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Abstract 

Most daily human behaviors can be described in terms of sequential actions.  Although this issue 

has been extensively examined in psychological and neuroscientific research, much remains 

unknown about how humans learn and produce these actions.  A paradigm prominent in the 

study of sequence learning is the serial reaction time (SRT) task, which aims to explain complex 

skill acquisition.  In the present study we shed light on the mechanisms underlying sequence 

learning by examining determinants of control mode in a cued SRT task and performance in a 

reinforcement learning task in which plan-based control is paramount.  It was hypothesized that 

individual differences in visuospatial working memory capacity, IQ, locus of control, and 

personal need for structure, are predictive of sequence learning performance and action control 

mode.  Our results indicate that sequence learning is not dependent on personality characteristics, 

but rather on cognitive capabilities.  We further reproduced the Nissen and Bullemer (1987) 

speedup in movement times, but were unable to replicate the frequency effects observed in 

Tubau, Hommel, and López-Moliner (2007).  Although experimental limitations are 

acknowledged we consider our study to be a valuable contribution to the current discussion and 

encourage further research into the mechanisms underlying human sequence learning. 

Keywords: Action control, Action plan, Frequency effects, Reinforcement learning, 

Sequence learning, Serial reaction time task, Sequential action, Trajectory 
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Working Memory and IQ Predict Plan-based Control: Evidence from Novel Serial Reaction 

Time and Reinforcement Learning Paradigms 

  How humans learn sequences has been a long-standing research problem in psychology 

and is currently a major topic in neuroscience.  A wide variety of studies have aimed answering 

this question with topics ranging from implicit sequence learning (Cleeremans & McClelland, 

1991; Destrebecqz & Cleeremans, 2001; Jiménez & Méndez, 1999; Meulemans, Van der Linden, 

& Perruchet, 1998; Nissen & Bullemer, 1987) and explicit sequence learning (Cohen, Ivry, & 

Keele, 1990; Rauch et al., 1995; Schendan, Searl, Melrose, & Stern, 2003), to artificial grammar 

learning (Dienes, Broadbent, & Berry, 1991; Knowlton & Squire, 1994, 1996).  Throughout our 

lives we are surrounded by behavioral sequences: from learning to walk and performing the 

tango, to adding numbers and solving linear equations.  Performing such sequences can be 

demanding at first, but with enough practice they can be performed almost effortlessly.  In this 

context a sequence is considered to be a set of related events, movements, or items that follow 

each other in a particular order.   

 In the early stages of questioning how people acquire behavioral sequences James (1890) 

theorized that actions can be ‘chained’ by sequentially perceiving the sensory feedback of the 

previous action.  With experience, each action’s sensory effect (e.g.  the feeling of placing your 

laptop on a desk) becomes associated with the next action component (e.g.  opening the lid of 

your laptop) through stimulus-response learning, until the sequence comes to an end.  Put 

differently, each subsequent action was thought to be automatically triggered by, for example, 

response-produced afferent information from the muscles of the previous action.  An external 

stimulus would thus be sufficient to trigger the further performance of the sequence without 

much need for conscious control.  As explained in James (1890, p.  359), “… if such a reaction 
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has many times occurred we learn what to expect of ourselves, and can then foresee our conduct, 

even though it remain as involuntary and uncontrollable as it was before”.  Sequence learning 

could thus be interpreted as experience-dependent improvement of our sensory system to 

respond to stimuli.    

  In spite of starting consensus that sequential learning calls upon response related 

information, Hazeltine (2002) found that a change in the response sequences does not hinder 

performance if the environmental consequences of new responses remain identical to those when 

the sequence was still being learned.  This has been cited as evidence that sequence learning 

could be neither stimulus-based nor response-based, but rather be based on the formation of a 

plan.  In accordance, Münsterberg (1892) posited that the associative account in James’ 

response-chaining hypothesis (James, 1890) is inadequate to construe sequential action because a 

directional component is needed to effectively perform actions in the correct order.  He argued 

that the learning process of action sequences relies on the acquisition of a motor program, but 

failed to explain why the directional component does not apply in motor learning.  Still, by 

pioneering the idea of a cognitive structure that governs execution of sequential actions he 

provided a provocative theoretical alternative to the chaining theory.  By converging James’ and 

Münsterberg’s approaches toward sequence learning, Tubau, Hommel, and López-Moliner 

(2007) argued that one of these two approaches does not need to be right or wrong.  Rather it was 

suggested that James’ stimulus-driven approach of sequence learning and Münsterberg’s 

program hypothesis reflect two alternative modes of executive control: stimulus-based control 

and plan-based control, respectively.  Several lines of diverse research have not only provided 

imperative evidence that executive control in sequence learning can indeed be identified as either 

stimulus-based or plan-based (Herwig, Prinz, & Waszak, 2007), but also that a shift from 
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stimulus-based to plan-based control develops as sequence learning progresses (Hoffmann & 

Koch, 1997).  Under stimulus-based control a large amount of cognitive control is delegated to 

external stimuli, which is similar to James’ chaining theory positing that the execution of an 

action triggers a following action.  Stimulus-based control is characterized by the automatized 

response to external stimuli, reflected by absence of developing explicit sequence knowledge 

(Tubau et al., 2007).  As a consequence, not much of the sequence is learned during stimulus-

based control.  Contrarily, the plan-based control mode is thought to rely on the construction of 

an action plan (Hommel, 2003; Luria, 1961; Miller, Galanter, & Pribram, 1960), which implies 

that plan-based representations are generated internally (Vygotsky, 1986; Zelazo, 1999) and can 

be expressed explicitly (Tubau et al., 2007). 

 Sensitivity to frequency information (i.e.  facilitation of responses to frequent compared 

to infrequent sequence transitions) has been thought to be informative about the current action 

control mode during sequence production.  Support for this ‘frequency effect’ comes from Tubau 

et al.  (2007) in which the shift between executive control modes was investigated using a serial 

reaction time (SRT) paradigm that required participants to learn an underlying sequence pattern.  

In this paradigm the letter ‘X’ appeared to either the right or the left relative to the center of the 

screen in accordance to the continuously repeating R-L-R-R-L-L-R-L sequence (where R is right 

and L is left).  Participants received either incidental instructions in which the experiment was 

introduced as one exploring the effect of training on reaction time, or they received intentional 

instructions in which the participant was informed about the presence of a repeating sequence of 

locations and the goal was to discover the structure of the sequence.  By asking participants 

whether they had noticed any repeating sequence, and in cases of an affirmative answer asking 

them to write down the repeating sequence, Tubau et al.  (2007) were able to measure each 
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participant’s knowledge about the sequence.  In this sequence (R-L-R-R-L-L-R-L), in which 

stimulus alternations occur more often than repetitions, it was found that implicit learners (i.e.  

participants without explicit knowledge of the underlying sequence pattern) were notably 

affected by the pattern’s frequency information.  Specifically, it was found that responses to 

stimulus alternations were faster than to repetitions. Explicit learners (i.e.  participants with 

explicit knowledge of the underlying sequence) on the other hand were much faster than implicit 

learners and did equally well on both the repetition and alternation responses.  Tubau et al.  

(2007) speculated that this difference in performance between both types of learners can be 

explained by a difference in action control mode.  That is, a stimulus-based control mode in 

implicit learners, and plan-based control mode in explicit learners which diminishes the impact 

of local stimulus-based response bias. 

The majority of studies concerning sequence learning have focused on learning in a cued 

paradigm (i.e.  participants are presented with a target and instructed to respond to the target 

immediately after observing it), similar to the Tubau et al.  (2007) study.  However, there is 

evidence for the notion that sequence learning does not always occur by linking stimulus-

response sets.  Instead, it could be argued that behavioral sequence acquisition is better defined 

as an exploratory process in which people undertake multiple trials before succeeding.  Recently, 

the SRT paradigm was modified into a reinforcement learning paradigm (Kachergis, Berends, de 

Kleijn, & Hommel, 2016) making it possible to examine how individuals discover adaptive 

behaviors in stable environments.  Whereas in the original SRT task (cued sequential action 

paradigm) participants earn points by simply following the presented cues as fast as possible, its 

reinforcement learning adaptation does not provide any cues and requires participants to explore 

four alternatives until the correct target was found, receiving feedback (score increment or 
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reduction) after each response.  Participants were instructed to maximize their score, which was 

displayed continuously at the top of the screen.  Noteworthy, participants’ final scores revealed a 

bimodal distribution, with about half of the participants scoring very high, and the other half 

scoring below average.  We argue that this finding could be a reflection of individual differences 

with regards to personality characteristics, cognitive capabilities, and preferred use of control 

mode strategy.  Even though Kachergis et al.  (2016) examined both the trajectory SRT paradigm 

(Kachergis, Berends, Kleijn, & Hommel, 2014) and its reinforcement learning adaptation, due to 

the design of their study it was not possible examine whether individual differences could 

explain results that are common in both tasks. 

In the present study we investigate the determinants of action control modes in both a 

cued sequential action and an exploratory reinforcement learning paradigm.  While Tubau et al.  

(2007)’s SRT task is keypress based, its trajectory adaption (Kachergis et al., 2014) is mouse 

movement based and allows for continuously tracking the mouse cursor location, thus having the 

advantage being able to record predictive movements.  As the plan-based control mode is 

characterized by making predictive movements in the absence of cues (Nattkemper & Prinz, 

1997) detection of predictive movements (i.e.  mouse movements toward the next stimulus in the 

sequence) can thus be considered indicative of the current action control mode employed.  Due 

to this advantage, the novel trajectory SRT task will be used in the present study to identify 

action control modes among participants.  By complementing our experimental design with the 

SRT reinforcement learning adaptation from Kachergis et al.  (2016) we attempt to reproduce 

their bimodal score distribution, and followingly examine for the first time whether the 

distinctive distribution peaks are a product of different action control mode strategies.  

Furthermore, even though Tubau et al.  (2007) have shown that action control modes can be 
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evoked experimentally by using symbols to help the creation of an action plan, individual 

differences could also play a pivotal role in the use of control mode strategy.  Earlier research 

has shown that performance in a visuospatial working memory task predicts implicit motor 

sequence learning (Bo, Jennett, & Seidler, 2011)  and that performance in a memory updating 

task is predictive of performance in a visuospatial sequence learning task (Martini, Furtner, & 

Sachse, 2013).  Considering this, we posit that working memory capacity could be a potential 

determinant of one’s action control mode.  Additionally, we argue that fluid intelligence could 

play a pivotal role in sequence learning as it is possible that some individuals do not have the 

cognitive capabilities to form a long action plan, constraining these individuals to employ a 

stimulus-based action control mode strategy.  We hypothesize that there is a relation between 

these measures of cognitive capabilities and the action control mode employed, where 

participants with either a relatively low working memory capacity or fluid intelligence show 

signs of a stimulus-based control mode, as reflected by the absence of acquiring explicit 

sequence knowledge and scarcely displaying predictive movements.  Further, we believe that an 

individual’s locus of control could also play a pivotal role in the formation of an action plan.  

Whereas individuals with a strong internal locus of control tend to believe that events in their 

lives are the result of their own actions, individuals with a strong external locus of control tend to 

tend to believe that such events are the consequence of external forces beyond their control.  We 

posit that individuals with an internal locus of control tend to display characteristics of having 

engaged in plan-based control, while individuals with an external locus of control are more likely 

to exhibit the signs of having engaged in stimulus-based control.  Moreover, individual 

differences in need for structure could also contribute to action plan formation.  While some 

individuals could have no need to establish structure in their daily lives, others may have this 
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need and may prefer to actively predict future situations according to a plan instead of waiting 

for unforeseen situations or stimuli to arrive (Neuberg & Newsom, 1993).  It is expected that 

participants having a high need for structure actively look for structure in sequential actions, thus 

showing predictive movements and the ability to verbally report explicit sequence knowledge, 

while participants with a low need for structure are not.  Finally, we hypothesize that sensitivity 

to frequency information is dependent on the development of explicit sequence knowledge.  It is 

expected that both implicit and explicit sequence learners start with similar levels of sensitivity 

to frequency information, but that over time only explicit learners develop an action plan which 

diminishes the impact of local stimulus-based response bias.   

 

Method 

Participants 

Forty undergraduate students at Leiden University (age mean = 20.79 years, SD = 2.34 years; 13 

males and 27 females) participated as part of gaining course credit.  All participants spoke 

English fluently and signed informed consent prior to their inclusion in the study.  The research 

protocol for this study was approved by the Psychology Research Ethics Committee at Leiden 

University.  Participants were required to meet the following inclusion criteria: 1) 18-30 years of 

age, 2) absence of taking drugs or medication, 3) absence of (history of) psychiatric or 

neurological disorders.  The total duration of the experiment was approximately 80 minutes, 

depending on task performance.  

Materials and measures 

  All tasks were conducted using E-Prime software version 2.0.10.356 (Psychology 

Software Tools, Pittsburgh, PA) and presented on a 17” monitor set to 1024 x 768 resolution at a 
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distance of about 70 cm from the participants’ eyes.  

  Working memory capacity.  To assess working memory capacity we used the 

visuospatial working memory task from Bo et al.  (2011), which was a modified version of the 

task used by Luck and Vogel (1997).  The stimuli consisted of 2-8 (array size) colored circles 

which were presented in varying colors (red, orange, yellow, green, blue, violet, pink, white, 

black, and brown) on a white background.  For each trial, the test array was either the same as 

the sample array or different with only one of the colors changed.  Participants were instructed to 

indicate whether the test array was the same (response ‘S’) or different (response ‘D’) from the 

sample array by keypress (Figure 1).  Therefore, this task relied on the detection of a change in 

color at different locations.  In this task all colored circles were arranged along an invisible circle 

around a fixation cross.  Working memory capacity was computed using the formula: K = Size 

of the array * (observed hit rate - false alarm rate; Vogel & Machizawa, 2004) .  The average K 

over all array sizes was determined to compute each participant’s working memory capacity.  

Participants completed 140 trials in total, during which at the halfway point they received a short 

break of 1 minute.  

  Fluid intelligence.  To assess fluid intelligence we administered a 10-minute version of 

the Raven’s Standard Progressive Matrices (SPM; Raven, Court, & Raven, 1998) . 

Raven’s SPM non-verbally assesses the participant’s capacity for analyzing and solving 

problems, abstract reasoning and the ability to learn.  The task contains reasoning items ordered 

with increasing difficulty, demanding greater cognitive capacity to solve.  Given eight geometric 

figures, the participant is asked to identify the ninth, missing, geometric figure that completes a 

pattern.  All items were presented in black on a white background.  Raven’s SPM is widely used 

as a measure of general mental ability and fluid intelligence.  IQ scores were estimated by 
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normalizing the number of correct responses of all participants to a distribution with mean 100 

and standard deviation 15.  The task has been shown to have excellent internal consistency 

reliability, convergent validity, and criterion-related validity (Raven, Raven, & Court, 2000) .  

  Personal need for structure.  In order to measure the extent participants prefer 

structuralizing and organizing experiences (without referring to social or political issues) in their 

daily lives, we administered the Personal Need for Structure questionnaire (Thompson, 

Naccarato, & Parker, 1989).  The scale consists of 12 items (e.g.  “I enjoy having a clear and 

structured mode of life”) and assesses people’s desire for structure (items 3, 4, 6, and 10) and 

response to a lack of structure (items 1, 2, 5, 7, 8, 9, 11, 12).  The Personal Need for Structure 

scale is based from the assumption that the human ability to reduce the uncertainty of situations 

is associated with the ability to manage unknown situations.  Participants responded to these 

items on a 6-point scale ranging from strongly disagree to strongly agree.  The scale has been 

shown to possess good convergent and discriminant validity (Neuberg & Newsom, 1993) .  

  Locus of control.  To examine how locus of control is related to the action control mode 

during sequence production we administered the Internal, Powerful Others, and Chance Locus of 

Control scales (Levenson, 1981).  This 24-item questionnaire differentiates between two types of 

external orientation: beliefs in the random nature of the world, and beliefs in the predictability of 

the world coupled with the expectancy that powerful others are in control. 

Trajectory SRT.  SRT performance was assessed using the trajectory SRT task from 

(Kachergis et al., 2014) , which is a mouse-tracking adaptation of Nissen and Bullemer’s SRT 

task (Nissen & Bullemer, 1987).  Similar to the original task, it utilizes 4 different button 

locations, however, these locations are coded to the corners of a computer screen.  As such, the 

participant has to move the mouse cursor to the targets instead of pressing physical buttons.  The 
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stimuli consisted of 4 red squares (location 1 = upper left, 2 = upper right, 3 = lower left, 4 = 

lower right), which were displayed continuously throughout the task.  Each square was 80 x 80 

pixels in size and separated from each other by 440 pixels of white space (Figure 2).  Participants 

were instructed to quickly and accurately move the mouse cursor to whichever square turned 

green.  Shortly after highlighting the green square, the square’s color would change back to red, 

and another square turned green after a 500 ms inter stimulus interval.  In the first part of the task 

participants completed 80 training trials, each containing a sequence of 10 locations. In order to 

prevent carryover effects between this task and the reinforcement learning task, the present study 

used a different sequence (3-2-4-2-1-4-3-4-2-1) than the Nissen and Bullemer (1987) study.  

Every 20 training trials participants were given the opportunity to take a short break of 1 minute.  

In order to measure the amount of sequence learning, the training phase was followed by a 

production phase in which the participants were asked to attempt to reproduce any sequence they 

had previously learned.  A correct reproduction of the sequence would not lead to a color change 

in the squares, while an incorrect reproduction would cause the correct continuation of the 

sequence to show up in a green color.  In order to examine frequency effects the sequence was 

arranged such that straight movements were more frequent than diagonal movements.  At the 

conclusion of the trajectory SRT task, the participants completed a questionnaire that tested their 

explicit knowledge.  The first question stated “Have you noticed any repeated sequence?”.  In the 

scenario that indeed a repeated sequence was noticed, a second question followed: “Can you 

write down the sequence of locations?”.  A dichotomous knowledge factor was created post-hoc 

on the basis of these answers and their correctness.  We continually tracked the mouse cursor’s x 

and y pixel coordinates, using which we calculated two measures on which our trajectory 

analyses are based: (a) predictive movements and (b) correct predictive movements.  For (a), we 
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computed the distance traveled (in pixels) from the previous target before arriving at the next 

target during the 500 ms inter stimulus interval.  Although these movements can be considered 

predictive, they can also simply be incorrect.  Considering this, for (b) we computed the distance 

(in pixels) between the mouse cursor and the location of the next target.  This means that if 

participants made a perfect correct predictive mouse movement, the distance would be 0. 

  Reinforcement learning.  Reinforcement learning performance was assessed using an 

adapted version of the trajectory SRT task (see above).  The task was adapted to no longer 

provide cues regarding the next target location, forcing participants to explore the target options 

until the correct target was detected.  Participants were presented with target squares in the 

corners of the computer screen, which they were instructed to explore using the mouse cursor.  

The goal was to maximize the score on the scoreboard, which was located at the top of the screen 

and updated with each progression in the task.  No indications were provided regarding the 

targets’ validness as each square was colored blue.  Upon reaching a valid target, its color would 

shortly change to green and the score would increase by 1 point.  Contrarily, reaching an invalid 

target would cause the color to change to red, relocating the cursor to the previously (correctly) 

occupied target, and penalize the participant by decreasing the score by 1 point.  Target validness 

was determined by the recurring sequence taken from the Nissen and Bullemer (1987) study (i.e.  

4-2-3-1-3-2-4-3-2-1).  Unbeknownst to the participants, only one of the target squares would be 

valid at any given time and each trial consisted of a sequence of 10 targets labeled 1-4 (location 1 

= upper left, 2 = upper right, 3 = lower left, 4 = lower right) that repeated until 80 sequence 

iterations were made.  No indication where each trial started and ended was provided.  

Consequently, in the scenario a participant had a complete understanding of the underlying 

sequence before starting and never reached an invalid target, the maximum score of 800 points 
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would be reached.  Contrarily, a participant could theoretically make an infinite number of 

mistakes if (s)he had no memory of even the previously attempted target, preventing the 

experiment of ever coming to an end.  At the conclusion of the reinforcement learning task, the 

participants completed a questionnaire that tested their explicit knowledge.  The first question 

stated “Have you noticed any repeated sequence?”.  In the scenario that indeed a repeated 

sequence was noticed, a second question followed: “Can you write down the sequence of 

locations?”.  A dichotomous knowledge factor was created post-hoc on the basis of these 

answers and their correctness. 

 

Design 

 All participants completed all tasks.  To control for order effects, the order in which the 

trajectory SRT task and the reinforcement learning task were administered was counterbalanced 

over participants.  Only the experiment leader was aware of the group to which each participant 

was assigned.  All participants were given course credit as compensation for their time and 

effort. 

Procedure 

  The experiment took place in a laboratory based in the Faculty of Social and Behavioural 

 Sciences at Leiden University.  After providing written informed consent, participants were 

seated in front of a computer monitor after which the experimenter first administered the 

Personal Need for Structure questionnaire, followed by the Levenson Multidimensional Locus of 

Control questionnaire, the visuospatial working memory task, and Raven’s Standard Progressive 

Matrices.  Following a 5-minute break, participants completed the trajectory SRT task and 

reinforcement learning task (order counterbalanced). 
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Results 

Trajectory SRT task    

  Data preparation and inspection.  In order to prepare the data for further processing, 

we identified outliers as mouse movement times greater than 1500 ms, which were excluded 

from further analyses.  Trajectory SRT data was split into 10 blocks of 8 sequence in the block 

factor, allowing us to examine developments in sequence learning by comparing task accuracy 

and mouse movement times across blocks.  Furthermore, sensitivity to sequence frequency 

information was examined by distinguishing between straight (frequent) and diagonal 

(infrequent) mouse movements in the movement type factor. 

 Movement times and accuracy.  Developments in mouse movement times were 

examined comparing participant’s median mouse movement times across blocks.  Mouse 

movement time was defined as the time between trial onset (stimulus square turning green) and 

trial end (mouse cursor touching the stimulus).  Median mouse movement time was 464 ms (SD 

= 222.53).  Analyses revealed participants became faster over time, replicating the Nissen and 

Bullemer (1987) movement time results, with a mean movement time of 592 ms in the first block 

to 496 ms in the final block, F(9, 351) = 15.51, p < .001 (Figure 3).  However, this speed-up 

went together with a significantly decrease in accuracy over time, F(3.78, 147.42) = 4.43, p < 

.01, suggesting a speed-accuracy trade-off among participants (Figure 4).  Mauchly’s test 

(Mauchly, 1940) indicated that the assumption of sphericity had been violated for the block 

factor (W < .001, p < .01), therefore, the degrees of freedom and p-value have been corrected 

using Huynh-Feldt estimate of sphericity (ε = .42; Huynh & Feldt, 1976). 

Sequence knowledge.  Depending on whether participants had explicit knowledge of the 

underlying sequence pattern, participants were classified as either implicit or explicit learners in 
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the knowledge factor.  The percentage of implicit learners was 67.5% (27 out of 40 participants), 

and the percentage of explicit learners was 32.5% (13 out of 40 participants).  Participants with 

explicit sequence knowledge showed to have a significantly larger visuospatial working memory 

capacity (M = 2.87) as compared to participants without explicit knowledge (M = 2.25), t(28.08) 

= 2.95, p < .01.  No significant differences were found between implicit and explicit learners on 

estimated IQ (t(24.99) = -.55, p = .59), the Levenson Multidimensional Locus of Control scales, 

t(35.40) = .81, p = .42, and Personal Need for Structure scales, t(22.28) = .29, p = .77. 

  Predictive movements.  As described in the Materials and measures section above, 

developments in predictive movements was examined by computing the distance traveled from 

the previous target before arriving at the next target during the inter stimulus interval.  Data were 

analyzed using an analysis of variance (ANOVA) with a within-subjects factor of block.  The 

results show that over time participants traveled longer distances with their mouse cursors during 

the inter stimulus interval, with an average of 176.91 pixels traveled in block 1, to an average of 

311.13 pixels in block 10, F(3.87, 150.93) = 4.85, p < .01 (Figure 5).  An ANOVA on predictive 

movements with knowledge as the between-subject and block as the within-subject factors, 

showed a significant main effect of block, F(4.05, 153.9) = 6.53, p < .001, but not for 

knowledge, F(1, 38) = .15, p = .69.  Mauchly’s test indicated that the assumption of sphericity 

had been violated for the block factor in both analyses of variance (Ws < .001, ps < .01), 

therefore, the degrees of freedom and p-values have been corrected using Huynh-Feldt estimate 

of sphericity (ε = .43 and ε = .45, respectively).  Visual inspection did not suggest an association 

between predictive movements and either visuospatial working memory capacity, estimated IQ, 

the Levenson Multidimensional Locus of Control scales, or the Personal Need for Structure 

scales. 
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Correct predictive movements.  Mouse movements towards the next target in the 

sequence, prior to the target’s appearance, are regarded as correct predictive movements and to 

be also indicative of the current action control mode employed.  Similar to the previous analysis, 

an ANOVA with a within-subjects factor of block was performed.  As sequence learning 

progressed, participants shortened the distance between the mouse cursor and the next target, 

suggesting a shift from stimulus-based to plan-based control, with an average of 607.5 pixels 

distance in the first block, to an average of 469.64 pixels distance in the final block, F(3.33, 

129.87) = 16.52, p < .001 (Figure 6).  An ANOVA on correct predictive movements with 

knowledge as between-subject and block as within-subject factors, showed significant main 

effects of block, F(4.68, 177.84) = 32.26, p < .001, and knowledge, F(.52, 19.76) = 12.95, p < 

.001.  The significant block * knowledge interaction, F(4.68, 177.84) = 14.00, p < .001, revealed 

that explicit learners, in contrast to implicit learners, strongly progressed in reducing the distance 

between the mouse cursor and the next target during the inter stimulus intervals (Figure 7).  

Mauchly’s test indicated that the assumption of sphericity had been violated for the block factor 

in both analyses of variance (Ws < .001, ps < .01), therefore, the degrees of freedom and p-values 

have been corrected using Huynh-Feldt estimate of sphericity (ε = .37 and ε = .52, respectively).  

Similar to the previous section, visual inspection did not suggest an association between 

predictive movements and either visuospatial working memory capacity, estimated IQ, the 

Levenson Multidimensional Locus of Control scales, or the Personal Need for Structure scales. 

Frequency effects.  No differences were found between participants in the first block and 

the final block concerning sensitivity to frequency information, t(78) = .26, p = .80, suggesting 

no general trend of participants shifting from stimulus-based to plan-based control (see Figure 8; 

cf. Hoffmann & Koch, 1997).  In order to test our hypothesis whether action plan formation over 
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time is dependent on the development of explicit sequence knowledge, an ANOVA on mouse 

movement times with knowledge as between-subject, and block and movement type as within-

subject factors was performed.  It was expected that both types of learners start with a similar 

level of sensitivity to frequency information, but that over time explicit learners develop an 

action plan, and thus declining frequency effect.  Our results suggest that this is not the case 

(Figure 9), evidenced by significant main factors and two-way interactions, but not the necessary 

three-way interaction between block, movement type, and knowledge, F(9, 342) = .79, p = .63 

(see Table 1).  Post-hoc analyses revealed that frequent (straight) mouse movements were 

executed faster (M = 417.27 ms, SD = 105.43 ms) than infrequent (diagonal) mouse movements 

(M = 495.93 ms, SD = 115.92 ms).  Participants with explicit sequence knowledge had shorter 

mouse movement times (M = 398.2 ms, SD = 120.85 ms) as compared to participants without 

explicit sequence knowledge (M = 484.71 ms, SD = 90.42 ms). 

 

Reinforcement learning task 

 Data inspection and preparation.  Similar to the trajectory SRT task, depending on 

whether participants had explicit knowledge of the underlying sequence pattern, participants 

were classified as either explicit learners or implicit learners.  The percentage of implicit learners 

was 42.5% (17 out of 40 participants), and for explicit learners the percentage was 57.5% (23 out 

of 40 participants).  Inspection of the distribution of reinforcement learning task scores revealed 

that scores were non-normally distributed, with a group of participants scoring around 700 points 

and almost all remaining participants scoring relatively low (Figure 10).  Indeed, the Shapiro-

Wilk test (Shapiro & Wilk, 1965)  revealed that the hypothesis of normality could be rejected, W 

= .93, p < .02.  Even though Hartigans’ dip test (Hartigan & Hartigan, 1985)  was unable to 
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provide additional evidence for a bimodal distribution of task scores (D = .038, p = .952), due to 

the convincing indications of the presence of two clusters of scores a mid-range split on 457 

points was performed, allowing us to distinguish between low and high performers. 

Determinants of score and sequence knowledge.  Neither mouse movement times nor 

sequence knowledge in the trajectory SRT task were found to be predictive for reinforcement 

learning scoring, t(31.75) = 1.04, p = .30, and t(29.15) = -1.41, p = .17, respectively.  However, 

trajectory SRT task sequence knowledge was found to significantly predict sequence knowledge 

in the reinforcement learning task, 𝑋2(1) = 4.5, p < .05, suggesting that sequence learning for 

both tasks is dependent on similar constructs, or that the discovery of a repeating sequence in the 

second-last task (trajectory SRT or reinforcement learning task) might have made participants 

cautious for the detection of a hidden sequence in the final task.  Knowledge of the underlying 

sequence in the reinforcement learning task was found to be predictive of reinforcement learning 

score, with explicit learners reaching a much higher score (M = 634.05) than implicit learners (M 

= 374.65), t(24.67) = -4.61, p < .001.  

  When distinguishing between high and low performing participants, high performers had 

a significantly higher mean estimated IQ of 104.36, compared to low performers with an 

estimated mean of 91.91, t(38) = -2.70, p < .05 (Figure 11).  Similarly, high performers on the 

reinforcement learning task had a higher mean visuospatial working memory capacity of 2.63, 

compared to low performers with a mean capacity of 2.12, t(38) = -2.29, p < .05 (Figure 12).  No 

significant differences were found between high and low performers on the Levenson 

Multidimensional Locus of Control scales, t(38) = -.50, p = .62, and Personal Need for Structure 

questionnaire, t(38) = .10, p = .92, suggesting that sequence learning is not dependent on 

personality characteristics, but rather on cognitive capabilities. 
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Discussion 

  Using novel trajectory adaptations of the SRT task, the present study examined for the 

first time whether cognitive capabilities and personality characteristics are determinants of one’s 

action control mode (stimulus-based and plan-based).  It was hypothesized that differences in 

sequence learning could be attributed to differences in visuospatial working memory capacity, 

IQ, locus of control, personal need for structure, and sequence knowledge acquisition.  Further, 

the present study aimed at reproducing the bimodal score distribution found in the SRT 

reinforcement learning paradigm in Kachergis et al.  (2016) and examine for the first time 

whether the distinctive peaks are a product of different control modes. 

  By implementing a trajectory adaptation of the SRT paradigm (Kachergis et al., 2014) we 

were able to examine the sequence learning process with higher granularity than the original 

SRT paradigm.  Whereas Nissen and Bullemer (1987)’s original SRT task is limited to measur-

ing keypresses, the trajectory adaptation offers the advantage of being able to record mouse 

movements toward the next predicted stimulus.  Because plan-based control is characterized by 

making predictive movements in the absence of cues (Nattkemper & Prinz, 1997) detection of 

correct predictive movements was considered to be indicative of the current action control mode 

employed.  Our results show that signs of sequence learning were evident by a steady increase in 

predictive movements.  Further, as plan-based control is thought to rely on an action plan 

(Hommel, 2003; Luria, 1961; Miller et al., 1960) which can be expressed explicitly (Tubau et al., 

2007), we used the ability to verbally report the sequence learned as an additional indicator of 

plan-based control.  As not all participants were able of correctly report the sequence learned, we 

were able to distinguish between implicit and explicit learners and examine possible differences 

in their cognitive capabilities and personality characteristics.  This allowed us to shed light on 
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whether these individual differences are indicative for the presence or absence of a shift in exec-

utive control mode.  Indeed, we found explicit sequence knowledge to be predicted by visuospa-

tial working memory in the trajectory SRT task.  In earlier work, Bo et al. (2011) found 

visuospatial working memory to be predictive of SRT performance.  In the present study we 

found this also to be case, as visuospatial working memory was predictive of sequence 

knowledge in both the trajectory and reinforcement learning adaptations of the SRT task.  Fi-

nally, we used a sequence in which straight movements were more frequent than diagonal move-

ments to examine sensitivity to frequency information, which was found by Tubau et al.  (2007) 

to be diminished under plan-based control.  We argued that action plan formation could be de-

pendent on the development of explicit sequence knowledge.  Specifically, we expected that both 

implicit and explicit learners start with similar levels of sensitivity to frequency information, but 

that over time explicit learners would demonstrate declining frequency effect.  In spite of ac-

counting for the different types of learning among participants, no differences were found be-

tween implicit and explicit learners in sensitivity to frequency information.  In the reinforcement 

learning task, we found a non-normal distribution of scores and a cluster of high performing par-

ticipants similar to what has been found in Kachergis et al.  (2016).  When distinguishing be-

tween low and high performing participants, high performers showed to have higher visuospatial 

working memory capacity and estimated IQ (Figures 11 and 12), but did not differ from low per-

formers in locus of control and personal need for structure.  This implies that exploration-based 

sequence learning is determined by one’s cognitive capabilities, rather than personality charac-

teristics. 

 It is important to note that our current experimental design was not without shortcomings.  

The present study implemented a sequence with straight and diagonal movements, of which the 
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former were more frequent than the latter.  Our failed attempt to reproduce the frequency effects 

observed in Tubau et al. (2007) could be explained by the increased number of dimensions in our 

implemented trajectory SRT paradigm.  Whereas the SRT paradigm in Tubau et al.  (2007) al-

lows for only horizontal repetitions and switches, its trajectory adaptation allows for many more 

movements to be made (horizontal repetitions and switches, vertical repetitions and switches, 

and diagonal repetitions and switches).  Consequently, numerous frequency effects could have 

been active, lowering the usability of using sensitivity to frequency information as an indicator 

of plan-based control in this paradigm.  Moreover, an additional shortcoming of this paradigm is 

ingrained by the placement of the visual stimuli in the corners of a computer screen.  While this 

allows for distinguishing between straight and diagonal movements, it results in unequal dis-

tances between target pairs as diagonal movements have longer distances than straight move-

ments, possibly making diagonal movements a less appealing alternative. 

 Even though mouse-tracking SRT paradigms allow for revealing novel information about 

ongoing motor execution and learning processes, they do not offer mechanistic explanations for 

sequence learning.  More sophisticated approaches are needed to infer properties of sequence ac-

quisition mechanisms.  One such approach is computational modeling, which uses computers to 

simulate and study the behavior of complex systems using mathematics.  In computational mod-

eling theories are formalized in such a way that they can be implemented as computer programs.  

Consequently, it offers the possibility of gaining insights in our theoretical predictions and infer-

ring properties of sequence learning mechanisms by examining what model parameters are re-

sponsible for particular outcomes.  Indeed, computational modeling has become a well-estab-

lished approach in many disciplines, including cognitive science (Pylyshyn, 1984) and artificial 
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intelligence (Partridge & Wilks, 1990).  With regards to the current topic of investigation, com-

putational models could help us better understand the mechanisms underlying sequence acquisi-

tion in a reinforcement learning paradigm.  For instance, future research could fit a reinforcement 

learning model to human data and examine how visuospatial working memory capacity and IQ 

are related to the model’s parameters, gaining valuable insights in the mechanisms underlying 

sequential action acquisition in an exploration-based paradigm. 

 To conclude, we believe that the combination of both cued sequential action and explora-

tion-based paradigms gave us valuable insights in the mechanisms underlying reinforcement 

learning.  Our results suggest that the link between determinants of action control modes and re-

inforcement learning performance is not clear yet, and that future research is needed to gain a 

better understanding of the conditions under which frequency effects can indeed be used as indi-

cators of action control mode. 
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Table 1. 

Table 1. 

Analysis of variance of block, knowledge, and movement type on mouse movement times. 

Factor df F 𝜂𝐺
2  p 

Blocka 5.31, 201.78 17.52 .129 < .001 

Knowledge 1, 38 6.44 .089 < .05 

Movement type 1, 38 104.12 .084 < .001 

Block * Knowledgea 5.31, 201.78 8.37 .066 < .001 

Block * Movement type 9, 342 2.7 .005 < .01 

Knowledge * Movement type 1, 38 4.43 .004 < .05 

Block * Knowledge * Movement type 9, 342 .79 .001 .63 

aMauchly’s test (Mauchly, 1940) indicated that the assumption of sphericity had been 

violated (Ws < .01, ps < .001), therefore, the degrees of freedom and p-value have been 

corrected using Huynh-Feldt estimate of sphericity (ε = .59). 
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Figure 1.  

 

Figure 1.  Illustration of the visuospatial working memory task from Bo et al.  (2011).  The sam-

ple array consisted of 2-8 colored circles, presented in varying colors (red, orange, yellow, green, 

blue, violet, pink, white, black, and brown) on a white background.  In each trial, the test array 

was either identical to the sample array or different with only one of the colors changed.  Partici-

pants were instructed to indicate whether the test array was the same (response ‘S’) or different 

(response ‘D’) from the sample array by keypress. 
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Figure 2. 

 

Figure 2.  Layout of the trajectory SRT task (Kachergis et al., 2014). Instead of measuring 

discrete button-presses as in the original SRT task (Nissen & Bullemer, 1987), its trajectory 

adaptation requires participants to respond to stimulus changes by a corresponding move of the 

mouse cursor. 
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Figure 3.    

 

Figure 3.  Progression of participants’ mean mouse movement time across blocks for the trajec-

tory SRT task.  The decrease in movement times suggests learning of the underlying sequence.  

Error bars indicate 95% confidence interval (CI). 
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Figure 4.    

 

Figure 4.  Progression of participants’ mean accuracy across blocks in the trajectory SRT task.  

When considering the speed increase depicted in Figure 3, the strong decrease in accuracy in the 

first three blocks suggests a speed-accuracy trade-off among participants.  Error bars indicate 

95% CI. 
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Figure 5.    

 

Figure 5.  Mean distance traveled (in pixels) from the previous target before arriving at the next 

target during the 500-ms inter stimulus interval, per block.  Over time participants traveled 

longer distances during the inter stimulus interval, suggesting learning of the sequence.  Error 

bars indicate 95% CI. 
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Figure 6. 

 

Figure 6.  Mean distances between the mouse cursor and the location of the next target (in pix-

els) during the 500-ms inter stimulus interval, per block.  Over time, the distances between the 

cursor and the next stimulus decreased, suggesting that participants shifted from stimulus-based 

to plan-based control over time.  Error bars indicate 95% CI. 
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Figure 7. 

 

Figure 7.  Mean distances between the mouse cursor and the location of the next target during 

the inter stimulus interval, split by implicit and explicit sequence knowledge.  Over time explicit 

learners exhibited significantly more correct predictive responses than implicit learners.  Error 

bars indicate 95% CI. 
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Figure 8. 

 

Figure 8.  Development of mean frequency effect in the trajectory SRT task, split by block.  

Participants became increasingly sensitive to frequency information, with a steep decrease in 

sensitivity in the final block.  Error bars indicate 95% CI. 
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Figure 9. 

 

Figure 9.  Development of mean frequency effect (i.e.  difference in mouse movement times 

between straight [frequent] and diagonal [infrequent] movements) in the trajectory SRT task 

across blocks, split by implicit and explicit sequence knowledge.  Both implicit and explicit 

learners started with similar sensitivity to frequency information, which after diverging 

developments, converged back to each other in the final block.  Error bars indicate 95% CI. 
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Figure 10.    

 

Figure 10.  Distribution of reinforcement learning task scores for all participants.  Distribution of 

scores was non-normal, with a large group of participants scoring 700 points, and a group scor-

ing quite low.  In order to examine differences between high and low scoring participants, we 

distinguished between high and low scoring participants using the mid-range split score of 457 

points.  The left side of the red dashed line is considered to comprise of low performing partici-

pants, while the right is considered to comprise of high performing participants. 
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Figure 11.     

 

Figure 11.  Mean differences in fluid intelligence, as assessed by Raven’s Standard Progressive 

Matrices (Raven et al., 1998) , between low and high performing participants on the reinforce-

ment learning task.  Error bars indicate 95% CI. 
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Figure 12.  

 

Figure 12.  Mean differences in working memory capacity, as assessed by Bo et al.  (2011)’s 

visuospatial working memory task, between low and high performing participants in the rein-

forcement learning task.  Error bars indicate 95% CI. 


