that arise when one considers the non-linear σ-models
used for these coset models: Firstly, the models are not renormalisable. This by
itself is not a problem, as the non-linear structure of the model is assumed to
hold near the Planck scale. At this energy scale, supergravity must be taken in
consideration. As supergravity theories themselves are not renormalisable, it is
expected that non-renormalisable couplings might arise in the matter sector. At
low energies, the theory should reduce to a renormalisable one.[24] Secondly,
the pure non-linear σ-models suffer from anomalies.[25–27] An anomaly arises
when a symmetry of the classical theory is not a theory of the quantum theory,
implying that the theory is inconsistent. These anomalies can be cancelled by ad-
ditional supermultiplets carrying representations of the original coset space.[21]
Since this thesis is done at the classical level, this problem is mentioned only for
completeness.

This thesis considers a construction based on the U(N + M)/U(N)×U(M)
model.[28] The thesis is outlined as follows: in chapter 2, a short review of the
mathematical formalisms needed is presented. This includes a short review
of Kähler geometry, the Standard Model, as well as supersymmetry from the
component formalism. In chapter 3 a construction of the non-linear σ-model
and its coupling to matter fields is presented. Once this is done, the full gauge
invariant supersymmetric σ-model is derived. In chapter 4 two subgroups
of the full symmetry group are gauged, and the resulting particle spectrum
is determined. In chapter 5 a procedure for the cancellation of anomalies is
presented. In chapter 6 the results are presented, and an outlook on how to
proceed is sketched.

Additionally, there are 5 appendices. Appendix A provides a short reference

† For an early review, see [19].
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to various Fierz identities introduced in section 2.3.4. Appendix B shows the
transformation property of gauge fields necessary in section 3.2. Appendix C
gives a detailed derivation of the non-linear transformation of the scalar fields
in section 3.2.1. Appendix D then shows how supersymmetry can be made
compatible with these non-linear transformations. Finally, appendix E shows
how to restore supersymmetry on the non-linear σ-model upon gauging the
non-linear symmetries. Of course, the appendices will be refered to if neccessary
in the text.
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Chapter 2
Definitions and concepts
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2.1 Differential geometry

In this text we make heavy use of Lie groups. As will be explained later, Lie
groups are mathematical groups with the structure of a differentiable manifold.
Hence, before delving into group theory, the formalism of differentiable geometry
is first explained. A short extension to complex manifolds, the Kähler manifolds,
is provided at the end. This section is meant to be a short review. Detailed
treatments of differential geometry can be found in many textbooks and syllabi,
such as [29–31]. Kähler geometry is covered extensively in [32].

2.1.1 A definition of differentiable manifolds

We can put a vector space structure on any n-dimensional euclidean space En
isomorphic to Rn. In particular, we can regard any point P ∈ En as the origin
of a unique n-dimensional vectorspace, called the tangent space TPEn. By a
continuous choice of orthonormal bases {e1(P), . . . , en(P)} of the tangent spaces
we can construct the vector bundle ∪P∈En TPEn. The tangent space TPEn is then
called the fibre over P. Within an open subset U of En the fibre bundle looks like
U ×Rn. Note that since En is isomorphic to Rn, we can speak of the latter in
favor of the former. Coordinates on Rn are given with respect to the standard
cartesian basis.

Central in the study of differential geometry lies the notion of regular trans-
formations, defined as follows:

Definition. Let U be an open subset of Rn. Let there be n differentiable functions
y1 = y1(x1, . . . , xn), . . . , yn(x1, . . . , xn) of the cartesian coordinates x1, . . . , xn on U
such that the jacobian is invertible everywhere on U. Then the yi are regular coordinates
and the coordinate transformation x1, . . . , xn → y1, . . . , yn is called a regular coordinate
transformation.

Definition. A subset M of R is called a k-dimensional differentiable manifold if, given a
P ∈ M, there exists a smooth coordinate system (x1, . . . , xn) defined in a neighbourhood
U of P, such that

M ∩U =
{

P ∈ U|xk+1(P) = c1, . . . , xn(P) = cn−k

}
. (2.1)

In other words, there exists a regular coordinate transformation such that M looks like
the k-dimensional hyperplane in Rn, and looks locally like Rk.

The above definition can be roughly stated as follows: a set M is a differen-
tiable manifold if M can be covered by open collections Uα which look like open
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subsets of (are diffeomorphic to) Rn. Thus, for every Uα there exists a homeo-
morphism (a continuous bijective map with continuous inverse) φα : Uα → Vα

for an open subset Vα ∈ Rn, such that if Uα ∩Uβ 6= ∅, the composition φ−1
β ◦ φα

is smooth (that is, infinitely differentiable). Note that, for P ∈ Uα, φα(P) ∈ Rn

yields the coordinates of P. The doublet (Uα, φα) is called a chart on M. The
collection of all charts is called an atlas.

The functions φα can be used to define differentiability for functions on
manifolds:

Definition. Let M and N be differentiable manifolds. A function f : M → N is
differentiable if for P ∈ M the function ψβ ◦ f ◦ φ−1

α is differentiable in φα(P). Here,
P ∈ Uα, f (P) ∈ Vβ. (Uα, φα) and (Vβ, ψβ) are charts on M and N, respectively.

For each point P ∈ M we can again construct the tangent space:

Definition. Let M be a differentiable manifold of dimension n, P ∈ Uα ⊂ M for an
open neighbourhood Uα of P in M. A tangent vector to M in P is a map X : C∞(Uα)→
C∞(Uα) such that

1. X(a f + bg) = aX( f ) + bX(g), for a, b ∈ R, f , g ∈ C∞(Uα).

2. X( f g)(P) = f (P)X(g) + g(P)X( f ).

The collection of all tangent vectors to M in P form the tangent space TPM.

Vectors in the tangent space are spanned by the partial derivative: ∂i = ∂/∂xi =
(0, . . . , 0, 1, 0, . . . , 0), where the ith component is nonzero. The fibre bundle is
again defined as the union of all tangent spaces ∪PTPM and a vector field is
a map X : M → TPM such that X(P) ∈ TPM. In addition, X is differentiable:
X(P) = Xi∂i, where the coefficients Xi are C∞ functions of the coordinates of P.

The dual to the tangent space is the cotangent space, denoted by TP(R
n)∗ :

TP(R
n) → R. If x1, . . . , xn are local coordinates then a basis on the cotangent

space is {dx1, . . . , dxn}, defined by dxi(∂j) = δi
j. An element of the cotangent

space is called a covector or a 1-form. If f : M→ R is a differentiable function
on M then the differential-1-form is defined such that for a tangent vector on
P ∈ M: d f (X) = X( f ). In terms of the coordinates xi of a local neighbourhood
Uα: d f = ∂i f dxi.

2.1.2 The metric tensor

To make sense of concepts like angles and distance on Rn one defines the inner
product ( , ). For cartesian coordinates this is by definition (∂i, ∂j) = δij. In
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terms of regular coordinates y1, . . . , yn we can define the metric tensor g. Its
components transform according to a covariant tensor of rank two:

gij =

(
∂

∂yi ,
∂

∂yj

)
. (2.2)

The metric tensor is denoted in various ways:

g = ds2 = gijdyi ⊗ dyj = gijdyidyj. (2.3)

The inverse metric tensor is defined by the rank 2 contravariant components gij:

gijgjk = δi
k. (2.4)

Using the (inverse) metric we can lower (raise) the indices of vectors and 1-forms,
e.g. vi = gijvj.

A useful property of differentiable manifolds is that they are “locally flat”.
Be this we mean that the metric of any differentiable manifold can be written in
the canonical form

gij = ηij = diag(−1, . . . ,−1,+1, . . . ,+1, 0, . . . , 0). (2.5)

More on this in the next section. The signature of the metric is determined by
the positive and negative eigenvalues of the canonical form. Angles can now
be defined as follows: the length of a vector X ∈ TPM is defined as

√
gP(X, X).

The angle θ between two vectors X, Y ∈ TPM is defined by

cos θ =
gP(X, Y)√

gP(X, X)
√

gP(Y, Y)
. (2.6)

Distance is defined as follows: let γ : [a, b] → M be a smooth curve, and let
xi, . . . , xn be arbitrary regular coordinates. The length of γ is can now be defined
to be

Lγ =
∫ b

a

√
gij

dxi

dt
dxj

dt
dt. (2.7)

The metric tensor also allows us to compare vectors in different tangent spaces:
this is done using the covariant derivative∇i. The definition depends on whether
its argument is a vector or a 1-form (or indeed a general rank (r,s) tensor):

∇ivj = ∂ivj + Γi
jkvk,

∇iwj = ∂iwj − Γk
ijwk,

∇iT
jk
lm = ∂iT

jk
lm + Γj

iaTak
lm + Γk

iaT ja
lm − Γa

ilT
jk
am − Γa

imT jk
la .

(2.8)
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The Γ are the Christoffel symbols, constructed from the metric tensor:

Γk
ij =

1
2

gkl(∂igl j + ∂jgil − ∂lgij
)
. (2.9)

Geometrically, whenever a contravariant vector field X has a vanishing covariant
derivative, it is said to be parallelly transported from one tangent space to
another.

Since this is dependent of the path taken we can define this in terms of
curves on M: suppose for a curve γ with parameter t and local coordinates
(xi(t), . . . , xn(t)), then the covariant derivative of a vector field X along γ is

DXi

dt
=

dX j

dt
∇jXi. (2.10)

If DXi

dt = 0 then X is said to be parallel to γ. In addition, for v ∈ TPM, v′ ∈ TQM
is said to be the parallel transport of v to Q if there exists a parallel vector field X
along γ such that X(P) = v and X(Q) = v′.

2.1.3 Vielbeins

A vielbein is a set of vectors ê(a) in Tp of the manifold M satisfying

g(ê(a), ê(b)) = ηab, (2.11)

where ηab is the canonical form of the metric. Similarly, one-forms θ̂(a) in Tp
satisfy

θ̂(a)(ê(b)) = δa
b . (2.12)

We can express the coodinate basis ê(i) = ∂i in this basis:

ê(i) = e a
i ê(a). (2.13)

Inverses of the matrices e a
i satisfy

ei
ae a

j = δi
j,

e i
a ei

b = δa
b .

The vielbeins imply
gij = e a

i e b
j ηab, (2.14)

which quantifies the statement that in this basis, the metric is “locally flat”. Basis
transformations can be realised using the (1,1) tensor

e = e a
i dxi ⊗ ê(a). (2.15)
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The advantage of this prescription is that in noncoordinate bases coordinates
and bases (by local Lorentz transformations) can be transformed independently:

Ta′i′
b′ j′ = Λa′

a
∂xi′

∂xi Λb
b′

∂xj

∂xj′ T
ai

bj. (2.16)

2.1.4 Curvature

Another important object that can be constructed from the metric tensor is the
Riemann tensor. This tensor quantifies the intrinsic curvature of the manifold. It
is defined as

Ri
jkl = ∂kΓi

jl − ∂lΓ
i
jk + Γi

kaΓa
jl − Γi

jaΓa
jk. (2.17)

This definition follows immediately from the following identity:[
∇i,∇j

]
Zk = Rl

k ijZl − Tl
ij∇lZk, (2.18)

where we’ve introduced the torsion tensor

Tk
ij = Γk

ij − Γk
ji. (2.19)

If the connection coefficients turn out to be symmetric (that is, if the metric is
free of torsion), equation (2.18) further simplifies to[

∇i,∇j
]
Zk = R l

k ijZl. (2.20)

This form is known as the Ricci identity for the vector field Z.

2.1.5 p-forms and the exterior product

The notion of 1-forms can be generalised to any (0, s)-covariant tensor. We can
proceed as follows. Let S be a tensor of rank (r, s), T a tensor of rank (t, u, then
the tensor product S⊗ T results in a tensor of rank (r + t, s + u) according to

(S⊗ T)(v1, . . . , vr, w1, . . . , wt, x1, . . . , xs, y1 . . . , yu) =

S(v1, . . . , vr, x1, . . . , xs)T(w1, . . . , wt, y1 . . . , yu).

For a given covariant tensor T of rank s, we can define the antisymmatrisator A
by

A(T)(v1, . . . , vs) =
1
s! ∑

P

εP(1)...P(s)T(vP(1), . . . vP(1)), (2.21)

where ε is the Levi-Civita symbol. We sum over all permutations P of 1, . . . , r.
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Denote the vector space of antisymmetric covariant rank k tensors on the
manifold n-dimensional M by

∧k M and the direct sum of these spaces by
⊕n

r=0
∧

M =
∧

M. Then the exterior product S∧ T for covariant matrices of rank
s and r, respectively, is defined as

S ∧ T =
(r + s)!

r!s!
A(S⊗ T) (2.22)

Thus,
∧

M is realised as a Grassmann algebra. This is important in the context of
supersymmetry. Elements of

∧p M are called p-forms.
Besides the external product, we can also define the external derivative:

Definition. Let α, β respectively be a p- and q-form on a manifold M. The exterior
derivative of a p-form on M is the operation d :

∧p(M)→ ∧p+1(M) for p ∈N with
the following properties:

1. d(α + β) = dα + dβ if p = q.

2. d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.

3. d2α = ddα = 0.

A p-form α is called closed if its exterior derivative vanishes (dα = 0) and
exact if α is itself the exterior derivative of a p− 1-form (α = dβ). Poincaré’s
lemma guarantees that all closed forms on contractible manifolds are exact. This
will be important when considering complex manifolds.

Definition. Let M, N be differentiable manifolds and let f : N → R be a differentiable
function. Let P ∈ M. The pullback is the function f∗ : TPM → Tf (P)N such that for
any g : N → R and X ∈ TPM

f∗(X)(g) ◦ f = X(g ◦ f ). (2.23)

Definition. Let M, N and f be given as above. Let ω be a covariant in
(

Tf (P)N∗
)⊗k

.
The pullback f ∗ω is the tensor

f ∗ω(X1, . . . , Xn) = ω( f∗X1, . . . , f∗Xn). (2.24)

2.1.6 The Lie derivative and Killing vectors

A vector field X defines a flow through any point on the manifold M. The change
of a tensor field along the flow of X is determined by the Lie derivative. Before
we define the Lie derivative, we give the definition of the flow of X:

11



Definition. Let X be a vector field on a smooth manifold M. The flow of X through
P ∈ M is a mapping fP : (−α, α)×M→ M such that

1. f (0, P) = P.

2. d
dt f (t, P) = X( f (t, P)).

For a vector field Y, the Lie derivative is defined as

LXY = [X, Y], (2.25)

where [X, Y] = X(Y)−Y(X) is the commutator or Lie bracket. The action of the
Lie bracket on a differentiable function f is defined by

[X, Y]( f ) = X(Y( f ))−Y(X( f )). (2.26)

Thus, if X and Y are tangent vectors in TPM, [X, Y] ∈ TPM. The Lie derivative is
important when considering isometries.

Definition. Let M and N be smooth manifolds with metric tensors gM and gN , respec-
tively. A differentiable function f : M→ N is called an isometry if f ∗gN = gM.

Isometries are generated by Killing vector fields. Equivalently, translations
along these vector fields leave the metric invariant.

Definition. A vector field X on a smooth manifold M with metric tensor g is a Killing
vector field if LXg = 0. Equivalently, X is a Killing vector field if ∇iXj +∇jXi = 0,
where ∇j is the covariant derivative on M.

2.1.7 Kähler geometry

The concept of differential geometry can be extended to include complex coordi-
nates (zα, zα), where zα is the conjugate of zα. Locally, the metric is

gα,β = g
(

∂

∂zα
,

∂

∂zβ

)
. (2.27)

Given any complex metric g with gαβ = (gβα)
∗ (the metric is therefore hermitian),

the fundamental two-form Ω in local holomorphic coordinates can be expressed
as

Ω = igαβdzα ∧ dzβ. (2.28)

A Kähler manifold is given by a metric which satisfies[33]

gαβ,γ = gγβ,α, gαβ,γ = gαγ,β. (2.29)
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This condition is equivalent to the closure of Ω: dΩ = 0. By Poincaré’s lemma,
Ω is exact. In fact this is equivalent to the existence of a scalar function K from
which the metric can locally be determined by

gαβ =
∂2K

∂zα∂zβ
. (2.30)

This function is the Kähler potential. It is defined up to holomorphic transforma-
tions of the form

K(zα, zα)→ K′(zα, zα) = K(zα, zα) + F(zα) + F(zα). (2.31)

This implies that the Kähler potentials from different coordinate systems are re-
lated: if two local coordinate charts {zi} and {zj} have a non-empty intersection,
the corresponding potentials satisfy

Ki(zi, zi) = Kj
(
zj, zj

)
+ F(ij)

(
zj
)
+ F(ij)

(
zj
)
. (2.32)

In the absence of torsion, the Levi-Civita connection is nonzero only in the case
of unmixed indices:

Γ γ
αβ = gλγgαλ,β, Γ

γ

αβ = gγλgλβ,α, (2.33)

where gγλ =
(

g−1)
λγ

and the comma denotes differentiation with respect to the
complex coordinates. The non-vanishing components of the Riemann tensor can
be shown to be

Rαβγδ = gδδΓ δ
αγ ,β = gαδ,γβ − gκλΓ κ

αγΓλ
βδ

= gζζ gαζ,γgζβ,δ.
(2.34)

Coordinate transformations which leave the metric invariant are again the Killing
vectors of the manifold, but since these vectors are generally complex, the Killing
condition is slightly modified: let ζα be a Killing vector, then ζα satisfies

ζβ,α + ζα,β = 0, (2.35)

where ζβ = gαβζα, and the comma denotes differentiation with respect to the
manifold coordinates. Applying a second covariant derivative to (2.35) and
using the complex equivalent of the Ricci identity (2.20)[

∇β,∇α

]
ζα = Rαββαζβ, (2.36)
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we find that, after using the facts that the Killing vectors are holomorphic and
the metric is covariantly constant, that the Killing vectors satisfy the following
relation:

∇α∇βζα = −Rαββαζβ. (2.37)

As the Killing vectors represent invariances of the Kähler manifold, the Killing
vectors must obey a Lie-algebra structure:

ζ
β
Aζα

B,β − ζ
β
Bζα

A,β = f C
AB ζα

C, (2.38)

where, as it turns out, the f C
AB are the Lie algebra’s totally antisymmetric structure

constants.
The complex structure of (2.35) allows the Killing vectors to be derived locally

from a single real scalar function M:

ζβ = −i
δM

δzβ
, , (2.39)

ζα = i
δM
δzα , (2.40)

with

ζβ = gαβζα. (2.41)

These equations define M up to a constant of integration. However, it turns out
to be convenient to choose these constants such that the potentials transform
according to the adjoint representation of the Lie algebra (the details of which
will be explained in the next section) of the Killing vectors:

δi Mj = RA
i

δMj

δzB + RA
i

δMj

δzA = f k
ij Mk. (2.42)

Using the Killing and Kähler potentials, it can be shown that the under Killing
transformations the transfer functions in (2.31) take the following form:

Fi =
δK
δzα

Rα
i + iMi,

Fi =
δK

δzβ
R

β

i − iMi.
(2.43)
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Under Killing transformations, these functions satisfy

δiFj − δjFi =
δ2K

δφαδφβ

(
Rα

j Rβ
i − Rα

i Rβ
j

)
+

δK
δφα

(
δRα

j

δφβ
Rβ

i −
δRα

i
δφβ

Rβ
j

)

+ i
(

δMj

δφα
Rα

i −
δMi

δφα
Rα

j

)
= f k

ij

(
δK
δφα

Rα
k + iMk

)
= f k

ij Fk. (2.44)

This follows immediately from the definition of the transfer functions (3.30) in
the first step, the Lie algebra spanned by the Killing vectors (2.38) in the second
step, and the use of equation (2.39) and the adjoint transformation property of
the Killing potential (2.42) in the last step.
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2.2 Lie algebras

Group theory is often useful in the description of physical phenomena; examples
of areas of physics where group theory is relevant include crystallography,
special relativity, quantum mechanics and particle physics. Problems in these
branches of physics can often be greatly simplified by exploiting the symmetries
of the models under study. As a symmetry often comprises a set of operations
which leave a certain quantity invariant, these operations have certain properties
in common which is described by mathematical groups. In this section, a short
introduction to group theory is presented. The major concepts of group theory
as they are used in this thesis are defined and elaborated upon. Extensive
treatments of group theory, Lie algebra and their applications to physics can be
found in [31, 34, 35].

2.2.1 Definitions of group theory

A group is a mathematical object satisfying the following definition:

Definition. A group is a (non-empty) set G = {gi} which satisfies the following
properties:

• It has a associative multiplication ◦ under which it is closed: gi ◦ gj = gk ∈ G,
for gi, gj ∈ G.

• For gi, gj, gk ∈ G the multiplication is distributive. In other words, it satisfies
gi ◦

(
gj ◦ gk

)
=
(

gi ◦ gj
)
◦ gk.

• ∃ e ∈ G such that e ◦ gi = gi ◦ e = gi ∀gi ∈ G. This is the (unique) identity
element.

• ∀ gi ∃ g−1
i : gi ◦ g−1

i = g−1
i ◦ gi = e. From this definition we can see that, in

group theory, left and right inverses are identical, and unique.

In general the operation ◦ is not commutative: gi ◦ gj 6= gj ◦ gi. If the commu-
tativity equation gi ◦ gj = gj ◦ gi holds for all gi, gj ∈ G then G is called abelian.
Furthermore, a group can contain a finite or infinite number of elements. If it
contains a finite number of elements it is said to be finite, if it contains an infinite
number of elements it is said to be infinite.

example The set of invertible complex n × n matrices forms a group. This
group is called the general linear group, and denoted GL(n, C).
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Definition. A subset H of a group G is a subgroup if H itself is a group under the
multiplication ◦:

• e ∈ H.

• If h1, h2 ∈ H, then h1 · h2 ∈ H.

• If h ∈ H, then h−1 ∈ H.

example The set of n× n matrices U satisfying UU† = U†U = 1 is a subgroup
of GL(n, C). This group is called the unitary group U(N). If V ∈ U(N) in
addition satisfies det V = 1 then these matrices form the subgroup SU(N).

In order to compare different groups one considers structure preserving
mappings between these groups. These mappings are homomorphisms, and are
defined as follows:

Definition. Let G, G′ be groups with group multiplications ◦, ◦′, respectively. A map
f : G → G′ is called a homomorphism if it preserves the group structure, that is, if
it obeys f (g1 ◦ g2) = f (g1) ◦′ f (g2) for g1, g2 ∈ G. If in addition f is a bijection, f
is called an isomorphism, and G and G′ are said to be isomorphic, which is denoted as
G ' G′.

Definition. Let G be a group and let g1, g2, g3 ∈ G. An equivalence relation is a binary
relation ∼ satisfying the following properties

• It is reflexive: g1 ∼ g1.

• It is symmetric: if g1 ∼ g2, then g2 ∼ g1.

• It is trasitive: if g1 ∼ g2 and g2 ∼ g3, then g1 ∼ g3.

if g1 ∼ g2 then the two elements are said to be equivalent. Equivalent
elements form a set called an equivalence class.

Definition. Let G be a group and H be a subgroup. Define the equivalence relation
∼ for g1, g2 ∈ G as follows: g1 ∼ g2 if and only if g1 = hg2, for h ∈ H. Equivalence
classes obtained in this way are called left-cosets, and are denoted by gH. Similarly one
can define right-cosets Hg. Sets of left-cosets gH form the coset group G/H.

If the left-coset of a subgroup H of G is equal to the right-coset, H is called an
invariant subset of G.

Definition. Let G be a group and H1, H2 be subgroups of G. G is said to be the direct
product of H1, H2 (denoted by G = H1 × H2, if

17



• h1h2 = h2h1∀h1 ∈ H1, h2 ∈ H2.

• ∀g ∈ G the following equation holds: g = h1h2, for h1 ∈ H1, h2 ∈ H2.

• The decomposition of (ii) is unique.

Definition. Let G be a group and V be a Hilbert space. A representation is a homo-
morphism T : G → GL(V), where GL(V) is the set of invertible linear operators on
V, the latter is also called the representation space. The dimension of T is equal to the
dimension of V. If T is injective the representation is said to be faithful.

2 different classes of representations can be distinguised. First we need the
following definitions.

Definition. Let W be a linear subspace of a representation space V. W is called an
invariant if for all w ∈W the orbit

{
Tg(w) : g ∈ G

}
is a subset of W: Tg(W) ⊂W.

The classes of representation of interest can then be distinguised as follows:

Definition. A representation T is called reducible if there are invariant linear subspaces
U and V of W such that W = U⊕V. If a representation is not reducible it is irreducible.

A finite dimensional representation T is a direct sum of irreducible represen-
tations:

T =
⊕

i

miTi, (2.45)

with Ti the irreducible representations and mi their degeneracies.

Lie groups and algebras

As noted in the beginning of the previous section, group theory in physics was
introduced as a mathematical tool useful for the description of symmetries. A
special kind of symmetry is a symmetry parametrised by a set of numbers, called
a continuous symmetry. For example, the matrix

U =

(
cos θ sin θ
− sin θ cos θ

)
(2.46)

is an element of SU(2)∗, and parametrised by a single parameter θ in a contin-
uous and differentiable manner. Operations such as the group multiplication
and the inverse map are therefore differentiable maps. A group exhibiting such
a continuous symmetry is called a Lie group. The parameters of a Lie group
can locally be used as coordinates in euclidean space. Thus, Lie groups are
differentiable manifolds, equipped with a group structure:
∗It is also an element of the group SO(2), but as the latter is a subgroup of the former this

does not pose any complications.
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Definition. A Lie group G is a differentiable manifold equipped with a group structure
such that the group product G × G → G and the inverse map g → g−1 are both
differentiable. A n-dimensional manifold corresponds with an n-parameter Lie group.

Consider the SU(2) matrix in (2.46). This matrix represents a rotation in the
plane: a vector x is transformed as

x→ x′ = Ux.

Suppose we expand U about the identity. This means that we consider infinites-
imal rotations, such that the infinitesimal transformation of a vector x ∈ R2 is
given by

δx = (U − I)x =

(
0 θ
−θ 0

)(
x
y

)
= R(θ)x.

From the group structure of rotations, we then find that

U(θ) = (R(θ/n))n =⇒ U(θ) = lim
n→∞

(R(θ/n))n = lim
n→∞

(
I +

θ

n
J
)n

= eθ J ,

where J =

(
0 1
−1 0

)
. The matrix exponential is defined by its formal power

series. In fact, using the power series the group structure can be explicitly
verified:

eθ J =
∞

∑
n=0

1
n!
(θ J)n

=
∞

∑
n=0

1
(2n)!

(−1)nθ2n I +
∞

∑
n=0

1
(2n + 1)!

(−1)nθ2n+1 J

= cos θ I + sin θ J = U(θ)

It is conventional to let J be hermitian. Thus U can be written as the exponential
of the Pauli matrix σ2. This approach works quite generally: any unitary matrix
can be written as the exponential of a hermitian matrix. These hermitian matrices
are said to generate the group of unitary matrices. More on SU(N) in the next
section.

Before proceeding we note that the above is a specific example of a gen-
eral theorem: A Lie group is generated by a Lie algebra. The Lie algebra has
additional properties, which we now define:

Definition. Let G be an n-parameter Lie goup. A Lie algebra g is a vector space with
an extra operation [, ] : g × g → g, called the Lie-bracket, which has the following
properties for Ti ∈ g:
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1. It is linear:
[
λTi + µTj, Tk

]
= λ[Ti, Tk] + µ

[
Tj, Tk

]
.

2. It is antisymmetric:
[
Ti, Tj

]
= −

[
Tj, Ti

]
.

3. The Lie bracket satisfies the Jacobi identity:[
Ti,
[
Tj, Tk

]]
+
[
Tj, [Tk, Ti]

]
+
[
Tk,
[
Ti, Tj

]]
= 0. (2.47)

This defines a vector space isomorphic to TeG, or the tangent space of G at the identity.
Hence, the commutator of any two elements of g can be expressed as a linear combination
of elements: [

Ti, Tj
]
= f k

ij Tk. (2.48)

The f k
ij are the (completely antisymmetric) structure constants of the algebra.

Plugging equation (2.48) into the Jacobi identity yields the requirement

f l
jk f m

il + f l
ki f m

jl + f l
ij f m

kl = 0. (2.49)

2.2.2 SU(N)

In this thesis we will work extensively with the group SU(2N), which is the set
of 2N-dimension matrices U with the property UU† = 1 and det U = 1. In this
part of the thesis, we will give the properties of the general SU(N) group. The
extension is trivial.

Any element of SU(N) can be parametrised by N2 − 1 traceless hermitian
matrices:

U = eiαiTi , T† = T. (2.50)

In light of the example above, an important theorem is the Baker-Campbell-
Hausdorff theorem, which states that form two square matrices X and Y:

eXeY = eZ, (2.51)

with

Z = X + Y +
1
2
[X, Y] +

1
12

[X, [X, Y]]− 1
12

[Y, [X, Y]] + . . . . (2.52)

The dots indicate higher order commutators of X and Y. The Baker-Campbell-
Hausdorff theorem together with the parametrisation in equation (2.50) shows
that the hermitian matrices satisfy equation (2.48). Hence, they form a basis of
SU(N).
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The N2 − 1 generators can be labelled as Tij, with i, j = 1, 2, . . . , N. In this
case, the Lie bracket becomes[

Tij, Tkl
]
= δjkTil − δilTkj,

from which the structure constants can be easily found by inspection. Alter-
natively, a specific basis for the generators can be found by the method of
generalised Pauli and Gell-Mann matrices.† Generators in this basis are denoted
τi, and are normalised via Tr

[
τiτ j] = δij/2. The structure constants can be

computed via

f ijk = −2iTr
([

Ti, T j
]

Tk
)

=
1
4i

Tr
([

τi, τ j
]
τk
)

. (2.53)

A second set of completely symmetric structure constants can be computed via

dijk = −2iTr
({

Ti, T j
}

, Tk
)

=
1
4i

Tr
({

τi, τ j
}

τk
)

. (2.54)

2.2.3 Representations of SU(N)

In general, one can distinguish 2 representations of SU(N) that are important
for our purposes. These are listed below.

The defining representation The defining representation is the representation
that defines the group (or algebra). Let α and β be N dimensional complex
vectors. Equivalent to the definition given above, U(N) can be defined as the set
of matrices which leave the bilinear form

αβ (2.55)

invariant.‡ Hence, an element in the fundamental representation of SU(N) is
the N-dimensional complex vector. The group elements realise linear transfor-
mations of the vector space spanned by these complex vectors. As the vector is
complex, there exists a second representation, called the conjugate representation
N.

† A straightforward construction of these generalisations can be found in [36].
‡Here, pure phase transformations of the form α→ eiθα are omitted. This yields the require-

ment that the generators be traceless.
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The adjoint representation The adjoint representation ad : g → gl(g) maps
X ∈ g to adX : g→ g, with

adX(Y) = [X, Y],

for Y ∈ g. From the Jacobi identity it follows that the adjoint representation is a
derivation on g. The generators of SU(N) belong to the adjoint representation;
in fact, the representation matrices are constructed from the structure constants
by (

Tb
)c

a
= i f abc.

The adjoint representation therefore presents a way for the elements of the Lie
group to act on the elements on the algebra. For SU(2N), the Lie algebra is the
vector space of N × N traceless hermitian matrices, and the elements U of the
Lie group acts on the adjoint representation as

V → UVU†.
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particle colour isospin isospin hypercharge electric charge
multiplicity multiplicity I3 Y Q = Y + I3

νL 1 2 +1/2 −1/2 0
eL 1 2 −1/2 −1/2 −1
νc

L 1 1 0 0 0
ec

L 1 1 0 +1 +1
uL 3 2 +1/2 +1/6 2/3
dL 3 2 −1/2 +1/6 −1/3
uc

L 3 1 0 −2/3 −2/3
dc

L 3 1 0 +1/3 +1/3
g 8 1 0 0 0
W+ 1 3 +1 0 +1
W0 1 3 0 0 0
W− 1 3 −1 0 −1
B 1 1 0 0 0
H+ 1 2 +1/2 +1/2 +1
H− 1 2 −1/2 +1/2 0

Table 2.1: Particle content of the Standard Model, together with the charges with
respect to the gauge group.

2.3 The Standard Model

All known matter is composed of elementary particles, which fall in one of
three catagories: leptons, quarks, and mediators. These parcticles and all their
interactions, with the exception of gravity, are described by the theory known as
the Standard Model. This section provides a short introduction of the concepts
used to construct the mathematical tools used to derive the field equations for
matter, and its interactions. For a detailed review, we refer to [37–40].

2.3.1 Dirac algebra

The Dirac matrices are taken to be normalised by the Clifford algebra

{γa, γb} = 2ηab, (2.56)

where the unit matrix on the right-hand side is implied. In Minkowski space
(with metric signature mostly plus, so ηµν = diag(−,+,+,+)) we choose repre-
sentations such that γ0 is anti-hermitian and

γ†
a = γ0γaγ0. (2.57)
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Furthermore, we define the chirality matrix

γ5 =
i

4!
εabcdγaγbγcγd = iγ0γ1γ2γ3. (2.58)

The Levi-Civita symbol εabcd is defined such that

ε0123 = −ε0123 = 1.

γ5 has the property that it anti-commutes with any of the Dirac matrices and
squares to unity. We define the spinor matrices by

σab =
1
4
[γa, γb] =

1
2
(γaγb − ηab) (2.59)

It can be shown that the spinor matrices span a Lie algebra:[
σµν, σκλ

]
= ηνκσµλ − ηνλσµκ − ηµκσνλ + ηµλσνκ. (2.60)

Thus, the spinor matrices form a representation of the Lorentz group. A spinor
is then defined as a four-component object ψ which transform as

ψ′ = e
1
2 ωµνσµν ψ (2.61)

under Lorentz transformations.

Contractions with gamma matrices

Linear operators can be used to construct Lorentz invariant operators which act
on spinors. Frequently, these operators are contracted with the Dirac γ matrices.
A notation that is used throughout this thesis is the Feynman slash: for any
operator Oµ the Feynman slash is defined as

/O = γµOµ = γ ·O.

2.3.2 Charge conjugation

Given a spinor satisfying the free Dirac equation, we can define the charge-
conjugate spinor by

ψc = Cψ
T. (2.62)

In the special case that a spinor is equal to its charge conjugate it is called a
Majorana spinor. The anti-symmetric unitary matrix C is the charge conjugate
matrix, satisfying the following properties:
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• C = −CT

• C−1γaC = −γT
a

These properties imply that the extended Dirac algebra can be split into 10
symmetric elements:

γµC =
(
γµC

)T, σµνC =
(
σµνC

)T, (2.63)

and 6 anti-symmetric elements:

C = −CT, γ5C = −(γ5C)T, γ5γµC = −
(
γ5γµC

)T. (2.64)

Contractions of Majorana spinors with elements of (2.63) and (2.64) satisfy flip
properties, in which the order of contractions is reversed. Let Γ denote an element
from the Dirac algebra. Then a general contraction of two spinors η and ε can be
written as

ηΓε. (2.65)

Using equation (2.62) this can be written as

∓εΓTη. (2.66)

Comparison with (2.63) and (2.64) then yields the following identities:

ηε = εη, (2.67)
ηγµε = −εγµη, (2.68)

ησµνε = −εσµνη, (2.69)
ηγ5ε = εγ5η, (2.70)

ηγµγ5ε = ηγµγ5η, (2.71)
η/∂ε = ε/∂η. (2.72)

Equation (2.72) is a corollary of (2.68) when applied to the spinor action. As such,
it is valid only under integration by parts. Using (2.72), another useful identity
is readily proved: ∫

ψ/∂ψ d4x =
∫ [

ψL /∂ψL + ψR /∂ψR
]

d4x

=
∫ [

ψL /∂ψL + ψR
←−
/∂ ψR

]
d4x

=
∫

ψL
←→
/∂ ψL d4x,

where α
←→
∂µ β ≡ α∂µβ− ∂µ(α)β. An equivalent expression holds for ψR.
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2.3.3 Chirality

From (2.58) it follows that γ5 squares to unity. Hence, the operator

P± =
1± γ5

2

are projection operators. This can be exploited to introduce the notion of chirality
for spinors: a chiral spinor is defined as an eigenspinor of γ5. In this text, the
eigenspinors with eigenvalue +1 are called right-handed, while the eigenspinors
with eigenvalue −1 are called left-handed. Hence, from any given Majorana
spinor ψ we can construct a chiral spinor by

ψR = P+ψ, ψL = P−ψ,

where

γ5ψR = ψR,
γ5ψL = −ψL.

(2.73)

From this follows the property that right-handed and left-handed spinors are
each others charge conjugate:

ψL =
1− γ5

2
ψ =

1− γ5

2
Cψ

T

= C
1 + γT

5
2

ψ
T
= C

1 + γ5

2
ψ

T

= (ψR)
C,

and similarly for ψR. From this follows that a chiral spinor can only be a solution
of the free Dirac equation if it describes a massless particle. More on this later.

Charge conjugation identities for chiral spinors are similar to equations (2.67)-
(2.72) with the difference being that the spinors on the right hand side are
replaced by their charge conjugates, for example:

ηRγµεR = −εLγµηL. (2.74)

2.3.4 Fierz decomposition

The set Γ = (1, γa, σab, γ5γa, γ5) forms a basis on the vector space of 4× 4 ma-
trices. Hence, any 4-dimensional matrix M can be decomposed into a linear
combination of the elements of Γ as[41]

M = α + αaγa +
1
2

αabσab + αa
5γ5γa + α5γ5, (2.75)
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where

α =
1
4

Tr [M] , αa =
1
4

Tr [Mγa] , αab = −Tr
[

Mσab
]

αa
5 = −1

4
Tr [Mγ5γa] , α5 =

1
4

Tr [Mγ5]
(2.76)

This decomposition is called Fierz decomposition.
For convenience, some important Fierz identities for general Majorana spinors

are listed below

ψLψR = −1
2

ψRψL
1− γ5

2
, (2.77)

ψRψL = −1
2

ψLψR
1 + γ5

2
, (2.78)

εLηL = −1
2

ηLγµεLγµ 1 + γ5

2
, (2.79)

εRηR = −1
2

ηRγµεRγµ 1− γ5

2
, (2.80)

ψRψLψLψR =
1
2
(
ψLγµψL

)(
ψLγµψL

)
. (2.81)

Short proofs are provided in appendix A.

2.3.5 Symmetries and field equations

The concepts of symmetries and actions quantifying the statements in the previ-
ous sections.

First, recall that the action is defined as

S =
∫
L
(
φ, ∂µφ

)
d4x, (2.82)

with L the lagrangian for one or more fields φk and their derivatives. Let G be
an n dimensional Lie group. We formally define a symmetry as a transformation
of G, defined below, which leave the action invariant:§

φk → φk + δiφk =⇒ δiS = 0. (2.83)

Of special interest are the set of transformations which depend on the variational
principle of the action. Assuming that boundary terms vanish, equation (2.83)

§ In general, a symmetry can be decomposed as a linear combination of symmetries of the form
in (2.83): δφk = εiδiφk, with i = 1, . . . , n, and εi the infinitesimal parameters of the symmetries i.
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implies for a general transformation the lagrangian satisfies

δS =
∫ [

δL
δφk
− ∂µ

(
δL

δ
(
∂µφk

))]δφk d4x = 0. (2.84)

Summation over the ks is implied. Since this must vanish for arbitrary field
transformations, the term in curly brackets must be zero for each k. Hence, we
arrive at the Euler-Lagrange equations of motion:

δL
δφk

= ∂µ

(
δL

δ
(
∂µφk

)). (2.85)

Note that in the presence of continuous symmetries the boundary term gives
rise to a conserved Noether currents: under a infinitesimal transformation φk →
φk + εiδiφk, the lagrangian remains invariant up to a total derivative:

L → L+ εi∂µKµ
i . (2.86)

Comparing this with the general transformation of the lagrangian

εiδiL = εi

∂µ

(
δL

δ
(
∂µφk

)δiφk

)
+

=0, by equation (2.85)︷ ︸︸ ︷{
δL
δφk
− ∂µ

(
δL

δ(∂µφk)

)}
δiφk

 (2.87)

the currents can be seen to be given by

Jµ
i =

δL
δ(∂µφk)

δiφk − Kµ
i ,

∂µ Jµ
i = 0,

(2.88)

where summation over k is again implied. The Noether currents defines a charge
operators which is constant in time:

Qi =
∫

J0
i d3x. (2.89)

This charge operator is a generator of G acting on the Hilbert space of quantum
states. The fields are transformed according to

[iQi, φk] = δiφk. (2.90)

28



As was will be seen later, a symmetry of the action is not neccessarily a symmetry
of the vacuum:

either Qi |0〉 = 0, (2.91a)
or Qi |0〉 6= 0. (2.91b)

In the first case, Qi is a symmetry of both the action and the vacuum. In the
second state, the symmetry of the action is not a symmetry of the vacuum, and
hence not a symmetry of the physical states. In this case the symmetry is said to
be spontaneously broken. Through Goldstone’s theorem, the broken symmetries
imply the existence of massless bosons (Nambu-Goldstone bosons).

We now turn to some important examples. This illustrates the procedures
outlined above. In addition, it provides us with the field equations needed later.
The rest of this section is concerned only with the actions of various fields and
their field equations. Spontaneously symmetry breaking is further elaborated
upon in section 2.5, in the context of the Higgs mechanism.

Consider the Klein-Gordon action, which describes a real spin-0 scalar field
Φ:

SKG = −1
2

∫ [
∂µΦ∂µΦ + m2Φ2

]
d4x. (2.92)

Using the Euler-Lagrange equations (2.85), we find

�Φ = m2Φ, (2.93)

with � = ∂µ∂µ the d’Alembert operator. This is the Klein-Gordon equation. By
the prescription i∂0 = E, i∇ = p, it guarantees the energy-momentum relation

−E2 + p2 = −m2, (2.94)

known from special relativity. The Klein-Gordon equation only fixes the energy-
momentum condition. If a field has additional properties, such as colour, flavour
or spin, additional constraints are required; fermions must satisfy the Dirac
equation

(/∂ + m)Ψ = 0. (2.95)

It is readily checked that the Dirac equation follows from the Dirac action

SD =
i
2

∫
Ψ[/∂ + m]Ψ d4x. (2.96)

The Dirac equation implies the Klein-Gordon equation. To see this, act on
(2.95) from the left by (/∂ − m). The Klein-Gordon equation then follows as a
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consequence of the Dirac algebra. Note that the charge conjugate ΨC of a spinor
Ψ satisfies the Dirac equation as well:

(/∂ + m)ΨC = (/∂ + m)CΨT

= C
(
−(γµ)T∂µ + m

)
ΨT.

The latter equation is the transpose of

−Ψ
(
−←−/∂ + m

)
C,

which by equation (2.57) can be written as

−Ψ†
(←−

/∂ † + m
)

γ0C.

This is proportional to the hermitian conjugate of the Dirac equation for Ψ, which
equals zero by assumption. Additionally, for a Majorana spinor ψ satisfying
(2.95) we can write

/∂ψL + mψR = −(/∂ψR + mψL) (2.97)

However, the left-hand side of (2.97) is right-chiral, while the right-hand side is
left-chiral. Hence, both terms must be zero, and we find the chiral form of the
Dirac equation:

/∂ψL + mψR = 0,
/∂ψR + mψL = 0.

(2.98)

This shows that chiral spinors solve the Dirac equation only when they are
massless.

Thirdly, consider for a massive spin-1 vector boson Aµ. It is described by the
Proca equation

∂µ(∂
µ Aν − ∂ν Aµ) + m2Aν = 0. (2.99)

The Proca is obtained from the Proca action

SP = −
∫ [1

4
(∂µ Aν − ∂ν Aµ)

(
∂µ Aν − ∂ν Aµ

)
+

1
2

m2Aµ Aµ

]
d4x. (2.100)

In the case of m = 0 (2.99) reduces to the Maxwell equations in the vacuum.
Contrary to the massless case, the Proca equation implies a fixed gauge for Aµ:
contracting with ∂ν yields the condition

m2∂ν Aν = 0. (2.101)

This implies that, unless m = 0, the Proca equation is never gauge invariant.¶

¶The Proca equation encodes some freedom, however. See [42].
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2.4 Gauge theory

Recall that the field equations for a matter field φ follow from the Euler-Lagrange
equations (2.85)

δL
δφ
− ∂µ

δL
δ(∂µφ)

= 0, (2.102)

obtained by the principle of least action. We therefore want to construct a la-
grangian, which properly reproduces the behaviour of matter and its interactions
with the mediators of the fundamental forces. The fundamental interactions can
be derived from the principle of local gauge invariance. Since the fields in the
standard model transform linearly in the fundamental or adjoint representation
of the gauge group, we’ll first cover linear gauge transformations. We’ll finish
this section with the generalisation to non-linear gauge transformations.

Consider a complex Dirac field ψ. We want the action, and hence the la-
grangian of this field to be invariant if we transform ψ by an abelian phase factor

ψ→ ψ′ = eiθψ, (2.103)

where θ is a constant angle. Clearly, the mass term ψψ is invariant under this
transformation, both globally (if θ is constant) and locally (if θ is a function of
spacetime):

ψψ→ ψ
′
ψ′ = ψe−iθeiθψ = ψψ.

If the transformation is global another gauge invariant term is the kinetic term
ψ/∂ψ. If this gauge transformation is to hold locally though, this symmetry is
broken:

ψ
′/∂ψ′ = ψ/∂ψ + iψψ/∂θ. (2.104)

To fix this, we introduce a field Aµ which couples to ψ with a strength e and
transforms as

Aµ → A′µ = Aµ −
i
e

∂µθ (2.105)

and define the gauge covariant derivative as

∇µψ = (∂µ − ieAµ)ψ. (2.106)

This covariant derivative commutes with the gauge transformation

∇µψ→ ∇′µψ′ =
(
∂µ − ieAµ − ∂µθ

)
eiθψ

= eiθ(∂µ − ieAµ

)
ψ,

(2.107)
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and as a result the covariant kinetic term is gauge invariant. Another quantity
that commutes with gauge transformations of the form (2.103) is the commutator
of two covariant derivatives:[

∇µ,∇ν

]
= −ie

(
∂µ Aν − ∂ν Aµ

)
,

to which we associate the field strength Fµν of the gauge field Aµ. Since the
covariant derivatives provide translations through spacetime, the field strength
tensor can be thought of as the flux across closed spacetime loop. Thus, includ-
ing only renormalisable terms compatible with CPT invariance, the complete
lagrangian is

L = ψ /∇ψ− 1
4

FµνFµν + mψψ. (2.108)

It can be checked that this reproduces the correct equations of motion by substi-
tuting (2.108) in (2.102) for the appropriate fields.

2.4.1 Linear Yang-Mills theory

In general, a field can transform linearly under a continuous group of trans-
formation, represented by unitary n × n matrices U = exp(iθ) generated by
hermitian generators Ta of the symmetry group:

ψ→ ψ′ = Uψ, θ = θaTa. (2.109)

For each of these generators we can assign a gauge field Aa
µ, and we can then

define a general gauge covariant derivative

∇µ = ∂µ − igAµ, (2.110)

where Aµ = Aa
µTa is the Lie algebra valued gauge field. We require the field to

transform non-homogeneously under gauge transformations

Aµ → A′µ = Aµ +
i
e
∇µθ = Aµ +

i
e

∂µθ −
[
Aµ, θ

]
. (2.111)

The field strength tensor of the gauge field is again defined as the commutator of
the covariant derivatives:

[∇µ,∇ν] = −igFµν, (2.112)

where
Fµν = ∂µ Aν − ∂ν Aµ − ig

[
Aµ, Aν

]
= Fa

µνTa. (2.113)
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The field strength belongs to the adjoint representation of the gauge group:

Fµν → F′µν = Fµν − ig
[
Fµν, θ

]
(2.114)

The Yang-Mills lagrangian is then

L = ψ /∇ψ− 1
2

Tr
[(

FµνFµν
)]

+ mψψ. (2.115)

2.4.2 General Yang-Mills theory

The above discussion only concerns gauge transformations which are linear. This
is a limitation, since the lagrangian of the σ-model is invariant under non-linear
transformations. In this section, we generalise the notion of gauge symmetry to
include symmetries of any kind, which may or may not be linear.

Consider a set of n fields φA, with A = 1, . . . n, which for simplicity are taken
to be classical commution fields. Suppose we have a set of m transformations

δiφ
A = RA

i [φ], (2.116)

where the RA
i are local functions of the fields φA and their derivatives. These

transformations define infinitesimal (global) symmetries if to first order they
leave the action invariant, that is if

δiS = δiφ
A δS

δφA = RA
i

δS
δφA = 0 (2.117)

irrespective of the field equations of the fields φA. In terms of the lagrangian L,
this implies

δiS =
∫ [

δiφ
A δL

δφA + δ
(

∂µφA
) δL

δ∂µφA

]
d4x, (2.118)

where

δi

(
∂µφA

)
=

δRA
i

δφB ∂µφB, (2.119)

by the chain rule. Trivially, the composition of two infinitesimal symmetry
transformations RA

i and RB
j is again a symmetry:

δiδjS = δi0 = 0.
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In particular, the commutator of two transformations leaves the action invariant.
If we assume that the set of transformations is complete, this implies that the
transformation functions span a Lie algebra[

δi, δj
]
S = δi

(
RA

j
δS

δφA

)
− δj

(
RA

i
δS

δφA

)
= RB

i

δRA
j

δφB
δS

δφA + RA
i RB

j
δ2S

δφBδφA − RB
j

δRA
i

δφB
δS

δφA − RA
j RB

j
δ2S

δφBδφA

=

(
RB

i

δRA
j

δφB − RB
j

δRA
i

δφB

)
δS

δφA = 0.

Since our set is assumed to be complete, any transformation can be decomposed
as a linear combination of transformations:(

RB
i

δRA
j

δφB − RB
j

δRA
i

δφB

)
= f k

ij RA
k , (2.120)

where f k
ij are antisymmetric structure functions, as they may depend on the

fields φA. Hence, the RA
i span a Lie algebra.

We now define local a local symmetry to be a set of transformations depen-
dent on parameters which are smooth functions over spacetime:

δξφA = ξ i(x)δiφ
A = ξ i(x)RA

i [φ]. (2.121)

Since now the transformations are spacetime dependent, the derivative picks
up an extra term proportional to the derivative of the gauge parameter. The
action then becomes dependent on the choice of gauge. In order to restore gauge
invariance, we define the covariant derivative to be

DµφA = ∂µφA − Ai
µδiφ

A = ∂µφA − Ai
µRA

i [φ], (2.122)

where the vector fields Ai
µ provide the compensating transformation:

δαDµφA = ∂µαiRA
i + αi∂µRA

i − δα Ai
µRA

i − Ai
µδαRA

i

= αi δRA
i

δφB

(
∂µφB − Aj

µRB
j

)
+ ∂µαiRA

i

+ αi δRA
i

δφB RB
j Aj

µ − Ai
µ

δRA
i

δφB αjRB
j − δα Ai

µRA
i i

= αi δRA
i

δφB DµφB + ∂µαiRA
i +

(
RB

i

δRA
j

δφB − RB
j

δRA
i

δφB

)
Ai

µαj − δα Ai
µRA

i

(2.123)
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Thus, if we impose that the RA
i once again form a Lie algebra and subsequently

define
δα Ai

µ = ∂µαi + f i
jk Aj

µαk (2.124)

the gauge invariance is restored. With the covariant derivative defined as in
equation (2.122), we can prove the generalised Ricci identity. First we define

Dµ∂νφA = ∂µ

(
∂νφA

)
− Ai

µ

δRA
i

δφB

(
∂νφB

)
.

The Ricci identity then follows thus:

[
Dµ, Dν

]
φA =

[
∂µ, ∂ν

]
φA −

(
Dµ Ai

ν − Dν Ai
µ

)
RA

i −
(

Ai
ν∂µφB − Ai

µ∂νφB
)δRA

i
δφB

+ Aj
µ Ai

ν

(
RB

j
δRA

i
δφB − RB

i
δRA

i
δφB

)
−
(

Ai
µ∂νφB − Ai

ν∂µφB
)δRA

i
δφB

=− Fi
µνRA

i , (2.125)

where
Fi

µν = ∂µ Ai
ν − ∂ν Ai

µ + f i
jk Aj

µ Ak
ν (2.126)

is the generalised Yang-Mills field strength tensor. It once again transforms
adjointly under the gauge group:

δαFi
µν = f i

jk Fj
µναk

and
δα

(
DµFi

νλ

)
= f i

jk
(

DµFνλ

)j
αk,

where DµFi
νλ is defined to be

DµFi
µν = ∂µFi

νλ + f i
jk Aj

µFk
νλ. (2.127)

Finally, it satisfies the Bianchi identity:

DµFi
νλ + DνFi

λµ + DλFi
µν = 0.

Note that this can be written compactly as

εκλµνDλFi
µν = 0. (2.128)

35



2.5 Higgs mechanism

The covariant derivative uniquely determines the coupling of fermions to the
gauge bosons, once the charges under the symmetry groups are established.
From table 2.1, it follows that left-handed and right-handed helicity states belong
to different representations of the gauge groups. This poses no problem for the
kinetic terms, as a spinor ψ can be neatly decomposed in its left-handed and
right-handed parts:

ψ /∇ψ = ψL /∇ψL + ψR /∇ψR. (2.129)

However, mass terms are forbidden by gauge invariance: mass terms for Dirac
fermions can be written down as

mψψψ = mψ

(
ψLψR + ψRψL

)
. (2.130)

However, mass terms of the form (2.130) are no longer gauge invariant. To
correct this a complex scalar field H is introduced which transforms in such a
way under the gauge group to make the term

gHψψ, (2.131)

with coupling parameter g, invariant. It is then possible to construct gauge
invariant mass terms for spinors if H exhibits spontaneous symmetry breaking,
or in other words, if the potential that describes H has a non-trivial minimum.

A lagrangian which exhibits spontaneous symmetry breaking is

LH =
∣∣∇µH

∣∣2 + µ2|H|2 − λ|H|4, (2.132)

where µ2, λ > 0. The potential has a non-zero minimum at

〈|H|〉 =
√

µ2

2λ
. (2.133)

Hence, when one expands about this minimum, it is found that (2.131) reduces
to a mass term for fermions:

gHψψ→ g 〈H〉ψψ = g

√
µ2

2λ
ψψ. (2.134)

Furthermore, this mechanism gives mass to the gauge bosons corresponding
to the symmetries that are spontaneously broken. To see how this comes about,
suppose H is described by (2.132) plus the kinetic term:

L = −1
2

∣∣∂µH
∣∣2 + µ2|H|2 − λ|H|4. (2.135)
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This lagrangian has a global U(1) symmetry. If we promote this to a local
symmetry, we introduce a covariant derivative

∇µH =
(
∂µ − ieAµ

)
H, (2.136)

and therefore have to include the Yang-Mills lagrangian for the gauge field Aµ

in the bosonic part of the action. Expanding the components of H = H1 + iH2
about the nontrivial minimum (2.132) by defining:

H1 ≡
√

µ2

2λ
+ α,

H2 ≡ β,
(2.137)

we find the modified form of (2.135):

L = −1
2

(
∂µα∂µα + 4µ2α2

)
− 1

4
FµνFµν +

1
2

µ2e2

2λ

(
Aµ +

√
2λ

eµ
∂µβ

)2

+ . . .

(2.138)

where we have neglected a constant and the dots stand for higher order terms
that are irrelevant for this example. It can now be seen that the field β can be
eliminated upon making the redefinition

Aµ +

√
2λ

eµ
∂µβ→ Ãµ. (2.139)

Plugging equation (2.138) into (2.102) for each of the fields and comparison with
(2.93) and (2.99) shows that the fields α and Ãµ have become massive, while the
field β disappears from the physical spectrum.‖

2.6 Anomalies

The analysis of this thesis is done mostly at the classical level. Nevertheless,
it would be advantageous if the theory is also respected at the quantum level.
This is possible only if the theory is free of anomalies. Simply put, anomalies
are violations of the classical symmetries of the theory. Chiral theories in four-
dimensional spacetime develop anomalies from triangle diagrams, where the
fermion runs in a loop.[37] This is pictured in figure 2.1. If the fermion couples
to gauge fields at the vertices the anomaly is called a gauge anomaly. Gauge

‖ This is an example of the unitary gauge, where all Goldstone fields are “gauged away”.
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Aa
µ

Ab
ν

ψ
Ac

λ
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m

Figure 2.1: Triangle diagram of a chiral fermion ψ coupling to the gauge bosons
of the gauge groups a, b and c. The gauge bosons have momenta k, l and m,
respectively.

anomalies destroy the theory, as their presence implies time-like polarisation
states for the gauge fields. This breaks down the unitarity of the theory, by the
non-conservation of the U(1) axial vector current

Jµ = ψγµγ5ψ. (2.140)

To see how this comes about, recall that for a continuous symmetry there exists a
conserved Noether current (2.88) satisfying

∂µ Jµ = 0 ⇐⇒ pµ Jµ = 0. (2.141)

Here pµ is the incoming momentum of the gauge field coupling to the current.
This consistency condition should hold for the triangle diagram in 2.1. Using the
Feynman rules, the triangle diagram must be proportional to a function Tµνλ of
the external momenta and the quantity [37, 43–45]

±Tr [Ta{Tb, Tc}] , (2.142)

where the Ti are the generators of the symmetry groups of the gauge bosons and
the trace is take over all fermion species. The sign follows from the eigenvalues
of the chirality operator γ5 for right-handed fermions and left-handed fermions
(equation (2.73)). By equation (2.141):

kµ Jµ = lµ Jµ = mµ Jµ = 0, (2.143)

which in the case of the diagram 2.1, if momentum is conserved, implies

kµTµνλ = lνTµνλ = (k + l)λTµνλ = 0, (2.144)

where m = k + l. However, to avoid divergencies in the diagram one needs a
regularisation scheme, and no regularisation scheme is able to satisfy all three
conditions simultaneously.[45] The only way for (2.141) to be satisfied is if all
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contributions to (2.142) vanish, that is if the contributions of the right-handed
fermion species exactly cancel the contributions of the left-handed fermion
species. Hence, the anomalies cancel automatically if the gauge bosons couple
identically to the left-handed and right-handed fermions.∗∗ For a chiral theory,
anomalies can be avoided if the chiral fermions in the theory carry exactly
the right quantum numbers for all the contributions to triangle diagrams to
cancel. The pure non-linear σ-model has nonvanishing triangle contributions,
and hence the particle spectrum should be extended. Since this is to be done
in a supersymmetric way, the extra fermions are part of chiral multiplets, or
matter multiplets. From a phenomenological point of view, it is preferable to
include these multiplets in such a way that it preserves the original non-linear
symmetries. This procedure is presented for the non-linear σ-model in chapter 5.

∗∗ However, comparison with table 2.1 shows that the Standard Model is free of anomalies.
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2.7 Supersymmetry

This section provides some historical background which motivated, or at least
stimulated, the development of supersymmetry. After that, it describes the
mathematical formalism needed, such as the construction of supermultiplets
and the relation of supersymmetry with Kähler geometry. For more extensive
treatments, see [46–48].

The Standard Model acccurately describes the three fundamental interactions
(electromagnetism combined with the weak and strong interactions) into a single
theoretical framework. To date, it provides the most accurate predictions: preci-
sion tests of QED determine the fine-structure constant α with an uncertainty of
less than one part per billion. However, it is still far from complete.

Since the Standard Model provides no description of gravity at the quantum
scale, it has to be extended at the reduced Planck scale MP = 1/

√
8πG ≈ 2.4 ·

1018 GeV, when gravitational effects become relevant. This differs from the
electroweak scale by 16 orders of magnitude in energy. The cause that MP/MW
is so large can be traced to the question why the mass of the Higgs boson is much
smaller than the Planck mass.

Experimentally, it is known that that vacuum expectation value (2.133) 〈H〉 ≈
174 GeV[49] and m2

H ≈ (125 GeV)2. However, one would expect that quantum
corrections to m2

H would make the Higgs mass comparable to the Planck mass.
Each massive fermion particle contributes to the Higgs mass by a Yukawa cou-
pling L = −λ f f H f . Figure 2.2a shows a one-loop correction from a massive
Dirac fermion ψ with mass mψ. Using the Feynman rules yields the correction,
to leading order,

∆m2
H = −

∣∣λψ

∣∣2
8π2 Λ2

UV + . . . , (2.145)

where ΛUV is the energy scale at which the current theory breaks down, and
new physics is needed to describe the high-energy behavior. Similarly, a massive
complex scalar φ with mass mφ coupling to the Higgs field yields a Lagrangian
L = −λS|H|2|φ|2. A one-loop correction to the squared Higgs mass is shown in
figure 2.2b. The Feynman rules then yield a contribution

∆m2
H =

λφ

16π2 Λ2
UV + . . . . (2.146)

Furthermore, the coupling constants λφ and λψ are proportional to the masses
mφ and mψ, respectively, and thus the quantum corrections are more sensitive to
the heavy particles. The fact that despite these contributions the Higgs mass is so
much smaller than the Planck mass indicates a miraculous fine-tuning between
the quantum corrections and the bare Higgs mass. The simplest way of bringing
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Figure 2.2: One-loop quantum corrections to the squared Higgs mass due to (a)
a fermion ψ and (b) a complex scalar φ.

this about is if for each massive fermion there exist two complex scalar fields
with λφ =

∣∣λψ

∣∣, then the contributions from (2.145) and (2.146) exactly cancel.
This proposes a symmetry relating bosons and fermions called a supersymmetry.

To each particle in the Standard Model it associates a new particle, called
the superpartner, which belongs to obeys different statistics than the original
particle. This is realised by the introduction of an anticommuting chiral operator
Q, which turns bosonic states into fermionic states, and vice versa:

Q |boson〉 = |fermion〉 , Q |fermion〉 = |boson〉 . (2.147)

As spinors are in general complex objects one can make a similar prescription
for the complex conjugate Q†. Furthermore, since Q and Q† are spin chang-
ing operators, supersymmetry must be a spacetime symmetry. This strongly
restricts any quantum field theory that incorporates supersymmetry[50, 51]: the
supersymmetry operators must satisfy the so-called supersymmetry algebra{

Q, Q
}
= 2/P (2.148)

{Q, Q} =
{

Q, Q
}
= 0 (2.149)[

Pµ, Q
]
=
[
Pµ, Q

]
= 0, (2.150)

where Pµ is the generator of spacetime translations. From these commutation
relations one can immediately derive that the commutator of two supersymmetry
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transformations is in fact a translation. Using equations (2.90), (2.47), (2.67):

[
δη, δε

]
ψ = −

[[
ηQ, Qε

]
, ψ
]
+
[[

εQ, Qη
]
, ψ
]

(2.151)

= −η
[{

Q, Q
}

, ψ
]
ε (2.152)

= −2ηγµεPµψ (2.153)
= 2iηγµε∂µψ. (2.154)

It can straightforwardly be shown that the transformation rules given in the
rest of the text indeed satisfy this relation: see appendix D. These relations also
imply that superpartners have the same mass, as the supersymmetry generators
commute with the squared-mass operator P2. Particle states with their super-
partner constitute irreducible representations of the supersymmetry algebra as
supermultiplets, and hence every supermultiplet contains both fermionic and
bosonic states. The supersymmetry generators also commute with gauge trans-
formations, and hence superpartners belong to the same representation of the
gauge group.

The representations of supersymmetry contain equal numbers of bosonic and
fermionic states. This can be proved by introducing the operator (−1)2s, where s
is the particle spin. Since this operator has eigenvalues +1 for bosons and −1 for
fermions, it must anticommute with the operators Q and Q. Thus, consider the
trace of (−1)2s/P, taken over a representation of the supersymmetry algebra with
momentum pµ:

Tr
[
(−1)2s/P

]
= γµ ∑

i

〈
i
∣∣∣ (−1)2sPµ

∣∣∣ i
〉

= γµ pµ Tr
[
(−1)2s

]
= γµ pµ

(
nb − n f

)
. (2.155)

where nb and n f are the numbers of bosons and fermions in the multiplet,
respectively. One can also rewrite the trace using equations (2.148)-(2.150):

2 ∑
i

〈
i
∣∣∣ (−1)2s/P

∣∣∣ i
〉
= ∑

i

〈
i
∣∣∣ (−1)2s[QQ + QQ

] ∣∣∣ i
〉

. (2.156)

Since momentum commutes with the supercharges, any combination of Q and
Q acting on a state in the multiplet yield another state in the multiplet with the
same momentum pµ. One therefore has a completeness relation, and can insert
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the identity in (2.156), with the result

2 Tr
[
(−1)2s/P

]
= ∑

i
〈i| (−1)2sQQ |i〉+ ∑

i,j
〈i| (−1)2sQ |j〉 〈j|Q |i〉

= ∑
i
〈i| (−1)2sQQ |i〉+ ∑

i,j
〈j|Q |i〉 〈i| (−1)2sQ |j〉

= ∑
i
〈i| (−1)2sQQ |i〉+ ∑

i
〈i|Q(−1)2sQ |i〉

= ∑
i
〈i| (−1)2sQQ |i〉 −∑

i
〈i| (−1)2sQQ |i〉

= 0. (2.157)

Hence, the number of bosonic and fermionic states in the multiplet are equal, as
claimed.

A distinction can be made between two supermultiplets: if we extend a
chiral (Majorana) spinor supersymmetrically the resulting multiplet, it and its
superpartner (the sfermion) is called a chiral multiplet. If a gauge boson is
promoted to a supermultiplet it forms a vector multiplet with its superpartner,
the gaugino.

2.7.1 The Wess-Zumino model: the chiral multiplet

Consider a complex scalar field Z and a single left-chiral spinor ψL. The action
for these fields is

S =
∫ [
−∂Z · ∂Z−m2ZZ + iψL /∂ψL +

im
2
(
ψRψL + ψLψR

)]
d4x (2.158)

This action is invariant under the supersymmetry transformations

δZ = −i
√

2εRψL,

δψL =
√

2
(

/∂ZεR −mZεL
)
,

(2.159)

where the left-chiral spinor εL is the infinitesimal parameter. Because the su-
persymmetry transformations depend on the parameter m, the closure of the
supersymmetry algebra is dependent on the field equations for Z and ψL, that is,
the action is only invariant under supersymmetry on-shell. In order for the su-
persymmetry algebra to close homogeneously off-shell, one typically introduces
complex fields H and F(Z) to the action:

S =
∫ [
−∂Z · ∂Z + iψL /∂ψL + HH

+HF(Z) + H F(Z) +
i
2

F′(Z)ψRψL +
i
2

F′(Z)ψLψR

]
d4x.

(2.160)
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Equation (2.160) is invariant under the supersymmetry transformations

δZ = −i
√

2εRψL, (2.161)

δψL =
√

2(/∂ZεR + HεL), (2.162)

δH = −i
√

2εL /∂ψL, (2.163)

for any holomorphic function F and reproduces (2.158) upon elimination of
the auxiliary field H by its field equation and setting F(Z) = mZ. Using the
procedure of section 2.3.5, the Noether current (called the supercurrent) is found:

Jµ =
(

/∂Z + F
)
γµψR +

(
/∂Z + F

)
γµψL. (2.164)

The vanishing divergence of the supercurrent is implied by the field equations.
Now, the commutator of supersymmetry transformations is again a symmetry

of the theory, independent of the field equations:[
δη, δε

]
X = aµ∂µX, (2.165)

where aµ = 2iηγµε and X = Z, ψL, H. The triplet of fields (Z, ψL, H) is called the
chiral multiplet.

2.7.2 Vector multiplets

It is also possible to promote a massless vector field Vµ to a supermultiplet. This
effectively reverses the procedure mentioned in the above section, and therefore
the supermultiplet of a vector boson (called a vector multiplet) comprises the
boson itself, a Majorana spinor and an auxiliary field to close the supersymmetry
algebra off-shell. The supersymmetric action is

SV =
∫ [
−1

4
FµνFµν +

i
2

λ/∂λ +
1
2

D2
]

d4x, (2.166)

where
Fµν = ∂µVν − ∂νVµ −

[
Vµ, Vν

]
(2.167)

is the field-strength tensor associated with the vector field. It is straightforward
to check that the supersymmetry transformations are

δVµ = −iεγµλ,

δλ =
(
−Fµνσµν + iDγ5

)
ε,

δD = εγ5/∂λ.
(2.168)
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The supercurrent for the vector multiplet is

Jµ = Fνλσνλγµλ. (2.169)

It can readily be checked that the divergence of Jµ vanishes upon use of the field
equations.

2.7.3 Construction of a supersymmmetric lagrangian

Note that since the auxiliary field D for a vector multiplet is transformed into a
total derivative, a term linear in D is automatically supersymmetric:

SD = ξ
∫

D d4x =⇒ δSD = ξ
∫

∂µ(α
µ)d4x ' 0

This provides the motivation for the following: We can decompose the transfor-
mation rules (2.168) in terms of chiral spinors:

δVµ = −iεRγµλR − iεLγµλL,
δD = εL /∂λL − εR /∂λR.

(2.170)

Equation (2.170) follows from the fact that for two Majorana spinors ψ, χ:

ψγµχ =
(
ψL + ψR

)
γµ(χL + χR).

However, focussing on the term ψLγµχR:

ψLγµχR = ψ†
Lγ0γ2

5γµχR

= (γ5ψL)
†γ0γµγ5χR

= −ψLγµχR,

And similarly for ψRγµχL. Thus, the terms of mixed chirality vanish. Similarly,

δλL =
1− γ5

2
δλ = −

(
Fµνσµν + iD

)
εL,

δλR =
1 + γ5

2
δλ =

(
−Fµνσµν + iD

)
εR.

(2.171)
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Using these transformation rules, it is possible to construct a real vector multiplet
(Wµ, Λ, D) out of a chiral multiplet (Z, ψL, H):

Wµ =
i
2
(
K,z∂Z− K,z∂µZ

)
− 1

2
K,zzψLγµψL,

ΛL =
i√
2

K,zz

(
/∂ZψR −

[
H +

i
2

Γ z
zz ψLψR

]
ψL

)
,

ΛR =− i√
2

K,zz

(
/∂ZψR −

[
H +

i
2

Γ z
zz ψRψL

]
ψR

)
,

D =− K,zz∂Z · ∂Z +
i
2

K,zzψL
←→
/D ψL

+ K,zz

(
H +

i
2

Γ z
zz ψLψR

)(
H +

i
2

Γ z
zz ψRψL

)
− 1

4
RzzzzψRψLψLψR,

(2.172)

with the shorthand notation:

K,zz =
∂2K

∂Z∂Z
,

Γ z
zz = K−1

,zz K,zzz,

Γ z
zz = K−1

,zz K,zzz,

Rzzzz = K,zzzz − K,zzΓ z
zz Γ z

zz ,
DµψL = ∂µψL + ∂µZΓ z

zz ψL,

(2.173)

transform as the components of a scalar multiplet for any well-behaved function
K. We can then recover equation (2.160) by constructing an action which is purely
linear in D, as discussed above. Written out in full, the lagrangian is

L = −
∫ [

gzz

(
∂Z · ∂Z− i

2
ψL
←→
/∂ ψL − HH

)
− i

2
(

gzz,z∂µZ− gzz,z∂µZ
)
ψLγµψL

− i
2
(

gzz,zHψLψR + gzz,zHψRψL
)
+

1
4

gzz,zzψRψLψLψR

]
d4x.

(2.174)

2.7.4 The superpotential

Similarly, the auxiliary field H for a chiral multiplet transforms in to a total
derivative as well. Starting from the basic chiral multiplet (φ, ψL, H), it is possible
to construct a field which transforms according to (2.163). To wit:

A = W ′(Z)H +
i
2

W ′′(Z)ψRψL. (2.175)
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The holomorphic field W is called the superpotential. Since A is complex, a real
contribution to the supersymmetric lagrangian can obtained by adding A with
its complex conjugate to (2.174)

∆S =
∫ [

W ′(Z)H + W ′
(
Z
)

H +
i
2

W ′′(Z)ψRψL ++
i
2

W ′′
(
Z
)
ψLψR

]
d4x.

(2.176)
This modifies the equations of motion for the auxiliary field H. The superpoten-
tial is only mentioned here for completeness, and will not be used in the analysis
in this thesis.

2.7.5 Kähler geometry in supersymmetry

Note that the function K in equation (2.172) is only determined up to transfor-
mations of the form

K(Z, Z)→ K′(Z, Z) = K(Z, Z) + F(Z) + F(Z). (2.177)

Such transformations leave the chiral and auxiliary components unchanged,
while the bosonic transforms as

δWµ =
i
2

(
F′(Z)∂µZ− F′(Z)∂µZ

)
= ∂µα, (2.178)

with α = i
2

(
F− F

)
. Thus, (2.177) corresponds with an abelian gauge transforma-

tion of Wµ.
Comparison of the above construction with the properties of the Kähler

potential in section 2.1.7 shows that a chiral supermultiplet is embedded in a
Kähler manifold. The process of generalising this to a family of multiplets is then
straightforward. Generalising (2.174) to r complex scalar multiplets, we find the
general action:

S = −
∫ [

gαα

(
∂Zα · ∂Zα − i

2
ψ

α
L
←→
/∂ ψα

L − HαHα

)
− i

2

(
gαα,β∂µZβ − gαα,β∂µZβ

)
ψ

α
Lγµψα

L

− i
2

(
gαα,βHαψ

α
Lψ

β

R + gαα,βHα
ψ

α
Rψ

β
L

)
+

1
4

gαα,ββψ
α
Rψ

β
Lψ

α
Lψ

β

R

]
d4x.

(2.179)

Here gαβ is the Kähler metric (2.30). Summation over α, α, β, β is implied, and take
the values 1, . . . , r. Eliminating the auxiliary fields Hα by their field equations
(compare (2.172))

Hα = − i
2

Γ α
βγψ

α
Rψ

β
L, (2.180)
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The action can be written purely in the multiplet components:

S =
∫ [
−gαα∂Zα · ∂Zα +

i
2

gααψ
α
L
←→
/D ψα

L −
1
4

Rααββψ
α
Lψ

β

Rψ
α
Rψ

β
L

]
d4x, (2.181)

with Rααββ the Riemann tensor (2.34) and

Dµψα
L = ∂µψα

L + ∂µZγΓ α
γβψ

β
L. (2.182)

2.7.6 The mass formula

In the beginning of this section, it was proved that all particles in the same
supermultiplet must share the same mass. This creates a major dilemma: since
the photon is massless, the photino should also be massless. Since it belongs
to the same representation of the electromagnetic gauge group, it couples to
the charged matter in the same way as the photon, and therefore should not be
difficult to be observed. The absence of superpartners places the requirement
that supersymmetry be broken for any realistic field theory.

There is a rule which relates the masses in a given multiplet. For unbroken
supersymmetry this rule is simple: all particles have the same mass. For bro-
ken supersymmetry, the masses of particles are related by the supertrace. The
supertrace is the sum of squared masses, weighed by the particle spins:

STr m2 = Tr

[
∑

J
(−1)2J(2J + 1)m2

J

]
. (2.183)

Since a supermultiplet comprises a spin-0 scalar field, a spin-1 vector field, and a
spin-1⁄2 spinor field, the supertrace becomes

STr m2 = Tr
[
m2

0 − 2m2
1/2 + 3m2

1

]
. (2.184)

The value of the supertrace is defined to vanish:

STr m2 = m2(nb − n f
)
= 0, (2.185)

with one again nb and n f the number of bosonic and fermionic states in the
multiplet, respectively.[24]
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Chapter 3
The non-linear σ-model
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Having introduced all the neccessary notation and mathematical tools, we
now turn to the construction of the non-linear σ-model. We shall proceed as
follows: first, we shall show how the bosonic model naturally emerges by
restricting fields to take values in the target manifold. Second, the results will
be cast in the form of Kähler geometry and, in light of the requirements for
supersymmetry, consider the coupling of (fermionic) matter fields to the to scalar
model, and end this section with the supersymmetric extension of the σ-model.

3.1 Parametrisation of the coset SU(2N)/SU(N)2 ×
U(1)

An element of Z ∈ SU(2N) can be partitioned as

Z =

(
U V
X Y

)
, (3.1)

where U, V, X, and Y are N × N complex matrices. The requirement that Z be
unitary yields a set of constraints to these partitions:

UU† + VV† = 1,

XX† + YY† = 1,

UX† + VY† = 0.

(3.2)

From these constraints we can surmise that the partition of Z can be parametrised
as

U = eiL
(

1 + φφ†
)−1/2

,

V = eiL
(

1 + φφ†
)−1/2

φ,

X = −eiK
(

1 + φ†φ
)−1/2

φ†,

Y = eiK
(

1 + φ†φ
)−1/2

,

(3.3)

as can be readily checked by substitution. In this parametrisation, φ is an arbi-
trary complex N × N matrix, while L and K are N × N hermitian matrices. The
square roots in equation (3.3) are defined by their power series expansion. As
pure elements of the symmetry group, the fields Z and φ are dimensionless. The
physical fields can then be obtained by introducing a parameter f of dimension
inverse mass such that

Z→ f Z, φ→ f φ. (3.4)
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For simplicity, f will be set to unity for the remainder of this thesis.
The parametrisation (3.3) can be written as

Z = ΩZ0,

where

Z0 =

( (
1 + φφ†)−1/2 (

1 + φφ†)−1/2
φ

−
(
1 + φ†φ

)−1/2
φ† (

1 + φ†φ
)−1/2

)
, Ω =

(
eiL 0
0 eiK

)
. (3.5)

Succesive S[U(N)×U(N)] gauge transformations Ω′ = diag(eiΛ, eiκ) from the
left therefore result in a transformed phase factor via

eiL → eiL′ = eiΛeiL,

with an analagous transformation rule holding for eiK. Since we can group all Z
which differ by a transformation of the form

Z′ = ΩZ =

(
eiL 0
0 eiK

)
Z, (3.6)

we can define the left coset space of SU(2N) by setting L = K = 0. The
requirements for Ω are that its generators be traceless and det Ω = 1, since
Ω ∈ S[U(N)×U(N)]. The resulting coset space is denoted SU(2N)/S[U(N)2].
The coset space SU(2N)/SU(N)2 × U(1) is then constructed by omitting a
diagional U(1) charge.[28]

3.2 Construction of the lagrangian

The parametrisation (3.3) demonstrates that the coset space SU(2N)/S[U(N)×
U(N)] can be considered as a smooth manifold, with the matrices φ and φ† as
coordinates. Next, a lagrangian with the proper symmetries is to be written down.
A suitable form exploits the SU(N)2 × U(1) symmetry in a gauge invariant
way:[52]

L = −Tr
[
DµZ†DµZ

]
, (3.7)

where

DµZ =

[
∂µ − ig

(
Aµ 0
0 Bµ

)]
Z. (3.8)

The covariant derivative in equation (3.7) is defined such that the condition
ZZ† = 1 is respected: by using the Euler-Lagrange equations for the fields
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Aµ, Bµ, Aµ and Bµ can be expressed in terms of the fields φ and φ†. To do so, one
can expand equation (3.7), neglect the terms not proportional to the gauge fields,
take derivatives, take partial traces and set the resulting expressions equal to
zero. From this, we find

Aµ =
i

2g

(
U
←→
∂µ U† + V

←→
∂µ V†

)
,

Bµ =
i

2g

(
X
←→
∂µ X† + Y

←→
∂µ Y†

)
.

(3.9)

Substitution of the parametrisation in (3.3) in (3.9) yields

Aµ =
i

2g

{(
1 + φφ†

)− 1
2
(

φ
←→
∂µ φ†

)(
1 + φφ†

)− 1
2

+

[(
1 + φφ†

)− 1
2 , ∂µ

(
1 + φφ†

)− 1
2
]}

,

Bµ =
i

2g

{(
1 + φ†φ

)− 1
2
(

φ†←→∂µ φ
)(

1 + φ†φ
)− 1

2

+

[(
1 + φ†φ

)− 1
2 , ∂µ

(
1 + φ†φ

)− 1
2
]}

.

(3.10)

It can straightforwardly though tedeuously be checked that under a gauge
transformation of the form (3.6) the field Aµ and Bµ transform according to

Aµ → A′µ = eiL Aµe−iL +
i
g

eiL∂µe−iL,

Bµ → B′µ = eiKBµe−iK +
i
g

eiK∂µe−iK.
(3.11)

Thus, the fields transform as proper gauge fields, and as a result, the derivative
in (3.8) and the gauge transformation (3.6) commute. For reference, the transfor-
mation properties of gauge fields is elaborated upon in B. Upon substitution of
the gauge fields in equation (3.7) we find, up to a factor of 2:[28, 53, 54]

L = −Tr
((

1 + φφ†
)−1

∂µφ
(

1 + φ†φ
)−1

∂µφ†
)

. (3.12)

In addition to the gauge transformations on the left, the lagrangian also has
proper SU(2N) gauge symmetry from the right. This is covered in the next
section.
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3.2.1 Global gauge transformations of SU(2N)/SU(N)2×U(1)

The lagrangian also has a global symmetry of the form

Z′ = ZZ∗, (3.13)

where Z∗ is a proper SU(2N) matrix. This transformation forces φ to transform
non-linearly.[52] Because of this, the symmetry does not respect the coset in
general; to restore the gauge L = K = 0 one has to multiply Z′ with a restor-
ing SU(N)2 transformation Ξ from the left: ΞZZ∗ ∈ SU(2N)/SU(N)2 ×U(1).
Infinitesimal global transformations of the form (compare (3.3))

Z∗ =
(

1 + iΛ ε
−ε† 1 + iΛ

)
(3.14)

yield the following transformations of the fields:

φ→ φ′ = φ + ε + φε†φ− iΛφ + iφΛ,

φ† → φ′† = φ† + ε† + φ†εφ† + iφ†Λ− iΛφ†,

eiL → eiL′ = eiL
(

1 + iΛ + iΩ(φ, φ†)
)

,

eiK → eiK′ = eiK
(

1 + iΛ + iΩ(φ, φ†)
)

.

(3.15)

The details can be found in appendix C. The U(1) charge can be isolated from
the hermitian matrices by defining

Λ→ Λ̃ + α, (3.16)

Λ→ Λ̃ + β, (3.17)
ξ = α− β. (3.18)

Λ̃, Λ̃ are traceless hermitian matrices, while ξ is the U(1) central charge. The
non-linear transformation for the field φ then becomes

δφ = ε + φε†φ− iΛφ + iφΛ− iξφ. (3.19)

In the rest of the text, the tildes on the traceless matrices will be dropped. The
hermitian matrices Ω, Ω arise as the compensating transformation to restore the
coset. Substitution of (3.15) into (3.13), we find that these matrices satisfy{

Ω,
(

1 + φφ†
)−1/2

}
= i
[(

1 + φφ†
)−1/2

φε† − εφ†
(

1 + φφ†
)−1/2

]
,{

Ω,
(

1 + φ†φ
)−1/2

}
= i
[(

1 + φ†φ
)−1/2

φ†ε− ε†φ
(

1 + φ†φ
)−1/2

]
.

(3.20)
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3.2.2 Gauging the global symmetry

The symmetries of the model can be specified purely in terms of SU(N) transfor-
mations on the field φ. Since these transformations are non-linear, it is instructive
to first realise the gauging of the whole symmetry group as a linear SU(2N)
matrix. This allows for a convenient check when gauging the symmetries in a
non-linear fashion in section 4.

The gauging of the global symmetry allows vector bosons to be coupled to
the model. To do this, the covariant derivative in (3.8) is supplemented by a
coupling to the gauge group acting from the right:

∂µZ→ ∇µZ,

∇µZ = ∂µZ− ieZ
(

Vµ Qµ

−Q†
µ Wµ

)
.

(3.21)

Vµ, Wµ belong to the linear subgroups SU(N) of SU(2N), while Qµ, Q†
µ belong

to the complementary group of SU(2N)/SU(N)2 ×U(1)∗. Thus:

DµZ =

(
∇µ − ig

(
Aµ 0
0 Bµ

))
Z. (3.22)

Eliminating the auxiliary gauge fields Aµ and Bµ in terms of φ we find that (3.9)
still holds, provided we introduce covariant derivatives:

Aµ =
i

2g

(
U
←→∇µU† + V

←→∇ µV†
)

,

Bµ =
i

2g

(
X
←→∇ µX† + Y

←→∇ µY†
)

,
(3.23)

where

∇µU = ∂µU − ieUVµ + ieVQ†
µ,

∇µV = ∂µV − ieVWµ − ieUQµ,

∇µX = ∂µX− ieXVµ + ieYQ†
µ,

∇µY = ∂µY− ieYWµ + ieXQµ.

(3.24)

If we substitute the above back into the lagrangian we find

L = −Tr
[
∇µV†∇µV +∇µU†∇µU +∇µX†∇µX +∇µY†∇µY

+
1
4

(
V
←→∇ µV† + U

←→∇ µU†
)2

+
1
4

(
X
←→∇ µX† + Y

←→∇ µY†
)2
]

.
(3.25)

∗Note that the gauge transformations generated by Qµ, Q†
µ introduce the non-linearity in the

transformation of φ. See (3.14) and (3.15).
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In terms of the parametrisation of equation (3.3) (up to a factor of 2):[28]

L = −Tr
[(

1 + φφ†
)−1
∇µφ

(
1 + φ†φ

)−1
∇µφ† + e2Q†

µQµ

]
, (3.26)

where
∇µφ = ∂µφ− ie

(
φWµ −Vµφ

)
. (3.27)

The symmetry is thus spontaneously broken and the fields of the non-linear
gauge transformations become massive. Since the gauge fields are dynamic, one
still needs to add the Yang-Mills Lagrangians (2.115) of Vµ, Wµ, Qµ, Q†

µ to (3.26).
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3.2.3 Kähler geometry on the coset

In this section the general concepts of section 2.1.7 will be applied to the grass-
manian manifolds, in particular the coset space SU(2N). The components of the
metric, connection coefficients and the curvature will be computed.

The Kähler potential for the grassmanian manifolds is[13]

K
(

φ, φ†
)
= log det(1 + φφ†). (3.28)

It can straightforwardly be checked that the Kähler potential is invariant under
the transformations (3.15), up to the ambiguity mentioned in equation (2.31).
The variation of the Kähler potential can be written as

δK = δφ · δK
δφ

+
δK
δφ† δφ†

= F + F, (3.29)

where the functions F and F are defined by

F = ζ · δK
δφ

+ iM, F = ζ · δK
δφ† − iM, (3.30)

and

ζ = δφ = φ′ − φ

= ε + φε†φ− iΛφ + iφΛ− iξφ. (3.31)

The functions F, F are (anti)holomorphic, as can be proved by using equations
(2.39), (2.40), (2.41), as well as the property that the Killing vectors are holomor-
phic. Explicitly:

F[φ] = Tr
[
ε†φ
]

. (3.32)

Hence, K satisfies the required transformation properties for the Kähler potential.
The functions ζ are therefore the Killing vectors of the metric.

From the Kähler potential one can compute the metric using equation (2.30).
It is actually convenient to do so in terms of the metric components. One then
proceeds as follows: from the identity log det X = Tr [log X] one obtains a
formal power series for the Kähler potential. Differentiating this series with
respect to the components of φ† one obtains the formal power series

δK

δφ† j
β

=

[(
1 + φφ†

)−1
φ

] β

j
=

∞

∑
n=0

1
n

(
−φφ†

)n
φ. (3.33)
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The metric then obtained by differentiating this expression with respect to the
components of φ, with the result

g i β
α j =

(
1 + φφ†

)−1 j

i

(
1 + φ†φ

)−1 β

α
. (3.34)

Using equation (3.34), the lagrangian of the coset model can be simplified to

L = Tr
[

g∂µφ†∂µφ
]

. (3.35)

The inverse metric immediately follows from the form of the metric:

g−1 j α

β i =
(

1 + φφ†
) j

i

(
1 + φ†φ

) α

β
(3.36)

For completeness, the connection and curvarture components can then be im-
mediately computed from the metric and its inverse, using equations (2.33) and
(2.34):

Γ i k β
α γ j = (g−1)

δ β
l j

δg i δ
α l

δφ
γ

k
(3.37)

= −δi
jδ

β
γ

((
1 + φ†φ

)−1
φ†
) k

α

− δk
j δ

β
α

((
1 + φ†φ

)−1
φ†
) i

γ

, (3.38)

R i β k δ
α j γ m =

δ2g i β
α j

δφ
γ

k δφ† m
λ

− gb λ
κ a Γ i k κ

α γ i Γ
β δ a

j m λ (3.39)

= −
(

g i β
γ j g kλ

α m + g k β
α j g i λ

γ m

)
. (3.40)

Returning to the Killing vectors, from (3.30) it is straightforward to compute
the Killing potential:

M = i
(

ζ · δM
δφ
− F

)
= −i

(
ζ · δM

δφ† − F
)

= −i Tr
[(

1 + φ†φ
)−1(

ε†φ− φ†ε + iφ†Λφ− iΛφ†φ + iξφ†φ
)]

. (3.41)

Of course, a field independent constant can freely be added to (3.41), as the
Killing vectors are obtained from the potential by equations (2.39) and (2.40). It
can be shown that the Killing vectors (3.31) satisfy equation (2.38), that is, they
span a Lie algebra:

ζA ·
δζB

δφ
− ζB ·

δζA

δφ
= ζC, (3.42)
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where the ζi are given by equation (3.31) and†

εC = i
(

ε[AΛB] + Λ[AεB]

)
, (3.43)

ε†
C = i

(
Λ[Aε†

B] + ε†
[AΛB]

)
, (3.44)

ΛC = i
(

ε[Aε†
B] + [ΛA, ΛB]

)
, (3.45)

ΛC = i
(

ε†
[AεB] + [ΛA, ΛB]

)
. (3.46)

The Killing potentials Mi then transform adjointly:

δ1M2 = M3, (3.47)

provided the constants in (3.41) are chosen to be

C = −1
2

Tr [ξ] . (3.48)

†For equations (3.43)-(3.46) we adopt the convention that Λ, Λ are again general hermitian
matrices.
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3.3 Matter coupling in the σ-model

In this section the coupling of matter fields to the sigma model is addressed.
Matter fields ψ are introduced as linear representations T of the symmetry
group. To wit, it transforms as follows under the subgroups U of the symmetry
transformations (3.13)[19]:

ψ→ ψ′ = ψT(U). (3.49)

Nonlinear transformations under elements Z of the full gauge group can then be
obtained by

ψ→ ψ′ = ψT(U(Z)). (3.50)

This is illustrated explicitly below.
Consider a field ψα in the fundamental representation of the proper subgroup

SU(N). Using the above procedure, this field can be extended to a representation
of the full symmetry group by defining its complementary SU(2N) components
according to[28]

ψαU†i
α = −ψiU†i

i (3.51)

or
ψiX†α

i = −ψαY†α
α . (3.52)

In this sense, the partitions U, V, X, Y and their hermitian conjugates can be
regarded as generalised N-bein fields, since they enable a extension of vectors
from the local linear subgroups to the global symmetry group, or vice versa. We
can use the parametrisation to solve these equations in terms of the manifold
coordinates:

ψi = −ψα
(

V†U†−1
) i

α
= −ψαφ†i

α , (3.53)

χi = −ψi
(

X†Y†−1
) α

i
= −ψiφ α

i . (3.54)

With this prescription, the components of ψ transform under Z as

δψi = ψj
(

iΛ− φε†
)i

j
(3.55)

δχi = ψj
(

iΛ + φε†
)i

j
(3.56)

It will be seen later that this is exactly the type of gauge transformation necassary
for gauge invariance to be compatible with supersymmetry.
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It is now possible to write down a Lagrangian for spinor fields coupled to
the σ-model. Consider ψα in the fundamental representation of SU(N). We can
then introduce an auxiliary spinor χ according to equation (3.51):

χU† + ψV† = 0. (3.57)

Then the vector (ψ, χ) spans a linear representation of SU(2N), and thus a
invariant Lagrangian is

L = −iψ
←→
/∂ ψ− iχ

←→
/∂ χ. (3.58)

Upon substitution of equation (3.53) we find the non-linear realisation:

L = −Tr
[
i
(

1 + φ†φ
)(

ψ
←→
/∂ ψ

)
− i
(
ψγµψ

)(
φ†←→∂µ φ

)]
. (3.59)

If we then make the redefinition

χ =
(

1 + φφ†
)1/2

ψ
(

1 + φ†φ
)1/2

, (3.60)

we find, after a Fierz rearrangement of the four-fermion term,[28]

L = −Tr
[

g
(

∂µφ†∂µφ− iχ
←→
/D χ +Rχχχχ

)]
, (3.61)

with

R =
δ2g

δφδφ† − g−1 δg
δφ

δg
δφ† , (3.62)

Dµχ = ∂µχ + Γ∂µφχ. (3.63)

These are the analogues of (2.181) and (2.182) for the grassmannian σ-manifolds.
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3.4 Supersymmetric extension of the σ-model

From the previous section it is seen that the SU(2N)/SU(N)2 ×U(1) enables
supersymmetry once matter fields have been coupled to the model. An off-shell
supersymmetric lagrangian can now be presented. First, introduce a chiral spinor
ψL and an auxiliary field H transforming under the adjoint representation of the
gauge group. From the analysis at 2.7 we are now in a position to write down a
Lagrangian invariant under supersymmetry transformations:[13, 55, 56]

L =− Tr
[

g
(

∂µφ†∂µφ− iψL
←→
/∂ ψL − HH

)
− i
(

δg
δφ† ψLψRH +

δg
δφ

HψRψL

)
−i
(

∂µφ
δg
δφ
− δg

δφ† ∂µφ†
)

ψLγµψL +
δ2g

δφδφ† ψRψLψLψR

]
.

(3.64)

This Lagrangian is invariant under the supersymmetry transformations‡

δφ = −iεRψL,

δψL =
1
2
(/∂φεR + HεL),

δH = −iεL /∂ψL.

(3.65)

In section 3.2.1 it was shown that the coordinates φ posses the posses the non-
linear symmetry (3.15), which are of the form

δφ = ξR[φ].

This gauge invariance is to be compatible with supersymmetry. Thus, we require
the gauge transformations to commute with supersymmetry:

[δG, δS]X = 0, (3.66)

where δG denotes a gauge transformation, δS a supersymmetry transformation,
and X = φ, ψL, H. From this, we can surmise the gauge transformations for ψL

‡Note that the sfermionic fields are rescaled compared to the D term lagrangian of (2.172). As
a result, this lagrangian realises a different representation of the supersymmetry algebra, with[
δη , δε

]
= i

2 ηγµε∂µ.
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and H:

[δG, δS]φ = εRδGψL − ξδSR[φ]

= εRδGψL − ξ
δR
δφ

δSφ

= εR

(
δψL − ξ

δR
δφ

ψL

)
= 0.

So

δGψ = ξ
δR
δψL

ψL. (3.67)

Similarly,

2[δG, δS]ψL = /∂δGφεR + δGHεL − ξδS

(
δR
δφ

ψL

)
= δGHεL + ξ

δR
δφ

/∂φεR − ξ
δR
δφ

/∂φεR − ξ

[
δR
δφ

H − 2i
δ2R

δφδφ
ψLψR

]
εL

= 0.

Equation (2.77) allows us to write the double-spinor term as

−1
2

ψRψL
1− γ5

2
,

and hence the gauge transformations of H take the form

δGH = ξ

[
δR
δφ

H + i
δ2R

δφδφ
ψRψL

]
. (3.68)

The global symmetries can now be promoted to local symmetries. Doing this
requires the usual description of introducing covariant derivatives

∇µφ = ∂µφ− eAµR[φ],

∇µψL = ∂µψL − eAµ
δR
δφ

ψL.
(3.69)

The gauge bosons Aµ require the introduction of a vector multiplet V = (Aµ, λ, D),
in the adjoint representation of the local Killing vectors, for each gauge boson.
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The supersymmetry transformations for this multiplet take the form

δAµ = − i
2

εγµλ, (3.70)

δλ =
1
2
(
−σµνFµν + iDγ5

)
ε, (3.71)

δD =
1
2

εγ5 /∇λ, (3.72)

Where

Fµν = ∂µ Aν − ∂ν Aµ − e
[
Aµ, Aν

]
,

∇µλ = ∂µλ− e
[
Aµ, λ

]
.

(3.73)

To make sure that the supersymmetry algebra still closes for all fields according
to (2.165), the supersymmetry transformations have to be modified slightly§:

δφ = −iεRψL, (3.74)

δψL =
1
2
(/∇φεR + HεL), (3.75)

δH = −iεL(/∇ψL − eλRR[φ]). (3.76)

Gauge invariance introduces couplings between the chiral and the vector multi-
plets. As a result, we have to add additional couplings to the lagrangian to make
the model as a whole supersymmetric. The complete gauged and supersymmet-
ric lagrangian is then

L = LYM + Lchiral + Lc. (3.77)

where

LYM = −Tr
[

1
4

FµνFµν − i
2

λ /∇λ− 1
2

D2
]

, (3.78)

Lchiral is (3.64) with the derivatives replaced by covariant derivatives, and

Lc = −Tr
[
2ieg

(
ψLλRR + RλRψL

)
+ eDM

]
, (3.79)

with M the Killing potential, compensates the added contributions under a
supersymmetry transformation. If the gauged symmetry group has a U(1) factor
we can additionally include a Fayet-Iliopoulos term:

LFI = Tr
[
αeDU(1)

]
, (3.80)

§This modification is dictated by the supersymmetry algebra. A derivation can be found in D.
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as discussed in section 2.7.3. Plugging in the equations of motion

H = −ig−1 δg
δφ

ψRψL, (3.81)

D = e
(

M + αδU(1)

)
, (3.82)

the final lagrangian becomes

L = −Tr
[

g
(
∇µφ†∇µφ− iψL

←→
/∇ ψL

)
+ 2ie

(
gRλRψL + RgψLλR

)]
− Tr

[
−i
(
∇µφ

δg
δφ
− δg

δφ†∇µφ†
)

ψLγµψL +RψRψLψLψR

]
− Tr

[
1
4

FµνFµν − i
2

λ /∇λ

]
−V

(3.83)

The δU(1) is a shorthand; it is nonzero only if the gauged symmetry group
includes the U(1) factor. R is the curvature tensor (2.34) evaluated in our
coordinate system:

R =
δ2g

δφδφ† − g−1 δg
δφ

δg
δφ† . (3.84)

The evolution of the system is now determined by the scalar potential

V =
e2

2
Tr
[(

M + αδU(1)

)2
]

. (3.85)

Its exact form depends on which symmetries are gauged. Since the potential
comprises a sum of squares, it vanishes only if each symmetry has a vanishing
Killing potential. This is generally not the case, as M generally has non-zero
constants demanded by (2.42). Thus, supersymmetry is generally not preserved.
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Chapter 4
Gauging the non-linear symmetries
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There are various ways to proceed, now that the scalar potential has been
constructed, depending on which symmetries are gauged. In this section, we
consider the gauging of the whole symmetry group, as well as the full stability
group SU(N)2 ×U(1). In this section we make extensive use of the results from
section 2.1.7. We now apply this to the grassmannian coset space:

Recall that the isometries of the coset were obtained by multiplication from
the right by a hermitian matrix:

Z′ = ZU, (4.1)

where Z is given by (3.1)-(3.3) and U is given by (3.14). In the language of
Yang-Mills theory, the non-linear transformations can then be written as

δφ = ε + φε†φ− iΛφ + iφΛ− iξφ

= Ξ · R. (4.2)

The parameter independent Killing vectors can then be obtained from the Killing
potentials To do so, it is convenient to write down the Killing potential in terms
of SU(2N) representations. As an element of the full symmetry group, we find:

M =

 φφ†

1+φφ† − 1
2 − 1

1+φφ† φ

− 1
1+φ†φ

φ† − φ†φ

1+φ†φ
+ 1

2

 , (4.3)

R =

(−iφ i
−iφ2 iφ

)
. (4.4)

Two final remarks on the notation that we’ve used so far: First, in this derivation
we have chosen linear representations of the full gauge group. The non-linear
representations can be obtained by explicitly evaluating the various matrix
products. For example, if the whole SU(2N) group is gauged:

∇µφ = ∂µφ−
(

Qµ + φQ†
µφ− iVµφ + iφWµ

)
, (4.5)

as dictated by equation (3.15). Similarly, for the fermionic fields

∇µψL = ∂µψL −
(

ψLQ†
µφ + φQ†

µψL − iVµψL + iψLWµ

)
, (4.6)

in accordance to equation (3.69). Furthermore, this choice of representation
means that equation (3.83) carries an implicit sum of the Yang-Mills lagrangians
over the subgroups of SU(2N) as partitioned in section 3.2.1. Here, we denote Vµ

and Wµ as the gauge bosons belonging to the SU(N) group acting from the left
and right, respectively, as in section 3.2. Similarly, the gauge bosons denoted by
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Qµ, Q†
µ belong to the remaining subspace of the SU(2N)/SU(N)2 ×U(1) coset.

Should we gauge the global U(1) subgroup, we call the gauge boson Aµ. Finally,
the gauginos corresponding to these gauge bosons are denoted by λv, λw, λq, λa,
respectively.

4.1 A note on the stability of the system

At this point a few remarks are in order: generally, some Kähler metrics contain
zero modes. This means that in the ground state one or more of the kinetic terms
vanish. If this is the case, the model is said to be singular, as mass or curvature
terms in the lagrangian diverge.[23] Another possibility is the appearance of
ghosts; in this case some of the fields carry negative kinetic energy, and the model
becomes unstable.[37] Examples of such singular manifolds are the anomaly
free manifolds SO(2N)/U(N) and SU(2)/U(1).[22, 23] In the pure σ-model,
however, the metric is non-singular.

Recall that the Kähler metric of the SU(2N) model is

g =
(

1 + φφ†
)−1
⊗
(

1 + φ†φ
)−1

(4.7)

If the manifold is to be free of ghosts and zero modes, this metric must be positive
definite:

det g =
1

1 + φφ†
1

1 + φ†φ
> 0. (4.8)

The graph of (4.8) is plotted in figure 4.1. As it is nonnegative in any neighbour-
hood, we conclude that our model is nonsingular as is.

4.2 Gauging the full group

Gauging the full SU(2N) group, we find that the scalar potential is constant:

Vsc =
e2

2
Tr

[ 1
1+φφ† φφ† − 1

2 − 1
1+φφ† φ

− 1
1+φ†φ

φ† − 1
1+φ†φ

+ 1
2

] 2

=
e2N

4
> 0. (4.9)

Thus, supersymmetry is broken. The scalar fields φ are therefore the Goldstone
fields of the theory. The scalar degrees of freedom are absorbed by the gauge
bosons of the non-linear symmetries. As a result these gauge bosons become
massive, as can be seen in the unitary gauge φ = 0. The covariant derivatives
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det g

‖φφ†‖
Figure 4.1: determinant of the metric as a function of ‖φφ†‖.

are:

∇µφ = ∂µφ− e
(

Qµ − φQ†
µφ− iVµφ + iφWµ

)
→ −eQµ, (4.10)

∇µψL = ∂µψL − e
(

ψLQ†
µφ + φQ†

µψL − iVµψL + iψLWµ

)
→ ∂µψL + ie(VµψL − ψLWµ). (4.11)

Where the expressions to the right of the arrows in equations (4.10) and (4.11) are
evaluated in the unitary gauge. From this we can make several remarks: first, the
constant value of (4.10) indicates that the non-linear symmetry is spontaneously
broken. Hence, the gauge field becomes massive. Furthermore, the sfermion
field ψL decouples from gauginos of the linear subgroup, instead combining
with the gauginos of the nonlinear subgroup, forming a massive Dirac fermion.
The spectrum therefore comprises two massless scalar multiplets, as well as
a massive doublet comprising one Dirac fermion and one gauge boson. As
supersymmetry is broken, this doublet no longer comprises a supermultiplet.

The preceding paragraph can be shown quantitatively: in the unitary gauge,
the metric becomes constant:

g→ 1. (4.12)

Expanding the kinetic term of the coordinates in the unitary gauge, we find that
the non-linear symmetry is broken:

∇µφ†∇µφ = e2Q†
µQµ. (4.13)
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Particle Ψ Qµ λw Wµ λv Vµ

Squared mass 2e2 2e2 0 0 0 0
Table 4.1: Mass spectrum of the physical fields after gauging the full symmetry group.

Considering the bosonic part of the lagrangian up to terms of quadratic order in
the fields∗ then yields

Lb = Tr
[(
−1

4
(
∂µQν − ∂νQµ

)(
∂µQ†

ν − ∂νQ†
µ

)
− 1

2

(
2e2QµQ†

µ

))
− 1

4
(
∂µVν − ∂νVµ

)(
∂µVν − ∂νVµ

)
− 1

4
(
∂µWν − ∂νWµ

)(
∂µWν − ∂νWµ

)]
+ . . .

(4.14)

Computing the field equations and comparing with we see that the bosons of
the unbroken symmetries remain massless, whereas the boson belonging to the
non-linear transformations gains a mass m2

q = 2e2.
Next, we consider the fermionic part of the lagrangian, again up to terms of

quadratic order. Using equations (3.83) and (4.4), we see that the only non-zero
Yukawa couplings are those of the sfermion ψL with Qµ, producing the fermionic
lagrangian

L f = iTr
[

ψL
←→
/∂ ψL +

1
2

λq
L
←→
/∂ λq

L +
1
2

λvL
←→
/∂ λv

L +
1
2

λwL
←→
/∂ λw

L

+2e
(
λq

RψL + ψLλq
R
)]

+ . . .
(4.15)

Defining
Ψ =

√
2ψL − λ

q
R, (4.16)

the lagrangian is readily diagonalised. Up to a global factor of 2 (4.15) becomes

Lq = i Tr
[
λv
←→
/∂ λv + λw

←→
/∂ λw + Ψ

←→
/∂ Ψ +

√
2eΨΨ

]
+ . . . (4.17)

Again turning to the equations of motion and comparing with, we surmise
that the gauginos remain massless, whereas the Dirac spinor Ψ gains a mass
m2

Ψ = 2e2. For easy reference, the mass spectrum is given in table 4.1. We see
that in the multiplets (Wµ, λw), (Vµ, λv) the number of helicity states are equal,

∗There are higher order terms, of course, but these are interaction terms. The lagrangian up
to second order yields the free model, from which the field equations of section 2.3.5 can be
derived.
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therefore forming full scalar multiplets. The doublet (Qµ, Ψ) misses one scalar
state, thereby no longer forming a supermultiplet.†

4.3 Gauging the full stability group

In this section it is convenient to perform the following decomposition for the
scalar field φ:‡

φ = eiξ P, (4.18)

where both ξ and P are hermitian§. Since this decomposition mirrors a linear
gauge transformation

P→ P′ = eiξ P, (4.19)

the field ξ disappears from the physical spectrum, serving as a Goldstone field. If
the potential admits any minima, say at P = φ0, fluctuations about these minima
can be parametrised by

φ→ φ0 + ρ, (4.20)

where now, ρ is the Higgs boson of the theory.
Next to the full symmetry group, a subgroup with interesting features is the

maximal subgroup SU(N)2 ×U(1). In this case, the abelian component allows
us to include a Fayet-Iliopoulos term in (3.83). The potential (3.85) then takes the
form

V =
e2

1
2

Tr
[

φφ†

1 + φφ†

] 2

+
e2

2
2

Tr
[

φ†φ

1 + φ†φ

] 2

+ e2
3 Tr

[
φφ†

1 + φφ† −
(

1
2
− α

)] 2

.

(4.21)
Depending on the value of α, the potential may or may not have nontrivial
minima. This will be expanded upon in the next sections.

Expanding the covariant derivative for the coordinate field, using (4.20):

∇µφ = ∂µρ− i
(
−e1Vµρ + e2ρWµ

)
− ie3Aµρ

− i
(
−e1Vµφ0 + e2φ0Wµ

)
− ie3Aµφ0.

(4.22)

†In fact, this scalar state is related to the theory of anomlies. The anomaly cancellation requires
the embedding of the N2 dimensional Kähler manifold into a larger 2N2 dimensional manifold.
As a result, extra scalar degrees of freedom are introduced. See [23].

‡Any square complex matrix can be decomposed in this manner. For a short proof, see for
example [57].

§Actually, we only require P to be positive definite, in the sense that any quadratic form of P
is real and nonnegative. For a complex matrix this implies that P is hermitian.
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In preparation of what is to come, we define

q2 = e2
1 + e2

2, (4.23)

sin θ =
e1

q
, (4.24)

cos θ =
e2

q
, (4.25)

Xµ = cos θWµ − sin θVµ, (4.26)
Yµ = sin θWµ + cos θWµ. (4.27)

A similar construction can be made for the gauginos λx
R, λ

y
R. In terms of these

new gauge fields, the covariant derivative becomes:

∇µφ→ ∇µρ− iqφ0Xµ − ie3φ0Aµ + Cµ, (4.28)

where

∇µρ = ∂µρ− i
q
2
({

ρ, Xµ

}
+ cos 2θ

[
ρ, Xµ

]
+ sin 2θ

[
ρ, Yµ

])
− ie3Aµρ, (4.29)

Cµ = i
q
2
(
cos 2θ

[
φ0, Xµ

]
+ sin 2θ

[
φ0, Yµ

])
. (4.30)

It will later turn out that C vanishes. From equation (4.28) it can be surmised
that, if the potential has nontrivial minima, the gauge fields Xµ and Aµ become
massive. If that turns out to be the case, the global symmetry is spontaneously
broken to SU(N). Two cases will be considered; the case α = 0, where both
supersymmetry and the internal symmetry are broken, and the case α = 1/2,
where both supersymmetry and the internal symmetry are preserved. For both
cases, the potential is sketched in figure 4.2.

4.3.1 Including the Fayet-Iliopoulos term

If α = 1/2, the potential can be seen to be

V =
e2

1 + e2
2 + 2e2

3
2

Tr
[

φφ†

1 + φφ†

] 2

. (4.31)

Thus, φ0 = 0, and subsequently both supersymmetry and the internal symmetry
are preserved. Using equation (4.20) we proceed analogously to the case of the
full symmetry group. Using the parametrisation (4.20), the metric and potential
can be expanded up to quadratic order:

g = 1 +O
(

ρ2
)

, (4.32)

V = O
(

ρ4
)

. (4.33)
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Collecting terms up to quadratic order the bosonic part of (3.83) is

Lb = −Tr
[
∂µρ∂µρ

]
− 1

4
Tr
[(

∂µ Aν − ∂ν Aµ

)2
]

− 1
4

Tr
[(

∂µVν − ∂νVµ

)2
]
− 1

4
Tr
[(

∂µWν − ∂νWµ

)2
] (4.34)

The Yukawa couplings in equation (3.83) vanish up to second order. Thus the
fermionic part of the lagrangian can, after appropriately renormalising the fields,
be written as

L f =
i
2

Tr
[
ψL
←→
/∂ ψL + λvR

←→
/∂ λv

R + λwR
←→
/∂ λw

R + λaR
←→
/∂ λa

R

]
(4.35)

The physical spectrum can therefore be seen to comprise the massless multiplets
(ρ, ψL), (Aµ, λa), (Vµ, λw), (Wµ, λw).

4.3.2 Gauging without the Fayet-Iliopoulos term

On the other hand, if we set α = 0, the potential becomes

V =
q2

2
Tr
[

ρ2

1 + ρ2

] 2

+
e2

3
2

Tr

[
1
4
− ρ2

(1 + ρ2)
2

]
, (4.36)

and hence has nontrivial extrema. Demanding that the variation of the potential
with respect to ρ vanish, we find

δV
δρ

=
(

1 + ρ2
)−3

ρ
([

2q2 + e2
3

]
ρ2 − e2

3

)
= 0, (4.37)

which occurs if ρ = 0 or

ρ2
0 =

e2
3

e2
3 + 2q2

. (4.38)

It can straightforwardly be checked that the trivial solution corresponds to a
local maximum, which is therefore unstable. The ground state of the system
therefore is ρ0. From figure 4.2 it can be seen that both the internal symmetry
and supersymmetry are broken. As a result, the particle spectrum is split into
two vector multiplets, one that remains massless, whereas the other becomes
massive, in addition to the Higgs boson. As noted previously, the internal
symmetry group breaks down to SU(N).

Since the ground state is degenerate, the field φ can freely be expanded about
the real ρ0:

φ = ρ0 +
√
Aρ. (4.39)
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Vsc(φ)

‖φφ†‖
N
8

q2e2
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N q2+e2
3

2

N 4q2+e2
3

8

Figure 4.2: Graphs of the potential with α = 1/2 (blue), and α = 0 (red).

A is a normalisation factor, chosen so that the field ρ has a properly normalised
kinetic term. Again expanding the metric and the potential up to second order:

g =
1

(1 + ρ2
0)

2
+O

(
ρ2
)

, (4.40)

V =
N
8

q2e2
3

q2 + e2
3
+

e2
3
2

A2(
1 + ρ2

0
)2

e2
3 + 2q2

e2
3 + q2

Tr
[
ρ2
]
+O

(
ρ4
)

, (4.41)

1
(1 + ρ2

0)
2
=

1
4

(
e2

3 + 2q2

e2
3 + q2

)2

. (4.42)

The bosonic part of the lagrangian, up to second order in the fields, is

Lb = −
A2(

1 + ρ2
0
)2 Tr

[(
∂µρ∂µρ +

e2
3
2

e2
3 + 2q2

e2
3 + q2

ρ2

)]

− Tr

[(
1
4
(
∂µXν − ∂νXµ

)2
+

1
2

(
q2e2

3
2

2q2 + e2
3(

q2 + e2
3
)2

)
XµXµ

)]

− Tr
[

1
4
(
∂µYν − ∂µYν

)2
]

− Tr

[
1
4
(
∂µ Aν − ∂µ Aν

)2
+

1
2

(
e4

3
2

2q2 + e2
3(

e2
3 + q2

)2 Aµ Aµ

)]
+ . . . ,

(4.43)

whence it follows that for the scalar field ρ to have a properly normalised kinetic
term the normalisation satisfies A = 1 + ρ2

0. Using the Euler-Lagrange equations
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(2.93) and (2.99), the following squared masses are obtained:

m2
ρ =

1
2

e4
3 + 2q2e2

3

e2
3 + q2

, (4.44)

m2
X =

q2e2
3

2
2q2 + e2

3(
q2 + e2

3
)2 , (4.45)

m2
Y = 0, (4.46)

m2
A =

e4
3
2

2q2 + e2
3(

e2
3 + q2

)2 . (4.47)

Having determined the scalar field masses, we move on to consider the fermionic
sector in the action up to quadratic terms:

L f = i
[

gψL
←→
/ψ L +

1
2

λx /∂λx +
1
2

λy /∂λy +
1
2

λa /∂λa

+2igq
(
ψLλx

RRx − RxλxRψL
)
+ 2ige3(ψLλa

RRa − RaλaRψL)
]
+ . . . .

(4.48)

Plugging in the explicit form of the Killing vectors Rx ≈ iρ0, Ra ≈ −iρ0 and the
metric from equation (4.40), equation (4.48) can be written as

L f = i
[

χL
←→
/∂ χL +

1
2

λxR
←→
/∂ λx

R +
1
2

λaR
←→
/∂ λa

R +
1
2

λy
R
←→
/∂ λ

y
R

+iqe3

√
2q2 + e2

3

e2
3 + q2

(
χLλx

R − λxRχL
)
− ie2

3

√
2q2 + e2

3

e2
3 + q2

(
χLλa

R − λaRχL
) ,

(4.49)

where
χL =

1
1 + ρ2

0
ψL.

The lagrangian can then be diagonalised by defining

Ψ = χL − iλx
R, (4.50)

Φ = −iχL + λa
R. (4.51)

In terms of the spinors Ψ and Φ, equation (4.48) simplifies to

L f = i Tr

Ψ/∂Ψ + qe3

√
2q2 + e2

3

q2 + e2
3

ΨΨ + Φ/∂Φ + e2
3

√
2q2 + e2

3

q2 + e2
3

ΦΦ + λy /∂λy

 .

(4.52)
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Comparison with (2.95) yields the fermion masses:

mΨ = e3q

√
2q2 + e2

3

e2
3 + q2

, mΦ = e2
3

√
2q2 + e2

3

e2
3 + q2

, mY = 0. (4.53)

Furthermore, combining (4.44)-(4.47) and (4.53), a straightforward calculation
shows that the supertrace formula is satisfied:

STr m2 = ∑ m2
0 − 2 ∑ m2

1/2 + 3 ∑ m2
1

= m2
ρ − 2

(
m2

Ψ + m2
Φ

)
+ 3
(

m2
X + m2

A

)
=

1
2

e4
3 + 2q2e2

3

e2
3 + q2

− 2
(

e2
3q2 + e4

3

) e2
3 + 2q2(

e2
3 + q2

)2 +
3
2

(
e4

3 + q2e2
3

) e2
3 + 2q2(
e2

3 + q2
)

= 0. (4.54)
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Chapter 5
Anomaly cancellation
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It has been mentioned in the introduction that the pure σ-model is anomalous.
These arise from the coupling of the bosonic coordinate fields to chiral fermions.
As anomalies make a theory inconsistent, one has to find a way to remove
them. One way of cancelling anomalies is by introducing Wess-Zumino counter
terms to the action.[58, 59] Another method is to introduce chiral multiplets
in such a way as to make the coefficients of the anomalies vanish. In light of
Grand Unification, the latter option is preferable, as allows for the inclusion of
additional families of fermions (quarks and leptons).

5.1 Matter coupling

In this section, an outline will be provided on how to add these matter multiplets
to the model in such a way that the original symmetries are respected. The
simplest way to do this is by introducing additional supermultiplets which trans-
form as a tangent vector of the manifold. More general matter representations
can then be constructed by considering tensor products of these supermultiplets.

First we show how to couple additional matter fields to the non-linear sigma-
model. Starting from the scalar field A of this multiplet, which transforms as a
tangent vector. In component notation:

δAα = ξi
δRiα

δφβ
Aβ, (5.1)

in analogy with equation (3.67). Proceeding analogously as in section 3.4, this
yields the following transformation rules under the isometries of the manifold:[60,
61]

δAα = ξi
δRiα

δφβ
Aβ, (5.2)

δχα
L = ξi

(
δRiα

δφβ
χL +

δ2Riα

δφβδφγ
Aβψ

γ
L

)
, (5.3)

δNα = ξi

(
δRiα

δφβ
Nα +

δ2Riα

δφβδφγ

[
2iψβ

Rχ
γ
L + AβNγ

]
+ i

δ3Riα

δφβδφγδφδ
Aβψ

γ
Rψδ

L

)
.

(5.4)

Hence, the scalar multiplet does not transform homogeneously as a vector. The
auxiliary component does not pose any problems, as it is eliminated by its field
equation. For the spinor component, a covariant spinor can be defined

χ̂α
L = χα

L + Xα
L. (5.5)
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The requirement that χ̂α
L transform as a vector then requires that

δiXα
L =

δRiα

δφβ
Xβ

L −
δ2Riα

δφβδφγ
Aβψ

γ
L . (5.6)

Comparison with (3.68), (3.81) and (5.2) shows that the proper prescription is

χ̂α
L = χα

L − Γα
βγ Aβψ

γ
L . (5.7)

This prescription ensures that kinetic terms of the form

Lk = −gαβ∇µ Aβ∇µ Aα − gαβχ̂
β

L
←→
/∇ χ̂α

L (5.8)

are invariant under the isometries of the manifold, provided the metric (3.34) is
used. We are now in a position to couple additional matter to the sigma model.
To begin, we interpret the fields (φα, Aα) as the coordinates of a manifold of
dimension 2N. The original Kähler manifold is a submanifold of this larger
object. A suitable manifold is given by the new potential

K = K(φ, φ) + gαβ Aβ Aα, (5.9)

with K as in (3.28). It can readily be checked that equation (5.9) carries the same
Killing vectors of the original manifold. Using equation (2.30) and (5.9), the
complete metric can be seen to be

Gij =

 δ2K
δφ

β
δφα

δ2K
δφ

β
δAα

δ2K
δAβ

δφα

δ2K
δAβ

δAα

 =

(
gαβ + gαβ,γδ Aδ Aγ gαβ,γ Aγ

gαβ,γ Aγ gαβ

)
. (5.10)

The indices i, j = 1, . . . , 2N label the new manifold. Using (5.10), the complete
lagrangian can be found by using equation (2.179). Explicit forms can be found
in [23, 60, 61]. Finally, the Killing vectors of the new manifold are derived from
the new Killing potential:

Mk = Mk + iAαRkα,β Aβ. (5.11)

The Killing vectors

δkφα = Rα
k , δk Aα =

δRα
k

δφβ
Aβ, (5.12)

then follow from equations (2.39), (2.41) and (2.37), with the understanding that
the complete metric (5.10) is used.
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5.2 Anomaly cancellation

The transformation rules for the multiplet introduced above are completely
fixed in terms of the ones for (φα, ψα

L). This is insufficient for the cancellation of
anomalies[21]: consider superfield transforming as a tensor of rank p:

δi Aα1α2...αp =
δRiα1

δφβ
Aβα2...αp + . . . +

δRiαp

δφβ
Aα1α2...β, (5.13)

δiχ̂
α1...αp
L =

δRiα1

δφβ
χ̂

β...αp
L + . . . +

δRiαp

δφβ
χ̂

α1...β
L , (5.14)

The chiral U(1) charge of this field is fixed be a relative weight of p. However,
for phenomenologically interesting models more freedom in charge assignment
is required.[21, 61] This can be acomplished by the introduction of complex
line bundles. To begin, a scalar matter multiplet S can be introduced whose
components (A, χ̂L) transform as a complex line bundle of weight k:

δiw = kFi A, (5.15)

δiηL = k
δFi

δφβ
Aψ

β
l . (5.16)

This defines a new representation of the Killing algebra because of equation (2.44).
This equation guarantees that the commutator of two Killing transformations
satisfies (2.38). From the line bundle, the transformation rules for tensors (5.13),
(5.14) can be modified by defining

Aα1...αp = wAα1...αp , (5.17)

and similarly for the spinor component. The new field A transforms according
to

δiAα1...αp = λFiAα1...αp +
δRα1

i
δφβ
Aβα2...αp + . . . +

δRαp
i

δφβ
Aα1...αp−1β. (5.18)

With the prescription the U(1) charges can be adjusted.[21] The Kähler potential
in (5.9) needs to be adjusted to correct for the additional transformations in (5.18).
From (5.18) it follows that the quantity

e−λKww, (5.19)

where K is the Kähler potential of the σ-model (3.28), is invariant under the full
set of isometries of the Killing vectors. Hence, to cancel the anomalies we define
the new Kähler potential

K = K + e−λKgαβ Aβ Aα. (5.20)
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Note that the construction for the line bundle uses only local quantities. To
guarantee that this construction works over the entire manifold, certain charge
quantisations must be met. In particular, the holomorphic transfer functions
defined in (2.32) must satisfy the so-called cocycle condition[62]

1
2π

(
F(ij)

(
φk
)
+ F(jk)

(
φi
)
+ F(ki)

(
φj
))
∈ Z. (5.21)

In terms of the Kähler form introduced in equation (2.28), it is required that

1
2π

∫
C2

Ω(K) ∈ Z, (5.22)

for any closed 2-cycle C2.[62] This condition implies that the manifold is Kähler-
Hodge[32]. Equation (5.21) guarantees that the above construction works over
the entire manifold. The anomalies can thus be cancelled, and the internal
symmetries gauged consistently as in section 3.4.
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Chapter 6
Discussion and Outlook
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In this thesis the construction of the supersymmetric non-linear σ-model was
presented. Using the formalisms of both real differential and Kähler geometry,
Lie group theory, and classical field theory reviewed in the first chapter, the
bosonic σ-model was constructed, starting from a parametrisation of the sym-
metry group SU(2N) which was realised non-linearly. The model was then
extended by the coupling to matter fields, which provided a natural supersym-
metric extension. The demand that the action be simultaneously invariant under
gauge and supersymmetry transformations yielded a unique way to determine
the coupling of gauge fields to the spinor and auxiliary components of the su-
permultiplet: by the vanishing of the commutator of gauge and supersymmetry
transformations.

After the construction of the supersymmetric σ-model was completed, two
subgroups of SU(2N) were gauged: the full symmetry group SU(2N) itself,
and the linear subgroup SU(N)2 ×U(1). It was found that the promotion of
these subgroups from global to local gauge invariance introduced terms to
the action which broke supersymmetry. This could be fixed by adjusting the
suppersymmetry transformation rules, and using the properties of these rules
to introduce scalar and Yukawa couplings to the action. By construction, these
terms provided exactly the right contributions to restore the supersymmetry
of the model. However, it was found that the Killing potential of the theory
required non-zero constants.

Once the model was supersymmetrically gauged, the auxiliary fields of the
chiral and vector multiplets were eliminated in terms of their field equations.
For the vector field auxiliaries, this gave rise to a scalar potential for the scalar
fields of the chiral multiplet. The exact shape of the potential depended on which
subgroup of SU(2N) was gauged, and in the case of the linear subgroup if the
Fayet-Iliopoulos term was included.

For the full symmetry group SU(2N) it was found that the potential was
a non-zero constant. The particle spectrum of the theory could be found by
implementing the unitary gauge, in which the goldstone bosons vanished. It was
then found that the non-linear symmetries of the theory were broken, yielding
an incomplete massive multiplet. In addition, two massless SU(N) multiplets
were found.

For the linear subgroup SU(N)2×U(1), it was found that the presence of the
Fayet-Iliopoulos term was crucial for the preservation of both supersymmetry
and the internal symmetry: If the term was included, the potential obtained
a global minimum at a vanishing vacuum. Since this minimum vanished, the
spectrum comprised one chiral multiplet and three vector multiplets, all massless.
However, if the Fayet-Illiopoulis term was neglected the constants in the Killing
potential forced the potential to have a non-zero minimum. Since this minimum
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was unequal to zero, both the internal symmetry and supersymmetry were
broken. The spinors of the chiral multiplet combined with some of the gauginos
of the vector multiplet to form Dirac spinors, producing a spectrum of massive
and massless particles in which supersymmetry was no longer manifest.

It has been noted several times in this thesis that the non-linear σ-model is
anomalous. This does not pose a problem for the analysis done in this thesis, as
it was done at the classical level. However, it would be preferable if the structure
of the theory would be respected at the quantum level. An extension of the
model which ensures that quantum corrections do not destroy the theory was
considered in the final part of the thesis. By utilising a line bundle construction,
additional matter multiplets can be introduced. The chiral charge of these
multiplets can be adjusted in such a way that the anomaly coefficients can be
made to vanish.

One might wonder where to go from here. Once the anomalies are cancelled,
the symmetries of the model can be gauged consistently. Additionaly, as the
model should at low energies reduce to the Standard Model, superpotential
terms can be introduced. This facilitates the breaking of the symmetry group to
the Standard Model group SU(3)× SU(2)×U(1). In section 2.7.4 it was found
that the only requirement on the superpotential is that it be holomorphic in the
fields φα. From this, a general superpotential can be seen to be

W(φ) = Lαφα +
1
2

Mαβφαφβ +
1
3!

yαβγφαφβφγ + . . . , (6.1)

where L, M and y are quantities symmetric in their indices. Using this prescrip-
tion the anomaly-free construction of a realistic model which exhibits hidden
supersymmetry on SU(2N) can truly begin.
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Appendix A
Fierz identities

In this appendix short proofs for the Fierz identities in section 2.3.4 will be
provided. All spinors will be Majorana anti-commuting Grassmann numbers,
unless otherwise specified.

Proof of equations (2.77) and (2.78): Note that for any two chiral spinors ψR
and χL the coefficients in (2.75) for χLψR take the form

α = −1
4

ψRχL, (A.1)

αµ = −1
4

ψRγµχL = 0, (A.2)

αµν = −ψRσµνχL = χRσµνψL, (A.3)

α5µ =
1
4

ψRγ5γµχL =
1
4

ψRγµχL = −αµ = 0, (A.4)

α5 = −1
4

ψRγ5χL =
1
4

ψRχL = −α. (A.5)

Hence, if χ = ψ, αµν = 0, and we find equation (2.77). The proof for equa-
tion (2.78) is identical except with the replacement L ↔ R, and the different
eigenvalue for γ5.
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Proof of equations (2.79) and (2.80): Again, for chiral spinors ψL and χL, the
matrix coefficients of χLψL are

α = −1
4

ψLχL = 0 (A.6)

αµ = −1
4

ψLγµχL (A.7)

αµν = ψLσµνχL = 0 (A.8)

α5µ =
1
4

ψLγ5γµχL = −αµ (A.9)

α5 =
1
4

ψLγ5χL = −α = 0 (A.10)

Thus,

χLψL =
1
2

ψLγµχL
1− γ5

2
γµ

=
1
2

ψLγµχLγµ 1 + γ5

2
.

(A.11)

Again, the proof for (2.80) is identical except with the replacement L↔ R, and
the different eigenvalue for γ5.

Proof of equation (2.81): This the Fierz identity (2.79) applied to the two left-
chiral spinors in the middle, with the subsequent use of the dual identity (2.68)
for right-chiral spinors.
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Appendix B
Transformation rules for local gauge
fields

The defining feature of the covariant derivative is that it commutes with gauge
transformations. In this particular case, this implies that under local S[U(3)×
U(3)] gauge transformation Z→ Z′ = ΩZ,

DµZ→ ΩDµZ.

We define

Ω =

(
eiΛ 0
0 eiΛ

)
,

with Λ, Λ hermitian. Recall that the covariant derivative has the form

DµZ =
(
∂µ − igSµ

)
Z.

Thus, under a S[U(3)×U(3)] transformation:

DµZ→ D′µZ′
(

∂µ − igS′µ
)

ΩZ

= Ω∂µZ + Ω
←−
∂µZ− igS′µΩZ

= Ω
(
∂µ − igSµ

)
Z. (B.1)

The last step is required by the gauge covariance. From (B.1) we see that

S′µ = ΩSµΩ† − i
g

Ω
←−
∂µ Ω†

= ΩSµΩ† +
i
g

Ω∂µΩ†.

89



In our case Sµ depends on the gauge fields

Sµ =

(
Aµ 0
0 Bµ

)
.

Therefore, the transformation rule for the gauge fields is

Aµ[Λ] =
i
g

eiΛ∂µe−iΛ + eiΛ Aµ[0]e−iΛ,

Bµ[Λ] =
i
g

eiΛ∂µe−iΛ + eiΛBµ[0]e−iΛ,

as claimed in equation (3.11).
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Appendix C
Non-linear transformations of
manifold coördinates

We can parametrize any global SU(2N) transformation by

Ξ =

(
eiΛ(1 + εε†)−1/2 eiΛ(1 + εε†)−1/2

ε

−eiΛ(1 + ε†ε
)−1/2

ε† eiΛ(1 + ε†ε
)−1/2

)
.

It is readily checked that in the infinitesimal case this reproduces (3.14). Multipli-
cation of Z with Ξ from the right yields

ZΞ =

(
eiL(1 + φφ†)−1/2 eiL(1 + φφ†)−1/2

φ

−eiK(1 + φ†φ
)−1/2

φ† eiK(1 + φ†φ
)−1/2

)(
eiΛ(1 + εε†)−1/2 eiΛ(1 + εε†)−1/2

ε

−eiΛ(1 + ε†ε
)−1/2

ε† eiΛ(1 + ε†ε
)−1/2

)

=

(
(ZΞ) 1

1 (ZΞ) 2
1

(ZΞ) 1
2 (ZΞ) 2

2

)
,

where

(ZΞ) 1
1 = eiL

(
1 + φφ†

)−1/2

eiΛ
[
1− e−iΛφeiΛε†

](
1 + εε†

)−1/2

,

(ZΞ) 2
1 = eiL

(
1 + φφ†

)−1/2

eiΛ
[
ε + e−iΛφeiΛ

](
1 + ε†ε

)−1/2

,

(ZΞ) 1
2 = −eiK

(
1 + φ†φ

)−1/2

eiΛ
[
e−Λφ†eiΛ + ε†

](
1 + εε†

)−1/2

,

(ZΞ) 2
2 = eiK

(
1 + φ†φ

)−1/2

eiΛ
[
1− e−Λφ†eiΛε

](
1 + ε†ε

)−1/2

.

Note that, for convenience, we can define

ξ = e−iΛφeiΛ, ξ† = e−Λφ†eiΛ.
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This definition implies(
1 + φφ†

)−1/2

eiΛ = eiΛ
(

1 + ξξ†
)−1/2

,
(

1 + φ†φ
)−1/2

eiΛ = eiΛ
(

1 + ξ†ξ
)−1/2

,

and hence

(ZΞ) 1
1 = eiLeiΛ

(
1− ξξ†

)−1/2[
1 + ξε†

](
1 + εε†

)−1/2

, (C.1)

(ZΞ) 2
1 = eiLeiΛ

(
1 + ξξ†

)−1/2

[ε + ξ]
(

1 + ε†ε
)−1/2

, (C.2)

(ZΞ) 1
2 = −eiKeiΛ

(
1 + ξ†ξ

)−1/2[
ξ† + ε†

](
1 + εε†

)−1/2

, (C.3)

(ZΞ) 2
2 = eiKeiΛ

(
1 + ξ†ξ

)−1/2[
1− ξ†ε

](
1 + ε†ε

)−1/2

. (C.4)

From this, we see that the gauge is not respected. To restore the gauge, we
multiply by (

eiLeiΛeiΩe−iΛe−iL 0
0 eiKeiΛeiΩe−iΛe−iK

)
,

where Ω, Ω are chosen to recover a particular gauge choice. We then see that we
can identify

eiL′ = eiLeiΛeiΩ, eiK′ = eiKeiΛeiΩ.
Furthermore, from equations (C.1) and (C.2), we want(

1 + ξξ†
)−1/2[

1− ξε†
](

1 + εε†
)−1/2

=
(

1 + φ′φ′†
)−1/2

,(
1 + ξξ†

)−1/2

[ε + ξ]
(

1 + ε†ε
)−1/2

=
(

1 + φ′φ′†
)−1/2

φ′

=
(

1 + ξξ†
)−1/2[

1− ξε†
](

1 + εε†
)−1/2

φ′.

Thus,

φ′ =
(

1 + εε†
)1/2[

1− ξε†
]−1

[ε + ξ]
(

1 + ε†ε
)−1/2

.

Similarly, from (C.3) and (C.4):

φ′† =
(

1 + εε†
)1/2[

1− ξ†ε
]−1[

ξ† + ε†
](

1 + εε†
)−1/2

.

It is readily checked that in the infinitesimal case, to first order in Λ, Λ, ε, ε†:

φ′ =
(

1 + εε†
)1/2[

1− e−iΛφeiΛε†
]−1[

ε + e−iΛφeiΛ
](

1 + ε†ε
)−1/2

=
[
1 + (1− iΛ)φ(1 + iΛ)ε†

]
[ε + (1− iΛ)φ(1 + iΛ)]

= φ + ε + φε†φ− iΛφ + iΛφ,
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Appendix D
Supersymmetric gauge invariance

Recall that the bare supersymmetry transformations are

δφ = −iεRψL, (D.1)

δψL =
1
2
(/∂φεR + HεL), (D.2)

δH = −iεL /∂ψL (D.3)

for the chiral multiplet and

δAµ = − i
2

εγµλ, (D.4)

δλ =
1
2
(
−σµνFµν + iDγ5

)
ε, (D.5)

δD =
1
2

εγ5/∂λ, (D.6)

for the vector multiplet. Furthermore, the theory is invariant under the transfor-
mation

δGφ = ξR[φ],

for a gauge transformation δG. The commutator of two supersymmetry transfor-
mations gives a translation in spacetime:

[
δη, δε

]
X =

i
2

ηγµε∂µX.

Demanding that the gauge invariance be local, we promote the derivatives to
covariant derivatives. This forces us to modify the SUSY transformation rules,
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as the couplings to the vector multiplet introduce new terms due to the variation
of the vector field Aµ. For the scalar and gaugino fields, we propose the ansatz

δφ = −iεRψL, (D.7)

δψL =
1
2
(/∇φεR + HεL). (D.8)

The transformation rule for the auxiliary field is constrained by the supersym-
metry algebra. We check that the rules for φ and ψL generate the same algebra
for the scalar field:

2
[
δη, δε

]
φ = −2i

(
εRδηψL − ηRδεψL

)
= −i(εRγµηR − ηRγµεR)∇µφ

− i(εRηL − ηRεL)H,

but since by the chiral versions of (2.67) and (2.68), this reduces to

[
δη, δε

]
φ =

i
2

ηγµε∇µφ. (D.9)

For the gaugino field:

2
[
δη, δε

]
ψL = −iγµ(εRηR − ηRεR)

(
∇µψL

)
+

ie
2

γµ(εRη − ηRε)γµλR

+ εLδη H − ηLδεH.

Using the chiral version of (2.67) and equation (2.80), the commutator simplifies
to

2
[
δη, δε

]
ψL =

i
2
(ηγαε)γµγα

(
∇µψL −

e
2

γµλRR
)
+ εLδη H − ηLδεH. (D.10)

Inserting the Dirac algebra (2.56), we then find

2
[
δη, δε

]
ψL = iηγµε∇µψL −

i
2

ηγµεγµ(/∇ψL − eλRR) + εLδη H − ηLδεH.

Hence,

εLδη H − ηLδεH =
i
2

ηγαεγα[/∇ψL − eλRR].

Notice that we can insert the projector (1 + γ5)/2 before the brackets on the
right-hand side. This allows us (using equation (2.79)) to perform the Fierz
transformation

1
2

ηγµεγµ
1 + γ5

2
= −(εLηL − ηLεL)
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Thus, we find

εLδη H − ηLδεH = −i(εLηL − ηLεL)(/∇ψL − eλRR).

Hence, we find the transformation rule for the auxiliary field:

δH = −iεL(/∇ψL − eλRR). (D.11)

As a final check, we compute the commutator of two susy transformations for H:
first, note that

2δηδεH = −2iεLδη(/∇ψL − eλRR)

= −ie
[

/∇/∇φηR + /∇HηL + ieγµηγµλ
δR
δφ

ψL

− e
(
σµνFµνηR + iDηR

)
R + 2ieλR

δR
δφ

ηRψL

]
. (D.12)

The first term can be rewritten as

/∇/∇φ = γµγν∇µ∇νφ

=
1
2

γµγν
(
∇µ∇ν +∇ν∇µ +

[
∇µ,∇ν

])
φ.

Using equations (2.56) and (2.125), this can be simplified to

1
2
∇µ∇µφ− eσµνFµνR.

Hence, (D.12) can be written as

2δηδεH = −iεRηR∇2φ− ieεLηRDR− iεLγνηL∇νH

+ eεLγµηγµλ
δR
δφ

ψL + 2eεLλR
δR
δφ

ηRψL.
(D.13)

The first two terms are invariant if we interchange the order of SUSY transforma-
tions. Hence, the commutator is

2
[
δη, δε

]
H = iηγµε∇µH + 2e

(
εLλR

δR
δφ

ηRψL − ηLλR
δR
δφ

εRψL

)
+ e
(

εLγµηγµλ
δR
δφ

ψL − ηLγµεγµλ
δR
δφ

ψL

)
= iηγµε∇µH +

(
ηLγµλL

δR
δφ

εLγµψL − εLγµλL
δR
δφ

ηLγµψL

)
. (D.14)

95



However,

εLγµλL
δR
δφ

ηLγµψL = λRγµεR
δR
δφ

ψRγµηR

= −1
2

ηLγµγνγµλL
δR
δφ

εLγνψL

= ηLγνλL
δR
δφ

εLγνψL.

In this derivation we used equations (2.80) and (2.68) in the first step and the
identity

ηLγµγνγµλL = −2ηLγνλL

in the second step.
Therefore, the last two terms in (D.14) cancel, and we are left with

[
δη, δε

]
H =

i
2

ηγµε∇µH, (D.15)

where

∇µH = ∂µH − eAµ

(
δR
δφ

H + i
δ2R
δφ2 ψRψL

)
. (D.16)
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Appendix E
Construction of the gauge invariant
σ-model

In this appendix it will be shown that the gauge invariant version of (3.64)
together with (3.79) are invariant under the supersymmetry transformations
(3.74)-(3.76) and (3.70)-(3.72). This will be done by construction, starting from
(3.64). It will be assumed that the reader is familiar with the global gauge
invariant case. For details, see [48]. Equation (3.64) is by construction invariant
under supersymmetry as the D-term of a vector superfield.∗ The first step is
the promotion of partial derivatives to covariant ones, as explained in section
3.4. These derivatives introduce extra terms, due to the variation of the vector
potential Aµ, under supersymmetry transformations. These terms, along with
the extra terms due to the extra variation of H, can then be cast in the form of
(3.79).

We can split (3.64) into 3 parts:

L = Tr
[
Lkin + Lint + Lcoupling

]
, (E.1)

with

Lkin = −g
(
∇µφ†∇µφ + iψL

←→
/∇ ψL + HH

)
, (E.2)

Lint = i
δg

δφ† ψLψRH + i
δg
δφ

HψRψL + i
(
∇µφ

δg
δφ
− δg

δφ†∇µφ†
)

ψLγµψL

− δ2g
δφ2 ψRψLψLψR.

(E.3)

∗ Indeed, since the chiral part of (3.77) is invariant under supersymmetry one might wonder
one can create such a superfield using covariant derivatives. This is indeed the case, and (3.79) is
then demanded by the closure of the algebra. See for example [48]

97



Lcoupling corresponds to (3.79). The variation of each part will be considered
seperately.

Variation of Lkin

For the kinetic term of the coordinates, we pick up extra terms due to the SUSY
variation of Aµ. To wit:

− ie
2

g
(
∇µφ†εLγµλLR +∇µφ†εRγµλRR + RεLγµλL∇µφ + RεRγµλR∇µφ

)
.

(E.4)
Similarly, the extended transformation rule for H introduces new terms due to
the gaugino field:

ieg
(

HεLλRR + RλRεLH
)

Substituting the transformation rules for the sfermion field (3.75), we have the
following equality:

ieg
(

HεLλRR + RλRεLH
)
= 2ieg(δψLλRR + RλRδψL)

+ ieg
(

εRγµλR∇µφ† − RλRγµεR∇µφ
)

.
(E.5)

Adding (E.4) and (E.5), we find that gauge invariance adds the following terms
to the lagrangian:

2ieg
(
δψLλRR + RλRδψL

)
+

e
2

(
iRg∇µφ† −∇µφgR

)
(εRγµλR − εLγµλL)

= 2ieg
(
δψLλRR + RλRδψL

)
− e

2
∇µMεγ5γµλ (E.6)

where M is the Killing potential, with

∇µM = ∇µφ
δM
δφ

+
δM
δφ†∇µφ† =

(
iRg∇µφ† −∇µφgR

)
.

After integration by parts, we find a total contribution of

∆L = 2ieg
(
δψLλRR + RλRδψL

)
+ eMδD. (E.7)

The sfermionic kinetic term can be split up in two parts: first, the coupling to
Aµ yields a correction compared to the globally gauge invariant case. Second, the
covariant derivatives introduce the complication that, unlike partial derivatives,
they do not commute. Since this is crucial for supersymmetry to hold, the
coveriant derivatives need to be handled carefully.
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First the variation of the sfermionic fields:

i
2

g
(
ψLγµ∇µδψL −∇µ

(
ψL
)
γµδψL

)
+ h.c,

Substituting (3.75) we find, after integration by parts:

i
2

ψLγµγν
(
∇µ∇ν +∇µ∇ν

)
φεR + . . . , (E.8)

where the dots indicate terms that are identical to the case prior to imposing local
gauge invariance, except with covariant derivatives instead of partial deriva-
tives. Writing ∇µ∇ν = ∇ν∇µ +

[
∇µ,∇ν

]
, we find that compared to the partial

derivatives the covariant derivatives add the term

i
2

gψLγµγν
[
∇µ,∇ν

]
φεR = −iegψLσµνFµνRεR,

due to the Ricci identity (2.125) for φ. Using (3.71), we find that variation of the
kinetic terms of the sfermions add

2iegψLδλRR + egψLDεR + h.c = 2ieg
(
ψLδλRR + RδλRψL

)
+ e(RgψLεR − εRψLgR)D

(E.9)

to the lagrangian. The latter term can be written as eδMD. Moving on to the
variation of Aµ: the coupling to Aµ in the covariant derivative picks up extra
terms:

−iegψLγµδAµ
δR
δφ

ψL = − e
2

gψLγµ
(
εRγµλR + εLγµλL

)δR
δφ

ψL. (E.10)

The first term can by means of the Fierz rearrangement (2.80) be written as

egψLλRεR
δR
δφ

ψL =
ie
2

gψLλRδR,

And comparison with (E.7) motivates us to write

−iegψLγµδAµ
δR
δφ

ψL = 2iegψLλRδR

+
e
2

gψLγµ
(
εLγµλR − εRγµλR

)δR
δφ

ψL.
(E.11)

Adding (E.11) to its hermitian conjugate yields a total contribution of

2ieg
(
δRλRψL + ψLλRδR

)
− e

2
ψL

(
δR
δφ

g + g
δR
δφ†

)
γµ
(
εγ5γµλ

)
ψL. (E.12)
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Note that the Killing condition reads

δR
δφ

g + g
δR
δφ† = 0,

so the second term in (E.12) vanishes. Adding up all the variations, we see that
these can be compensated by letting

Lcoupling = −2ieg
(
ψLλRR + RλRψL

)
− eMD. (E.13)

This puts the requirement on the Killing potential that it transform adjointly
under gauge transformations. We can then show that this is indeed the correct
expression, as the remaining variations of Lcoupling cancel against the extra terms
we get from the variation of Lint. This will be done in the next section.

Variation of Lint

The only thing left to check is if the variation of the metric in (E.13) cancels the
extra contributions of Lint. Computing the variation of the metric in−2iegψLλRR
yields

−2ie
(

δφ
δg
δφ

+
δg

δφ† δφ†
)

ψLλRR = −2e
(

εRψL
δg
δφ

+
δg

δφ† ψLεR

)
ψLλRR. (E.14)

Using the cyclic property of (E.1) and the Fierz rearrangements (2.78) and (2.80)
we can write (E.14) as

e
(
εRγµλR

)
R

δg
δφ

(
ψLγµψL

)
+ e

δg
δφ†

(
ψLψR

)
(εLλR)R.

Comparison with (3.76) and (E.3) then shows that the second term cancels against
the correction due to H. Using (3.70) and (E.3), we can write the first term as

e
(
εRγµλR

)
R

δg
δφ

(
ψLγµψL

)
=

e
2
(
εRγµλR − εLγµλL

)
R

δg
δφ

(
ψLγµψL

)
+ ieδAµR

δg
δφ

(
ψLγµψL

)
.

(E.15)

Thus, the last term of (E.15) cancels against the correction of the covariant deriva-
tive in (E.3). Finally, taking the first term and adding its hermitian conjugate
yields

− e
2
(
εγ5γµλ

)(
R

δg
δφ

+
δg

δφ† R
)(

ψLγµψL
)
,

which is proportional to an infinitesimal translation of the metric along the
Killing vectors. Hence, it vanishes identically. This completes the gauge invariant
extension.
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