
Using Inline Digital Holography for
Measuring Diffusion of Active Janus

Spheres

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

PHYSICS

Author : Nick Oikonomeas-Koppasis
Student ID : 1996215
Supervisor : Dr. D. J. Kraft, R. Verweij
2nd corrector : Prof.dr. M.A.G.J. Orrit

Leiden, The Netherlands, September 11, 2019



Using Inline Digital Holography for
Measuring Diffusion of Active Janus

Spheres

Nick Oikonomeas-Koppasis

Soft Matter Group, Leiden University
NielsBohrweg 2, Kamernummer 1005, 2333 CA Leiden, The Netherlands

September 11, 2019

Abstract

We use Inline Digital Holography to measure the diffusion coefficient of spherical
colloids with a 1.06µm radius in the bulk of a liquid. We obtain a diffusion coefficient

of 0.23± 0.03µm2/s which is in good agreement with Stokes-Einstein theory. We
attempt the measurements to active Janus colloid spheres and explore the
possibilities and limitations of the technique. We use the Discrete Dipole

Approximation to fit the holograms to the Lorenz-Mie theory and report on the
viability of the computation. We discuss the minimum necessary requirements for

performing a successful fitting and analysis of the motion of Janus colloid spheres, in
the bulk of a medium, using inline holography.
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Introduction

A colloidal system consists of a mix-
ture of two or more substances mixed
together but not chemically combined,
such that they can be separated. It is a
special type of mixture of particles rang-
ing from a few nm to a few µm in size,
dispersed in a medium. In normal solu-
tions, solute and solvent constitute only
one phase, whereas in colloidal sus-
pensions there are at least two distinct
phases, the dispersed phase and the
continuous phase. An everyday exam-
ple of a colloidal system is cream, which
consists of particles of fat dispersed into
water. If cream is shaken for a sufficient
amount of time, the fat molecules stick
together (hence the name colloid from
the Greek word ”kola” which means
glue), and separate the cream into but-
ter and buttermilk. The butter it self is
also a colloidal system as there are wa-
ter molecules trapped between the fat.

Colloidal systems have recently
drawn plenty of attention due to their
properties. Due to the size of the
colloidal particles they can be studied
using light microscopy and due to their
properties they exhibit behaviors that
allow modeling of statistical systems,
such as molecules or atoms. There are
multiple ”dimensions”of the colloidal
systems that can be used either for
modeling or technological applications,
which depend on the number of parti-
cles considered and/or their assembly
interactions. For example, we can
study phase behavior [1, 2], packing,
topology, or entropy effects[3] since the
individual particles are small enough

to be sensitive to thermal fluctuations
[4]. In addition, colloidal particles
have recently emerged as a pivotal
point of interest in Biological systems.
Red blood cells is a good example of
a colloidal biological system of great
interest [5].

A special case of colloidal particles are
active colloids. Activity can be induced
in different ways, but in this particular
project we discuss Janus spheres. When
one hemisphere is coated with a metal
that can catalyse a fuel, in our particular
case, Platinum, which catalyses hydro-
gen peroxide(H2O2), the sphere acquires
a self-propelling mechanism. Due to
the half coating the spheres are referred
to as Janus spheres, taking their name
from the Roman god with two faces.
Janus particles have been used as build-
ing blocks in multiple fields. With the
rising interest in active matter physics
they have been used as probes for col-
loidal assemblies [6], but have also seen
applications in medicine as smart drug
delivery devices [7].

The activity of the Janus particles has
been studied in a quasi-2D environment
in multiple conditions. Surface-particle
interactions are being studied continu-
ously [8, 9] and has seen rapid devel-
opment both in modeling and experi-
mental work. However, motion in 3D
is poorly understood, partly due to the
difficulties presented by 3D microscopy
and partly due to the strong affiliation of
active particles with the surface. Parti-
cles in the bulk of the medium do not ex-
perience interactions with surfaces, re-
ducing the open parameters of the de-
scription of their motion. In the absence
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of surface interactions we can obtain a
pure description of the diffusion and ac-
tivity of the particles. This can serve
both as a building block for more com-
plex interaction, i.e. collections of ac-
tive particles in the bulk, and as a dis-
entanglement tool of the active and dif-
fusive components motion and the sur-
face interaction when the particles are
studied in a quasi-2D environment. Fi-
nally, complex real systems such as the
red blood cells mentioned above, re-
quire a 3D description to be fully under-
stood.

Digital holography, though it was de-
veloped in the early 70’s, has only been
employed for tracking measurements
recently as it carried a heavy compu-
tational load. Recent development in
digital inline holography[10] and the in-
creased interest for tracking and charac-
terizing colloidal particles have created
a fertile ground for use of this technique
for 3D tracking. Holography is a tech-
nique based on the Lorenz-Mie scatter-
ing theory, which describes the diffrac-
tion pattern produced when light passes
through a small transparent sphere.

Unlike traditional light microscopy,
in digital holography we collect infor-
mation about the intensity interference
pattern of the light at the focal plane.
The pattern which is described by the
Lorenz-Mie theory, depends on a series
of parameters, including the height of
the particle from the focal plane (see
Theory). We can reproduce a model
through a numerical fitting that will also
depend on the same parameters and
match it with the recorded data to obtain
the 3D location of a sphere with respect

to the focal plane.
Through this technique we are able to

reconstruct the 3D trajectory of a parti-
cle. The main aim of this project is to ob-
tain a diffusion coefficient for particles
diffusing in the bulk, i.e. not interacting
with the substrate, for both passive col-
loidal spheres and active Janus spheres.
By minimizing the interaction with ex-
ternal factors, it is possible to look at
individually to Brownian motion, mo-
tion due to activity, and motion due to
gravity. Disentangling the components
of the motion will allow us to have a full
description of the behavior of the active
particle in the bulk of the liquid. Since
the disentangled components can be at-
tributed to different mechanisms, the in-
dividual mechanisms that induce that
component of the motion can be stud-
ied.

Theory

Diffusion and Sedimentation

To study the 3D motion of Brownian
particles we can study their diffusion.
To correctly describe the process it is im-
portant to consider two individual con-
tributions to the motion of a particle, the
Brownian motion and the motion un-
der the effect of gravity. Diffusion is
a process by which molecules or parti-
cles become evenly distributed across a
medium. Brownian motion is the result
of constant bombarement by the medi-
ums molecules on the particle. When
there is a concentration gradient of par-
ticles, the statistically uneven bombard-
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ment from the high concentration side
results in a net flow of the particles to-
wards the lower concentration regions,
diffusion. Measuring the net flow in the
form of mean square displacement, we
can measure the rate at which a particle
diffuses over time, the diffusion coeffi-
cient D, which is determined by the na-
ture of the system of medium-particle.

We start with the simplest case of a
uniform sphere of constant density ρ0
diffusing freely in a medium with dy-
namic viscosity η. The diffusion coeffi-
cient, under the no-slip condition as pre-
dicted by Stokes-Einstein, can be calcu-
lated by:

D =
kBT

6πηα
(1)

where α is the radius of the sphere, T is
the temperature,kB is Boltzmanns’ con-
stant and η is the dynamic viscocity of
the medium.

To incorporate the gravitational con-
tribution to the motion we first consider
the buoyant mass:

mb = m0(1−
ρ f

ρ0
) (2)

where ρ f is the density of the fluid and
the subscripts b and 0 denote the buoy-
ant mass and the rest mass respectively.
An isolated sphere that satisfies the no-
slip condition, sediments under the ef-
fect of gravity at an average Stokes ve-
locity:

uStokes =
mbg

6πηα
(3)

We can now define two relevant time
scales, the Brownian time it takes for the

particle to diffuse one radius:

τB =
3πη(2α)3

4KBT
(4)

and the time that it takes the particle to
sediment one radius:

τS =
α

uStokes
(5)

From the two relevant time scales we
can obtain the Peclet number:

Pe =
τB

τS
(6)

which can intuitively be interpreted as
a measure of the relative contributions
of gravity and Brownian motion to the
particles total motion. In this thesis
the Peclet numbers of various particles
used for experiments where calculated
to be in the order of 10, indicates a ten-
fold stronger contribution of gravity to
the motion of the particle compared to
Brownian motion.

Experimentally we can calculate the
diffusion coefficient by plotting the
mean square displacement (y axis)
against lag time (x axis). The mean
squared displacement of a given lag
time averages over the square of all dif-
ference of all pairs of positions spaced
by that time, thus calculating the dis-
placement not based on absolute posi-
tions but relative to the previous one.
When enough pairs are considered, ran-
dom effects cancel out. Considering
multiple lag times we can distinguish
three cases. If the plot is linear the parti-
cle is purely diffusing, if it is increasing
with a power greater than 1 then there is
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Figure 1: (left) A schematic of the experimental set-up used for in-line digital microscopy. The
incident light with intensity Einc is scattered by an object, resulting in the scattering pattern
following the Lorenz-Mie theory. Schematic taken from Dimiduk et. al. 2013. [10].(right)
An example of a hologram produced by a silica sphere of radius α=1.06 µm. The position and
intensity of the fringes reveal information about the 3D position with respect to the focal plane.

an additional mechanism contributing
to the motion, for example active parti-
cles catalysing fuel faster on the coated
face, and if it is less than 1 the parti-
cle is constrained. For a particle whose
motion is attributed solely on Brownian
motion: 〈

∆r2
〉
= 2NDt (7)

where N is the number of dimensions
(every dimension contributes 2D to the
slope).

Holography

Holographic microscopy allows for the
extraction of information about the 3D
position of a scattering object through

digital reconstruction of the hologram.
A coherent, monochromatic source of
light passes through a scatterer and the
interference pattern is captured at the
focal plane. A simple schematic of the
set-up used is illustrated in Figure 1 on
the left side, offering a simple view of
how the diffraction pattern is formed.
On the left is an example image pro-
duced by a silica sphere at a height of
15 µm with respect to the focal plane.

The incident plane wave with known
reference field Ere f interferes with the
scattered field Escat and combines to
form the hologram described by:

H(s, n, r, a) = |aEs(s, n, r) + Er|2 (8)

where s is the positional vector in 3D, n
is the refractive index of the scatterer, r
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its radius and α is rescaling of the scat-
tered field and it is poorly understood
[10, 11]. H denotes a matrix of inten-
sities with elements (i,j) corresponding
to pixel intensity in the recorded im-
age. Following closely previous work
[11] we arrive at the normalized holo-
gram expression:

h =
H(s, n, r, a)

|Er|2

=

∣∣∣∣ aEs(s, n, r)
Er

+ 1
∣∣∣∣2 (9)

Since the reference wave intensity, Er, is
known and the normalized hologram, h,
is calculated from the captured image,
fitting of the scattered intensity, Es pro-
vides the parameters that solve the sys-
tem of equations.

The pattern described by the Lorenz-
Mie scattering theory consists of a series
of fringes alternating with radial sym-
metry (for a sphere) from local maxima
to local minima[12]. The light will travel
different paths within the scatterer and
after exiting. When it arrives at the focal
plane it will constructively (maxima) or
destructively (minima) interfere based
on the distance traveled. In the case
of the sphere, a bright spot will always
appear in the middle as the incoming
light will create a series of focii along the
axes that passes through the center and
is perpendicular to the focal plane[13].
The theory does not hold when the focal
plane is close ( 5µm) to the scatterer.

Janus Particles

The term Janus Particles in a scientific
context was coined by Ondarcuhu et. al
(1990)[14] discussing the properties of
amphifilic particles at fluid interfaces,
although a similar system was stud-
ied by De Gennes earlier. The catal-
ysis of hydrogen peroxide (H2O2) by
Platinum (Pt) was first explored as a
self-propulsion mechanism by Ismag-
ilov et. al. (2002)[15]. Spattering col-
loidal spheres with a thin film of Pt and
placing them in an H2O2 suspension al-
lows the particles to self-propel.

To induce propulsion we must break
the symmetry of the particle, either by
changing its shape or by changing its
properties on part of the particle[16].
The Janus particles we use self-propel
through catalysis and perform active
Brownian motion, along the gradient of
the fuel concentration. We thus expect
that if we measure the mean squared
displacement for such particles in the
presence of fuel we will observe a non-
linear graph, but a scaling with a power
greater than 1 instead.

Method

Sample preparation

Two types of particles were used
throughout our experiments, with radii
1.06 ± 0.03µm, and synthesized from
silica, and 3-methacryloxy-propyl-
trimethoxysilane (TPM). The samples
underwent a cycle of three washes
with miliQ (ultra-purified water) of 5
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minutes each to clean the surface of the
particles and then a sonification bath for
30 minutes to reduce aggregation. The
stock of particles was concentrated to
5% weight to volume. We first diluted
50µL in 1mL of miliQ which we used
as stock for sample preparation. We
further diluted the latter 1000times with
miliQ to a total dilution of 0.000025%
weight to volume. Sufficient dilution is
essential as it ensures that the particles
are sufficiently isolated. Isolation is
necessary because particles that are
close to each other create overlapping
diffraction patterns, and are not possible
to analyze.

We placed the diluted samples in a
round sample holder with 2mm depth,
flipped the holder so that the parti-
cles reached the upper cover slip under
the effect of gravity and let the sample
rest for 20 minutes. The samples were
flipped again and put on the micro-
scope. We focused on the lower cover
slip and then the focal plane was moved
1mm up to capture the sedimenting par-
ticles. For correctly analysing the cap-
tured images it is essential that the fo-
cal plain is sufficiently away from the
height of the particles center as close
to the focal plane near field effects take
over and the Lorenz-Mie theory does
not adequately describe the scattering.
It is not an easy task to accurately quan-
tify exactly the cross-over between the
near field and far field regions, however
it is also not essential for the purpose
of our experiments. The only require-
ment is to stay sufficiently above (or be-
low) the cross over height. We empir-
ically determined that at 5µm distance

from the focal plane the fitting is always
possible.

Microscopy

We followed an identical procedure for
all data collected and discussed in this
thesis which was determined based on
maintaining the best quality of data
whilst keeping the computational re-
quirements within the scope of our tech-
nical capabilities. The computational
difficulties will be discussed briefly in
the next section and extensively in the
Discussion section.

A 660nm LED light source was used
as the incident light. The light was lin-
early polarized as it allows for sharper
images and better description of the
incident beam[17]. All images were
collected with an Extra Long Working
Distance(ELWD) 60X Air objective and
numerical aperture (NA) of 0.70 , on
an Nikon Ti-Eclipse microscope, and
recorded with a DS-U3 Nikon digital
camera. Before collecting data we per-
formed a Köhler illumination with a
20X objective, NA 0.75, and then with
the 60X Air objective using a Bright-
field lamp. We switched the light source
to the LED and, prior to recording, the
objective was moved out of focus and
three reference images were taken to
perform a background correction. An
image with the light source switched off
is required, which is referred to as a
darkfield image by the Holopy library
(though does not correspond to dark-
field microscopy). The darkfield image
corrects further for noise in our system
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produced by external sources. These
are essential steps as they reduces the
amount of interference from foreign ob-
jects that can overlap with the holo-
gram and create inconsistencies. Before
recording data it is important to verify
that a single sphere is being recorded,
as at large heights the set-up that we
used does not efficiently resolve the dif-
ference of small clusters of spheres and
single spheres. To achieve that we focus
on the particle chosen before moving the
objective sufficiently away to record the
data.

Analysis

For the analysis and fitting of the holo-
grams we follow closely the work of
Dimiduk et. al. (2016) [18] which
will be outlined here. For a more de-
tailed understanding refer to Appendix
I. The analysis and fitting has been im-
plemented in a complete, open source
python library, Holopy, with exten-
sive documentation and tutorials. The
Holopy library uses a Bayesian inter-
ference approach to solve the problem.
The scattered field, Es, can be calcu-
lated based on the posterior probabil-
ity (hence, posterior): the probability dis-
tribution of the parameters that define
it, based on the data collected. To con-
sider the posterior we first need to de-
scribe the noise in our recorded holo-
gram which as discussed in previous
work [11, 18] can be due to photon
shot noise, electronic readout noise, and
fringes due to foreign objects in the
optical train. With very careful pre-

processing of the images we can erad-
icate the later, therefore only the prior
two noise sources are implemented in
the analysis. The hologram recorded
can be then expressed as the sum of
equivalent model and the noise at each
pixel:

hij = hM
ij + uij (10)

where hM
ij indicates the forward model

of the hologram, with i, j the matrix ele-
ments as defined by equation (8), and u
indicates the noise at each pixel.

Two types of analysis can be per-
formed, one where the particles’ proper-
ties are characterised (n and r), and one
where the particles position is tracked.
We are interested in the later. We used
particles where the radius and refractive
index is well known (this was not the
case for the coated spheres) and were
confined parameters within tight up-
per and lower bounds. As formulated
by Dimiduk et. al. 2016, [18] we can
write the marginalized distribution for
the particle tracking as:

p′(s|h, M, I) =∫
ds dα p′(s, n, r, α|h, M, I) (11)

where p′ is the unnormalized poste-
rior probability distribution, s is the po-
sitional vector, and M is the forward
model. Equation (11) is the analyti-
cal expression for evaluating the best fit
based on the unbound parameters, and
I denotes the priors information which
will be discussed in detail in the fol-
lowing paragraph. The integrals how-
ever, cannot be solved analytically. Due
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Figure 2: a) Recorded hologram of a TPM particle with radius of 1.06µm radius. b) The fitted
model calculated by Holopy for the same particle. c) The residual intensity after subtracting
the model from the data. It becomes clear that the model is not converging to the correct
parameters for the fitting. We observe a consistent trend of divergence between the model and
the data.

to the number of parameters, a brute
force computational approach for ob-
taining results is not possible. In prac-
tice therefore, a Markov-Chain Monte
Carlo (MCMC) technique is employed
to numerically solve the integral[19].

Before performing the MCMC we
can provide a series of priors, either
bound or unbound, which represent our
knowledge of the holograms parame-
ters. In practice, in the tracking char-
acterisation of a particle, if the radius
and the refractive index are well known,
we can obtain the x and y location of
the center of the hologram using a cir-
cle transform due to its symmetry with
sub-pixel accuracy, leaving only the z
position and the parameter α open. The
latter is always bound between 0 and 1
and a good and rather conservative esti-
mate would be between 0.5 and 0.9. The
height becomes the main parameter we
aim to obtain from the analysis. If we

leave the parameter completely open for
fitting, the computational time becomes
extremely large, about 45 minutes per
frame.

To approach the problem we chose to
perform a robust analysis on the first
frame to obtain a good first position and
then feed it as a prior to the next frame.
In this way, we were able to reduce the
time of subsequent frames to 2 minutes
per frame and still obtain good results.
To perform the fitting we use an affine
invariant ensemble sample provided by
the emcee Python library [19, 20]. The
technique is extensively documented so
we will focus on the optimization pro-
cess we followed for obtaining results.

The initial frame was corrected by
a background image and a dark-field
image. The center of the x-y plane
was calculated with a circle transform
and fed as a prior to the model with a
two pixel standard deviation (the prob-
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Figure 3: a) A normalized experimental hologram, b) the fitted model and c) the residual
hologram. The intensity of the residual has been amplified by a factor of 10, indicating that
the brightest spots represent a fractional intensity difference of 0.1 with respect to the data.

ability is Gaussian distributed). The
radius of the silica particles was ob-
tained from the manufacturing speci-
fication and was given the quoted er-
ror as bounds for the prior. The same
was done for the refractive index. For
TPM however, the refractive index has
been previously measured [21, 22] but
we consistently observed a divergence
of the model when analysing TPM par-
ticles and chose to not collect data using
them. Figure 2 shows an example of the
divergence of the model for a TPM par-
ticle. Immediately it becomes apparent
from Figure 2 that the model does not
match the data, and the parameters ob-
tained as a result of the fitting cannot be
trusted. The asymmetry in the residual
image is a direct result of the bad fitting
and the noise in the data.

The fitting of the model is performed
by a series of walkers which perform
initially a random walk in the parame-
ter space and then eventually converge

to a value of each parameter. The walk
is either bound to an upper and lower
limit or unbound, defined by the initial
priors that are given as a starting point.
The pixels of the data hologram are sam-
pled randomly and a fitted model is
cross-checked with the samples consid-
ering the matching of intensity between
the model and the data. A robust fit-
ting of the first frame was done by sam-
pling a random subset of 1/4 of the
hologram by 500 walkers per parameter
and 1000 sampling cycles. Subsequent
frames were sampled at a 0.1 fraction of
pixels, 100 walkers and 300 sampling cy-
cles. Compared with the original work
by Dimiduk et. al. (2016)[18], we sample
a larger fraction of pixels, compared to
their sampling of 1/10 of the total pixels
of the initial frame. This is required in
our case because we resolve less fringes
compared to their data.

It is essential to use tools with which
we can check the quality of our fit-
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ting. The first such tool is the calcu-
lation of the residual image when the
model hologram that has been fitted is
subtracted from the data as shown in
Figure 2 and 3 c). For illustrative pur-
poses the intensity of the residual image
has been amplified by a factor of 10. Net
intensity differences between the model
and the data can be accounted for by
the parameter α discussed previously.
Though important to resolve, the effect
of this parameter corresponds more to
the optical train of the set-up rather than
the physical parameters of the hologram
[10]. We noticed no increase in the er-
ror of subsequent frames when reducing
the number of pixels sampled, the steps
and the number of walkers of the fitting
since the priors where adapted based on
the acquired information from the first
frame and allowed for an equally accu-
rate and faster fitting.

A second tool that was employed to
check the quality of the fitting is the ac-
ceptance fraction, α f , which quantifies
the number of proposed steps taken by
the walkers that are accepted [20]. It
ranges between 0 and 1, and can be in-
terpreted as follows: Values close to 0
correspond to very few proposed steps
accepted, thus the chain has a low num-
ber of independent samples and there-
fore is biased. Values close to 1 mean
the majority of steps are accepted and
the chain is performing a truly random
walk, independent of the target (data).
A value indicating that the fitting was
correct and unbiased falls in a range
from 0.2 to 0.5 [10, 20].

To calculate the diffusion coefficient
for long time diffusion of the particles

used we measured the mean square dis-
placement over a lag time of one sec-
ond, sufficiently longer than the Brow-
nian characteristic time scale [23] , de-
fined by:

τST =
mb

6πηr
(12)

where the ST subscript stands for short-
time, and mb is given by equation (2).
For the particles used in our experi-
ments, τST is 0.46µs.

The diffusion coefficient along each
direction axis should remain constant.
However, we have to account for the
motion due to gravity on the z-axis, and
a certain amount of drift in our sample.
To achieve that we add a term to equa-
tion (7) and rearrange so that the slope
still represents the diffusion coefficient.
Along each axis equation (7) becomes:〈

∆r2
〉
− u2t2 = 2NDt (13)

where u is the average velocity along
each axis, calculated by plotting posi-
tion vs time and obtaining the slope.
Through careful sample preparation we
managed to keep ux and uy at a min-
imum, corresponding to a minimum
amount of drift. It is worth mentioning
that this is not the best possible solution
to account for drift, however the robust
approach for subtracting drift which re-
quires analysing multiple particle trajec-
tories and averaging over them is not
possible in our case. We will see in the
results section that this approach does
not affect negatively the quality of our
data.
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Error considerations

Beside the measurement noise it is fun-
damental to discuss errors that arise
from the analysis of our data. For
known properties such as the radius of
the particles and the known refractive
indexes we used the spread provided by
the manufacturer, and will be stated ex-
plicitly in the results section. For calcu-
lating the the characteristic values from
equations (1) to (6) the error was propa-
gated by standard error analysis.

We set a series of quality controls cho-
sen empirically to define a crude ac-
ceptable fit from the analysis. Accep-
tance fractions exceeding or below the
accepted values resulted in an imme-
diate rejection. In addition, no fitting
was considered sufficiently good if the
intensity maximum of the residual im-
age exceeded 20% of the data maximum
intensity. After those two conditions
were satisfied the model was considered
a good fit. The parameters are given as
maximum likelihood value with a stan-
dard deviation as its error, calculated by
the convergence of the walkers that per-
formed the random walk of this param-
eter. The given likelihood ignores the
first portion of the random walk which
is the equilibration time, shown by the
red vertical line in Figure 4. As an exam-
ple, Figure 4 illustrates the random walk
in the parameter space. It becomes clear
from the figure that the well known po-
sition of the x center (left) converges into
a sharp ”peak” while z center (right)
has a broader terminal points for the
walkers. The y-axes in Figure 4 both
span 2µm. The distribution of the ar-

rival points is not necessarily symmet-
ric as shown in Figure 5, which results to
asymmetric errors defined by the num-
ber of walkers that arrived above or be-
low the mean value. The final arrival
points of 200 walkers is unevenly dis-
tributed with a skew of -0.59 indicating
a preference above the mean. To ensure
this in not a purely statistical effect, ev-
ery step after equilibration is taken into
account. Compared to the x and y center
errors, the fitting error for the z center
is an order of magnitude larger, which
when propagated for any further con-
sideration dominates even more. For
that we can consider the error in the x-y
location of the center negligible in com-
parison.

We handled the asymmetry in the z
location error by always considering the
largest value of the two as a ± sym-
metric error, which though not optimal,
had a negligible effect in the overall er-
rors of the diffusion coefficients calcu-
lated. We note that there are cases were
a walker can get ”trapped” in a path
which is considerably away from the
convergence point and yield an enor-
mous error. In those cases, we re-
peated the analysis, providing different
priors, with smaller standard deviation,
based on the previous chain. This con-
sistently eradicated the problem of the
stuck walkers which were producing an
incorrect local maximum in the poste-
rior probability and produced models in
good agreement with the data.

Based on our light source and the ob-
jective used, we did not manage to reach
the accuracy of a few nm quoted in pre-
vious work [10, 24]. We can confidently
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Figure 4: The random walk performed in the parameter space to converge on the x-axis lo-
cation of the center. The walkers quickly converge to an almost single value with sub-pixel
accuracy. (Right) The random walk of the same hologram in the z-axis location. The walkers
still converge to a value however the spread of the values is almost 0.5µm. Both y-axis of the
graph span 2µm and the equilibration time is shown as the a red vertical line.

state that the z positions obtained are
correct within a few hundred nm. We
believe the main reason for that is the
spatial coherence of the light source as
the number of fringes we are able to dis-
tinguish and therefore use as our raw
data for fitting is significantly less com-
pared with data published in previous
tracking papers. This is discussed in
depth by Deng et. al (2017) [25] and re-
mained a constraint throughout our ex-
periments. Finally, it is important dis-
cuss the errors in the calculation of the
diffusion coefficient given by the mean
square displacement fitting. It is per-
haps not straightforward how the errors
are calculated as the standard localiza-
tion error does not suffice [26]. To that
we recognize three individual points to
discuss: the localization error, the num-
ber of points at each lag time interval,
and the fitting error. The localization
error is directly considered and calcu-

lated in each pair by propagation. Sec-
ondly, we chose a maximum lag time of
1s, which allowed us a minimum of 10
pairs per point, to obtain a statistically
valid sample. Lastly, we obtain an error
from the fitting, after anchoring the y-
intercept at 0 as it is physically required.
The main uncertainty in the experimen-
tally measured coefficient comes from
the uncertainty in the z position as will
be shown in the Results section.

Results

Sedimentation of passive col-
loids

We started our experiments with the
sedimentation of passive colloids to
serve both as a comparison measure
with the active colloids as well as to
check that the analysis scripts that we
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Figure 5: Arrival point distribution of 200 walkers walking in the z-parameter space. The
distribution is not normally distributed around the mean but has a slight preference for values
above the mean, represented by the skewness value which is -0.59. A value for skewness equal
to 0 represent a normal distribution.

have written worked correctly. We used
silica particles of radius 1.06 ± 0.03µm
The imaging was done with 60X objec-
tive, NA of 0.7, and 0.09µm/pixel mag-
nification. In Figure 6 the random walk
performed by the walkers converges
quickly to the correct value and with
a spread of 50nm, which was within
the 10% error provided by the manufac-
turer.

The refractive index was expected to
be 1.43 . In the same characterization we
obtained a value in good agreement as
shown in Figure 7. To verify the charac-
teristics and the consistency of the anal-
ysis we recorded a 300 frames movie of
a stuck particle. We then repeated the
characterization for each frame with un-
bounded priors. The result remained
consistent for each frame as shown in

Figure 8. We hence calculated the aver-
age of the radius and the refractive in-
dex over the 100 frames and used that
value as a known parameter for any
subsequent analysis that follows. The
value obtained was 1.058± 0.005 µm, in
which case the error contribution can
be considered negligible and doesn’t
need to be considered in the propaga-
tion when calculating the diffusion co-
efficient. Similarly the refractive index
was calculated to be 1.431± 0.003, and
also does not contribute significantly to
the calculation of the errors later on.

We tracked the sedimentation of three
separate particles in water. We used the
same silica particles that were charac-
terized to minimize our open parame-
ter. The tracking was done over 300
frames, with 10 frames per second imag-
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Figure 6: Convergence of walkers to the ex-
pected value of 1.06µm, for the silica parti-
cles. The characterization of the particles ra-
dius was done within 50nm accuracy, well
within the 10% error provided by the man-
ufacturer. Characterization was done with
sub pixel accuracy.

ing speed, out of which the first and
last 130 frames were used, such that the
movie was split in two. We chose to
do this because during the sedimenta-
tion the particle came in focus and hence
sedimented away from the focal plane.
Whilst the particle is in focus it can not
be correctly analysed as explained in the
Method section of this report, forcing us
to discard 40 frames. We note that the
diffraction pattern does not depend on
whether the particle is below or above
the focal plane and the analysis only re-
veals a height distance from the focal
plane, either above or below. Thus, we
treated each 130 frames movie as a sep-
arate trajectory of the same particle.

We tracked each pair of trajectories
in the bulk of the medium and plot-
ted each component of the motion in-

Figure 7: Convergence of walkers close to
the expected value of 1.43 for the refractive
index, for the silica particles. The value is
in good agreement with that quoted by the
manufacturer and the spread given by the
fitting is of the order of 0.01, negligible for
the purpose of our experiments.

dividually. We performed a linear fit
in all three directions in order to cor-
rect for the drift and gravitational com-
ponent of the motion as described in
equation (13). For silica particles with
radius of 1.06µm and density ρ =
1.85g/cm3, in water with dynamic vis-
cosity η = 1.0005g/ms and density ρ f =

0.998g/cm3 the expected Stokes veloc-
ity is equal to 2.1µm/s. After averaging
over all the trajectories analysed, we ob-
tained a value for the Stokes velocity as:

uST = 2.01± 0.01µm/s

which is slightly lower compared to
the theoretical prediction. Small varia-
tions in the radius, temperature, and the
mass, as well as hydrodynamic effects
that we have neglected should account
for the discrepancy.
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Figure 8: (Left) Characterization of the radius of a silica sphere expected to have a radius of
1.06µm. The sphere is stuck at the substrate hence its x-y-z position is fixed. The analysis
is done over 100 frames. (Right) Characterization of the refractive index of the same sphere.
The fitting yields results in good agreement with the specifications of the manufacturer and is
consistent over the length of the movie.

In Figure 9 an example of a tracked tra-
jectory is shown. The focal plane is be-
low the particle, hence the particle’s sep-
aration is reducing over time. We fitted
a linear function to the trajectory taking
into account the uncertainty in z. Figure
10 below shows the 3D trajectory of the
particle as it sediments over time. The
positions taken are the mean position
and error bars are omitted for the sake
of clarity. Gravity dominates the motion
of the particle, as the Peclet number is
11.

The drift velocities measured for the x
and y component of the motion varied
between samples. It is worth mention-
ing, however, that we did not observe
velocities above 0.3µm/s, and hence we
believe that this type of correction does
not bias our results. In addition, these
velocities are an order of magnitude

smaller than the Stokes velocities, so
when considering the 3D diffusion their
contribution is further diminished.

From the Stokes-Einstein equation (1)
we calculated the diffusion coefficient
predicted for the silica sphere to be
equal to:

D = 0.206± 0.004µm2/s

The diffusion coefficient is given for a
range of temperatures between 20 and
30oC because the temperature of the
sample changes as it heats up from the
light source. We point at the fact that the
diffusion coefficient is calculated under
the no-slip condition. In addition, a cer-
tain measure of drift that is inevitably
present will result in an increase in the
measured diffusion coefficient.

We calculated the mean square dis-
placement on each component of the
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Figure 9: Trajectory of a silica particle in the z-direction. The focal plane is below the particle
as it is sedimenting and hence the stokes velocity is negative. The analysis stops at about
5µm above the focal plane as the Lorenz-Mie scattering model cannot be fitted close to focus.
Z positions are shown with the error bars produced by the fitting and the linear fit is also
shown(red). The holograms in the starting and finishing position analysed are shown in the
figure to emphasize the qualitative difference produced by the change in height.

motion for lag times up to 1s. The fi-
nal lag time point contains 12 pairs, suf-
ficient to reduce errors. Each component
of the motion should yield the same dif-
fusion coefficient. As shown in Figures
11-12 that is indeed the case within er-
ror. As predicted we measure a slightly
higher diffusion coefficient in all com-
ponents of the motion and as a result at
the total diffusion coefficient. The drift

uav(µm/s) D(µm2/s) errD(µm2/s)

x 0.342 0.26 0.01
y 0.068 0.20 0.01
z 1.980 0.25 0.08

3D - 0.24 0.08
Table 1: Experimental diffusion coefficients.

is not subtracted completely from the
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Figure 10: 3D trajectory of a silica particle sedimenting from above the field of view towards
focus. Each point is separated by 100ms. The trajectory is dominated by gravity as the Peclet
number of this silica particle is 11.

motion and that could account for the
increased value found experimentally.

In Figures 11-12 the mean square dis-
placement of a single particle is shown.
For this trajectory the measured aver-
age velocities used for the correction fac-
tors are shown in Table 1 above, as well
as the diffusion coefficient D measured,
where the correction described by equa-
tion (13) has been applied and the sub-
traction of the sedimentation, and the
associated error. The measured values
are higher than the theoretical predic-
tion as expected and there is a direct cor-
relation between the size of the average

velocity measured due to drift and the
increase in D. The diffusion coefficient
measured in 3D however is within er-
ror in good agreement with the theoreti-
cal prediction. We observe a domination
of the z-position uncertainty at small lag
times, seen in Figure 12, which is dimin-
ished in larger lag times. This also out-
lines the limitation of our set-up. We
measured diffusion coefficients for a to-
tal of 6 trajectories (three pairs) and av-
eraged out the diffusion coefficient that
we obtained for the 3D motion of the
particle. Table 2 summarizes the results
obtained.
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Trajectory Dx(µm2/s) Dy(µm2/s) Dz(µm2/s) D(µm2/s) errD(µm2/s)

1 0.26 0.20 0.25 0.24 0.08
2 0.26 0.21 0.26 0.25 0.07
3 0.20 0.21 0.23 0.22 0.08
4 0.21 0.22 0.23 0.22 0.07
5 0.22 0.24 0.24 0.23 0.08
6 0.22 0.22 0.24 0.23 0.08

Avarage 0.23 0.22 0.24 0.23 0.03
Table 2: Experimentally measured diffusion coefficients for each component of the motion
for 6 trajectories. Each pair (i.e. 1-2, 3-4 and 5-6) correspond to 2 halves of a single particle
trajectory corresponding to above and below the field of view.

It is not possible to cross validate our
results with previous work as the speci-
fication of the particles used varies and
changes the diffusion coefficient. We
are able, however, to compare the errors
we obtain to evaluate the quality of our
data. In previous work done by Yevick
et. al. (2014) [27] they measured a
10% increased diffusion coefficient com-
pared to the theoretical prediction. After
we averaged over all trajectories we ob-
tained a value of D = 0.23± 0.03µm2/s
which is within error in good agreement
with the theoretical predictions.

Sedimentation of Janus Spheres

In order to look at the sedimentation
of Janus spheres we used the same sil-
ica spheres with specifications as in the
previous section, with the key differ-
ence that one hemisphere was coated
with a thin Platinum(Pt) film. The thick-
ness of the platinum film varies, we can
however approximate a mean value of
4.7nm as given from the internal calibra-
tion of the sputtering equipment. The

sputtering equipement has an accuracy
of 0.1nm for the thickness of the film.
Samples were prepared as described in
the Method section, and we recorded a
series of movies according to the same
principles described for the passive sil-
ica spheres.

The fitting process for Janus spheres
requires a different approach. Due to the
nature of the particle there are more pa-
rameters one must consider when try-
ing to fit a model to the data. Firstly,
the refractive index of platinum films is
a complex number, consisting of a real
refractive index and an imaginary part,
the extinction coefficient. Furthermore,
the produced hologram will no longer
be symmetric with respect to intensity.
As it was shown by Wang et. al. (2014)
[28], the orientation of the Pt cap will
create asymmetries in the intensity map
of the hologram. Thus, compared to
our previous analysis, we must consider
three extra parameters, the angle of rota-
tion, and the real and imaginary part of
the refractive index of platinum.

A literature review revealed that there
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Figure 11: Mean square displacement calculated for lag times of 1 second for a single silica
sphere sedimenting freely in water for the x-y component of the motion.The fit is done with
a y-intercept anchor at the axis origin as it is physically expected. The linear relationship
confirms the power law and the slope of the fit corresponds to 2D.

Figure 12: Mean square displacement calculated for lag times of 1 second for the z component
and 3D motion of a silica particle. The slope on the right corresponds to 6D. The discrep-
ancy between fitting and experimental points arise from the dominating uncertainty of the z
position at small lag times.

is no known value for the refractive in-
dex of Pt films with thickness of 5nm.
It is important to mention that though
work has been done on the refractive in-
dex of Pt, such as measurements of films
by Goddard et. al. (2008) [29], or mea-
surements of wavelength depend trans-

mittance and absorbance by Serbetci et.
al. (2014) [30], the thickness of the films
discussed is at least two fold the ones
that we are using. We note that increas-
ing the thickness of the film is not an op-
tion for our experiments as to observe
activity we need to maintain the upper
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Figure 13: A schematic showing the discretization of a Janus spheres in scattering dipoles. The
top view on the right assumes that the equator of the sphere is perfectly aligned with the focal
plane which is rarely true.

limit of 5nm. Furthermore, the sputter-
ing process with which the spheres are
coated is not perfect and it is subject to
an equal coating of the hemisphere, as
well as fluctuations in the thickness of
the cap. With all that in mind, we must
employ a numerical approach for calcu-
lating the hologram described below.

In order to calculate the scattering
field produced by a Janus sphere we
must perform a Discrete Dipole Approx-
imation (DDA). The ADDA code[31],
which has been developed by the Uni-
versity of Amsterdam and launched
as an open source code, performs the
required calculations for the scattered
field of arbitrary 3D structures and is
implemented as an external executable
by the Holopy Python library. It comes
however, at a high computational cost.
As shown in Figure 13, the coated scat-
terer is discretised in a series of dipoles
with a composite refractive index. The
top view on the left shows an ideal case
in which the equator of the Janus sphere
is perfectly aligned with the focal plane,

therefore the angle of rotation is 0◦.

According to the suggestions pro-
posed by the authors [31], there is a min-
imum of dipoles one must use to obtain
a good fit using ADDA. That minimum
is defined by the wavelength of illumi-
nation and the size of the particles used.
The minimum is set at 10 dipoles per
wavelength of particle size. For our case
of a wavelength of 660nm and particles
of radius of 1.06µm, we require a 64000
dipoles (40x40x40) to achieve that mini-
mum. The number of dipoles per direc-
tion however must be a power of 2, re-
sulting in a minimum of 64 dipoles per
direction. As will be discussed in a later
section this approximation is not suffi-
cient to properly approximate a sphere.

Figure 14 is a visual representation of
the discretization process of the particle.
The sphericity of the discretized parti-
cle is reduced as the number of dipoles
is reduced, which is a fundamental is-
sue for the fitting as it directly affects
the symmetry of the hologram obtained.
That issue became a major limiting fac-

Version of September 11, 2019– Created September 11, 2019 - 11:12

20



21

Figure 14: Discretization of a sphere in a series of dipoles. As it becomes apparent from the
schematic the sphericity of the particle is partly lost at low number of particles which results
in problems to the fitting process. Image taken from Laczik et. al. (1996)[32]

tor in any subsequent analysis we at-
tempted to perform as it did not allow
us to properly resolve fitting of the ac-
tive particles (see Discussion).

The enormous computational chal-
lenge however arises when the two
aforementioned issues are combined.
The lack of information about the re-
fractive index in combination with the
high number of dipoles results in an
high number of parameters which ren-
ders the computation impossible with
the current tools. Typically, the fitting of
a single frame can take up to 2 weeks
on an i5 processor with 8GB RAM. With
a back of the envelope calculation, it
would take about 2 years to analyse a
130 frames movie to obtain a diffusion
coefficient. We consider this to be a lim-
iting factor we could not work around
with the current microscopy and com-
putational set-up.

Intensity Resolution

We were still interested in the possibil-
ities of our set-up. In particular, we

were interested in characterizing at least
one Janus sphere in the bulk with re-
spect to its cap rotation. Reviewing pre-
vious work by Wang et. al. [28], we
looked for the intensity asymmetry cre-
ated by the rotation of the cap in a holo-
gram. We took a series of images of a
Janus sphere coated with 5nm Pt with
a 60Xair and 100Xoil objective and then
looked at the intensity profile as a heat
map. We expected to see an asymmetry
in the intensity indicating the position of
the cap. Unfortunately, that is not what
we observed. Even when averaged over
three consecutive frames (rotational dif-
fusion is much slower than 300ms), no
intensity asymmetry is present. Figure
15 shows a heat map of the intensities of
the holograms obtained with the 60X air
objective. Spikes in the intensity are ran-
dom around the fringes of the hologram
and do not indicate a clear position of
the cap. Figure 16 shows the equivalent
heat map of the same particle obtained
with the 100X oil objective. The inten-
sity asymmetry is still not visible and
hence we conclude that it does not re-
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Figure 15: The intensity map of a Pt-coated colloid. By looking at the heat map of color in-
tensity we notice no visible and consistent assymetry in the fringes’ intensity. We believe the
intensity does not resolve with our current set-up

solve.

Discussion

Our results for the diffusion coefficient
of the passive spheres appear to be con-
sistent with theory. Previous experi-
ments using similar set-ups [18, 22] have
found errors comparable to what we ob-
serve from our measurements. It would
be possible to further reduce our error
by collecting and analysing more trajec-
tories, but even with a sample of 6 tra-
jectories good agreement was achieved.
We conclude that inline digital holog-
raphy is an accurate method for mea-
suring the diffusion coefficient, how-
ever, it remains relatively limited with
respect to the technical requirements. At

this, we mention that the limitation pre-
sented by the necessary dilution of the
sample to avoid overlapping features
and the limited field of view will always
pose a difficulty of correcting for the
drift of the particles. The use of capillar-
ies would eradicate that issue, however
for using active particles it would have
posed a series of separate issues due to
the H2O2. As the fuel is catalyzed bub-
bles start forming in the sample which
interfere severely with the diffraction
pattern and render the analysis impos-
sible.

The Baysian inference as a method
of analysing the holograms has plenty
of advantages but also presents a few
disadvantages. Though the fitting is
much more accurate and significantly
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Figure 16: The intensity map of an Pt-coated colloid. obtained with the 100X oil objective. The
asymmetries in the intensity appear random and do not indicate the position of the cap.

unbiased in comparison to the previ-
ously used least square fit, it does de-
pend on the priors given. In addition,
initial guesses might yield bad fits and
each failed attempt requires a signifi-
cant amount of time. Though with the
passive particles that did not result in
a considerable problem, with the Janus
spheres it meant that each failed attempt
could cost 2 weeks. It is worth consider-
ing for the future, the use of a material
that can provide both the activity and
also has a well measured refractive in-
dex, for example TiO2, as used in previ-
ous work [28].

The discrete dipole approximation
is the main limiting factor when dis-
cussing the possibilities of using digi-
tal inline holography for Janus spheres.
The enormity of the computational time

needed to perform the fitting renders
it impractical. Though an excellent
technique for characterization of parti-
cle properties, which would require less
frames to perform, in terms of tracking
enough particles to make a strong argu-
ment for the motion in the bulk it still
remains inefficient. This was the most
impact-full factor for our experiments.
There are however developments that
will in the future allow for a much faster
analysis. We mention the work being
done by Hannel et. al. (2018) [33] em-
ploying a neural network to perform the
fitting. It remains a relatively new ap-
proach and does not allow for the Janus
spheres to be considered but it does
show great promise for speeding up the
fitting to acceptable time frames. The
basic principle employs a pre-trained
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network which localizes holograms and
starts the fitting generating priors closer
to the real parameters of the data. That
sort of ”memory” of a collection of holo-
grams, allows the network to narrow
down the fitting and hence speed it up
at a minimal cost of accuracy.

Finally we must address the quality
of our set-up, and in particular the co-
herence of our light source. Though
the low temporal coherence of the LED
reduces speckle in the holograms, the
low spatial coherence reduces the sharp-
ness and results in the resolution of less
fringes than what is obtained with a
laser source. We believe that the res-
olution of the asymmetry in intensity
that should be present in Janus spheres
would be resolved if we used a more
coherent source. In addition, with the
use of optical tweezers we can perform
a characterization of a particle with a
known z-position, offering a way to
tackle the unknown parameter of the
refractive index. It would also allow
us to provide better priors for the z-
position when tracking a particle. Fur-
thermore, a more coherent source yields
more fringes, which directly relates to
how accurate the fitting is, reducing our
errors further.

Conclusion

Digital Inline Holography as a tool
to track active colloidal particles and
measure their diffusion coefficient in
the bulk remains a difficult problem
to solve. Our attempts described in
this project yield some promising results

and point out to a series of improve-
ments in order to approach the problem.
Through trial and error we have man-
aged to optimize a series of aspects of
the technique to fit our requirements but
there is still things that need to be con-
sidered.

We managed to correctly measure the
diffusion coefficient of silica spheres in
the bulk of the medium using an afford-
able set-up both for the microscope and
computations. Partially achieving the
goal set out by this project did not only
showed us the necessary improvements
but also revealed the possibilities of this
techniques when applied to colloids.
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