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Abstract 

The standard methods for quantifying the dependence between two continuous variables in 

psychological research are the Pearson correlation and the rank correlation coefficients 

Spearman’s 𝜌 and Kendall’s 𝜏. A severe limitation of these correlation measures is that they 

fail to capture non-monotone bivariate relationships that are ubiquitous in psychology. Two 

well-established and promising non-monotone dependence measures used in other fields are 

mutual information (MI) and distance correlation (Dcor). Two questions that remain 

unexamined are how well these measures can detect dependencies typically found in 

psychological research and how they compare to conventional correlation measures. Thus, in 

this paper, we compared the statistical power of MI and Dcor to the traditional correlation 

measures via a simulation study. Our results suggest that Dcor can detect any functional 

relationship in principle, as long as sample sizes are large enough. The MI fails to detect the 

linear relationship when the data is noisier, but it outperforms all other methods on the sine 

wave relationship for small sample sizes. Consequently, we recommend using Dcor as the 

standard measure for detecting any relationship in psychological research when sample sizes 

are large enough. For small and noisy datasets, and when there is a strong belief that the 

underlying relationship is periodic, MI should be used instead. 

 

 Keywords: mutual information, distance correlation, non-monotone dependence, 
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Introduction 

In psychological research, the dependence structure between two variables is usually 

described by the product-moment correlation coefficient, also known as Pearson’s r, which 

measures the degree of linear association between two variables (Colman, 2015; Pearson, 

1895). Other commonly used correlation measures include Spearman’s 𝜌 and Kendall’s 𝜏, 

which are both nonparametric measures of rank correlation and assess how well the 

relationship between two variables can be described using a monotonic function (Kendall, 

1938; Spearman, 1987). 

At the same time, it has long been recognized that functional relationships in 

psychology are not limited to linear or monotone associations. Different functional forms 

have been studied both theoretically and empirically in many subfields, including psychiatry, 

cognitive, educational, as well as social and organizational psychology (Bohon, Hembacher, 

Moller, Moody, & Feusner, 2012; Grijalva, Harms, Newman, Gaddis, & Fraley, 2015; 

Klassen & Chiu, 2010). Examples are the Yerkes-Dodson inverted-U model (Yerkes & 

Dodson, 1908) or the more recently proposed “too much of a good thing” effect (Pierce & 

Aguinis, 2013). Both suggest an inverted U-shape relationship, where monotonic positive 

relations between two variables reach a maximum after which the relation either turns 

negative or levels off at a plateau. In longitudinal data analysis, logistic and exponential 

growth models have also been proposed to study non-linear within-person trajectories over 

time (Grimm, Zhang, Hamagami, & Mazzocco, 2013). Yet others have used oscillations to 

describe neuropsychological processes, such as memory and perception (Gray, König, Engel, 

& Singer, 1989; Rutishauser, Ross, Mamelak, & Schuman, 2010). However, such nonlinear 

or non-monotone functional relationships might often remain undetected by the traditional 

correlation measures used in psychological research. As a consequence, the true, more 

complex dependencies that can occur between variables may be underestimated.   

Numerous statistical methods have been developed to study nonlinear and non-

monotone psychological phenomena. Early suggestions included simple extensions of the 

linear regression model, such as polynomial regression and step functions (Fox, 2008). Later, 

more complex approaches like splines, local regression and generalized additive models were 

proposed (James, Witten, Hastie, & Tibshirani, 2000). Researchers have modelled 

nonlinearities in time-series data with nonlinear multilevel models, and in psychometrics, 

they have started to explore nonlinear effects in single- and multilevel structural equation 

models (MacCallum, Kim, Malarkey, & KiecoltGlaser, 1997; Schermelleh-Engel, Kerwer, & 
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Klein, 2014). Moreover, the emergence of nonlinear dynamics and chaos theory in the 1980s 

and 1990s led to the application of nonlinear differential equations in psychology (Guastello, 

2001; Heath, 2000). 

However, many of the methods mentioned above can model only specific types of 

nonlinear and non-monotone relationships and assume that one knows the particular form one 

wishes to model. Non-monotone dependence measures, on the other hand, can detect any 

non-monotone relation.  Moreover, if one is less interested in knowing the exact relationships 

that exist between variables but rather in demonstrating the existence of dependence between 

two variables, dependence measures may be more suitable than intricate statistical models.  

 A well-established non-monotone dependence measure in probability theory and 

information theory is mutual information (MI), which reflects the mutual dependence 

between two random variables (MacKay, 2003). The crucial property of MI for this study is 

that in contrast to the conventional correlation measures, MI can capture any type of relation 

- linear, monotone and periodic dependence - and when the data are indeed linearly related, 

MI can be reduced to the Pearson correlation coefficient (Kinney & Atwal, 2014).   

Another, relatively new yet promising and well cited, approach to detecting nonlinear 

or non-monotone dependence structures is the distance correlation (Dcor). It generalizes the 

idea of correlation in two ways (Székely, Rizzo, & Bakirov, 2007). Unlike the Pearson 

correlation coefficient, which measures linear dependence, it captures the degree of 

dependence of two random variables and it can be computed for two variables in arbitrary 

dimensions.  

Both MI and Dcor have been investigated empirically by several authors and shown 

to be powerful methods compared to traditional measures of dependence. For example, a 

simulation study by Simon and Tibshirani (2011) compared the power of the Maximal 

Information Coefficient (MIC), as a variant of the mutual information proposed by Reshef et 

al. (2011), to that of the distance correlation and Pearson correlation. Distance correlation 

performed better than MIC in almost every situation. Only in the case of the high-frequency 

sine wave relationship, the MIC had higher power, and in the linear case, it performed worse 

than the Pearson correlation. The authors concluded that the distance correlation measure was 

the most powerful technique overall and should be considered for general use. In the context 

of gene expression signal analysis, a simulation study comparing Dcor and MI to several 

other methods, including the Heller-Heller-Gorfin measure (HHG), found that the HHG 

measure and Hoeffding’s 𝐷 had the highest power on non-linear, and non-monotone 

relationships (de Siqueira Santos, Takahashi, Nakata, & Fujita, 2014). The authors 
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recommended that the HHG measure and Hoeffding’s 𝐷 are suitable for general use and 

sample sizes with fewer than 30 observations, Dcor, MI, and MIC could be powerful as well. 

Another simulation study by Clark (2013) compared the three correlation measures to the 

distance correlation and MIC as well. It showed that the Pearson correlation was good at 

detecting linear relationships, while distance correlation was best at finding quadratic 

relationships, also when the data was noisy. The MIC found strong sine wave patterns for a 

wide range of noise levels. More recently, the MIC, MI, distance correlation, and linear 

correlation were compared to the copula correlation, as one of the newer methods for 

measuring non-monotone dependence (Ding & Li, 2013). No single test dominated in power 

in all cases. The linear correlation was best at detecting linear relationships. Concerning the 

sine wave pattern, MIC was very good at detecting higher frequencies, whereas the copula 

correlation was best at detecting lower frequencies. In a later study, Kinney and Atwal (2014) 

compared the MI, MIC, distance correlation and Hoeffding’s 𝐷 – a more traditional nonlinear 

dependence measure – to the Pearson correlation. Similar to the previous findings, MIC had 

low statistical power in almost all cases except on the sine wave relationship, and Pearson 

correlation, distance correlation and Hoeffding’s 𝐷 performed considerably better than the 

MI and MIC on the linear relationship.  

Most of these studies were conducted in the field of molecular biology and used larger 

sample sizes of 300, 500, 1000 or 10000 that are common for gene-expression data, for 

example. However, none of these previous studies has investigated the performance of MI 

and Dcor on data that is typical of psychological research where usually, the number of 

observations is small, and relationships are noisy. Also, not all of the studies accounted for 

the noise level when examining the performance of the relevant measures. Thus, this study 

will shed light on two questions that remain unanswered:  

1. How well can MI and Dcor capture dependencies typically found in psychological 

research? and 

2. How does each of them compare to traditional correlation measures? 

The results from this study could provide valuable insight into alternative dependence 

measures that could be used in psychology to capture relationships that might otherwise be 

missed by the commonly used Pearson or rank correlation coefficients. 

To compare the dependence measures directly, a standard metric is necessary since 

each measure is measured on a different scale. Therefore, we will examine the statistical 

power of each method for different functional relationships and under different scenarios 
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typically encountered in psychological settings via a simulation study. We will also use 

standard correlation measures and Hoeffding’s independence test, a well-established 

nonparametric dependence test, as a benchmark. Based on the previous findings, we expect 

MI to be less powerful than Dcor and the traditional correlation measures at detecting linear 

relationships, and more powerful at detecting the sine wave relationship.  

The remainder of this thesis is organized as follows: in the next section, we will 

describe the dependence measures used in this study, as well as the simulation study in detail.  

In section 3, the results of the simulation study are presented, followed by a discussion and 

conclusion in sections 4 and 5.  

Method 

Non-monotone Dependence Measures 

In what follows, we describe the nonlinear dependence measures and their 

corresponding estimation procedures. For simplicity, only continuous variables and bivariate 

relationships are considered, but all measures presented here can be computed for discrete 

variables and the multivariate case as well.  

Mutual information, distance correlation, and Hoeffding’s 𝐷 are based on different 

but equivalent mathematical characterizations of the statistical independence between two 

random variables 𝑋 and 𝑌 with a similar form: 

 𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦) (1) 

for all 𝑥, 𝑦, where 𝑓𝑋,𝑌 can be either the joint probability density function 𝑝𝑋,𝑌, the joint 

characteristic function 𝜑𝑋,𝑌, or the joint cumulative distribution function (CDF) 𝐹𝑋,𝑌. 

Similarly, 𝑓𝑋 and 𝑓𝑌 can be either the corresponding marginal probability density functions 

(PDF) 𝑝𝑋 and 𝑝𝑌, the characteristic functions 𝜑𝑋 and 𝜑𝑌, or the CDFs 𝐹𝑋 and 𝐹𝑌. Thus, to 

establish the dependence between 𝑋 and 𝑌, all measures quantify the discrepancy or distance 

between some version of each one of the terms on the left- and right-hand side of Equation 

(1).  

 Rényi’s axioms. Before turning to the description of each of the three nonparametric 

dependence measures, here we outline several conditions that any suitable dependence 

measure should satisfy. One of the most widely used criteria to evaluate the properties of 

dependence measures are the seven axioms proposed by Rényi (1959): 
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A. 𝜆(𝑋, 𝑌) is defined for any pair of random variables X and Y, where neither one of the 

random variables is constant for all values; 

B. 𝜆(𝑋, 𝑌) = 𝜆(𝑌, 𝑋); 

C. 0 ≤ 𝜆(𝑋, 𝑌) ≤ 1; 

D. 𝜆(𝑋, 𝑌) = 0 if and only if X and Y are independent; 

E. 𝜆(𝑋, 𝑌) = 1 if there is a strict dependency between X and Y, i.e. either 𝑌 = 𝑓(𝑋) or 

𝑋 = 𝑔(𝑌) for some functions 𝑓 , 𝑔; 

F. It is invariant under marginal one-to-one transformations of the random variables;   

G. If the joint distribution of X and Y is normal, then 𝜆(𝑋, 𝑌) = 𝜌(𝑋, 𝑌), where 𝜌(𝑋, 𝑌) 

is the Pearson correlation coefficient of X and Y. 

In the next two sections, we evaluate to what extent MI and Dcor fulfill these axioms. 

Mutual information. The first measure of interest to consider is the mutual 

information (MI), which reflects how similar the joint probability density function of two 

random variables X and Y is to the product of their marginal PDFs. To illustrate this, consider 

two single events x and y of the random variables X and Y. In order to determine whether x 

and y are independent, one can compute the so-called pointwise mutual information (PMI), 

which is defined as: 

 𝑃𝑀𝐼(𝑥; 𝑦) = 𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
), (2) 

where 𝑝(𝑥, 𝑦) denotes the joint PDF, and 𝑝(𝑥) and 𝑝(𝑦) are the marginal PDFs. Thus, if x 

and y are independent, then 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦) and 𝑃𝑀𝐼(𝑥; 𝑦) = log(1) = 0. Mutual 

information is then defined as the expected value of PMI over all possible events 

𝑥1, … , 𝑥𝑛 and  𝑦1, … , 𝑦𝑛 of the random variables X and Y (Kraskov, Stögbauer, & 

Grassberger, 2004):  

 𝐼(𝑋; 𝑌) = 𝐸(𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)) = ∫ ∫ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔 (

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
) 𝑑𝑥 𝑑𝑦.

∞

−∞

∞

−∞

 (3) 

The base of the logarithm determines the units in which information is measured. Taking 

base 2, in particular, leads to information measured in bits. MI is nonnegative and symmetric, 

i.e. 𝐼(𝑋; 𝑌) = 𝐼(𝑌; 𝑋). Moreover, when the random variables X and Y are independent, their 

joint PDF will be the product of their marginal PDFs and log
𝑝𝑋𝑌(𝑥,𝑦)

𝑝𝑋(𝑥)𝑝𝑌(𝑦)
 in Equation (3) 
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becomes log(1) = 0. Thus, in the case of independence,  𝐼(𝑋; 𝑌) = 0. Conversely, if X can 

be completely determined by Y, then log
𝑝𝑋𝑌(𝑥,𝑦)

𝑝𝑋(𝑥)𝑝𝑌(𝑦)
 will be greater than zero and may become 

very large. Consequently, 𝐼(𝑋; 𝑌) lies in the interval [0; +∞). Because this unbounded range 

of values makes MI hard to interpret and difficult to compare to other dependence measures, 

many normalized variants have been suggested (Cahill, 2010). One of the normalized 

variants of MI for continuous variables is the informational coefficient of correlation, which 

is defined as 

 𝜆(𝑋, 𝑌)̂ = √1 − exp(−2𝐼(𝑋; 𝑌)̂ ). (4) 

Note that the unstandardized mutual information 𝐼(𝑋; 𝑌) from Equation (3) satisfies all of 

Rényi’s axioms except C, E and G. That is, it is not bounded from above, it is not equal to 1 

when there is a perfect relationship between random variables X and Y, and it cannot be 

reduced to the Pearson correlation coefficient. In contrast to 𝐼(𝑋; 𝑌), the informational 

coefficient of correlation 𝜆(𝑋, 𝑌)̂  satisfies all seven postulates for a suitable measure of 

dependence and will be used as a normalized MI measure in this study.  

Kernel density estimation. As mentioned before, to compute the MI, one needs to 

estimate the probability density functions in Equation (3). Because these are usually not 

known, they have to be estimated from the data. Several MI estimation approaches have been 

proposed over the years, such as histogram-based techniques (Moon, Rajagopalan, & Lall, 

1995; Steuer, Kurths, Daub, Weise, & Selbig, 2002), k-nearest neighbor estimation (KNN) 

(Kraskov et al., 2004), Edgeworth approximation of differential entropy (Hulle, 2005), and 

Bayesian estimation approaches (Gencaga, Malakar, & Lary, 2014).   

In the present study, kernel density estimation (KDE) will be used as it has been 

shown to outperform other mutual information estimation approaches for small sample sizes 

(Khan et al., 2007). The idea of KDE is that a non-negative function, also known as a kernel, 

is placed on each observation 𝑥𝑖 of the random variable X and these kernels are then summed 

to obtain the kernel density estimator. The kernel function can take on many forms, e.g. 

normal or uniform. For example, KDE with a Gaussian kernel may be pictured as putting 

Gaussian “bumps” on each observation 𝑥𝑖, and the kernel density estimator is obtained by 

taking the sum of these “bumps”. In that sense, KDE is similar to histograms. However, KDE 

estimates have been shown to be superior to the histogram-based techniques in terms of (a) a 

better mean square error rate of convergence of the estimate to the underlying density, (b) an 
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insensitivity to the choice of origin, and (c) the ability to specify more sophisticated window 

shapes than the rectangular window shapes for frequency counting (Moon et al., 1995; Steuer 

et al., 2002). Besides, KDE has been found to perform better than KNN when the sample size 

is small, and noise levels are high (Khan et al., 2007). Since we typically deal with small 

sample sizes and high noise levels in psychological research, KDE is an adequate choice for 

this study. 

Assume a sample 𝑥1, … , 𝑥𝑛  of independently identically distributed observations 

from a random variable X with density f. The kernel density estimator for the marginal 

probability density of X with a generalized weight or kernel function K(x) is given by  

 𝑓(𝑥) =
1

𝑛ℎ
 , (5) 

where h is a so-called bandwidth parameter that determines the “bumpiness” or smoothness 

of the probability density function. Hence, two decisions need to be made when using KDE. 

First, choosing a kernel function K and, second, the bandwidth h. Both decisions are 

commonly made based on minimizing the discrepancy of the density estimator 𝑓 from the 

true density f (Silverman, 1986). The mean integrated squared error (MISE) is one of the 

most widely used measures for this discrepancy. It has been shown that, if the bandwidth 

parameter h is chosen optimally, the most efficient kernel in the MISE sense will be the 

Epanechnikov kernel, which can be written as: 

 𝐾𝑒(𝑥) =
3

4√5
(1 −

1

5
𝑥2).  (6) 

Note, however, that most other commonly used kernels (e.g. gaussian, triangular, rectangular) 

are nearly as efficient, which is why the particular choice of a kernel has been deemed rather 

unimportant in KDE (Harpole, Woods, Rodebaugh, Levinson, & Lenze, 2014; Silverman, 

1986). Nonetheless, we will use the Epanechnikov kernel, also because it is already 

efficiently implemented as the standard kernel in the R software package ‘mpmi’ that 

computes MI with KDE.  

 To choose the optimal bandwidth, we employed the following rule of thumb by 

Silverman (1986): 

 ℎ = 0.9𝐴𝑛−1 5⁄  (7) 
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where A = 𝑚𝑖𝑛 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒/1.34), representing an 

adaptive estimate for the spread of the data. The value given by Equation (7) has been shown 

to recover a wide range of densities reasonably well with respect to MISE, also for the 

Epanechnikov kernel and especially for smaller sample sizes in the range of 50 to 100, and it 

is easy to evaluate (Harpole et al., 2014; Silverman, 1986).  

Distance Correlation. As mentioned earlier, all non-monotone dependence measures 

in this study quantify the dissimilarity of the joint distribution and the product of the marginal 

distributions of two random variables X and Y. While MI captures the discrepancy directly in 

terms of the probability density functions, distance correlation transforms the joint and 

marginal PDFs first via so-called characteristic functions and then computes the distance 

between these transformed quantities.  

The characteristic function, (denoted as 𝜑 in the following) of a random variable is a 

function, which takes on values in the complex numbers (DasGupta, 2011; Karr, 1993). 

Complex numbers can be written in the form 𝑧 = 𝑥 + 𝑖𝑦, where 𝑥 and 𝑦 are real numbers, 

and 𝑖 is the imaginary number √−1. More precisely, a characteristic function of a random 

variable 𝑋 is defined as the expected value of 𝑒𝑖𝑡𝑋 with 𝑖 as the imaginary part and 𝑡 as the 

real part of the complex-valued function: 

 𝜑𝑋(𝑡) = 𝐸[𝑒𝑖𝑡𝑋] = ∫ 𝑒𝑖𝑡𝑥𝑝𝑋(𝑥)𝑑𝑥
∞

−∞
, (8) 

where 𝑝𝑋 denotes the probability density function of 𝑋. Characteristic functions have several 

advantages. First, they are defined for all real-valued random variables and can always be 

computed. Second, they uniquely identify the underlying probability distribution function, 

which means that the distribution function of X can be determined when one knows its 

characteristic function. Furthermore, in many cases, it is easier to make computations with 

characteristic functions of random variables than estimating their probability density 

functions. It can be shown that, if X and Y are independent, then the joint characteristic 

function will be equal to the product of the marginal characteristic functions: 𝜑𝑋,𝑌 = 𝜑𝑋𝜑𝑌 

(Karr, 1993).  

Thus, distance correlation, as our second dependence measure of interest, is the 

standardized distance covariance. The distance covariance computes the distance between 

the joint characteristic function 𝜑𝑋,𝑌(𝑠, 𝑡) and the product of the marginal characteristic 

functions 𝜑𝑋(𝑠)𝜑𝑌(𝑡) of two random variables X and Y: 
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 𝑑𝐶𝑜𝑣(𝑋, 𝑌) =
1

𝑐2
∫ ∫

|𝜑𝑋,𝑌(𝑠, 𝑡) − 𝜑𝑋(𝑠)𝜑𝑌(𝑡)|2

|𝑠|2|𝑡|2
𝑑𝑡𝑑𝑠

∞

−∞

∞

−∞

 (9) 

where 𝑠 and 𝑡 are the real parameters of the characteristic functions and 𝑐 is a constant 

(Székely et al., 2007). The distance correlation is then defined as the standardized value of 

𝑑𝐶𝑜𝑣(𝑋, 𝑌): 

  

 𝑑𝐶𝑜𝑟(𝑋, 𝑌) = {

𝑑𝐶𝑜𝑣(𝑋, 𝑌)

𝑑𝑉𝑎𝑟(𝑋)𝑑𝑉𝑎𝑟(𝑌)
, 𝑑𝑉𝑎𝑟(𝑋)𝑑𝑉𝑎𝑟(𝑌) > 0

                0,                          𝑑𝑉𝑎𝑟(𝑋)𝑑𝑉𝑎𝑟(𝑌) = 0.

 (10) 

 

where 𝑑𝑉𝑎𝑟(𝑋) = 𝑑𝐶𝑜𝑣(𝑋, 𝑋) and 𝑑𝑉𝑎𝑟(𝑌) = 𝑑𝐶𝑜𝑣(𝑌, 𝑌) are the distance variances of 

random variables 𝑋 and 𝑌, respectively.  

With respect to Rényi’s postulates: 𝑑𝐶𝑜𝑟(𝑋, 𝑌) = 𝑑𝐶𝑜𝑟(𝑌, 𝑋), i.e. the distance 

correlation is symmetric, 0 ≤ 𝑑𝐶𝑜𝑟(𝑋, 𝑌) ≤ 1,  𝑑𝐶𝑜𝑟(𝑋, 𝑌) = 0 if and only if 𝑋 and 𝑌 are 

independent, and 𝑑𝐶𝑜𝑟(𝑋, 𝑌) = 1 when there is a vector 𝑎, a nonzero real number 𝑏, and an 

orthogonal matrix 𝐶 such that 𝑌 = 𝑎 + 𝑏𝑋𝐶.  

The estimation of the theoretical distance covariance via the computation of distance 

matrices is relatively straightforward. For details, the interested reader is referred to Székely 

et al. (2007). We used the ‘energy’ package in R to compute the distance correlation.  

Hoeffding’s D. The mutual information and distance correlation will be compared 

against Hoeffding’s 𝐷, which is one of the earliest methods to detect non-monotone 

dependences, as a benchmark. Hoeffding’s 𝐷 measures the distance between the joint CDF 

𝐹𝑋,𝑌 and the product of the marginal distributions 𝐹𝑋𝐹𝑌:  

 𝐻(𝑥, 𝑦) = ∫ ∫ 𝑓𝑋𝑌(𝑥, 𝑦)(𝐹𝑋,𝑌(𝑥, 𝑦) − 𝐹𝑋(𝑥)𝐹𝑌(𝑦))2𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 (11) 

for all 𝑥, 𝑦 (Hoeffding, 1948). Similar to Spearman’s 𝜌 and Kendall’s 𝜏, the empirical 

estimate 𝐻(𝑥, 𝑦) ̂ is a rank-based measure. It considers the difference between the joint ranks 

of the observed data for the random variables 𝑋 and 𝑌 and the product of their marginal 

ranks. However, unlike the monotone dependence measures, Hoeffding’s 𝐷 can also identify 

non-monotonic relationships. It can be shown that the random variables 𝑋 and 𝑌 are 

independent if and only if 𝐷(𝑥, 𝑦) = 0 (Hoeffding, 1948). We will use the test statistic �̂� 
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from the ‘Hmisc’ R package developed by Harrell and Dupont (2006), which returns a value 

for �̂� that is 30 times larger than the original �̂� described in Hoeffding (1948). This adapted 

version of �̂� ranges between -0.5 and 1, where larger values indicate a stronger relationship 

between the variables. For more details on the computation of �̂�, the interested reader is 

referred to Hoeffding (1948) as well as Harrell and Dupont (2006) and the references therein.  

Simulation Study 

 In this section, a series of Monte Carlo simulations is presented in which the 

performance of MI and distance correlation in capturing dependencies typically found in 

psychological research was evaluated. We compared the performance of these two methods 

with that of another, more traditional non-monotone dependence measure and the three 

conventional correlation measures: (i) Hoeffding’s D, (ii) the Pearson correlation coefficient, 

(iii) Spearman’s rank correlation coefficient, and (iv) Kendall’s  𝜏 (Kendall, 1938; Pearson, 

1895; Spearman, 1987). We varied the factors, sample size, type of functional relationship, 

and noise level. To be able to compare all measures directly, a standard metric was necessary 

since each measure has a different scale. Therefore, the statistical power of each method was 

assessed for different functional relationships under different scenarios that are typically 

encountered in psychological research.  

Sample size. The sample size was varied according to those typically found in four 

leading APA journals from 1995-2006 (Marszalek, Barber, Kohlhart, & Cooper, 2011): 10, 

20, 30, 40, 50, 60, 100 and 150. This range of values contains more than 75% of sample sizes 

reported in psychological journals within that period, and the sample sizes below 60 were 

covered more densely because they occurred more often and included more than 50% of the 

sample sizes reported in psychological journals. Initially, we also wanted to investigate a 

sample size of approximately 10,000 observations, which occurred quite often in the Journal 

of Applied Psychology. However, this would have taken much computational time, so we 

decided to exclude this extreme case. 

Type of relationship. We simulated pairs of variables that were related linearly, 

quadratically, exponentially or periodically via a sine wave. For the quadratic case, we chose 

an inverted U-shape relationship, as this particular quadratic shape has been suggested in 

several psychological theories (Pierce & Aguinis, 2013; Yerkes & Dodson, 1908). Similarly, 

we modelled negative exponential growth based on theoretical and empirical examinations of 

within-person trajectories over time as in longitudinal psychological research. Thus, for each 
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cell of the design, a random variable 𝑋 ~ 𝒩(0,1) was generated, based on which several Y 

variables were created with the following functional forms: 

Linear: 𝑌1 = 4 + 0.7 × 𝑋 + 𝜀 (12) 

Quadratic: 𝑌2 = −0.5 × 𝑋2 + 𝜀 (13) 

Exponential: 𝑌3 = −𝑒−𝑋 + 𝜀 (14) 

Periodic: 𝑌4 = sin(4 × 𝑋) + 𝜀 (15) 

 

where 𝜀~𝒩(0, 𝜎2) denotes random normally distributed error with error variance 𝜎2 

dependent on the noise level, which will be described in the next subsection. Figure 1 depicts 

the different functional forms graphically for 𝜀~𝒩(0,0). 

Figure 1. The four different functional relationships specified in Equations (12) – (15). 

 

Noise level. As described in the previous section, varying levels of noise were added 

to each equation that specified the type of functional relationship in Equations (12) – (15). 

This was done to explore the influence of the strength of the relationships on the power of 

each measure. The aim was to cover the range of possible values in a relatively dense 

fashion, similar to Simon and Tibshirani (2011) who chose 30 different noise levels between 
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0 and 1. However, due to a trade-off between a dense coverage and computational burden, we 

chose the 10-fold range of values, 0, 0.1, …, 0.9.  

 Design and replications. Thus, the following data generating parameters were 

manipulated in a 4 × 10 × 8 full factorial design with 320 design cells in total: 

1. Functional form: linear, quadratic, exponential, and periodic 

2. Noise level: 0, 0.1, 0.2, 0.3, 0.4, 0.5 0.6, 0.7, 0.8, 0.9 

3. Sample size 𝑁: 10, 20, 30, 40, 50, 60, 100, and 150. 

For each design cell, the data generating process and estimations for the dependence 

measures were repeated 1000 times.  

Evaluating Performance of Methods 

Permutation test. We used Monte-Carlo permutation tests as a nonparametric 

approach to hypothesis testing. In a regular permutation test, the distribution of the test 

statistic of interest under the null hypothesis that the random variables X and Y are 

independent is obtained by calculating all possible values of the test statistic under 

rearrangements of the labels on the observed data points. To illustrate this, suppose we have 

paired data (𝑋𝑖 , 𝑌𝑖) ~ 𝐹 for 𝑖 = 1, …, 𝑛, where 𝐹 is some unknown bivariate distribution. 

Because we have labels 𝑖 = 1, …, 𝑛, there are 𝑛! different possible orderings of 𝑦𝑖. The basic 

idea of the permutation test is that, if the null hypothesis of independence is correct, then 

reordering of 𝑦𝑖 will not affect the value of our dependence measure. The 𝑝-value is then 

computed as the relative number of these hypothetical test statistics under the null hypothesis 

that exceed the observed value of the test statistic.  

A common problem is that the number of possible rearrangements 𝑛! is too large and 

computing the corresponding test statistics becomes infeasible within reasonable 

computational constraints. This problem can be solved by using a Monte Carlo approach, 

where the permutation-based 𝑝-value is derived based on a random sample 𝐵 of all possible 

permutations of 𝑦𝑖. Here we chose 𝐵=1000 as a commonly used number of permutations that 

delivers precise enough estimates. Due to computational limitations, the permutation test was 

used to test the power of MI and Dcor only. For Hoeffding’s independence test, and the three 

tests based on Pearson’s 𝑟, Spearman’s 𝜌, and Kendall’s 𝜏, we used the hypothesis tests that 

are already implemented efficiently in the ‘Hmisc’ and standard ‘base’ R packages. 

Empirical Power. In order to compare the different dependence measures of interest, 

we conducted hypothesis tests with each measure as the corresponding test statistic and then 

computed the statistical power across all simulations as a standard metric. The statistical 
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power of a hypothesis test is defined as the probability that the test rejects the null hypothesis 

(𝐻0: 𝑋 and 𝑌 are independent) when the alternative hypothesis (𝐻1: 𝑋 and 𝑌 are not 

independent) is correct. We estimated power as the average number of 𝑝-values that 

exceeded the significance level 𝛼 = .05 across replications 𝑛𝑠𝑖𝑚: 

 

𝑝𝑜𝑤𝑒𝑟̂ =  
1

𝑛𝑠𝑖𝑚
∑ 1(𝑝𝑖 ≥ 𝛼)

𝑛𝑠𝑖𝑚

𝑖=1

, 
(16) 

where 1 is the indicator function that takes on the value of 1 if the 𝑝-value 𝑝𝑖 is larger than or 

equal to the significance level 𝛼 and the value of 0 if 𝑝𝑖 is smaller than 𝛼.  

Exact test. Apart from having high power, a good test of a given size 𝛼 should also 

maintain a low type I error rate that is equal or smaller to the nominal alpha level (≤ 𝛼). Such 

a test is called an exact test. Thus, to assess whether the tests included in the simulation were 

exact, we also computed the power of each method for the case in which there was no 

relationship between 𝑋 and 𝑌. The calculated powers, in this case, are the empirical type I 

error rates that reflect how often the null hypothesis was rejected although it was true. Due to 

computational limitations, the type I error rates were computed for only the two smallest 

reported sample sizes in psychological research of n = 10 and 𝑛 = 20.  

Unbiased test. We also assessed whether the dependence measure tests were 

unbiased. An unbiased test is a statistical test which is characterized by the fact that the 

probability of a type I error does not exceed a given significance level 𝛼 but the power, i.e. 

the probability that the test rejects under the alternative hypothesis, is always higher than the 

type I error. Unbiasedness was assessed for each dependence measure-based test included in 

the simulation.  

It should be noted here that there are also more strict evaluation criteria for hypothesis 

tests, with the strictest being whether a test is uniformly most powerful (UMP). A UMP test 

is a statistical test at significance level 𝛼 whose power is not less than that of any other 

statistical test of the same significance level (Lehmann, 2005; Upton & Cook, 2014). 

However, UMP tests exist only under very restricted conditions. Therefore, we do not expect 

any of the dependence measure-based tests included in this study to be UMP. Furthermore, 

while it can be checked mathematically whether a given test is UMP, it is empirically and 

practically impossible as one would have to compare the type I error rates and power level of 

a given test against all other statistical tests of the same significance level that exist in theory.  
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Next to UMP tests, there are also uniformly most powerful (UMP) unbiased tests. A 

UMP unbiased test is uniformly most powerful amongst all unbiased tests of the same 

significance level. For the same reasons outlined above, we do not expect any of the 

hypothesis tests included in our study to be UMP unbiased.  

Results 

In this section, the results of the simulation study are presented for each data 

generating mechanism, the underlying type of relationship between variables 𝑋 and 𝑌. To 

illustrate the general trend of each measure’s performance, we provide the results for only a 

few sample sizes. For the complete results, we refer the interested reader to Figures A1-A4 

and Tables A1-A4 in the Appendix.  

Concerning the question of how well MI and Dcor can capture the different types of 

dependencies that are typically found in psychological research, we evaluated whether they 

can detect them in principle. That is, we assessed whether the methods reached a power of 1 

in the limit, at the largest sample size. Moreover, to see how each of them compared to the 

traditional correlation measures, we checked whether there was a stable ranking of methods 

in terms of power across the different noise levels. 

Exactness 

 The simulated powers for the case, in which 𝑋 and 𝑌 are independent, are the type-I 

error rates presented in Table 1. All empirical type I error rates were significantly close to the 

nominal type I error rate of 𝛼 = .05. That is, all binomial tests testing the null hypothesis that 

the type I error rate was greater or equal to the nominal level 𝛼 were significant at the 1%-

level. The rates were estimated using 1000 simulations for the two smallest sample sizes of 𝑛 

= 10 and 𝑛 = 20. Due to computational limitations, we ran the simulations for these two 

sample sizes only.  

Table 1 

Empirical type I error rate for each dependence measure-based hypothesis test 

 MI Dcor Hoeffding Pearson Spearman Kendall 

𝑁 = 10 .049*** .040*** .052*** .047*** .044*** .043*** 

𝑁 = 20 .057*** .048*** .050*** .051*** .050*** .051*** 
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Notes. MI denotes the mutual information, Dcor the distance correlation, Hoeffding the Hoeffding’s D, Pearson 

the Pearson’s r, Spearman the Spearman’s 𝜌, and Kendall the Kendall’s 𝜏 based hypothesis test, respectively. 

Type I error was estimated via 1000 simulations with 𝛼 = .05.  

*** p < .001 

Empirical Power by Type of Relationship 

Linear. Figure 2 shows the power of each of the six dependence measures as a 

function of the noise level and two selected sample sizes for the scenario, in which 𝑥 and 𝑦 

were related linearly. As can be seen in the right plot, all methods except for MI seemed to be 

able to detect the linear relationship in principle. That is, Dcor, Hoeffding’s D, Pearson’s 𝑟, 

Spearman’s 𝜌, and Kendall’s 𝜏 all reached a power of 1 at the largest sample size of 𝑛 = 150 

for all noise levels. Conversely, the power of MI deteriorated as noise increased. This trend 

was almost the same for all other sample sizes of 𝑛 > 10 (see Figure A1, Appendix).  

 

Figure 2. Linear Relationship: Power of distance correlation (Dcor), Mutual Information (MI), Hoeffding’s D 

(Hoeffd), Pearson’s r (Pearson), Spearman’s 𝜌 (Spearman), and Kendall’s 𝜏 (Kendall) as a function of the level 

of noise added, for two selected sample sizes. Power is estimated via 1000 simulations with 𝛼 = .05. 

 

For the smallest sample size of 𝑛 = 10, there was a stable ranking of methods across 

the different noise levels, as can be seen in the plot on the left of Figure 2: Pearson > Dcor > 

Spearman > Kendall > Hoeffding > MI. Pearson correlation and distance correlation had the 

highest power with values ranging between .70 (high noise) and 1 (no noise), followed by the 
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rank correlations and MI. The MI had the lowest power for all noise levels greater than 0, 

with values ranging between .45 (high noise) and .90 (low noise) but it performed equally 

well compared to all other measures when there was no noise at all (=1). Thus, the biggest 

difference in power was observed between the MI and Pearson correlation, which was 

approximately =.30 at moderate noise levels.  

Quadratic. The cases in which 𝑥 and 𝑦 were related via an inverted U-shape are 

depicted in Figure 3. In principle, both MI and Dcor, as well as Hoeffding’s 𝐷, were able to 

detect the quadratic relationship. As expected, the three conventional correlation measures 

(Pearson, Spearman, and Kendall) were not able to detect the underlying non-monotone 

dependence in any case. That is, even for the largest sample size of 𝑛 = 150 and a noise level 

of zero the power of any of those methods was not higher than .28.  

 

 

Figure 3. Quadratic Relationship: Power of distance correlation (Dcor), Mutual Information (MI), Hoeffding’s 

D (Hoeffd), Pearson’s r (Pearson), Spearman’s 𝜌 (Spearman), and Kendall’s 𝜏 (Kendall) as a function of the 

level of noise added, for two selected sample sizes. Power is estimated via 1000 simulations with 𝛼 = .05. 
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Among the three non-monotone dependence measures, there was a stable ranking 

across noise levels and sample sizes. Distance correlation performed best at all sample sizes, 

but the superiority was most evident at 𝑛 = 20, 30, 40 and 50 where the difference in power 

compared to Hoeffding’s D, as the second-best performing measure, was close to .40. MI 

performed considerably worse with power values ranging only between .24 and .35.   

Although the power of Dcor was higher compared to all other measures at the 

smallest sample size of 𝑛 = 10, it was only moderate in absolute terms, and it even fell below 

.50 as noise increased. For sample sizes larger than 20, the power of Dcor ranged between .63 

(high noise) and 1 (no noise) and at 𝑛 = 50, it started to stabilize at values between .90 (high 

noise) and 1 (no noise). For the largest sample size of 𝑛 = 150, Hoeffding’s D and MI 

performed almost as good as Dcor with power values ranging between .95 (high noise) and 1 

(no noise). 

Exponential. As shown in the lower right plot of Figure 4, all six methods included in 

the simulation seemed to able to detect the exponential relationship in principle. That is, all 

methods had power of 1 in the limit. Moreover, similar to the linear case, there was a 

consistent ranking of the methods across the different noise levels: Pearson > Dcor > 

Spearman > Kendall > Hoeffding > MI, with only slight differences between Spearman and 

Kendall.   

At the smallest sample size of 𝑛 =10 and when there was no noise, the exponential 

relationship was detected by all measures except for MI. That is, all measures had power of 1, 

except for the MI which had a power of only .54. As the noise level increased, Pearson’s 𝑟 

and Dcor had higher power than the other measures, albeit to a moderate degree.  

Except for the MI, all measures were able to detect the exponential relationship at 

medium to large sample sizes with power values equal or close to 1. MI performed worse at 𝑛 

= 30 and 𝑛 = 50 with increasing noise levels and approached the other measures’ power of 1 

only at the largest sample size of 𝑛 = 150.  

As expected, the two rank correlation coefficients were able to capture the non-

monotonicity of the exponential relationship. However, more surprising is the fact that the 

Pearson correlation, which is only supposed to detect linearity in theory, was as powerful, if 

not more, than Spearman and Kendall. A possible explanation is that the Pearson correlation 

captured the linear part of the exponential graph, as depicted in Figure 5. The dotted blue line 

represents the line of best linear fit, where the slope of the line can be interpreted as the 

Pearson correlation coefficient. As one can see, the fitted line is a reasonably good 



NON-MONOTONE DEPENDENCE MEASURES IN PSYCHOLOGY 20 

approximation of the underlying relationship in this case, which could explain the relatively 

high power of the linear correlation in the case of the exponential relationship. 

 

Figure 4. Exponential Relationship: Power of distance correlation (Dcor), Mutual Information (MI), 

Hoeffding’s D (Hoeffd), Pearson’s r (Pearson), Spearman’s 𝜌 (Spearman), and Kendall’s 𝜏 (Kendall) as a 

function of the level of noise added, for two selected sample sizes. Power is estimated via 1000 simulations with 

𝛼 = .05. 

 

Figure 5. The exponential relationship between x and y. Line of best linear fit represented as dotted blue line. 
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Sine wave. Figure 6 presents the results for the sine wave relationship. As expected, 

only the three non-monotone dependence measures were able to detect the periodic relation 

in principle. That is, MI, Dcor, and Hoeffding’s 𝐷 all reached a power of 1 at the largest 

sample size (see lower right plot).  

Similar to the quadratic case, there was a stable ranking across noise levels and 

sample sizes among these three nonmonotone methods of the following: MI > Hoeffding > 

Dcor. MI was most powerful with values ranging between .70 (high noise) and 1 (no noise) at 

moderate and higher sample sizes.  Hoeffding’s 𝐷 and Dcor, as the second and third best 

performing methods, reached the power level of MI only at the higher sample sizes n = 100, 

and 150. Note that at the smallest sample size, none of the three measures were very 

powerful. That is, none of the methods reached a power higher than .20 at any noise level.  

As expected, none of the conventional correlation measures (Pearson, Spearman, 

Kendall) had power higher than .08. Thus, none of these methods were able to identify the 

nonmonotonicity of the sine wave irrespective of sample size or noise level. 

Figure 6. Sine Wave Relationship: Power of distance correlation (Dcor), Mutual Information (MI), Hoeffding’s 

D (Hoeffd), Pearson’s r (Pearson), Spearman’s 𝜌 (Spearman), and Kendall’s 𝜏 (Kendall) as a function of the 

level of noise added, for two selected sample sizes. Power is estimated via 1000 simulations with 𝛼 = .05. 
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Overall Performance 

Table 2 presents the mean power of each method over all simulation designs. 

Regarding monotone dependence, Pearson correlation had the highest power in detecting the 

linear (=.99) and exponential (=.93) relationships on average. Note, however, that Dcor, 

Hoeffding’s 𝐷 and the two other conventional rank correlation measures performed almost 

equally well in both cases, with only slightly smaller power values in the range of .01 to .05. 

Dcor was most powerful at capturing the quadratic relationship (= .84), and MI captured the 

sine wave relationship the best (=.70) on average.  

One drawback of the summary presented in Table 2 is that it aggregates information 

over all design cells such that differences in sample size and noise level are ignored. Thus, to 

summarize the findings from the previous sections and with data that is typical for 

psychological research in mind, it should be noted that for small sample sizes and high noise, 

Dcor was better than MI or Hoeffding’s 𝐷 at detecting linear, quadratic, and exponential 

relationships. MI detected the sine wave relationship better than Dcor or Hoeffding’s 𝐷. For 

large sample sizes, the distance correlation was able to detect all relationships. At small and 

moderate sample sizes, MI could detect the sine wave relationship better than all other 

measures. Noisy linear relationships, however, were not captured well by MI regardless of 

the sample size and are better captured by the Pearson or Dcor. 

 

Table 2 

Average power over all 320 simulation design cells for each method 

Relationship MI Dcor Hoeffd.’ D Pearson Spearman Kendall 

       

Linear .69 .98 .96 .99 .98 .98 

Quadratic .51 .84 .69 .29 .11 .14 

Exponential .50 .92 .88 .93 .90 .90 

Sine .70 .38 .48 .05 .06 .07 

Notes. Power was estimated via 1000 simulations with 𝛼 = .05 Highest power values in bold face. 

 

Unbiasedness. Before, we learned that in order for a test to satisfy the conditions of 

an unbiased test, the probability of a type I error does not exceed a given significance level 𝛼 

but the power, i.e. the probability that the test rejects under the alternative hypothesis, is 

always higher than the type I error. The tests based on MI, Dcor, and Hoeffding’s 𝐷 were all 

unbiased, as power was always higher than the type I error rate for these tests across all factor 
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combinations of the simulation design (see Tables A1-A4, Appendix). Conversely, the tests 

based on the standard correlation measures, Pearson’s 𝑟, Spearman’s 𝜌, and Kendall’s 𝜏, had 

power values smaller than 𝛼 = .05 for some design cells and, therefore, did not meet the 

unbiased test criterion.  

Discussion 

This study aimed to investigate how well the mutual information and distance 

correlation can capture dependencies typically found in psychological research and how they 

compare to each other. It was also explored how each of the two methods compares to the 

Hoeffding’s 𝐷, one of the earliest non-monotone dependence measures, and the three 

conventional correlation measures, Pearson’s 𝑟, Spearman’s 𝜌 and Kendall’s 𝜏. 

 

Summary 

 The distance correlation could detect all functional relationships in principle (in the 

limit, i.e. at the largest sample size). However, in the case of the periodic sine wave 

relationship, Dcor did not perform well at smaller sample sizes (𝑛 < 100). On average (across 

all factor combinations of the simulation design), Dcor performed best at detecting the 

quadratic relationship.  

MI could detect all relationships in principle, except for the linear one. Regarding the 

periodic relationship for smaller sample sizes, MI outperformed all other methods. 

In the linear and exponential case, the comparison of MI and Dcor with the traditional 

correlation measures and Hoeffding’s 𝐷 showed a stable ranking in performance: Pearson > 

Dcor > Spearman > Kendall > Hoeffding > MI.  For the quadratic case, there was a stable 

ranking among the three non-monotone dependence measures of the following: Dcor > 

Hoeffding > MI. There was a different yet also stable ordering of these three methods for the 

periodic relationship: MI > Hoeffding > Dcor. 

Finally, all dependence measure-based tests were exact, maintaining the nominal 𝛼 

level. However, only the hypothesis tests based on the three non-monotone dependence 

measures MI, Dcor, and Hoeffding’s 𝐷 were unbiased.  

Comparison to previous research 

The present findings are in line with previous simulation studies that found the 

distance correlation to have higher power than mutual information on the linear and quadratic 

relationship, as well as the mutual information to be more powerful on the periodic 
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relationships (Clark, 2013; Ding & Li, 2013; Kinney & Atwal, 2014; Simon & Tibshirani, 

2014). As previous authors noted as well, the mutual information fails to detect the linear 

relationship and the Pearson correlation outperforms other measures. The findings presented 

in this paper also extend previous research that had found similar results for only larger 

sample sizes with 500 observations and more. In addition, we checked more strict 

performance criteria than authors of some previous studies by evaluating whether the 

measures met exact and unbiased test conditions. 

Recommendations 

Our recommendations contradict those from de Siqueira Santos et al. (2013), who 

suggested that for smaller sample sizes (< 30), only Dcor and Hoeffding’s 𝐷 should be used 

on nonmonotonic relationships. We recommend using MI, particularly on the sine wave 

relationship. Also, as opposed to the authors, we do not recommend using MI on the linear 

relationship for larger sample sizes (> 30). Because de Siqueira Santos et al. (2013) also used 

KDE to estimate MI, this contradiction might be caused by the fact that, unlike in this study, 

the authors did not account for different noise levels in the data.  

Limitations and Future Research 

 It should be noted that in real-life scenarios, one typically does not know the level of 

noise present in the data. Therefore, the usefulness of our recommendations based on the 

results for different noise levels is limited. Nonetheless, it can be valuable to know whether a 

measure has high power for any level of noise or vice versa.  

 Also, the result that most methods included in the simulation were able to detect the 

underlying relationships in principle irrespective of the noise level should be evaluated with 

caution. It might be that the maximum noise level we chose in this study was too small, as all 

methods performed well at the largest sample size of only 150 observations. Therefore, future 

work needs to examine whether the results can be reproduced with higher noise levels. 

Another limitation is the fact that mutual information was estimated by kernel density 

estimation. Any other estimation method may have produced different results, and because 

many different parameters have to be chosen in KDE, the estimation may be far from the true 

MI value.  

Due to computational limits, we could only run 1000 simulations, which may have 

been too few to obtain precise enough estimations, and the extreme case of 𝑛 = 10,000 

reflecting a sample size typically reported in Applied psychology research had to be excluded 
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for the same reason. Simulation studies with a higher number of replications and extreme 

cases should be investigated in the future.  

A disadvantage of simulation studies, in general, is that it remains unclear how well 

results extend to other situations beyond the ones chosen by a particular simulation design. 

Nevertheless, it should be noted that the simulation design in this study was carefully selected 

based on past research on sample sizes and typical relationships in psychological research. As 

such, this study is also the first to apply this selection of measures on data that is typical for 

psychological research.  

Finally, the ultimate interest lies in finding out how well the measures can quantify an 

underlying relationship of any kind, and not merely in how well they can detect it. To 

examine this question and to evaluate how close estimations are to the true values, future 

work should, therefore, assess other performance measures such as bias and MSE. It should 

be noted, however, that using power as a performance measure allowed us to evaluate all 

methods with a common metric and to compare them with each other directly.  

Conclusion 

 Overall, this study suggests that no method is uniformly more powerful across 

different sample sizes and noise levels. We recommend using the distance correlation as the 

standard measure for detecting any relationship in psychological research when sample sizes 

are large enough (≥ 150). For smaller sample sizes, and when there is a strong belief that the 

underlying relationship is periodic, MI should be used instead. Potential reasons for why MI 

performed best on the sine wave relationship should be studied in the future. Future research 

should also shed light on how well these measures can quantify, and not just detect, the 

underlying relationship between two variables.  
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Appendix. Power Figures Tables for Complete Simulation Design 

 

 

Figure A1. Linear Relationship: Power of distance correlation (Dcor), Mutual Information 

(MI), Hoeffding’s D (Hoeffd), Pearson correlation (Pearson), Spearman’s rank correlation 

(Spearman), and Kendall’s tau (Kendall) as a function of the level of noise added, for all 

sample sizes. Power is estimated via 1000 simulations with 𝛼 = .05. 
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Figure A2. Quadratic Relationship: Power of distance correlation (Dcor), Mutual 

Information (MI), Hoeffding’s D (Hoeffd), Pearson correlation (Pearson), Spearman’s rank 

correlation (Spearman), and Kendall’s tau (Kendall) as a function of the level of noise added, 

for all sample sizes. Power is estimated via 1000 simulations with 𝛼 = .05. 
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Figure A3. Exponential Relationship: Power of distance correlation (Dcor), Mutual 

Information (MI), Hoeffding’s D (Hoeffd), Pearson correlation (Pearson), Spearman’s rank 

correlation (Spearman), and Kendall’s tau (Kendall) as a function of the level of noise added, 

for all sample sizes. Power is estimated via 1000 simulations. 
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Figure A4. Sine Wave Relationship: Power of distance correlation (Dcor), Mutual 

Information (MI), Hoeffding’s D (Hoeffd), Pearson correlation (Pearson), Spearman’s rank 

correlation (Spearman), and Kendall’s tau (Kendall) as a function of the level of noise added, 

for all sample sizes. Power is estimated via 1000 simulations. 
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Table A1.  

Power simulation results for six different dependency measures where underlying 

relationship is linear 

  Mutual 

Information 

Distance 

Correlation 

Hoeffding’s 

𝐷 

Pearson’s 

𝑟 

Spearman’s 

𝜌 

Kendall’s 

𝜏 

N Noise 

level 

      

10 0 0.995 1 1 1 1 1 

 0.1 0.917 0.999 0.962 1 0.995 0.995 

 0.2 0.795 0.985 0.890 0.993 0.955 0.949 

 0.3 0.696 0.960 0.827 0.980 0.902 0.904 

 0.4 0.630 0.919 0.756 0.946 0.852 0.849 

 0.5 0.575 0.871 0.698 0.908 0.798 0.798 

 0.6 0.537 0.825 0.648 0.857 0.742 0.740 

 0.7 0.512 0.773 0.603 0.821 0.695 0.685 

 0.8 0.482 0.726 0.569 0.771 0.656 0.643 

 0.9 0.451 0.681 0.532 0.727 0.619 0.609 

20 0 1 1 1 1 1 1 

 0.1 0.996 1 1 1 1 1 

 0.2 0.943 1 0.998 1 1 1 

 0.3 0.837 0.999 0.991 1 0.998 0.998 

 0.4 0.731 0.998 0.988 0.999 0.994 0.993 

 0.5 0.641 0.995 0.979 0.998 0.988 0.99 

 0.6 0.567 0.991 0.958 0.994 0.982 0.983 

 0.7 0.522 0.981 0.94 0.989 0.972 0.971 

 0.8 0.484 0.977 0.914 0.985 0.964 0.962 

 0.9 0.444 0.96 0.889 0.978 0.953 0.944 

30 0 1 1 1 1 1 1 

 0.1 1 1 1 1 1 1 

 0.2 0.971 1 1 1 1 1 

 0.3 0.908 1 1 1 1 1 

 0.4 0.78 1 0.999 1 1 1 

 0.5 0.677 1 0.999 1 0.999 0.999 

 0.6 0.572 1 0.998 1 0.999 0.999 

 0.7 0.508 1 0.996 1 0.999 0.998 

 0.8 0.443 0.998 0.992 1 0.997 0.997 

 0.9 0.409 0.996 0.983 0.999 0.996 0.995 

40 0 1 1 1 1 1 1 
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 0.1 1 1 1 1 1 1 

 0.2 0.993 1 1 1 1 1 

 0.3 0.911 1 1 1 1 1 

 0.4 0.794 1 1 1 1 1 

 0.5 0.645 1 1 1 1 1 

 0.6 0.532 1 1 1 1 1 

 0.7 0.46 1 1 1 1 1 

 0.8 0.392 1 1 1 1 1 

 0.9 0.334 1 0.999 1 1 1 

50 0 1 1 1 1 1 1 

 0.1 1 1 1 1 1 1 

 0.2 0.998 1 1 1 1 1 

 0.3 0.938 1 1 1 1 1 

 0.4 0.79 1 1 1 1 1 

 0.5 0.642 1 1 1 1 1 

 0.6 0.52 1 1 1 1 1 

 0.7 0.412 1 1 1 1 1 

 0.8 0.342 1 1 1 1 1 

 0.9 0.283 1 0.999 1 1 1 

60 0 1 1 1 1 1 1 

 0.1 1 1 1 1 1 1 

 0.2 0.999 1 1 1 1 1 

 0.3 0.955 1 1 1 1 1 

 0.4 0.826 1 1 1 1 1 

 0.5 0.662 1 1 1 1 1 

 0.6 0.51 1 1 1 1 1 

 0.7 0.416 1 1 1 1 1 

 0.8 0.333 1 1 1 1 1 

 0.9 0.279 1 1 1 1 1 

100 0 1 1 1 1 1 1 

 0.1 1 1 1 1 1 1 

 0.2 1 1 1 1 1 1 

 0.3 0.976 1 1 1 1 1 

 0.4 0.85 1 1 1 1 1 

 0.5 0.639 1 1 1 1 1 

 0.6 0.45 1 1 1 1 1 

 0.7 0.303 1 1 1 1 1 

 0.8 0.21 1 1 1 1 1 



NON-MONOTONE DEPENDENCE MEASURES IN PSYCHOLOGY 36 

 0.9 0.14 1 1 1 1 1 

150 0 1 1 1 1 1 1 

 0.1 1 1 1 1 1 1 

 0.2 1 1 1 1 1 1 

 0.3 0.992 1 1 1 1 1 

 0.4 0.867 1 1 1 1 1 

 0.5 0.6 1 1 1 1 1 

 0.6 0.377 1 1 1 1 1 

 0.7 0.211 1 1 1 1 1 

 0.8 0.112 1 1 1 1 1 

 0.9 0.067 1 1 1 1 1 

Notes: Power was calculated via 1000 simulations for each design cell with 𝛼 = .05 

 

 

Table A2.  

Power simulation results for six different dependency measures where underlying 

relationship is quadratic 

  Mutual 

Information 

Distance 

Correlation 

Hoeffding’s 

𝐷 

Pearson’s 

𝑟 

Spearman’s 

𝜌 

Kendall’s 

𝜏 

N Noise 

level 

      

10 0 0.186 0.656 0.617 0.372 0.139 0.195 

 0.1 0.121 0.505 0.235 0.321 0.13 0.155 

 0.2 0.107 0.417 0.191 0.305 0.121 0.134 

 0.3 0.093 0.360 0.165 0.287 0.115 0.126 

 0.4 0.099 0.323 0.153 0.271 0.109 0.119 

 0.5 0.102 0.298 0.144 0.254 0.108 0.109 

 0.6 0.102 0.278 0.143 0.237 0.104 0.107 

 0.7 0.103 0.260 0.13 0.225 0.104 0.103 

 0.8 0.097 0.244 0.126 0.217 0.1 0.099 

 0.9 0.095 0.233 0.121 0.209 0.101 0.101 

20 0 0.457 0.995 1 0.36 0.171 0.267 

 0.1 0.237 0.907 0.596 0.337 0.117 0.151 

 0.2 0.2 0.803 0.404 0.305 0.112 0.134 

 0.3 0.173 0.709 0.312 0.276 0.101 0.124 

 0.4 0.16 0.639 0.260 0.263 0.101 0.114 

 0.5 0.165 0.577 0.223 0.244 0.093 0.11 
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 0.6 0.146 0.519 0.203 0.231 0.093 0.105 

 0.7 0.148 0.486 0.188 0.223 0.091 0.103 

 0.8 0.139 0.455 0.17 0.215 0.087 0.097 

 0.9 0.141 0.426 0.154 0.203 0.085 0.095 

30 0 0.731 1 1 0.385 0.155 0.251 

 0.1 0.352 0.994 0.886 0.342 0.107 0.15 

 0.2 0.303 0.954 0.72 0.319 0.092 0.13 

 0.3 0.296 0.911 0.594 0.299 0.08 0.111 

 0.4 0.304 0.859 0.478 0.283 0.084 0.105 

 0.5 0.281 0.815 0.405 0.265 0.076 0.095 

 0.6 0.267 0.762 0.356 0.256 0.074 0.093 

 0.7 0.257 0.711 0.311 0.244 0.074 0.089 

 0.8 0.25 0.668 0.286 0.228 0.074 0.088 

 0.9 0.24 0.631 0.266 0.222 0.073 0.081 

40 0 0.915 1 1 0.384 0.126 0.248 

 0.1 0.491 0.999 0.982 0.35 0.135 0.182 

 0.2 0.419 0.996 0.924 0.323 0.132 0.162 

 0.3 0.41 0.985 0.829 0.305 0.128 0.16 

 0.4 0.396 0.963 0.73 0.288 0.119 0.146 

 0.5 0.384 0.926 0.637 0.275 0.115 0.128 

 0.6 0.37 0.889 0.573 0.265 0.108 0.128 

 0.7 0.358 0.854 0.513 0.255 0.102 0.118 

 0.8 0.347 0.819 0.469 0.243 0.099 0.109 

 0.9 0.341 0.783 0.433 0.233 0.095 0.105 

50 0 0.986 1 1 0.345 0.142 0.219 

 0.1 0.621 1 0.999 0.37 0.113 0.165 

 0.2 0.541 0.999 0.976 0.359 0.112 0.141 

 0.3 0.504 0.996 0.922 0.334 0.106 0.14 

 0.4 0.481 0.986 0.841 0.319 0.101 0.139 

 0.5 0.457 0.972 0.779 0.307 0.099 0.128 

 0.6 0.438 0.961 0.714 0.292 0.095 0.112 

 0.7 0.42 0.935 0.657 0.28 0.095 0.114 

 0.8 0.407 0.908 0.607 0.271 0.093 0.114 

 0.9 0.396 0.879 0.558 0.26 0.091 0.111 

60 0 0.999 1 1 0.376 0.125 0.243 

 0.1 0.728 1 1 0.358 0.148 0.186 

 0.2 0.658 1 0.996 0.337 0.136 0.164 

 0.3 0.64 1 0.978 0.32 0.122 0.153 
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 0.4 0.621 1 0.946 0.301 0.116 0.148 

 0.5 0.587 0.998 0.9 0.289 0.112 0.14 

 0.6 0.568 0.991 0.847 0.28 0.113 0.13 

 0.7 0.552 0.986 0.789 0.269 0.112 0.125 

 0.8 0.522 0.969 0.744 0.262 0.107 0.123 

 0.9 0.503 0.951 0.706 0.253 0.106 0.122 

100 0 1 1 1 0.383 0.141 0.251 

 0.1 0.969 1 1 0.369 0.121 0.176 

 0.2 0.924 1 1 0.345 0.118 0.154 

 0.3 0.907 1 1 0.323 0.117 0.154 

 0.4 0.901 1 1 0.307 0.112 0.143 

 0.5 0.881 1 1 0.301 0.106 0.137 

 0.6 0.861 1 0.995 0.286 0.099 0.127 

 0.7 0.846 1 0.987 0.273 0.098 0.12 

 0.8 0.830 0.999 0.97 0.266 0.096 0.116 

 0.9 0.805 0.999 0.956 0.258 0.095 0.112 

150 0 1 1 1 0.372 0.137 0.258 

 0.1 0.999 1 1 0.343 0.123 0.164 

 0.2 0.995 1 1 0.334 0.112 0.14 

 0.3 0.989 1 1 0.315 0.108 0.132 

 0.4 0.986 1 1 0.306 0.1 0.121 

 0.5 0.985 1 1 0.295 0.098 0.116 

 0.6 0.982 1 1 0.282 0.094 0.106 

 0.7 0.966 1 1 0.277 0.089 0.109 

 0.8 0.960 1 1 0.267 0.092 0.104 

 0.9 0.950 1 0.999 0.255 0.089 0.1 

Notes: Power was calculated via 1000 simulations for each design cell with 𝛼 = .05 

 

 

Table A3.  

Power simulation results for six different dependency measures where underlying 

relationship is exponential 

  Mutual 

Information 

Distance 

Correlation 

Hoeffding’s 

𝐷 

Pearson’s 

𝑟 

Spearman’s 

𝑟 

Kendall’s 

𝜏 

N Noise 

level 

      

10 0 0.54 1 1 1 1 1 
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 0.1 0.129 0.872 0.725 0.896 0.786 0.791 

 0.2 0.114 0.751 0.571 0.770 0.631 0.628 

 0.3 0.120 0.654 0.446 0.681 0.527 0.515 

 0.4 0.126 0.578 0.391 0.610 0.462 0.453 

 0.5 0.106 0.514 0.351 0.544 0.417 0.418 

 0.6 0.111 0.460 0.318 0.496 0.380 0.384 

 0.7 0.116 0.425 0.291 0.453 0.345 0.351 

 0.8 0.103 0.399 0.275 0.418 0.322 0.330 

 0.9 0.094 0.382 0.261 0.402 0.303 0.304 

20 0 0.966 1 1 1 1 1 

 0.1 0.230 0.995 0.970 0.994 0.980 0.979 

 0.2 0.205 0.969 0.896 0.977 0.938 0.934 

 0.3 0.186 0.929 0.821 0.940 0.862 0.865 

 0.4 0.173 0.890 0.735 0.896 0.811 0.807 

 0.5 0.158 0.843 0.665 0.860 0.760 0.750 

 0.6 0.147 0.786 0.606 0.816 0.703 0.689 

 0.7 0.144 0.732 0.563 0.779 0.655 0.646 

 0.8 0.137 0.703 0.532 0.745 0.611 0.596 

 0.9 0.134 0.663 0.503 0.708 0.570 0.562 

30 0 1 1 1 1 1 1 

 0.1 0.381 1 0.998 1 0.999 0.999 

 0.2 0.306 0.994 0.985 0.999 0.994 0.994 

 0.3 0.281 0.983 0.959 0.989 0.977 0.976 

 0.4 0.27 0.973 0.924 0.978 0.951 0.956 

 0.5 0.264 0.956 0.887 0.966 0.917 0.923 

 0.6 0.26 0.931 0.83 0.944 0.88 0.885 

 0.7 0.257 0.9 0.797 0.92 0.841 0.85 

 0.8 0.242 0.872 0.763 0.896 0.808 0.812 

 0.9 0.237 0.847 0.717 0.877 0.775 0.779 

40 0 1 1 1 1 1 1 

 0.1 0.489 1 1 1 1 1 

 0.2 0.386 1 1 1 1 1 

 0.3 0.374 0.998 0.99 0.999 0.995 0.993 

 0.4 0.353 0.995 0.98 0.997 0.985 0.987 

 0.5 0.343 0.99 0.965 0.991 0.972 0.975 

 0.6 0.334 0.975 0.939 0.984 0.958 0.958 

 0.7 0.326 0.958 0.908 0.97 0.93 0.933 

 0.8 0.306 0.944 0.886 0.958 0.912 0.913 
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 0.9 0.297 0.934 0.859 0.95 0.896 0.892 

50 0 1 1 1 1 1 1 

 0.1 0.556 1 1 1 1 1 

 0.2 0.475 1 0.999 1 1 1 

 0.3 0.435 0.999 0.997 0.999 0.998 0.997 

 0.4 0.418 0.997 0.992 0.998 0.995 0.995 

 0.5 0.392 0.996 0.984 0.997 0.992 0.992 

 0.6 0.372 0.987 0.971 0.992 0.984 0.983 

 0.7 0.361 0.98 0.955 0.986 0.969 0.966 

 0.8 0.357 0.973 0.94 0.977 0.952 0.954 

 0.9 0.331 0.961 0.912 0.969 0.933 0.935 

60 0 1 1 1 1 1 1 

 0.1 0.712 1 1 1 1 1 

 0.2 0.625 1 1 1 1 1 

 0.3 0.595 1 1 1 1 1 

 0.4 0.571 1 1 1 1 1 

 0.5 0.556 1 0.995 1 0.997 0.999 

 0.6 0.532 1 0.99 1 0.991 0.993 

 0.7 0.505 0.998 0.983 0.996 0.989 0.986 

 0.8 0.478 0.994 0.975 0.995 0.982 0.983 

 0.9 0.442 0.988 0.962 0.993 0.97 0.976 

100 0 1 1 1 1 1 1 

 0.1 0.934 1 1 1 1 1 

 0.2 0.872 1 1 1 1 1 

 0.3 0.842 1 1 1 1 1 

 0.4 0.806 1 1 1 1 1 

 0.5 0.786 1 1 1 1 1 

 0.6 0.76 1 1 1 1 1 

 0.7 0.74 1 1 1 1 1 

 0.8 0.711 1 1 1 1 1 

 0.9 0.684 1 1 1 0.998 0.999 

150 0 1 1 1 1 1 1 

 0.1 1 1 1 1 1 1 

 0.2 0.988 1 1 1 1 1 

 0.3 0.974 1 1 1 1 1 

 0.4 0.956 1 1 1 1 1 

 0.5 0.944 1 1 1 1 1 

 0.6 0.933 1 1 1 1 1 
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 0.7 0.924 1 1 1 1 1 

 0.8 0.907 1 1 1 1 1 

 0.9 0.886 1 1 1 1 1 

Notes: Power was calculated via 1000 simulations for each design cell with 𝛼 = .05 

 

 

Table A4.  

Power simulation results for six different dependency measures where underlying 

relationship is the sine wave 

  Mutual 

Information 

Distance 

Correlation 

Hoeffding’s 

𝐷 

Pearson’s 

𝑟 

Spearman’s 

𝑟 

Kendall’s 

𝜏 

N Noise 

level 

      

10 0 0.202 0.089 0.179 0.055 0.061 0.078 

 0.1 0.151 0.077 0.110 0.055 0.062 0.063 

 0.2 0.134 0.078 0.092 0.046 0.047 0.054 

 0.3 0.124 0.074 0.081 0.045 0.051 0.052 

 0.4 0.119 0.073 0.080 0.046 0.046 0.049 

 0.5 0.103 0.071 0.076 0.044 0.051 0.053 

 0.6 0.110 0.066 0.075 0.044 0.052 0.056 

 0.7 0.102 0.065 0.075 0.046 0.048 0.053 

 0.8 0.100 0.065 0.076 0.050 0.052 0.051 

 0.9 0.092 0.066 0.075 0.051 0.049 0.052 

20 0 0.613 0.145 0.382 0.054 0.061 0.074 

 0.1 0.518 0.126 0.188 0.050 0.062 0.057 

 0.2 0.456 0.113 0.140 0.051 0.059 0.054 

 0.3 0.398 0.098 0.123 0.048 0.057 0.050 

 0.4 0.338 0.096 0.117 0.046 0.059 0.053 

 0.5 0.301 0.093 0.107 0.048 0.060 0.058 

 0.6 0.271 0.089 0.096 0.050 0.054 0.054 

 0.7 0.234 0.085 0.089 0.053 0.055 0.052 

 0.8 0.222 0.081 0.088 0.052 0.053 0.053 

 0.9 0.200 0.077 0.084 0.053 0.053 0.048 

30 0 0.826 0.211 0.663 0.042 0.06 0.074 

 0.1 0.796 0.186 0.382 0.052 0.08 0.079 

 0.2 0.741 0.168 0.266 0.048 0.073 0.075 

 0.3 0.675 0.162 0.22 0.051 0.061 0.07 
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 0.4 0.594 0.155 0.188 0.051 0.06 0.065 

 0.5 0.535 0.143 0.184 0.048 0.061 0.068 

 0.6 0.476 0.134 0.172 0.045 0.06 0.072 

 0.7 0.416 0.122 0.153 0.044 0.058 0.066 

 0.8 0.367 0.118 0.148 0.044 0.059 0.065 

 0.9 0.355 0.111 0.137 0.045 0.06 0.068 

40 0 0.953 0.359 0.927 0.056 0.071 0.089 

 0.1 0.938 0.287 0.593 0.034 0.054 0.055 

 0.2 0.906 0.246 0.425 0.035 0.051 0.054 

 0.3 0.854 0.208 0.328 0.031 0.05 0.051 

 0.4 0.799 0.186 0.279 0.029 0.051 0.055 

 0.5 0.723 0.171 0.243 0.026 0.05 0.051 

 0.6 0.655 0.157 0.206 0.027 0.05 0.047 

 0.7 0.609 0.139 0.187 0.028 0.053 0.05 

 0.8 0.546 0.134 0.16 0.028 0.056 0.047 

 0.9 0.489 0.123 0.151 0.029 0.052 0.05 

50 0 0.990 0.531 0.994 0.055 0.068 0.095 

 0.1 0.982 0.432 0.799 0.052 0.063 0.064 

 0.2 0.966 0.377 0.647 0.050 0.070 0.068 

 0.3 0.944 0.347 0.532 0.050 0.066 0.066 

 0.4 0.912 0.310 0.447 0.047 0.064 0.062 

 0.5 0.876 0.280 0.361 0.046 0.064 0.059 

 0.6 0.828 0.259 0.317 0.048 0.060 0.056 

 0.7 0.773 0.237 0.277 0.046 0.054 0.055 

 0.8 0.722 0.219 0.252 0.046 0.059 0.057 

 0.9 0.675 0.199 0.224 0.044 0.062 0.057 

60 0 0.999 0.677 1 0.064 0.076 0.093 

 0.1 0.998 0.641 0.938 0.054 0.069 0.075 

 0.2 0.996 0.559 0.842 0.050 0.074 0.068 

 0.3 0.990 0.482 0.730 0.049 0.075 0.073 

 0.4 0.974 0.424 0.635 0.052 0.071 0.075 

 0.5 0.943 0.380 0.537 0.052 0.071 0.073 

 0.6 0.904 0.337 0.469 0.050 0.067 0.071 

 0.7 0.871 0.304 0.415 0.050 0.063 0.072 

 0.8 0.817 0.278 0.350 0.052 0.063 0.067 

 0.9 0.770 0.246 0.320 0.054 0.060 0.070 

100 0 1 0.997 1 0.053 0.065 0.090 

 0.1 1 0.986 1 0.055 0.069 0.083 
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 0.2 1 0.961 1 0.051 0.070 0.082 

 0.3 1 0.922 0.996 0.052 0.073 0.083 

 0.4 1 0.874 0.991 0.055 0.068 0.080 

 0.5 1 0.818 0.963 0.055 0.071 0.077 

 0.6 0.998 0.735 0.92 0.055 0.07 0.075 

 0.7 0.997 0.665 0.844 0.059 0.068 0.072 

 0.8 0.99 0.619 0.784 0.059 0.069 0.071 

 0.9 0.98 0.577 0.719 0.057 0.069 0.066 

150 0 1 1 1 0.040 0.053 0.084 

 0.1 1 1 1 0.046 0.065 0.074 

 0.2 1 1 1 0.047 0.067 0.071 

 0.3 1 1 1 0.047 0.064 0.068 

 0.4 1 0.998 1 0.047 0.065 0.064 

 0.5 1 0.991 1 0.049 0.060 0.061 

 0.6 1 0.982 0.997 0.048 0.056 0.057 

 0.7 1 0.965 0.99 0.045 0.059 0.056 

 0.8 1 0.95 0.972 0.045 0.059 0.055 

 0.9 0.999 0.913 0.939 0.050 0.061 0.059 

Notes: Power was calculated via 1000 simulations for each design cell with 𝛼 = .05 

 

 

 

 

 


	Introduction
	Method
	Non-monotone Dependence Measures
	Simulation Study
	Evaluating Performance of Methods

	Results
	Exactness
	Empirical Power by Type of Relationship
	Overall Performance

	Discussion
	Summary
	Comparison to previous research
	Recommendations

	Conclusion
	References

