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Abstract

Fabry-Perot cavities are generally used in cavity QED. Due to technical
restraints it is prudent to evaluate the ability to create open micro cavities

in the weakly coupled regime. We have focussed on building the
foundation for the weakly coupled cavity by charactarizing a

macroscopic cavity in detail. We analyse the cavity effects, for the
fundamental and higher order modes. Using the primary mode of a

plane-curved mirror cavity we found the Free Spectral Range in multiple
ways, and looking at transmission spectra as a function of wavelenght we

found a spectrum of transmission peaks with a predictable mode
ordering. Thus the cavity was found to be consistent with theory. The
system has been improved upon by presenting an extensive model for

modematching. The model is capable of determining the coupling
efficiency after introducing a lens with any focal length and possible

position. With the model we were able to find a setup configurations with
near unity coupling efficiency to the fundamental mode of the cavity.
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Chapter 1
Introduction

Optical cavities are devices build to enhance the electromagnetic field.
Comparable with a tuning fork for acoustical systems, the optical cav-
ity allows for resonance at specific frequencies [1]. Starting from the past
decade a shift has occurred in the creation of optical cavities from building
cavities not as macroscopic devices, towards shrinking them down to the
microscopic regime to generate additional quantum effects [2]. This shift
has been crucial in the development of several theories, having spawned
an entire field of its own: cavity Quantum Electro Dynamics QED.
Using the cavity to trap light and place an atom inside allows to create a
system where the atom is coupled to the vaccuumfield generating a stable
system [1]. This generates a strongly coupled system of exciting physical
effects, but it also has some limitations, namely that is is very hard to im-
plement.

At this moment we are potentially standing on the verge of renewed inno-
vation. In the field of cavity QED very stable systems have been made, but
these systems come at a cost. The generation of integrated micro cavities is
a difficult and labor intensive process, while the process degrades the co-
herence of the quantum dot. This motivates us re-evaluate open cavities.
Specifically the open cavities with an exceptionally small mode volume
Open micro cavities are easier to produce and, thanks to advances in the
production of high quality micro mirrors. The possibility to shrink down
the modevolume to the micro level allows us to increase the Purcell factor.
An atom in a cavity experiences emission, the emitted photon when re-
flected by the mirrors, is able to interact with the photon itself. This allows
us to couple the spontaneous emission of any atom in the cavity to the
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8 Introduction

cavity modes, increasing the amount the atom decay rate by the Purcell
factor (FP)[3].

In this thesis we will focus on building a strong foundation for such an
open microcavity. In chapter 2 we will discuss the theory for the stability
and transmission of the plane concave Fabry-Perot cavity, and we evaluate
the energy distribution of multiple stable modes and how to evaluate the
overlap of an incoming beam with the cavity mode.
In chapter 3 we will discuss the setup used to measure different aspects of
the cavity transmission and how we evaluate data. In chapter 4 the results
of the easiest form of the setup are discussed. The setup with a collimated
beam. These results are compared with theory for consistency. In chapter
5 we show an in depth analysis of the ability to improve the system by
matching incoming beams to the cavity fundamental mode using lenses.
A very effective method to strengthen cavity effects on the Gaussian mode
of a cavity. After this the thesis will be discussed and an outlook will be
reviewed.

8
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Chapter 2
The basics of the Fabry-Perot
interferometer

A cavity in its most basic sense is a pair of mirrors between which a photon
can be captured for a period of time [4]. The Fabry-Perot Instrument has
properties which allowed late nineteenth century physicists to distinguish
between different wavelengths of light. In a Fabry-Perot system light is
transmitted through a mirror and consequently reflected between the mir-
rors multiple times, effectively bouncing around. Light entering the sys-
tem obtains a repeating reflection pattern for specific cavity parameters.
This is when light after a certain number of reflections regains its initial
state, making a roundtrip. When such a roundtrip is made the light is able
to interfere with itself. It can be so that the light accumulates a π phase dif-
ference such that the light destructively interferes after a roundtrip reduc-
ing the transmission through the system. Alternatively when a 2π phase is
accumulated after a roundtrip the light will constructively interfere with
itself which will result in maximal transmission. In this chapter we will
discuss the stable transmission patterns or modes [5].

2.1 Basic properties of the Fabry-Perot Cavity

Let us consider a simplified example of a one dimensional Fabry-Perot.
This can be seen as a pair of perfectly flat mirrors set up parallel to each
other separated by a distance d, with a beam of light entering the system
perpendicular to the mirrors. The light is partially reflected and partially
transmitted, a process which is repeated at the second mirror.
This results in a transmission coefficient which adds the contribution of
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10 The basics of the Fabry-Perot interferometer

the beam which is transmitted by the first mirror and transmitted by the
second mirror after an arbitrary number of internal reflections:

Ttot = |t1(1 + r1r2ei 2π
λ d + (r1r2ei 2π

λ d)2 + (r1r2ei 2π
λ d)3 + ...)t2|2,

where t1,2 and r1,2 are the transmission and reflection coefficients of mirror
1 and 2 and the exponentials describe the accumulated phase for a beam
with wavelength λ after a 2d propagation. Adding the incoming wave and
all contributions of reflections, and using the geometric series to simplify
the series of contributions, we obtain a total transmission of:

Ttot =
Tmax

1 + F sin2(Φ
2 )

, (2.1)

Here Tmax is the maximum transmission scalar, for the lossless case this is
equal to one. F is the coefficient finesse:

F =
4R

(1− R)2 ,

The finesse dictates the sharpness of transmission peaks. Here R is the ra-
tio of light which is reflected by the mirrors assuming equally reflecting
mirrors. The coefficient of finesse is defined as the ratio of the distance
between peaks and the width of those peaks. The presented finesse equa-
tion assumes lossless mirrors. A large coefficient of finesse contributes to
a high quality cavity [5].
In ?? the parameter Φ is the accumulated phase within a roundtrip.

Φ =
4πd

λ
,

From the phase accumulation we can find the last important parameter of
the Fabry-Perot, the Free Spectral Range (FSR). A cavity mode does not
have a single constructively interfering solution but rather a set of evenly
spaced transmission peaks separated by a frequency coinciding with a 2π
phase accumulation in the mode. The FSR is defined as the frequency
spacing of the transmission peaks, or the frequency shift needed to tune
the cavity to the next transmission peak. The FSR can be defined as a
frequency shift or a change in wavelength:

λFSR =
λ2

2d
νFSR =

c
2d

,

10
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2.1 Basic properties of the Fabry-Perot Cavity 11

The FSR assumes a fixed mirror separation. Changing the mirror separa-
tion changes the modes. Changing the mirror separation also results in a
periodic transmission curve similar to the curve obtained when changing
the frequency. Often the laser wavelength is adjusted to change the FSR
instead of adjusting the mirror separation when tuning the cavity as mod-
ulating a laser on the nanometer scale is, in our setup, much easier then
tuning a physical setup of two mirrors on the nanometer scale.
In Figure 2.1 we show a simulation of the transmission as a function of
wavelength, for a cavity with a finesse of 155. The FSR and FWHM have
been labelled.

FSR

FWHM

Figure 2.1: Simulation of the transmission ratio of the cavity as a function of
wavelength for a cavity with a finesse of 155. The transmission ratio is the trans-
mitted light over the maximum transmitted light. The distance between the peaks
is labelled as the Free Spectral Range (FSR) and the Full Width Half Maximum
(FWHM) is labelled as well.

Fabry-Perot with rays and the stability criterion

Light in a Fabry-Perot can be thought of in two ways. Light waves de-
scribes as a beam or light waves described as a ray. Beams consider the
diffraction of light at large distances and phase shifts which represents
physical light better then rays. Because of this we will use the beam repre-
sentation when analysing obtained data in this thesis, however to obtain
a basic understanding of a cavity we will shortly discuss resonance effects
with rays. A ray is an idealized model of light. It is non divergent, and
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12 The basics of the Fabry-Perot interferometer

is perpendicular to the wavefront of the light it describes [6]. Rays sim-
plify the Fabry-Perot considerably making them ideal for discussing the
stability criterion.
Cavities are build to trap light. Initially, it is easy to think of two parallel
plane mirrors with a perpendicular ray bouncing back and forward be-
tween the two, however this is physically impossible to create. The small-
est deviation in incident angle is enough to make the system unstable. To
create a stable cavity will use a cavity with a single plane mirror and a
concave mirror. The general idea is that the ray gets redirected with every
reflection on the curved mirror to counteract the wandering of the beam,
for stable solutions this will generate a closed path for which after a cer-
tain number of reflections the system repeats itself. This creates a reflection
pattern for which a few examples can be seen in figure 2.2. The propaga-
tion path of the beam can be approximated using ray transfer matrices [5].
In order to use ray transfer matrices we must assume the reflection angle
on the mirrors to be small (paraxial approximation). We can trace the ray
to model the reflection pattern inside a cavity. In figure 2.2 simulations
for different mirror separations are shown with a cavity with R = 300 mm.
This leads us to a restriction for the cavity. If the distance between the
mirrors becomes too large the ray will wander off into infinity on the x-
y plane, making the system unstable. We find the condition for which a
cavity is stable to be [7]:

0 < 1− d
R
≤ 1,

where d is the distance between the mirrors and R the curvature of the
curved mirror. From this we find that the cavity is stable if d < R. For
the simulations in figure 2.2 we used raytracing. To do this we defined a
position of the ray as its location transverse to propagation and its angle
with the propagation axis. We can manipulate the ray using ray tracing
matrices which allow us to either propagate, diffract or reflect the beam.
The simulations in figure 2.2 has been made by injecting a ray 1 cm off-
centre. Depending on the mirror separation we can see very different so-
lutions in the number of reflections fore a round-trip. Later we will see the
connection to the wave-optical character of the cavity modes. A correctly
reproduced effect of this method is the change in the FSR’s dependence on
mirror separation (d). The 2d in this equation stands for the propagation
distance of the ray, when the ray reflects more often traversing the cavity
one additional time for every reflection, the FSR becomes a multiple of the
basic FSR. This highlights the importance of directing a light source on
centre on the cavity.

12

Version of October 30, 2019– Created October 30, 2019 - 14:03



2.2 Fabry-Perot with beams and Transverse cavity modes 13

d = 1 mm d = 15 cm

d = 20 cm d = 29.9 cm

Figure 2.2: Simulations of a cavity with a plane and curved mirror for several
mirror distances. In each case the curved mirror has a curvature of 300 mm. The
ray enters the system perpendicular to the plane mirror 1 cm above the midpoint.
The ray has been modelled using ABCD matrices. The curvature of the mirrors
is less visible in the d = 15 cm and d = 20 cm case due to scale, the d = 2.99 cm
mirrors are drawn 5 times as big to compensate for diffraction.

2.2 Fabry-Perot with beams and Transverse cav-
ity modes

Fabry-Perot with rays provides a nice toy model for visualizing the effects
of mirror curvature and stability. In order to build a working cavity in the
lab we should advance to a model for light which represents a physical
system, light as a beam. Beams have several effects that need to be taken
into account when characterizing a cavity, which are not present in ray
optics. Examples are the diffraction of light, the Gouy phase shift, and the
focussing of a beam. In the next section we’ll provide a compact explana-
tion of the stable cavity modes which resonate with the beam, and discuss
the properties of the fundamental mode. The fundamental mode, or the
Gaussian mode, is the lowest order solution of the wave equation inside
a cavity. It is the most common form of beam as it is the most useful for
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14 The basics of the Fabry-Perot interferometer

cavity effects and is the easiest to work with. The fundamental mode has
a Gaussian energy distribution in the transverse plane. The width of this
Gaussian will either converge or diverge as the beam propagates toward
or away from the focus. See the following equation for an exact descrip-
tion of the mode:

E(ρ, z) =E0
ω0

w(z)
e
− ρ2

w2(z) e−ikz+i kρ2

2R(z)−i tan−1( z
z0
),

Here ρ is the distance to propagation axis (z axis), k is the wavenumber
of the light, w0 is the beam waist which is defined at z = 0. This point is
defined to be the focus of the beam. R(z) and w(z) are the wavefront cur-
vature and beam width respectively at location z. Lastly, z0 is the Rayleigh
range, or the position for which w(z0) =

√
2w0. This is often seen as the

location from where the divergence of the beam becomes notable and it is
a useful constant to work with for any collimated beam.
We can describe all quantities in the Gaussian mode as a function of the
Rayleigh range and position. Doing so results in the following equations:

w(z) = ω0

√
1 +

z2

z2
0

R(z) = z +
z2

0
z

z0 =
kω2

0
2

,

We show a visual representation of a Gaussian beam and its parameters in
figure 2.3. The diffraction of the beam is clearly visible. A peculiar effect
shows up when looking at high values of z. When we measure far enough
away from the focus, when z >> z0, we find that the width of the beam
grows like w(z) ∝ z. From the definition of the Rayleigh range it follows
that the beam waist shrinks as the Rayleigh range becomes smaller. These
effects tell us that small Rayleigh ranges allow for very strong focussing,
but have the drawback of letting the beam diverge very fast.

The fundamental mode can be modelled to a physical cavity by fitting the
curvature of the Gaussian function to the curvature of the mirrors. At
the beam waist the curvature of the wavefront is zero: R(z = 0) = 0.
Thus, we define the waist of the beam at the flat mirror. The radius of the
fundamental cavity modes’ wavefront at z = d we define as the curved
mirror radius (R): R(d) = R. Using the previously found parameters we
can find the Rayleigh range of our cavity:

z0 =
√

d(R(d)− d) =
√

d(R− d),

14
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2.2 Fabry-Perot with beams and Transverse cavity modes 15

Figure 2.3: A visual representation of a Gaussian beam. The black lines show the
outline of the beam with the narrowest part at z=0. As ‖z‖ grows the beam broad-
ens. When z is large enough this will happen linearly with z. The curved lines
represent the growing wavefront radius at larger z. Colors indicate a growing
beam curvature as the distance from the waist grows.
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Figure 2.4: A model of the
cavity parameters’ width as a
function of mirror separation.
Blue line: The Rayleigh range.
Green line: Beam waist. Red
line: Beam width at z = d.

As we have discussed, all parameters for the fundamental mode can be
modelled using the Rayleigh range and the distance to the focus. With
the equalities given we can calculate the curvature of the beam wavefront
and the beam width for any location, regardless of mirror separation or
curvature of the curved mirror, assuming a stable resonator. Using these
properties we are able to predict the behaviour of the cavity for any poten-
tial setup regardless of its scale. Figure 2.4 shows the results for a cavity
with curved mirror radius R = 300 mm, over mirror separations from zero
to the stability limit: d = R. We evaluate the Rayleigh range for this sys-
tem, the beam waist, and the beam width of the beam at the curved mirror
(z = d), for a beam with a wavelength of 950 nm.
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16 The basics of the Fabry-Perot interferometer

2.3 Higher order modes

The Gaussian mode is the lowest order stable solution for a cavity, but it
is not the only possible solution. As is visible in figure 2.2, a multitude
of reflection patterns can provide a stable solution for which a repeating
roundtrip can be made, this is also the case for wider beams. The intensity
pattern does not have to be Gaussian in these solutions. For example, for
the Hermite-Gauss modes, commonly derived in Cartesian coordinates,
the intensity pattern at the beam waist can be described as the product of
two Hermite polynomials, one for each dimension transverse the propa-
gation axis. This intensity pattern will propagate similarly to the funda-
mental mode, diffracting in the same way. For a propagating higher order
Gaussian beam, we obtain an electric field distribution as follows:

E(x, y, z)m,n =E0
ω0

w(z)
Hn(x)

√
2x

w(z)
e
− x2

w2(z) Hm(y)
√

2y
w(z)

e
− y2

w2(z)×

e−ikzei k(x2+y2)
2R(z) e−i(1+n+m)tan−1( z

z0
),

Where Hn(z) is the n’th order Hermite polynomial:

Hn(x) =(−1)nex2 dn

dxn e−x2
,

Hm(z) is identical to Hn(z) but corresponds to the HG mode in the y di-
rection. This combination of Hermite polynomials with a Gaussian distri-
bution produces the Hermite-Gaussian (HG) modes. Each HG mode has
an order. A higher order means a higher complexity. The mode number
is equal to the sum of the modes for the Hermite polynomials: N = n + m.
Measuring the intensity pattern of the laser we obtain patterns as shown
in figure 2.5. By inspection of the modes, it is clear that the mode order
in a specific dimension is equal to the amount of nodes in the intensity
pattern [4]. Similarly, we obtain a family of higher-order modes when
looking for solutions of the wave equation in cylindrical coordinates: the
Laguerre-Gauss modes [8].

E(ρ, φ, z)l,p =
1

w(z)

√
2p!

π(|l|+ p)
(

√
2r

w(z)
)2+|l|L|l|p (z)×

e
−ρ2

w(z)2 e−ik ρ2

2R(z) e−i|l|φe−i(1+2p+|l|)tan−1( z
z0
)

L|l|p (z) =
x|−l|ex

n!
dn

dxn (e
−xxn+α),

16
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2.4 Coupling light into a cavity 17

a) HG modes b) LG modes

Figure 2.5: a) A family of Hermite-Gaussian modes. mode number m from 0 to 3
from left to right,
mode number n from 0 to 3 from top to bottom b) A family of Laguerre-Gaussian
modes. mode number l from 0 to 3 from left to right,
mode number ρ from 0 to 3 from top to bottom. Pictures from Guido Stam

Here we have indices ρ for the radial mode number, and l for the az-
imuthal part. L|l|p is the Laguerre polynomial. When we plot different or-
der modes we obtain the solutions shown in figure 2.5b. In contrast to the
Hermite Gaussian modes we obtain the mode number for the Laguerre-
Gaussian modes as N = 2p + |l|.

Theoretically LG modes describe systems with perfect rotational symme-
try, however in practice obtained modes often are superpositions of multi-
ple solutions[9]. Another option is a superposition of multiple LG modes.
In systems with small astigmatisms in their rotational symmetry, the ±l
can be distinct from each other. This degeneracy breaks symmetries be-
tween the two modes generating different field distributions which be-
come superimposed with each other (figure 2.6). The superposition will
generate a well defined axis for the lobes [10]. The generated pattern is
called a cloverleaf pattern.

2.4 Coupling light into a cavity

We are able to improve the transmission of the cavity by coupling the light
mode to the mode of the cavity. A Cavity will let through a very exact
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18 The basics of the Fabry-Perot interferometer

Figure 2.6: A superposition of two LG modes. In certain systems the contribu-
tions of the l contributions to the LG mode do not equal those of the -l distribu-
tions. In these cases superpositions occur generating clover patterns.

shape of light based on its parameters and filter all light which does not fit
the cavity mode.
When coupling a source to a Gaussian cavity mode a Gaussian source is
the most efficient. Examples of Gaussian sources are good lasers, or light
coupled through a single mode fiber. The light beam will then need to
have the same properties as the fundamental cavity mode, such as a beam
width, location dependent curvature, and Rayleigh range. To maximize
transmission through the cavity these parameters should be equal for the
beam mode and the cavity mode at any point in space. Therefor the prop-
agation axis of both modes should overlap, as should the curvature and
width overlap at any point on that shared axis. This overlap can be quan-
tified using the overlap integral [11]:

η =
|
∫

E∗1(z)E2(z)dA|2∫
|E∗1(z)E1(z)|dA

∫
|E∗2(z)E2(z)|dA

,

The overlap integral describes the overlap intensity of the Gaussian func-
tions of the cavity (E1(x, y, z)) and the beam (E2(x, y, z)) in the x-y plane
at a location on the z axis. The expression is normalized to be bounded
between zero and one for no overlap and full overlap respectively. The

18
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2.4 Coupling light into a cavity 19

outcome theoretically corresponds to the ratio of intensity which is trans-
mitted through the cavity. This equation only holds for symmetrical and
lossless cavities.
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Chapter 3
The setup

3.1 Setup layout and equipment

We use a setup built around a half symmetric empty cavity. The cavity
consist of 2 mirrors with 98% reflectivity for 950 nm light. We use a plane
mirror and a mirror with a curvature of 300 mm. In figure 3.1 a schemati-
cal representation of the setup is shown. Vertical dimensions has not been
taken into account in the figure as it does not have any effect on the mea-
surements, but for completeness it is useful to note that the microscope
objective is mounted at a height of 8 cm and the cavity is at a height of 10
cm.
The cavity is built on a tunable stage giving us the option to adjust the
mirror distance between 1 mm and 15 mm giving us a large tuning range.
We use two methods of observation behind the cavity. A photodiode is
used to measure the transmission strength at points in a scan. It also al-
lows us to lock the laser to a specific intensity. A beamprofiler is used
to gain insight on the properties on a beam on different locations in the
setup. To do this a lock is necessary thus the signal is split by a beamsplit-
ter to be measured simultaneously. We have connected the laser output
directly to a commercial Fabry-Perot interferometer (FPI). This is used to
check if the laser remains stable through its scan range. The lens is added
to match the modes of the incoming beam to that of the cavity. We will go
into more detail on this later on. We collimate the light from the fiber with
a microscope objective. The microscope objective is used as a very strong
lens with a working distance of 1.2 mm. This allows us change the beam
collimation properties with very little to no effect on the distances of the
setup. Initially we have attempted to collimate the beam as much as pos-
sible and have succeeded in keeping the beam parallel (non convergent)
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22 The setup

Figure 3.1: Graphical repre-
sentation of the setup. Red
lines depict open laser beams,
and yellow wires correspond
to fiber coupled objects. Red
detectors are photo-diodes
and the green detector is the
RayCi beamprofiler. Height
differences between objects is
ignored.

for multiple meters.

In order to accurately measure the beamprofiles we use a Toptica lockbox.
We do not use the full capabilities of the lockbox, what we use is a single
PID controller capable of applying a feedback signal to the laser to account
for mechanical drift in our system. Thermal noise is still present in the
system.

The lockbox allows the system to account for small mirror fluctuations
by tuning the lasers’ wavelength to fit the altered cavity mode. Assuming
a strong enough signal, when the mirrors drift, the peaks will shift, and by
tuning the laser wavelength we can make sure the transmission intensity
remains constant. We call this locking to a mode. Using this method we
can lock to a mode for several minutes, as opposed to the seconds it takes
to lose the mode without locking, allowing us to accurately measure the
beamprofile using the RayCi CCD camera. We use the most straightfor-
ward method of locking, the side-of-fringe method. This method does not
lock on the peak of a mode, but to a side of a peak. This makes locking eas-
ier as small deviations will generate large differences in the transmission
and also makes the direction of drift visible. When locking to the top of
the peak both drift directions make the cavity transmission smaller, mak-
ing it hard to distinguish whether the cavity distance shrinks or grows.
This caveat can be counteracted by using the Pound Dremer Hall method,
which should still be implemented. The drawback of using the side of
fringe method is that we have to work with lower transmission coefficients
and need a higher finesse as overlap between modes becomes a larger is-
sue. For our goals these issues are minor, and we have encountered no
necessity for improvement as of the moment of writing.

22
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3.2 The laser properties and limitations 23

3.2 The laser properties and limitations

We use a DL pro scannable laser with a mechanical range of 915 to 985 nm.
The laser has been tuned to operate at a wavelength of 938 nm. Attached
to the laser is a SC 110 from Toptica photonics which allows us to control
the wavelength, by applying voltage to an internal piezo element to mod-
ify an internal grating in the laser. We use other Toptica modules allowing
us to control the temperature and intensity, and a module that provides
feedback such that we can lock the laser to the cavity.
Despite the laser being tunable over a 70nm range, this is larger then our
effective scanrange. When scanning over a range of piezovoltages the laser
mode can change affecting both the output wavelength and the output in-
tensity unpredictably. To visualize this effect, and to calibrate our laser to
a single mode, we place the photodetector in front of the cavity to measure
the beam directly after collimation, and look at the signal of a commercial
Fabry-Perot interferometer with a FSR of 4GHz see figure 3.1. In figure 3.2
the erratic behaviour of the laser is shown when tuned incorrectly.

a) b)

Figure 3.2: a) Blue line: The laser output before the cavity as a function of time.
Erratic behaviour is caused by modejumps that need to be suppressed. Green
line: Piezovoltage as a function of time. b) Blue line: The transmission of the fiber
coupled Fabry-Perot over time. Equidistant peaks are expected when functioning
on a single mode, the subpeaks indicate sudden a shift in frequency in the laser.
Green line: Piezovoltage as a function of time.

To surpress these signals we have applied a feedforward which ma-
nipulates the intensity of the laser to keep it to a single mode. The total
output intensity was decreased to stabilize the lasermode, this results in
the stable output as seen in figure 3.3

From these measurements we find that we can scan accurately between
piezo voltages of 20V and 70V giving us quite a large scan range. From the
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24 The setup

a) b)

Figure 3.3: fig a) Blue line: The laser output before the cavity as a function of time.
No modehops are detected Green line: Piezovoltage as a function of time. fig b)
Blue line: The transmission of the fiber coupled Fabry-Perot over time. Equidis-
tant peaks are obtained indicating the laser is scanning over a single mode for
piezo voltages under 70V Green line: Piezovoltage as a function of time.

Fabry-Perot measurement we find that between 32V and 67V the FPI has
4 peaks, with a FSR of 4 GHz for the FPI we find that a single volt corre-
sponds to a 0.46 GHz frequency shift. This gives us a scanrange of 23 GHz.

In 3.3 we can see the laser intensity diminishing when the piezovoltage
rises. This effect is suboptimal, however it is predictable and can be ac-
counted for during measurements.

24
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Chapter 4
The setup without lens

In this chapter we will be evaluating and discussing the measurement ob-
tained when illuminating the cavity with a nearly collimated beam. A col-
limated beam does not allow for optimal matching of the modes between
beam and cavity. In our set up we have measured a coupling efficiency
of 0.075 for the fundamental mode. With this coupling we obtain a high
enough signal to noise ratio to evaluate the transmission spectrum for LG
modes. The advantage of using a collimated beam over a beam matched
to the fundamental mode is that higher order modes are not suppressed,
as coupling to a specific mode suppresses the other modes. This will allow
us to more easily analyse the transmission spectrum within a free spectral
range. To fully characterize the current setup we evaluate the signal of the
four different inputs discussed in the previous chapter. The photodiode
signal allow for the evaluation of the modes and the FSR through measur-
ing the transmission spectrum through the cavity. The beampofiler will be
used to evaluate the shape and size of various modes. The FPI and pre-
cavity measurements will be used for quality control and normalization.

4.1 Analysing a Free Spectral Range

We verify the quality of the cavity by evaluating the transmission spec-
trum within a free spectral range and the ordering of the modes within it.
We must make sure the cavity transmission is dominated by cavity modes
of a high quality and not by direct transmission, or overlapping modes
due to low finesse. We present the transmission of the cavity as a function
of the tuning piezo element voltage in figure 4.1.
We have obtained a set of narrow peaks with nearly equally spaced. The
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26 The setup without lens

Figure 4.1: Cavity transmission as a function of the piezovoltage.. The signal is
the total intensity of the beam. blue curve: cavity signal. green curve: Fabry-Perot
Interferometer (FPI) signal

narrow peaks as opposed to the peak separation indicate a high qual-
ity cavity. Additionally we find a modehop-free laser input by noticing
equally spaced transmission peaks of the FPI.. We further evaluate the
spectrum by locking to prominent peaks to find the corresponding modes.
We have locked onto the highest intensity peak and the 6 peaks to its
right. The peak locations and corresponding modes are shown in figure
4.2. Checking with the theory for higher order modes we find that the
modes to correspond the modes in the cloverleaf LG-modes discussed in
chapter two. The modes have been labelled with their LG mode num-
ber. We find the mode ordering to coincide nicely with the predicted or-
der as shown in table 4.1. The equal spacing of the cavity modes and the

N 0 1 2 3 4 5 6
ρ 0 0 1 1 2 2 3
l 0 1 0 1 0 1 0

Table 4.1: N = 2ρ + |l|, ρ is the radial order, l is the azimuthal order

agreement with the predicted mode ordering shows that the cavity oper-
ates well without dominating systematic errors [9]. We have searched for
higher order modes for l > 1 but we have not been able to identify any of
these modes. It is expected that these modes don’t have a sufficient signal
to noise ration to be detected. We conclude that we have found stable and
predictable cavity modes using our system.

26
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4.1 Analysing a Free Spectral Range 27

a) ρ = 0, l = 0 b) ρ = 0, l = 1

c) ρ = 1, l = 0 d) ρ = 1, l = 1

e) ρ = 2, l = 0 f) ρ = 2, l = 1

g) ρ = 3, l = 0 h) The transmission over laser frequency.

Figure 4.2: a-g) show the beam profiles of different peaks in the cavity spectrum.
The peaks are locked to the side of the intensity peak on the positive side. each
mode has its TEMρ,l denotation shown below it. h) shows the peaks locked onto.
Arrows indicate the peak locations and refer to the modes. The peaks seem to
nicely fit the 2ρ + |l|modes.
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28 The setup without lens

4.2 Characterizing the cavity parameters

In this section we will evaluate the cavity parameters of our setup. We
have used to mehods to determine the cavity mirror spacing. First we
evaluated the FSR, and secondly we measured the beam properties of the
fundamental mode behind the cavity. By comparing the two results and
the estimated mirror separation we can deduce all relevant parameters.

4.2.1 Evaluating the Free Spectral Range

For the evaluation of the FSR of the system we obtain the data presented
in figure 4.3. In these figures we show the transmission spectrum of the
cavity over an estimated 1.5 FSR. This spectrum contains two fundamental
modes. The mode strenght is largely effected by fluctuations in laser inten-
sity as discussed in chapter 3. These peaks are separated by the physical
FSR and can be used to find the exact value of the FSR in the frequency
domain. To do this we compare the separation between the fundamental
to the peak separation between the FPI peaks as the FPI is known to have
a FSR of 4GHz. Inspection of the FPI peaks reveal the frequency detuning
of the laser to be non linear as the piezo voltage is tuned. Figure 4.4 shows
the dependence of the frequency detuning as a function of the piezo volt-
age. We have found a second order polynomial to fit the detuning nicely.
After conversion the peak separation is consistent within 0.1GHz. Result-
ing in the graphs shown in figure 4.5, where we find the free spectral range
to be 14.1 ± 0.1 GHz for both measurements.
Using the theory presented in chapter 2 we this corresponds to a mirror
separation of 1.065 cm. This is in agreement with the measured mirror
separation of 1 cm.

To solidify the conclusion of us having found the FSR we evaluate the di-
minishing peak intensity we normalize the transmission strength with the
intensity of the laser. This is done solely for the second measurement as
the laser intensity nears zero for the first measurement generating instabil-
ities in the laser intensity around the low intensity fundamental mode, and
corresponding higher order modes as is visible in the presented figures by
the missing higher order modes. Figure 4.6 shows the normalization of
the second measurement which has generated a nearly perfectly repeating
transmission profile at a detuning of 14.1 GHz. Small fluctuations are still
present due to high frequency laser fluctuations, and thermal fluctuations.
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4.2 Characterizing the cavity parameters 29
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Figure 4.3: Two measurements of the cavity transmission spectrum. The blue
curves show the transmission spectrum of the cavity over more then a FSR, show-
ing two fundamental modes. The green curves show the transmission of the FPI.
The distance between the FPI peaks is 4 GHz.
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Figure 4.4: Models of the frequency detuning as a function of the piezo voltage
for two measurements. The black points correspond to piezo voltages where FPI
peaks are found as a function of detuning from the first peak for each measure-
ment and the second order polynomial fit is shown with the red line. The second
order polynomial fit is used to convert the piezo voltage to the frequency (∆ν)
detuning from the left most FPI peak.
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30 The setup without lens
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Second measurement

Figure 4.5: Two measurements of the cavity transmission spectrum (blue curve)
and the external FPI spectrum (green curve). The blue curve shows one full trans-
mission spectrum for the cavity, and a second first order mode between 50 and
60 Volt for the piezo in both measurements. Intensity differences are caused by
diminishing laser intensity as the piezo voltage rises (figure 4.6). The distance
between the FPI peaks is 4 GHz.
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Figure 4.6: a) Green curve: The laser intensity before the cavity. Blue curve: The
transmission spectrum of the cavity. b) Green curve: Normalized direct measure-
ment. Blue curve: The transmission spectrum of the cavity after normalizing with
the laser intensity. Peak intensities in the transmission equalize confirming that
we have found FSR. Small deviations in the two transmission spectra are due to
laser fluctuation and mirror vibrations.
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4.2 Characterizing the cavity parameters 31

4.2.2 Evaluating the fundamental mode

The second method we use to check mirror separation and subsequently
the mirror curvature is by the evaluation of the beam width of the funda-
mental mode after the cavity. Using the Gaussian beam parameters (chap-
ter 2) we find the mirror separation to be deducible after fitting the wave
front curvature to the curved mirror curvature.
Using the beamprofiler we obtain a 2D intensity pattern of the Gaussian
beam as shown in figure 4.7. The intensity pattern, as a function of the
Gaussian beam parameters, is given as:

I = E2
0

w2
0

w2(z)
e
−2ρ2

w2(z) = Imax(z)e
−2ρ2

w2(z)

From here it is easy to deduce the that, from the intensity pattern, the beam
radius is determined where the intensity e−2 of the maximum intensity.
Figure 4.7b shows the x cross-section of the 2D heatmap with the e−2 width
visualized.

a) Heatmap b) x cross-section with beam width

Figure 4.7: a) The beam profiler signal. It is a 2D heat map which logs the intensity
on a area. The exposure time we used in general and for this figure is 700µs. A
Gaussian distribution is shown. b) Cross section of figure a with the e−2 width
visualized.

We have evaluated the width of the beam at three different locations
twice and plotted the expected Gaussian width of d = 1.065 over the these
points (figure 4.8). To fit the expected cavity mirror separation we assume
the measurement locations to be in the far field regime as this allows us to
assume the beam width to grow linearly with the measurement distance.
This results in a fitted mirror separation of 1.16 cm which is also repre-
sented in figure 4.9. The fit is not perfectly coinciding with the measured
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32 The setup without lens

Figure 4.8: A simulation of
the the Gaussian mode for
our setup. R = 300mm, d =
1.065cm. At z = 0.25 cm, z =
0.35 cm and z = 0.45 cm we
included a green line and its
length representing the beam
width (W(z) = Ipeak

e2 ) at the spec-
ified z.
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Figure 4.9: Blue line) repre-
sents the Beam width as calcu-
lated in figure 4.8. Red dots)
represent 6 measurements be-
hind the cavity, Green line)
The fit through the measure-
ments. We found the mirror
distance to be 1.16 cm.
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points, which is due to the fact that we are not fully in the far field regime.
This is considerably larger then the previously estimated measurements,
but we have some potential errors in the system. In the setup we have
measurement errors on beamprofiler location, and we have not taken the
light propagation in the mirror or beam splitter into account resulting in
beam deformation Beside this we have found elliptical beam profiles in-
stead of perfectly circular profiles. This is expected to be caused by a rota-
tion of the beamprofiler. This elongates one of the axis. With the errors we
find that the estimated mirror separation of 1.2 cm this is within the same
order of magnitude but should be improved.
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Chapter 5
Improving the setup through
modematching

Having successfully created a tunable cavity we are presented with the
challenge to improve on it. We have generated a model to do so through
mode matching. Coupling the fiber mode to the cavity mode. This can be
done using lenses to match the mode of the incident beam to the cavity
mode.
To model the coupling efficiency we make use of the complex beam pa-

rameter. This is a single element q containing all Gaussian parameters:

q = z + izr
1
q
=

1
R(z)

− i
λ

πw2(z)

The complex beam parameter provides the advantage of using ray trans-
fer matrices when describing the propagation and diffraction of a beam.
Ray transfer matrices are traditionally used for describing rays [5]. The
matrices will also work for the complex beam parameter when used in the
following way: (

A B
C D

)
q =

(
A B
C D

)(
q
1

)
=

Aq + B
Cq + D(

A B
C D

)
1
q
=

(
A B
C D

)(
1
1
q

)
=

A + B
q

C + D
q
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34 Improving the setup through modematching

Here a matrix with components ABCD correspond to a matrix describing
propagation or diffraction. With specific transfer matrices we can use lin-
ear algebra to describe the beam at any location z, taking the effects of any
and all optical elements in its path.

The important matrices we use are the propagation matrix and the matrix
of an ideal lens with focal length f:

(
1 ∆z
0 1

)
q(z) =

q(z) + ∆z
0 + 1

= q(z + ∆z)(
1 0
1
f 1

)
1

q(z)
=

1
q(z)

− 1
f

Here we have also shown the validity of use of ray transfer matrices as the
results coincide with the expected results for the rays as shown in [5].
Using these basic elements we can build a multi variable simulation of
modes for the beam and cavity respectively and compute the mode over-
lap at any location. We make a simulation with a microscope objective and
a regular lens as optical elements as seen in figure 5.1. We present the 4
distances zi which we can control, for our purpose we have set ztot to coin-
cide with the current lab setup. Because of this we also fix zobj to be equal
to the working distance of the microscope objective to collimate the beam
as effectively as possible.

We find the Rayleigh ranges of the modes using the standard formulas:

zr,cavity =
√

d(R− d) zr, f iber =
λ

πNA2

Here the NA is the Numerical Aperature of the single mode fiber. The
fiber we use has an NA of 0.13. Combining every discussed part we can
simulate the overlap of the modes at location zloc for which we will take
the location of the curved mirror as value as it is the most relevant location
to have a high coupling.

In terms of ray transfer matrices the propagation and diffraction looks as

34
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35

Figure 5.1: Visualiza-
tion of the lenses in
the simulation. Multi-
ple variable distances
have been labelled.

followes:

q′f iber =

(
1 (ztot − zlens)
0 1

)(
1 0
−1
flens

1

)(
1 (zlens − zobj)
0 1

)( 1 0
−1
fobj

1

)(
1 zobj
0 1

)
q f iber

q′cavity =

(
1 −(ztot − zloc)
0 1

)
qcavity

Here I have set up an independent complex beam parameter for both
modes, q′i indicates the value for q at zloc for each beam respectively. The
negative propagation direction used in the matrix working on qcavity is be-
cause the cavity mode propagates in the opposite direction of the fiber
mode Note that we have assumed the objective to function as a thin lens,
this is not a perfect assumption but is accurate enough for our purposes.

With the q’s for both modes known at the same location we can set up
the normalized overlap integral presented in chapter 2. We formulate the
Gaussian energy distribution as a function of q and label it u, after which
we compute the integral and end up with the coupling effeciency as a
function of λ, R1, R2, w1, w2 where Ri and wi are the wavefront curvatures
and mode widths at zloc for the fiber mode and cavity mode respectively.

η =
|
∫

u∗1u2dA|2∫
|u∗1u1|dA

∫
|u∗2u2|dA

ui(z) =
1
qi

e
−ikr2
2qi(z)

η =
(2λR1R2w1w2)

2

(πw2
1(R1 − R2))2 + (λR1R2(w2

1 + w2
2))

2
0 ≥η ≥ 1
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36 Improving the setup through modematching
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Figure 5.2: Simulation of the coupling efficiency for lens strength f and postion
zlens for a microscope objective placed at the working distance.

We compute q′f iber for lenses with focal lengths between 1 cm and 35cm
at positions from 1 to 50 cm to the plane cavity mirror. The results are
presented in figure 5.2. when solving the coupling efficiency integral we
obtain coupling efficiencies up to .999 given a lens with a focal length of
7.1 cm at a distance of 6.9 cm. We obtain a small difference in the the focal
length and the optimal lens position. This is due to the propagation be-
tween the objective and the lens. When we use a perfectly collimated beam
the optimal position of the lens would be at the focal point, however the
beam diverges slightly between the optical elements. The small displace-
ment compensates for this effect. The simulation seems to be working
nicely and can be altered to fit any system as of now. The high coupling
at low lens positions is not completely understood. This regime is not
accounted for in the system as it does not describe a physically relevant
regime where the lens is placed inside the cavity.
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Chapter 6
Outlook and conclusion

Over the course of the previous few months we have been able to lay the
groundwork of the production of the desired micro cavity. We have cre-
ated a concise evaluation of the theory for the macroscopic Fabry Perot
interferometer and build a system which shows the properties of a high
quality cavity. Using a commercial Fabry Perot and measurements we
have calibrated the light source and used this to determine the mirror sep-
aration of the cavity using two different methods, and found this to be con-
sistent with theory and estimation. We have found both measurements to
be consistent with estimations during the building of the cavity and with
each other verifying the correctness of our theory. Also a simulation has
been build to optimize the coupling of the modes in order to most effi-
ciently couple the fundamental cavity mode to incoming light. This char-
acterization has been a success and provides a base for future research. A
possible continuation is the characterization of the coupling efficiency to
compare to the modelled results. A well coupled beam should drastically
improve the throughput of the cavity. Other mechanical improvements
can still be made to the system which can improve on discussed system
caveats. After this the system is ready to implement the micro mirrors,
after which all characterization can be repeated.
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