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Abstract

We discuss our experimental efforts for generating and measuring
four-photon entangled states, entangled in the orbital angular

momentum space (OAM). For OAM space photons can be described in a
high-dimensional Hilbert space. In order to generate the four-photon

states, we use the process of spontaneous parametric down-conversion
(SPDC) in a PPKTP crystal. Further a theoretical description on entangled

states, Gaussian modes and SPDC is stated.
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Chapter 1
Introduction

At the beginning of the twentieth century the theory of quantum mechan-
ics was introduced. Over the following decades this new physics flour-
ished and became one of the most successful theories of the last century.
However, as with most new physical theories, with the rise of quantum
theory new problems were exposed. One of these problems was addressed
by Einstein, Podolsky and Rosen in 1935 in an elegant thought experiment
[1]. They argued that spatially separated entangled particles should be
able to somehow interact instantaneous, which would violate the notion
that information cannot travel with any speed higher than the speed of
light. Later, Schrodinger coined this phenomena as quantum entangle-
ment.

Ever since, a lot of research has been done to this entanglement phe-
nomena and entangled states of a wide variety have been realized experi-
mentally. Systems up to twelve entangled photons have been realized [2],
as have bipartite entangled states of increasing dimensionality. However,
little research has been done to high-dimensional multipartite entangled
states [3, 4].

In this thesis we investigate high-dimensional 4-photon entangled states,
realized in their orbital angular momentum (OAM) degrees of freedom.
The entangled 4-photon states are generated by use of spontaneous para-
metric down conversion (SPDC) in a type I PPKTP crystal [5, 6]. For the
signal and idler beams we will focus on the fundamental Gaussian mode
and the first-order modes in the Laguerre-Gauss and Hermite-Gauss bases
[7–9]. First experiments have been explored to measure the coincidence
rates of the entangled photons, generated by the SPDC. However further
improvements have to be realized in order to better explore the OAM na-
ture of the entangled states. This experiment and its eventual results can
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8 Introduction

be of interest to application techniques as ghost imaging [10, 11] and secret
sharing [12, 13].

We will start this thesis with a description of the required theoreti-
cal background, in which we will discuss the fundamentals of quantum
states and entanglement, the physics of Gaussian modes and the theory of
spontaneous parametric down-conversion. This will be followed by a de-
scription of our setup and a discussion of the alignment procedure used.
Finally we will state and discuss our first results.

8
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Chapter 2
Quantum States

In this chapter the fundamentals of quantum states will be treated and will
be used to describe the concepts of quantum entanglement.

2.1 Dirac Notation

As is convention in quantum theory, we will describe quantum states as
state vectors using the Dirac -or bracket notation. In the Dirac notation,
there is a clear distinction between a vector and its covector. Vector are
denoted by ket vectors, e.g. |φ〉. These kets span the ket space. Their
covectors, which span its dual vector space (the bra space), are denoted by
bra vectors, e.g. 〈φ|. The origin will be denoted by the null vector |null〉. A
one-to-one correspondence exist between the vectors and their covectors
[14, Ch. 1]:

|φ〉 = α |φ1〉+ β |φ2〉 (2.1a)
〈φ| = α∗ 〈φ1|+ β∗ 〈φ2| , (2.1b)

where α∗ and β∗ are the complex conjugate of α and β respectively.

2.2 Hilbert Spaces

The realm of quantum theory is described very successfully with the use
of the theory of Hilbert spaces, according to which quantum systems are
mathematically described by a specific set of linear vector spaces, i.e. Hilbert
Spaces, and the constituents of the system as vectors in such space. In this
section we will built up to a mathematical description of Hilbert spaces
[15, Ch. 1, 3].
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10 Quantum States

Definition 2.2.1 (Inner Product) Let V be a linear complex vector space. A
transformation 〈φ|ψ〉 that maps V ×V → C, is an inner product (or bracket) in
V if for any |φ〉 , |ψ〉 , |χ〉 ∈ V and α, β ∈ C:

i 〈φ|ψ〉 = 〈ψ|φ〉∗

ii 〈φ|αψ + βχ〉 = α 〈φ|ψ〉+ β 〈φ|χ〉

iii 〈φ|φ〉 ≥ 0

iv 〈φ|φ〉 = 0, if |φ〉 = |null〉

From i and ii it follows that the inner product is antilinear in its first argu-
ment:

〈αφ + βψ|χ〉 = α∗ 〈φ|χ〉+ β∗ 〈ψ|χ〉 (2.2)

Every linear complex vector space, which possesses a inner product as
defined in definition 2.2.1, is called an inner product space. In an inner
product space the following theorems hold.

Theorem 2.2.1 (Inner Product Norm) For every inner product space V a norm
is defined as ‖φ‖ ≡ ‖|φ〉‖ = 〈φ|φ〉 and obeys the following properties for
|φ〉 , |ψ〉 ∈ V and α ∈ C:

i ‖φ‖ ≥ 0

ii ‖φ‖ = 0, i f |φ〉 = |null〉

iii ‖αφ‖ = |α| ‖φ‖

Theorem 2.2.2 (Schwarzs Inequality) For |φ〉 , |ψ〉 ∈ V, with V an inner
product space,

|〈φ|ψ〉| ≤ ‖φ‖ ‖ψ‖ ,

where |〈φ|ψ〉| = ‖φ‖ ‖ψ‖ only holds if |φ〉 and |ψ〉 are linearly dependent.

Theorem 2.2.3 (Triangle Inequality) For |φ〉 , |ψ〉 ∈ V, with V an inner prod-
uct space,

‖φ + ψ‖ ≤ ‖φ‖+ ‖ψ‖

Theorem 2.2.4 (Parallelogram Law) For |φ〉 , |ψ〉 ∈ V, with V an inner prod-
uct space,

‖φ + ψ‖2 + ‖φ− ψ‖2 = 2(‖φ‖2 + ‖ψ‖2)

10
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2.2 Hilbert Spaces 11

Theorem 2.2.5 (Pythagorean Formula) For |φ〉 , |ψ〉 ∈ V, with V an inner
product space, and 〈φ|ψ〉 = 0,

‖φ + ψ‖2 = ‖φ‖2 + ‖ψ‖2

Being an inner product space is the first prerequisite for being a Hilbert
space. Therefore, an inner product space is also termed a pre-Hilbert
space. The next property of a Hilbert space is completeness. To define
complete, we first have to discuss briefly the meaning of a Cauchy se-
quence.

Definition 2.2.2 (Cauchy Sequence) Let ε ∈ R. Then, a sequence {an}∞
n=0 is

said to be a Cauchy sequence if for any ε > 0, there exist an N ∈N, for which

|an − am| < ε,

with n, m ≥ N.

Definition 2.2.3 (Completeness) An inner product space V is said to be com-
plete if every Cauchy sequence {an}∞

n=0 converges to a point in the space V.

So an inner product space V is complete if there are no holes in V. All
points, which can be obtained in V by use of a limit to that point, have to
be points in V themselves.

Definition 2.2.4 (Separability) An inner product space V is said to be sepa-
rable if it contains a countable, dense subset {|ψn〉}. This means that for every
|φ〉 ∈ V and every ε > 0, with ε ∈ R, an integer Nε and a set of scalars {an}
exists, for which ∥∥∥∥∥|φ〉 − N

∑
n=1

an |ψn〉
∥∥∥∥∥ < ε,

for N > Nε.

So a subset of V is dense when all points in V can be approached by a com-
bination of members of the subset. Note that def. 2.2.4 does not mean the
same as separability of composite states, which will be treated in section
2.4.

With the use of definitions 2.2.1–2.2.4, we can now define a Hilbert
space.

Definition 2.2.5 (Hilbert Space) A complete inner product space which is sep-
arable, is called a Hilbert space.

From now on we will, as is conventional, denote a Hilbert space asH.
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12 Quantum States

2.3 Pure and Mixed States

2.3.1 Density Operator

Another way to describe quantum states, instead of with the use of state
vectors, is by working with density operators. This representation has
the benefit that it can be used to describe both pure as mixed states (both
described below), whereas state vectors can only describe pure states.

Operators are linear transformations that map one vector linearly on
another vector in the same Hilbert space and are denoted with a hat, e.g.
Â. Operators work on a bra from the right and on a ket from the left, so
for an operator Â : H → H [14, Ch. 1]〈

φ′
∣∣ = 〈φ|←−̂A (2.3a)∣∣φ′〉 = −→̂A |φ〉 ≡ ∣∣Âφ

〉
(2.3b)

The adjoint operator is defined as
〈

Âφ
∣∣ ≡ 〈φ| Â†. Operators can be de-

composed using the dyadic product or dyad, e.g. |u〉〈v|. The dyadic prod-
uct is a linear transformation |u〉〈v| : H → H, which produces a vector
parallel to |u〉 as [14, Ch. 1]∣∣φ′〉 = (|u〉〈v|) |φ〉 = |u〉 〈v|φ〉 (2.4)

In a Hilbert space H an orthonormal basis can be defined as {|i〉 , i ∈ N}.
Therefore a vector |φ〉 ∈ H can be decomposed as

|φ〉 = ∑
i
|i〉 〈i|φ〉 = ∑

i
(|i〉〈i|) |φ〉 (2.5)

with i ranging up to the dimension of H. Since |φ〉 = 1 |φ〉, with 1 the
identity operator, eq. 2.5 shows that

1 = ∑
i
|i〉〈i| (2.6)

From this we can construct a dyadic decomposition for an arbitrary oper-
ator Â

Â = 1Â1 = ∑
i,j
|i〉〈i| Â |j〉〈j| = ∑

i,j

〈
i
∣∣Â∣∣j〉 |i〉〈j| = ∑

i,j
Aij |i〉〈j| , (2.7)

with Aij =
〈
i
∣∣Â∣∣j〉 the matrix elements of Â and |i〉 , |j〉 are the components

of the orthonormal basis ofH.

12
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2.3 Pure and Mixed States 13

A density operator is defined as the dyadic product of a state vector
with itself. So for a state, represented by the state vector |φ〉, the density
operator is defined as [14, Ch. 4]

ρ̂ ≡ |φ〉〈φ| (2.8)

As does the state vector, a density operator contains all the statistical in-
formation about a quantum state. When measuring a system described by
the density operator ρ̂, 〈ψ|ρ̂|ψ〉 can be seen as the probability amplitude of
finding the system in state |ψ〉.

2.3.2 Pure States

A pure state is a quantum state that can be described by a state vector
|φ〉. These are the kind of states discussed in most introductory quantum
text. However, as mentioned earlier, another way of representing pure
states is with the use of the density operator. Since the density operator,
as defined by eq. 2.8, is composed from its state vector representation |φ〉,
this definition of the density operator is only valid for pure states. Hence,
it is called the density operator of pure states [14, Ch. 4].

For pure states, the density operator has the following properties:

(i) ρ̂† = ρ̂

(ii) tr(ρ̂) = 1 (2.9)

(iii) ρ̂2 = ρ̂

So for pure states the density operator ρ̂ is a Hermitian projection operator.
From ii and iii it follows that tr(ρ̂2) = 1. For an arbitrary operator Â the
expectation value is given by

〈Â〉 = tr(ρ̂Â) (2.10)

Qubit Case

The simplest quantum system is the qubit system. A qubit system is a
quantum system in a 2-dimensional Hilbert space H2. A Hilbert space
is 2-dimensional if it has no more than two linearly independent sets of
states. Qubits are of the general form

|φ〉 = α |0〉+ β |1〉 , (2.11)

Version of July 4, 2019– Created July 4, 2019 - 14:30
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14 Quantum States

where {|0〉 , |1〉} is the orthonormal basis of the Euclidean 2-dimensional
Hilbert space and α and β are the statistical weights of the components
of the orthonormal basis, with |α|2 + |β|2 = 1. This basis is also referred
to as the computational basis∗. Some examples of qubit systems are the
polarization of photons and the spin projection of the polarization of spin-
1
2 particles. The density operator of a qubit in the general form of 2.11 then
becomes

ρ̂ = |φ〉〈φ| (2.12a)
= (α |0〉+ β |1〉)(α∗ 〈0|+ β∗ 〈1|) (2.12b)

= α2 |0〉〈0|+ αβ∗ |0〉〈1|+ α∗β |1〉〈0|+ β2 |1〉〈1| (2.12c)

As can be seen, although the density operator in eq. 2.12c consist of multi-
ple dyadic terms, it can still be arranged into a single dyadic product (eq.
2.12a and 2.12b) and therefore it describes a pure state.

In the qubit case, the density operator can quite elegantly be visual-
ized using the Bloch sphere. We first have to rewrite the density operator
of pure states using the Pauli operators. We now introduce the Pauli oper-
ators [14, Ch. 3]:

σ̂x =

(
0 1
1 0

)
= |0〉〈1|+ |1〉〈0| (2.13a)

σ̂y =

(
0 −i
i 0

)
= −i(|0〉〈1| − |1〉〈0|) (2.13b)

σ̂z =

(
1 0
0 −1

)
= |0〉〈0| − |1〉〈1| (2.13c)

The Pauli operators have the following properties, as can be shown from
eq. 2.13, with i, j = x, y, z:

(i) σ̂†
i = σ̂i

(ii) σ̂2
i = 1 (2.14)

(iii) tr(σ̂i) = 0

(iv) [σ̂i, σ̂j] = 2δij1

∗For a single qubit the computational basis has no special meaning. So here we just
adopt the term as convention.

14

Version of July 4, 2019– Created July 4, 2019 - 14:30



2.3 Pure and Mixed States 15

Here iv is equivalent to tr(σ̂iσ̂j) = 2δij. The set { 1√
2
1, 1√

2
σ̂i} can be seen

as an orthonormal operator basis, therefore they can construct any linear
operator Â as [14, Ch. 3]

Â =
1
2

tr(Â)1 +
1
2

3

∑
i=1

tr(Âσ̂i)σ̂i (2.15)

We will denote vectors in the 3-dimensional Euclidean space R3 by bold
letters, e.g. r. We now introduce the Pauli vector operator as σ̂ ≡ σ̂xex +
σ̂yey + σ̂zez, where ex, ey and ez are the Cartesian orthonormal basis of R3.
From eq. 2.15 and the properties of the pauli operators it is now shown
that

ρ̂ =
1
2
(1 + rσ̂), (2.16)

where r ≡ tr(ρ̂σ̂) ∈ R3. Squaring the density operator and taking the
trace will then give

tr(ρ̂2) =
1
4

tr(1 + 2rσ̂ + ∑
i,j

rirjσ̂iσ̂j) (2.17a)

=
1
2
(1 + |r|2) (2.17b)

From the properties ii and iii of the density operator of pure states we then
know that tr(ρ̂2) = 1

2(1 + |r|
2) = 1, and hence |r| = 1. Therefore the qubit

case of a pure state is completely defined by r. And since the set of vectors
{r} ∈ R3 with |r| = 1 can be visualized as points on a spherical surface
with radius 1, so can the entire set of 2-dimensional pure states {|φn〉}.
This spherical surface is called the Bloch sphere (fig. 2.1).

A unitary transformation on |ψ〉 according to∣∣ψ′〉 = U |ψ〉 , (2.18)

can be visualized in the Bloch sphere representation by a rotation of r by
an angle ϕ around the axis e, with [14, Ch. 3]

U = Re(ϕ) = e−i ϕ
2 eσ̂ , (2.19)

where Re is a rotational transformation around the axis e.
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16 Quantum States

Figure 2.1: Copied from [14, Fig. 3.1]. The Bloch sphere visualization of a quan-
tum state. |ψ〉 is visualized by the 3-dimensional vector r, with its endpoint lying
on the surface of the Bloch sphere, and |0i〉 , |1i〉, for i = x, y, z, are the orthonor-
mal eigenstates of σx, σy and σz, respectively.

2.3.3 Mixed States

In physical experiments two types of measurements can be categorized:
selective measurements, where the preparation procedure is completely
determined, and non-selective measurement, where the complete prepa-
ration procedure is defined as a weighted superposition of several distinct
sub-procedures. In real experiments we mostly encounter non-selective
measurements, since systems are often not completely isolated from their
surroundings. The distinction between these types of measurements can
be best clarified with an example, theretofore we will use the double-slit
experiment (fig. 2.2).

In the double-slit experiment a light beam is shot onto a wall contain-
ing two slits through which the photons cross and subsequently the pho-
tons hit a screen. When the experiment is repeated many times an inter-
ference pattern of the incoming photons can be observed. Now assume
the photons to be in a state ρ̂p, which is the density operator of pure states
as described in eq. 2.8. The slits will act as an operator working on the
photon states. Here slit 1 is represented by Ŝ1 and slit 2 by Ŝ2 and they
transform a photon into a state Ŝi(ρ̂p), with i = 1, 2. Now we also perform
a conditional measurement which measures through which slit a photon
passes. With the use of this conditional measurement we only collect the
data of the photons passing through slit Ŝ1. This results in photons in state
Ŝ1(ρ̂p). This procedure is clearly a selective measurement since we use a

16
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2.3 Pure and Mixed States 17

Figure 2.2: [16] The double-slit experiment. Photons from a light source are shot
at sheet with two slits in it. When passing through one of the slits the photon hits
a screen. After repeating this process many times an interference pattern appears.

conditional measurement which completely determines the preparation
procedure used on the photons, i.e. Ŝ1, and it results in a pure state.

When the conditional measurement is omitted the collected data con-
tains information about both the photons that have passed through slit 1
as through slit 2. In this case it is impossible to know through which slit a
single photon passed. The photon passes through a slit with some classi-
cal probability p1, p2, for slit 1 and slit 2 respectively, and p1 + p2 = 1. The
final state prepared by this experiment will be a weighted superposition
of the states prepared by the slits separately, and has the form of

ρ̂ f = p1Ŝ1(ρ̂p) + p2Ŝ2(ρ̂p) (2.20)

By performing the experiment in such way the preparation procedure is
not completely determined, it can be either Ŝ1 or Ŝ2. Therefore this is an
example of a non-selective measurement. Since the state acquired by this
procedure is a superposition of a set of density operators, it cannot be
described by a state vector, and it is called a statistical mixture or mixed
state. To summarize: selective measurements return pure states, while
non-selective measurements return mixed states [14, Ch. 2].

In its general form, the density operator of a mixed state is given by

ρ̂ ≡
N

∑
i=1

pi |φi〉〈φi| =
N

∑
i=1

piρ̂i, (2.21)
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18 Quantum States

where ρ̂i is the density operator of the pure state constituent |φi〉, N the
number of possible preparation procedures and

N

∑
i=1

pi = 1 (2.22)

Further the set of states {|φi〉} does not have to be orthogonal.
Comparing eq. 2.21 and 2.22 to the properties of the density operator

of pure states, we see that the properties i and ii in eq. 2.9 also hold for
the density operator of mixed states. Property iii however is not valid
for mixed states. For an orthonormal basis {|i〉} ∈ H and coefficients
{λi} ∈ R a density operator can be composed by

ρ̂ = ∑
i

λi |i〉〈i| (2.23)

By properties i and ii of eq. 2.9 it can be shown that λi = λ∗i , λi ≥ 0 and
∑i λi = 1 and therefore

0 ≤ λi ≤ 1 (2.24)

Since the basis {|i〉} is orthonormal we obtain by squaring the density
operator in 2.23

ρ̂2 = ∑
i

λ2
i |i〉〈i| (2.25)

By taking the trace this results in

tr(ρ̂2) = ∑
i

λ2
i ≤ 1, (2.26)

which is equivalent to property iii in eq. 2.9 when the equality holds, e.g.
a pure state. It also follows that eq. 2.26 has a minimal value of tr(ρ̂2) = 1

d ,
where d is the dimension ofH.

Qubit Case

As is done in subsection 2.3.2 for pure states, we will shortly discuss the
qubit case for mixed states. Let us first provide a little more clarity on
mixed states by giving an example of a mixed qubit state. After which we
will complete the Bloch sphere visualization by supplementing the density
operators for mixed states to it. For the computational basis {|0〉 , |1〉} ∈
H2 a mixed qubit state could be

ρ̂ = α2 |0〉〈0|+ β2 |1〉〈1| (2.27)

18
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2.4 Entangled States 19

As can be seen it is impossible to decompose this density operator in a
single dyadic product of a state vector with itself. The density operator in
the example is the sum of the dyadic products |0〉〈0| and |1〉〈1| weighted
by α2 and β2, respectively. Here |0〉〈0| and |1〉〈1| can be seen as the pure
state density operators of the state vectors |0〉 and |1〉, respectively.

Identically to pure states eq. 2.16 can also describe mixed states and
therefore

tr(ρ̂2) =
1
2
(1 + |r|2) (2.28)

still holds for mixed states. However, since for mixed states tr(ρ̂2) ≤ 1 and
its minimal value in a 2-dimensional Hilbert space is tr(ρ̂2) = 1

d = 1
2 , we

obtain
|r|2 ≤ 1, (2.29)

where the equality holds only for pure states. The Bloch sphere visualiza-
tion can then be completed by stating that pure states can be visualized
by vectors having their endpoints on the surface of the sphere and mixed
states by vectors having their endpoints in the interior of the sphere. The
magnitude of the vector r can therefore be viewed as the degree of mixture,
with |r| = 1 describing a pure state and |r| = 0 describing a maximized
statistical mixture.

2.4 Entangled States

A very interesting phenomena in quantum theory is entanglement. Entan-
glement involves a quantum correlation between particles or states which
has no classical resemblance. In this section we will first treat bipartite en-
tangled systems. Subsequently we will built the notion of entanglement
to multipartite systems. Following we will discuss a particular example
of entanglement, namely the entanglement of orbital angular momentum
(OAM), and finally we will consider a process to characterize a system as
entangled. Before we start, we first have to present two concepts, tensor
products and projective measurements.

Tensor product

A tensor product is a transformation that maps a pair of vectors (|φ〉 , |ψ〉)
of respectively dimensions m, n on a single vector |φ〉 ⊗ |ψ〉 of dimension
mn. Thus let Hi be a i-dimensional Hilbert space and let |φ〉 ∈ Hm and
|ψ〉 ∈ Hn. A tensor product is a transformation |φ〉 ⊗ |ψ〉 that mapsHm ⊗

Version of July 4, 2019– Created July 4, 2019 - 14:30
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20 Quantum States

Hn → Hmn according to [17]

|φ〉 ⊗ |ψ〉 ≡ |φ, ψ〉 =


φ1
φ2
...

φm

⊗


ψ1
ψ2
...

ψn

 =



φ1ψ1
φ1ψ2

...
φ1ψn
φ2ψ1

...
φmψn


, (2.30)

where φi and ψi are the ith component of |φ〉 and |ψ〉, respectively.

Projective Measurements

A projective measurement consists of a set of projectors {P̂k}which objects
obey

(i) P̂†
k = P̂k

(ii) ∑k P̂k = 1 (2.31)

(iii) P̂kP̂k′ = δk,k′ P̂k

According to Borns rule, when performing a projective measurement on
a state |φ〉, the probability amplitude the measurement returning an out-
come k, i.e. Pr[k], is given by [17]

Pr[k] ≡
〈
φ
∣∣P̂k
∣∣φ〉 = 〈P̂k〉 (2.32)

Generalizing the probability amplitude Pr[k] for mixed states will give

Pr[k] ≡ tr(ρ̂P̂k) (2.33)

2.4.1 Entanglement

Bipartite Entanglement

Bipartite systems are systems composed of two subsystems. Composite
systems do not have to experience any quantum correlations or entan-
glement. They can also be completely uncorrelated or experience classi-
cal correlations, due to classical communication tools between the subsys-
tems. Composite systems can be described with the use of tensor products.

20
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2.4 Entangled States 21

We will start by treating solely pure states. For example, a composite sys-
tem which consists of two subsystems A and B, with state vectors |φA〉 and
|ψB〉 respectively, can be described by a state vector |ηAB〉 ∈ HA ⊗HB

∼=
HAB, according to [17]

|ηAB〉 = |φA〉 ⊗ |ψB〉 ≡ |φA, ψB〉 (2.34)

Or in density operator form

ρ̂AB = (|φA〉 ⊗ |ψB〉)(〈φA| ⊗ 〈ψB|) (2.35a)
= |φA〉〈φA| ⊗ |ψB〉〈ψB| (2.35b)
= ρ̂A ⊗ ρ̂B (2.35c)

The question arises whether or not this composite system exhibit any cor-
relations. The composite state in eq. 2.34 consists of a single tensor prod-
uct between two pure states and is therefore said to be separable. All
separable pure state composite systems are completely uncorrelated. On
the other hand a system that is not separable, i.e. of the form |ηAB〉 6=
|φA〉 ⊗ |ψB〉 for any choice of basis, is said to be entangled [18]. These
are the only two possibilities for pure states, since pure states cannot be
classically correlated. However, how do these correlations show up in an
experiment.

If we let a projective measurement {P̂k ⊗ P̂l} work on the subsystem A
in the composite state |η〉 given by eq. 2.34, after which we will perform
the same projective measurement on subsystem B, the expectation value
of the projector P̂k ⊗ P̂l on the composite system is then given by

〈P̂k ⊗ P̂l〉AB =
〈
ηAB

∣∣(P̂k ⊗ P̂l)
∣∣ηAB

〉
(2.36a)

= tr[ρ̂AB(P̂k ⊗ P̂l)] (2.36b)

= tr[(ρ̂A ⊗ ρ̂B)(P̂k ⊗ P̂l)] (2.36c)

= tr(ρ̂AP̂k) · tr(ρ̂BP̂l) (2.36d)

= 〈P̂k〉A · 〈P̂l〉B, (2.36e)

This shows that if one performs a measurement on subsystem A followed
by a measurement of subsystem B, the result of the measurement on sub-
system B is not affected by the measurement on subsystem A. Instinctively
this makes much sense. When this is the case the composite system is not
correlated. However, if we follow the same procedure on the composite
system

|ζAB〉 = α |φA〉 ⊗ |ψB〉+ β |χA〉 ⊗ |ωB〉 , (2.37)
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for |φA〉 , |χA〉 ∈ HA and |ψB〉 , |ωB〉 ∈ HB and with α2 + β2 = 1, we will
see that it behaves in a different way and that the projective measurement
on the composite system will not results in the product of the projective
measurements on the subsystems separately.

Let us now calculate the expectation value 〈P̂k〉A on subsystem A in the
composite system. This wil give

〈P̂k〉A = tr[|ζ〉〈ζ|AB (P̂k ⊗ 1)] (2.38a)

= trA[trB(|ζ〉〈ζ|AB)P̂k] (2.38b)

= trA(ρ̂AP̂k), (2.38c)

where tri is defined as the partial trace over subsystem i and ρ̂i is the
reduced density operator of subsystem i. If we do the same calculation
for the expectation value 〈P̂l〉B on subsystem B, we will get the result
〈P̂l〉B = trB(ρ̂BP̂l). If the composite system of state |ζAB〉 would be un-
correlated, the product of these two expectation values would be the ex-
pectation value 〈P̂k ⊗ P̂l〉AB of the composite system, however

〈P̂k ⊗ P̂l〉AB = tr[ρ̂AB(P̂k ⊗ P̂l)] 6= trA(ρ̂AP̂k) · trB(ρ̂BP̂l) (2.39)

Therefore a measurement on subsystem A will affect a subsequent mea-
surement on subsystem B and vice verse. This means the composite sys-
tem is correlated and since pure states cannot be classically correlated, the
state |ζAB〉 is an entangled state [14, Ch. 8].

We will now generalize the concepts of correlations to include mixed
states [18]. Equivalently to pure states, a mixed state composite system
is described by a single tensor product of the density operator of its two
subsystems A and B as

ρ̂AB = ρ̂A ⊗ ρ̂B (2.40)

is completely uncorrelated. Another form in which composite systems of
mixed states can be encountered is†

ρ̂AB = ∑
i

piρ̂
A
i ⊗ ρ̂B

i , withm 6= 1, (2.41)

where the composite system is described as a weighted superposition of
product states, with pi ≥ 0 and ∑i pi = 1. For such a state it holds in
general that tr[ρ̂AB(P̂k ⊗ P̂l)] 6= trA(ρ̂AP̂k) · trB(ρ̂BP̂l) and will therefore
exhibit correlated measurements. However, since the correlation proper-
ties of eq. 2.41 are completely determined by the classical probabilities pi,

†Here we denote the subsystem as superscript, since the iterations of the summation
are already denoted as subscript.
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2.4 Entangled States 23

such a state is classically correlated and is called a separable mixed state.
A clear difference between classical correlated states and entangled states
is that a transformation of basis can turn a classically correlated state in
a completely uncorrelated state, while entangled state remains entangled
independent of the choice of basis [14, Ch. 8]. We define entangled mixed
states as a state that cannot be described as a weighted superposition of
product states, i.e.

ρ̂AB 6= ∑
i

piρ̂
A
i ⊗ ρ̂B

i , withm 6= 1 (2.42)

Let us now look at a specific example for entanglement of qubits to
clarify the kind of correlations we talk about [17]. Let us perform the pro-
jective measurement {P̂j,k = |j〉〈j| ⊗ |k〉〈k|} on the Bell state

∣∣Φ+
〉
=
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉√

2
(2.43)

We can now calculate the probability of returning the possible outcomes of
the projective measurement on the state |Φ+〉. Let us start with Pr[(0, 0)]

Pr[(0, 0)] =
〈
Φ+
∣∣P̂0,0

∣∣Φ+
〉

(2.44a)

=
〈
Φ+
∣∣|0〉〈0| ⊗ |0〉〈0|∣∣Φ+

〉
(2.44b)

=
1
2
[(〈0| ⊗ 〈0|)(|0〉〈0| ⊗ |0〉〈0|)(|0〉 ⊗ |0〉)] (2.44c)

=
1
2

(2.44d)

The other three possible projectors of the projective measurement will re-
turn the probabilities

Pr[(1, 1)] =
1
2

, Pr[(1, 0)] = 0, Pr[(0, 1)] = 0 (2.45)

We can perform the same projective measurement in a different basis. Let
us define the basis {|+〉 , |−〉}, with

|+〉 = 1√
2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉 − |1〉) (2.46)

In this basis the state |Φ+〉 becomes

∣∣Φ+
〉
=

(|+〉+ |−〉)⊗ (|+〉+ |−〉) + (|+〉 − |−〉)⊗ (|+〉 − |−〉)
2

, (2.47)
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and for the projector P̂+,+ we obtain

Pr[(+,+)] =
〈
Φ+
∣∣P̂+,+

∣∣Φ+
〉

(2.48a)

=
〈
Φ+
∣∣|+〉〈+| ⊗ |+〉〈+|∣∣Φ+

〉
(2.48b)

=
1
2

(2.48c)

For the other projectors we obtain

Pr[(−,−)] = 1
2

, Pr[(+,−)] = 0 Pr[(−,+)] = 0 (2.49)

We see that this results in the same perfect correlation. This correlation is
obtained in any choice of basis.

Multipartite Entanglement

We have already discussed the notion of entanglement in the case of bipar-
tite systems and as it turns out it is quite straightforward to generalize this
to the case of multipartite systems. Here we will just state the generaliza-
tions of multipartite systems [19], since the entanglement definitions are
highly equivalent with respect to bipartite systems. For multipartite sys-
tems we will denote the subsystems with numbers instead of with capital
letters, as we did for bipartite systems.

We will start again with pure states. A multipartite system |η1⊗···⊗N〉 ∈
H1 ⊗ · · · ⊗ HN, consisting of N subsystems is said to be separable, i.e.
completely uncorrelated, if it can be described as

|η1⊗···⊗N〉 = |φ1〉 ⊗ · · · ⊗ |φN〉 , (2.50)

where |φi〉 describes the ith subsystem. This state is separable, since it
has only a single term consisting of tensor products. Therefore a measure-
ment on one of the subsystems will not affect measurements on the other
subsystems. A pure state multipartite system is said to be entangled if it
cannot be written in the form of eq. 2.50. This definition of multipartite
entangled systems shows great similarity to the bipartite case.

When considering mixed state composite systems the same similarity
arises. Again a completely uncorrelated composite system, consisting of
N subsystems, can be described as

ρ̂1⊗···⊗N = ρ̂1 ⊗ · · · ⊗ ρ̂N (2.51)

24

Version of July 4, 2019– Created July 4, 2019 - 14:30



2.4 Entangled States 25

A mixed state composite system is classically correlated if it can be de-
scribed by‡[19]

ρ̂1⊗···⊗N = ∑
i=1

piρ̂
(1)
i ⊗ · · · ⊗ ρ̂

(N)
i , withm 6= 1, (2.52)

since these correlations are again completely determined by the classical
probabilities pi. Any multipartite system that cannot be described as a
weighted superposition of multipartite product state (eq. 2.52) is entan-
gled. Although the multipartite case is very similar to the bipartite case,
rewriting the states in desired form can be quite cumbersome and the en-
tanglement features of the states can be hard to track down.

2.4.2 Schmidt Decomposition and Witness Operator

Since it can be hard to determine whether a composite state is separable or
not, we need more straightforward ways to determine this state property.
In this section we will discuss such procedures for bipartite systems. We
will start with a procedure for pure states, the Schmidt decomposition.
After which we will treat the witness operator for mixed states.

Schmidt Decomposition

For two orthonormal bases {|φi〉}A ∈ HA and {|ψi〉}B ∈ HB any pure
state |ηAB〉 ∈ HA ⊗HB can be constructed as

|ηAB〉 = ∑
i,j

di,j |φi〉 ⊗ |ψi〉 (2.53)

Also there always exist unitary transformations u and v such that udv is
diagonal, with diagonal entries [udv]i,i =

√
λi [18]. This basis results in

|ηAB〉 = ∑
i

√
λi

∣∣∣φ′i〉⊗ ∣∣∣ψ′i〉 , (2.54)

where
√

λi are called the Schmidt coefficients. As discussed in section
2.4.1, eq. 2.54 will only describe a separable state if it has only one nonzero
Schmidt coefficient. When more then one Schmidt coefficient has a nonzero
value, the state |ηAB〉 is an entangled state [18]. Since the composite basis

‡The subsystems are again denoted with a superscript to not get in the way of the
iterations of the summation.
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∣∣∣φ′i〉⊗ ∣∣∣ψ′i〉 consists of separable states, all information regarding the en-
tanglement of the state |ηAB〉 is determined by the Schmidt coefficients
[18].

When we look into the reduced density operator of the subsystems, it
can be shown that they can be written as [18]

ρ̂A = ∑
i

λi

∣∣∣φ′i〉〈φ′i∣∣∣ , ρ̂B = ∑
i

λi

∣∣∣ψ′i〉〈ψ′i∣∣∣ (2.55)

As been said, if the Schmidt coefficients have only one nonnegative entry
the state is separable. Therefore for separable states the reduced state in
eq. 2.55 are pure states, while for entangled states the reduced states are
statistical mixtures. So to summarize for pure state composite systems,
the composite state is separable if its subsystems are pure states and the
composite state is entangled if the subsystems are mixed states.

Witness Operator

For mixed composite states, entanglement properties can be indicated by
a witness operator. An operator Ŵ is a witness operator if it is hermitian
and not positive definitive, but gives a nonnegative expectation value [18],
i.e. 〈

φ
∣∣Ŵ∣∣φ〉 ≥ 0, (2.56)

for any separable pure state |φ〉. However, a separable mixed state can be
described by a weighted superposition of density operator of pure states
(eq. 2.21). Hence, the expectation value of a witness operator working on
any separable mixed state will return

tr(ρ̂sŴ) = ∑
i

pi 〈φi|W|φi〉 ≥ 0 (2.57)

Therefore, when a witness operator works on a mixed state density oper-
ator ρ̂e and the expectation value returns

tr(ρ̂eŴ) < 0, (2.58)

ρ̂e has to be entangled. A witness operator can be found for any entangled
state.

26
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Chapter 3
Gaussian Modes

3.1 OAM of Light

In quantum theory the angular momentum is split into two components,
the orbital angular momentum (OAM) and the spin. The orbital angular
momentum is the quantum counterpart of the classical angular momen-
tum, whereas the spin does not have a classical counterpart. In case of
the angular momentum of light, the spin can be associated with the po-
larization of the light field, since its eigenstates are the states of circularly
polarization of the paraxial light field [21]. The orbital component of the
angular momentum of light can be associated with the spatial distribution
of the light field. For light fields carrying a nonzero orbital angular mo-
mentum in the paraxial approximation, this results in helical wavefronts

Figure 3.1: Copied from [21, fig. 1.1] A helical wavefront due to a azimuthal
phase with ` = 1. Hence the light beam consists of photons with orbital angular
momentum `h̄.
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(fig. 3.1), whereas light beams having a zero orbital angular momentum
consist of plane or spherical wavefronts. These helical wavefronts are
twisting around the propagation axis. The relation between the helical
structure of the wavefronts and the orbital angular momentum is captured
in the winding number of the helicity `. For a light beam consisting of
photons of orbital angular momentum `h̄, the wavefronts consists of |`|
intertwined helices with a spatial period of `λ [20], where λ is the wave-
length of the photons. The handedness of the helicity is given by the sign
of `. Since coaxial OAM modes are mutually orthogonal and ` can take
all integer values, the OAM modes span a high-dimensional Hilbert space
[20]. Therefore orbital angular momentum is an appropriate property to
explore high-dimensional entangled states. An example of a light mode
which exhibits orbital angular momentum features, is the Laguerre-Gauss
mode (LG`

p), which is discussed in the next section.

3.2 Gaussian Modes

In this section we will discuss some examples of OAM modes of light,
which are solutions to the paraxial wave equation. We will only look at
monochromatic beams. First, we will derive the paraxial wave equation
itself. In order to do this we will start with the wave equation

∇̂2E− 1
c2

∂2E
∂t2 = 0, (3.1)

where E is the electric field and c is the speed of light. We can use sep-
aration of variable to split the electric field in a spatial component and a
temporal component according to [22]

E(x, y, z, t) = u(x, y, z)e−iωtn̂, (3.2)

where u(x, y, z) is the spatially dependent amplitude of the electric field
and n̂ is the direction of polarization. This results in a wave equation of
the form

1
u(x, y, z)

∇̂2u(x, y, z) =
1

c2e−iωt
d2e−iωt

dt2 (3.3)

Since both sides of the equation depend on different variables, this equa-
tion can only be valid if both side of the equation are equal to a constant,
which we call −k2. Therefore, inserting the spatial part into the wave
equation will give us the Helmholtz equation

∇̂2u + k2u = 0 (3.4)

28

Version of July 4, 2019– Created July 4, 2019 - 14:30



3.2 Gaussian Modes 29

For a light beam propagating in the z-direction, we will make the ansatz,
that the spatial amplitude u(x, y, z) will be of the form [22]

u(x, y, z) = u0(x, y, z)eikz (3.5)

Inserting this ansatz into the Helmholtz equation will give us

∂2u0

∂x2 +
∂2u0

∂y2 +
∂2u0

∂z2 + 2ik
∂u0

∂z
= 0 (3.6)

Since the electric field of a light beam varies very slowly in the direction
of propagation, we know that∣∣∣∣∂2u0

∂z2

∣∣∣∣� ∣∣∣∣∂2u0

∂x2

∣∣∣∣ ,
∣∣∣∣∂2u0

∂y2

∣∣∣∣ ,
∣∣∣∣2k

∂u0

∂z

∣∣∣∣ (3.7)

Therefore we can neglect the term of the second derivative with respect to
z. By doing this we obtain the paraxial wave equation

∂2u0

∂x2 +
∂2u0

∂y2 + 2ik
∂u0

∂z
= ∇̂2

t + 2ik
∂u0

∂z
= 0, (3.8)

where ∇̂2
t is the Laplacian operator working on the transverse space. The

paraxial wave equation is the form of the Helmholtz equation, which gives
solution describing the electric field with slowly varying z-component, i.e.
light beams.

3.2.1 Fundamental Gaussian Mode

One of the most frequently encountered solutions to the paraxial wave
equation is the solution of the fundamental Gaussian mode or just Gaus-
sian mode (fig. 3.2). The Gaussian mode can be seen as an OAM mode
of light with a zero orbital angular momentum, i.e. ` = 0. Therefore the
Gaussian mode does not have a helical wavefront, in fact it has a spheri-
cal wavefront [23]. The Gaussian mode is described by a solution of the
paraxial wave equation, where the electric field strength in the transverse
direction decreases as a Gaussian distribution. Hence we can make an
ansatz of the form of the solution of the paraxial wave equation. In this
ansatz we separate the x, y-dependency from the z-dependency and we
let the x, y-dependency be described by a Gaussian distribution. This re-
sults in the form [22]

u0(x, y, z) = Ae
ik(x2+y2)

2q(z) eip(z), (3.9)
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Figure 3.2: A fundamental Gaussian beam. The intensity falls transversely of as a
Gaussian function. The beam profiles in this chapters are measured in the setup
of fig. 5.1.

where A is a normalization constant and q(z) and p(z) are trial function
dependent on the z-coordinate.

We can now solve the wave equation for a Gaussian mode, by insert-
ing our ansatz in the paraxial wave equation and retrieving the full electric
field form. For a Gaussian beam propagating in the z-direction and polar-
ized in the x-direction, this results in [22]

EG = A
wo

w(z)
e
− x2+y2

w(z)2 ei(kz−ωt)e
ik(x2+y2)

2R(z) e−iϕ(z)x̂, (3.10)

with A =
√

2
π . Here the first part A wo

w(z) e
− x2+y2

w(z)2 is responsible for the ampli-

tude of the Gaussian light field and the second part ei(kz−ωt)e
ik(x2+y2)

2R(z) e−iϕ(z)x̂
is responsible for the phase of the Gaussian light field. As can be seen, the
phase of the Gaussian field is not dependent on the orbital angular mo-
mentum, since the phase is defined in the exponents and for a zero OAM
ei`φ = e0 = 1. Let us now define the terms in eq. 3.10 [22].

w(z) is the beam spot. It is defined as the radius over which the trans-
verse electric field falls of as 1

e for a plane z. If we define z = 0 at the
focal point of the beam, we can define the beam waist as w0 = w(0). The

Rayleigh range is defined as zR =
πw2

0
λ , where λ is the wavelength of the

beam. The Rayleigh range is the distance from the focal point in the z-
direction for which the beam spot equals w(zR) =

√
2w0. For z � zR the

30
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beam spot increases linearly as w(z) = woz
zR

.

In eq. 3.10 e
ik(x2+y2)

2R(z) is the only phase term which depends on all co-
ordinates. Therefore, this term corresponds to the curvature of the wave-
fronts. The denominator in the exponential contains the radius of curva-

ture R(z) = z(1 +
z2

R
z2 ). In the focal point z = 0 the radius of curvature

R(0) = ∞. Hence in the focal point a Gaussian beam is described by a
plane wave. At the Rayleigh range the radius of curvature is given by
R(zR) = 2zR. The Rayleigh range can be seen as the border between ray
and wave optics. At distances very far from the focal point (|z| � zR) the
light is traveling in straight lines from and toward the focal point and the
radius of curvature is approximately R ≈ z, while at distances between the
focal point and the Rayleigh range the wave nature of light are surfacing.

The phase term in the last exponent ϕ(z) is the Gouy phase. The Gouy
phase is given by ϕ = arctan( z

zR
). It causes a phase shift of π between

z = −∞ and z = ∞, where the phase shift it contributes is most radically
in the region near the focal point, i.e. in the region −zr < z < zR.

3.2.2 Higher-Order Gaussian Mode

The field of a paraxial beam can be decomposed by a mode expansion,
where the zeroth order term is represented by the fundamental Gaussian
mode. The higher order terms can be described in several orthonormal
bases. Here we discuss two such bases: the Laguerre-Gauss basis {LG`

p}
and the Hermite-Gauss basis {HG`,p}, where `, p are the mode numbers.

Laguerre-Gauss Basis

We will first discuss the Laguerre-Gauss basis (fig. 3.3). The Laguerre-
Gaussian modes can be used for a mode expansion in the cylindrical co-
ordinate system (r, θ, z). The mode numbers `, p in the Laguerre-Gaussian
basis describe the azimuthal and the radial order of the mode respectively
and the total order of the mode is given by N = 2p + |`| [22]. As stated in
section 3.1 the Laguerre-Gauss modes possess a nonzero orbital angular
momentum. Hence it has helical wavefronts and the field of a Laguerre-
Gauss mode of azimuthal order ` consists of photons with orbital angular
momentum `h̄.
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(a) LG1
0 . First order

Gaussian mode.
(b) LG0

1 . Second or-
der Gaussian mode.

(c) LG1
1 . Third order

Gaussian mode.

Figure 3.3: Some examples of the beam profiles of Laguerre-Gauss modes.

The field of the Laguerre-Gauss mode is given by [7]

LG`
p =

√
2p!

π(p + |`|)!
w0

w(z)

(
r
√

2
w(z)

)`

L`
p

(
2r2

w(z)2

)
·

e
− r2

w(z)2 ei(kz−ωt)e
ikr2

2R(z) ei`θe−iϕ(z),

(3.11)

where {L`
p(x)} is the family of associated Laguerre polynomials. It can

be checked that the zeroth order Laguerre-Gauss mode LG0
0 returns to the

fundamental Gaussian mode. The phase term ei`θ is the phase due to the
orbital angular momentum of the mode and causes the helical structure of
the wavefronts.

Hermite-Gauss Basis

If we mode expand a paraxial beam in the Cartesian coordinate system
(x, y, z), we can use the rectangular Hermite-Gauss modes (fig. 3.4). The
mode numbers m, n of the Hermite-Gauss modes represent the horizon-
tal (x-component) and vertical (y-component) order of the mode respec-
tively and the total order of the mode is given by N = m + n [22]. For the
Hermite-Gauss modes the mode numbers are not associated with the or-
bital angular momentum. However the modes can possess orbital angular
momentum.

The field of a Hermite-Gauss mode is given by [8]

HGm,n =

√
21−N

πm!n!
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
·

e
− x2+y2

w(z)2 ei(kz−ωt)e
ik(x2+y2)

2R(z) e−iϕ(z),

(3.12)
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(a) HG1,0. First or-
der Gaussian mode.

(b) HG0,1. First or-
der Gaussian mode.

(c) HG1,1. Second
order Gaussian
mode.

Figure 3.4: Some examples of the beam profiles of Hermite-Gauss modes. The
additional fringes shown in the pictures are due to the fact that s phase-only SLM
can only make an approximation of the higher order modes. So these fringes on
the sides are not real Hermite-Gauss modes.

where {Hi} is the family of Hermite polynomials. The zeroth order Hermite-
Gauss mode HG0,0 returns again to the fundamental Gaussian mode.

3.2.3 Spatial Light Modulator

In our experiment we use two spatial light modulators (SLM) to convert
the Gaussian laser beam to the desired order modes. A SLM is a device,
which can perform a spatially dependent modulation on a light beam. In
our case we use a SLM, which only modulates the phase of the incoming
light beam. The SLM can be connected to a computer, on which the desired
modulation pattern can be selected. This pattern will then be displayed on
a small screen (≈ 2 cm2) of which the light beams will be reflected and the
hologram modulates the phase of the light beam.

In our experiment we are mainly interested in the fundamental Gaus-
sian mode (no modulation) and the first-order Laguerre-Gauss, Hermite-
Gauss and 45◦rotated Hermite-Gauss modes. For the Laguerre-Gauss and
Hermite-Gauss modes, the SLM can only modulate them as an approx-
imation. Besides selecting the modes the SLM can, with the use of the
Zernike polynomials, also be used to modulate other aspects of the beam,
such as spatial position, diameter and diagonalization. Last of all it is im-
portant to note that the effects of the SLM on the beams are wavelength
dependent.
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Chapter 4
Spontaneous Parametric
Down-Conversion

In chapter 2 we have discussed the mathematical description of entangled
states. However, it is not been stated how such states could arise exper-
imentally. The most commonly used method to entangle photons is by
spontaneous parametric down-conversion or SPDC [20]. SPDC is a second
order nonlinear process [24]. It is realized in a nonlinear crystal∗, where an
incoming pump photon is split into two frequency down-converted pho-
tons, a signal and an idler photon (fig. 4.1). These signal and idler photons
can among others be entangled in their polarization, angular momentum
and frequency [25]. SPDC has no fundamental limit to the amount of en-
tangled pairs generated. However, generation of increasing amounts of
pairs requires an increase in the pump beam intensity [25]. With increas-
ing pump beam intensities the problem arises that intensities beyond the
damage threshold of the crystal are often required. In this chapter we
restrict ourselves to SPDC in a type I crystal, where the signal and idler
beams have the same polarization.

In SPDC, the combined energy and momentum of the signal and idler
beams is equal to the energy and momentum of the pump beam [24], so

Ep = Es + Ei, ~pp = ~ps + ~pi, (4.1)

where p, s, i denote the pump, signal and idler beam respectively. In order
to generate entangled photons with a high efficiency, it is required that the
the signal and idler beams generated in the crystal interfere constructively
at the output interface of the crystal. Therefore the phase mismatch ∆kL

∗In our experiment we use a PPKTP crystal
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36 Spontaneous Parametric Down-Conversion

Figure 4.1: The process of SPDC. A pump photon (413.1 nm) is focused into a
nonlinear crystal, where it is split, due to spontaneous parametric down conver-
sion, into a signal and a idler photons (both 826.2 nm).

(fig. 4.2), where k is the wave vector and L is the length of the crystal, is
an very important quantity in the process of SPDC. The signal and idler
beams will interfere constructively during their propagation paths when
[20]

∆kzL = (kp,z − ks,z − ki,z)L = 0 (4.2)

The procedure to dissolve this phase mismatch is simply called phase
matching.

4.1 Phase Matching

In SPDC, the photon energy of the pump beam h̄ωp is the sum of the pho-
ton energies of the signal and idler beams. So, we have the frequency
relation [20]

ωp = ωs + ωi, (4.3)

Further as given in eq. 4.2, the phase mismatch of the SPDC photons de-
pends on the difference between the z-components of the wave vector of
the pump beam and the combined wave vector of the signal and idler

Figure 4.2: A phase mismatch ∆kz is shown between the wave vector of the pump
photon and the combined wave vector of the signal and idler photons. The effi-
ciency of the SPDC process is maximized if ∆kz = 0 (phase matched).
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4.1 Phase Matching 37

beams. Since the dispersion relation of the refractive index of a nonlinear
crystal depends on the frequency of the passing photons, i.e. n(ωk, T) 6=
n(ωl, T) for ωk 6= ωl, ∆kZ can be written as

∆kz =
2
c
(ωpn(ωp, T)−ωsn(ωs, T)−ωin(ωi, T)), (4.4)

∆kz has in general a nonzero value. Therefore a phase mismatch arises
and the signal and idler beams will not interfere constructively. Hence,
we call ∆kz = 0 the phase matching condition. In order to tell if the signal
and idler photons are phase matched we look at the intensity of the SPDC
field. Since the intensity of the SPDC field is given by [20]

I ∝
sin2(1

2 ∆kzL)
(1

2 ∆kzL)2
L2, (4.5)

we see that the phase matching condition is satisfied, when the intensity
of the SPDC field is maximized. In our experiment we work with a KTP
crystal and a pump beam of wavelength λ = 413.1 nm. Ordinary phase
matching procedures do not work for a combination of a KTP and this
pump beam wavelength [24]. Therefore we use a KTP crystal which is pe-
riodically poled and the phase matching procedure we use is called quasi-
phase matching.

4.1.1 Quasi-Phase Matching

From eq. 4.5 we know, that for a phase mismatch, a coherence length
lc = π

∆kz
exists over which the signal and idler photons built up a phase

difference of π. In a periodically poled crystal a periodic structure of pol-
ing period Λ = 2lc is introduced, which changes the sign of the nonlinear
coefficient [24]. This also adds a phase difference of π over every coher-
ence length, canceling the effects of the initial phase built-up. The periodic
structure introduces an additional term in the phase match condition, de-
pendent on the poling period. The modified phase matching condition
then becomes [25]

∆k
′
z = ∆kz −

2π

Λ
= 0 (4.6)

For a periodically poled crystal, the intensity of the SPDC field becomes

I ∝
sin2(1

2(∆kz − 2π
Λ )L)

(1
2(∆kz − 2π

Λ )L)2
L2, (4.7)
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38 Spontaneous Parametric Down-Conversion

This shows, that the phase matching condition still agrees with a maxi-
mized intensity of the SPDC field. A nice chart of the intensity against the
longitudinal direction of the crystal for different ∆kz can be found in [24,
fig. 1.3]. Now in order to phase match the signal and idler photons, we
have to alter their wave vectors to match the phase matching condition.
Since the wave vectors can be written as a function of the refractive index
of the crystal and the refractive index depends on the temperature of the
crystal [26], the phase matching condition can be satisfied by tuning the
temperature of the crystal. So the appropriate temperature of the crystal is
the temperature that maximizes the intensity of the SPDC field.

4.2 The SPDC-Hamiltonian

Let us now give a quantum description of the process of SPDC. In this
description we denote photon states by |nk〉, where k is the mode of the
photons and n the number of photons in that particular mode. Note that
in this formulation a state |nk〉, where n 6= 0, 1, represents a composite state
of the occupied photon states, i.e. |nk〉 = |1k〉1 ⊗ · · · ⊗ |1k〉n for n 6= 0, 1.
We first define two operators. The annihilation operator âl and the photon
creation operator â†

l , which we define as [5]

âl |1l〉 = |vac〉 , (4.8a)

â†
l |vac〉 = |1l〉 , (4.8b)

where in eq. 4.8a a single photon in mode l is annihilated leaving behind
the vacuum state |vac〉 and in eq. 4.8b a single photon in mode l is gener-
ated from the vacuum state. The creation and annihilation operators are
in fact equivalent to the ladder operators â+, â− of the harmonic oscillator,
respectively. With the use of these operators the Hamiltonian for SPDC
can be constructed. This results in [5]

ĤSPDC = ih̄κ(â†
p âs âiei∆k·r−i∆ωt + âp â†

s â†
i e−i∆k·r+i∆ωt), (4.9)

where the first term accounts for the processes of SFG† or SHG‡ and the
second term accounts for the process of SPDC itself. Further κ is defined
as the strength of the nonlinear interaction. Our experiment is focused on
four-photon states entangled in their orbital angular momentum (OAM)
degrees of freedom. In order to describe this type of entanglement due to

†Sum-Frequency Generation.
‡Second-Harmonic Generation.
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4.2 The SPDC-Hamiltonian 39

SPDC, the Hamiltonian for SPDC has to be rewritten in OAM space. For
a Gaussian pump beam and a rotational symmetric crystal this results in
the Hamiltonian [3]

Ĥ =
∞

∑
`=−∞

1
2

iκh̄(â†
` â†

¯̀ − â` â ¯̀), (4.10)

where ` is the quantum number for orbital angular momentum. When we
let this Hamiltonian work on the state |0〉, this results in the state

|Ψ〉 = e−i Ĥt
h̄ |0〉 (4.11)

We can now Taylor expand this state, which we will do to second order,
since we are interested in up to four-fold entangled states. The Taylor
expansion gives

|Ψ〉 = e−i Ĥt
h̄ |0〉 ≈ (1− it

h̄
Ĥ − t2

2h̄2 Ĥ2) |0〉 (4.12)

In this Taylor expansion, the first order term will generate a state |Ψ2〉
consisting of single entangled photon pairs, according to [24]

|Ψ2〉 = γ
∞

∑
`=1
|1`, 1 ¯̀〉 , (4.13)

where γ ∝ κt depends linearly on the pump beam intensity and in which
all OAM modes which are not occupied by a photon are left out of the
summation. The second order of the Taylor expansion is responsible for
the generation of the state |Ψ4〉, which is a four-photon state containing all
occupied double pairs. The double pair state results in [24]

|Ψ4〉 ∝ γ2

(
∞

∑
i,j=1,i 6=j

∣∣∣1`i , 1`j , 1 ¯̀ i
, 1 ¯̀ j

〉
+ 2

∞

∑
`=1
|2`, 2 ¯̀〉

)
(4.14)

In this state the first term, where two photon pairs with different orbital
angular momentum are generated, corresponds to process where both
photon pairs are created spontaneous and the two photon pairs mutually
uncorrelated. The second term, where two identical photon pairs are gen-
erated, corresponds to a stimulated creation process, which generates the
second photon pair as a perfect clone of the first pair

By the entanglement definitions given in section 2.4 we see that the
states |Ψ2〉 and |Ψ4〉 are indeed entangled two-photon and four-photon
states, respectively.
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Chapter 5
Experiment

The goal of our experiment is to generate entangled four-photon states and
make attempts of measuring the entanglement features in their OAM de-
grees of freedom. We use pulsed spontaneous parametric down-conversion
(SPDC) in a type-1 PPKTP∗ crystal to generate the entangled four-photon
states. The SPDC photons are separated by use of three beam splitters and
via spatial light modulators (SLM) imaged onto four single mode fibers.
Single photon counters and a multi-channel time tagging computer card is
used to measure the coincidence rates of the incoming photons. By chang-
ing the holograms on the SLMs we can analyze the entanglement proper-
ties of the OAM mode space of the four-photon space.

For this project we rebuilt a former preliminary experiment [3]. Our
motivation for doing this was to improve the stability of the setup, since
before this was insufficient to determine some characteristics of the mea-
sured entangled states. We mainly improved the stability by decreasing
the size of the setup to fit on a single optical breadboard.

We will start with giving a full description of the experimental setup
(fig. 5.1), hereafter we will lay out the alignment procedure to ease future
explorations of the experiment.

5.1 Setup

We use a pulsed Ti:Sapphire laser as pump laser. The laser emits 826.2
nm pulses with a pulse length of ∆t = 2 ps and a pulse frequency of
fp = 80 MHz. The pump beam is frequency doubled to 413.1 nm by sum-
frequency generation (SFG) in a LBO crystal. Before entering the setup the

∗Periodically Poled Potassium Titanyl Phosphate.
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Figure 5.1: A picosecond pulsed pump beam is frequency doubled by sum-
frequency generation (SFG) and mode cleaned (MC). Then the pump beam is
focused (L1) on the PPKTP crystal. The SPDC photons are separated with beam
splitters in distributed in four downconverted beams. The SPDC light is 4f-
imaged (L2 and L3) on the SLMs. The holograms of the SLM can be changed
to select the desired modes. Finally the beams are far-field imaged on the single
mode fibers which are connected to the single photon counters.

pump beam propagates through some optical elements in order to mode
clean the beam to its Gaussian form. We wanted to fit the entire setup onto
a single optical table to guarantee its stability. Therefore we minimized the
area the setup covers to fit on an optical breadboard of 75× 85 cm2.

When entering the breadboard we focus the pump beam into a 2 mm
long PPKTP crystal with lens L1 ( f = 25 cm) and a single band-pass filter
(SBF) is used to remove the residual 826.2 nm laser light. Inside the crys-
tal the pump beam is converted into the desired SPDC light of 826.2 nm,
which contains the entangled photons, due the nonlinearity of the crys-
tal. The SPDC light is phase-matched by periodic poling of the crystal and
utilizing the temperature dependence of the refractive index of the crystal.
The crystal is heated to a temperature of T ≈ 61◦C in order to reach the

42
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5.1 Setup 43

Figure 5.2: A 4f-image is an imaging technique which magnifies the imaged ob-
ject, according to M = f3

f2
. The distances in a 4f-image setup are important and

have to be distributed according to the figure. In our setup L2 has a focal length of
f2 = 4 cm and L3 has a focal length of f3 = 75 cm, which result in a magnification
of M = 18.75 cm.

phase-match criterion. Behind the crystal we place a GaP-filter to filter out
the residual 413.1 nm pump beam and a 826.2 nm band-pass filter (BPF)
is used to filter out all the unwanted SPDC light. At 4 cm from the crystal
we place the lens L2 ( f = 4 cm). Together lenses L2 and L3 ( f = 75 cm)
work as a telescope, making a 4f-image of the SPDC light onto the SLMs
(fig. 5.2). This results in a magnification of M = 75

4 = 18.75. The pump
photons are horizontally polarized and we use type I SPDC which will
convert the signal and idler beams to a vertical polarization. However the
SLM holograms only work on a horizontal polarization Therefore we have
to rotate the polarization of the SPDC light by 90◦. We do this by placing a
half-wave plate between L2 and L3, making an angle of 45◦with respect
to the horizontal polarization of the pump beam. The half-wave plate
(λ/2) is then followed by a polarizer (Pol) which filters out the residual
horizontal polarized light. Behind the lens L3 three nonpolarizing beam
splitters (BS) spatially separate the four down-converted light beams from
each other. For two of the four beams right-angle prism mirrors (RPM)
are used to equalize the optical path length of the four down-converted
beams. We align two beams per SLM, one on the left of each SLM-display
(beam A and C) and one on the right of each SLM-display (beam B and D).
To make the setup fit in the available area we found that beams A and D
should make an angle of incidence of θA,D ≈ 10◦at the display of the SLM
and beams B and C should make an angle of incidence of θB,C ≈ 5◦. With
the holograms of the SLMs we can select the desired mode, which are the
zeroth order Gaussian mode and the first order modes. We can also select
the basis of the first order modes in which we want to measure the en-
tangled photons. For the first order mode we look at the Laguerre-Gauss
basis {LG+1

0 , LG−1
0 } and the Hermite-Gauss basis {HG0,1, HG1,0}. Via the

SLMs the beams are far-field imaged onto the single mode fibers which are
connected to the single photon counters. Here we can record single count
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rates for all detectors, as well as 2,3 and 4 fold coincidences for all detector
combinations. We use projective measurements to investigate the OAM
mode space and appropriate entanglement witnesses can be used to check
if the photons of the measured coincidences show entanglement features
[3].

5.2 Alignment Procedure

In this section we give an overview of the alignment procedure used. In
this alignment procedure we make use of the 413.1 nm pulsed pump laser
(at only a few mW power) and 826.2 nm alignment beams from a laser
diode connected to the single mode fibers. As master alignment beam we
used beam A, since this beam has the least degrees of freedom in its optical
path and is therefore the hardest to align.

First it is important to equalize the heights of the single mode fibers, in
order that all beams can travel through the setup with ideally no vertical
displacement and the optical path lengths remain the same. This can be
done by placing a camera in front of the fiber of beam A and measuring
its height. The height of beam A has to be set to match the height of the
display of the SLM, since this is the only element in the setup with a fixed
height. By placing the camera in front of the other fibers their heights can
be matched to the master beam. Further we make sure the beams expe-
rience no significant vertical displacement through out the setup, which
can be best done by moving the camera through the setup while adjusting
the optical elements where vertical displacement of the beams is observed.
Also one should take care that right angles are made by the beams in the
beams splitters and at the mirrors as in fig. 5.1, this will highly ease the
alignment effort and can best be done with use of two pinholes aligned on
the same path. This will already roughly align the four alignment beams.
The two pinholes, separated at a large distance, can also be used to roughly
align the pump beam on the master alignment beam. The alignment of the
pump beam can best be done before placing the crystal and the lenses in
the setup, on accounts of the effects a phase mismatch in the crystal could
cause. A small misalignment of the pump beam onto the single mode fiber
of the master alignment beam would be optimal, because of the difference
of wavelength of the pump beam and the SPDC light.

44
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5.2 Alignment Procedure 45

Lens Alignment and Crystal Position

For the alignment of the lenses we start with L3. It is beneficial to measure
the focal length of the lens first, since this can slightly differ from the given
f = 75 cm. We measure the focal length by pointing an alignment beam
at L3, we place a camera behind L3 and move the camera until it is in the
focus. By measuring the distance between the camera and L3 we find the
focal length of the lens (take into account the distance between the case of
the camera and the CCD chip). We place L3 at a distance to the SLM equal
to the determined focal length of L3. The x, y-position of the lens can be
aligned by measuring the beam position of the alignment beam without
the lens first. We place back L3 and change the x, y-position, using an x, y-
stage, until the alignment beam arrives at the camera at exactly the same
position as it did without L3. Since we want to make a 4f-image of the
SPDC photons at the crystal on the SLMs, we have to place L2 in front of
L3 at a distance that is the sum of their focal lengths, i.e. ∆x = f2 + f3.
In order to do so, we determine the focus position of L3 near where we
want to place L2, which can be done again by moving a camera until the
alignment beam is in its focal point. Now instead of the alignment beam
we will use the pump beam to align L2. We rotate the camera to detect
the pump beam. Since the camera still has to be in the focal point of L2,
we again have to take into account the position of the CCD chip inside the
camera, since that is what has to stay on the same position. We measure
the position of the pump beam and place L2 in the path of the pump beam.
We move L2 along the path of the pump beam until the pump beam is
focused, possibly with the use of an x, y, z-stage. Then we can adjust the
x, y-position of L2 until we measure the same beam position at the camera
as without L2. After attaching L2 to the breadboard we also determine the
position of its focal point from the other side, using again the alignment
beam, with the camera in the same manner as we did before for L3. We
note this as the position where the PPKTP crystal has to be staged. For
the alignment of L1 we want to detect the pump beam, so we have to
rotate the camera again in a way that the position of the CCD chip remains
unchanged. With the help of an x, y, z-stage we can align L1 in the same
manner as we did for L2.

When all lenses are aligned, we place the PPKTP crystal on a x, y-stage
at the determined position. We place a red LED next to L2 outside the
setup and we focus the LED light with another lens ( f = 4 cm) on the
crystal, such that the crystal is illuminated. Via a flip-mirror (FM) a 4f-
image is made of the reflection of the crystal on a CCD camera outside the
setup, using L2 and a lens ( f = 10 cm) on a focal distance from the camera
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(fig. 5.3). By this 4f-image we can look at the whole crystal (we will only
see the edges, since it is anti-reflection coated). We probably have to adjust
the focus of L2 slightly, due to inaccuracy of placing the crystal, which can
be done with the z-component of the x, y, z-stage. We alter the x, y-position
of the crystal such that the pump beam is passing through the crystal far
enough from the edges, which can be seen on the 4f-image of the reflection
of the crystal. The z-position of L1 should be altered slightly to focus the
pump beam perfectly at the crystal. We also look at the 4f-image of the
reflection of the alignment beam on the crystal to see if it is indeed aligned
with the pump beam (fig. 5.4).

When the crystal is placed and the beams are nicely focused onto the
crystal we set the GaP-filter in place behind the crystal. Now it is time to
let the crystal reach its phase-matching conditions. We will phase-match
the SPDC light by controlling the temperature of the crystal, for which we
use a PID temperature controller. From eq. 4.7) we know that the phase-
matching conditions are met, when the peak intensity of the SPDC light
reaches a maximum. Hence, by measuring the peak intensity of the SPDC
light with a camera and changing the temperature of the crystal, we found
a maximum peak intensity at Tcrys = 61◦C (fig. 5.5b).

Near and Far Field Image

All optical elements are set up, therefore it is time to align the alignment
beams more accurately onto each other. We do this by still taking beam
A as the master alignment beam on which we align beams B, C and D.

Figure 5.3: A zoom-in of the setup is shown (with some alterations). A flip mirror
interrupts the beam path and via a lens ( f = 10 cm) a 4f-image of the surface of
the crystal is made.

46
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Figure 5.4: A 4f-image of the reflection of the crystal. The alignment beam is
aligned on the crystal in a Hermite-Gauss mode. The two Hermite-Gauss spots
are actually from the same beam. The left one is probably a reflection effect.

(a) SPDC light at crystal temperature
Tcrys = 44◦C. The phase-matching
conditions are not met. The wave
vectors of the SPDC photons are not
matched, which causes the peak in-
tensity to be dislocated from the cen-
ter (donut shape).

(b) SPDC light at crystal tempera-
ture Tcrys = 61◦C. The peak in-
tensity is maximized and the donut
shape has disappeared. Therefore
the phase-matching conditions are
met.

In order to do this we use a near and far field image. To make such an
image we put two flip mirrors between L2 and L3, where the first flip
mirror transmits a part of the alignment beams to the second flip mirror
and reflects a part to a camera outside the setup. The camera is placed in
the focal point of L3, so that the alignment beams are focused by L3 on
the camera to make a near field image. The second flip mirror reflects the
residual part of the alignment beams through another lens ( f = 50 cm)
which makes a far field image on the camera (fig. 5.6). The near and far
fields are best observed in the Hermite-Gauss mode, which are therefore
selected by the SLMs. Now we can align the alignment beams one by
one on the master beam A. To do this we first align the far field image
by only using the optical element the alignment beams pass before they
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enter the first beam splitter. When the far field image is aligned, we start
with the near field image. The near field image can be aligned by only
changing the coefficients of the first and second order Zernike polynomials
on the SLM, which represent vertical and horizontal displacement of the
beam respectively. Changing the Zernike polynomials will not affect the
far field image, which is therefore still aligned. When all alignment beams
are aligned, they should also all be roughly aligned with the pump beam,
since we have done that already for the master alignment beam.

Optimization of Coincidence Counts

Since the pump beam is roughly focused onto all four single mode fibers,
we can connect the single mode fibers to the photon counters and we
should already measure some photon counts and possibly even some co-
incidence counts. It is now a matter of optimizing the photon and coinci-
dence counts. This can be done by changing the optical path of the pump
beam slightly or changing the coefficients of the Zernike polynomials. We
start with changing the Zernike polynomials. In the software we used to
analyze the photon and coincidence counts, optimization of the Zernike
coefficients was automated. It iterates over a range of values for one of
the Zernike polynomials to find the value which maximizes the coinci-
dence counts. This has to be done for every Zernike coefficients and for all
beams separately. After optimizing the Zernike coefficients the near field
image of the alignment beams will be misaligned again. This has to be
re-aligned, by changing the position of all alignment beams, i.e. including
master beam, to the average position of all four alignment beams. To do

Figure 5.6: A zoom-in of the setup, where the alignment setup for the near and
far field image is shown. Two flip mirrors (FM) interrupt the beam path of the
alignment beams and align the beams on the CCD camera, where a near and far
field image is obtained. To obtain a far field image a lens ( f = 50 cm) is used for
the lower beam path.

48
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5.3 First Results 49

this we can again change the coefficients of the Zernike polynomials. This
procedure will highly increase the coincidence counts, however probably
it has to be even further optimized. To optimize the coincidence counts
further we slightly change the direction and position of optical elements
in the setup. Alterations that are likely to effectively increase the coinci-
dence counts, are changes of the x, y-position of the crystal, the focus of
the lenses and applying a slight beam walk with the mirrors. Changing
the temperature of the crystal can also increase the coincidence counts,
since the phase matching condition is possibly not perfectly met. In fact
the optimization of the coincidence counts is quite a matter of trial and
error and alterations may depend on alterations of other elements, there-
fore we have to repeat this procedure many times. Eventually the photon
counts should roughly approach npc = 106 s−1 and the coincidence counts
should be around 10% of the photon counts.

5.3 First Results

Unfortunately the time span of this project turned out to be insufficient
to fully complete the experiment and to sufficiently measure and analyze
the entangled four-photon states. However we will state and discuss our
experimental accomplishment and our first results, which already indicate
that entanglement features of the generated photon states can be observed
by this experiment.

5.3.1 First Results and Discussion

In our attempt to explore the entanglement features of four-photon OAM
states, we built a setup where four-photon states were generated by SPDC
in a PPKTP crystal. We succeeded to decrease the area taken by the setup
with respect to a former similar setup [3]. We have decreased the area in
order to fit the setup on a single optical table to increase the stability of
the setup. Eventually we have decreased the size of the setup to an area of
75× 85 cm2 and we have built the setup on a portable optical breadboard
of comparable size. We managed to do this by using lenses (L2 and L3)
of shorter focal length with respect to former research [3]. In this former
research lenses L2 and L3 have been used with respectively f2 = 5 cm and
f3 = 100 cm, whereas we have used lenses of f2 = 4 cm and f3 = 75 cm
respectively. We chosen these focal lengths in order to obtain a comparable
ratio between the lenses, which results in a comparable magnification of
the 4f-image of the SPDC light onto the SLMs. Where possible, we built
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the setup in a way that the corners in the optical paths of the light beams
make right angles. This is done to ease the alignment procedure, since this
decreases the mutual dependencies of the degrees of freedom in the setup.

We also developed and applied an alignment procedure as described
in section 5.2, which is in our opinion an efficient and successful way to
handle the alignment of this experiment. An optimal alignment proce-
dure for this experiment is of great importance, since with respect to two-
photon entanglement, four-photon entanglement requires highly increas-
ing experimental accuracy.

Further during this project, the software, responsible for measuring the
photon and coincidence counts of the incoming photons, is improved. The
details of the software and its improvements are not discussed in this the-
sis, for a discussion about the software another thesis about this experi-
ment can be consulted [27].

In order to optimize the alignment of the setup we have mainly focused
on the photon and coincidence counts of beam paths A and B (fig. 5.1).
For these beam paths we have managed to measure photon counts up to
np = 3 · 105 s−1 and we have measured two-photon coincidence counts
between these beam paths of nc = 1.8 · 103 s−1. These counts are still far
to low to obtain significant data about the entanglement features. Ideally
photon counts of approximately np ≈ 106 s−1 should be obtained with
coincidence rates of around a factor 10 less. Unfortunately we lacked the
time to complete the optimization process of the alignment. However,
first indications of the OAM entanglement features have been measured

Figure 5.7: First correlation measurement of the photon coincidences between
channel A and B for the zeroth and first order OAM. The axes denote the OAM
orders of channel A and B and the coincidences are given as a ratio of the photon
counts.
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for these coincidences between A and B. In the photon coincidences of
the two incoming beams we measured correlations in both the zeroth and
first order of the orbital angular momentum. These correlations have been
shown in fig. 5.7. Here the x-axis shows the zeroth and first order of the
OAM ` = −1, 0, 1 of the photons from channel A and the y-axis shows the
zeroth and first order of the OAM ` = −1, 0, 1 of the photons from channel
B. And the coincidences are given as fractions of the photon counts. As can
be seen correlations in the zeroth and first order OAM states have been
observed. Here `A = 0 is correlated to `B = 0 and `A = ±1 is correlated
to `B = ∓1.

5.3.2 Conclusion

To explore the OAM entanglement features of the four-photon states we
still have to highly increase the coincidence counts and the correlations
measured still have to be obtained for several different bases to exclude
the possibility of classical correlations. Further correlations for higher or-
der OAM modes have to be obtained to be able to differentiate the spon-
taneous and stimulated terms in the four-photon entangled state (eq. 4.14).
But the correlations measured do suggest entanglement features and there-
fore they are an indication that this experiment can be exploited to explore
multipartite entanglement features in high-dimensional Hilbert spaces.
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