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Abstract

This thesis is concerned with the design of numerical methods for solving the Schrödinger
equation for a system of two-electrons in a double quantum dot. Theoretical background
is presented for the physics of a two-electron quantum dot. Implementation of the double
dot system is via the QuTiP library is discussed and a numerical approach for the treatment
of the system using the density matrix formalism is presented
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Chapter 1
Introduction

The size of the fundamental building block of the digital computers, the transistor is
quickly approaching its limit, and with that limit the computational power of the tran-
sistor based computer will also reach its limit. Today we are approaching the point where
computer chips are so small, that the quantum mechanical effects are becoming apparant.
The quantum computer was proposed to harness the quantum phenomona for computa-
tional calculations. In 1985 the concept of a Universal Quantum Computer, which is the
quantum analog of the Universal Turing Machine was developed by David Deutsch. He
provided a physical model for quantum computation, and also provided one of the first
examples of a problem that a quantum computer is able to solve exponentially faster than
any algorithm on a classical computer.[1] The quantum mechanical analog of a bit, which
can take the value of 0 and 1, is called a quantum bit (qubit) and it is basically a quantum
mechanical two level system that can take the value 0 and 1 but also a superposition of
these values. There are many different methods for implementing qubits, one of the most
promising one is to encode qubits in electron spins trapped in a semi-conductor quantum
dot. The spins in the quantum dots can then be controlled through conventional Nuclear
Magnetic Resonance techniques (NMR) and electrical pulsing to acquire one and two-qubit
operations. This thesis will discuss the simulation of a two-electron quantum dot system
and implementation of the two qubit system to perform simple gate operations. The thesis
is meant as a summary or guide for people who have interest in quantum dot based spin
systems. All of the code is written with Python, so that it can be easily followed and edited.
The thesis is organized as follows. Chapter 2 provides an overview to the realization of
semi-conductor quantum dots and the physicsal description of the spin model. In Chapter
3, basic theory of NMR is discussed and how it can be used for quantum computation.
Finally in Chapter 4, the computational methods used are reviewed.
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Chapter 2
Spins in quantum dots

2.1 Quantum Dots

A quantum dot is the most extreme example of an artificially structured, low-dimensional
semicondcutor. These structures bind a small number of electrons to a region within the
semiconductor that is of the order of the Broglie wavelength of the electrons λ = h/2m?

eE
where E is the kinetic energy of the electrons which causes discrete energy levels to form. A
general understanding of low-dimensional semiconductors comes from treating the semi-
conductor as a three-dimensional box that confines the conduction electrons. These elec-
trons behave approximately like free particles, with an effective mass, trapped in a box.
By solving the Schrödinger equation, we can find the number of allowed electron states
per volume at a given energy or the density of states. In 3D given a box with size L, the
normalized wavefunction solution is:

ψ(x, y, z) =

√
8

L3
sin (kxx) sin (kyy) sin (kzz) (2.1)

where kx, ky and kz are the wavevectors for an electron in the x, y, and z directions. The
allowed wavevectors satifsy:

kx,y,z =
nx,y,zπ

L
, nx,y,z = 1, 2, 3 . . . (2.2)

and the allowed energies are

Enxnynz =
~2

2m

(
n2
x

L
+
n2
y

L
+
n2
z

L

)
=

~2k2

2m∗e
(2.3)

This enforces that the wavefunction will be zero at the boundaries of the box.
To find the number of states we can imagine a three-dimensional space, with axes

kx, ky, kz (k-space) where each state occupies a volume of π3/L3. The electrons will then
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10 Spins in quantum dots

Figure 2.1: One octant of a sphere in k-space

fill up one octant of a sphere of radius k in k-space. The number of states within this sphere
is given by the following:

1

8

(
4

3
πk3

)
=
N

2

(
π3

L3

)
(2.4)

Where the factor of 1/2 is required because two electrons can occupy the same state due
to spin degeneracy. The density of states can be calculated by the following:

g(E) =
dN

dk
=
dN

dk

dk

dE
=

1

2π2

(
2m∗

~2

)3/2√
E (2.5)

By decreasing the dimensions of the box in one direction, we can treat the semicon-
ductor effectively as a two-dimensional material. The electrons in the 2D case can only be
excited along two motional degree of freedoms. It is possible to decrease the size of the
box along a second dimension. This results in a structure known as a quantum wire which
only allows electrons to be excited along one motional degree of freedom. Fig 2.2 shows a
simple outline of how quantum wells and wires might be fabricated. 2D materials can be
created by interfacing two dissimilar semiconductors resulting in a 2 dimensional electron
gas (2DEG), which is a thin layer of highly mobile electrons that are free to move within
a plane. Further etching of the material will leave a free standing strip of a quantum well
material, where the electrons are confined along x-and z-axis (a quantum wire).

10



2.2 Lateral gate-defined semiconductor quantum dots 11

Figure 2.2: Fabrication of quantum wires.[2]

The resulting density of states for 2D and 1D are given by the following:

g2D(E) =
m∗

π~2
(2.6)

g1D(E) =
1

π~

√
m∗

2E
(2.7)

If all dimensions of the box are decreased sufficiently in size, the electrons will lose
their motional degree of freedoms in every direction and are not able to move like free
particles. Beause there is no k-space to be filled with electrons and all available states exist
only at discrete energies, the density of states for 0D is given by delta functions:

g0D(E) = 2
∑
i

δ(E − Ei) (2.8)

As previously mentioned, the size of the order of confinement is given by the de Broglie
wavelength of the electrons λ = h/2m∗E. At these length scales quantum dots can be
considered as artificial atoms, where the discrete energy levels are similar to the orbitals
in a free atom. It turns out that an electron confined in a very small box of L = 20nm, has
a ground state energy of only 1 meV, which is negligible at room temperature(≈ 23 meV).
[3] To observe the quantum effects of quantum dots, temperature needs to be reduced and
also the size of the structures need to be very small to increase the energy of the states
E ∼ 1

L2 .

2.2 Lateral gate-defined semiconductor quantum dots

In this thesis we will be discussing quantum dots based on lateral semiconductor physics.
In these devices electrons are trapped within a 2 dimensional plane and form a 2 dimen-
sional electron gas (2DEG). Further confinement is achieved electrostatically by using gate

11



12 Spins in quantum dots

Figure 2.3: Electron density of states g(E) for different dimensions.

voltages that induce electric fields which confine the movement of the electrons within the
plane to a very small region, resulting in a quantum dot. A typical architecture of materials
is the heterostructure of GaAs and AlGaAs which is grown using Molecular Beam Epitaxy,
see fig. 2.4. The 2DEG is achieved by doping the AlGaAs layer with Si, which provide
the free electrons. The conduction band can of the materials can be seen on the right. At
the interface between the AlGaAs and GaAs layers, the dopants of AlGaAs are ransferred
to GaAs and the Fermi-levels of the materials are matched which results in a sharp bend-
ing of their energy bands. The electrons are strongly confined in this electrical potential
minimum along the z-direction (growth direction) in such a way that their movement in
that direction can be neglected and thus a 2DEG is formed. The gate electrodes are then
used to create a potential landscape which further confines the electrons in a small island
within the 2DEG, called quantum dot. An example can be seen in figure 2.5 The quantum
dots are connected to electron reservois via ohmic contacts (low-resistance leads). The
electron ransport through the dots can be measured as a current which characterizes the
electrical properties of the quantum dot. An addition of quantum point contacts (QPC)
nearby the quantum dots can be used to measure the charge inside the quantum dot. This
allows a non-distubing probing of the properties of the quantum dot.[5] It is also possible
to farbricate coupled quantum dots, the first demonstration of a lateral double quantum
dot (DQD) system was achieved by Ezlerman et al. (see fig. 2.5c) [6].

12



2.3 Transport through Quantum Dots 13

Figure 2.4: Electron density of states g(E) for different dimensions.

2.3 Transport through Quantum Dots

2.3.1 Single Quantum Dot

It is useful to understand the framework that describes the classical view of electron trans-
port in quantum dots. We will discuss the Constant Interaction (CI) model. In this
model the quantum dot is considered as a metallic island with a self-capacitance CDot
that is weakly coupled to a source and drain via tunnel barriers. This self-capicitance
is given by the sum of the capcitances between the dot and the source, drain and gate:
Cdot = CS + CD + CG. We assume that the single-particle energy levels ψi (due to space
confinement) are unaffected by the Coulomb interactions.

The charge induced on the quantum dot Qdot by the electrostatic potentials Vi on the
source and drain contacts and the gate is given by:

QDot =
∑

CiVi

= (VDot − VS)CS + (VDot − VD)CD + (VDot − VG)CG (2.9)
(2.10)

13



14 Spins in quantum dots

Figure 2.5: a) Schematic view of a lateral gate defined quantum dot.[4] The 2DEG is formed
between the AlGaAs an GaAs layers. Metal gates are used to control the potential of the dot and
the number of electrons in it. b)-c) A scanning tunneling micrograph of a single quantum dot and
a double quantum dot. The gate electrodes are light gray and the two white circles represent the
locations of the dots. The electron occupancy can be measured with QPCs.

Figure 2.6: Schematic drawing of the capacitance model of a quantum dot.[3]

With a bit of rewriting:

QDot + CSVS + CDVD + CGVG = CDotVDot (2.11)

Due to charge quantization of electrons we can write the total charge as an integer number
time the charge quantum Qdot = e−N . The energy of the dot is then given by (following
ref [7]):

U(N) =
(e−N + CSVS + CDVD + CGVG)2

2CDot
+

N∑
i=1

εi (2.12)

where the last term is a sum over the occupied single-particle energy levels εi. Eq. 2.12 has
a quadratic dependency on the voltages and occupation numbers. If we plot the energy

14



2.3 Transport through Quantum Dots 15

Figure 2.7: Energy of the quantum dot for different values of electron occupation N[3]

of the dot for multiple fixed electron numbers while varying one of the gate voltages, we
obtain Fig. 2.7

On the lower end of the gate voltage value, the branch with zero electrons has minimal
energy, thus the quantum dot is unoccupied. When the gate voltage is increased, a new
branch will obtain the minimum energy and so it will be energetically favourable for an
electron to occupy the dot. This way it is possible to sequentially fill the quantum dot with
electrons. Since the dot is coupled to a reservoir (source and drain), it can always relax
to the ground state by exchanging an electron with the reservoir, therefore it will always
go to the branch with minimal energy. In this case it is useful to define a electrochemical
potential µ(N) for the dot:

µ(N) ≡ U(N)− U(N − 1)

=

(
N − 1

2

)
EC +

EC
e−

(CSVS + CDVD + CGVG) + εN (2.13)

where EC = e2/Cdot is the charging energy. This equation can be interepreted as the
amount of energy required to transition between the N -electron ground state and the
(N − 1)-electron ground state. The energy required to add an electron to the dot is given
by the addition energy:

Eadd(N) = µ(N + 1)− µ(N) = EC + εN+1 − εN = EC + ∆E (2.14)

The 2DEG is an electron reservoir with a chemical potential equal to its Fermi energy
µS = µD = εF . The reservoir will therefore fill up the quantum dot with electrons until
µDot(N + 1) > εF , this can be seen in Fig. 2.8a. The electron number is fixed at N .

15



16 Spins in quantum dots

Figure 2.8: [8]

If the chemical potentials of the left and right reservoirs are not equal, then the quan-
tum dot will mediate tunneling of an electron from the source to the drain. However this is
only possible if the chemical potential of the dot is between the chemical potentials of the
source and drain µS > µDot(N) > µD as depicted in Fig. 2.8b, here the chemical potential
of the dot has been changed with respect to the source/drain by chaging the gate voltage.
An electron tunnels from the left reservoir into the quantum dot filling up the µ(N) state.
Since the state in the source will be filled up again rapidly, this process is not reversible.
The Fermi energy of the right reservoir is lower than the chemical potential of the quantum
dot , so the electron can tunnel to an unoccupied state in the right reservoir, resulting in a
transport of a single electron through the dot. The electron number will alternate between
N − 1 and N . The energy difference between the Fermi energies of the two reservoirs are
called the bias windows e−VSD = µS − µD. As long as the chemical potential of the dot
falls within this windows, electron transport is possible. It’s also possible to increase the
range of the bias windows, as depicted in Fig. 2.8c, here an electron is able to tunnel via
the ground state but also an excited state. Fig. 2.8d shows an even bigger bias window,
here the number of electrons alternate between N − 1, N and N + 1. Note that in all cases
it is transport from the N − 1 state to the right reservoir is blocked because the chemical
potential of the dot is higher than the chemical potential of the right reservoir, this is also
called the Coulomb blockade. In measurements one usually fixes VSD and changes VG.
This way it is possible to control the number of electrons confined in a dot, by tuning VG.

2.3.2 Double Quantum Dot

A double quantum dot can be understood similarly to the single quantum dot via the CI
model.

The dots are modeled as a network of tunnel resistors and capacitors Fig. 2.9, where
each dot is coupled by a capacitance to a gate voltage Vgi, i = 1, 2 and to the source
and drain contct via a tunnel barrier represented by a tunnel resistor RL(R) and a capacitor
C(L(R). The dots are also coupled to each other via a tunnel barrier represented by a tunnel
resistor Rm and a capacito Cm. In this system one can define the electrochemical potentials
µ1(N1, N2) and µ2(N1, N2), where N1 and N2 are the electron occupation numbers of dot

16



2.3 Transport through Quantum Dots 17

Figure 2.9: Charge stability diagram as a function of gate voltages. Coupling the quantum dots
through via a capacitance will skew the charge configuration lines[7]

1 and 2 respectively as the following:

µ1 (N1, N2) = U (N1, N2)− U (N1 − 1, N2) = (2.15)
= (N1 − 1/2)EC1 +N2ECm − (1/|e|) (Cg1Vg1EC1 + Cg2Vg2ECm)

µ2 (N1, N2) = U (N1, N2)− U (N1, N2 − 1) = (2.16)
= (N2 − 1/2)EC2 +N1ECm − (1/|e|) (Cg1Vg1ECm + Cg2Vg2EC2)

where ECi are the addition energies of the dots. ECM is the change in energy generated
on one dot when an extra electron is added or removed from the other one. The capacitive
coupling between the dots results in a change of the electrostatic energy of one dot due to
the addition of an electron to the other dot. From the chemical potentials in Eqs. 2.15 and
2.16 one can construct a charge stability diagram Fig. 2.10. Similarly to a single dot, by
varying the gate voltages of the dots it is possible to control the electron occupations of the
dots. The diagram is constructed by denoting the electron combination numbers (N1, N2)
in the phase space of the gate voltages (Vg1, Vg2). This diagram gives the equilibrium
electron occupation numbers N1 and N2 as a function of the gate voltages Vg1 and Vg2.

One can define the electrochemical potentials of the left and right reservoirs to be zero
if no bias voltage is applied µL = µR = 0. If the chemical potentials µ1(N1, N2) and
µ2(N1, N2) are less than zero but µ1(N1 + 1, N2) and µ(N1, N2 + 1) are larger than zero,
then the charge configuration (N1, N2) is the equilibrium situation. Otherwise electrons
are able to escape to the reservoirs. This contraint, and the fact that N1 an N2 are integers,
results into the hexagonal domains in the charge stability diagram. Fig. 2.10a shows the
diagram if the dots are not coupled (CM = 0). In this case the change of the gate voltage
Vg1(2) changes the charge on one dot but does not affect the charge on the other dot. If
there is a finite coupling, (CM 6= 0), then the domains become hexagonal (Fig.2.10b). This
diagram can be used to identify the double quantum dot charge configuration and shows
us how to move between different charge configurations.[9]

The regime of the charge stability diagram we will be discussing is the two-electron
regime, where the occupancy of the double dot can be (0,2), (1,1), or (2,0).

17



18 Spins in quantum dots

Figure 2.10: Capacitance model of the coupled quantum dots [7]

Figure 2.11: Charge stability diagram of a double quantum dot as a function of the gate voltages.
The detuning ε is defined as the axis along the (0,2), (1,1) and (2,0) regime of the diagram.[4]

The levels of the two dots are controlled by the gate voltages VL and VR. The detuning
ε = |e|(VL − VR) denotes how the levels in the two dots are detuned with respect to
eachother and determines the charge state along the two-electron regimes.

The electrons can be separated by changing the potential energy of the two dots, while
making exchange between the dots possible via a tunnel barrier. As the detuning changes,
the energy levels of the two dots with respect to each other shifts and changes the ground-
state of the configuration. Tunneling between the dots will result in change of configura-
tion from two electrons in one dot to one electron in each dot (Fig. 2.12).

18



2.4 Spin states in quantum dots 19

Figure 2.12: Schematic of the double dot potential along the detuning axis. (a), (b) and (c) show
the elctrostatic potential along the x-axis for decreasing ε from the left to the right.

2.4 Spin states in quantum dots

One of the early experimental evidence for the existence of electron spin came from
the Stern-Gerlach experiment, performed in 1922. They found that an electron passing
through a magnetic field will be deflected in one of two possible directions. (Historically
they observed that silver atoms had two possible discrete angular momenta despite having
no orbital angular momentum). This could be explained by an intrinsic magnetic moment
being carried by the electron. A simple physical interpretation of this was suggested in
1925 by George Uhlenbeck and Samuel Goudsmit at Leiden University: a particle spinning
around its own axis, hence this intrinsic magnetic moment is coined “spin”. The interac-
tion of a particle carrying a magnetic moment, µµµ with a magnetic field B is described by
the hamiltonian

H = −µµµ ·B (2.17)

where the minus indicates that it is energetically favorable for a magnetic dipole to be
aligned along the direction of the magnetic field. The magnetic moment of a electron due
to its spin is given by:

µµµe = ge
µB
~
S = ge

e

2me

S (2.18)

where S is the spin quantum number, me and e respectively the mass and charge of the
electron, µB is the bohr magneton and ge is the g-factor which arises due to relativistic
effects and relates the observed magnetic moment of the electron to its spin quantum
number. The value ge is approximately equal to 2 and is in excellent agreement with
experiments. [10]

The spin S of an electron is a quantum mechanical observable similar to the quantum
mechanical angular momentum L and thus it follows the same rules. It is represented
by the operators Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z . Where Ŝi are the projections of the spin onto the
Cartesian axes. Analogous to the quantum number l, we can introduce a spin quantum
number s, thus the multiplicity of the spin component in a given direction is (2s + 1). For
fermions, e.g. electrons, the spin value is s = 1/2 which means that the multiplicity of the
spin operators are 2. When referring to the spin state of an electron, what is usually meant

19



20 Spins in quantum dots

is the eigenstates of the Ŝz operator, corresponding to its two eigenvalues ~/2 and −~/2 (
m~ with m = −s,−s + 1 . . . , s = −1/2, 1/2). These eigenstates are called the spin down
and spin up states and are also represented by |↓〉 and |↑〉.

In the most simple case, a quantum dot containing just a single electron being subject to
a static external magnetic field B, the spin results into splitting of the orbitals into Zeeman
doublets [6] (more detailed analysis is given in section ...). Where the ground state is
given by the by state of the electron spin pointing up |↑〉 and the excited state is given by
the electron spin pointing down |↓〉. The difference in energy between the two states E↑
and E↓ is given by the Zeeman energy: ∆E = E↓ − E↑ = gµBB. Loss et al. proposed in
1998 [11] to use the spin property of electrons as the qubit states |0〉 ≡ |↑〉 and |1〉 ≡ |↓〉.
Oscillating magnetic fields can be used that couples to the magnetic momentum of the
electron which can alter the spin state. This mechanism can be used to create one-qubit
gates required for universality.

2.4.1 Two-electron spin states

The two-electron spin operator is simply the sum of the operators of each spin S = S1 +
S2 and Ŝ2 = Ŝ2

1 + Ŝ2
2 . Each electron can have spin up or spin down, so there are four

possible spin configurations ↑↑, ↑↓, ↓↑, ↓↓. Since electrons are fermions, the complete
two-electron state Ψ = χ(s1, s2)ψ(r1, r2) (consisting of spin χ(s1, s2) and the spatial part
(orbitals) ψ(r1, r2)) has to be anti-symmetric under exchange of the particle variables. This
means in the case that the spatial part is anti-symmetric, the spin state must be symmetric
and if the spatial is symmetric, the spin part must be anti-symmetric. The eigenstates of
the two-electron spin operators are given by the anti-symmetric so-called singlet state that
has total spin s = 0 and m = 0,

χ(s1, s2) = |S〉 =
1√
2

(| ↑〉1 ⊗ | ↓〉2 − | ↓〉1 ⊗ | ↑〉2) =
1√
2

(| ↑↓〉 − | ↓↑〉) (2.19)

and the three symmetric triplet states,

|T−〉 = | ↓↓〉

|T0〉 =
1√
2

(| ↑↓〉+ | ↓↑))

|T+〉 = | ↑↑〉 (2.20)

that have total spin s = 1. The states |T±〉 have the quantum number m = ±1 (corre-
sponding to the z component of the spin) and the state |T0〉 has m = 0. The complete

20



2.4 Spin states in quantum dots 21

wavefunctions are given by:

ΨS =
| ↑↓〉 − | ↓↑〉√

2
⊗ ψS (r1, r2)

ΨT0 =
| ↑↓〉+ | ↓↑〉√

2
⊗ ψAS (r1, r2)

ΨT+ =| ↑↑〉 ⊗ ψAS (r1, r2)

ΨT_ =| ↓↓〉 ⊗ ψAS (r1, r2) (2.21)

Where ψ(A)S(r1, r2) stands for the (anti-)symmetric combination of the right and left orbital
envelopes ΨR(r) and ΨL(r).[12]

ψS (r1, r2) =
λS√

2
(ΨL (r1) ΨR (r2) + ΨR (r1) ΨL (r2))

ψAS (r1, r2) =
λAS√

2
(ΨL (r1) ΨR (r2)−ΨR (r1) ΨL (r2)) (2.22)

where λ(A)S are normalization factors. The symmetrization requirement of the wave func-
tion results in the so-called exchange force, which is not a real force, but rather a purely
geometrical consequence of the symmetrization requirement.[13] This exchange interac-
tion results in an effective attractive force between bosons and an effective repulsive force
between fermions. When the electrons are in the singlet state, having a symmetrical spa-
tial wave function, they effectively behave as bosons and the exchange interaction causes
an attraction between the electrons. In the triplet state, having an anti-symmetrical spa-
tial wave function, the exchange interaction results in an effective repulsive force between
the electrons. The difference in the energy of the triplet |T0〉 and singlet |S〉 is called the
exchange energy J .[14]

2.4.2 Hamiltonian model

The Hamiltonian of the double quantum dots is described by the Hubbard model. This
model was introduced as a simple approximation of interacting particles in a lattice with
only two terms in the Hamiltonian, the on-site interaction (Coulomb interaction) energy
U and a tunneling term t. Other effects such as the Zeeman-splitting and quantum effects
can be readily accomodated in the generalized Hubbard model, making it a suitable model
for the spin physics in quantum dots.[15] We will consider only the low energy states in
the (1,1) charge regime |↑, ↑〉, |↓, ↑〉, |↑, ↓〉, |↑, ↑〉, and the states in the singlet states in the
(2,0) and (0,2) charge regime |S(2, 0)〉 = |S, 0〉, |S(0, 2)〉 = |0, S〉. The triplet states in the
(0,2) and (2,0) charge regime are much higher in energy and will be neglected. [4]

The two-electron double dot Hamiltonian is given by the following:

Ĥ = Ĥε + Ĥt + ĤU + ĤZ (2.23)

Here Ĥε is the detuning term, describing the gate-controlled energy shift ε of the dots with
respect to each other. Ĥt describes the hopping (tunneling) term of the electrons from
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22 Spins in quantum dots

one dot to the other. The third term ĤU accounts for the on-site interaction (Coulomb
interaction). The last term ĤZ describes the Zeeman coupling when external magnetic
fields are introduced. The Hamiltonian terms are:

Ĥε = −ε
∑
i,σ

c†iσciσ (2.24)

Ĥt = t
∑
i,j,σ

c†iσcjσ, where i 6= j (2.25)

ĤU =
∑
i

Uini↑ni↓ (2.26)

ĤZ =
∑
i

Ezi
2

(ni↑ − ni↓) (2.27)

where c†iσ and ciσ are the creation and annihilation operators respectively, where i = 1, 2
and σ =↑, ↓ indicate the index of the dot and the spin respectively. The operators obey the
canonical fermion commutation rules,

c†iαcjβ + cjβc
†
iα = δi,jδα,β, c†iαc

†
iα = 0, c†iαc

†
jβ = −c†jβc

†
iα (2.28)

The number operators niσ ≡ c†iσciσ gives the number of electrons in dot i with spin σ.
The term Ezi describes the Zeeman energy dot i and is proportional to the magnetic field
Ezi = gµBBi. This can be different for each dot due to inhomogeneity of the magnetic
field. In the basis {| ↓, ↓〉, | ↓, ↑〉, | ↑, ↓〉, | ↑, ↑〉, |S, 0〉, |0, S〉} the Hamiltonian reads:

Ĥ =


−Ēz 0 0 0 0 0

0 −∆Ez 0 0 t t
0 0 ∆Ez 0 −t −t
0 0 0 Ēz 0 0
0 t −t 0 U1 + ε 0
0 t −t 0 0 U2 − ε

 (2.29)

Where Ēz = (Ez1 + Ez2)/2 is the average Zeeman energy of the dots and ∆Ez = (Ez1 −
Ez2)/2 is the difference in Zeeman energy between the dots. We also define |S(1, 1)〉 =

1√
2

(|↑, ↓〉 − |↓, ↑〉) and |T0(1, 1)〉 = 1√
2

(|↑, ↓〉+ |↓, ↑〉) with one electron in each dot. If we
consider only the singlet state |S(2, 0)〉 and the singlet state in the (1,1) configurationl
|S(1, 1)〉 we obtain after projection:

Ĥsinglet =

(
0 t
t ε

)
(2.30)

Here we set the charging energy U1 = 0 and the magnetic field B1 = 0 as these will result
in nothing more than a shift in the energies. We see that at ε = 0 the singlet states between
the (1,1) and (2,0) charge regime are degenerate and the new eigenstates are symmetric
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2.4 Spin states in quantum dots 23

and anti-symmetric superpositions of the two singlet states with a splitting of 2t. This
results in a hybridization of the states and electron exchange is possible. The eigenvalues

(energies) of the matrix can be found by diagonalizing the matrix : E± =
ε±
√
ε2 + 4t2

2

Figure 2.13: The left plot shows the eigenvalues of the hamiltonian as a function of the detuning
for t = 0. The right plot shows the eigenvalues for t = 100, the states hybridize and exchange is
possible

For a complete understanding of the spin states, the eigenvalues of the full Hamiltonian
are plotted against the detuning ε to obtain the energy dispersion of the double dot system.
in Fig. 2.15. For zero magnetic fields and no tunnel coupling, the states have a linear
dispersion relation and the ground state changes from singlet with both electrons in the
left dot (2,0) to the configuration (1,1) where the triplet ↑↑, ↓↓ and the anti-parallel states
are degenerate, to the singlet with the (0,2) configuration. The width of the split region
is given by the charging energies U1 and U2, in this example both chosen U1 = U2 = 1000
(Fig. 2.15a). A finite magnetic field introduces the Zeeman energies Ez1 and Ez2 and
results in a lifting of the degeneracy of the triplet states and the anti-parallel states (Fig.
2.15b). The sign of the Lande factor determines whether the spin up or spin down is
lower in energy and shifts the triplet T_ and T+ states accordingly, in this case T+ is shifted
down while T_ is shifted up the singlet branch. Due to the inhomogeneity of the magnetic
field, the degeneracy of the anti-parallel is also lifted. Finally when a tunnel-coupling is
introduced as in Fig. 2.15c, we see that the anti-parrallel states are shifted down in energy
as ε moves away from zero. This can be understood if we write the anti-parallel state as:

|↑, ↓〉 =
1√
2

(|S(1, 1)〉+ |T0(1, 1)〉)

|↓, ↑〉 =
1√
2

(|T0(1, 1)〉 − |S(1, 1)〉) (2.31)

Because the anti-parallel states have a |S(1, 1)〉 component and as we’ve seen before the
|S(1, 1)〉 state has an avoided crossing with the |S(2, 0)〉 and |S(0, 2)〉 states, there is an
anti-crossing between the (1,1) anti-parallel states and the singlets |S(0, 2)〉 and |S(2, 0)〉.
The decrease of the energy of the anti-parallel states is denoted by J(ε)/2, where J(ε) is
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24 Spins in quantum dots

the exchange coupling of the two electron spins (Fig.2.14). This controllable exchange
interaction J(ε) will serve as the basis for generating two-qubit gate operations.

Figure 2.14: Energy dispersion of the double dot system as a functino of the detuning ε. At high
detuning the energies of the anti-parallel spin states are dereased by the exchange interaction J(ε).
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2.4 Spin states in quantum dots 25

Figure 2.15: The energy dispersion of the double dot Hamiltonian for different values of magnetic
fields and tunnel-coupling. a) Uncoupled Hamiltonian with B1 = B2 = 0 and t = 0. b) Uncoupled
Hamiltonian with B1 = B2 6= 0 and t = 0. c) Coupled Hamiltonian with finite magnetc fields and
tunnel-coupling.
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Chapter 3
Spin Qubit Control for Quantum
Computation

3.1 Quantum computation

A qubit is a quantum mechanical two-level system spanned by the states |0〉 and |1〉. It can
be realized either by a true two-level system (like the polarization angles of a photon, or
the spin of an electron) or a system in which there are two states (usually the ground state
and first excited state) that are seperable in energy from the rest of the eigenstates of the
system or in some way decoupled from them. For example consider an electron moving
in the potential from the nucleus of an atom. The eigenstates are given by Ψn(x, t) =
Ψn(x)e−iEnt/~ and satisfy the time-independent Schrödinger equation

ĤΨn(x) = EnΨn(x) (3.1)

Where the solutions are the different atomic orbitals (1s, 2p, 3d, . . . ). Another well known
system is the quantum harmonic oscillator where the states are related to Hermite polyno-

mials with corresponding energy levels: En = ~ω
(
n+

1

2

)
, n = 0, 1, 2, 3, . . .

A more simpler model is the one-dimensional particle in a box of size L, where the
states are given by:

Ψn(x) =

√
2

L
sin
(nπx
L

)
, En =

n2~2π2

2mL2
, n = 1, 2, 3, . . . (3.2)

Then to limit the dynamics of the system to the ground state Ψ0 and first excited state Ψ1,
so that only transitions between these two states is possible. Besides spin qubits, there
are many other realizations for qubits, for example superconducting qubits[16] and atoms
and ions[17]. In general the state of a two-level system can be written by a wavefunction:

Ψ(x, t) = c0(t)Ψ0(x) + c1(t)Ψ1(x) (3.3)
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28 Spin Qubit Control for Quantum Computation

The dynamics of the system is determined by the time-dependent coefficients c0(t) and
c1(t) and the probability of finding the particle in a state Ψi is simply Pi(t) = |ci(t)|2. To
induce transitions between the two states we need to change the Hamiltonian. We assume
that this time-dependent hamiltonian is a transformation that leaves the states in the space
spanned by Ψ0 and Ψ1 (so it doesn’t transition to some other states). Given that the states
are orthonormal:∫

dx|Ψ0(x)|2 =

∫
dx|Ψ1(x)|2 = 1,

∫
dxΨ∗0(x)Ψ1(x) = 0 (3.4)

We can find a general time-dependent hamiltonian Ĥ(t) that can be written in the form:

Ĥ(t)Ψ(x, t) = Ĥ(t) [c0(t)Ψ0(x) + c1(t)Ψ1(x)] =

=c0(t)Ĥ(t)Ψ0(x) + c1(t)Ĥ(t)Ψ1(x) =

c0(t) [h00(t)Ψ0(x) + h10(t)Ψ1(x)] + c1(t) [h01(t)Ψ0(x) + h11(t)Ψ1(x)]

where

h00(t) =

∫
dxΨ∗0(x)Ĥ(t)Ψ0(x)

h10(t) =

∫
dxΨ∗1(x)Ĥ(t)Ψ0(x)

h11(t) =

∫
dxΨ∗1(x)Ĥ(t)Ψ1(x)

h01(t) =

∫
dxΨ∗0(x)Ĥ(t)Ψ1(x)

3.1.1 Qubit formalism

In general the time-dependent state of a qubit is given by:

|Ψ(t)〉 = c0(t)|0〉+ c1(t)|1〉 (3.5)

where ci(t) are time-dependent complex functions. This state is normalized so |c0(t)|2 +
|c1(t)|2 = 1 and it satisfies the Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 (3.6)

where
Ĥ(t) = h00(t)|0〉 〈0 |+h01(t)| 0〉 〈1 |+h10(t)| 1〉 〈0 |+h11(t)| 1〉 〈1| (3.7)

is the time-dependent Hamiltonian operator.
The qubit states obey the following relations:
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3.1 Quantum computation 29

〈0|0〉 = 〈1|1〉 = 1 normalization
〈0|1〉 = 〈1|0〉 = 0 orthogonality
|0〉〈0|+ |1〉〈1| = 1̂ completeness

(3.8)

We can label our basis states with vectors in the following way:

|0〉 =

(
1
0

)
〈0| = (10) (3.9)

|1〉 =

(
0
1

)
〈1| = (01) (3.10)

|0〉〈0| =
(

1 0
0 0

)
|0〉〈1| =

(
0 1
0 0

)
(3.11)

|1〉〈0| =
(

0 0
1 0

)
|1〉〈1| =

(
0 0
0 1

)
(3.12)

The Schrödinger equation in this basis is given by:

i~
(
ċ0(t)
ċ1(t)

)
=

(
h00(t) h01(t)
h10(t) h11(t)

)(
c0(t)
c1(t)

)
(3.13)

3.1.2 Bloch sphere

A general qubit state |ψ〉 can be written as

|ψ〉 = c0 |0〉+ c1 |1〉 (3.14)

where c0 and c1 are complex values numbers satisfying the normalization condition |co|2 +
|c1|2 = 1. Using Euler’s formula we can write the complex numbers in polar form:

c0 = r0e
iφ0 and c1 = r1e

iφ1 (3.15)

Multiplying a state with a complex number, does not change the physical state, i.e. |ψ〉 →
λ |ψ〉. Choosing λ = e−iφ0 then our equivalent state is:

e−iφ0 |ψ〉 = e−iφ0 ·
(
r0e

iφ0|0
〉

+ r1e
iφ1|1〉) = r0 |0〉+ r1e

i(φ1−φ0) |1〉 (3.16)

This means that we are interested in the relative phase φ = φ1−φ0 between the two states
and not their absolute phases. Using the normalization condition we obtain r2

0 + r2
1 = 1,

this reduces the degree of freedom to 2. Setting r0 = cos θ and r1 = sin θ we obtain an
equivalent representation of |ψ〉

|ψ〉 = cos θ |0〉+ eiφ sin θ |1〉 (3.17)

29



30 Spin Qubit Control for Quantum Computation

Figure 3.1: The bloch sphere representation

This representation can be visualized by the Bloch sphere, which is a unit 2-sphere.
Due to the symmetry, any state can be written as:

|ψ(θ, φ)〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (3.18)

where θ and φ are such that they cover the whole sphere without periodicity; θ ∈ [0, π)
and φ ∈ [0, 2π). Rotation of a qubit state around the axes for an angle α are given in terms
of the pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, , σz =

(
1 0
0 −1

)
(3.19)

Rotations of the qubit state around the axes can be performed with the following transfor-
mations:

Rx(α) =e−i
α
2
σx = cos

α

2
I− i sin

α

2
σx =

(
cos α

2
−i sin α

2

−i sin α
2

cos α
2

)
(3.20)

Ry(α) =e−i
α
2
σy = cos

α

2
I− i sin

α

2
σy =

(
cos α

2
− sin α

2

sin α
2

cos α
2

)
(3.21)

Rz(α) =e−i
α
2
σz = cos

α

2
I− i sin

α

2
σz =

(
e−iα/2 0

0 eiα/2

)
(3.22)

Using spherical coordinates we can define a unit Bloch vector

r = (cosφ cos θ, sinφ sin θ, cos θ) (3.23)
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3.2 Two-level system 31

Now we see that the expectation values of the Pauli matrices σx,y,z have the form of a
projection on the respective axes:

〈ψ|σx |ψ〉 =
eiφ + e−iφ

2
2 sin

θ

2
cos

θ

2
= cosφ sin θ (3.24)

〈ψ|σy |ψ〉 = −ie
iφ − e−iφ

2
2 sin

θ

2
cos

θ

2
= sinφ sin θ (3.25)

〈ψ|σy |ψ〉 = cos2 θ

2
− sin2 θ

2
= cos θ (3.26)

3.2 Two-level system

Most important concepts in quantum computing can be illustrated with nuclear magnetic
resonance (NMR). Electron spins trapped in lateral gate defined Quantum Dots were pro-
posed as qubits by Loss et al. in 1998 [11] and the first quantum factoring algorithm was
implemented with NMR quantum computing [18]. In this chapter we will discuss electron
spin resonance (EPR), which is conceptually analogous to NMR but instead of spins of
atomic nuclei, it is electron spins that are excited.

3.2.1 Single spin Hamiltonian

The spin of an electron is 1/2 which makes it a two level system and an excellent candidate
for quantum bits. In this section we will discuss the characterstics of a spin 1/2 system.
Since all quantum mechanical two - level systems correspond to the spin 1/2 system, the
following results are quite general and can be transferred to other two - level systems for
realization of quantum bits. The spin up ↑ and spin down ↓ states of an electrons can be
mapped to the blochsphere |↑〉 ≡ |0〉 and |↓〉 ≡ |1〉. As we’ve seen, the expectation value of
the pauli matrices provide the projection of the Bloch vector to one of the axes, hence the
spin operator can be written in terms of the Pauli matrices:

Ŝx =
~
2
σx, Ŝy =

~
2
σy, Ŝz =

~
2
σz (3.27)

The magnetic moment µµµ of a spin 1/2 particle is given by ( in this case the electron):

µµµ = g
µB
~
S (3.28)

In a magnetic field Bz(t) = Bz(t)ẑ along the ẑ axis, the Hamiltonian of the particle is given
by:

H = −µµµ ·Bz(t) = −gµB
~
Bz(t) · S = −gµB

~
Bz(t)Sz (3.29)

= −g
2
µBBz(t)σz (3.30)
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32 Spin Qubit Control for Quantum Computation

The Schrödinger equation (eq. 2.13) with this hamiltonian is the following:

i~
(
ċ0(t)
ċ1(t)

)
= −gµB

2

(
Bz(t) 0

0 −Bz(t)

)(
c0(t)
c1(t)

)
(3.31)

These are two uncoupled first order linear differential equation and the solution can be
easily found through seperation of variables, giving the following:(

c0(t)
c1(t)

)
=

(
ei∆/2 0

0 e−i∆/2

)(
c0(0)
c1(0)

)
,∆ =

gµB
~

∫ t

0

dt′Bz (t′) (3.32)

Comparing this to rotation matrices equation(2.22) of a general qubit we see that the
unitary operator has the form of a rotation around the z-axis Rz(−∆) with an angle −∆:

U = Rz(−∆) =

(
ei∆/2 0

0 e−i∆/2

)
(3.33)

Applying this operator to a general qubit state:

Rz(−∆) |ψ(θ, φ)〉 = |ψ(θ, φ−∆)〉 (3.34)

More insight can be gained by using the Bloch sphere equations: if the magnetic field is
time independent, Bz(t) = B0 = B0ẑ, the hamiltonian is given in the |0〉 and |1〉 basis:

H = −µµµ ·B0 = −gµB
2
B0σz =

(
−~ω0/2 0

0 ~ω0/2

)
(3.35)

Here ω0/2π is the Larmor frequency and is defined by ω0 ≡
gµB
~
B0. We have chosen to

place the energy zero half way between our two states, this means that the hamiltonian
tells us that the energy of the |0〉 or |↑〉 is lower than the |1〉 or |↑〉 by ~ω0 (see figure 3.2)

Figure 3.2: Zeeman splitting of the two spin states by an energy ~ω0[19]

Now let’s consider the time evolution of a state |ψ(t)〉 with initial condition |ψ(0)〉 =

cos
θ0

2
|0〉+eiφ0 sin

θ0

2
|1〉. Since the hamiltonian is time-independent, the evolution is given

by:

|ψ(t)〉 = U(t) |ψ(0)〉 = e−iHt |ψ(0)〉 (3.36)
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3.2 Two-level system 33

Now using the hamiltonian and initial state:

|ψ(t)〉 = e−i
ω0
2
tσz

(
cos

θ0

2
|0〉+ eiφ0 sin

θ0

2
|1〉
)

= e−i
ω0
2
t cos

θ0

2
|0〉+ ei

ω0
2
teiφ0 sin

θ0

2
|1〉

= cos
θ0

2
|0〉+ ei(φ0+ω0t) sin

θ0

2
|1〉

In the third equality we used the freedom to multiply the state with an arbitrary phase,
in this case eiω0/2. Comparing this to the general qubit state, the phase φ is evolving in
time as φ(t) = φ0 + ω0t. This means that the Bloch vector is processing around the applied
magnetic field with a frequency ω0 =

gµB
~
B0, as mentioned previously, known as the

Larmor frequency. (see figure 3.3)

Figure 3.3: Bloch sphere representation a spin state precessing around a constant magnetic field

3.2.2 Control Hamiltonian

To control the state of the spin 1/2 particle in a static magnetic field B0ẑ, an oscillating
magnetic field B1(t) can be applied along the x̂-axis with frequency ω. The Hamiltonian
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34 Spin Qubit Control for Quantum Computation

of this system is given by:

H(t) = −gµB
2

(B0σz +B1 cos(ωt+ ϕ)σx) (3.37)

=

−~ω0

2
0

0
~ω0

2

−
 0

~ω1

2
cos(ωt+ ϕ)

~ω1

2
cos(ωt+ ϕ) 0

 = H0 + V (t)

where ω0 ≡
gµB
~
B0 and ω1 ≡

gµB
~
B1. We set the phase ϕ = 0 as it is unimportant for the

calculation of the probabilities. Note that [H(t), H(t′)] 6= 0, thus we are not able to write

the time evolution operator in the regular way U(t) = exp
(
−i
∫ t

0

H(t′)dt′
)

. To solve this

problem time-dependent perturbation theory can be used with the Dyson series, but this
gives us only an approximate solution. Instead it is possible to obtain an exact closed form
solution with the ansatz that the eigenstates |Ψ(t)〉 of H(t) can be expanded as a linear
combination of the stationary eigenstates of the unperturbed Hamiltonian H0:

|ψ(t)〉 = c0(t)e−iω0t/2 |0〉+ c1(t)eiω0t/2 |1〉 (3.38)

Inserting this in the Schrödinger equation results in [20]:

|c1|2 =
ω2

1

(ω − ω0)2 + ω2
1)

sin2

(
t

2
Ω

)
(3.39)

This is the Rabi formula, it gives the probability of the spin flipping or transitioning to

the |1〉 state, with Ω ≡
√

(ω − ω0)2 + ω2
1 the Rabi frequency. For most values of ω, |c1|2 ≈

ω2
1

(ω−ω0)2+ω2
1
� 1 and hence the transition is negligible. However on the resonance frequency

ω = ω0, the probability is |c1|2 = sin2

(
ω1t

2

)
which means that is oscillates between 0 and

1 with frequency ω1 Fig. 3.4.
More insight into this problem can be gained by using the rotating frame transforma-

tion and the vector model which we’ll discuss next. We will look in the reference frame
that is rotating at the Larmor frequency. To transform the Hamiltonian to the rotating
frame, we can use the unitary operator Û = e−i

ωrf
2
tσz where ωrf is the frequency of the

rotating frame. The Hamiltonian in the rotating frame is then given by the following
transformation:

Ĥrot = ÛĤÛ † + i~
∂Û

∂t
Û † (3.40)

First calculating the 2nd term in 3.40:

i~
∂Û

∂t
Û † = i~

(
−iωrf/2e−iωrf t/2 0

0 iωrf/2e
iωrf t/2

)(
eiωrf t/2 0

0 e−iωrf t/2

)
=

(
~ωrf/2 0

0 −~ωrf/2

)
(3.41)
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3.2 Two-level system 35

Figure 3.4: Rabi oscillations of a two-level system. The probability of finding a particle spin state
that is subjected to oscillating magnetic fields, in the excited state |1〉 as a function of time t. Here
the zeeman frequency of the two-level system is ω0 = 500 MHz. The probability has been plotted
for three different values of the frequency of the magnetic field, between ω0 and 3ω0

The Hamiltonian of the system was given by 3.37:

Ĥ = −~ω0

2
σz −

~ω1

2
cos(ωt+ ϕ)σx = Ĥ0 + V̂ (t) (3.42)

Since Ĥ0 and Û are both given by σz, they commute, so

ÛĤ0Û
† = Û Û †Ĥ0 = Ĥ0 =

(
−~ω0/2 0

0 ~ω0/2

)
(3.43)

Now calculating the time-dependent part in the rotating frame Û V̂ (t)Û †

Û V̂ (t)Û † =

(
e−iωrf t/2 0

0 eiωrf t/2

)(
0 −~ω1

2
cos(ωt+ ϕ)

−~ω1

2
cos(ωt+ ϕ) 0

)(
eiωrf t/2 0

0 e−iωrf t/2

)
= −~ω1

2

(
0 cos(ωt+ ϕ)e−iωrf t)

cos(ωt+ ϕ)eiωrf t 0

)
(3.44)

Using Euler’s formula to decompose the oscillating terms into two counter-rotating terms
we obtain:

Û V̂ (t)Û † = −~ω1

2

(
0 1

2
(ei(ωt+ϕ) + e−i(ωt+ϕ))e−iωrf t

1
2
(ei(ωt+ϕ) + e−i(ωt+ϕ))eiωrf t 0

)
= −~ω1

2

(
0 1

2
(ei(ω−ωrf )t+iϕ + e−i(ω+ωrf )t−iϕ)

1
2
(ei(ω+ωrf )t+iϕ + e−i(ω−ωrf )t−iϕ) 0

)
(3.45)
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36 Spin Qubit Control for Quantum Computation

Here we have a slowly rotating ω− ωrf and a quickly rotating term ω+ ωrf . If the time
evolution induced by the applied field is much slower than ω0, we can neglect the quickly
rotating terms. This approximation is called the Rotating Wave Approximation (RWA). By
setting ωrf = ω0, we set the reference frame to the frame that is rotating with the Larmor
frequency. By also setting the frequency of the applied magnetic field to the transition
frequency ω0 we obtain:

Û V̂ (t)Û † = −~ω1

2

(
0 1

2
(eiϕ + e−i2ω0t−iϕ)

1
2
(ei2ω0t+iϕ + e−iϕ) 0

)
(3.46)

(3.47)

Applying the RWA results in:

Û V̂ (t)Û † = −~ω1

4

(
0 eiϕ

e−iϕ 0

)
= −~ω1

4
(cos(ϕ)σx − sin(ϕ)σy) (3.48)

The total Hamiltonian is given by adding 3.41, 3.43 and 3.48.

Ĥrot = −~
2

(ω0 − ωrf )σz −
~ω1

4
(cos(ϕ)σx − sin(ϕ)σy) (3.49)

However we set ωrf = ω0 so the first term vanishes. The introduction of the phase ϕ
results in a parameter that allows us to generate Hamiltonians proportional to σx or σy or
any angle between them. This allows rotations of the qubit state round any axis in the xy-
plane. For example by setting φ = 0 we obtain rotations around the x-axis. In the rotating
frame the spin will precess around the x-axis similarly to the precession of the spin around
the z-axis when applying a static magnetic field along the z-axis. In the lab frame, there
will be a combination of precession around the x- and z-axis.

Figure 3.5: Evolution of a spin in the rotating frame (left) and lab frame (right). [19]
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3.3 Single-qubit gates

Single-spin manipulations provide the basic one-qubit gates needed for universal quantum
computation. In general, a one-qubit gate will consist of a sequence of oscilliating magnetic
field pulses of different lengths (to control the amount of rotation) and a sequence of
phases (to select the rotation axis). For quantum information processing it is necessary
for the spin to reach any specified point on the Bloch sphere by a unitary operation U . A
rotation around an arbitrary axis n̂ can be defined as

Rn̂(θ) ≡ exp
[
−iθn̂ · σ̂

2

]
(3.50)

Where n̂ is the axis of rotation, θ is the angle of rotation and σ̂ is a vector of Pauli matrices.
Since qubit-unitaries are just 3D rotations with a phase, it is also possible to use Euler’s
rotation theorem to realize any qubit rotation using a sequence of rotations about just two
axes. For any single-qubit rotation Rn̂, there are real numbers α, β, γ, and δ such that

Rn̂(θ) = eiαRz(β)Ry(γ)Rz(δ). (3.51)

The Pauli spin matries themselves are also quantum logic gates, for example σx = iRx(π)
which is analogous to the classical NOT gate, which flips the |↑〉 to |↓〉. Other useful
quantum gates are the Hadamard gate, H and the phase gate Zφ,

H = ei
π
2Rz(π)Ry(−π/2) =

1√
2

(
1 1
1 −1

)
(3.52)

which maps the state |0〉 to (|0〉+ |1〉)/
√

2 and |1〉 to (|0〉 − |1〉)/
√

2, which means that the
states are in a superposition,

Zφ = e
iφ
2 Rz(φ) =

(
1 0
0 eiφ

)
(3.53)

which leaves the basis gate |0〉 unchanged and maps |1〉 to eiφ |1〉.

3.4 Two-qubit gates

A classical system of two bits is represented by the four states 00, 01, 10, and 11, similarly
a two qubit system as four computational basis states denoted by |00〉, |01〉, |10〉, |11〉.
However a quantums state can also exist in a superposition of these four states

|ψ〉 = α00|00〉+ α01|01〉+ α10|01〉+ α11|11〉 (3.54)

so that it occupies a four-dimensional Hilbert space. In general a system of n qubits in-
habits an 2n dimensional Hilbert space. This exponential increase in the size of the Hilbert
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38 Spin Qubit Control for Quantum Computation

space with linear increase in the number of qubits underlies the power of quantum com-
puters. To describe the qubit operators in matrix notation we define the Kronecker product
⊗ as the following: Given an m×n matrix A and a p×q matrix B then A⊗B is the mp×nq
matrix:

A⊗B =

a11B · · · a1nB
... . . . ...

am1B · · · amnB

 (3.55)

For example the matrix representation of the |10〉 state is

(
0
1

)
⊗
(

1
0

)
=


0
0
1
0

 (3.56)

The kronecker product can also be used to describe operations applied on only one of the
qubits. For example, suppose the Hadamard gate is applied to the second qubit of a system
in the state |00〉

|00〉 = |0〉 ⊗ |0〉 H2−→ |0〉 ⊗ (|0〉+ |1〉)/
√

2 = (|00〉+ |01〉)/
√

2 (3.57)

Similarly, kronecker products can be used to write down single-qubit operators in a multi-
qubit system without the need for explicit labels. For example H2 = I ⊗ H. Which means
that nothing is done to the first qubit, while a Hadamard gate is applied to the second
qubit. Simultaneous single-qubit operations are represented by H1,2 = H1⊗H2. Two qubit
gates that can be written in terms of kronecker products are a somewhat trivial extension
of the corresponding gates in a single qubit system. A more interesting two-qubit gate is
the controlled-NOT gate which is equivalent of the classical XOR gate.

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3.58)

This gate can not be written as a kronecker product of two single qubit operations. The
CNOT gate in combination with the Hadamard gate and the phase gate form a set of
universal quantum gates necessary for quantum computation, meaning that any desired
operation can be build from a sequence of these gates. An important gate is the controlled-
Z gate, which performs the transformation

|11〉 CZ−→ − |11〉 (3.59)
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while not affecting the other three basis states. This gate can be converted to a CNOT gate
using Hadamard gates in the following way:

CNOT = (I⊗H)CZ(I⊗H)

=
1

2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ·


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 (3.60)

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Another interesting gate is the controlled-Phase gate

UCPhase(φ2, φ1) =


1 0 0 0
0 eiφ2 0 0
0 0 eiφ1 0
0 0 0 1

 (3.61)

Using the CPhase gate it is possible to generate the CZ gate and any other transformation

CZij that adds a phase of π to the basis states |i, j〉 CZij−→ −|i, j〉, where i, j ∈ {0, 1}. For
φ1 = φ2 = π/2 the CPhase gate corresponds to CZij up to single-qubit ẑ rotations and a
global phase.

eiφCZij = Rz
1

(
(−1)j

π

2
)
)
⊗Rz

2

(
(−1)i

π

2

)
UCPhase

(π
2
,
π

2

)
(3.62)

where Rz(θ) = e−i
θ
2
σz are the single qubit rotations. For example the CZ gate can be

constructed by:

eiφCZ = eiφCZ11 = Rz
1

(
−π

2

)
⊗Rz

2

(
−π

2

)
UCPhase

(π
2
,
π

2

)

=

(
ei
π
4 0

0 e−i
π
4

)
⊗
(
ei
π
4 0

0 e−i
π
4

)
1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1



=


i 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

 = i


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 = eiπ/2CZ

3.5 Two spin hamiltonian

In the following section we will see how a two spin system, described by the Heisenberg
model of spins, can be used to achieve the CPhase. We will then show that the two

39



40 Spin Qubit Control for Quantum Computation

spin hamiltonian, described by the extended Hubbard model, in quantum dots reduces
to the Heisenberg model, therefore it can be used to create the CPhase gate necessary for
universal quantum computation.

3.5.1 Heisenberg model

In a system of two electron spins, the Hamiltonian can be described by the Heisenberg
Hamiltonian

Ĥ = JS1 · S2 + µµµ1 ·B1 + µµµ2 ·B2 (3.63)
= JS1 · S2 + B1 · S1 + B2 · S2 (3.64)

where we have obsorbed the physical constants µB and the g-factor into the magnetic
fields gµBB ≡ B. Here Si = σσσi/2 describes the spin of electron i, σσσ is a vector of the
Pauli matrices σσσ = σxx̂ + σyŷ + σzẑ and σσσi labels what qubit is affected, i.e. σσσ1 = σσσ ⊗ I

and σσσ2 = I ⊗ σσσ. J is the exchange interaction between the two spins, i.e. the energy gap
between the spin triplet and singlet states. We will use this Hamiltonian to generate the
controlled-Phase gate UCPhase up to a basis change. The Heisenberg Hamiltonian in matrix
form reads:

1

2


Bz

1 +Bz
2 Bx

2 − iB
y
2 Bx

1 −B
y
1 0

Bx
2 + iBy

2 Bz
1 −Bz

2 − J J Bx
1 − iB

y
1

Bx
1 + iBy

1 J Bz
2 −Bz

1 − J Bx
2 − iB

y
2

0 Bx
1 + iBy

1 Bx
2 + iBy

2 −Bz
1 −Bz

2

 (3.65)

If we consider he magnetic field to only have a z-component, Bx
i = By

i = 0 the Hamiltonian
reads

H =


Ēz 0 0 0
0 −J/2 + ∆Ez J/2 0
0 J/2 −J/2−∆Ez 0
0 0 0 −Ēz

 (3.66)

where Ēz = (Bz
1 + Bz

2)/2 is the average Zeeman energy of the two spins and ∆Ez =
(Bz

1 − Bz
2)/2 is the diference in Zeeman energy. By diagonalizing the matrix H = PλP−1

we find the following eigenvalues:

λ =


Ēz 0 0 0

0 −J/2 +
√
J2 + ∆E2

z 0 0

0 0 −J/2−
√
J2 + ∆E2

z 0
0 0 0 −Ēz

 (3.67)

In the limit J << ∆Ez we obtain for the eigenvalues of the |01〉 and |10〉 states

λ± = −J
2
±∆Ez

√
1 +

J2

∆E2
z

≈ −J
2
±∆Ez

(
1 +

J2

∆E2
z

+O(J4/∆E4
z )

)
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In the lowest order the eigenvalues are

λ =


Ēz 0 0 0
0 −J/2 + ∆Ez 0 0
0 0 −J/2−∆Ez 0
0 0 0 −Ēz

 (3.68)

The time evolution operator of the hamiltonian in terms of the eigenvalues and the basis
transformation P is given by:

U = e−iHt/~ = Pe−iλt/~P−1 = Pe−iH0t/~


1 0 0
0 e−iJt/2~ 0 0
0 0 e−iJt/2~ 0
0 0 0 1

P−1 (3.69)

Where H0, (U0 = e−iH0t/~) is the Hamiltonian due to the Zeeman splitting which causes the
single spins to rotate around the ẑ-axis. In the basis that the Hamiltonian H is diagonal
P−1HP , the evolution operator reduces to the UCPhase gate up to single qubit ẑ-rotations.

U = U0UCPhase = Rz
1

(
Bz

1

~
t

)
⊗Rz

2

(
Bz

2

~
t

)
UCPhase (3.70)

which is exactly the controlled-Z gate CZij. Another interesting gate that can be generated
with the Heisenberg Hamiltonian is the SWAP gate, this gate swaps the states |10〉 → |01〉.
The SWAP operation is obtained by switching on the interaction J(t) between the spins S1

and S2 for a period of time such that
∫ t

0
J(τ) = π.

USWAP = e−iπ/4 exp (iπS1 · S2) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (3.71)

3.5.2 Hubbard model

In section 2.4.2 we have seen that the Hamiltonian for two electrons in a double quantum
dot can be written in the basis {| ↓, ↓〉, | ↓, ↑〉, | ↑, ↓〉, | ↑, ↑〉, |S, 0〉, |0, S〉} as

Ĥ =


−Ēz 0 0 0 0 0

0 −∆Ez 0 0 t t
0 0 ∆Ez 0 −t −t
0 0 0 Ēz 0 0
0 t −t 0 U1 + ε 0
0 t −t 0 0 U2 − ε

 (3.72)

Where Ēz = (Ez
1 +Ez

2)/2 is the average zeeman energy of the dots and in terms of the mag-
netic fields Ez

i = gµBB
z
i . Here the constants g and µB will be absorbed into the magnetic
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42 Spin Qubit Control for Quantum Computation

fields so Ēz = (Bz
1 +Bz

2)/2 and ∆Ez = (Bz
1 −Bz

2)/2. To find the Unitary evolution operator
of this system we need to diagonalize the Hamiltonian, however this can be incredibly
cumbersome in this case since the characterstic equation of the matrix (H − λI) = 0 is
a 6th-order polynomial. Instead we will follow ref. [21] and use 2nd-order perturbation
theory. The hamiltonian can be split in the form H = H0 + V where H0 is the diagonal
part of the hamiltonian H and V is the off-diagonal part of the hamiltonian H. If V is con-
sidered a perturbation of H0, i.e. the strength of the interaction V must be much smaller
than H0, then it is possible to use the Schrieffer-Wolff (SW) transformation [22]. The SW
transformation is a unitary transformation that removes the off-diagonal terms to the first
order, hence it is a method of diagonalization in a perturbative manner. It is also useful for
projecting out high energy excitations of the Hamiltonian in order to obtain an effective
low energy model. Since we want to relate the double dot hamiltonian to the Heisen-
berg hamiltonian, it is convenient to project the double dot hamiltonian to the subspace
{| ↓, ↓〉, | ↓, ↑〉, | ↑, ↓〉, | ↑, ↑〉}, the Schrieffer-Wolf transformation provides an acccurate ef-
fective projected Hamiltonian for this subspace in the case that the eliminated subspace
is energetically well seperated from the subspace of interest, meaning the strength of the
interaction V must be much smaller than the energy difference between the subspaces, i.e.
U1,2 ± ε− Ēz >> t.

The SW transformation is a unitary transformation that diagonalizes the hamiltonian
to a desired order

He = U †HU = eSHe−S (3.73)

where S is the generator of the transformation and is an anti-hermitian operator, S† = −S.
By expanding the unitary transformations eS in series

eS = 1 + S +
1

2
S2 + . . . (3.74)

we obtain a series expansion for the transformed hamiltonian He in terms of commutators

He = H + [S,H] +
1

2
[S, [S,H]] + . . . (3.75)

In terms of H0 and V the transfomation becomes

He = H0 + V + [S,H0] + [S, V ] +
1

2
[S, [S,H0]] +

1

2
[S, [S, V ]] + . . . (3.76)

In order to make the Hamiltonian diagonal, the generator S can be chosen such that
[S,H0] = −V , substituting this in the previous equation cancels the off-diagonal term
V to the first order, therefore the effective hamiltonian to the second order is given by

He = H0 +
1

2
[S, V ] +O(S3) (3.77)

If we could determine S exactly, it is straightforward to compute the SW hamiltonian,
however in general finding S is difficult. Ref [22] and [23] discuss methods of finding S.
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3.6 Grover’s Algorithm 43

We will use ref [21] and show the result of the transformation, a full derivation can be
found in appendix A. The effective Hamiltonian in the subspace {| ↓, ↓〉, | ↓, ↑〉, | ↑, ↓〉, | ↑, ↑
〉} reads:

He =


−Ēz 0 0 0

0 −∆Ez − 2t2/U 2t2/U 0
0 2t2/U ∆Ez − 2t2/U 0
0 0 0 Ēz

 (3.78)

which is the same as the Heisenberg hamiltonian 3.66 with the exchange interaction J =
4t2/U . This means that a CPhase gate can be created by a purely electrical gating of the
tunneling barrier between the neighboring quantum dots. If the barrier potential is high,
i.e. t ≈ 0, tunneling is forbidden between the dots and the qubit states are stable and do
not evolve in time. If the barrier is pulsed to a low voltage, we see that the Hubbard model
description of the double dot reduces to a Heisenberg Hamiltonian with a coupling that is
time dependent (t′ is time)

H(t′) = J(t′)S1 · S2 (3.79)

where J(t′) = 4t2(t′)/U , here the tunnel matrix element t(t′) is made time dependend
by lowering and increasing the tunnel barrier, i.e. turning the tunnel matrix on and off,
through electrical gating of the potential barrier between the dots. In the previous chapter
we saw that the Heisenberg Hamiltonian can be used to obtain the controlled-Z gate CZij
and the swap gate USWAP , therefore these gates can be obtained via the two-electron
Hamiltonian by pulsing the dots accordingly.

3.6 Grover’s Algorithm

In this section we will discuss the famous Grover’s algorithm for two qubits and demon-
strate its implementation via the two-electron quantum dot. Grover’s Algorithm is consid-
ered a search algorithm that searches for a specific item in an unstructured set of N items,
e.g. a database. The algorithm requires a black-box type predicate that can be evaluated
on all the items in the set, usually called the Oracle. Consider the function which is always
equal to 0 except for a single value v

y = f(x) =

{
0 if x 6= ω
1 if x = ω

(3.80)

If x matches a desired entry ω in a database then y will return 1 and 0 for other values
of x which represent other items in the database. Conventional algorithms, searching a
database for N items require O(N) queries in the worse case to find the desired item ω.
However in the quantum domain, this function can be evaluated on a superposition of
all database items which results in O(

√
N) queries [24] to find the desired item, this is a

quadratic speedup over the classical case. A database of N entries can be represented by
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44 Spin Qubit Control for Quantum Computation

a N -dimensional Hilbert space which can be constructed by only n = log2N qubits. The
function y = f(x) maps database entries to 0 or 1, the oracle is constructed in the form of
a unitary operator Uω that acts as follows

Uω|x〉 = (−1)f(x)|x〉 (3.81)

This unitary operator marks the desired index ω with a minus sign −ω by rotating its phase
by π radians. Fig. 3.6 show the quantum circuit of Grover’s algorithm. The algorithm’s
first step is to initialize the n = log2N qubits each with value |0〉. These qubits are then
transformed into a equal superposition state by applying one qubit Hadamard gates on
each input qubit.

Figure 3.6: Quantum circuit depiction of Grover’s quantum search algorithm.[25]

The next step is to increase the probability amplitudes of those indices in the superpo-
sition that match the search criteria x = ω. This is achieved by additional gates that are
applied to increase the probability amplitudes of the marked index ω and decreases the
probability amplitudes of the unmarked indices, these are represented by grover’s diffu-
sion operator. Each iteration of Grover’s algorithm increases the amplitude of the desired
state ω by O(1/

√
N). Therefore, at most

√
N iterations are required to maximize the prob-

ability that a measurement will yield the desired state ω. In general, the optimal number
of iterations required is R ≈ π

4

√
N [26]. For the special case of N = 4, corresponding

to two qubits, only a single iteration is needed. The oracle for the two qubit case can
constructed by the controlled-Z Uω = CZij gate, since this gate does exactly what we
want from the oracle, it marks the desired state |ij〉 by applying a π radian shift to the

state, |ij〉 CZij−→ −|ij〉. For example consider the two qubit Hilbert space H with basis states
{|00〉 , |01〉 , |10〉 , |11〉}. The equal superposition state is given by

|ψ〉 =
1

2
(|00〉+ |01〉+ |10〉+ |11〉) (3.82)

Let’s say the desired state we want to mark is the state |10〉 then the controlled-Z gate(oracle)
applied on the state |ψ〉 will return

Uω |ψ〉 = CZ10 |ψ〉 =
1

2
(|00〉+ |01〉 − |10〉+ |11〉) (3.83)
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In matrix notation

CZ10 |ψ〉 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1




1/2
1/2
1/2
1/2

 =


1/2
1/2
−1/2
1/2

 (3.84)

In the previous section we’ve seen that the two electron Hamiltonian (Hubbard model)
reduces to CZij gate, therefore it can be used as the oracle for a two qubit system. Fig. 3.7
shows the gate sequence of the Grover’s algorithm for two qubits.

Figure 3.7: a, Gate sequence of single-qubit and controlled-Z gates implementing Grover’s
algorithm[27],[28]. b, Rotation of the single qubits by π radions around the y-axis obtaining a
maximal superposition state. c, CZij is the oracle that marks the desired state |ij〉 by inerting its
phase. d, the rotation Rπ/2y of the first qubit turns the state into a Bell state, e, rotation Rπ/2y on the
second qubit produces a state identical to (d), the application of CZ00 undoes the entanglement,
producing a maximal superposition state. f, The last rotations yield the desired output state |ij〉.

Both qubits are initialized in the |0〉 state and rotated around the y-axis by π/2 degrees
to place them in a superposition. Next the oracle CZij is applied to mark the desired
state and the other single qubit and two qubit gates are applied to increase the amplitude
of the desired state while decreasing the amplitude of the other states (Grover diffusion
operator).

45





Chapter 4
Dynamics of Two Spin Qubits

In this chapter we will discuss different methods for solving the Schrödinger numerically
for a double dot system. The Schrödinger equation governs the dynamics of the wavefunc-
tion Ψ generated by the hamiltonian Ĥ

i~
d

dt
|ψ〉 = H |ψ〉 (4.1)

In the basis {| ↓, ↓〉, | ↓, ↑〉, | ↑, ↓〉, | ↑, ↑〉, |S(0, 2)〉, |S(2, 0)〉} the wavefunction takes the form
of a vector:

|ψ〉 = c1| ↓, ↓〉+ c2| ↑, ↓〉+ c3| ↓, ↑〉+ c4| ↓, ↓〉+ c5|S(0, 2)〉+ c6|S(2, 0)〉

=

c1
...
c6

 (4.2)

where ci = ci(t) are the time dependent coefficients of the wave function. The Hamiltonian
Ĥ takes the form of a matrix H with elements Hij

Hij = 〈ψi| Ĥ |ψj〉 (4.3)

For clarity we will write the Hamiltonian 2.23 again, in matrix form it reads:

H =


−Ēz 0 0 0 0 0

0 −∆Ez 0 0 t0 t0
0 0 ∆Ez 0 −t0 −t0
0 0 0 Ēz 0 0
0 t0 −t0 0 U1 + ε 0
0 t0 −t0 0 0 U2 − ε

 (4.4)

where Ēz = ~(Bz
1+Bz

2)/2 is the average zeeman energy of the dots and ∆Ez = ~(Bz
1−Bz

2)/2
is the difference in zeeman energy. The constants g, ~ and µB have been absorbed in the
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48 Dynamics of Two Spin Qubits

magnetic fields gµB
~ Bi

k ≡ Bi
k. To control the single-qubit rotations, an oscillating magnetic

field in the x-direction which will couple to both electron spins in the dots

Hmw =
∑
k

Bmw cos(ωkt+ φk)(σx ⊗ I + I⊗ σx) (4.5)

Rotation of a particular qubit k is achieved by choosing the frequency of the oscillating
magnetic field ωk such that it corresponds to the larmor frequency ωk =

gµB
~
Bz
k ≡ Bz

k

of qubit k. Bmw is the driving amplitude of the signal and φk is the phase. To simplify
the calculations, the Hamiltonians are transformed into a rotating frame via the basis
transformation

H̃ = UHU † + i~
dU

dt
U † (4.6)

where

U = e−i
ω1t
2
σz ⊗ e−i

ω2t
2
σz (4.7)

The transformed Hamiltonians in the rotating frame are (see Appendix B for derivation)

H̃ =


0 0 0 0 0 f0
0 0 0 0 t0e

i∆Ezt/~ t0e
i∆Ezt/~

0 0 0 0 −t0e−i∆Ezt/~ −t0e−i∆Ezt/~
0 0 0 0 0 0
0 t0e

−i∆Ezt/~ −t0ei∆Ezt/~ 0 U1 + ε 0
0 t0e

−i∆Ezt/~ −t0ei∆Ezt/~ 0 0 U2 − ε

 (4.8)

and the microwave Hamiltonian transformed is

H̃mw =
∑
k

1

2


0 Ωke

i(ωk−ω2)t Ωke
i(ωk−ω1)t 0 0 0

Ω∗ke
−i(ωk−ω2)t 0 0 Ωke

i(ωk−ω1)t 0 0
Ω∗ke

−i(ωk−ω1)t 0 0 Ωke
i(ωk−ω2)t 0 0

0 Ω∗ke
−i(ωk−ω1)t Ω∗ke

−i(ωk−ω2)t 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (4.9)

where Ωk = Bmwe
iφk and the Rabi frequency is |Ωk| = Bmw. The Schrödinger equation

i~∂t |ψ〉 = (H̃(t) + H̃mw(t)) |ψ〉 takes the form of a linear system of ordinary differential
equations

ċ(t) = A(t)c(t) (4.10)

4.1 QuTiP implementation

The Quantum Toolbox in Python (QuTiP) is an open-source framework written in the
Python programming lanuage that is designed for simulating the quantum dynamics of
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systems. QuTiP is very efficient in describing quantum systems described in second-
quantization formalism through vectors (bra/ket vectors) and matrices (operators). It also
offers easy implementations of time-dependent Hamiltonians through string based code,
this means it is possible to just write the Hamiltonian in string form and QuTiP will handle
all the numerics. This allows for an easy-to-use environment which saves substantial code
development time. QuTiP’s solver’s are all based on the ZVODE routine in Scipy, which
uses one of the most popular methods (Adams and Backward Differentiation Formula) for
solving ODE’s like the schrödinger equation 4.16.

4.1.1 Time-dependent solver

To solve the Schrödinger equation i~∂t|ψ〉 =
(
H̃(t) + H̃mw(t)

)
|ψ〉 we will be using the

mesolve function of QuTiP. The time-dependent coefficients fi(t) of the Hamiltonian are
represented by strings in the following way:

Htotal = H0 −
∑
i

fi(t)Hi (4.11)

where H0 are the time-independent part and Hi denote the positions in the matrix
where the coefficients fi(t) should be placed. To illustrate this, consider the double dot
Hamiltonian in the rotating frame

H̃ =


0 0 0 0 0 0
0 0 0 0 t0e

i∆Ezt/~ t0e
i∆Ezt/~

0 0 0 0 −t0e−i∆Ezt/~ −t0e−i∆Ezt/~
0 0 0 0 0 0
0 t0e

−i∆Ezt/~ −t0ei∆Ezt/~ 0 U1 + ε 0
0 t0e

−i∆Ezt/~ −t0ei∆Ezt/~ 0 0 U2 − ε

 (4.12)

The time-independent terms are

H0 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 U1 + ε 0
0 0 0 0 0 U2 − ε

 (4.13)

while the time-dependent terms are

−
2∑
i

fi(t)Hi =


0 0 0 0 0 0
0 0 0 0 f1(t) f1(t)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −f1(t) 0 0 0
0 0 −f1(t) 0 0 0

+


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −f2(t) −f2(t)
0 0 0 0 0 0
0 f2(t) 0 0 0 0
0 f2(t) 0 0 0 0


(4.14)
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50 Dynamics of Two Spin Qubits

with f1(t) = −t0ei∆Ezt/~ and f2(t) = −t0e−i∆Ezt/~.
The microwave Hamiltonian that controls the single-qubit rotations can be constructed

constructed in a similar way, the time independent part of H̃mw is zero, while the time-
dependent part consist out of the four coefficients

f1(t) = Ωke
i(ωk−ω2)t, f2(t) = Ωke

i(ωk−ω1)t, f3(t) = f1(t)∗, f4(t) = f2(t)∗ (4.15)

where fi(t)∗ is the complex conjugate of fi(t).
For example consider the double dot system with a negligible tunnel coupling t0 ≈ 0

that is subjected to an oscillating magnetic field with a frequency set equal to the Larmor
frequency of qubit 1.

H0=set_Hamiltonian(B1=0,B2=0,t0=0,U1=1e12,U2=1e12,detuning=0)

This creates the time-independent part of the Hamiltonian with on-site energies U1 =
U2 = 1012 Hz.

Hmw1 = np.zeros((6,6),dtype=complex);Hmw1[0,1]=1;Hmw1[2,3]=1;

Hmw2 = np.zeros((6,6),dtype=complex);Hmw2[0,2]=1;Hmw2[1,3]=1;

Hmw3 = np.zeros((6,6),dtype=complex);Hmw3[1,0]=1;Hmw3[3,2]=1;

Hmw4 = np.zeros((6,6),dtype=complex);Hmw4[2,0]=1;Hmw4[3,1]=1;

H0=qt.Qobj(H0);Hmw1=qt.Qobj(Hmw1);Hmw2=qt.Qobj(Hmw2);

Hmw3=qt.Qobj(Hmw3);Hmw4=qt.Qobj(Hmw4)

args = {'B1':2e9, 'B2':1e9, 'Bmw':5e6,'vi':0,'w_k':2e9}

time = '*(0e-9<=t<=1000e-9)'#time interval

Om='-0.5*2*np.pi*Bmw*np.exp(1j*vi)' #complex amplitude

Om_c = '-0.5*2*np.pi*Bmw*np.exp(-1j*vi)'#conjugate

Hmw1_coeff = Om+'*np.exp(1j*2*np.pi*(w_k-B2)*t)'+time

Hmw3_coeff = Om_c+'*np.exp(-1j*2*np.pi*(w_k-B2)*t)'+time

Hmw2_coeff = Om+'*np.exp(1j*2*np.pi*(w_k-B1)*t)'+time

Hmw4_coeff = Om_c+'*np.exp(-1j*2*np.pi*(w_k-B1)*t)'+time

The Hmwi terms construct the microwave matrix elements and Hmwi_coeff terms are
the corresponding time-dependent coefficients, the system starts in the state |↓↓〉. These
are then given to QuTiP’s mesolve function in the following way

H = [H0,[Hmw1,Hmw1_coeff],[Hmw3,Hmw3_coeff],

[Hmw2,Hmw2_coeff],[Hmw4,Hmw4_coeff]]

psi0=qt.basis(6,0)

output = qt.mesolve(H,psi0,tlist,[],[],args=args,

options=qt.Options(nsteps=200000, method='bdf'))
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4.1 QuTiP implementation 51

The amplitude of the magnetic field Bmw is set to 5 · 106 Hz while the Larmor frequen-
cies of the two electrons are set to B1 = 2 · 109 and B2 = 109. Since the drive fre-
quency ωk = B1 of the ac magnetic field is on resonance with respect to qubit 1 but
off-resonance with respect to qubit 2, only qubit 1 will undergo Rabi oscillations with
frequency

√
(ωk −B1)2 +B2

mw) ≈ Bmw.
Plotting the results |ci(t)|2:

tlist = np.linspace(0,1000e-9,1000)

plot_states(tlist,output)

Figure 4.1: Time evolution of the two electron states using QuTiP mesolve function

4.1.2 Stiffness slowdown

Most of QuTiP’s solver’s approach the Schrödinger equation or equivalent equations, e.g.
Lindblad Master equation or Bloch-redfield equation, by representing them as a system of
ordinary differential equations and subsequently using SciPy’s library which provides con-
ventional numerical methods to approximate solutions. Consider the initial value problem
(IVP)

y′(t) = f(t, y(t)) (4.16)

for the complex-valued function y of the real variable t, where y′ ≡ dy
dt

and f is a given
complex-valued function. In terms of the wavefunction and Hamiltonian y(t) = c(t) and
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52 Dynamics of Two Spin Qubits

f(t, y(t)) = A(t)y(t). This differential equation will be considered with an initial condition:
given two numbers t0 and y0, there is a solution to 4.16 for t > t0 such that

y(t0) = y0 (4.17)

SciPy’s library uses the the VODE (Variable Coefficient ODE solver)[29] routine to solve
4.16. It uses a general k-step linear multistep formula which has the form

K1∑
i=0

= αiyn−i = h

K2∑
i=0

βifn−i (4.18)

Where the coefficients αi, βi are computed by interpolating the function f at the previous
points fk , k = {0, 1, 2 . . . n − 1} via Lagrange polynomials. For example the Backward
Differentiation Formula (BDF) is characterized by setting K1 = q, the order of the method,
and K2 = 0

q∑
i=0

αiyn−i = hβ0f (tn, yn) (4.19)

The stepsize h is the internal stepsize of the solver that determines the amount of times n

the solver needs to be called between two timesteps n =
|t0 − t1|

h
. The stepsize is chosen in

such a way that it will satisfy a user defined absolute and relative tolerance. For example,
instead of using QuTiP we can directly access SciPy’s library to calculate a simple Rabi
oscillation.

from scipy.integrate import ode

import numpy as np

w1=2e9;w2=1e9;t0=0;B=5e6 #dot parameters

vi=0;wk=2e9;u=1e12

args = [wk,w1,w2,B,t0,u,vi]

y0 = [1,0,0,0,0,0] #initial values

t = np.linspace(0,1000e-9,1001)

dt = t[1]-t[0]

def func(t,y,args): #the function f(t, y(t))

wk,w1,w2,B,t0,u,vi = args

x0,x1,x2,x3,x4,x5=y

dE = np.exp(1j*(w1-w2)/2*t)

dEc=np.exp(-1j*(w1-w2)/2*t)

mw1 = B/2*np.exp(1j*vi)*np.exp(1j*(wk-w1)*t/2)

mw2 = B/2*np.exp(1j*vi)*np.exp(1j*(wk-w2)*t/2)

mw1c = B/2*np.exp(-1j*vi)*np.exp(-1j*(wk-w1)*t/2)

mw2c = B/2*np.exp(-1j*vi)*np.exp(-1j*(wk-w2)*t/2)

f = [mw1*x2+x1*mw2,
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t0*x4*dE+t0*x5*dE+mw1*x3+mw2c*x0,

-t0*x4*dEc-t0*x5*dEc+mw1c*x0+mw2*x3,

mw1c*x1+mw2c*x2,

t0*x1*dEc-t0*x2*dE+x4*u,

t0*x1*dEc-t0*x2*dE+x5*u]

g = [-1j*2*np.pi*i for i in f]

r = ode(func).set_integrator('zvode',atol=1e-8,rtol=1e-6

,nsteps=2500,method='bdf')

r.set_initial_value(y0,0).set_f_params(args)

psi = []

while r.successful() and r.t < t[-1]:

psi.append(r.integrate(r.t+dt))

for i in range(6):

plt.plot(t/1e-9,abs(np.array(psi)[:,i])**2)

plt.xlabel('t (ns)')

plt.ylabel('probability')

plt.show()

This will give us the same result as Fig. 4.1. Now that we know how QuTiP solves the
Schrödinger equation, let’s look at a more complicated operation. Consider the SWAP gate
which can be achieved with the Heisenberg Hamiltonian by turning on the tunnel coupling
J = 4t20/U , USWAP = e−iπ/4 exp(iJS1 · S2t/~) such that Jt/~ = π[30]

Ht1=np.zeros((6,6),dtype=complex);Ht1[4,1]=1;

Ht1[5,1]=1;Ht1[2,4]=-1;Ht1[2,5]=-1;

Ht2=np.zeros((6,6),dtype=complex);Ht2[4,2]=-1;

Ht2[5,2]=-1;Ht2[1,5]=1;Ht2[1,4]=1;

Ht1=qt.Qobj(Ht1);Ht2=qt.Qobj(Ht2)

H0=set_Hamiltonian(0,0,0,U1=1e12,U2=1e12,0)

H0 = qt.Qobj(H0)

args = {'B1':2e9, 'B2':2e9, 'Bmw':5e6,'vi':0,'w_k':2e9,'t0':4.3e9}

tlist = np.linspace(0,20e-9,1000)

Ht1_c = '(5e-9<=t<=11.8e-9)*-2*np.pi*t0*np.exp(-1j*2*np.pi*(B1-B2)/2*t)'

Ht2_c = '(5e-9<=t<=11.8e-9)*-2*np.pi*t0*np.exp(1j*2*np.pi*(B1-B2)/2*t)'

H = [H0,[Ht1,Ht1_c],[Ht2,Ht2_c]]

psi0=qt.basis(6,1)

output = qt.mesolve(H,psi0,tlist,[],[],args=args,

options=qt.Options(nsteps=250000, method='bdf')
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54 Dynamics of Two Spin Qubits

,progress_bar=True)

plot_states(tlist,output)

>>> Total run time: 18.19s

Figure 4.2: SWAP operation via the Heisenberg exchange interaction J = 4t20/U

Here the exchange interaction has been turned on and off as a step function between 5
ns and 11.8 ns. A problem that arises for this seemingly simple calculation is the amount of
time to calculate the solution, it took 18.19 real time seconds to find the solution for only 20
ns simulation time range. The slowdown is apparent when the ODE system contains terms
that differ by a large magnitude and that are coupled to eachother via the differential
equations. For example in the SWAP operation the differential equation y′ = f(t, y) has
the following form (for brevity y(t)→ y):

y′0
y′1
y′2
y′3
y′4
y′5

 =


0 0 0 0 0 0
0 0 0 0 t0e

i∆Ezt/~ t0e
i∆Ezt/~

0 0 0 0 −t0e−i∆Ezt/~ −t0e−i∆Ezt/~
0 0 0 0 0 0
0 t0e

−i∆Ezt/~ −t0ei∆Ezt/~ 0 U1 0
0 t0e

−i∆Ezt/~ −t0ei∆Ezt/~ 0 0 U2




y0

y1

y2

y3

y4

y5



y′0
y′1
y′2
y′3
y′4
y′5

 =


0

t0e
i∆Ezt/~(y4 + y5)

−t0e−i∆Ezt/~(y4 + y5)
0

t0e
−i∆Ezt/~y1 − t0ei∆Ezt/~y2 + U1y4

t0e
−i∆Ezt/~y1 − t0ei∆Ezt/~y2 + U2y5

 (4.20)
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The components y′1, y
′
2 are coupled with the components y′4, y

′
5 through the term U1 and U2

respectively. In the example of Fig. 4.2 the terms U1 = U2 and t0e±i∆Ezt/~ differ by a large
magnitude, log U1

t0
≈ 3 three orders of magnitude. This is a typical problem of stiffness

of the ODE system. Stiffness is often described in terms of multiple time scales. If the
ODE system has widely varying time scales and the physical phenomena (i.e. the solution
modes) that change on fast scales are stable, then the problem is stiff [31]

In general it is quite difficult to quantitively characterize the stiffness of an ODE system.
For constant variable coefficients, it is possible to use the eigenvalues of the matrix A of the
ODE system y′ = Ay to characterize the stiffness, however for a variable coefficient system
y′ = A(t)y the eigenvalues are not good indicators for stiffness.[32] To get some general
idea of stiffness, consider the following simple initial value problem (following [31]),

y′ = −100(y − sin(t)), y(0) = 1 (4.21)

with a solution that (Fig. 4.3) that rapidly varies for a short time interval 0 ≤ t ≤ 0.03
but then varies much more slowly and is approximated by y(t) ≈ sin t. The ODE solver will
use a small stepsize h for the initial small interval of rapid change, if the timestep is too
big, then the initial part of the solution will not be approximated well. When y(t) ≈ sin t,
it’s possible to use a much higher stepsize since the variation is much slower, which will
increase computational time. However when the solution contains rapidly varying terms
and slowly varying terms throughout the whole solution, then a small stepsize is necessary
for the whole range of calculation which will drastically increase computational time.

Figure 4.3: Approximate solution to equation 4.21 using BDF

Coming back to ODE of the SWAP operation 4.20 the rapidly varying terms are the spin
states |↑↓〉 , |↓↑〉 while the slowly varying terms are the singlet states S(2, 0) and S(0, 2). If
we set U1 = U2 such that log U1

t0
≈= 1 the rate of the variation of the solutions will be

closer to eachother which means that the solver can use a larger stepsize h therefore less
computational time is required. Fig. 4.4 is the solution for the same ODE system as the
SWAP 4.20 but with values U1 = U2 and t0 being of similar size, the variations of the
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56 Dynamics of Two Spin Qubits

singlet states become similar to the variation of the other spin states, the computational
time for this calculation is reduced from 18.19 sec to 1.93s, which validates the stiffness of
the ODE.

Figure 4.4: Approximate solution to the SWAP operation 4.20 with U and t0 being of similar value
with Total run time: 1.93s

For quantum computation we are only interested in the states {| ↓, ↓〉, | ↓, ↑〉, | ↑, ↓〉, | ↑, ↑
〉} as these correspond to the computational basis states {|00〉 , |01〉 , |10〉 |11〉}. Previously
we’ve seen that the double dot Hamiltonian reduces to the Heisenberg Hamiltonian (via
the Schrieffer-Wolff transformation) for values of U1,2 >> t0, i.e. the ODE system has a
high degree of stiffness, therefore we will only consider Hamiltonians with values that
validate this approximation, i.e. high degree of stiffness.

The initial values of the states y(0) will always have zero amplitude for the singlet states
S(2, 0) and S(0, 2), since we are not interested in these states. The Hamiltonians and initial
values are such that they induce significant amplitude transitions between the basis states
and neglibible amplitude transitions between the basis states and singlet states, e.g. the
amplitudes of singlet states remain rather constant on the time scale where the basis states
vary rapidly. This is equivalent to approximating the time derivative of the singlet states
to zero y′4 = y′5 ≈ 0.


y′0
y′1
y′2
y′3
0
0

 =


0

t0e
i∆Ezt/~(y4 + y5)

−t0e−i∆Ezt/~(y4 + y5)
0

t0e
−i∆Ezt/~y1 − t0ei∆Ezt/~y2 + U1y4

t0e
−i∆Ezt/~y1 − t0ei∆Ezt/~y2 + U2y5

 (4.22)

The last two equations can now be used to substitute y4 and y5 in terms of y1 and y2.

y4 = −(t0e
−i∆Ezt/~y1 − t0ei∆Ezt/~y2)/U1

y5 = −(t0e
−i∆Ezt/~y1 − t0ei∆Ezt/~y2)/U2
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Inserting these back into the ODE system 4.22


y′0
y′1
y′2
y′3

 =


0

−
(
t20
U1

+
t20
U2

)
y1 + e2i∆Ezt/~

(
t20
U1

+
t20
U2

)
y2

e−2i∆Ezt/~
(
t20
U1

+
t20
U2

)
y1 −

(
t20
U1

+
t20
U2

)
y2

0

 (4.23)

Rewriting this in the form y′ = Ay.


y′0
y′1
y′2
y′3

 =


0 0 0 0

0 −
(
t20
U1

+
t20
U2

) (
t20
U1

+
t20
U2

)
e2i∆Ezt/~ 0

0

(
t20
U1

+
t20
U2

)
e−2i∆Ezt/~ −

(
t20
U1

+
t20
U2

)
0

0 0 0 0



y0

y1

y2

y3

 (4.24)

Since the terms in this ODE system do not differ by a large magnitude, it is not consid-
ered stiff and numerical solvers should be able to solve this in a quicker time than the
stiff version 4.20. For U1 = U2 = U this reduces to the Heisenberg Hamiltonian in the
rotating frame with J/2 = 2t20/U in agreement with the Schrieffer-Wolff transformation.
Implementing this in QuTiP

HJ1 = np.zeros((4,4),dtype=complex);HJ1[1,1]=1;HJ1[2,2]=1

HJ2 = np.zeros((4,4),dtype=complex);HJ2[1,2]=1

HJ3 = np.zeros((4,4),dtype=complex);HJ3[2,1]=1

HJ1=qt.Qobj(HJ1);HJ2=qt.Qobj(HJ2);HJ3=qt.Qobj(HJ3)

H0=qt.Qobj(np.zeros((4,4)))

args = {'B1':2e9, 'B2':2e9, 'Bmw':5e6,'vi':0,'w_k':2e9,'t0':4.3e9,

'det':0, 'U1':1e12, 'U2':1e12}

tlist = np.linspace(0,20e-9,1000)

det = 'det'

time_int = '*(5e-9<=t<=11.8e-9)'

HJ1c = '-2*np.pi*t0**2*(1/(U1+'+det+')+1/(U2-'+det+'))'+time_int

HJ2c = '2*np.pi*np.exp(2j*2*np.pi*(B1-B2)/2*t)*t0**2*(1/(U1+'+det+\

')+1/(U2-'+det+'))'+time_int

HJ3c = '2*np.pi*np.exp(-2j*2*np.pi*(B1-B2)/2*t)*t0**2*(1/(U1+'+det+\

')+1/(U2-'+det+'))'+time_int

H = [H0,[HJ1,HJ1c],[HJ2,HJ2c],[HJ3,HJ3c]]
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58 Dynamics of Two Spin Qubits

psi0=qt.basis(4,1)

output = qt.mesolve(H,psi0,tlist,[],[],args=args,

options=qt.Options(nsteps=250000, method='bdf')

,progress_bar=True)

plot_states(tlist,output)

>>>Total run time: 0.69s

Figure 4.5: SWAP operation with a reduced double dot ODE system

Comparing these result with the full ODE system 4.20, the reduced ODE system 4.24 is
solved significantly faster, 18.19s versus 0.69s
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4.1.3 Grover’s algorithm with QuTiP

In this section we will combine a sequence of gates to implement the two qubit Grover’s
algorithm and test QuTiP’s accuracy. The results of the simulations will be compared to
the experimental realization of the two qubit algorithm in reference [28]. The parameters
in the two-electron Hamiltonian are the following: the Zeeman energies (or qubit frequen-
cies) are B1 = 18.4 GHz and B2 = 19.7 GHz. The coulomb interactions of the dots are
U1 = 850 GHz and U2 = 840 GHz, the tunnel coupling is t0 = 210 MHz. The value for the
detuning ε for which the CZ gate is implemented is chosen such that J << ∆Ez so that
the eigenstates of the system are still the two-spin product states {| ↑↓〉, | ↓↑〉} and where
the exchange coupling J = 6 MHz. As a reminder Fig. 4.6 shows how J(ε) is defined:
it is the decrease of the energy of the anti-parallel states compared to their energies at
ε = 0. J(ε) can be found by diagonlizing the two-electron Hamiltonian as a function of the
detuning ε. Fig. 4.7 shows the result of calculating J for the given parameters.

Figure 4.6: Energy dispersion of the double dot system as a functino of the detuning ε. J is defined
by the decrease of the energy states compared to their energies at ε = 0.

import numpy as np

from scipy import linalg as la

def set_Hamiltonian(B1,B2,t,U1,U2,e):

'''Initializes the two electron spin hamiltonian

args:

B1,B2,t,U1,U2,e (double): the energy terms.

Returns:

[6,6] array representing the Hamiltonian
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'''

h = np.zeros((6,6))

h[0,0]=-Ez

h[1,1]=-dEz/2;h[1,4:6]=t

h[2,2]=dEz/2;h[3,4:6]=-t

h[3,3]=Ez

h[4,1]=t;h[4,2]=-t;h[4,4] = U1+e

h[5,1]=t;h[5,2]=-t;h[5,5]=U2-e

return h

def eval_num0(B1,B2,t,U1,U2,erange):

'''Calculates the eigenvalues of the Hamiltonian as a function

of detuning

Parameters:

B1,B2,t,U: the energy terms.

erange: the detuning energy range as a 1D numpy array

Returns:

eig_vals [6,len(erange)] array where each row is an

eigenvalue as a function of detuning

'''

eig_vals = np.zeros((6,len(erange)))

for i, e in enumerate(erange):

h = set_Hamiltonian(B1,B2,t,U1,U2,e)

w, v = la.eigh(h)

eig_vals[:,i]=w

return eig_vals

#function that calculates and plots J

def plot_J(eigen_values,detuning_range,zero_point):

stat = [r'$|\downarrow\downarrow\rangle$',

r'$|\uparrow\downarrow\rangle$',

r'$|\downarrow\uparrow\rangle$',

r'$|\uparrow\uparrow\rangle$', 'S(2,0)','S(0,2)']

plt.figure()

J = abs((eigen_values[1,:]-zero_point[1])/1e6)+\

abs((eigen_values[2,:]-zero_point[2])/1e6)

plt.plot(convert_eV(detuning_range)*1000,J,label = 'J')

plt.legend()

plt.title('Exchange energy J')

plt.xlabel('$\epsilon$ (meV)')

plt.ylabel('Energy (MHz)')

plt.ylim([-10,10])

plt.show()

return J
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#Hamiltonian parameters

B1=18.4e9;B2=19.7e9;t=0.210e9;U1=850e9;U2=840e9;

#the range of the detuning parameter

detuning_range_cphase=invert_eV(np.arange(3.3,3.6,0.0001)*1e-3)

# calculate the eigenvalues are a function of detuning

eigen_values_for_cphase = eval_num0(B1,B2,t,U1,U2,detuning_range_cphase)

#calculate exact zero point where detuning = 0

zero_point,v = la.eigh(set_Hamiltonian(B1,B2,t,U1,U2,e=0))

#calculate and plot J

J = plot_J(eigen_values_for_cphase,detuning_range_cphase,zero_point)

#find the detuning for which J=6 MHz

#value of detuning in Hz

detuning_cphase = detuning_range_cphase[np.argmin(abs(J-6))]

#value of detuning in eV

detuning_cphase_eV = convert_eV(detuning_cphase)

print(detuning_cphase, ' Hz and ',detuning_cphase_eV, ' eV')

>>> 825646613506.6794 Hz and 0.003414600000000242 eV

Figure 4.7: The exchange interaction J as a function of ε

Having the range of detuning ε necessary for the CZ gate we can now implement
Grover’s algorithm in QuTiP through the gate sequence 4.8 We will first use the stiff 6× 6
Hamiltonian

args = {B1 = 18.4e9, B2 = 19.7e9, Bmw = 2e6, tunnelcoupling = 0.250e9, U1 = 850e9, U2 =
840e9, . . . }
#Rotate qubit 1 and 2 by π/2 radians to obtain equal superposition
Ry1 = add_magnetic_pulse(args, ωk = 18.4e9, 100e− 9 <= t <= 225e− 9)
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62 Dynamics of Two Spin Qubits

Figure 4.8: Gate sequence of Grover’s algorithm

Ry2 = add_magnetic_pulse(args, ωk = 19.7e9, 100e− 9 <= t <= 225e− 9)

#Pulse the detuning ε to the value as calculated, to obtain the CZij gate
CZij = add_detuning_pulse(args, ε, 225e− 9 <= t <= 310e− 9)

#Rotate qubit 1 by π/2 radians to obtain a Bell state, then rotate qubit 2 to obtain an
equal superposition
Ry1 = add_magnetic_pulse(args, ωk = 18.4e9, 325e− 9 <= t <= 450e− 9)
Ry2 = add_magnetic_pulse(args, ωk = 19.7e9, 325e− 9 <= t <= 450e− 9)

#Pulse the detuning ε to the value as calculated, to apply the CZ00 gate
CZ00 = add_detuning_pulse(args, ε, 451e− 9 <= t <= 536e− 9)

#Rotate qubit 1 and 2 to undo the superposition
Ry1 = add_magnetic_pulse(args, ωk = 18.4e9, 560e− 9 <= t <= 685e− 9)
Ry2 = add_magnetic_pulse(args, ωk = 19.7e9, 560e− 9 <= t <= 685e− 9)

#adding all of the above to the QuTiP description of the Hamiltonian
H = [. . . ]
psi0=qt.basis(6,0)
output = qt.mesolve(H,psi0,tlist,[],[],args=args,
options=qt.Options(nsteps=60000,method='bdf'),progress_bar=True)

Appedix shows the full code of the QuTiP grover implementation. The CZij gates are
chosen by choosing the correct ẑ-rotations Rz(θ) as we’ve seen from equation 3.62. Since
ẑ-rotations do not affect the outcome of measuring the computation basis |0〉 , |1〉, we sim-
ply add these ẑ-rotations by changing the phase of the reference frame throughout the
pulse sequence via microwave pulses instead of actually performing them.[19] Plotting
the results of the simulation for the 4× 4 and 6× 6 Hamiltonian for the CZij = CZ00 gate
in Fig. 4.10

Due to the stiffness of the ODE 6× system, the simulation took 5 hours to finish on a
intel core i7. Using the reduced non-stiff 4×4 Hamiltonian with the exact same parameter
values the simulation time was 30s. There is a clear difference between the two Hamil-
tonians, even though the approximation y′4 = 0 and y′5 = 0 is reasonable, small errors
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4.1 QuTiP implementation 63

Figure 4.9: Simulation of Grover’s Algorithm using QuTiP for the highly stiff ODE system a (6×6
Hamiltonian) and non-stiff ODE system b(4×4 Hamiltonian) using the same parameter values.

can accumulate to large discrepancies for long simulation times, i.e. a large integration
domain. By adjusting the tunnel coupling for the reduced Hamiltonian from 0.250 · 109 to
0.190 · 109 we obtain results similar to the full Hamiltonian.

Figure 4.10: Simulation of Grover’s Algorithm using QuTiP for the highly stiff ODE system a
(6×6 Hamiltonian) and non-stiff ODE system b(4×4 Hamiltonian) using a slightly smaller tunnel
coupling for the 4× 4 system.

The parameter values used in the simulations are based on the experimental values
used in the physical realization of Grover’s alorithm in [28]. Comparing the QuTiP results
with the experimental values in Fig. 4.11

We see that the first half of the simulation quite nicely correspond to the experimental
values, however due to experimental errors, environmental magnetic noise, fluctuating
nuclear spins in the sample, charge noise of the dots etc. building up over time, the end
results of the experiments will be less consistent.
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64 Dynamics of Two Spin Qubits

Figure 4.11: Grover’s algorithm QuTiP simulation given by the straight lines and the experimental
values given by dots.

4.2 Numerics with Liouville von Neumann

Instead of solving a system of ODE we can approach the problem more "organically" with
Liouville von Neumann equation for the density matrix.

i~
∂ρ

∂t
= [H, ρ] (4.25)

The time evolution of the density matrix over the time interval between t and t+δt is given
by

ρ(t+ δt) = G(t+ δt)ρ(t)G(t+ δt)† (4.26)

where G(t+ δt) is the wavefunction propagator,

G(t+ δt) = exp

(
−i~

∫ t+δt

t

H(t′)dt′
)

(4.27)

The integral in the exponent can be approximated by a Riemann sum∫ b

a

H(t)dt ≈ H(a)δt+H(a+ δt)δt+H(a+ 2δt)δt+ · · ·+H(b)δt

≈
N∑
n=0

H(a+ nδt)δt , a+Nδt = b (4.28)
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4.2 Numerics with Liouville von Neumann 65

From a numerical point of view the most straining issue is the calculation of the matrix
exponential G(t). The matrix exponential is defined from the Taylor expansion

eiH = I + iHt+
(iHt)2

2!
+ . . . (4.29)

This method is simple to implement however not recommended as higher terms of the
series are lage and of opposite signs, resulting in numerical instability [33]. Another
approach would be diagonalize H, since exponents of diagonalizable matrices are simple
to evaluate.

eiHt = UeiDtU † (4.30)

where D is diagonal and U is unitary. The main problem of this approach is the computa-
tional cost of the evaluation of the eigenvalues and eigenvectors which scales as ∼ O(N)3.
A full diagonalization is computational extremely inefficient. Instead we will use one of
the most common methods for matrix exponentiation, the Pade expansion in combination
with a scaling and squaring technique[34]. The method is based on the approximation

eA ≈
∑
m

Pm(A) (4.31)

where Pm are the Padé polynomials. The scaling and squaring technique is based on the
following, every matrix exponential can be written as

eA = (e2−sA)2s (4.32)

The value of s is such that s is the smallest value for which ||A||/2s ≤ 1. The Padé expansion
is applied to the scaled matrix e2−sA, and then eA is obtained by repeated squaring. This
method provides extremely accurate results for any matrix A. The SciPy python library
already has a function expm that calculates matrix exponentiation via the Padé method so
we don’t have to write it.

4.2.1 Simulation class

All the necessary elements to calculate the density operator 4.26 have been written in the
class simulation_two_dots() (see Appendix C). This method is heavily inspired by [28],
however it is completely written in python which allows an easy to read and edit code
suitable for people who are interested in learning more about manipulating spin qubits.
A simulation object is created by calling the simulation class and initializing all the static
terms in the Hamiltonian.

s = simulation_two_dots(B1=1e9,B2=2e9,tunnel_coupling=0,U1=2e12,U2=2.1e12)

As an example we can apply a magnetic field pulse with amplitude Bmw = 5 ·106 for a time
2πBmwt = π that rotates qubit 1 by 180◦ degrees around the x̂-axis.
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66 Dynamics of Two Spin Qubits

#Rabi_freq, phase, drive_freq, t_start, t_end

s.add_magnetic_pulse(0.5e7,0,1e9,10e-9,110e-9)

The system can then be evolved between two user defined times via 4.26, in this case
between 0 <= t <= 200 ns. The initial state is the ground state |00〉

#state to elove, t_start, t_end, nsteps,nsamples

d=s.evolve(0,0,200e-9,1000,nsamples=1)

Figure 4.12: 180 degree rotation of a qubit around the x̂-axis, initialized in the |0〉 state

4.2.2 Grover’s algorithm

The Grover’s algorithm can be implemented in a succinct and clear manner

#phases that determine what CZ gate to apply

phase_q1 = np.pi/2

phase_q2 = np.pi/2

detE = 828.6e9

a = 35e-9

#create a two dot simulation object

grover = simulation_two_dots(19.7e9,18.4e9,0.250e9,850e9,840e9)

#Add magnetic pulses that rotate both qubits pi/2 radians

#to create an equal superposition

grover.add_magnetic_pulse(2e6,np.pi/2,18.4e9,100e-9,225e-9)
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4.2 Numerics with Liouville von Neumann 67

grover.add_magnetic_pulse(2e6,np.pi/2,19.7e9,100e-9,225e-9)

#Add detuning pulse to apply the CZ gate (the oracle of the grover algorithm)

grover.add_detuning_pulse(detE,225e-9,275e-9+a)

#Create Bell state and equal superposition with marked state

grover.add_magnetic_pulse(2e6,np.pi/2+phase_q1,19.7e9,325e-9,450e-9)

grover.add_magnetic_pulse(2e6,np.pi/2+phase_q2,18.4e9,325e-9,450e-9)

grover.add_detuning_pulse(detE,451e-9,501e-9+a)

#Required for readout, "undo" the superposition

grover.add_magnetic_pulse(2e6,np.pi+phase_q1,19.7e9,560e-9,685e-9)

grover.add_magnetic_pulse(2e6,np.pi+phase_q2,18.4e9,560e-9,685e-9)

time0 = time.time()

#Evolve the system

psi0=0

U_t,rhos,psi0_t,sa=grover.evolve(psi0,0,700e-9,nsteps=3000,nsamples=1)

print(np.around(time.time()-time0,2), " s")

>>>Elapsed time for the unitary evolution operator: 1.12 s

The Hamiltonians for this simulation used are the full 6× 6 Hamiltonian which was calcu-
lated in about 1.12s which is much faster than QuTiP’s ODE solver which required 5 hours.
The results of QuTiP’s solver and the numerical solver are in agreement Fig. 4.13 When

Figure 4.13: Grover algorithm simulation using QuTiP, marked by the circle and lines, and the
numerical solver, marked by the cross and line.

we considered the reduced 4× 4 Hamiltonian with QuTiP, we saw that the approximation
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68 Dynamics of Two Spin Qubits

produces an error in contrast to the 6× 6 Hamiltonian, this same error is produced by the
numerical solver Fig. 4.14 when using the 4× 4 Hamiltonian.

Figure 4.14: Grover algorithm simulation using QuTiP, marked by the circle and lines, and the
numerical solver, marked by the cross and line.

So we can atleast conclude that the numerical solver properly evolves the schrodinger
wavefunction. Since the numerical solver is able to calculate the evolution via the 6 ×
6 Hamiltonians in a timely manner, we don’t have to consider using the reduced 4 × 4
Hamiltonians to improve the computational time, unless QuTiP is used.
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4.2 Numerics with Liouville von Neumann 69

4.2.3 Noise considerations

An advantage of the numerical solver, is the ease of manipulating the time-dependent
coefficients in the Hamiltonians, we can for example easily add a noise term to the Zeeman
energies of the dots and the amplitude of the applied magnetic field. The noise terms
added are sampled from a gaussian with probability density

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (4.33)

where µ is the mean and σ the standard deviation. In the simulation the amplitude Bmw of
the applied magnetic field and the Zeeman energies B1, B2 of the dots are chosen from this
distrubition. In the following example Fig. 4.15, the standard deviation is chosen quite
large to accentuate the effect of noise on the system.

Figure 4.15: Grover algorithm with the magnetic fields sampled form a gaussian distribution

To reduce the noise we can run the simulation multiple times by increasing nsamples
option and averaging over all simulation runs. For example the following result has been
averages over 10 runs, comparing it with the experimental values

The standard deviation and mean of the gaussian distribution was chosen through an
educated guess and is most likely not consistent with actual experimental values, here we
just show that the addition of noise will result into simulation results similar to experimen-
tal values.
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70 Dynamics of Two Spin Qubits

Figure 4.16: Grover algorithm simulation with gaussan magnetic noise compared to the experi-
mental values (dotted data)

4.3 Conclusion and Further work

In this thesis we have presented two numerical algorithms for the solution of the Schrödinger
Equation (SE) for the system of a two-electron quantm dot. QuTiP offers a user-friendly
environment for solving the SE for general Hamiltonians and especially for implement-
ing time-dependent Hamiltonians. The problem we have encountered with QuTiP is that
the time-dependent solvers are all based on solving the SE by complicated methods of
integration of ODE systems. Computational problems arise when the ODE system has a
high degree of stiffness, simulation time of ∼ 1000ns require in real time ∼ 5 hours to
solve on a commercial pc. We’ve seen that the two-electron Hamiltonian reduces to the
proper two-qubit quantum gates CZ and CSWAP if the the subspaces {S(2, 0), S(0, 2)} and
{| ↓, ↓〉, | ↓, ↑〉, | ↑, ↓〉, | ↑, ↑〉} are energetically well seperated, i.e U >> t, which makes
the ODE system per definition stiff. This computational slowdown due to the stiffness
of the ODE system can be overcome by reducing the Hamiltonian to the subspace of the
(1,1) electron configuration, which reduces the real time calculation to the order ∼ 30 s,
however the approximation does introduce further numerical errors.

The second method relies on the Liouville von Neumann equation, which can be imple-
mented by simple methods as the Riemann sum and scaling and squaring methods. The
numerical method shows results in agreement with QuTiP while solving the full Hamil-
tonian system in mere seconds. Very simple noise models have been implemented in the
numerical solver in a monte-carlo esque method to show the effectiveness of noise on
the system. Further research based on experimental considerations needs to be done to
properly introduce noise into the simulation.

An interesting point of research would be to introduce the noise of the system via
coupling to the environment. The Lindblad Master equation is an extension to the Liouville
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von Neumann equation for open quantum systems.

∂ρ(t)

∂t
= − i

~
[H(t), ρ(t)] +

∑
n

1

2

[
2Cnρ(t)C+

n − ρ(t)C+
n Cn − C+

n Cnρ(t)
]

(4.34)

where Cn =
√
γnAn are collapse operators and An are the operators that couple the en-

vironment to the system H, γn are the decay rates. The main problem will be to find the
correct form of the coupling operators An that will properly implement the charge and
magnetic noise in the system. Currently the applied pulses are applied as a step function,
the simulation will be more realistic if instead of a step function some ramp up function
is used to initiate pulses. The numerical solver still has some room for improvement, cur-
rently the evolution operator G(t) is calculated in parallel for a range of time t, however
there are still some for loops that can be eliminated in the calculations.
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Appendix A
Schrieffer-Wolff Transformation

The generator S of the Schrieffer Wolff transfrmation for the double dot Hamiltonian

H = H0 + V =


−Ēz 0 0 0 0 0

0 −∆Ez 0 0 t0 t0
0 0 ∆Ez 0 −t0 −t0
0 0 0 Ēz 0 0
0 t0 −t0 0 U1 + ε 0
0 t0 −t0 0 0 U2 − ε

 (A.1)

is given by [21] ( see [22] and [23] for methods of finding S for general Hamiltonians)

S =


0 0 0 0 0 0
0 0 0 0 −γ (−∆Ez) −σ (−∆Ez)
0 0 0 0 γ (∆Ez) σ (∆Ez)
0 0 0 0 0 0
0 γ (−∆Ez) −γ (∆Ez) 0 0 0
0 σ (−∆Ez) −σ (∆Ez) 0 0 0

 (A.2)

where

γ(∆Ez) =
t0

U + ε−∆Ez

σ(∆Ez) =
t0

U − ε−∆Ez

To check whether S is indeed a generator, the reader is invited to calculate whether the
commutator of S and H0 indeed results in −V , [S,H0] = −V . The Schrieffer-Wolff trans-
formation eSHe−S up to second order is

He = H0 +
1

2
[S, V ] +O(S3) (A.3)
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74 Schrieffer-Wolff Transformation

Calculating the commutator [S, V ] with V the off-diagonal tunnel elements of the double
dot Hamiltonian

1

2
[S, V ] =

1

2
(SV − V S) = (A.4)

=
t0
2


0 0 0 0 0 0
0 −2α(−∆Ez) β(∆Ez) 0 0 0
0 β(∆Ez) −2α(∆Ez) 0 0 0
0 0 0 0 0 0
0 0 0 0 2γ(∆Ez) + 2γ(−∆Ez) β(∆Ez)
0 0 0 0 β(∆Ez) 2σ(∆Ez) + 2σ(−∆Ez)


(A.5)

where

α(∆Ez) = γ(∆Ez) + σ(∆Ez)

β(∆Ez) = α(∆Ez) + α(−∆Ez)

In the limit ε << U and ∆Ez << U

t0α(∆Ez) =
t20

U + ε−∆Ez
+

t20
U − ε−∆Ez

≈ 2t20
U

t0β(∆Ez) =
t20

U + ε−∆Ez
+

t20
U − ε−∆Ez

+
t20

U + ε+ ∆Ez
+

t20
U − ε+ ∆Ez

≈ 4t20
U

(A.6)

In the subspace {| ↓, ↓〉, | ↓, ↑〉, | ↑, ↓〉, | ↑, ↑〉} the 2nd order correction 1
2
[S, V ] results in

1

2
[S, V ] ≈


0 0 0 0
0 −2t20/U 2t20/U 0
0 2t20/U −2t20/U 0
0 0 0 0

 (A.7)

The effective Hamiltonian now reads

He = H0 +
1

2
[S, V ] =


−Ēz 0 0 0

0 −∆Ez − 2t20/U 2t20/U 0
0 2t20/U ∆Ez − 2t20/U 0
0 0 0 Ēz

 (A.8)

which is the same as the Heisenberg Hamiltonian 3.66 with J/2 = 2t20/U .
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Appendix B
RWA Two qubit Hamiltonian

In this section we will calculate the double dot Hamiltonian in the rotating frame using
the rotating wave approximation (RWA). The double dot Hamiltonian is

H =


−Ēz 0 0 0 0 0

0 −∆Ez 0 0 t0 t0
0 0 ∆Ez 0 −t0 −t0
0 0 0 Ē2 0 0
0 t0 −t0 0 U1 + ε 0
0 t0 −t0 0 0 U2 − ε

 = D + V (B.1)

where Ēz = ~(Bz
1+Bz

2)/2 is the average zeeman energy of the dots and ∆Ez = ~(Bz
1−Bz

2)/2
is the difference in zeeman energy. The constants g, ~ and µB have been absorbed in the
magnetic fields gµB

~ Bi
k ≡ Bi

k. D is the diagonal part and V the off-diagonal part of the
Hamiltonian. The control Hamiltonian that controls single qubit rotations

Hmw =
∑
k

Bmw cos (ωkt+ φk) (σx ⊗ I + I⊗ σx) (B.2)

These Hamiltonians are transformed to the rotating frame using the basis transformation

H ′ = UHU † + i~
dU

dt
U † (B.3)

where

U = e−i
ω1t
2
σz ⊗ e−i

ω2t
2
σz (B.4)
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and ωk = Bz
k is the Larmor frequency of qubit k. First let’s calculate i~dU

dt
U †

U =

(
e−i

ω1
2
t 0

0 ei
ω1
2
t

)
⊗
(
e−i

ω2
2
t 0

0 ei
ω2
2
t

)

=


e−

i
2

(ω1+ω2)t 0 0 0

0 e−
i
2

(ω1−ω2)t 0 0

0 0 e
i
2

(ω1−ω2)t 0

0 0 0 e
i
2

(ω1+ω2)t



=


e−iωt 0 0 0

0 e−i∆ωt 0 0
0 0 ei∆ωt 0
0 0 0 eiωt



=


e−iĒzt/~ 0 0 0

0 e−i∆Ezt/~ 0 0
0 0 ei∆Ezt/~ 0

0 0 0 eiĒzt/~


where ω ≡= ω1+ω2

2
and ∆ω = ω1−ω2

2
.

Since Uij is a diagonal matrix of exponents Uij = eλijtδij, where δij is the kronecker delta
that represents the unit matrix, the derivative will be of the form dU

dt
= λije

λijtδij = λijUij

i~
dU

dt
=

i~


− i

2
(ω1 + ω2) 0 0 0

0 − i
2
(ω1 − ω2) 0 0

0 0 i
2
(ω1 − ω2) 0

0 0 0 i
2
(ω1 + ω2)

U

Then dUij
dt
U †ij = λijUijU

†
ij = λijδij

i~
dU

dt
U † =


~
2
(ω1 + ω2) 0 0 0

0 ~
2
(ω1 − ω2) 0 0

0 0 −~
2
(ω1 − ω2) 0

0 0 0 −~
2
(ω1 + ω2)



=


∆Ēz 0 0 0

0 ∆E 0 0
0 0 −∆E 0
0 0 0 −Ēz

 (B.5)

The double dot Hamiltonian H = D + V in the rotating frame is UHU † = UDU † + UV U †.
Since D is a diagonal matrix Dij = dijδij then

UijDijU
†
ij = UijdijδijU

†
ij = dijδijUijU

†
ij = dijδij = Dij (B.6)
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So the diagonal part of H stays the same in the rotating frame. The off-diagonal part

UV U † = U


0 0 0 0 0 0
0 0 0 0 t0 t0
0 0 0 0 −t0 −t0
0 0 0 0 0 0
0 t0 −t0 0 0 0
0 t0 −t0 0 0 0

U † (B.7)

where U is extended to the 6× 6 matrix

U =


e−iĒzt/~ 0 0 0 0 0

0 e−i∆Ezt/~ 0 0 0 0
0 0 ei∆Ezt/~ 0 0 0

0 0 0 eiĒzt/~ 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (B.8)

V U † =


0 0 0 0 0 0
0 0 0 0 t0e

i∆Ezt/~ t0e
i∆Ezt/~

0 0 0 0 −t0e−i∆Ezt/~ −t0e−i∆Ezt/~
0 0 0 0 0 0
0 t0 −t0 0 0 0
0 t0 −t0 0 0 0

 (B.9)

UV U † =


0 0 0 0 0 0
0 0 0 0 t0e

i∆Ezt/~ t0e
i∆Ezt/~

0 0 0 0 −t0e−i∆Ezt/~ −t0e−i∆Ezt/~
0 0 0 0 0 0
0 t0e

−i∆Ezt/~ −t0ei∆Ezt/~ 0 0 0
0 t0e

−i∆Ezt/~ −t0ei∆Ezt/~ 0 0 0

 (B.10)

UHU † + i~dU
dt

is found by adding B.5, B.6 and B.10.

UHU † + i~
dU

dt
=


0 0 0 0 0 0
0 0 0 0 t0e

i∆Ezt/~ t0e
i∆Ezt/~

0 0 0 0 −t0e−i∆Ezt/~ −t0e−i∆Ezt/~
0 0 0 0 0 0
0 t0e

−i∆Ezt/~ −t0ei∆Ezt/~ 0 U1 + ε 0
0 t0e

−i∆Ezt/~ −t0ei∆Ezt/~ 0 0 U2 − ε

 (B.11)

The microwave Hamiltonian that controls the single-qubit rotations

Hmw =
∑
k

Bk cos (ωkt+ φk) (σx ⊗ I + I⊗ σx)

≡
∑
k

Bk(t) (σx ⊗ I + I⊗ σx) (B.12)
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78 RWA Two qubit Hamiltonian

where Bk(t) = Bk cos(ωkt+ φk). For brevity the sum term
∑
k

will be omitted in the

calculations.

UHmw =


e−iωt 0 0 0

0 e−i∆ωt 0 0
0 0 ei∆ωt 0
0 0 0 eiωt




0 Bk(t) Bk(t) 0
Bk(t) 0 0 Bk(t)
Bk(t) 0 0 Bk(t)

0 Bk(t) Bk(t) 0



= Bk(t)


0 e−iωt e−iωt 0

e−i∆ωt 0 0 e−i∆ωt

ei∆ωt 0 0 ei∆ωt

0 eiωt eiωt 0



UHmwU
† = Bk(t)


0 e−iωt e−iωt 0

e−i∆ωt 0 0 e−i∆ωt

ei∆ωt 0 0 ei∆ωt

0 eiωt eiωt 0



eiωt 0 0 0
0 ei∆ωt 0 0
0 0 e−i∆ωt 0
0 0 0 e−iωt



= Bk(t)


0 e−i(ω−∆ω)t e−i(ω+∆ω)t 0

ei(ω−∆ω)t 0 0 e−i(ω+∆ω)t

ei(ω+∆ω)t 0 0 e−i(ω−∆ω)t

0 ei(ω+∆ω)t ei(ω−∆ω)t 0



= Bk(t)


0 e−iω2t e−iω1t 0

eiω2t 0 0 e−iω1t

eiω1t 0 0 e−iω2t

0 eiω1t eiω2t 0

 (B.13)

Note that ω + ∆ω = 1
2
(ω1 + ω2 + ω1 − ω2) = ω1 and ω − ∆ω = 1

2
(ω1 + ω2 − ω1 + ω2 =

ω2. Decomposing Bk(t) into two counter rotating terms Bk(t) = Bk cos(ωkt+ φk) =
Bmw

2

(
ei(ωkt+φk) + e−i(ωkt+φk)

)
.

UHmwU
† =

Bk

2

(
0 ei(ωk−ω2)t+iφk + e−i(ωk+ω2)t−iφk ei(ωk−ω1)t+iφk + e−i(ωk+ω1)t−iφk 0

)
(
ei(ωk+ω2)t+iφk + e−i(ωk−ω2)t−iφk 0 0 ei(ωk−ω1)t+iφk + e−i(ωk+ω1)t−iφk

)(
ei(ωk+ω1)t+iφk + e−i(ωk−ω1)t−iφk 0 0 ei(ωk−ω2)t+iφk + e−i(ωk+ω2)t−iφk

)(
0 ei(ωk+ω1)t+iφk + e−i(ωk−ω1)t−iφk ei(ωk+ω2)t+iφk + e−i(ωk−ω2)t−iφk 0

)
(B.14)

By applying the RWA, i.e. the dynamics induced by the applied field Bk(t) is much slower
than the Larmor frequencies ω1 and ω2, the fast rotating terms ωk + ωi can be neglected.

UHmwU
† =


0 Bk

2
eiφkei(ωk−ω2)t Bk

2
eiφkei(ωk−ω1)t 0

Bk
2
e−iφke−i(ωk−ω2)t 0 0 Bk

2
eiφkei(ωk−ω1)t

Bk
2
e−iφke−i(ωk−ω1)t 0 0 Bk

2
eiφkei(ωk−ω2)t

0 Bk
2
e−iφkei(ωk−ω1)t Bk

2
e−iφkei(ωk−ω2)t 0


(B.15)
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Appendix C
Code

The QuTiP implementation and Numerical Liouville von Neumann solver can be found on
github:
https://github.com/AhmadSJ/Two-spin-qubits
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