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1 Introduction

1.1 Replication and agent-based modelling

Agent-based modelling, or ABM for short, is a tool used to study complex systems

through the simulation of agents interacting with each other and their environment.

ABM has been used as an instrument for scientific research in various fields, such

as computer science, management, various social sciences, economics, geography

and, of course, archaeology (Macal 2016, 146-147). Although this methodology is

sometimes described as being new, it has been used for more than 40 years (Lake

2014a, 6). The simulation study of Palaeolithic social systems byWobst (1974), can

be called one of the first agent-based modelling applications in archaeology. Since

the turning of the millennium, the amount of published simulation studies has expan-

ded dramatically, and the method has, arguably, obtained some form of ’maturity’

(Lake 2014b, 277-278).

However, the surge in popularity of agent-based modelling brings with it a meth-

odological problem. Even though ABM is becoming more and more common, rep-

lication studies of archaeological simulations are virtually non-existent. Replication

can be defined as the reproduction of a published experiment, generally by scient-

ists independent of those who performed the original study, based on the published

details of the research. If the reproduced experiments are determined to be similar

enough to the original, generally through the use of statistical tests, it can be called

a successful replication. Replication studies are an important factor of scientific re-

search as they allow us to check whether the published descriptions of experiments

are accurate and the results are not reliant on local conditions (Wilensky and Rand

2007). Wilensky and Rand (2007) argue that replication is even more important in

computer simulation than it is in physical experimentation, as it cannot only show
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that an experiment is not a one-time event, but it can also bring more confidence

to the model verification, whether the implemented agent-based model reflects the

conceptual model on which it is based, and validation, whether the implemented

model fits the real-world processes it tries to simulate. The lack of replication stud-

ies leads some to believe we might soon face a time in which the validity of exist-

ing models will be doubted (Romanowska 2015b, 186). In Romanowska’s (2015b,

186) own words: "[I]t is only by replicating simulation studies, constructing libraries

of tested models and reusing them, and continuously challenging the models with

new data and new hypotheses that a high level of certainty can be obtained. Given

the current hype around simulation models in archaeology, and the relative scarcity

of replication studies, we may expect a turbulent but necessary period of question-

ing the existing models to follow soon." To paint a picture of this scarcity: the only

replication study of an archaeological agent-based model that I was able to find was

one of the ’Artificial Anasazi’ model (Janssen 2009), arguably the most well known

archaeological ABM. It should be noted that this issue is not at all unique to ABM in

archaeology, as even outside of the field of archaeology, the vast majority of agent-

based models remain unreplicated (Wilensky and Rand 2007). The replication of

computational archaeological research outside of ABM is also scarce, as pointed

out in a study by Marwick (2017), wherein he aims to address this issue by creating

a standardised way of publishing research in order to facilitate replication.

Simulation studies have been criticised by parts of the archaeological com-

munity. Such criticisms include simulations being deterministic, reductionist and

being incapable of incorporating the subjectivity of human behaviour (Lock 2003,

148-149), as well as being intransparant ’black boxes’, which hide information (Hug-

gett 2004, 83-84). The field of simulation has also been criticised for fetishizing new

and innovative technologies and for being predominantly male (Huggett 2004, 82-

88). Strengthening ABM methodology through replication, could help to convince

critics of the validity of simulation in archaeology.

The small amount of ABM replication studies from outside the field of archae-

ology have shown why they are so important. For example, the study by Will (2009)

shows the interesting and important results replication can yield. Without going into

too much detail, the model that was replicated concerns social mobility and market
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formation and was used to compare the individualist USA with collectivist Japan.

Will (2009) found that one assumption, which was made explicit in the code of the

original model, was not justified in the corresponding papers. When this assump-

tion was left out of the model, the results differed greatly from the original. However,

the original creator’s of the model responded to this study by recalibrating one in-

put variable in the replicated model, which then, surprisingly, resulted in a better

fit with their hypothesis than the original model did (Macy and Sato 2010). Other

replication studies have shown shortcomings in the original model (Edmonds and

Hales 2002; Miodownik et al. 2010) or reinforced the importance of documentation

(Donkin et al. 2017). Some replication studies are almost directly ’successful’, and

do not significantly contradict the original model (Axtell et al. 1996; Janssen 2009).

However, these studies are still important to publish as they allow us to put more

trust in the original models.

It is clear that the lack of replication studies is a significant problem that should

not be ignored. Therefore, I aim to address this problem in my thesis. Of course

it will be impossible to test a large amount of models in the timespan available to

me. However, it will be possible to show the procedures that have to be followed

during model replication and highlight the importance of model documentation, in

addition to replicating and thoroughly examining a single model. As my personal

experiencewith agent-basedmodelling prior to writing this thesis was limited, having

only followed one short university course on the subject, it will hopefully also show

the feasibility of learning to replicate simulation studies to fellow archaeologists.

1.2 Methodology: the background of agent-based

modelling

Of course, agent-based modelling will be the main method used in this thesis.

Therefore I will now briefly describe the aspects of this method.

An agent-based model is in essence a computer model in which agents inter-

act with each other, and optionally the environment in which they exist, based on

predetermined rules, resulting in a complex system. An ’agent’ in the context of
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agent-based modelling can be described as an object that, firstly, can act autonom-

ously based on a range of preset rules, secondly, has certain traits or features that

influence its actions, and, thirdly, has interactions with other agents. An agent may

have other characteristics, such as existing in an interactable environment, hav-

ing specific goals which govern its behaviour, the ability to learn and adapt over

time and possessing certain resources, such as money or energy (Macal and North

2009, 87-88). A complex system can generally be defined as a system in which

individuals, agents in the case of agent-based modelling, interact with one another

to produce results that cannot be simply deduced from their actions. An example of

a complex system is the Darwinian idea that, through interaction, simple organisms

evolve into more complex and specialised one’s (Heath and Hill 2010, 163).

Agent-based modelling emerged from the field of complex adaptive systems

(Heath and Hill 2010). This field of study covers the way in which the interaction

between autonomous agents results in complex systems, with the primary axiom

that these systems emerge from the ground-up (Macal and North 2009, 88-89).

There are seven characteristics of complex adaptive systems that have been iden-

tified by Holland (1995), which were fundamental in the development of agent-based

modelling as a field (Heath and Hill 2010, 167-168). These are:

• Aggregation: the ability for subgroups to form

• Tagging: the capability of subgroups, agents in the case of ABM, to be recog-

nised

• Building blocks: the re-use of subgroups to form different patterns

• Non-linearity: the notion that the results of a complex adaptive system are not

the same as the sum of its components

• Flow: the transference of information between agents

• Internal models: the rules that govern the behaviour of agents

• Diversity: even under the same external conditions, different agents will not

behave in a uniform way
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Another important aspect of complex adaptive systems and agent-based modelling

is emergence. Emergence can be described as the manifestation of new, macro-

scopic, features from the lower-level interaction between agents. The precise form

of emergent properties are not able to be deduced from the interaction between

agents from which they arise (Epstein and Axtell 1996; Goldstein 1999, 50). A

common example of emergence is the shape of bird flocks. Individual birds adhere

to certain rules, such as avoiding collision and matching flight speed with other birds

in their immediate surroundings, which determines the shape of a flock as a whole

(Hermellin and Michel 2017).

Agent-basedmodelling is a method that can be used to study themechanisms of

complex systems described above. By programming the actions of agents, resulting

in the emergence of a complex system, the rules and variables which allow for this

emergence can be studied.

A classic example of the use of ABM in archaeology is the Artifical Anasazi model,

which was used to study settlement patterns of the Anasazi in Long House Val-

ley, Arizona (Axtell et al. 2002; Dean et al. 2000; Gumerman et al. 2003). Through

simple rules, the agents in this model, which represent households, interact with

one another and the environment and choose settlement locations. Variables re-

lating to demographic numbers, social relations and interaction and environmental

conditions are included in this model (Gumerman et al. 2003, 436). The rules of

interaction result in the emergence of settlement patterns that are comparable with

archaeological data. This model was used to show that the decline and abandon-

ment of Long House Valley cannot be solely attributed to environmental change, but

also to social pull factors (Gumerman et al. 2003, 442-443).

Other applications of agent-based modelling in archaeology include the study

of: Pleistocene human dispersal (Callegari et al. 2013; Cuthbert et al. 2017; Ro-

manowska 2015a; Scherjon 2012), farming and pre-industrial economic produc-

tion (Angourakis et al. 2014; Barton et al. 2010; Cockburn et al. 2013), historical

societal collapse (Arikan 2017), social interaction and change in hunter-gatherer

and nomadic groups (Barceló et al. 2014; Briz i Godino et al. 2014; Clark and

Crabtree 2015), the emergence of social hierarchy (Crabtree et al. 2017; Rouse
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and Weeks 2011), Palaeolithic lithic procurement (Brantingham 2003), mobility in

hunter-gatherers (Santos et al. 2015), (pre-)historical warfare (Cioffi-Revilla et al.

2015; Turchin et al. 2013), trade (Brughmans and Poblome 2016a; Crabtree 2016;

Ewert and Sunder 2018), prehistoric seafaring (Davies and Bickler 2015), archae-

ological deposit formation (Davies et al. 2015), the division of labour in Iron Age salt

mines (Kowarik et al. 2012) and archaeological field surveys (Rubio-Campillo et al.

2012).

1.3 Research questions

The model that I have chosen to replicate is the MERCURY model by Tom Brugh-

mans and Jeroen Poblome (2016a; 2016b). MERCURY stands for Market Economy

and Roman Ceramics Redistribution. As the name suggests, this model was cre-

ated to explore the complex aspects of the economy of the Roman Empire. Although

the model could be used in a broader context, Brughmans and Poblome (2016b)

limit their research to the Eastern Mediterranean from 25 BCE to 75 CE. This period

was focused on because the archaeological tableware data from this area, which

was used to compare the simulated data to, shows a particular pattern of interest.

This will be explained in more detail in chapter two.

The MERCURY model was chosen to be replicated because it is a exemplary

case of ABM in archaeology as it includes two important features: hypothesis testing

and comparison with archaeological data. The two hypotheses that were tested us-

ing this model are by Bang (2008) and Temin (2012) and they concern the workings

of the Roman economy. According to Bang’s bazaar hypothesis, the integration

of markets was weak and access to information concerning supply and demand

was limited, resulting in a more fragmented economy. Bang’s main methodology

is comparative history; an elaborate comparison between the Roman Empire and

the Mughal Empire is made. Although Bang (2008) does not clearly state that his

book is limited to a certain period within the history of the Roman Empire, he mostly

discusses the early Roman Empire. Temin (2012) too focuses on the early Ro-

man Empire. In contrast to Bang, Temin’s view of the Roman economy is one in

which commercial information is able to flow more freely throughout different com-
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munities, with the existence of one large market as a result. Both authors draw on a

plethora of historical and archaeological sources from across the whole Roman Em-

pire. In their ABM study, Brughmans and Poblome (2016a, 395-397) use different

parameter settings, representing the two hypotheses, and compare the distribution

pattern of their output data to a distribution pattern found in an existing database of

over 33000 sherds of Eastern Roman tableware.

In order for a replication to produce significant results, it should differ in certain ways

from the original in terms of implementation. Wilensky and Rand (2007) identify six

ways in which a replication can differ from its original: the time at which a simulation

is performed, the hardware that the simulation is ran on, the language the model

is written in, the toolkit that was used when writing the code, the specifics of the

algorithms that are used and in which order they operate, and the authors of the

models. The time, hardware and the author of the model will necessarily differ

from the original model, in this case. In addition, the decision was made to use

a different toolkit and coding language to program the model. The algorithm was

not specifically chosen as a way in which the replicated model will differ from the

original, but it is possible that it will also differ in this aspect, as the ODD, will be

followed as the main guide when writing the replication instead of the source code.

The ODD, short for ’Overview, Design concepts and Details’, is protocol designed

to standardise descriptions of agent-based models and aid in replication attempts

(2006; 2010). The ODD consists of: an overview of themodel, including its purpose,

variables and process overview; a section on design concepts, in which certain

aspects of the model, such as the stochasticity, emergence and the ability of agents

to learn and interact, can be explained; and a section on the details of the model’s

processes and its input data.

The authors of the original MERCURY model used the NetLogo toolkit (Brugh-

mans and Poblome 2016b). NetLogo (ccl.northwestern.edu, b) is a programming

language and toolkit which was specifically designed for agent-based modelling.

For this replication, I have chosen Repast as a substitute. Repast (repast.github.io,

a) is an agent-based modelling suite that can be divided into two distinct versions:

Repast HPC and Repast Simphony. Repast HPC, which stands for High Perform-

12



ance Computing, uses the C++ language and is designed for complicated models

running on large clusters of computers or supercomputers. Repast Simphony is a

more accessible version that can use a combination of the languages Java, Groovy

and ReLogo, which is a language specifically designed for agent-based modelling,

comparable to NetLogo (Ozik et al. 2013, 1560-1561). For this replication, the Re-

past Simphony toolkit (version 2.4) was chosen, in combination with the Groovy

and ReLogo programming languages. This decision to use these languages was

primarily made for convenience, as ReLogo is similar in terms of syntax to NetLogo,

with which I already have experience, and Groovy is described as amore accessible

alternative to Java.

There are three categories of replication standards that can be met: numer-

ical identity, distributional equivalence and relational alignment (Axtell et al. 1996,

135). Numerical identity is the exact equivalence of numerical output. Due to the

stochastic nature of most agent-based models, this will be impossible to prove in

almost all cases, as even the same model can produce slightly different numerical

results using the same parameter settings. In stochastic models, the only way nu-

merical identity could be achieved is to use the exact same software and use the

exact same random number generator settings. The replicated and original model

are said to be distributionally equivalent if the output is statistically indistinguishable

from one other. Although Axtell et al. (1996) do not give mention specific statist-

ical tests that could be used to test for distributional equivalence, the one’s they

use are Mann-Whitney U test and Kolmogorov-Smirnov tests. Other studies citing

this replication standard, t-tests of various kinds are used (Donkin et al. 2017; Wi-

lensky and Rand 2007). Relational alignment, the weakest replication standard, is

achieved when the models’ output data and input variables show the same relation-

ship between them. Because of the stochastic elements in the MERCURY model,

and because a different ABM toolkit is used, numerical identity, the strongest rep-

lication standard, can not be achieved. Therefore, in this study, distributional equi-

valence will be aimed for, because it is deemed to be a stronger standard than

relational alignment (Axtell et al. 1996, 135).

The experiments presented in the supplement 1 of Brughmans and Poblome

(2016b) will be replicated using the same input variable values. Ideally, the replic-
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ated model and the original model will be declared as matches if they pass statistical

tests for equality of the mean or distribution, such as a paired samples t-tests for

example. The specific test used, will depend on the properties of the output data,

like the normality of the distribution. Using such statistical tests to test whether the

replicated model and the original model ’match’ is customary in replication studies

(Axtell et al. 1996; Donkin et al. 2017; Edmonds and Hales 2002; Miodownik et al.

2010; Wilensky and Rand 2007, 146-149). Naturally, if the models do not initially

match, the source of this mismatch will be sought. This involves a stepwise ex-

ecution of checking the code manually and comparing it to the source code and

performing subsequent statistical analyses when changes are made to the code.

Although the amount of data that was included in the papers by Brughmans and

Poblome (2016a; 2016b) is much greater than that of other archaeological ABM

studies I’ve looked at, it does include the data that is necessary to perform adequate

statistical tests. Brughmans and Poblome (2016b, supplement 1) only reported the

means of 100 simulation runs for each of the 35 experiments, but not the output

data of each individual run. In an email exchange, Tom Brughmans kindly provided

me the necessary output data to compare the tableware distributions simulated by

MERCURY (appendix 1). Sadly, this data did not include network measures, as they

were only performed for one experiment in every 100 of its kind. Therefore, network

measure data of the replication cannot be compared to the original statistically, only

the descriptive statistics of each experiment can be compared. However, since the

network structure influences the tableware distribution, but not vice-versa, statistical

tests of the tableware distribution will also say something about the networks. If

this explanation is confusing, it will be clear after reading the next chapter on the

intricacies of the MERCURY model and its results.

The research questions that I aim to answer in this replication study are:

• Can an independent replication of the MERCURY model match the results

presented by Brughmans and Poblome (2016a) on a distributional level, as

defined by Axtell et al (1996)?

• Can this replication be performed based solely on the description in the ODD,
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and if it cannot, what are the shortcomings of the ODD?

• If the models cannot be matched, what causes the differences between them?

• What consequences, if any, will this replication attempt have on the original

study by Brughmans and Poblome (2016a; 2016b)?

• How does this replication of MERCURY compare to other replication studies?

Specific emphasis is given to replication using the ODD as a guide. The ODD pro-

tocol was designed by Grimm et al. (2006; 2010) as a standardised way of describ-

ing agent-based models. Emphasis is given to the ODD not only because one of its

main aims is to assist in replication, but also because it should contain a detailed

explanation of the model that does not rely on pre-existing knowledge of a specific

programming language. Readers should be able to rely upon the ODD if the explan-

ation of a model in the published paper is insufficient. The accuracy of the ODD can

not be confirmed if only the source code is used as a guide in replication process.
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2 MERCURY and its results

In this chapter I will explain the MERCURY model and the conclusions Brughmans

and Poblome (2016a; 2016b) have drawn from its experiments. This is of course

already done in the publications by the original authors, but for the sake of com-

pleteness I believe it to be necessary to include a description here as well. The

functions, variables and constants of the model will have to be described to make

the subsequent chapters on the replication of the model and critiques of it compre-

hensible. Unless otherwise noted, the details about the model are from the ODD

found on the MERCURY page at CoMSES Net / OpenABM (www.comses.net, a).

2.1 The archaeological context of MERCURY

Brughmans and Poblome (2016a; 2016b) created their model to study the distribu-

tion patterns of terra sigillata tableware throughout the Eastern Mediterranean. By

examining a dataset from the ICRATES project of over 19 700 sherds, described in

Bes and Poblome (2008), Brughmans and Poblome (2016b, 395-397) observed a

pattern in the distribution width and range of the tableware types Eastern Sigillata A,

B, C and D. Due to the limitations of the dataset, critical quantitative analysis was

not performed; only broad distribution patterns were assessed. Brughmans and

Poblome found that between 25 BCE and 75 CE, Eastern Sigillata A dominated the

assemblage. It had by far the widest distribution of the four types until 75 CE. From

100 to 150 CE, Eastern Sigillata D overtakes Eastern Sigillata A as the dominant

tableware type, although the degree of its dominance is not as extreme as Eastern

Sigillata A was before (fig. 1). Brughmans and Poblome (2016a) formulated the

following research questions which they aimed to answer using their agent-based

model: "What hypothesised processes could give rise to this pattern? How does the
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availability of reliable commercial information to traders affect the distribution pat-

terns of tableware?" In this question, ’this pattern’ refers to the dominance of one

pottery type over the others, not to the shift in dominance from one type to another.

In order to address this question, Brughmans and Poblome (2016a; 2016b) used

the MERCURY agent-based model to make explicit and compare two conceptual

models that might explain the observed pattern: the ’Roman bazaar’ model by Bang

(2008) and the ’Roman market economy’ model by Temin (2012). In short, Bang

(2008, 4) describes his Bazaar model as follows: "Compared to modern markets,

the bazaar is distinguished by high uncertainty of information and relative unpredict-

ability of supply and demand. This makes the prices of commodities in the bazaar

fairly volatile. As a consequence, the integration of markets is often low and fragile;

it is simply difficult for traders to obtain sufficiently reliable and stable information

on which effectively to respond to developments in other markets. Considerable

fragmentation prevails." In contrast, Temin’s (2012, 4) view of the Roman economy

involves large, empire-stretching markets: "I argue that the economy of the early

Roman Empire was primarily a market economy. The parts of this economy located

far from each other were not tied together as tightly as markets often are today, but

they still functioned as part of a comprehensive Mediterranean market." Another

quote by Temin (2012, 17) shows that he believed there was a much freer flow of

information throughout the market than Bang did: "While the demand for Roman

wheat might have risen, each Sicilian or Egyptian farmer would only have known

what price—or tax rate—he faced. We have several surviving comments about the

prevailing price of wheat, some in normal times and more in unusual ones. The

presence of these prices indicates that both farmers and consumers knew what the

price was. Since these prices typically were not for individual transactions, they also

indicate the presence of anonymous exchanges. We have no way of knowing how

widespread this information was, but the quotations suggest strongly that this was

general information. It makes sense therefore to see farmers as facing a competit-

ive market in which their output was too small to affect the price. They then made

their choices on the basis of what they saw as a fixed market price, just as farmers

do today."

These stark contrasts between the two conceptual models were also described
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Figure 1: A graph showing the amount of sites each tableware type was found on,
based on ICRATES data (Brughmans and Poblome 2016a).

by Brughmans and Poblome (2016a; 2016b). The differences were made explicit

in the MERCURY model by changing input variables to reflect the two conceptual

models. I will get back to this after describing the specifics of the MERCURYmodel.

There are other differences between Bang (2008) and Temin’s (2012) models, such

as the importance of social relations and state influence, that were not incorporated

into MERCURY (Brughmans and Poblome 2016a).

2.2 A detailed explanation of MERCURY

In essence, the MERCURYmodel represents trade networks of the Roman Empire.

There are two types of agents that are essential to the MERCURY model: sites and

traders. The traders take on an active role, as they exchange products between

each other based on predetermined rules. Sites are passive; they store discarded

and traded goods and a subset of them, the production sites, allow traders that are

located there to ’produce’ new tableware. There also exists a third entity: links.

Links determine which traders are connected. Only linked traders can exchange

information and trade products with each other. I would argue that links are not
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agents in this case, as they do not perform actions. They only provide the network

structure which is used by traders. The model does not have a sense of scale.

Links between traders are the only representation of space, but they do not repres-

ent geographical distance, nor is there a difference between the amount of space

different links represent. Neither does each time step represent a certain amount

of time, such as days or months (www.comses.net, a). At the end of a run, network

measures and the amount of sites each tableware type is spread on serves as the

output data.

Table one and two contain all independent and dependent variables used in the

MERCURY model, the independent variables being the input values, which influ-

ence the creation of the network and the actions of agents, and the dependent vari-

ables being the values in which information is stored and which change throughout

the simulation.

At the start of each simulation a number of sites are created equal to the num-sites

value and a number of traders are created equal to the num-traders value. These

values are 100 and 1000 respectively in every experiment performed by Brughmans

and Poblome (2016a). These sites are visually aligned in the shape of a circle.

Four of the 100 sites are chosen to be productions sites, i.e. their production-site

variable and one of the producer-X (tab. 1) variables are set to ’true’. There is

one production site for each of the four products: A, B, C and D. The production

sites are equally spaced along the circle (Brughmans and Poblome 2016a). The

distribution of the 1000 traders among the sites is dictated by the equal-traders-

production-site, traders-distribution and traders-production-site independent vari-

ables. If equal-traders-production-site is ’true’ an equal amount of traders, the num-

ber of which is determined by the traders-production-site variable, is moved to each

production site first. Afterwards, all other traders are distributed over the remaining

non-production sites. If equal-traders-production-site is ’false’, production sites are

treated the same as non-production sites for the purpose of trader distribution, ex-

cept if traders-production-site variable is equal to ’30,1,1,1’. In this case, 30 traders

are distributed to production site A and the other production sites are assigned one

trader per site (Brughmans and Poblome 2016a). The variable traders-distribution
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Table 1: Independent variables (after Brughmans and Poblome 2016a, supplement
2).

Variable Description Tested Values
Global Variables

num-traders The total number of traders to be distributed among all sites 1000
num-sites The total number of sites 100

equal-traders-
production-site

Determines whether the number of traders at production sites
will be equal and determined by the variable
traders-production-site or whether it will follow the same
frequency distribution as all other sites determined by the
variable traders-distribution

true, false

traders-
distribution

Determines how the traders are distributed among the sites exponential,
uniform

traders-
production-site

Determines the number of traders located at production sites if
equal-traders-production-site is set to ’true’

1, 10, 20, 30

network-structure Determines how the social network is created when initialising
an experiment: a randomly created network, or the network
structure hypothesised by Bang or Temin.

hypothesis,
random

maximum-degree The maximum number of connections any single trader can have 5
proportion-inter-

site-links
The proportion of all pairs of traders that are connected in step
two of the network creation procedure by inter-site links

0; 0,0001; 0,0006;
0,001; 0,002;

0,003
proportion-intra-

site-links
The proportion of all pairs of traders that are considered in step
three of the network creation procedure to become connected
by intra-site links

0.0005

proportion-mutual-
neighbors

The proportion of all pairs of traders with a mutual neighbour
that are considered for becoming connected in step four of the
network creation procedure by intra-site-links

2

Site-specific variables
production-site Set to ’true’ if the site is a production centre of one of the

products
true, false

producer-A Set to ’true’ if the site is the production centre of product-A true, false
producer-B Set to ’true’ if the site is the production centre of product-B true, false
producer-C Set to ’true’ if the site is the production centre of product-C true, false
producer-D Set to ’true’ if the site is the production centre of product-D true, false

Trader-specific variables
max-demand The maximum demand each trader aims to satisfy 1, 10, 20, 30

local-knowledge The proportion of all link neighbours a trader receives
commercial information from (supply and demand) in each turn

0,1; 0,5; 1
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Table 2: Dependent variables (after Brughmans and Poblome 2016a, supplement
2).

Variable Description
Site-specific variables

volume-A The number of items of product A deposited on the site as a result of a successful
transaction

volume-B The number of items of product B deposited on the site as a result of a successful
transaction

volume-C The number of items of product C deposited on the site as a result of a successful
transaction

volume-D The number of items of product D deposited on the site as a result of a successful
transaction

Trader-specific variables
product-A The number of items of product A the trader owns and can trade or store in this turn
product-B The number of items of product B the trader owns and can trade or store in this turn
product-C The number of items of product C the trader owns and can trade or store in this turn
product-D The number of items of product D the trader owns and can trade or store in this turn
stock-A The number of items of product A the trader puts in his stock in this turn as a result of

an unsuccessful transaction or for redistribution in the next turn
stock-B The number of items of product B the trader puts in his stock in this turn as a result of

an unsuccessful transaction or for redistribution in the next turn
stock-C The number of items of product C the trader puts in his stock in this turn as a result of

an unsuccessful transaction or for redistribution in the next turn
stock-D The number of items of product D the trader puts in his stock in this turn as a result of

an unsuccessful transaction or for redistribution in the next turn
maximum-stock-

size
The number of items the trader is willing to obtain through trade this turn in addition to

his own demand if the average demand is higher than his demand
price The price the trader believes an item is worth based on his knowledge of supply and

demand on the market
demand The proportion of the demand at the market the trader is located at that he aims to

satisfy by obtaining products through trade. Constant increase of 1 per turn; maximum
= max-demand
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determines the manner in which the remaining traders (or all traders if none were

specifically distributed to production sites) are distributed. If this variable is set to

’uniform’, the traders are distributed equally among the sites. If this variable is set

to ’exponential’, the distribution follows an exponential frequency distribution with

its mean equal to the amount of undistributed traders (www.comses.net, a). These

two sub-models make up the first part of the initialisation.

The second part of the initialisation consists of creating the network of links

between traders. The creation of this network is dictated by the network-

structure, maximum-degree, proportion-inter-site-links, proportion-intra-site-links

and proportion-mutual-neighbors independent variables. If network-structure is set

to ’hypothesis’, the following steps will be performed. Firstly, a random trader on

each site is linked to another random trader on the next site in the circle, so that the

whole circle has a minimum level of connectivity. Secondly, inter-site links are cre-

ated. The amount of trader pairs that will be linked during this step is equal to the

total amount of possible trader pairs times the proportion-inter-site-links variable.

Traders will only be linked if they are not located on the same site, are not already

linked and if they have not yet reached the maximum-degree of connections. The

total amount of possible trader pairs is determined by the following formula, where

n is the total amount of traders:
1
2𝑛(𝑛 − 1)

Note that, in some experiments, proportion-inter-site-links is equal to 0 (tab. 1),

which means there will be no inter-site links created, other than the ones to con-

nect the circle. Thirdly, an amount of traders equal to the proportion-intra-site-links

variable times the total number of possible trader pairs are linked if they are located

on the same site, are not linked yet and if they have not yet reached the maximum-

degree of links. Fourthly, traders on the same site withmutual neighbours are linked.

A random amount of traders will be selected equal to the number of trader pairs with

mutual neighbours times the proportion-mutual-neighbors variable. If the selected

trader is connected to two or more other traders on the same site, one pair of those

will be linked if they are not yet linked to each other and if neither has reached

the maximum-degree of links. The number of trader pairs with mutual neighbours
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is calculated with the following formula, where "𝑧𝑖 is the degree of the 𝑖𝑡ℎtrader"

(Brughmans and Poblome 2016a), in other words 𝑧𝑖 is the number of connections

a trader has:
1
2 ∑

𝑖
𝑧𝑖(𝑧𝑖 − 1)

The last two steps, the creation of intra-site links and the connecting of mutual

neighbours on the same site, will be repeated until the average amount of links of all

traders, the average degree, reaches the maximum-degree minus 10%. According

to Brughmans and Poblome (2016a), the repetition of steps three and four will result

in a ’small-world’ network as presented by Jin et al. (2001). In a ’small-world’ network

most nodes, traders in the case of MERCURY, are not connected directly to each

other, but they are indirectly connected by a small number of steps through other

nodes. In addition, if a node is connected to two other nodes, those two other

nodes have a high chance of also being connected to each other. In other words,

a ’small-world’ network has a high amount of clusters (Watts and Strogatz 1998,

440). Lastly, if there are multiple clusters, these clusters are connected by creating

a link to a trader in another cluster on the same site. If this step is skipped, products

cannot be traded across the whole network. If network-structure is set to ’random’,

all previous steps are performed, in order to count the number of links that would

have been created, then this network is deleted and a number of new trader pairs

are connected equal to the amount of links that were deleted (www.comses.net, a).

Figure 2 shows two sample views of the MERCURY world, one created using a very

low proportion-inter-site-links value and one with an intermediate value.

After the initialisation is completed, the traders begin their trading process, which

consists of the following actions. These sets of actions are looped 20 000 times,

also called ticks in NetLogo and ReLogo jargon. Firstly, each trader’s demand de-

pendent variable is increased by one if it is less than the max-demand independent

variable. Each trader’s demand is zero at the start of each simulation. Secondly,

the traders reduce each of its four stock-X values by 14% and add the amount re-

moved to the corresponding volume-X value of each site. This specific percentage
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Figure 2: Two example views of the MERCURY world, created using the original
NetLogo model (www.comses.net, a). The red dots portray non-production sites
and the blue dots portray production sites. The grey lines represent inter-site links.
Links between traders on the same site are not visible, since all traders on the same
site are occupying the same location. The top imagewas created using a proportion-
inter-site-links value of 0,0001 and the bottom one using a value of 0,001.
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is based on previous research by Peña (2007, 329). Then the product-X values

of all traders, which is the part of the trader’s product that is tradable, are set to

their corresponding stock-X values and the stock-X values are set to zero. In other

words, traders drop 14% of their stock and then their stock becomes tradable during

the rest of this loop. The dropping of stock represents the risk of products breaking

or becoming out of style when they are not sold to a consumer immediately (Brugh-

mans and Poblome 2016a). Thirdly, all traders located on a production site produce

new products by increasing their product-X value of the type that is produced at its

site by an amount equal to the trader’s demand minus the sum of all their product-X

values. Fourthly, traders inform each other on demand and supply. Each trader is

assigned a number of randomly chosen informants from the traders they are linked

to equal to the amount of traders they are linked to times the local-knowledge inde-

pendent variable. The specific set of informants each trader receives information

from changes every tick. Then, each trader calculates the average demand and

average supply of its informants and itself combined. The supply is the sum of all

products of every type a trader possesses. This information is used to calculate a

price using the following formula:

𝑝𝑟𝑖𝑐𝑒 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑚𝑎𝑛𝑑
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑢𝑝𝑝𝑙𝑦 + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑚𝑎𝑛𝑑

Fifthly, each trader calculates its maximum-stock-size. This value is calculated as

the average demand of its informants, minus the trader’s own demand. In other

words, only when a trader’s average demand among its peers and itself is higher

than this trader’s own demand, will it be able to store products that it has obtained

from other traders for later loops. Lastly, every product of every trader is traded or

considered for trading. This process goes as follows. First, one of the four product

types is randomly chosen. Then a random trader who owns any products of the

chosen type is selected as the seller. If there are any traders connected to the seller

with a demand value of higher than zero or a maximum-stock-size of higher than

zero, these traders are selected as potential buyers. From these potential buyers,

the one with the highest price estimation is then selected as the buyer. If the buyer’s

price value is equal to or higher than the seller’s price, reduce the seller’s product-X
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of the type that is being traded by one. In other words, when the buyer believes the

product to be more, or at least as, valuable as the other trader, the seller sells the

product. If the buyer’s demand is higher than zero, decrease its demand by one

and increase the volume-X value of the site that the buyer is located on by one, i.e.

the product is consumed and deposited on the site. If the buyer’s demand is zero,

increase the stock-X value of the type of the sold product by one and decrease its

maximum-stock-size by one; the product is stored to be traded later. If there are

no potential buyers, or if the selected buyer’s price value is less than the seller’s

price, the seller stores all products of that type for later by setting its stock-X value

of the relevant type equal to the corresponding product-X value and by setting its

product-X value to zero afterwards and decreasing its maximum-stock-size by the

amount that was added to its stock. This process is repeated until every product of

every trader has been considered for trading (www.comses.net, a).

After 20 000 loops have been performed, the results are exported. The exported

data consists of all the independent variables, the amount of links that have been

created during each of the five steps during the initialisation, the average degree

that was reached during the repeating of step three and four of the trader network

creation, the clustering coefficient of the trader network, the average shortest path

of the trader network and the amount of sites each product type is on, sorted from

highest to lowest, not by its original type (Brughmans and Poblome 2016a, supple-

ment 1). The absolute amount of products on each site is not taken into account,

just the spread of each product across the network.

2.3 Brughmans and Poblome’s results and conclusions

Brughmans and Poblome (2016b, 400-401) use the previously described independ-

ent variable proportion-inter-site-links to make MERCURY simulations represent

Bang and Temin’s conceptual models. The proportion-inter-site-links variable de-

termines the amount of traders that will be linked between sites, as a proportion

of the total amount of possible trader pairs. Brughmans and Poblome (2016a)

state that the availability of information was low in both Temin’s and Bang’s mod-
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Table 3: A list of all experiments with their independent variables. This table ex-
cludes independent variables that are equal across all experiments (after Brugh-
mans and Poblome 2016a, supplement 1).

Exp.
equal-traders-
production-
site

traders-
distribution

network-
structure

local-
knowledge

proportion-
inter-site-
links

traders-
production-
site

max-
demand

proportion-
intra-site-
links

1 TRUE exponential hypothesis 0.1 0 10 10 0.0005
2 TRUE exponential hypothesis 1 0 10 10 0.0005
3 TRUE exponential hypothesis 0.1 0.0001 10 10 0.0005
4 TRUE exponential hypothesis 1 0.0001 10 10 0.0005
5 TRUE exponential hypothesis 0.1 0.0006 10 10 0.0005
6 TRUE exponential hypothesis 1 0.0006 10 10 0.0005
7 TRUE exponential hypothesis 0.1 0.001 10 10 0.0005
8 TRUE exponential hypothesis 1 0.001 10 10 0.0005
9 TRUE exponential hypothesis 0.1 0.002 10 10 0.0005
10 TRUE exponential hypothesis 1 0.002 10 10 0.0005
11 TRUE exponential hypothesis 0.1 0.003 10 10 0.0005
12 TRUE exponential hypothesis 1 0.003 10 10 0.0005
13 TRUE exponential hypothesis 0.5 0.001 1 1 0.0005
14 TRUE exponential hypothesis 0.5 0.001 1 10 0.0005
15 TRUE exponential hypothesis 0.5 0.001 20 10 0.0005
16 TRUE exponential hypothesis 0.5 0.001 30 10 0.0005
17 TRUE exponential hypothesis 0.5 0.001 10 1 0.0005
18 TRUE exponential hypothesis 0.5 0.001 10 20 0.0005
19 TRUE exponential hypothesis 0.5 0.001 10 30 0.0005
20 TRUE exponential hypothesis 0.5 0.001 30 30 0.0005
21 FALSE exponential hypothesis 0.5 0.0001 na 10 0.0005
22 TRUE exponential hypothesis 0.5 0.001 10 10 0.0005
23 FALSE uniform hypothesis 0.5 0.001 na 10 0.0005
24 FALSE exponential hypothesis 0.5 0.001 na 10 0.0005
25 FALSE exponential hypothesis 0.5 0.001 na 30 0.0005
26 FALSE exponential hypothesis 0.5 0.002 na 10 0.0005
27 FALSE exponential hypothesis 0.5 0.002 na 30 0.0005
28 FALSE exponential hypothesis 0.5 0.003 na 10 0.0005
29 FALSE exponential random 0.5 0.001 na 10 0.0005
31 FALSE exponential hypothesis 1 0.001 na 10 0.0005
32 FALSE exponential random 0.5 0.001 na 30 0.0005
33 FALSE exponential hypothesis 0.5 0.001 (30,1,1,1) 10 0.0005
34 FALSE exponential random 0.5 0.001 (30,1,1,1) 10 0.0005
35 TRUE exponential random 0.5 0.001 10 10 0.001

els, which manifests itself in a low local-knowledge value, while proportion-inter-

site-links should be set to high values to reflect the heavily integrated markets of

Temin’s model and low to reflect weak market integration in Bang’s model. The

experiments are not limited to variations in proportion-inter-site-links, but include a

wide range of variations in independent variable settings. Table 3 shows all experi-

ments, excluding experiment 30, and the independent variables that are unique to

them. Experiment 30 was excluded because it used a test variable, transport-cost,

which is not discussed in either of the two articles or the ODD. This table does not

include the independent variables that are equal across all experiments. A com-

plete version of this table, including summary statistics of the output data, can be

found in Brughmans and Poblome (2016a, supplement 1).

Firstly, Brughmans and Poblome (2016a) used the results of experiments 1, 3, 5,

7, 9, 11 and 35 to study the effect proportion-inter-site-links has on the network

itself, not on the spread of tableware. In these experiments, proportion-inter-site-

27



links is varied between 0, 0,0001, 0,0006, 0,001, 0,002 and 0,003 for hypothesised

networks, while other independent variables are kept constant. Additionally, these

hypothetical networks were compared to a random network structure, experiment

35. Two network measures, clustering coefficient and average shortest path length

were used to compare the results of these experiments (Brughmans and Poblome

2016a). Watts and Strogatz’s (1998, 441) concept of local clustering coefficient is

used, which is defined as the proportion of links between the neighbours of a node,

a trader in the case of MERCURY, divided by the maximum amount of possible links

between these neighbours. The mean of the local clustering coefficient among all

traders is used as the clustering coefficient in Brughmans and Poblome (2016a).

Thus, a network with a low integration between markets on different sites will have

a high clustering coefficient and a network wherein markets are highly integrated

will have a low clustering coefficient. Average shortest path length is simply defined

as "the average number of steps along the shortest paths for all possible pairs of

network nodes" (Mao and Zhang 2017, 243). It was found that low proportion-

inter-site-links values resulted in higher clustering coefficients and lower average

shortest path lengths and high proportion-inter-site-links values resulted in lower

clustering coefficients and higher average shortest path lengths. These outcomes

correspond to Bang and Temin’s models, respectively. In the case of a randomly

created network, average shortest path length was low and clustering coefficient

was extremely low (Brughmans and Poblome 2016a). These results show us that

proportion-inter-site-links can indeed be used to represent the differences between

Bang and Temin’s conceptual models.

Secondly, Brughmans and Poblome (2016a) used experiments 1 to 12 to study

the influence of the independent variables proportion-inter-site-links and local-

knowledge on the product distribution. The same values of proportion-inter-site-

links as above were used. In addition local-knowledge was varied between 0,1 and

1. Every combination between these values of the two variables was used, while the

other independent variables were kept constant. These experiments showed that

when traders have imperfect information within their network, when local-knowledge

is set to 0,1 instead of 1, all products will spread wider on average. This difference

is consistent but slight. Increasing proportion-inter-site-links, on the other hand,
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Figure 3: Boxplots of the width of distribution, ranked from most to least widely
distributed, from three experiments with different proportion-inter-site-links values.
All other independent variables are the same. This graph was created from data of
100 iterations per experiment (after Brughmans and Poblome 2016b, 403).

has significant influence on the wideness of ware distributions, the amount of sites

each product is found on (fig. 3). However, the difference between the ware with

the highest width of distribution and the one with the lowest, called the range of

distribution by Brughmans and Poblome (2016a), is low. Therefore, these paramet-

ers alone cannot explain the archaeological observations made from the ICRATES

data (Brughmans and Poblome 2016b, 401). Thirdly, Brughmans and Poblome

(2016a) used experiments 13 to 20 to study the influence of traders-production-site

andmax-demand on the product distribution. Combinations of the valuers 1, 10, 20

and 30 for both traders-production-site and max-demand were used, although not

all combinations of these values between the two variables were tried. For these
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experiments, proportion-inter-site-links and local-knowledge were set to the mod-

erate values of 0,001 and 0,5, respectively. These experiments showed a similar

result as experiments 1 to 12: increasing traders-production-site and max-demand

increases the width of distribution, but does not meaningfully affect the range of

distribution.

Fourthly, experiments 21, 23 to 28, 31 and 33 were used to test the influence

of setting equal-traders-distribution-site to ’false’, i.e. distribution to production sites

following the same rules as distribution to non-production sites. In addition a uni-

form traders-distribution and an unequal traders distribution to production sites by

setting traders-production-site to ’30,1,1,1’, as explained in the previous section,

was tested. Other independent variables were not uniform throughout these exper-

iments, for example different values of proportion-inter-site-links were tried. Exper-

iments 21 and 24 to 28 showed that increasing proportion-inter-site-links increases

distribution width, as previously shown in experiments 1 to 12. However, when

combining higher values of proportion-inter-site-linkswith equal-traders-distribution-

site to ’false’, a much higher range of distribution is achieved. Setting traders-

production-site to ’30,1,1,1’ results in one product, the one whose production site

has the highest amount of traders, being spread much wider than the others, i.e. the

desired archaeologically observed pattern. Experiment 23, where the distribution of

traders among sites was uniform, showed a high width of distribution for all wares,

and, consequently, a low range of distribution (Brughmans and Poblome 2016a).

Lastly, Brughmans and Poblome (2016a) used experiments 22, 24, 25, 29, 32,

33, 34 and 35 to compare randomly created networks to hypothetical networks that

follow the small-world model. Randomly created networks were compared to sev-

eral hypothetical networks with varied values for traders-production-site, maximum-

demand and equal-traders-production-site values. This results from these exper-

iments show that all products in randomly created networks spread much more

widely than in their hypothetical-network counterparts. A fairly obvious result, since

in randomly created networks there are much more trader pairs who are located

on different sites from each other, as seen before. But randomly created networks

did not have a higher range of distribution. When setting traders-distribution-site to

’30,1,1,1’, the randomly created network shows a higher width of distribution for all
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Figure 4: Boxplots of the width of distribution, ranked from most to least widely
distributed, from experiments 33 and 34. Both experiments include a dispropor-
tional distribution of traders among produciton-sites, i.e. traders-distribution-site =
’30,1,1,1’, but the first experiment was created using the hypothesised network and
the second using a random network. All other independent variables are the same.
This graph was created from data of 100 iterations per experiment (after Brughmans
and Poblome 2016b, 405).
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products, as well as a higher range of distribution (fig. 4). Brughmans and Poblome

(2016a) state that the hypothesised network structure is not as important for explain-

ing the archaeologically perceived ware distribution as placing an unequal amount

of traders on production sites.

Brughmans and Poblome (2016a) conclude that increasing the variables proportion-

inter-site-links, traders-production-site, max-demand and the creation of randomly

created networks, as opposed to hypothetical small-world networks, correspond to

increased distribution width, but that they do not give rise to higher ranges of dis-

tribution. The only scenario that conform to the distribution patterns perceived in

the ICRATES data, is when one production site receives a much higher amount of

traders than the other three, since such a site has the ability to export more wares.

In addition they claim that: "The results lead us to conclude that the limited integ-

ration of markets proposed by Bang’s model is highly unlikely under the conditions

imposed in this study. The simulation confirmed the importance of market integ-

ration, as suggested by Temin’s model, but it also highlighted the strong impact of

other factors: differences in the potential production output of tableware production

centres, and the demand of their local markets (Brughmans and Poblome 2016b,

404-405)." Brughmans and Poblome (2016a) also make important remarks con-

cerning the importance of agent-based modelling research and the actions other

researchers could take to facilitate further simulation studies.
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3 The replication process and its results

This chapter concerns the main body of this thesis: an in-depth explanation of the

replication process of MERCURY and the result of that replication. Prior to start-

ing this research, my experience with ABM and coding in general was very limited,

and in many ways it still is. The only practice I had with coding was a seven week

university course on ABM and an even shorter free online course on programming

using Python 2. When choosing which ABM platform to use, a beginner-friendly

nature was important to me. The software I decided to use was Repast Simphony.

The main reason for this decision was that it employs ReLogo, a domain-specific

language for ABM with primitives similar to NetLogo (Ozik et al. 2013), with which

I already had experience. A primitive is a basic element of a programming lan-

guage that can be used to write code. Repast Simphony also uses Groovy, an

’agile’ form of Java, partly inspired by Python, meaning it it is generally less verb-

ose and easier to read than Java (König et al. 2015, 3-53), which appealed to me.

I used several guides from the official GitHub documentation page for practice (re-

past.github.io, b). The bulk of the programming work was done in 15 days of lab

work, during which I also had to get acquainted with Repast Simphony. The ODD,

written by Brughmans and Poblome and found at their CoMSES Net / OpenABM

page (www.comses.net, a), was used as the main source regarding the specifics of

theMERCURYmodel. Later in the process, I found that one of their articles contains

information about the model that the ODD lacks (Brughmans and Poblome 2016a).

The original source code was only used if the ODD was lacking, and for compar-

ison after the initial version of the replication was complete. After the first version of

the replication was completed, the same experiments as presented in Brughmans

and Poblome (2016a) were repeated and compared to the original. If noticeable

differences were present, alterations to the code were made and the same process
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was repeated again. This resulted in eight versions of the replicated model over the

course of many weeks. These versions, their results and subsequent alterations will

be discussed below. Note that there are minor changes that have no meaningful

influence on the output of the model, such as annotation changes and the stand-

ardisation of variable names, that will not be discussed here. Even though the ODD

was followed literally, there existed many differences between my replication and

the original model, some of which influenced the output, as will be discussed later.

Some errors in the code were my fault alone and cannot be attributed to the ODD

or my interpretation of it.

Before going into the different versions of the replication, I want to make some brief

comments about the graphs presented in this chapter. Due to the large amount of

data points collected in this study, there are many possibilities for creating graphs.

Since the amount of data is so large, presenting it succinctly in a limited amount of

graphs is a challenge. Therefore, I urge the reader to consult the appendix if they

feel like they are missing crucial information. For the purpose of comparing the net-

work of traders between the replication and the original, the clustering coefficient

was used. Unlike most other measures, the clustering coefficient says something

about the network as a whole. The average shortest path distance was also an

option, but this measure has very large differences between the experiments, even

more so than the clustering coefficient does, which made the graphs difficult to read.

The four experiments with random networks always have very low clustering coef-

ficients, which makes them difficult to view in all the graphs. Changing the Y-axis to

a logarithmic scale, so that a wider range of values can be properly displayed, was

considered. However, this option was rejected because it made the differences

between the replication and the original less visible, which counteracts the main

point of the graphs. Note that in the original study, the network measures, including

the clustering coefficient, were only measured for one experiment, the one with a

’random seed’ of 10. A random seed, also simply called a ’seed’, is an input number

that determines the output of a pseudo-random number generator (Shamir 1981).

In other words, it is a number that determines the ’random’ events of the MERCURY

model, so that if the same random seed is used, the ’random’ events will have the
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same results. For the graphs of the ware distributions, both mean distribution width

and range was used, as they are both summary statistics of the ware distribution

and say more than other statistics such as the minima, maxima or mode. All original

graphs in this thesis were created using LibreOffice Calc (libreoffice.org).

3.1 Version 1

Version 1 of the replication is defined as the first version that included all features

described in the ODD, could export all the data as in supplement 1 of Brughmans

and Poblome’s (2016a) paper in the Journal of Artificial Societies and Social Simu-

lation, or JASSS, and could run successfully, without fatal errors. The source code

is added as an appendix (appendix 2). My goal was to replicate the MERCURY

model using only the ODD as a source. There were, however, three times where

the ODD, or my understanding of it, did not suffice, and the source code had to be

consulted. Firstly, the term "exponential frequency distribution" in the following pas-

sage was unclear to me: "When equal-traders-production-site is set to “false”, all

traders are distributed among all sites following a uniform or exponential frequency

distribution, depending on the setting of the variable traders-distribution. The mean

of the exponential frequency distribution is the number of traders that have not yet

been moved to a site divided by the number of sites (www.comses.net, a)." After

looking through the original code, I found out that what was meant by this is that

each site has a target distribution, an amount of traders on the site that should be

met, that is equal to a random number from an exponential distribution with a mean

equal to the amount of traders that are not moved yet, rounded up. Perhaps my

knowledge of mathematics was simply not sufficient to understand this usage of

the term, so I will leave it up to the reader to judge the clarity of the ODD in this

case. The second and third times the source code had to be consulted concerned

the reporters that were used to calculate the clustering coefficient and the average

shortest path distance. The specific way in which average shortest path distance

was calculated was not mentioned in the ODD, nor in the articles (Brughmans and

Poblome 2016a; Brughmans and Poblome 2016b). There exist multiple ways to

determine the shortest path, such as Dijkstra’s algorithm and its variants, or the
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Bellman-Ford algorithm, each with different uses (Festa 2006). In the source code,

a primitive, mean-link-path-length, from a network extension for NetLogo is used

(www.comses.net, a). Since the creator of this network extension also does not

mention which algorithm is used (github.com), I opted to use the ShortestPath Re-

past package (repast.sourceforge.net, b), which adopts Dijkstra’s algorithm. For the

calculation of the clustering coefficient, I chose to consult the source code because

it was not mentioned in the ODD if the global clustering coefficient was used or the

averaged local clustering coefficient. The procedure used to calculate the clustering

coefficient was adopted from the original model. Later, I found out that the latter is

used in the small-world model by Watts and Strogatz (1998, 441) which the authors

of MERCURY reference (Brughmans and Poblome 2016a), so in this case it might

not have been entirely necessary to turn to the source code, but it would have been

better if it was explained more clearly in the ODD.

The data from the 34 experiments of version 1 of the replication can be found in ap-

pendix 3. Originally, Brughmans and Poblome (2016a) described 35 experiments

in their supplement table. One of the experiments, number 30, involves the use of

a variable named transport-cost. A similar variable, transport-fee is mentioned in

supplement 2, which lists all the variables of MERCURY. However, experiment 30

is not discussed in the articles and neither variable occurs in the code. In one art-

icle, the possibility of incorporating transport costs in a future version of MERCURY

wasmentioned (Brughmans and Poblome 2016a). In an email correspondence with

Tom Brughmans, he told me that the variable transport-cost, which was used in ex-

periment 30, was a leftover of a testing phase and did not make it in the published

version (appendix 19). During the course of writing this thesis, after my email cor-

respondence with Tom Brughmans, an extension of MERCURY which incorporates

transport-cost into the model. However, the corresponding paper has not been re-

leased yet. In all appendix files containing the summarised data from the replication,

the original numbering is used, and experiment 30 is skipped, but in the raw data

tab, number 30 is not skipped, so experiment 30 is equal to 31 in the summarised

table, 31 is equal to 32, etc.

As can be seen in appendix 3 there are major discrepancies between the out-
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Figure 5: A bar graph showing the mean clustering coefficient of all 100 iterations
per experiment of version one of the replication next to the clustering coefficient of
seed 10 of the original model, sorted by experiment number.

put data from version 1 of the replicated model and the output data from the ori-

ginal MERCURYmodel. Appendix 3 contains a table, MERCURY_pct_change, that

shows the percentage change from the data of the original model to the replicated

model. It should be noted that the network measures of the original model were

only recorded on one run per 100 runs for each experiment. Therefore, the table

shows a comparison between the averaged network measures from the replicated

model and the network measures from one run of the original. This only applies

to the network measures; the ware distribution data was averaged for every run in

the experiment in the original study. The percentage change for the links created in

step one and two, the linking of one trader per site on the circle and the creation of

inter-site links, is 0,00%. This means that the amount of links created in these steps

is identical for each run per experiment and that this number is equal to the one from

the original, as should be the case. The amount of randomly created intra-site links,

on the other hand, is consistently higher in the original: ranging from a change of

-11,06% to -4,66% from the original to the replication. On the contrary, the number

of intra-site links created through mutual neighbours is consistently lower in the ori-
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ginal, ranging from change of 4,59% to 33,09%. These two steps are performed in

a loop until an average-degree of 4,5 is met. It would seem that during this loop, one

of these processes creates either less or more links than intended, which results in

a skew in the other process as well. The amount of links created to connect com-

ponents varies wildly, from percentage change of -45,21% to 532,00%, although in

the majority of cases, 22 out of 34, it is lower in the original. These discrepancies

seem to cancel each other out, as the total number of links is very similar between

the two datasets, ranging from -1,03% to 0,11%. This also holds true for the av-

erage degree, which ranges from -0,55% to 0,09%. The clustering coefficient is

consistently higher in the replication, ranging from a change of 3,69% to 52,83%,

compared to the original, as can be seen in figure 5. The last two experiments,

34 and 35, are major exceptions with values of 279,30% and, the only experiment

with a higher clustering coefficient in the original version, -29,41% change. Aver-

age shortest path distance ranges from -1,01% to 4,08% change, except for the first

two experiments with extreme values of -49,20% and experiment 20 with 17,62%.

These percentage changes between the original and the replication clearly show a

difference in network creation. In future versions, if the data is more similar, I will

use different ways of comparing this data, but looking at the percentage change

suffices for the time being.

In terms of ware distribution measures, there are major discrepancies as well. In

general, all ware distribution measures are much higher in the original. I will not go

into detail about the ware distribution data here, because I decided to try and correct

the network generation process first, as this influences the ware distribution, while

the opposite is not the case.

3.2 Version 2

Version 2 of the replication includes a minor change to the loop that repeats the

creation of random intra-site links and links between mutual neighbours and a major

change in the code that dictates the creation of random intra-site links. The source

code of this version of the replication can be found in appendix 4.

Firstly, the while loop that dictates the creation of random intra-site links and
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mutual neighbour intra-site links was changed so that the average degree has to

be less than or equal to the maximum-degree minus 10%, instead of just less than

it. In the ODD, this process is described as follows: "Steps three and four of this

network creation procedure are repeated while the average degree of the network

is lower than maximum-degree minus 10% (www.comses.net, a)." Because of the

words "lower than", I chose to use a less-than operator instead of the less-than-

or-equals-to operator which was used in the original code. Nevertheless, this is a

minor change that results in a very small difference in the number of links that are

created.

Secondly, the way in which conditions are checked in the creation of random

intra-site links was changed. In the ODD, the pairing of randomly selected traders

on the same site is described as follows: "Thirdly, randomly selected pairs of traders

on the same site are connected. More formally, a proportion of all trader pairs de-

termined by the variable proportion-intra-site-links are connected if they meet the

following requirements: both are located at the same site, the pair is not connected

yet, and neither of the traders has the maximum-degree (www.comses.net, a)." My

interpretation of this was that all conditions have to be checked after a potential pair

of traders is selected. However, this is not consistent with the source code, where

the condition of the second trader in the pair having to be located on the same site

as the other one, is a requirement for this trader to be selected in the first place. Ad-

ditionally, the other requirements are checked throughout the process, i.e. whether

the first trader has already reached the maximum degree of links is checked im-

mediately after it is selected, instead of after the second trader is selected. In my

view, the description in the ODD is ambiguous, as it does not differentiate between

conditions that have to be tested just before a link is created and requirements for

the selection of trader pairs. The explanation is phrased in a way that suggests all

conditions have to be checked simultaneously after a pair is selected. The timing

of checking conditions should not matter in this case in terms of results, it might

decrease processing time though. However, a condition being a requirement for

selection instead of a condition that is checked at the end, can make a difference,

as only a limited amount of pairs are selected every time this piece of code is looped,

so it will result in less links being created.
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Figure 6: A bar graph showing the mean clustering coefficient of all 100 iterations
per experiment of version two of the replication next to the clustering coefficient of
seed 10 of the original model, sorted by experiment number.

The data from the 34 experiments of version 2 of the replication can be found in

appendix 5. The ratio of randomly created intra-site links and links created between

mutual neighbours is skewed towards the former, as opposed to a skew towards

the latter in version 1 of the replication. The amount of randomly created intra-site

links across all experiments has increased by 10,96% and the amount of links cre-

ated between mutual neighbours has decreased by 10,23%, compared to version

1. I believe this difference is caused by the second change made in this version.

Because there are only a certain amount of pairs that are selected each time the

procedure of creating random intra-site links is run, the amount of pairs that will be

created each time will increase if one of the conditions for creation is a requirement

for the selection of trader pairs. The steps of random intra-site link creation and the

linking of mutual neighbours are looped together until the required average degree

is reached, so if the amount of links created by one of these procedures increases,

the other decreases. The same general patterns of irregularities, as compared to

the original, exist in the other network measures of version 2 as they do in version
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1. The clustering coefficient is now generally lower in the replication than in the ori-

ginal, instead of smaller. This can be clearly seen by comparing figure 6 to figure 5.

Compared to version 1, the clustering coefficient has decreased by 11,92%, but the

same outliers in clustering coefficients are still present. The extreme differences in

ware distribution data also still exist in the second version. For now, I will continue

to make changes to the network creation to make it match with the original. In par-

ticular, the creation links between mutual neighbours will be looked into, because

it’s counterpart, the pairing of randomly selected intra-site neighbours, has already

been checked and the ratio between the two is not yet in agreement with the original

model’s data.

3.3 Version 3

The third version of the replication contains a major overhaul of the pairing of mu-

tual neighbours. The source code of this version of the replication can be found in

appendix 6.

There were two ways in which the code of the previous version of the replic-

ated model differed from the original, both having to do with the selection of traders

that will be connected. The linking of mutual neighbours is described in the ODD

as follows: "[A] number of traders are selected uniformly at random; the number

of selected traders is a proportion of all trader pairs with a mutual neighbour (the

proportion is determined by the variable proportion-mutual-neighbors, and the num-

ber of trader pairs with a mutual neighbour is calculated as the equation below); if

these randomly selected traders are connected to a pair of traders on the same

site that are not connected yet and do not have the maximum-degree, then such

a pair of traders of whom the randomly selected trader is a mutual neighbour will

be connected (www.comses.net, a)." For the formula in question, see page 23. I

interpreted this section in the following manner. Firstly, select a number of traders

equal to the total amount of traders with mutual pairs times the proportion-mutual-

neighbors variable. Then, every one of these traders’ neighbours randomly selects

another one of the initially selected trader’s neighbours, until a pair is selected that

is not linked yet, are on the same site and have both not yet reached the maximum
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degree of links, in which case a link is created between this pair. A variable was

included that is used to track if a link has been created yet, so that no more than

one pair is connected per initially selected trader. This interpretation differs from the

source code of the original model in two ways. Firstly, and most importantly, in the

original code, the selection of traders is not uniform, contrary to the explanation in

the ODD. Instead, a list is created wherein each trader is added a number of times

equal to 𝑧𝑖(𝑧𝑖 − 1), from which traders are randomly chosen. In this calculation,

𝑧𝑖 is the number of connections the trader has, also called the degree of trader i.

Therefore, the selection of traders is not uniform, but weighted towards traders with

more neighbours. It should be noted that this part of the procedure in the original

code does agree with the model by Jin et al. (2001, 6) on which it is based. I later

found out that this proportional probability is described elsewhere in the ODD, in

the ’stochasticity’ section. It was not mentioned in the submodels section, where it

should be explained in detail (Grimm et al. 2006, 119). Secondly, instead of select-

ing a specific amount of traders, whose neighbours are then asked to create a link

between them, the procedure is repeated a number of times equal to this number.

Each time it is repeated a random trader from the list is selected. This way, the

same trader could be selected twice, which would not be the case if a number of

traders would be selected at once.

The data from version 3 of the replication can be found in appendix 7. Compared

to version 2, the relevant network measures are closer to the original. The amount

of randomly created intra-site links has decreased and the amount of links between

mutual neighbours has decreased. Both numbers now match the original more

closely. The percentage change of intra-site links and mutual neighbour links from

the original NetLogo model to version 3 of the replication range from -3,37% to

1,87% and -1,50% to 14,65%, which is a big outlier. For version 2, these values

were -5,32% to 9,38% and -7,30% to 21,99%. However, there still exists a clear

difference in the replication compared to the original in terms of network creation,

as can be seen by the clustering coefficient, which is now consistently higher again

in the replication instead of lower, as it was in version 1 (fig. 7). Since the intra-

site links are now fairly equal to the original, this means that another link creation
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Figure 7: A bar graph showing the mean clustering coefficient of all 100 iterations
per experiment of version three of the replication next to the clustering coefficient of
seed 10 of the original model, sorted by experiment number.

process, possibly the linking of components, distorts the clustering coefficient. In

terms of ware distribution, nothing has changed noticeably; the same massive dif-

ferences between the original and the replication exist in version 3. For version 4, I

will continue to check the network creation for faults and compare it to the original

NetLogo code.

3.4 Version 4

Version 4 of the replication includes more error fixes in the network creation. These

errors have several causes: my own blunder, an incompleteness in the ODD and

an unexpected difference between NetLogo and ReLogo primitives. In addition, an

error in the dropping of tableware was fixed. While comparing the code, an error

in the original NetLogo code was found. The source code of this version of the

replication can be found in appendix 8.

As mentioned in the last section, at this point in the replication process I was

still focused on fixing the network creation. However, while going over this code I
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coincidentally also noticed an error in the tableware distribution part of the model

that I decided to fix. During every loop, all traders drop 14% of their stock onto the

site that they’re located, which "reflects the risks involved in not immediately selling

an item on to a consumer but storing it for redistribution and represents broken or

unfashionable items" (Brughmans and Poblome 2016a). Traders store their wares

in a product and a stock variable, see the dependant variables table on page 21.

By accident, I programmed it so that traders drop 14% of their product instead of

their stock. At this point in the loop the product variable is always 0, as only after

dropping a part of their stock is the remaining stock transformed into the tradable

product variable.

While comparing the original code to the replication, I noticed the equal spacing

between production sites along the circle. This requirement is not mentioned in the

ODD, but it is mentioned in one of the papers (Brughmans and Poblome 2016a).

The code of the replication was edited to conform with the original NetLogo code.

Running the model with these previous changes to code in place resulted in

a fatal error during the setup of the network of a specific run. The alteration to the

dropping of tableware only takes effect during the trading loop, after the network has

been created, so I figured the latter alteration, the creation of equal spacing between

production sites, must have been what caused the error to occur. The error occurred

during the procedure that connects one trader per site in the circle and only occurred

during experiment 21 with the random seed 11. The error was caused because the

oneOf()ReLogo primitive, which selects one random item from a list or set of agents,

was called on an empty list, the trader_list. The trader_list is a site-specific variable

that contains all traders that are located on the site in question. It is not required by

the ODD, but I created it for ease of use. This is possible because the traders do

not move to other sites during the trading process. What this means is that there

was one site which did not have any traders assigned to it, which should not be

the case. The independent variables that dictate network creation for experiment

21 are network_structure == ’hypothesis’, equal_traders_production_site == ’false’,

traders_distribution == ’exponential’. While inspecting the corresponding code, I

noticed two faults in my code. Firstly, instead of checking whether all sites have

met their target distribution yet, it only checks the non_producer_list, i.e. all sites
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that are not production sites. I suspect this fault was caused by having copied

over this code from the procedure that dictates unequal allocation to production

sites compared to non-production sites without editing the relevant part. Secondly,

it initially distributes the traders only to non-production sites. Only after the target

distributions of the sites have been met, are traders distributed to all sites including

production sites. Because equal_traders_production_site is set to ’false’, all traders

should be distributed among all sites. Interestingly enough, when comparing the

updated replication’s code to the original, I noticed that a similar mistake is present

in the NetLogo code. In the NetLogo code, after the target distribution is met, the

remaining traders are only distributed to non-production sites. The ODD does not

mention this, so I assume this is a fault in the NetLogo code. The amount of traders

that are distributed this way is small, so this error is not of major significance. The

relevant parts of the code were fixed accordingly, and the bug that was present in the

NetLogo code was retroactively added to the creation of uniform trader distributions

as well as exponential, as the bug in the original NetLogo code was present in both

forms of network creation.

While trying to figure out what caused the previously mentioned error, a differ-

ence between the randomExponential() ReLogo primitive and NetLogo’s random-

exponential primitive was found. In MERCURY, this primitive is used to calculate

a target amount of traders a site has to obtain during network generation when an

exponentially distributed network is used. In NetLogo’s documentation, the prim-

itive is described as follows: "random-exponential reports an exponentially distrib-

uted random floating point number. It is equivalent to (- mean) * ln random-float

1.0." (ccl.northwestern.edu, b). In ReLogo’s documentation it is described in a com-

parable way: "Returns a random floating point number (exponentially distributed).

param: mean a number return: random floating point number (exponentially dis-

tributed with mean mean)" (repast.sourceforge.net, a). The similar descriptions,

combined with the fact that ReLogo is partially based on NetLogo (Ozik et al. 2013,

1560), let me to assume that these primitives would function the same way across

both platforms. In this revision, I found out that Repast’s primitive’s output was

consistently lower, and always smaller than one. Because the target distribution is

rounded up, this resulted in a target distribution of one for all sites. Not being very
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familiar with exponential distributions, I simply opted to replicate the previously cited

formula that NetLogo’s random exponential distribution primitive employs. Later, I

read up more about exponential distributions and did some more tests to compare

the two primitives, which lead me to discover that Repast’s primitive uses the in-

verse of the parameter as the mean of the distribution, while NetLogo’s uses the

parameter itself as the mean.

As to why the error was brought about by a change in the spacing between

production sites, I am not entirely certain, but my suggestion is as follows. The

site in question that did not receive any traders was a production site, which means

that with one of the previously mentioned bugs still intact, its trader count was not

checked to be higher than it’s target distribution and traders were not distributed to it

to meet its target distribution. Normally, this should cause an error in a much higher

percentage of cases, as only a few traders are randomly distributed after target

distributions have been met. However, the fault in the exponential distribution of

traders caused the target distribution of all sites to be only one, which means that all

traders, minus the number of non-production sites, i.e. 904 traders, were randomly

distributed. The chance that a production site, which until that point has not received

a trader yet, would not receive any of the 904 randomly distributed traders is quite

low. This is why the error only occurred in a very specific situation, during a run

with a specific random seed of experiment 21. The other runs of experiment 21

were not affected. Therefore, I believe that the error was not directly caused by

the change in spacing along the circle, but that this change caused the random

number generator to generate different random numbers for procedures that follow

the altered production site allocation than in the previous versions. This caused the

random distribution of the 904 traders to be different from version 3 of the replication,

which in the specific case of experiment 21 and seed 11, caused one production site

not to receive any traders.

In addition to these fixes, a local variable site_list was created for the part of

the procedure that dictates trader distribution when equal_traders_production_site

is set to ’false’. This variable contains all the sites to which no traders have been

moved yet. When equal_traders_production_site is set to ’false’, traders are dis-

tributed to sites in this list, instead of distributing them to all sites directly. For most
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Figure 8: A bar graph showing the mean clustering coefficient of all 100 iterations
per experiment of version four of the replication next to the clustering coefficient of
seed 10 of the original model, sorted by experiment number.

experiments, this makes no difference, as this list will simply contain all sites. How-

ever, this change is needed for experiments 33 and 34, the two experiments where

one production site receives 30 traders while the others receive only one. In these

experiments equal_traders_production_site is set to ’false’, but the production sites

should receive a fixed amount of traders, just not an equal number. In previous

versions of the replication, the productions sites would receive additional traders if

they had not yet reached the target distribution, which would result in a more even

distribution between the production site that initially received thirty traders and the

other ones. I believe this was not the intention of these two experiments, although

the specifics of it are not mentioned in the ODD, the source code or in the articles

(Brughmans and Poblome 2016a; Brughmans and Poblome 2016b), so I am un-

able to confirm this assumption. Excluding the production sites from the site_list

eliminates this problem.

The data from the 34 experiments of version 4 of the replication can be found in

appendix 9. Compared to version 3, the difference in clustering coefficient between
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the replication and the original model has lessened. The mean percentage change

in clustering coefficient from the original to the replication across all experiments

was 13,91% in version 3 and 11,86% in version 4. The median has changed from

3,44% in version 3 to 0,72%. This change can be clearly seen in the graphs; the

pairs of clustering coefficients in figure 8 are much closer to each other than in pre-

vious versions. However, even if the differences are quite small now, the clustering

coefficient is still consistently higher in the replication. Only six out of 34 experi-

ments have a lower clustering coefficient in the replication. Therefore, I suspect

there is still a difference between the replication and the original and I will continue

to review the network creation process for the next version. In terms of ware distri-

bution, there are still massive differences between the original and the replication,

however, the amount of experiments with a minimum distribution width of 0 has

decreased.

3.5 Version 5

For version 5 of the replication, the setup procedure was checked another time in

its totality. This resulted in a change to the creation of inter-site links, a complete

overhaul of the connect_components() procedure and a change to the creation of

random networks. The code for version 5 of the replication can be found in appendix

10.

When creating inter-site links during the second step of the network creation, it

was previously not checked whether the traders to be connected had reached their

maximum degree of links. This procedure is described in the ODD as follows: "A

proportion (determined by the variable proportion-inter-site-links) of all trader pairs

are connected if a pair is not located on the same site and is not connected yet

(www.comses.net, a)." The requirement to check for the maximum degree of links

is not mentioned in the ODD as it is in other cases, however, it could have been

assumed as the maximum degree is a universal limit. In addition to this change,

the other requirements were changed so that the pair of traders are selected for

them, instead of the requirements being checked after a pair has been selected,

but before a link is created. This change is similar to a change to the creation of
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intra-site links in version 2, with the same ambiguity in the ODD. In this case, the

timing of checking the requirements does not matter in terms of the amount of links

that are created, because the procedure is repeated until a predetermined amount

of links are created. However, the change was still made because it might decrease

run time, as this will reduce the amount of loops that have to be performed.

The connect_components() procedure of the replication was found to be entirely

incorrect. I misinterpreted the ODD and thought that the purpose of this procedure

was to link all traders that were not yet linked to other traders in order to incorpor-

ate them into the network. Because I programmed this function incorrectly, there

existed multiple clusters of traders which were not linked together. The actual pur-

pose of this procedure is to identify these separate clusters within the network, the

components, and connect them to each other so that the network consists of one

large component. A procedure was added that identifies all clusters of traders in the

network and the already existing connect_component() procedure was completely

altered so that it connects these clusters to each other instead of just the individual

traders without links. The WeakComponentClusterer algorithm from JUNG, Java

Universal Network/Graph Framework, was used to identify clusters in the network

(jung.sourceforge.net). The connect_component() procedure differs slightly from its

original NetLogo counterpart; instead of randomly selecting a site and connecting

two traders on it that belong to different components, a site is selected from a list

of sites that have traders that belong to different components on them. This greatly

reduces the amount of times the while loop has to be run, as there would be a big

chance that a randomly selected site does not have traders from different clusters

on it, in which case the while loop repeats itself.

The creation of random networks was changed to include the connecting of com-

ponents after random links are created. The ODD does not mention that the con-

nect_components() procedure has to run after a random network is created, how-

ever, it is included in the original code.

The data from the 34 experiments of version 5 of the replication can be found in

appendix 11. The average network measures of the replication are very similar to

the original’s in this version, except for the links created to connect components
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Table 4: This table shows whether the network measures of seed 10 from the ori-
ginal study (Brughmans and Poblome 2016a) are greater than or equal to the min-
imum and smaller than or equal to the maximum of the same network measures
of version 5 of the replication. Note that this does not include the first two steps of
network creation, as they always create the same amount of links in both the rep-
lication and the original. Link amounts for step three and four were not counted in
experiments with randomly created networks in the original, which results in missing
data: ’na’.

Exp. Step 3
links

Step 4
links

Step 5
links

Total
links

Avg.
degree

Clustering
coefficient

Avg. shortest
path length

1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
3 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
4 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
5 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
6 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
7 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
8 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
9 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
10 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
11 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
12 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
13 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
14 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
15 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
16 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
17 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
18 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
19 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
20 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
21 TRUE TRUE TRUE TRUE TRUE TRUE FALSE
22 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
23 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
24 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
25 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
26 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
27 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
28 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
29 na na na TRUE TRUE TRUE TRUE
31 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
32 na na na TRUE TRUE TRUE TRUE
33 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
34 na na na TRUE TRUE FALSE TRUE
35 na na na TRUE TRUE TRUE TRUE
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Figure 9: A bar graph showing the mean clustering coefficient of all 100 iterations
per experiment of version five of the replication next to the clustering coefficient of
seed 10 of the original model, sorted by experiment number.

because they can vary hugely and they’re only recorded once for every experiment

in the original study. The same outliers still exist, namely the clustering coefficients

of experiments 29, 34 and 35 and the average shortest path length of experiment

21, however, these could be the result of the same issue: their being recorded only

once in the original. If you compare the clustering coefficients of version five of the

replication (fig. 9) to the previous version (fig. 8), there does not seem to be a

big difference. I believe this is because the most important change in version five,

the overhaul of the connect_components() procedure, did not result in a significant

change in the amount of links created, since this procedure creates a small amount

of links regardless, but rather where in the network they are created. Even though

the clustering coefficient is close to the original at this point, it is still generally greater

in the replication, however the number of experiments in which it is smaller in the

experiment has risen from six to nine. Yet again, it is possible that the fact that this

measure is generally greater in the replication is due to the limited data from the

original model; the clustering coefficient was only reported for one iteration of each

experiment. At this point in the replication process the entirety of network creation
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has been checked and compared. Therefore, I will move on to a more adequate

comparison of the network measure.

There are no statistical methods to compare a distribution to a single measurement.

For that reason, I believe that the best way to test whether the network measures of

the original match with the replication’s is to check whether the original’s is higher

than or equal to theminimum and lower than or equal to themaximum of each output

measurement of the replication. The results of this test can be seen in table 3 on

page 50 and the complete table, which includes all the minima and maxima of the

network measures of the replication and the original which were used to generate

table 3, can be found in appendix 1. There are only two cases in which the original

doesn’t fall between the replication’s minimum and maximum: for the clustering

coefficient of experiment 34 and for the average shortest path length of experiment

21. The specific code which dictates network creation for the former experiment

cannot be compared to the original, as it uses ’30,1,1,1’ for traders-production-site,

which is not included in the version of MERCURY published on CoMSES Net /

OpenABM. In the latter case, the average shortest path of the original, 13,2599,

is only slightly lower than that of the replication, which ranges from a minimum of

13,3345 to a maximum of 16,3758. It is possible that this is a result of the stochastic

nature of the model; with the data available to me, it is not possible to investigate it

further.

After the completion of version 5, the network creation part of the code was

checked and compared to the original multiple times again in its totality and no

errors that could create outcomes in these experiments were found. One very minor

difference was found, which I will get to in the next section.

Since the the entirety of the network creation process has been looked into, the ware

distribution part of the code will be assessed in the next version. For comparison

with later versions of the replication, graphs of the mean distribution width and range

of version five are presented here. Both the the mean distribution width (fig. 10)

as well as the mean distribution range (fig. 11) is much lower in version five of

the replication than in the original model, as they were in previous versions. An
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Figure 10: A bar graph showing the mean distribution width of all 100 iterations per
experiment from version five of the replication next to the same measure from the
original model, sorted by experiment number.

Figure 11: A bar graph showing the mean distribution range of all 100 iterations per
experiment from version five of the replication next to the same measure from the
original model, sorted by experiment number.
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interesting pattern is that for the first twelve sets of experiments, which are pairs

of experiments with differing proportion-inter-site-links between pairs and a local-

knowledge of 0,1 or 1 within pairs (tab. 3), the median distribution width is much

lower in the experiments with a low local-knowledge. For the first eight experiments

this is so extreme that their median distribution width is only 1. In the original study,

the experiments with a high local-knowledge also show a lower distribution width

than their counterparts with a low local-knowledge, but the difference is not nearly

as extreme (Brughmans and Poblome 2016a).

3.6 Version 6

Version 6 of the replication includes changes to the selection of informants, the

determination of maximum stock size, as well as an aforementioned inconsequential

change to the creation of inter-site links. The code for version 6 of the replication

can be found in appendix 12.

Firstly, in the original model, the amount of inter-site links that are created during

network creation is a proportion of total pairs, determined by the proportion-inter-

site-links, rounded up, while in the replication, this is rounded to the nearest integer.

In practice, this does not affect the simulation at all as in all cases the fraction of

the proportion of the total amount of pairs is higher than x+0,5, and thus it is always

rounded up. Even if it would make a difference, it could only ever result in one less

link being created. Nevertheless, the replication was altered. The requirement to

round up or not is not mentioned in the ODD.

Secondly, a similar problem was detected and fixed in the code that determ-

ines the amount of informants that have to be selected when traders estimate the

price of their products. In the original code, the amount of informants to be selec-

ted is determined as the number of neighbours the trader in question has times the

local-knowledge variable, rounded up. Again, in the replication, this proportion was

rounded to its nearest integer. Rounding this fraction up can result in meaningful dif-

ferences when local-knowledge is set to 0,1; if a trader has fewer than five connec-

tions, the product of their number of connections and the local-knowledge variable

would be rounded down to 0, instead of up to 1. In the experiments with local-
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Figure 12: A bar graph showing the mean distribution width of all 100 iterations per
experiment from version six of the replication next to the same measure from the
original model, sorted by experiment number.

knowledge = 0,5, it would be rounded up regardless, and when local-knowledge =

1 there would be no rounding. Whether to round this figure up or down was men-

tioned in the ODD, although only in the ’stochasticity’ section, not in the ’submodel’

section (www.comses.net, a). According to the creators of the ODD, the ’submodel’

section should include details like this (Grimm et al. 2006, 119).

Thirdly, a change was made to the calculation of maximum stock size of traders.

In the ODD, this procedure is described as follows: "For each trader the maximum-

stock-size dependent variable is calculated as the average of the demand of the

other traders he knows commercial information of, minus his own demand, rounded"

(www.comses.net, a; emphasis mine). In the original code, it is equal to the average

demand minus the trader’s demand, rounded, as one would expect. However, the

calculation of average demand includes the demand of the trader itself. In other

words, not just the average demand of "the other traders" is used to calculate the

maximum stock size, but also of the trader in question itself. The replication was

changed to conform with the original code.
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Figure 13: A bar graph showing the mean distribution range of all 100 iterations per
experiment from version six of the replication next to the same measure from the
original model, sorted by experiment number.

The data from version 6 of the replication can be found in appendix 13. As can

be seen in figures 12 and 13, the ware distribution width and range of the replic-

ation is still consistently much lower than the original’s. However, the percentage

change of the mean distribution width has improved. On average they are -75,71%

in version six, compared to the -80,73% of version 5. In the previous versions of the

replication, in the first twelve experiments, it showed that experiments with higher

local-knowledge value had a much lower average distribution width and range than

their counterparts. In the current version the difference between these pairs of ex-

periments has grown, but, it has grown because the average distribution width of

the experiments with a local-knowledge of 0,1 has increased. This difference can

be seen by comparing figure 12 and 10. However, this change makes the internal

differences between the experiments bigger. What I mean by this is that the pairs

of experiments, number one to twelve, with alternating local-knowledge values of

0,1 and 1 now have greater differences between them. However, the one’s with

a low local-knowledge value are closer to the original. Nevertheless, all average

distribution width numbers are still extremely off. With a few exceptions, namely ex-
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periments 17, 32 and 35, the average distribution range also shows a much lower

value in the replication.

At this point, it is clear that there is still something fundamentally wrong with the

replication. The code that dictates production of wares and setting of prices has

already been checked, so the trading of wares will be looked at for the next version.

3.7 Version 7

In version 7 of the replication one very small change, with major consequences,

was made to the trading procedures. The code for version 7 of the replication can

be found in appendix 14.

During each loop, every piece of tableware is put up for trade. This process

includes a specific line that checks whether they can break even on the transaction.

If so, the item is sold, and if not, the item is stored so that his process can be repeated

during the next time step. This line includes an if-statement on whether the buyer’s

estimated price is equal to or greater than the seller’s estimated price. I made

the crucial mistake of reversing this operator, so that the trader checks whether

the buyer’s price estimation is less than their own instead. This mistake was then

repeated for the trade procedure of each tableware type; the code was copied and

only the tableware type was changed. Note that the comment after the code does

state that it should check whether the buyer’s price is greater than or equal to the

seller’s and the reverse, which means that the error was merely a very unfortunate

typo and not a misunderstanding of the model.

The data form version 7 of the replication can be found in appendix 15. As can be

seen in figures 14 and 15, both mean distribution width and range is much closer

to the original in version seven. In the previous version, the median percentage

change of average distribution width was -85,46% and in version 7 it is 0,71%. Dis-

tribution range also shows a similar huge change. In terms of average distribution

width, many experiments are now within 2% percentage change in either direction

compared to the original. There are also experiments with a greater difference in

distribution, especially in the later experiments, with the highest percentage change
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Figure 14: A bar graph showing the mean distribution width of all 100 iterations per
experiment from version seven of the replication next to the same measure from the
original model, sorted by experiment number.

Figure 15: A bar graph showing the mean distribution range of all 100 iterations per
experiment from version seven of the replication next to the same measure from the
original model, sorted by experiment number.
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being 8,33%. Experiment 26 is a major exception. It has a much higher average

distribution in the replication: a percentage change of 53,78%. This is kind of odd,

as experiment 26 does not use any extraordinary independent variable values.

This massive improvement between version 6 and 7 is, of course, very under-

standable, knowing the fundamental error that was fixed in this version of the rep-

lication. The minima, maxima, and mode still have big differences compared to the

original in many cases, but I think this is inherent to these measures, especially

the mode, which is quite useless when almost all data points in an experiment are

different.

When analysing at the data from version 7, a small problem was noticed in the

network measure data. The network measures of certain experiments that should

be the same, i.e. experiments that had the same independent variables that govern

network creation, had very small differences between them. This was not noted

before, because I was comparing the data from the replication to the original, not

data from experiments of the replication to each other. Before using more rigorous

statistical methods to compare the original to the replication, it is my aim to fix this

problem.

3.8 Version 8

Version 8 of the replication includes a fix to the aforementioned problem, an incon-

sequential change to the traders-production-site = ’30,1,1,1’ experiments, as well

as some cleaning up of the code. The code for version 8 can be found in appendix

16.

Because the experiments that share the same independent variables that de-

termine network creation also share the same random seeds, the only possible

explanation for a difference in the network measures between these experiments

is, to my knowledge, a external source that uses a different method of generating

random numbers. Looking back at the data from the previous versions of the rep-

lication, I noticed that this problem started with version 5. In this version, the new

and fixed method of connecting clusters was introduced, which uses an imported

WeakComponentClusterer algorithm from JUNG. This algorithm uses Java, a pro-
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gramming language I am not familiar with, and so I decided to contact the Repast

mailing list for help. I was advised to reimplement my own version of the algorithm

that uses LinkedHashSet instead of HashSet (sourceforge.net). As I understand

it, the WeakComponentClusterer algorithm uses a HashSet, a list of elements, as

its random number generator instead of a seed. When using HashSet, this list is

iterated unpredictably, but when using LinkedHashSet the iteration is always in the

same order. I downloaded the source code, made the suggested change and added

the class to my model. This fixed the problem at hand.

In addition to this change a minor change was made to the code that determines

the assigning of 30 traders to one site and only one trader to the others. In one of

the articles by Brughmans and Poblome (2016a), it is mentioned that production

site A should always be the one to receive 30 traders. Before version 8, the site

that was assigned more traders was chosen randomly in the replication. However,

this should not make a difference, because when exporting the data, wares types

are ordered by the amount of sites they appear on the type labels are disregarded

entirely.

The data from version 6 of the replication can be found in appendix 17. Since

the network creation process was altered slightly, the network measures should be

discussed again. Although there are differences between the network measures of

version 8 and those of versions 5 to 7, these differences are very minimal, as the

connecting of components only results in the creation of a few links. In terms of

the orignal’s network measures falling between the minimum and maximum of the

replication’s, as was tested for version five, the same exceptions exist in version 8 as

they do in versions 5 to 7; the clustering coefficient of experiment 34 and the average

shortest path length of experiment 21 of seed 10 of the original model fall outside

the ranges produced by the replicated model. Since the mean distribution width

and range has changed so little between version seven and eight, no additional

bar graphs will be presented. Instead, statistical tests will be employed as a more

rigorous form of comparison with the original model. For the sake of structure, these

tests will be discussed in the following section.
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3.9 Statistical comparison

Asmentioned in the first chapter, a model can bematched on several levels: numer-

ical, relational and distributional (Axtell et al. 1996, 135). In this thesis, distributional

equivalence is aimed for. Distributional equivalence can be shown by performing

statistical tests. Following Axtell et al. (1996) and Miodownik et al. (2010) the Mann-

Whitney U test is used compare the distributions of the data from the original and the

replication in order to determine whether this data can be said to be distributionally

equivalent. Because not all the data is normally distributed, t-tests can not be used.

The null-hypothesis of the Mann-Whitney U test is the equivalence of the distribu-

tions of both populations. Note that the point of this study is to replicate the original

model, and thus the aim is not to reject the null-hypothesis of the Mann-Whitney U

test, but to accept it. Two sets of Mann-Whitney U tests were performed to compare

the tableware distribution values of the 34 experiments: one of the average widths

of all four tableware types (tab. 5) and one of the range as defined by Brughmans

and Poblome (2016b), i.e. the maximum width across all tableware types minus

the minimum width (tab. 6). The width and ranges were chosen because both of

these statistics were used by Brughmans and Poblome (2016a) to compare the ex-

periments to the pattern found in the ICRATES data. The average of all product

types was tested as a whole instead of performing four different tests for the four

tableware types. This reduces the amount of tests that have to be analysed while

still addressing the point of the width statistic, namely, the number of products that

were dispersed. All statistical calculations were performed using jamovi, version

0.9.1.12 (www.jamovi.org).

The results of the Mann-Whitney U test of the average width can be found in table 5.

In eight cases, the p-value is higher than 0,05, and thus the null-hypothesis cannot

be rejected for the majority of the experiments. The exceptions are experiments

6, 14, 18, 26, 29, 32, 34 and 35. The Mann-Whitney U test of the range values,

shows a greater equivalence between the replication and the original. The null-

hypothesis also cannot be rejected for the majority of the experiments. In this case,

the exceptions are experiments 23, 29, 32 and 34.
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Table 5: The results of Mann-Whitney
U tests of tableware average width from
the original model versus version 8 of
the replication (n=100 for every test).

Exp. Mean
OR

Mean
RE8 statistic p

1 3,67 3,60 4271 0,068
2 3,57 3,59 4875 0,755
3 5,29 5,33 4731 0,509
4 4,95 5,01 4831 0,678
5 16,9 17,2 4504 0,225
6 14,1 14,7 4169 0,042
7 28,8 28,4 4877 0,764
8 22,9 22,7 4848 0,710
9 56,1 54,9 4363 0,120
10 42,3 42,2 4887 0,783
11 74,0 73,2 4399 0,142
12 58,8 59,3 4700 0,464
13 2,95 2,94 4954 0,909
14 12,7 13,7 3608 <,001
15 53,7 54,0 4825 0,670
16 66,5 66,3 4645 0,386
17 11,7 11,8 4833 0,683
18 35,4 38,1 3805 0,003
19 39,2 39,5 4845 0,705
20 73,6 72,9 4491 0,214
21 6,51 6,54 4798 0,622
22 35,8 36,0 4711 0,481
23 39,5 38,4 4259 0,070
24 32,2 34,1 4556 0,278
25 35,5 37,5 4536 0,257
26 37,0 56,8 1184 <,001
27 63,3 65,1 4710 0,479
28 68,2 71,1 4505 0,226
29 76,6 81,8 3793 0,003
31 20,9 22,6 4340 0,107
32 90,1 92,9 4069 0,023
33 25,6 25,4 4688 0,446
34 50,4 54,0 2043 <,001
35 88,8 91,1 2474 <,001

Table 6: The results of Mann-Whitney
U tests of tableware range values from
the original model versus version 8 of
the replication (n=100 for every test).

Exp. Mean
OR

Mean
RE8 statistic p

1 1,26 1,33 4889 0,752
2 1,21 1,29 4572 0,231
3 3,58 3,43 4579 0,294
4 3,18 2,97 4500 0,210
5 10,8 10,2 4559 0,280
6 9,98 9,61 4673 0,423
7 13,7 13,8 4934 0,873
8 12,4 12,5 4883 0,775
9 14,7 13,5 4561 0,283
10 15,0 14,6 4917 0,839
11 10,6 9,79 4553 0,274
12 12,2 10,9 4334 0,103
13 1,83 1,72 4679 0,404
14 6,83 6,77 4894 0,796
15 15,5 15,8 4789 0,607
16 13,5 12,3 4621 0,354
17 5,33 5,64 4559 0,277
18 16,4 18,0 4301 0,087
19 17,9 18,3 4899 0,805
20 13,6 12,5 4694 0,454
21 5,37 5,32 4884 0,776
22 16,7 16,9 4851 0,715
23 18,4 21,4 3981 0,013
24 34,9 33,4 4784 0,598
25 36,3 35,7 4757 0,553
26 37,6 42,9 4236 0,062
27 39,1 39,6 4956 0,914
28 39,8 38,0 4710 0,478
29 33,0 27,9 4060 0,022
31 25,9 25,9 4974 0,950
32 18,1 13,4 3860 0,005
33 52,0 49,5 4272 0,075
34 64,5 62,4 3793 0,003
35 4,88 5,15 4796 0,615
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Table 7: The results of Mann-Whitney
U tests of tableware average width
from random seeds 1-50 versus ran-
dom seeds 51-100 of the original model
by Brughmans and Poblome (2016a)
(n=50 for every test). The raw table-
ware data was shared by Tom Brugh-
mans via email (appendix 1).

Exp. Mean
1-50

Mean
51-100 statistic p

1 3,66 3,69 1175 0,599
2 3,56 3,59 1145 0,459
3 5,18 5,38 1161 0,539
4 4,82 5,09 999 0,081
5 16,5 17,2 1089 0,268
6 14,0 14,1 1216 0,814
7 28,8 28,9 1203 0,746
8 22,4 23,5 935 0,030
9 55,8 56,5 1124 0,387
10 42,4 42,2 1232 0,904
11 74,3 73,8 1177 0,617
12 58,9 58,8 1226 0,869
13 2,92 2,98 1142 0,454
14 12,5 12,9 1110 0,335
15 53,3 54,1 1150 0,490
16 65,4 67,6 924 0,025
17 11,6 11,8 1141 0,454
18 36,9 33,8 927 0,026
19 38,9 39,5 1181 0,637
20 72,2 75,0 843 0,005
21 6,58 6,45 1220 0,839
22 35,5 36,2 1105 0,317
23 39,6 39,3 1185 0,654
24 32,5 31,9 1181 0,637
25 35,8 35,1 1194 0,699
26 37,9 36,0 1107 0,324
27 64,6 61,9 1112 0,343
28 68,4 68,0 1206 0,764
29 77,2 75,9 1152 0,499
31 21,2 20,6 1131 0,414
32 91,0 89,2 1080 0,242
33 25,3 25,9 1028 0,125
34 50,1 50,6 1114 0,350
35 88,5 89,1 1116 0,355

Table 8: The results of Mann-Whitney
U tests of tableware range values from
random seeds 1-50 versus random
seeds 51-100 of the original model
by Brughmans and Poblome (2016a)
(n=50 for every test). The raw table-
ware data was shared by Tom Brugh-
mans via email (appendix 1).

Exp. Mean
1-50

Mean
51-100 statistic p

1 1,22 1,30 1160 0,478
2 1,12 1,30 1084 0,186
3 3,68 3,48 1154 0,502
4 3,08 3,28 1147 0,468
5 10,5 11,1 1176 0,609
6 10,1 9,90 1231 0,898
7 13,1 14,4 1079 0,237
8 12,2 12,7 1192 0,691
9 14,1 15,2 1141 0,452
10 14,2 15,9 1079 0,239
11 9,92 11,3 1059 0,188
12 12,2 12,2 1182 0,641
13 1,78 1,88 1164 0,528
14 6,38 7,28 1024 0,118
15 16,0 14,9 1154 0,507
16 13,5 13,4 1214 0,806
17 5,08 5,58 1058 0,181
18 16,6 16,2 1179 0,624
19 17,4 18,5 1139 0,446
20 13,2 13,9 1152 0,499
21 5,24 5,50 1105 0,314
22 16,4 17,0 1154 0,507
23 18,5 18,3 1237 0,931
24 34,5 35,4 1199 0,728
25 35,9 36,7 1232 0,904
26 36,0 39,2 1079 0,238
27 37,1 41,2 1033 0,135
28 38,1 41,6 1109 0,333
29 30,8 35,3 1071 0,217
31 25,5 26,2 1207 0,769
32 15,5 20,6 1030 0,129
33 52,0 52,1 1246 0,981
34 65,1 63,9 1140 0,447
35 4,80 4,96 1212 0,791
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After finding that the distributions of the range and average width cannot be

said to be drawn from the same population in all cases, the code of the replication

was checked and compared to the original several times again. However, no more

differences were found that could have any impact on the results of the model. This

raises the question: what causes the discrepancy between the original model and

the final version of the replication?

Before attempting to answer this question, I wanted to test whether the Mann-

Whitney U tests are a proper way of testing the difference between the replication

and the original. A similar set of tests as above was performed, but this time only

data from the original model was used. This data was grouped by random seeds

1 to 50 and 51 to 100. The pairs of experiments of the average distribution width

show that four experiments, 8, 16, 18 and 20, appear to be drawn from statistically

different distributions (tab. 7). This suggests that average distribution width might

not be an adequate variable for testing whether the replication is statistically equi-

valent to the original. This is not the case for the Mann-Whitney U tests of range

values; the null-hypothesis cannot be rejected in any case (tab. 8).

3.10 Discussion

Returning to the issue of what could cause the discrepancy between the original

model and the final version of the replication, one possibility is that there are dif-

ferences between the original and the replication that were not noticed when the

models were compared. I do not find this explanation satisfactory, as the model

was checked multiple times throughout the replication process and again after the

statistical tests of replication version 8. Another possibility is that original model

whose output data was used in the papers by Brughmans and Poblome (2016a;

2016b) are not the same as the model from which the source code and ODD was

published (www.comses.net, a). It can be said for a fact that there is at least one

difference between the two because in supplement 1 of the JASSS paper (Brugh-

mans and Poblome 2016a), a transport-cost variable is mentioned, which was only

used in experiment 30. This experiment was not discussed in the paper and no
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such variable can be found in the ODD or the source code. In a correspondence

with Brughmans (appendix 19), he told me that he did some experimenting with

this variable for publication elsewhere but that this version of the model was not

yet documented. I therefore assume that the model published online is otherwise

identical to the one discussed in both papers and that the transport-cost entry in

the supplement table was an artefact of this test version. A third possibility is that

the discrepancies in output data are due to inherent differences between the Net-

Logo and Repast Simphony ABM toolkits. Bajracharya and Duboz (2013) mod-

elled a simple epidemiological model in three ABM toolkits, NetLogo, Repast and

Cormas, and compared the results. They found that "the agent-based platforms

did not give the similar simulation results for the same model with the same set of

experiments", stating differences in scheduling, list sorting and shuffling mechan-

isms as possible causes (Bajracharya and Duboz 2013, 5). With this in mind, it is

interesting to note that experiments with random network structures appear to be

overrepresented among the experiments that have a statistically significant distri-

bution difference between the original and the replication. In the sets of tests of the

range values, three of the four experiments with a statistically significant distribu-

tion difference are experiments with random network structures. In the set of tests

of the width averages, this number is four out of eight. Note that experiments with

random network structures only make up four out of the 34 experiments. Were the

differences between the output data of the replication and the original model caused

by differences in how the toolkits that were used handles the random selection of

agents from a list? Attempting to answer this question goes beyond the scope of

this thesis, but it should certainly be considered as a possibility.

Experiment 26 is still an anomaly: it has a percentage change in average distri-

bution width from the original to version 8 of the replication of 53,82%, which is far

greater than the second highest percentage change of all the other experiments.

Since this experiment does not use any extraordinary independent variable values

(see tab. 3), I do not believe that this deviation can be explained by differing ABM

toolkits. It is possible that the independent variables used for experiment 26 do not

match with the original.
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In summary, the replication process has shown several causes of discrepancies

between the various versions of the replicated model and the original. The ODD

was imprecise in several regards. A recurring issue was the timing of checking re-

quirements for link creation between traders. The ODD was written in a manner that

led me to believe that randomly selected pairs of traders should be selected if they

meet certain requirements, but in the original model, pairs of traders that are to be

linked are selected for using said requirements. This seemingly small distinction led

to differences in the network of traders. In other cases, the ODD was either missing

some details, details were included in the wrong section or different sections of the

ODD contradicted each other. However, not all differences between the replication

and the original were due to inaccuracies in the ODD. My own inexperience with

coding, let to a bug in the trading procedures with major consequences for the ware

distribution. However, in the end the replication was for the most part successful, as

distributional equivalence was shown for the majority of experiments. My broader

criticisms of the MERCURY model, as they were formed during the replication pro-

cess, will be presented in the next chapter.
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4 Critiques of MERCURY

A chapter on critiques of MERCURY might seem unrelated to to the main topic

of replication of the model, but checking model verification, which many of these

critiques fall under, is an important part of replication in agent-based modelling (Wi-

lensky and Rand 2007). Besides, forming my critiques was only possible by enga-

ging deeply with MERCURY, through the process of replication. Before discussing

my own critiques, I would like address an existing response to the MERCURYmodel

by Van Oyen (2017) and a subsequent reply by the original creators of the model,

Brughmans and Poblome (2017).

4.1 Existing critiques of MERCURY

Van Oyen (2017, 1356-1357) describes agent-based modelling, with its need for

rigidly defined variables, as being fundamentally modernist. In addition, she states

that the MERCURYmodel in particular contains modernist elements, such as profit-

seeking behaviour, the lack of a spatial dimension of ’markets’ and a divide between

the social, i.e. the sharing of information between traders, and the economic, i.e.

the ability to trade (Van Oyen 2017, 1357-1358). She questions whether a model

such as Bang’s (2008), which she describes as primitivist, can ever be found to be

more likely to be correct than a modernist one, such as Temin’s (2012), using these

inherently modernist methods. Van Oyen (2017, 1358) proposed several potential

changes to the model, which might even out the playing field, namely: an emphasis

on social bonds over profit, creating additional dependencies between variables

in order to lessen to divide between the social and the economic, and adding a

spatial dimension to ’markets’. She goes on to say that different objects, tableware

in this case, behave according to different logic, taking issue with the universalising
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of commodities. This qualitative difference between objects is not addressed by

the quantitative nature of Brughmans and Poblome’s (2016a; 2016b) research (Van

Oyen 2017, 1359-1360). Lastly, she discusses whether the emergence of different,

specialised, trader agents is a possible avenue for MERCURY, such as is observed

in Roman agricultural storage facilities (Van Oyen 2017, 1360-1361).

In a short response to Van Oyen, Brughmans and Poblome (2017) state that

they believe agent-based modelling can indeed result in support for primitivist hy-

potheses. They explain that agent-based modelling was developed to address past

arguments against equation-based modelling, such as the absence of heterogen-

eity of modelled objects and assumptions of global knowledge and profit maxim-

isation, arguments which Van Oyen makes in regard to agent-based modelling.

Brughmans and Poblome agree with Van Oyen’s arguments regarding the need

for multiple agent types and the importance of debating agent-based modelling and

its assumptions.

Although I agree with Brughmans and Poblome’s (2017) argument that agent-based

modelling does not have inherently modernist assumptions and that it can be used

to support primitivist hypotheses, the code of MERCURY does explicitly contain

the modernist assumption of profit maximisation. As discussed in the previous two

chapters, whenever agents trade, theymathematically compare whether the buyer’s

estimated price of a product is equal to or higher than the seller’s; if it is they trade

and if it’s not the seller stocks the product for the next loop (www.comses.net, a).

This is also specifically mentioned by Van Oyen (2017, 1357), but not addressed

by Brughmans and Poblome’s (2017). However, I do not share Van Oyen’s con-

cern that support for Bang’s (2008) Roman bazaar model might not be able to arise

from the MERCURY model because of this, and other, modernist assumptions. I

believe that Bang’s bazaar model should not be seen in such black-and-white terms

as ’primitivist’ or ’modernist’. Bang (2008, 28-29) himself has issues with how the

debate on ancient economies is so restricted to the primitivist and modernist con-

cepts. He does not disagree with the importance of the market in the Roman em-

pire, with which I assume him to imply the existence of a profit maximising mindset

among traders, but he rejects the notion that the Roman economy was comparable
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to modern market economies in terms of the availability of information and network

integration (Bang 2008, 4-5; 35; 137-139; 295). Therefore, I believe the assumption

of profit maximisation in MERCURY is not at odds with Bang’s bazaar model and

that Brughmans and Poblome’s (2016a; 2016b) representation of Bang’s model is

valid in this regard. Van Oyen’s other criticisms of the MERCURY model, namely

the lack of a spatial dimension and the point regarding multiplicity of agents, are,

in my view, valid. It should be noted that the lack of a spatial dimension in MER-

CURY’s network is likely to be addressed in a future publication, as an extension,

which includes a transport-cost variable that could remedy this issue, was published

online (www.comses.net, b).

4.2 New critiques of Brughmans and Poblome’s research

This section contains my own critiques of Brughmans and Poblome’s (2016a;

2016b) research, concerning both theMERCURYmodel itself and how it reflects the

differences between Bang (2008) and Temin’s (2012) models, as well as the con-

clusions that are drawn from the data. I will also suggest ways in which MERCURY

can be modified in the future.

Firstly, I would like to address the role that commercial information plays in

the model. The availability of commercial information is represented by the local-

knowledge variable, which determines the proportion of other traders one trader

is connected to from which they know their demand and supply (Brughmans and

Poblome 2016a). However, this information is only used in setting a trader’s price

estimate and maximum stock size. It is not used for determining how much table-

ware is produced each time step. When producing new tableware, traders on pro-

duction sites check if their total amount of products combined is less than their own

demand, and if it is, they produce to meet their demand. This process is solely

based on the trader’s own demand and does not take into account the demand of

other traders from which it has obtained commercial information. Why the use of

commercial information available to traders is limited in this way is not explained

by the authors. It would be logical for traders to use information about demand

amongst their peers to determine how much production is needed. It is possible
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that the fact that the average demand amongst informants is not used to determine

production was intended to be a reflection of the poverty of information across re-

gional boundaries, but this is not discussed by the authors. As a minor side-note,

Brughmans and Poblome (2016a) describe that with a local-knowledge value of 0,1,

traders receive commercial information from 10% of their neighbours. In practice,

this is not accurate. The average amount of links each trader has is roughly 4,5,

and because the amount of neighbours a trader receives information from is roun-

ded up, to a minimum of one, the average amount of informants each trader has is,

in actuality, closer to 22%.

Secondly, the way in which the creation of the network is limited to a maximum

number of links, misrepresents the differences in integration between markets in

Bang (2008) and Temin’s (2012) models. When the network is being formed, first

inter-site links are created and afterwards, links are created between traders on the

same site until a certain average number of links per trader, the average degree,

is reached. In the experiments performed by Brughmans and Poblome (2016a),

the average degree is constant throughout all of them. This means that, regardless

of the independent variables that are used, each experiment has approximately

the same degree of connections between traders. The integration between mar-

kets differs depending on how many inter-site links are created. However, because

the amounts of links that are created is limited, increasing the amount of inter-site

links decreases the amount of intra-site links on the same site, as acknowledged

by Brughmans and Poblome (2016a). Note that, for the sake of this argument, I

count links between mutual neighbours as ’intra-site links’ because they are also

links between traders on the same site. If the amount of inter-site links that will be

created is higher, representing Temin’s model, inter-site integration will be higher,

but intra-site integration will be lower. While it is true that in Temin’s (2012) model

market integration across the Roman empire is high, at least compared to Bang’s

(2008) model, this does not necessarily mean integration was low on a local scale,

and, as far as I can tell, this is not suggested by Temin (2012). By representing

Temin’s model in this way, this model is favoured, because traders have a much

higher chance to sell tableware to buyers on other sites as the ratio of potential

buyers is skewed higher towards traders on other sites than traders on the same
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site as the seller. This would not be the case if intra-site links are created first, until

a certain average degree is reached, before connecting traders on different sites.

Thirdly, the range calculations do not tell the whole story. In Brughmans and

Poblome’s (2016a; 2016b) papers, the range of distribution is calculated as the

number of sites on which the ware with the widest distribution is deposited minus

the number of sites on which the ware with the lowest distribution width is depos-

ited. Brughmans and Poblome (2016b, 403) use this calculation of range values to

claim Temin’s model is closer to the archaeologically observed pattern than Bang’s

model: "Only high proportions of inter-site links, representing a high integration of

markets (as argued by Temin 2013), have the potential to give rise to the archae-

ologically observed differences in the width of tableware distributions." However, if

instead the percentage difference between the pair of sites with the highest and low-

est distribution width is used, this conclusion does not completely hold up. When

using an absolute difference, you favour experiments with a higher overall width.

Considering that the simulation and its output data cannot directly equate to the ar-

chaeological data, I believe looking at the percentage difference between tableware

distribution width is at least as useful, if not more so, than simply looking at the ab-

solute difference between the two. Another criticism one could make of Brughmans

and Poblome’s (2016a; 2016b) distribution range calculations is that it only takes

into account the tableware types that are located on the most and least amount of

sites. The pattern of interest is of "one product being much more widely distributed

than the three other products" (Brughmans and Poblome 2016a). If only the least

and most widely distributed tableware types are used to determine the range of dis-

tribution, this pattern could be falsely identified. An extreme example would be if

two hypothetical experiments produced average product widths of 100, 95, 90, 10

and 100, 20, 15, 10. Using Brughmans and Poblome’s (2016a; 2016b) range of

distribution calculations, both ranges would be equal even though the distribution

patterns are completely different, the latter one being much closer to the archae-

ologically observed one. Such extreme cases do not occur in the papers, and the

average product width of all products is included in all tables for comparison with

the desired pattern, but many, if not most, experiments do show a gradual decrease

in width from the most to least widely distributed wares, instead of the desired high
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Table 9: A comparison of range values of experiments 1 to 12 as calculated by
Brughmans and Poblome (2016a), by percentage difference between the most and
least widely distributed product, the most minus the second most widely distributed
product and the percentage difference between the most and second most widely
distributed product.

Exp. local-
knowledge

proportion-
inter-site-
links

Range:
original

Range:
percentage
difference

Range:
1st-2nd

Range:
perc. diff.
1st & 2nd

1 0,1 0 1,26 33,12% 0,49 11,91%
2 1 0 1,21 32,38% 0,53 13,21%
3 0,1 0,0001 3,58 64,14% 1,58 23,78%
4 1 0,0001 3,18 60,79% 1,35 21,73%
5 0,1 0,0006 10,81 64,20% 3,96 19,18%
6 1 0,0006 9,98 70,83% 3,41 19,19%
7 0,1 0,001 13,72 48,68% 4,82 14,78%
8 1 0,001 12,42 54,35% 4,56 16,94%
9 0,1 0,002 14,68 26,78% 4,36 7,17%
10 1 0,002 15,02 36,44% 4,98 10,50%
11 0,1 0,003 10,62 14,42% 3,88 5,00%
12 1 0,003 12,16 21,03% 3,80 6,06%

difference between the most widely distributed wares and all the others. If the de-

sired pattern is that one tableware type is much more widely distributed than the

rest, comparing the most widely and second most widely distributed wares would

be a better way to identify said pattern in the simulated data.

Tables 9 and 10 contain the results of experiments on which Brughmans and

Poblome (2016a; 2016b) base their preference of Temin’s model over Bang’s, in

regards to distribution range. Three extra measures of range were added: the per-

centage difference between the distribution width of the most and least widely dis-

tributed wares, the distribution width of the most minus the second most widely dis-

tributed wares and the percentage difference between the distribution width of the

most and secod most widely distributed wares. Percentage difference is calculated

as follows:
|𝑤𝑖𝑑𝑡ℎ𝑎 − 𝑤𝑖𝑑𝑡ℎ𝑏|

𝑤𝑖𝑑𝑡ℎ𝑎+𝑤𝑖𝑑𝑡ℎ𝑏
2

×100%

In the first table, pairs of experiments with varying local-knowledge and

proportion-inter-site-links values are compared. When looking at the range values

as defined by Brughmans and Poblome and the absolute range between the most
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and second most widely distributed wares, the second highest proportion-inter-site-

links value, 0,002, produces the highest tableware ranges. If the percentage dif-

ference is used, a much lower value, 0,0001 and 0,0006, produces the highest

difference, depending on which tableware types are compared. The second table

contains the results of experiments with differing proportion proportion-inter-site-

links and maximum-demand values. These experiments all share the fact that the

number of traders on production sites is not fixed. Again, these experiments show

that increasing proportion-inter-site-links results in greater range differences using

the original calculation. However, all other methods of calculation range show that

experiment 24, an experiment with a relatively low proportion-inter-site-links com-

pared to the other experiments, has the highest distribution range. This contradicts

Brughmans and Poblome’s (2016b, 405) findings about the importance of market

integration.

Fourthly, the limited variation between experiments performed weakens Brugh-

mans and Poblome’s (2016a; 2016b) conclusions. As previously discussed, the

only input settings that produce results similar to the pattern perceived in the archae-

ological data is when the amount of traders on production sites is set to 30 traders on

one site and only one on the remaining three. In Brughmans and Poblome’s (2016a)

words: "The pattern observed in the archaeological data (i.e. that one product is

significantly more widely distributed and the difference in distribution width between

this product and the least widely distributed product (range) is high) was only re-

produced in scenarios where one production centre has far more traders than any

other production centre and the number of inter-site links is high (proportion-inter-

site-links 0.001) (see experiments 33 and 34)." The problem with this statement is

that a highly unequal trader distribution among production sites was only tested in

combination with a high proportion-inter-site-link value and with a randomly created

network, which also results in a high amount of inter-site links. To properly make

conclusions regarding the validity of Bang (2008) and Temin’s (2012) models using

MERCURY, varying proportion-inter-site-link values should be tried in combination

with the aforementioned trader distribution. This is what I aim to do in the next

section of this chapter.

Lastly, the scenarios of highly unequal trader distributions among production
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sites bring with them problems of differences in production quantity. In MERCURY,

during each time step, all traders on production site ’produce’ tableware of the type

corresponding to the production site they are on if the amount of products they own

is less than their individual demand value. If one production site has thirty traders

on it, while the others only have one trader on them, naturally the former production

site’s tableware type will be produced significantly more often. This is shortly ac-

knowledged by Brughmans and Poblome (Brughmans and Poblome 2016a;2016b,

404), but I believe it deserves more attention. When one product type is produced

much more often, it has the potential to flood across the network quicker than the

other product types. While this might be an accurate reflection of the historical real-

ity, you are not investigating the influence of network structure on tableware distri-

butions at this point, but rather the differences in production quantity. This could be

counteracted by altering MERCURY in a way that limits the amount of product that’s

produced, for example, by setting a limit to the amount of traders on a production

site that can produce each time step, perhaps in combination with making the dif-

ference in the amount of traders on production sites slightly less extreme. It should

also be mentioned that the precise numbers used, 30 traders to one production site

and one to the others, are not justified by (Brughmans and Poblome 2016a). No

reason is given for why this extreme difference would be more reflective of the ar-

chaeological reality than the exponential distribution to all sites, including production

sites, that is used in other experiments.

4.3 Additional experiments and their results

In the previous section, I make the argument that by not performing experiments

using varied proportion-inter-site-link values in combination with a highly unequal

trader distribution among production sites, Brughmans and Poblome’s (2016a;

2016b) conclusion that their research supports Temin’s (2012) model over Bang’s

(2008) is less strong. Therefore, new experiments using these values were per-

formed. These experiments were performed with the replicated version of MER-

CURY, because the ’30,1,1,1’ option is not available in the published version of

MERCURY (www.comses.net, a). For these experiments, both the original way of

75



calculating the range of distribution is used, as well as by percentage difference

between least and most widely distributed products, the most widely distributed

product minus the second most widely distributed product and the percentage dif-

ference between the most widely distributed product and the second most widely

distributed product (tab. 11). The complete output data of these experiments can be

found in appendix 18. No changes to the code of MERCURY were made, only the

input variables were altered, so most criticisms discussed in the previous section

still apply to these experiments.

The data from the new experiments conforms to Brughmans and Poblome’s

(2016a; 2016b) conclusions in part: increasing integration between sites results in

more widely distributed products. In this regard, these experiments show further

support for Temin’s (2012) hypothesis. The original range calculation and the range

calculation of the most widely minus the secondmost widely distributed product also

suggest the experiments with the two highest proportion-inter-site-links values are

closer to the archaeologically observed pattern, although the difference between

these two experiments is marginal. However, similar to the results in tables 9 and

10, when assessing the range of distributions as a percentage difference, ranges

peak at proportion-inter-site-links values of 0,0006 and 0,001 (tab. 11, experiments

38 and 33), depending on whether the most and least widely or most and second

most widely distributed wares are compared. Regardless of the original or the new

ways of calculating range of distribution is used, extremely small degrees of market

integration (tab. 11, experiments 36 and 37) produce very small distribution ranges.

If range distributions peak at a certain degree of market integration, one could ask

the question: which values of proportion-inter-site-links correspond to Bang’s (2008)

and Temin’s (2012) models? It would be difficult, if not impossible, to map specific

values to non-numerical conceptual models. One could still make the argument that

these new experiments support Temin’s (2012) hypothesis over Bang’s (2008), es-

pecially in regards to overall distribution width, but when taking into account ranges

of distribution, Brughmans and Poblome’s (2016a) claim that "the emphasis on lim-

ited market integration in Bang’s model is highly unlikely" becomes less clear-cut.

In summary, the MERCURYmodel and the papers based on it, while innovative and
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interesting, can be criticised from various angles. In the past, Van Oyen (2017) has

criticised the model mainly on a theoretical ground, arguing that it has a modernist

bias, and that its lack of a spatial dimension and variability of traders and traded

objects contradicts the archaeological reality. My own critique is mainly methodolo-

gical, focusing on the details of the model and the way the data is interpreted. These

critiques include: the inconsistent use of information by traders, the way in which

the network of traders is created fundamentally favouring one hypothesis over the

other, the limited number of experiments that were performed using an input vari-

able that most resemble the archaeological data, and that this input variable which

leads to a close resemblance to the archaeological reality causes massive inequal-

ity in production which counteracts the analysis of the network structure. Another

criticism, and arguably the strongest one, is that the distribution ranges calculated

in the original study do not properly help us identify the pattern as it is found in the

archaeological data. Brughmans and Poblome’s (2016a; 2016b) conclusion that

Temin’s (2012) hypothesis is strongly favoured over Bang’s (2008), using the data

from the MERCURY model, does not totally hold up using newly presented ways

of calculating the range of distribution and using new data created in additional ex-

periments with the replicated version of MERCURY. I hope criticisms such as these

can help improve the MERCURY model in the future.
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5 Discussion

In this chapter, I want to discuss how the replication of MERCURY presented in this

thesis compares with other published replication studies in terms of methodology

and results. Unfortunately, many replication studies are quite brief. They often only

present a short overview of the replication process, before going into the results of

the replication. The various versions and problems encountered along the way are

mostly not written about. As a result, only a selection of replication studies which

yielded interesting comparisons will be discussed here.

The often cited study by Axtell et al. (1996) introduced the replication standards

of numerical identity, distributional equivalence and relational alignment. However,

even though these standards, which are used in many replication studies, were

introduced in this study, its methodology is not one of a traditional replication study.

The method used by Axtell et al. (1996) is ’model alignment’, also called ’docking’,

which has been described as "an alternative method of replication" (Romanowska

2015b, 182). Instead of implementing a new version of the model that is to be

replicated, two models that are similar in many ways are chosen, and one of them

is altered to produce the same results as the other one. The aim of this method is

to show if two models that concern phenomena can produce the same outcomes

(Axtell et al. 1996, 124), and as such it does not entirely match the aims of other

replication studies, including this one. Axtell et al. (1996, 135) chose to test for

distributional equivalence, which was shown for eleven out of the twelve data sets

they produced (Axtell et al. 1996, 128-131). The authors believe that this difference

is caused by the fact that a specific procedure of the model that was altered, was

left unchanged. Axtell et al. (1996) are not very clear on whether their study counts

as a ’successful’ docking attempt, considering not all data sets were found to be
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distributionally equivalent. Miodownik et al. (2010) also report that some of the data

sets from their replication can not be matched statistically with the original, providing

mixed support for distributional equivalence. In this way, these two studies are

similar to my experience; the majority of experiments are distributionally equivalent

to their original counterparts, but not all. The ABM community does not seem to

have clear established definitions of when a replication is ’successful’ as a whole.

In a study by Donkin et al. (2017), two replications were made in two different

ABM platforms: NetLogo and Repast Simphony, using Java. This is not the only

way in which this study differs from my own; Donkin et al. (2017) were missing a

lot of information, only the description in the original paper (Potting et al. 2005) was

available. As part of their replication study, an ODD was created based on their in-

terpretation of the description in said paper. They concluded that all three models,

the two replicated versions and the original model, could not be matched with each

other on any of the three levels proposed by Axtell et al. (1996). It should not be

a surprise that the differences between the original and the two replications were

caused by a lack of information about the original model. However, the differences

between the two replicated models are noteworthy, especially in the context of this

thesis. Donkin et al. (2017, 150), concluded that this was likely caused by inherent

differences between the programming languages; Java is a low-level language and

thus requires more manual defining of processes. Note that Donkin et al. (2017)

used the Java programming language instead of Groovy and ReLogo, which were

used in this thesis, so this situation is not entirely equivalent. However, this does

bolster the claim that different programming languages can produce significant dif-

ferences in replicated models, as was already shown by Bajracharya and Duboz

(2013), and might be the cause of the discrepancies between MERCURY and the

final version of my replication.

In a conference report about their replication of an economic agent-basedmodel,

Legendi and Gulyas (2012) talk about how they isolated and verified specific parts of

themodel separately. I foundmyself doing the same thing, by first trying tomatch the

network creation before moving on to the production and trade parts of MERCURY.

I believe this is a useful technique, as it allows one to exclude parts of the model

when seeking the issues in the code, which speeds up the replication process. This
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approach might not always be possible, but if it is, I recommend others to follow this

procedure.

Edmonds and Hales (2002) published a replication study wherein each author

created a replication of a model independent of each other in different programming

languages, and compared the three resulting data sets, one from the original and

two from the replications. Although no reference is made to the standards by Axtell

et al. (1996), their methodology can be described as seeking distributional equival-

ence, i.e. statistical tests are used to determine whether the results can be said

to be from the same distribution or not. Edmonds and Hales (2002), among other

things, found that in the original model a certain unwanted bias existed when se-

lecting agents that was not explained in the model’s description. By implementing

the model twice, they were easily able to identify that this was a fault of the ori-

ginal model instead of their replication. Edmonds and Hales’ (2002) approach of a

double replication, by separate authors, is very advantageous. I believe that if the

MERCURYmodel were to be replicated twice, the possibility of discrepancies being

caused by differences in the programming languages could be resolved, although

this would not necessarily be dependent there being two separate model authors.

Small differences in the code producing noticeable disparities in the output data

was not only apparent in Edmonds and Hales’ (2002) study, but also inWilensky and

Rand’s (2007) research. In this study, issues of timing, misrepresentations of the

original model description and whether certain lists were shuffled or not caused stat-

istically noticeable discrepancies between the original and the replication. Similar

issues were found in my replication study, especially in the network creation pro-

cess, as described in chapter three. This once again shows that very precise model

descriptions are necessary, as even slight differences can result in substantive dis-

parity between the replication and the original model. It also provides a greater

insight into the hidden assumptions of the model. After a replication attempt, the

original authors might go back and alter their model if they find that these hidden

assumptions are not valid.

Statements regarding the importance of publishing detailed descriptions of

agent-based models and sufficient output data to test for equivalence are ubiquit-

ous in replication studies (Axtell et al. 1996, 135; Donkin et al. 2017; Edmonds and
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Hales 2002; Wilensky and Rand 2007). Insufficient comparison data and model

descriptions was also a slight issue in this study, although in general the ODD pro-

tocol (Grimm et al. 2006; Grimm et al. 2010) has remedied this problem to a major

extent. It should be noted that this issue also prevails in other computational sub-

fields of archaeology. The fact that in his paper about replication of computational

archaeological research, Marwick (2017, 445) points out that the publishing of data

is relatively prevalent for ABM studies is very telling, in my view.

I want to end this chapter by providing suggestions to researchers who publish ABM

studies and those who wish to engage in replication studies. It has already been

mentioned, but I want to stress again the importance of publishing the data and re-

sources required for replication. When choosing an agent-based model to replicate,

I went through many papers that either did not include a link to their source code

at all, or the link was dead. In fact, the papers about MERCURY were some of the

only ones that included a working link to the source code of their model. CoMSES /

OpenABM provides a service where anyone can upload their models free of charge,

which I suggest researches to use. Perhaps it should be customary to include a se-

cure hash, cryptographic code that can be used to determine if two files are the

same, so readers can be sure the version of the model that was published is the

same as the one that was used to write the paper. Output data too should be pub-

lished in its entirety. If no data, or only summary statistics of the output data, is

released a replication can never be confirmed to be equivalent on the distributional

level, as this requires statistical comparison of the output data. Of course, Brugh-

mans was kind enough to share this data (appendix 1), but ideally, it should be

included as a supplement. Related to this is the explanation of the model in the

ODD. The ODD was designed to facilitate replication, and as such it should include

a very detailed explanation of the model’s processes. If even some small details

are missed by the person performing the replication, either because they were not

included or because they were in the incorrect section of the ODD, this can result in

great differences in the output of the model. As for advice for those who are replicat-

ing models, I will actually go against a standard that was discussed in chapter one,

namely the requirement to use a different toolkit or programming languages when
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replicating. It is true that in an ideal situation, one should use a different ABM toolkit

and/or language to perform a replication, as specific toolkits can unknowingly intro-

duce bias for a conceptual model that is being modelled, which could be revealed

by replication using a different toolkit. However, in practice, actually confirming that

differences between the replication and the original data is a result of the difference

in the toolkit that is used is very difficult, as this would require intricate knowledge

of both toolkits. It might not even be possible if the software in question is not open-

source. If the same toolkit is used, all the other ways in which replication is useful,

such as confirming the accuracy of the ODD and aiding in model verification and

validation, still apply; only one potential source of bias is ignored. Using the same

toolkit also has an advantage: when using the same ABM toolkit, of the same ver-

sion, and the same random seed values, barring any minor externalities, one can

make sure that any differences in the output are due to a difference in the code

alone, which might have its origin in inaccuracies in the ODD or bugs in the code,

either in the original or the replication.
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6 Conclusions

The specific purpose of this study was to replicate the MERCURY model in order to

check whether the published description of the model is accurate and the results are

not reliant on local conditions. The research questions, defined in the first chapter,

will be addressed here.

The first research question was as follows: Can an independent replication of

the MERCURY model match the results presented by Brughmans and Poblome

(2016a) on a distributional level, as defined by Axtell et al (1996)? Distributional

equivalence can be shown by statistically comparing the output data of the replic-

ation and the original. Both the average distribution width of all four product types

(tab. 5) and the range of distribution (tab. 6) was tested using Mann-Whitney U

tests. As shown in chapter three, section eight, distributional equivalence between

the original and the final version of the replication can be shown for a majority of the

experiments for both sets of statistical tests. Exceptions do exist; the difference in

distribution is statistically significant for the average width in eight out of 34 exper-

iments and in four out of 34 for the tests of distribution range. However, it should

be noted that the former test might not be completely appropriate, as it also shows

statistically significant differences within the same experiments of the original, when

they are subdivided by random seed (tab. 7). There are no guidelines as to what

proportion of replicated data sets have to statistically conform with the original in

order for the replication as a whole to be labelled distributionally equivalent (Axtell

et al. 1996), and as such I conclude that my data provides partial support distribu-

tional equivalence.

The second research question goes deeper into the specifics of replication pro-

cess: Can this replication be performed based solely on the description in the ODD,

and if not, what are the shortcomings of the ODD? Although the explanation in the
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ODD was crucial in this replication attempt, there were definitely points where it

fell short. The lack of specificity in the ODD caused several errors along the way.

Some of these were only minor, but others caused greater dissimilarities. One way

in which the ODD was unclear, was how the requirements for creating links worked.

In multiple cases in the code, the requirements were used to select the traders which

would be linked, instead of selecting traders and then checking if they meet the re-

quirements for link creation. The details of this were not adequately explained in the

ODD and a literal interpretation would suggest the latter way was used. In certain

cases, specifics about submodels were not explained in the appropriate section.

In another case, descriptions in the submodel section contradicted a description

elsewhere; for the connecting mutual neighbours, in the submodel section it was

mentioned that the initially selected traders were selected uniformly, while in the

’stochasticity’ section the selection was explained as proportional to the amount of

neighbours each trader has. Even though I had read the ODD in its entirety, while

coding I mostly used the descriptions in the submodel section as a guide, as this

section should include a detailed explanation of the submodels, which resulted in

differences with the original model. Statistical tests were only made for the final

version of the replication, as there existed a great error in the code that skewed the

results too much for statistical tests to be meaningful, so the exact influence of each

of these errors caused by inaccuracies in the ODD, or my interpretation of it, was

not determined. However, some of these errors influenced network creation to a

great amount, so I believe it is safe to assume that they would have also influenced

ware distribution.

The third research question concerns what might have caused differences

between the replication and the original: If the models cannot be matched, what

causes the differences between them? The causes for differences in the earlier

versions of the replication have been explained above. Even though the majority of

experiments are distributionally equivalent to the original, there also existed differ-

ences between the original and the final version of the replication. As explained in

chapter three, section nine, I believe there are multiple possible causes for these

differences. Firstly, the existence of errors in the replication that were not noticed

by me when reviewing it. Secondly, the slight possibility of differences between the
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model as published and the one which was used in the papers by Brughmans and

Poblome, or for experiment 26, differences in independent variable values. And

thirdly, inherent differences between the ABM toolkits used, which might cause dif-

ferences in output data, as has been shown in the past.

The fourth question pertains to my critiques of MERCURY:What consequences,

if any, will this replication attempt have on the original study by Brughmans and

Poblome (2016a; 2016b)? As discussed in chapter four, through the process of

replication, I engaged with the model on a detailed level, which resulted in several

methodological criticisms. These included: the inconsistent application of commer-

cial information by traders, the hypothesised network inherently favouring Temin’s

(2012) hypothesis over Bang’s (2008), the fact that the range calculations employed

by Brughmans and Poblome are not able to properly visualise the sought after dis-

tribution pattern, the limited amount of experiments performed with the network vari-

able that resulted in a tableware distribution close to the archaeological data, and

that the unequal distribution of traders among production sites causes great dispar-

ities in production quantity. Alternative ways of calculating range distribution were

created, which, in addition to new experiments, resulted in data that did not clearly

support Temin’s (2012) hypothesis over Bang’s (2008).

The final research question deals with the relation of my replication study to

other one’s: How does this replication of MERCURY compare to other replication

studies? Some issues of replication found by others also arose in this study. De-

fining what passes as a ’successful’ replication has not been clearly defined in the

ABM community. As such, when some data sets can be matched statistically while

others cannot, there is no consensus on whether this counts as ’successful’. An-

other common issue is that minor assumptions made in the technical aspects of

the model, related to timing or agent selection, can result in significant differences

between the replicated model and the original. This problem is often caused by

imprecise model descriptions, which was also the case in this study.

By replicating a single model, and comparing my results with other replication

studies, I hope to have shown the importance of replication in a broad context.

Through replication of agent-based models, researchers cannot only find discrep-
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ancies between the description of a model and the way in which it is actually coded,

but also errors in the source code, and in my view, more importantly, it allows us to

critically engage with the model and critique it on the validation and verification level.

Because of these reasons, I believe replicating agent-based models is crucial, both

within the field of archaeology as outside of it.
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Abstract

This thesis concerns the importance of replication studies in agent-basedmodelling,

specifically in the field of archaeology. As a case study, the MERCURY model by

Brughmans and Poblome is replicated.

In the first chapter, a background is given to ABM in general, as well as to replic-

ation and its importance and scarcity. Replication allows us to confirm the findings

of existing ABM models, or reject them.

The second chapter gives an abstract of Brughmans and Poblome’s research.

It includes the archaeological background to their research, a precise description of

the MERCURY model and a summary of Brughmans and Poblome’s conclusions.

In chapter three, the process of replicating MERCURY is explained. Each ver-

sion of the replication is described in great detail. This final version is statistically

compared to the original model. The replication was found to be, for the most part,

statistically equivalent to the original. The source of the despondencies between the

various versions of the replication and the original model were due to inaccuracies

in the description of the model as well as due to my own coding mistakes.

Chapter four includes a brief discussion of existing criticism of the MERCURY

model, as well as my own critiques. These critiques are mostly concern the details

of the model and the way the authors interpreted their data. Additional experiments

are performed to complement the experiments in the original study. I conclude that

some of the issues I identify could weaken the original authors’ conclusions.

The relation of my replication of MERCURY to other replication studies is dis-

cussed in chapter five.

The final chapter my research questions are answered. I also shortly discuss

how my experiences with replication could help future researches who want to pub-

lish agent-based models or replication studies.
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