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Abstract

This thesis gives insight into two photon quantum interference effects in quantum
optics, with Hong-Ou-Mandel visibility detection. This is studied using a delay loop

with different light polarizations. The single photons are created by exciting a
quantum dot in a microcavity with a continuous-wave laser. We try to relate

experimental results of the second order correlation function to a theoretical analysis of
the obtained photon states in the system. As a result an insight into the creation of

highly entangled qubit states, called cluster states, is given.
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Chapter 1
Introduction

This thesis reports the research in the Quantum Optics group led by Dr. W. Löffler from Leiden
University in the Netherlands. This group is part of the Leiden Institute of Physics (LION) and
research has taken place at the Huygens Laboratory between February and August 2019.

1.1 Background

The focus of this work lies on the distinguishability of photons when they become
highly entangled cluster states for computational tasks. Quantum entanglement be-
tween photons is a non local effect where the state of one photon state depends on the
measurement outcome of the other state. An interesting case is the Bell state which
consists of two entangled qubits. These qubits can be used for physical implementa-
tions of quantum information processing with two-state photonic systems. The degree
of freedom for this system is the polarization of light, described by two optical modes:
horizontal and vertical. Single photons can be in a superposition of these two polariza-
tion modes.

A light beam can be described as a classical wave and as a quantum stream of pho-
tons. In principle single photons are identical if they are indistinguishable, so they can
undergo quantum interference at, e.g., a beam splitter. These single photons are in con-
trast with laser light (Light Amplification by Stimulated Emission of Radiation), see
appendix ??, which creates single-mode light. Light coming out from a laser is coherent
light, which is different for other light sources, such as white light.

Our setup, to generate the entangled cluster states from a single photon quantum dot
source, is similar to the one proposed in Pilnyak et al. [30] and to the Mach-Zehnder-
interferometer-like setup proposed by Patel et al. [29] and Proux et al. [32]. This setup
consist of various optical elements, among which are a (polarizing) beam splitter and
waveplates. For this research we need to generate highly indistinguishable photons,
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2 Introduction

so here is a short historical overview of the research on indistinguishable particles and
single photons:

Year Scientists Development
1876 J.W. Gibbs Particles need to be indistinguishable due to the Gibbs paradox

[17].
1901 M.K.E.L. Planck Electromagnetic waves are quantized in packets of energy [31].
1905 A. Einstein Light is quantized in localized photons [9].
1954 P.A.M. Dirac Indistinguishable photons can be interchanged without an ob-

servable change [8].
1956 R. Hanbury

Brown et al.
Measuring an interference effect between two signals, in their
Hanbury Brown and Twiss setup, with which they determined
the angular diameter of Sirius [14].

1965 A.M.L. Messiah
et al.

Indistinguishable classical and quantum mechanical particles
have the same physical properties [26].

1966 J.M. Jauch Indistinguishable quantum mechanical particles have the same
intrinsic physical properties. Classical particles are distinguish-
able. [16].

1973 R. Mirman Classical and quantum mechanical particles that are far apart and
have a distinguishable motion are distinguishable [27].

1987 C. K. Hong, Z. Y.
Ou and L. Man-
del

Demonstration of quantum interference with the Hong-Ou-
Mandel effect. Distinguishability of photons is therefore related
to the probability of detection. With parametric down-conversion
indistinguishable photons are produced [15].

1991 L. Mandel Quantum interference between two light waves in an interferom-
eter is related to the degree of indistinguishability of the paths,
which is equal to the degree of coherence. This has been shown
by decomposition of the density operator [23].

2002 C. Santori et al. Indistinguishable single photons can be created from a single
photon source and interaction between these photons can be cal-
culated with a mean quantum wave-packet overlap M [33].

2008 R. B. Patel et al. The effect of parallel and orthogonal polarization input in the
Hanbury Brown and Twiss setup can be examined with a Mach-
Zehnder-Interferometer. [29].

2012 R. M. Stevenson
et al.

Indistinguishable entangled single photons can be created from
a pair of photons, coming from a quantum dot source, with a
simultaneously emitted photon from a independent pair of pho-
tons from this source. [35].

2015 R. Proux et al. The temporal indistinguishability of single photons by continu-
ous wave excitation of the quantum dot can be measured. [32].

2017 Y. Pilnyak et al. Measurements with indistinguishable photons with a photonic
cluster state setup [30].

2
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1.2 Goal 3

1.2 Goal

The goal of this thesis is to answer the following research question:
What is the effect of partial distinguishable single photons and first order interference in a loop
setup designed for the creation of cluster states?

This question is subdivided into:

• How does a change in the properties of the quantum optical single photon source
affect the indistinguishability?

• Which consequences does a spatial or temporal misalignment have on the quan-
tum interference in the cluster state loop setup?

• What impact have partial distinguishable single photons on the quantum infor-
mation processing with quantum entangled qubits in cluster states?

The first section of this thesis is about imperfections from the single photon source. An
experiment is executed to determine photon number purity. Then we discuss the partial
distinguishability of photons and quantum interference. The wave function overlap be-
tween paths is discussed. We build the setup step by step, from the Hanbury Brown and
Twiss setup until we finally reach the setup we use to generate cluster states. Research
is done in partial collaboration with Edward Hissink (Leiden University).
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Chapter 2
Quantum optics and indistinguishability

In this chapter we study subjects from Quantum Optics, with an emphasis on the dif-
ferent types of light sources and we also introduce the need for the indistinguishability
of single photons in classical mechanics, see the Gibbs paradox. Furthermore the effects
of the beam splitter and two-photon quantum interference is discussed.

2.1 Quantum mechanical introduction

In Quantum Mechanics a quantum system can be described by a quantum wave func-
tion or quantum state. We represent quantum states as vectors in Hilbert space. In order
to experimentally access the quantum states observables are introduced. Examples of
observables include position and momentum. Observables are represented as operators
with corresponding eigenvalues.

Adding states together is described by the superposition principle for states. Here pure
quantum states are described in bra-ket notation. Mixed states on the other hand can
only be described by density matrices, which consists of multiple pure states. An exam-
ple of superposition of any linear combination for pure states |A〉 and |B〉 equal to |Ψ〉
state in bra-ket notation is given by: [25]

|Ψ〉 = cA |A〉+ cB |B〉 , (2.1)

with arbitrary complex numbers:
cA,B ∈ C. (2.2)

This is an example of a two-state quantum system. For a probability distribution the
normalization condition is needed to describe a physical state in Hilbert space:

〈Ψ|Ψ〉 = 1. (2.3)

Since the length of vectors now has no meaning due to normalization, the quantum
states we consider are part of the projective Hilbert Space. In order to describe the
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6 Quantum optics and indistinguishability

probability of finding results of a measurement we first look at a generic quantum state:
[3]

|Ψ〉 = ∑
n

cn |Ψn〉 , (2.4)

where we sum over n quantum states and |Ψn〉 is the eigenfunction of |Ψ〉. Now the
probability of finding a state |Ψn〉 in the state of equation 2.4 is given by: [18]

Pn = | 〈Ψn|Ψ〉 |2 = |cn|2. (2.5)

Because of orthogonality and the normalization condition the total probability thus is,
as expected:

∑
n

Pn = 1. (2.6)

This was a brief discussion about the quantum mechanical and mathematical prerequi-
sites needed to read this thesis. If you want to read a more comprehensive introduction
we recommend the books from K. Konishi & G. Paffuti [18] and L.E. Ballentine [2].

2.1.1 Quantum optics

Light can be quantized in photons which could be described by:

• number states
∣∣nki

〉
(Fock space), with the occupation number n ∈ Z. A photon

is an excitation of a normal mode ki. This depends on the radiation pattern of the
electromagnetic field or the structure and boundary conditions of the photon.

• polarization states |P〉 (mode space), with the polarization P.

In the next paragraphs we switch between these states. We consider here only the fun-
damental Gaussian transverse mode. The energy of a photon in an electromagnetic
mode is, also known as the Planck-Einstein relation [11],

Eki = hω, (2.7)

with h the Planck constant and ω the photon’s frequency. Now in Fock space, we write
the basis of an electromagnetic field as:

|ΨEM〉 =
∣∣nk0

〉
⊗
∣∣nk1

〉
⊗ ...⊗

∣∣∣nkj

〉
, (2.8)

where the ⊗ is the tensor product used to describe the total Hilbert space of the inter-
acting particles. If an electromagnetic wave oscillates in one direction it is called linear
polarization. An example of the usage of tensor products using linearly polarized light:

6
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2.1 Quantum mechanical introduction 7

Example: tensor product between two subsystems

The tensor product between two quantum systems with horizontal |H〉 and vertical
polarization |V〉 is discussed:

|H〉 =
[

1
0

]
, (2.9)

|V〉 =
[

0
1

]
, (2.10)

|H〉 ⊗ |V〉 =


0
1
0
0

 . (2.11)

Using the following subsystems,

|ΨA〉 =
1√
2
(|H〉+ |V〉) , (2.12)

|ΨB〉 = |H〉 . (2.13)

the tensor products between these systems in Hilbert spaces HA ⊗ HB and HB ⊗ HA is
given by:

|ΨA〉 |ΨB〉 =
1√
2
(|HH〉+ |VH〉) , (2.14)

|ΨB〉 |ΨA〉 =
1√
2
(|HH〉+ |HV〉) , (2.15)

where we introduced a notation to shorten the equations:

|i〉 ⊗ |j〉 = |i〉 |j〉 = |i, j〉 = |ij〉 . (2.16)

Here we see that the order of the tensor product is important.

As usual, we have the raising â† and lowering operators â [12]. When these operators
act on Fock state |n〉 they can create or annihilate a photon.

â† |n〉 =
√

n + 1 |n + 1〉 , (2.17)

â |n〉 =
√

n |n− 1〉 , (2.18)
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8 Quantum optics and indistinguishability

with n ∈ Z. One harmonic oscillator then looks like:

|n〉 = (â†)n
√

n!
|0〉 . (2.19)

And several harmonic oscillators, using equation 2.8 would then look like:

∣∣n0, n1, ..., nj
〉
=

1
√n0n1...nj

(â†)n0(â†)n1 ...(â†)nj |0, 0, ..., 0〉 . (2.20)

The photon number of the j-th mode is given by the photon number operator: [12]

N̂j = â†
j âj. (2.21)

The quantum systems used in this thesis are photons and thus bosons, which obey the
Bose-Einstein statistics we will discuss in a following chapter.

2.1.2 Two-particle configuration

The generic linear combination of basis vectors for the two-particle configuration, using
equation 2.2 and 2.8 looks like: [2]

|Ψ〉 = ∑
A,B

cA,B |A〉 |B〉 , (2.22)

where
Ψ(q1, q2) = ∑

A,B
cA,B 〈q1 | A〉 〈q2 | B〉 . (2.23)

To gain insight in the order of the basis vectors we introduce the exchange operator P̂
that is both Hermitian and unitary, which does the following:

P̂ |A〉 |B〉 = |B〉 |A〉 , (2.24)

P̂Ψ(q1, q2) = Ψ(q2, q1). (2.25)

We can find the eigenvalues of the exchange operator by two consecutive exchanges of
particles for two particles:

(P̂)2 |A, B〉 = P̂ |B, A〉 = |A, B〉 , (2.26)

resulting in
(P̂)2 = I. (2.27)

Therefore we only can have symmetric or antisymmetric quantum states:

P̂ |A, B〉 = ± |B, A〉 . (2.28)

8
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2.1 Quantum mechanical introduction 9

Figure 2.1: Three quantum states represented by two symmetric rectangular boxes with two
particles inside illustrated by the filled circles.

2.1.3 (In)distinguishable elementary particles

The spin characteristics of identical particles determine if they form symmetric or an-
tisymmetric quantum states. We now want to see the effect of this property. If the ex-
change between identical particles is the only difference for two physical situations the
particles are indistinguishable. Therefore we take a look at the commutator for bosons
(integer spin) and fermions (half-integer spin). The definition for the commutator and
anticommutator is given by:

[â, b̂] = âb̂− b̂â, (2.29)

{â, b̂} = âb̂ + b̂â. (2.30)

Bosons exhibit symmetric quantum statistics and fermions exhibit antisymmetric quan-
tum statistics. The commutation relations thus for photons are:

[âi, âj] = [â†
i , â†

j ] = 0, (2.31)

[âi, â†
j ] = δi,j [12]. (2.32)

where δi,j is the Kronecker delta. In the next example we will look at the effect of distin-
guishability on particles and quantum states.

Example: Quantum states and indistinguishability

To illustrate the effect of distinguishability we first look at two particles in two dif-
ferent boxes. Each box has its own quantum state in bra-ket notation. Because there
is no interaction nor exchange of particles between boxes, only the three different
quantum states schematically depicted on figure 2.1 are possible.

• |A〉: 2 particles in the first box.

• |B〉: 1 particle in each box.

• |C〉: 2 particles in the second box.

Version of July 25, 2019– Created July 25, 2019 - 19:56
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10 Quantum optics and indistinguishability

Here we introduce the particle indistinguishability for bosons and fermions. Since
we can view the two boxes as 2 seperate quantum states and since two indistin-
guishable fermions cannot occupy the same quantum state due to the Pauli exclu-
sion principle, state |A〉 and |C〉 are for indistinguishable fermions not possible.

For two indistinguishable bosons, the states are equiprobable, with the assumption
that the boxes are equal. Now there is only one possible way to describe |B〉, since
it is not possible to tell the difference between the two photons.

For distinguishable particles the spin characteristics do not change the probabilities,
and are equal for bosons and fermions. There are now 2 possible ways to describe
|B〉, because switching the particles between the boxes results in the same state.

So we get the following probabilities to measure each quantum state:

P(|A〉) P(|B〉) P(|C〉)
indist. fermions 0 1 0
indist. bosons 1/3 1/3 1/3
dist. particles 1/4 1/2 1/4

We can conclude out of the last example that there are non-classical effects for indistin-
guishable particles, such as photons. The quantum states look like:

|ψ〉indistinguishable fermions = |B〉 , (2.33)

|ψ〉indistinguishable bosons =
1√
3
(|A〉+ |B〉+ |C〉) , (2.34)

|ψ〉distinguishable particles =
1
2

(
|A〉+

√
2 |B〉+ |C〉

)
. (2.35)

However, this example does not proof that photons (or other elementary particles) need
to be indistinguishable if they are identical. Therefore we need to discuss another ex-
ample, which is discussed in the next section.

2.2 The Gibbs paradox

The Gibbs paradox [38, 40] is a statistical mechanical statement, proposed by J.W. Gibbs
in 1876, in which the indistinguishability of particles needs to be included in the deriva-
tion of the entropy. Otherwise the addition of quantum subsystems into a bigger sys-
tem will give a different entropy than just addition of the entropy of both subsystems
together. This would mean that the entropy is not extensive and the second law of ther-
modynamics is violated. However, the problem is solved if we ignore permutation of
particles.

10
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2.2 The Gibbs paradox 11

Figure 2.2: Illustration of two compartments separated by a partition which is removed for:
a) distinguishable particles, b) indistinguishable particles. Here the number of photons: N,
volume: V, total energy: U and entropy: S.

2.2.1 Description of the problem

We have two classical ideal gases in two different compartments. When we remove
the partition between the compartments the total entropy of the quantum system is
not the same as the sum of the entropy of both compartments. See figure 2.2a for the
compartments: the number of photons N, volume V, total energy U and entropy S.
Removal of the partition results in a system with the number of photons 2N, volume
2V, total energy 2U and total entropy STOT.

The entropy in classical statistical mechanics, with kB Boltzmann constant and Ω the
number of configurations (states), is defined as:

S = kB ln Ω. (2.36)

Number of states in one compartment: [38, 40]

Ω = cNVN
(

U
N

) 3N
2

, (2.37)

To simplify the expression we set the constant c = 1, which consist of other properties
of the physical particles. then, the entropy for a single compartment is:

S = NkB ln

(
V
(

U
N

) 3
2
)

= NkB

(
ln (V) +

3
2

ln
(

U
N

))
. (2.38)
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12 Quantum optics and indistinguishability

The total entropy before removal of the partition is 2S and after removal:

STOT = 2NkB

(
ln (2V) +

3
2

ln
(

2U
2N

))
, (2.39)

which results in a mixing entropy term with an N dependence:

∆S = STOT − 2S (2.40)

= 2NkB

(
ln (V) +

3
2

ln
(

U
N

))
− 2NkB

(
ln (2V) +

3
2

ln
(

2U
2N

))
(2.41)

= 2NkB (ln (V)− ln (2V)) (2.42)
= 2NkB ln 2 6= 0. (2.43)

In violation of the second law of thermodynamics, ∆S = 0.

2.2.2 Solution of the problem

In the problem above we have assumed that in the final system we can distinguish
the particles of the first system from the other system. However we postulate that the
particles are indistinguishable and each particle has a different state. That would change
figure 2.2a to figure 2.2b.

Permutations of the same state:

• N = 2 there are 2 identical states.

• N = 3 there are 6 identical states.

• ...

• N = N there are N! identical states.

Therefore we must divide the number of states by N! [4]. Now the number of configu-
rations becomes

Ω = VN
(

U
N

) 3N
2 1

N!
, (2.44)

leading to entropy

S = NkB

(
ln (V) +

3
2

ln
(

U
N

))
− kB ln (N!) (2.45)

= NkB

(
ln (V)− ln (N) +

3
2

ln
(

U
N

)
+ 1
)

(2.46)

= NkB

(
ln
(

V
N

)
+

3
2

ln
(

U
N

)
+ 1
)

. (2.47)

12
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2.3 Electromagnetic radiation 13

Where we have used Stirling’s approximation

ln N! = ln N − N. (2.48)

The entropy of the total entropy before removal of the partition is 2S and after removal
is now

STOT = 2NkB

(
ln
(

2V
2N

)
+

3
2

ln
(

2U
2N

)
+ 1
)

. (2.49)

so the difference between the final entropy and initial entropy is

∆S = STOT − 2S (2.50)

= 2NkB

(
ln (V) +

3
2

ln
(

U
N

)
+ 1
)
− 2NkB

(
ln
(

2V
2N

)
+

3
2

ln
(

2U
2N

)
+ 1
)

(2.51)

= 2NkB

(
ln
(

V
N

)
− ln

(
V
N

))
= 0. (2.52)

Which means a conservation of the total entropy over time of an isolated system, ex-
pressed as the second law of thermodynamics. With this example we see that the theory
of indistinguishability should fit physical experimental data, not only in the quantum
mechanical description, but also in the classical description.

2.3 Electromagnetic radiation

The two types of light that we discuss here are thermal light and coherent light. Coher-
ent light and thermal light can be described by Fock states.

2.3.1 Thermal light

The random motion of a large number of particles inside a quantum system is called
thermal motion and the electromagnetic radiation generated by this motion is called
thermal radiation. This radiation is a spontaneous emission. Remembering from equa-
tion 2.7 that the energy of a photon in an electromagnetic mode is E = hω. The average
number of photons [19] is given by

〈N〉 = 1

exp
(

hω
kBT

)
+ ε

, (2.53)

where kB is Boltzmann’s constant and T the temperature. This results in three types of
statistics.

• ε = −1: Bose-Einstein statistics: for indistinguishable non-interactive bosons with
quantum effects.

Version of July 25, 2019– Created July 25, 2019 - 19:56
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14 Quantum optics and indistinguishability

• ε = 0: Maxwell-Boltzmann statistics: for distinguishabe particles without quantum
effects and for which there is no quantization in energy levels. Can be used for
photons under certain conditions.

• ε = 1: Fermi-Dirac statistics: for indistinguishable non-interactive fermions with
quantum effects.

For high temperatures the ε term becomes too small and the photons that were orig-
inally described by Bose-Einstein statistics are described by the Maxwell-Boltzmann
statistics.

To find the probability distribution for thermal photons described by Bose-Einstein
statistics we start with the Boltzmann factor, from which we can calculate the proba-
bility to find n photons, at a certain temperature T: [28]

Pn =
exp

(
− En

kBT

)
∑n exp

(
− En

kBT

) . (2.54)

Since thermal photons are quantized as En = nhω:

Pn =
exp

(
−nhω

kBT

)
∑n exp

(
−nhω

kBT

) = exp
(
− (n + 1)hω

kBT

)(
exp

(
hω

kBT

)
− 1
)

. (2.55)

Using the Bose-Einstein statistics for photons one finds

〈n〉 = 1

exp
(

hω
kBT

)
− 1
⇒ exp

(
hω

kBT

)
= 1 +

1
〈n〉 =

〈n〉+ 1
〈n〉 . (2.56)

Combining equation 2.55 and 2.56, one finds the following probability distribution for
n thermal photons called the Bose-Einstein distribution.

Pn =

 1

exp
(

hω
kBT

)
n+1(

exp
(

hω

kBT

)
− 1
)

(2.57)

=

(
〈n〉
〈n〉+ 1

)n+1 1
〈n〉 (2.58)

=
〈n〉n

(〈n〉+ 1)n+1 . (2.59)

In figure 2.3 this equation is plotted for 〈n〉 = 5.

14
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2.4 Degree of indistinguishability 15

2.3.2 Coherent light

Laser emission (above a certain threshold) consist of coherent light emission. As already
mentioned we can describe coherent light by Fock states. In the basis of eigenstates |α〉
of the annihilation operator the coherent states are defined as: [12, 13, 28, 36]

â |α〉 = α |α〉 . (2.60)

In Fock states basis the eigenstates are written as

|α〉 = exp
(
−|α|

2

2

)
∑
n

αn
√

n!
|n〉 . (2.61)

To find the probability distribution for coherent photons we start with calculating the
probability of finding a measurement result, described by equation 2.5. Using the de-
scription of coherent states in the Fock basis of equation 2.61 we find

Pn = | 〈n|α〉 |2 (2.62)

=

∣∣∣∣exp
(
−|α|

2

2

)
αn
√

n!

∣∣∣∣2 (2.63)

= exp
(
−|α|2

) |α|2n

n!
. (2.64)

Which could be rewritten using the photon number operator of equation 2.21, N̂ = â† â,
to the probability distribution for n coherent photons called the Poisson distribution

Pn = exp (− 〈n〉) 〈n〉
n

n!
, (2.65)

where we used the relation between coherent states of equation 2.60 and the mean pho-
ton number

〈n〉 = 〈α|N̂|α〉 = 〈α|â† â|α〉 = |α|2. (2.66)

The comparison between the Bose-Einstein and Poisson distributions can be seen in fig-
ure 2.3. Note, that for large 〈n〉 the Poissonian distribution takes the shape of a Gaussian
one, but for a single photon source the distribution is just a point in this graph with a
probability of P(1) ≈ 1.

2.4 Degree of indistinguishability

2.4.1 Description of single photons

Single photons can be described as wave packets in a pure quantum state, that pro-
duces a probability distribution for the outcome of each observable of the photon. Also,
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16 Quantum optics and indistinguishability

Figure 2.3: Graph displaying the different probability distributions P(n) for Poisson and Bose-
Einstein distribution for the expectation value 〈n〉 = 5.

single photon quantum states are single excitations inside electromagnetic modes. The
preparation of this state in Fock space is described as [37, 39]

|1〉 =
∫

dω g(ω) â†(ω) |0〉 . (2.67)

With the single photon creation operator acting on the vacuum state |0〉 in each mode of
frequency ω. The initial occupation of the modes is defined by the normalized spectral
probability amplitude function

∫ +∞

−∞
dω |gω(0)|2 = 1. (2.68)

This amplitude function varies for the shape of the photon, for example Gaussian shaped
or sinc function shaped photons. The input state, in Fock space, for a single photon in-
put is:

|1〉 = â† |0〉 . (2.69)

We can adapt this equation to contain more properties, for example a location r and a
property of the single photon s:

|1〉r = â†
s |0〉r . (2.70)

To measure indistinguishability of single photons, interferometry experiments, allow-
ing split up and combined electromagnetic waves resulting to interference, need to be
done. In the case of two photons, in the quantum mechanical description, this is called
two-photon interference. For splitting and combining a beam splitter is typically used,
its classical and quantum-mechanical description is the subject of the next section.

16
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2.4 Degree of indistinguishability 17

Figure 2.4: Beam splitter with input ports 0 and 1 and output ports 2 and 3.

2.4.2 Classical beam splitter

See figure 2.4 for a illustration of a beam splitter. The intensities of transmitted light
tinput, output and reflected light rinput, output from input to output location is given by:

t02, t13, r03, r12. (2.71)

Incident beams are E0 and E1, so we can now write the transformation by the beam
splitter as: [41]

E2 = t02E0 + r12E1, (2.72)
E3 = r03E0 + t13E1, (2.73)[

E2
E3

]
=

[
t02 r12
r03 t13

] [
E0
E1

]
. (2.74)

Where the matrix notation is to write the above equations collectively. For lossless beam
splitters the sum of the intensities of the input and output beams should be the same
due to energy conservation.

|E2|2 + |E3|2 = |E0|2 + |E1|2. (2.75)

With equation 2.74 we can rewrite this:

(
|r12|2 + |t13|2

)
|E1|2 +

(
|r03|2 + |t02|2

)
|E0|2

+ (r∗12t02 + t∗02r12) (E0E1) + (r∗03t13 + t∗13r03) (E0E1)

= |E0|2 + |E1|2. (2.76)
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18 Quantum optics and indistinguishability

Resulting in the following reciprocity relations: [12]

|r12|2 + |t13|2 = 1, (2.77)

|r03|2 + |t02|2 = 1, (2.78)
r∗12t02 + t∗02r12 = 0, (2.79)
r∗03t13 + t∗13r03 = 0. (2.80)

In general the following reciprocity relations are found based on energy conservation.
For |r12| = |r03| and |t13| = |t02|:

|r|2 + |t|2 = 1, (2.81)
r∗t + t∗r = 0. (2.82)

2.4.3 Quantum beam splitter

See figure 2.4 for a illustration of a lossless beam splitter. The intensities of transmitted
light tinput, output and reflected light rinput,output from input to output location is given by
equation 2.71. Incident beams are now replaced by annihilation operators â0 and â1, so
we can now write the transformation by the beam splitter as:

â2 = t02 â0 + r12 â1, (2.83)
â3 = r03 â0 + t13 â1, (2.84)[

â2
â3

]
=

[
t02 r12
r03 t13

] [
â0
â1

]
. (2.85)

For a 50:50 beam splitter, reflectance and transmittance are equal, |r|2 = |t|2 = 1
2 ,

and because of the construction of the beam splitter there is a phase shift between the
reflected and transmitted beam so we can choose:

t02 = t13 =
1√
2

, (2.86)

r03 = r12 =
i√
2

. (2.87)

This changes the transformation, and we can write the creation operators by taking the
complex conjugate:

â2 =
1√
2
(â0 + iâ1) , â†

2 =
1√
2

(
â†

0 − iâ†
1

)
, (2.88)

â3 =
1√
2
(iâ0 + â1) , â†

3 =
1√
2

(
−iâ†

0 + â†
1

)
. (2.89)

If we rewrite this equations, we get the following replacement rules:

â†
1 =

1√
2

(
iâ†

2 + â†
3

)
, â†

0 =
1√
2

(
â†

2 + iâ†
3

)
. (2.90)

18
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2.4 Degree of indistinguishability 19

This replacement rule can be used in the following notation:

|Input〉 → |Output〉 . (2.91)

The following example shows this notation for 1 photon input for the beam splitter.

Example: 1 photon input at the beam splitter
The input of the beam splitter is a single photon at port 1 and the vacuum state will
transform from 0 and 1 to 2 and 3. We can write this, using equation 2.90, as:

â†
1 |0〉0 |0〉1 →

1√
2

(
iâ†

2 + â†
3

)
|0〉2 |0〉3 , (2.92)

or equivalently:

|0〉0 |1〉1 →
1√
2
(i |1〉2 |0〉3 + |0〉2 |1〉3) . (2.93)

This output state is an example of an entangled state. This state cannot be described by
only describing one output port. The result shows that one of the output port will be in
vacuum when the other has a single photon incident.

2.4.4 Two-photon interference, polarization degree of freedom

We are now ready to describe the indistinguishability of single photons. Photons can
be (in)distinguishable in several degrees of freedom, we focus here on polarization. We
start with the same definitions for the beam splitter on figure 2.4 from the previous
section. Now 1 photon is at port 0 and the other photon is at port 1 having orthogo-
nal polarization if the photons are distinguishable. If we replace the â† operator by
the single-photon polarization operator (horizontal or vertical) this will result in the
following output state:

Ĥ†
0 V̂†

1 |0〉0 |0〉1 →
1
2

(
Ĥ†

2 + iĤ†
3

) (
iV̂†

2 + V̂†
3

)
|0〉2 |0〉3

=
1
2

(
iĤ†

2 V̂†
2 + Ĥ†

2 V̂†
3 − Ĥ†

3 V̂†
2 + iĤ†

3 V̂†
3

)
|0〉2 |0〉3 . (2.94)

Where we have used the replacement rules of equation 2.90. The output state can be
written also in the Fock basis with probability P = 1

4 +
1
4 = 1

2 to find two photons at one
output port and the same probability to find only one at each of the output ports.

Now for indistinguishable photons they have parallel polarizaton. We know from
equation 2.31 that identical bosons, and thus indistinguishable photons, commute with
each other:

[Ĥ†
i , Ĥ†

j ] = Ĥ†
i Ĥ†

j − Ĥ†
j Ĥ†

i = 0. (2.95)

Resulting in the following output state:
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20 Quantum optics and indistinguishability

Ĥ†
0 Ĥ†

1 |0〉0 |0〉1 →
1
2

(
Ĥ†

2 + iĤ†
3

) (
iĤ†

2 + Ĥ†
3

)
|0〉2 |0〉3 (2.96)

=
1
2

(
iĤ†

2 Ĥ†
2 + Ĥ†

2 Ĥ†
3 − Ĥ†

3 Ĥ†
2 + iĤ†

3 Ĥ†
3

)
|0〉2 |0〉3 (2.97)

=
1
2

(
iĤ†

2 Ĥ†
2 + iĤ†

3 Ĥ†
3

)
|0〉2 |0〉3 (2.98)

=
1√
2
(|2H〉2 |0〉3 − |0〉2 |2H〉3) . (2.99)

Where in the last step we used equation 2.17 to get the
√

2 in the output state. Now
the probability to find the two photons not at the same output port, the coincidence
probability, is P = 0! So we get a photon bunching effect which is called the Hong-Ou-
Mandel effect [15]. The full description of this effect:

Hong-Ou-Mandel effect
The Hong-Ou-Mandel (HOM) effect is an effect between two indistinguishable single
photons if they enter, for example, a beam splitter at different ports. They have to be
identical in all degrees of freedom (polarization, spatial, temporal etc.) for this quantum
interference effect to happen.

If two indistinguishable single photons enter at different ports, the following two cases
get cancelled out due to destructive interference:

• The photons are reflected.

• The photons are transmitted.

In conclusion: due to the HOM effect both photons will exit the beamsplitter at the same
port.

2.4.5 Two-photon interference, temporal degree of freedom

For a photon with a spectral amplitude function we can describe the temporal degrees
of freedom between the photons. The temporal wavefunction overlap is needed to de-
scribe the distinguishability. This overlap is shown in figure 2.5. In this thesis is de-
scribed how to detect distinguisability with experiments in the spatial degrees of free-
dom. Here we study in more detail the photon spectrum [5]. Since we now have two
different spectral amplitude functions for the single photons, A and B, we can describe
the quantum states using equation 2.67 and the beam splitter ports from figure 2.4,

20
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2.4 Degree of indistinguishability 21

Figure 2.5: Spectral wave function overlap between two spectral amplitude functions for two
photons. a) Almost no overlap, b) partial overlap, c) fully overlap so indistinguishable photons.

where we have introduced a time delay τ for one of the photons:

|1〉0 =
∫

dω1 f(ω1) Â†(ω1) |0〉0 , (2.100)

|1〉1 =
∫

dω2 g(ω2) B̂†(ω2) exp (−iω2τ) |0〉1 . (2.101)

The total two-photon input state then is:

|1〉0 |1〉1 =
∫

dω1 f(ω1) Â†(ω1)
∫

dω2 g(ω2) B̂†(ω2) exp (−iω2τ) |0〉0 |0〉1 . (2.102)

The total two-photon output state, using the replacement rules of equation 2.90, then is:

|ΨOut〉 =
∫

dω1 f(ω1)
∫

dω2 g(ω2) exp (−iω2τ) (2.103)

×
(

iÂ†(ω1) + B̂†(ω1)
) (

Â†(ω2) + iB̂†(ω2)
)
|0〉2 |0〉3 . (2.104)

With a lot of algebra, see [5], we can find the coincidence probability (cc), which is the
detection of one photon in each output. If the photons are completely indistinguish-
able and the wave functions overlap fully, this probability is zero due to the Hong-Ou-
Mandel effect. For two arbitrary spectral amplitude functions this becomes:

Pcc =
1
2
− 1

2

∫
dω1 f ∗(ω1) g(ω1)exp(−iω1τ)

∫
dω2 g∗(ω2) f (ω2)exp(iω2τ). (2.105)

When the wave functions overlap, f (ωi) = g(ωi), this becomes:

Pcc =
1
2
− 1

2

∫
dω1 | f (ω1)|2 exp (−iω1τ)

∫
dω2 | f (ω2)|2 exp (iω2τ). (2.106)

With this probability we are able to calculate photon distinguishability. In general, for
the Hong-Ou-Mandel experiment, the coincidence probability of two independent pho-
tons is given by their mean magnitude-squared overlap M [37]

Pcc =
1
2
(1−M) . (2.107)
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22 Quantum optics and indistinguishability

Also the spatial degrees of freedom can be used to tune the distinguishability, in par-
ticular important here is the spatial overlap between the light beams in our setup. If
the setup is partially misaligned, the Hong-Ou-Mandel quantum interference effect, de-
scribed in the last section, will only partially take place.

22
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Chapter 3
Experimental setup

The ComponentLibrary by Alexander Franzen is used for the generation of pictures
of optical setups and schemes in this thesis.

In this chapter we describe the optical setup that was built for the experimental con-
struction of multi photon entanglement. Omitted in this chapter is the Quantum Dot
setup which we use to generate the single photon stream. Quantum dots placed in-
side a cavity can produce deterministically single photons, instead of a probabilistically
source with Spontaneous Parametric Down-Conversion (SPDC). The scheme which we
will be using is an adaptation of the deterministic scheme of Y. Pilnyak et al. (2017)
[30]. This scheme is based on transforming a sequence of single photons (for details
about our quantum-dot based single photon source, see Ref. [34]) into a linear cluster
state entangled in the polarization degree of freedom. Photons, existing in a quantum
superposition of polarization states, can be seen as qubits (two-level quantum systems).
Measurements on single-qubits in photonic cluster states can be used for quantum com-
putational tasks [6, 20, 21].

3.1 Contents of the optical setup

In this thesis we build this experimental setup, which has the following parts:

• Hanbury Brown and Twiss (HBT) detection setup. See section 4.3.

• ”No loop” setup where the loop is blocked. See section 5.1.

• Delay loop setup where photons can make maximally one loop. See section 5.2.

• Open loop with a half-wave plate in it used for the creation of cluster states. See
section 6.2.

The main optical components of our optical setup are presented in figure 3.1. A descrip-
tion of several components:
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24 Experimental setup

Figure 3.1: Optical setup used in this thesis for the generation of cluster states based on a single
photon (SP) source. Arrows in the figure illustrate the direction of the photons and light beams.
The SP light passes through a single mode fiber (SMF), through wave plates, polarizers, (po-
larizing) beam splitters (BS), a Loop and the Perkin Elmer Avalanche Photon Detectors (APD)
in the Hanbury Brown & Twiss (HBT) setup. The loop stabilization is done with an attenuated
He-Ne laser, that is sent through an optical isolator, before it enters the loop. Data is processed
by a computer, which also controls the piezo mirror in the loop with a proportional-integral
controller.

24

Version of July 25, 2019– Created July 25, 2019 - 19:56



3.2 Polarization in the optical setup 25

• Tunable laser (Velocity, model 6319, 930-945 nm from New Focus [1]) most of the
time operating around 934.1 nm; used for quantum dot excitation.

• He-Ne laser that operates at 632.8 nm used to stabilize the loop.

• Quarter-wave
(

λ
4

)
plate which can be used for the conversion between linearly

and circularly polarized light. The combination of the λ
4 wave plate and λ

2 plate is
used in combination with a polarizer to optimize the incoming photon rate.

• Half-wave
(

λ
2

)
plate rotates the plane of polarization from the light source to any

other plane that is desired.

• Glan Polarizer (Glan-Laser Calcite Polarizers from Thorlabs) used to pass polar-
ized light in a specific orientation and block other polarizations.

• Beam splitter (BS).

• Polarizing beam splitter (PBS) transmits H-polarization and reflects V-polarization,
note that the reflected light contains a small admixture of H-polarization.

• Optical isolator (OFR Free-Space Isolator) used to protect the He-Ne laser source
from back reflected light from the loop.

• Filters. The filter after the loop (785 nm long-pass filter from EdgeBasic) passes
most of the light above 785 nm and transmits the least light at around 630 nm.

• Photo diode (SI Amplified Detector PDA100A by Thorlabs).

• Avalanche Photon Detectors (Perkin Elmer APDs) used to detect single photons,
the dead time of the detectors is 60 ns.

• PI controller used for the feedback mechanism for the stabilization of the loop.

• TimeHarp (Picoquant TimeHarp 260) is the card which records the correlations
between the detected photons.

Other software we used are LabView and Spiricon beam profiler software. In the next
section we will discuss the result of different polarizations in this setup.

3.2 Polarization in the optical setup

Light first goes through a Ĥ†-polarizer as can be seen in figure 3.2. Next the polarized
light becomes diagonally polarized by a λ

2 -wave plate. To change the polarization by
45◦ one must rotate the wave plate by 22.5◦. This effect is as follows:
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26 Experimental setup

Figure 3.2: Block diagram of the polarizing beam splitter (PBS) part. Incoming polarized light
from the single photon source can enter the loop or go to the Hanbury Brown and Twiss (HBT)
detection setup through the PBS. Subsequently incoming polarized light from the loop can con-
tinue in the loop or go to the HBT setup through the PBS. Single photons with an apostrophe for
a certain polarization went through the loop.

Ĥ† 45◦−→ 1√
2

(
Ĥ† + V̂†

)
(3.1)

V̂† 45◦−→ 1√
2

(
Ĥ† − V̂†

)
. (3.2)

The superposition of an equal amount of horizontally and vertically polarized light
enters the PBS. Horizontally polarized light gets transmitted and vertically polarized
light gets reflected as can be seen in the figure. Light from the loop, see figure 3.2,
becomes again diagonally polarized by a λ

2 -wave plate and again the PBS reflects V̂†-
polarized light and transmits Ĥ†-polarized light. We can in principle make all rotations,
for example the diagonal basis, with a λ

2 -wave plate, but not the change from the (H,V)-
basis to a (L,R) circular basis. This can be done by the λ

4 -wave plate.

26
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Chapter 4
Photon interference and bunching

In this chapter we discuss and measure the visibility before we perform an interferomet-
ric measurement. This measurement uses the Hanbury Brown and Twiss effect, which
we test for the single photon source solely by our detectors. Correlations are introduced
and light can be bunched, antibunched or coherent. Finally beamprofiles are taken to
test the alignment and a normalization fit function is introduced.

4.1 Interference visibility

To measure the coherence, meaning all correlation properties, of two waves we can use
the definition of the interferometric visibility given by: [24]

V =
〈I〉max − 〈I〉min
〈I〉max + 〈I〉min

. (4.1)

Here 〈I〉max and 〈I〉min are given by: [12]

〈I〉max = I1 + I2 + 2
√

I1 I2|γ(1)| (4.2)

〈I〉min = I1 + I2 − 2
√

I1 I2|γ(1)|. (4.3)

Where |γ(1)| is the first-order classical coherence function and I1 and I2 are the intensi-
ties of the first and second light field. First order coherence depends on the interference
of electromagnetic fields, second order coherence depends on correlations between in-
tensities of these fields and there are also higher orders of coherence. The quantum first
order coherence function |g(1)| can be constructed in the same way, so:

• |γ(1)| = |g(1)| = 1: Complete coherence

• |γ(1)| = |g(1)| = 0: Incoherence

• 1 > |γ(1)| > 0 and 1 > |g(1)| > 0: Partial coherence
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28 Photon interference and bunching

Figure 4.1: Visibility measurement in our setup. The intensity in arbitrary units is measured as
a function of time.

4.1.1 Example: measurement of the visibility

In figure 4.1 a visibility measurement is shown we did during our setup alignment. This
can only be done with an open loop without a half-wave plate inside the loop. In order
to align the setup we would like to improve the visibility to a level above 90%, after
subtraction of the background noise of the photo diode. For this measurement we got
the following values for the intensities: 〈I〉max = 0.94 and 〈I〉min = 0.05 in a scanning
time of 0.3 sec, resulting in:

V =
0.94− 0.05
0.94 + 0.05

=
0.89
0.99

≈ 90%. (4.4)

This is a quantification of the coherence between the two fields in the setup. For a second
order coherence function we must look at a correlation effect in intensities between the
fields which can be done by the Hanbury Brown and Twiss effect described in the next
section.

4.2 Hanbury Brown and Twiss effect

The description of fluctuations of intensity in a light beam is done by performing an
Hanbury Brown and Twiss (1956) experiment [14]. Experimentally we need for this a
50/50 beamsplitter and the Picoquant TimeHarp 260 card. This card records the time
differences between detected photons. As can be seen in figure 4.2 the combination of

28
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4.2 Hanbury Brown and Twiss effect 29

Figure 4.2: Optical setup for measuring the Hanbury Brown and Twiss effect(s).

λ
2 -wave plate and polarizer can be used to rotate the polarization of the light in any
direction we want.

Generally, light is categorized according to its correlations:

• Bunched (chaotic) light: Photons tend to cluster together.

• Antibunched light: Light produced by a single photon source where never two
photons are detected at the same time.

• Coherent (random) light: Time difference between the photons is random, for
example for continuous wave laser light.

The measure for the classical and quantum mechanical second-order coherence, or in
our case the autocorrelation of a light beam, is given by: [10]

g(2)class(τ) =
〈I(t)I(t + τ)〉
〈I(t)〉 × 〈I(t + τ〉) (4.5)

g(2)(τ) =
〈N1(t)N2(t + τ)〉
〈N1(t)〉 × 〈N2(t + τ)〉 . (4.6)

Where the intensities or photon detection of the light at time t and at time t + τ are con-
sidered. With the use of normal ordening, we get the creation and annihilation operator
notation for the second order correlation function:

g(2)(τ) =
〈

â†
1(t)â†

2(t + τ)â2(t + τ)â1(t)
〉〈

â†
1(t)â1(t)

〉 〈
â†

2(t + τ)â2(t + τ)
〉 . (4.7)
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30 Photon interference and bunching

The properties of g(2)(τ) are:

• Bunched chaotic light: g(2)(0) > 1.

• Antibunched light: g(2)(0) < 1.

• Coherent (random) light: g(2)(0) = 1.

Under the assumption g(2)(τ) = 1 for |τ| � 0

This function is simpler for τ = 0, which is useful to measure the single photon purity
with our HBT setup. Therefore with a little bit of algebra, using equations 2.17 and 2.19,
we can now write for the photon number operator N:

g(2)(0) =
〈N(N − 1)〉
〈N〉2

. (4.8)

For the number state input |n〉 we get:

g(2)(0) =
〈n|N(N − 1)|n〉
〈n|N2|n〉 =

n(n− 1)
n2 =

n− 1
n

. (4.9)

Which is 0 for n = 0 or 1.

4.3 Hanbury Brown and Twiss experiment

For this experiment we couple light from the quantum dot setup into an optical fiber
containing a beam splitter. A scheme for the HBT setup can be seen in figure 4.3. See
the table for all the properties.

Single photon purity. Remembering that antibunched light gives g(2)(0) < 1, we can
determine the ”purity” of the single photon source experimentally as the visibility of the
HOM dip in a g(2)-measurement. However this renders a discouraging estimation of the
purity, because of the detector response. We have to take the convolution between the
theoretical g(2) and instrumental response function, g(2)theory ⊗ IRF, to find the real value.
The limitation of the single photon measurements of g2, excited by a CW (continuous
wave) laser, is by detector jitter. The degree of indistinguishability between quantum
states is also indicated by this dip and we want to characterize the single photon degree
of purity only. This can be done by the width of the HOM dip and the spectrum of the
photon, as is shown by K. N. Cassemiro et al. (2010) [7]. If the photons are completely
indistinguishable the M from equation 2.107 is equal to the HOM visibility. So the purity
of single indistinguishable photons is:

Purity = 1− g(2)(0) (4.10)

30
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4.4 Alignment of the setup 31

Duration 188 sec
#coincidences(τ � 0) 275
Normalization #coincidences

275
Table 4.1: Table containing the properties of the HBT experiment.

Figure 4.3: Scheme of the HBT setup for the HBT experiment with only the Quantum Dot single
photon source.

Conclusion. We first normalize the graph and next we plot the g(2) in figure 4.4. The
number of coincidences is low since we measure only for 188 sec, but we can clearly see
the dip in the graph at g(2)(0). The fit through our data in this normalized graph is a
Lorentzian function given by the following formula:

g(2)Lorentzian(τ) = 1− 0.6
16τ2 + 1

, (4.11)

with τ the time delay between detections in ns. We see that our normalization results in
a dip g(2)(0) ≈ 0.4, which results in a purity of 60%. In theory a purity of close to 100%
can be reached. In the following sections we would like to characterize the alignment
of our setup and the normalization fit we use in this thesis.

4.4 Alignment of the setup

The beam profile of the separated laser beams, from the same source, and the slightly
misaligned beams can be seen in figure 4.5. The misalignment of the loop will still
cause (partial) quantum interference, however the separated beams do not interfere at
all. Aligning the setup would thus mean that at every point in the setup the beams
overlap.
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32 Photon interference and bunching

Figure 4.4: Measurement of the HBT setup experiment. This is a normalized g(2) graph with a
Lorentzian fit throught the data points.

Also when we mention the polarization configuration in later chapters, the first letter
is the polarization of detector A and the second letter is the polarization of detector B.
Before each experiment we align (or misalign) the setup, measure the visibilities of both
detectors, calibrate the waveplates in front of the detectors and measure the coupling of
the light into the optical fiber to the detectors. After each experiment we measure again
the visibilities of both detectors.

4.5 Normalization fit

Since we measure at high laser power, to increase the number of coincidences, our sec-
ond order correlation measurements are difficult to normalize. Higher laser power re-
sults in an overall bunching peak, which is visible in figure 4.6. This is most likely
caused by spectral diffusion of background charges due to the strong laser drive. See
table 4.2 for the parameters. We could measure at lower powers, but this would in-
crease the measurement time. In future experiments this is the idea, however for the
data that we obtained to write this thesis this was not implemented. Therefore we try
to removing the overall bunching with a fitting formula. First we normalize the graphs
by dividing the number of coincidences by the value for τ � 0. Next we remove the
bunching by dividing the number of coincidences by the following fit functions:

• Without loop - Bunching fit, see figure 4.6a:

g(2)(τ) = A exp (−λ |τ − τ0|) + 1. (4.12)

• With loop - Bunching fit, see figure 4.6b.

g(2)(τ) = A exp

(
−|τ − τ0|2

2σ2

)
× exp (−λ |τ − τ0|) + 1. (4.13)

Where τ0 is the measured time delay of the detectors and optical fibers with the VV
configuration, in order to determine the point in time when τ = 0. A is the height of the

32
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4.5 Normalization fit 33

Figure 4.5: Beamprofiles, taken directly after the loop of the optical setup, for a) one beam if the
loop is blocked (”No loop”), b) aligned beams if the light from the loop and the light not going
into the loop overlaps, c) misaligned beams and d) separated beams. The greyscale indicates the
intensities of the laser light.
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34 Photon interference and bunching

overall bunching in comparison to g(2)(τ) = 1. λ and σ are fit parameters, which should
be studied in future research. Adding a loop to the setup will change this function, see
table 4.2 below:

Detector A,B VV (”No loop”) HH (Delay loop)
Duration 50 min 50 min
#coincidences(τ � 0) 11148 9700
Det. A visibility 95% 96%
Det. B visibility 90% 92%
Normalization #coincidences

11148
#coincidences

9700
Parameters τ0, A, -0.43, 0.28 -0.64, 0.11
Parameters σ, λ ∞, 0.21 17.09, 0.11
g(2)(0) 0.70 0.95
g(2)(−3.5), g(2)(3.5) 0.97, 0.99 0.89, 0.89

Table 4.2: Table containing the properties of the HH and VV configuration for the normalization
fit cluster state setup experiment 2. See figure 4.6a and b.

34
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4.5 Normalization fit 35

Figure 4.6: Second-order correlation measurements with and without loop. The fits from the
bunching formulas are also plotted. a) g(2) without loop for a VV measurement. b) g(2) with
loop for a HH measurement. See table 4.2.
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Chapter 5
Spatial alignment

In this chapter we investigate the Hanbury Brown and Twiss effect through our setup
and create predictions. A specially designed loop setup is used for the generation of
cluster states, but here we first examine the setup without a loop, the ”No loop” setup
and next we look at a Delay loop setup with one round trip R.

5.1 ”No loop” setup

The single photon source we use in our setup produces single photons with a high pu-
rity, see section 4.3 for the experimental result of only the HBT effect for the two detec-
tors. In this section we investigate the HBT effect in our ”No loop” setup. The scheme
of this setup is given in figure 5.1. The first letter and second letter of the polarization
configuration are the detected polarizations of detector A and B.

5.1.1 ”No loop” prediction

The prediction is based on a stream of photons from quantum dot excitation by a con-
tinuous wave laser (CW). Results are described in creation operator notation acting on
vacuum state. We assume that the photons are perfectly indistinguishable.

Single photon input
Here P̂†

t is the quantum state creation operator, with time t and polarization P, acting
on |Vac〉. For the λ

2 -wave plate we use equations 3.1 and 3.2.
After the λ

4 -wave plate and λ
2 -wave plate, incoming light gets horizontally polarized by

the polarizer. The effect of the next optical elements is as follows:

Ĥ†
t

WP−−→ 1√
2
(Ĥ†

t + V̂†
t )

PBS−−→ V̂†
t . (5.1)
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38 Spatial alignment

Figure 5.1: Scheme of the HBT setup for the ”No loop” experiment with the quantum dot single
photon source light entering various optical elements.

Where transmitted light, horizontally polarized, after the PBS enters an optical beam
dump used to absorb beams for lab safety and to block the light from entering the loop.

Predictions

• Single photons reaching the detector are vertically polarized.
• No coincidences possible between horizontally and vertically polarized photons,

since horizontally polarized photons reach a beam dump.
• Only a VV experiment, where both detectors are set to V polarization, will result in

a single photon dip. Which is the HOM dip that shows the single photon purity.
HV, VH and HH experiments will not result in coincidence counts, because all
photons are vertically polarized.

5.1.2 ”No loop” experiment

For this experiment we block the loop in the setup to test the prediction. A scheme for
the setup can be seen in figure 5.1. See table 5.1 for all the properties of the VV, HV, VH
and HH configuration measurements.

In figure 5.2 we can see the results of our experiment for the VV and HH configuration.
The normalized VV configuration is plotted in figure 5.3. The HV, VH configurations
from table 5.1 are not plotted since the amount of coincidence counts is many times
more for the VV configuration.

38
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5.1 ”No loop” setup 39

Figure 5.2: Coincidences vs the time delay between detections for HH and VV configuration in
the ”No loop” setup experiment. HH overlaps the x-axis in this graph. HV and VH configura-
tions are not plotted. See table 5.1.

Figure 5.3: g(2) vs the time delay between detections for the VV configuration in the ”No loop”
setup experiment. See table 5.1.
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40 Spatial alignment

Detector A,B HH HV VH VV
Duration 60 min 60 min 60 min 60 min
#coincidences(τ � 0) 5 126 382 11148
SP counts (at A) 2e3 2e3 1.8e5 1.8e5
Det. A visibility 90% 90% 90% 90%
Det. B visibility 86% 86% 86% 86%
Normalization #coincidences

5
#coincidences

126
#coincidences

382
#coincidences

11148
Parameters τ0, A, -, - -0.33, 0.20 -0.33, 0.25 -0.43, 0.28
Parameters σ, λ -, - ∞, 0.20 45.25, 0.19 ∞, 0.21
g(2)(0) 1.00 0.70 0.67 0.70
g(2)(−3.5), g(2)(3.5) 1.00,1.00 0.91, 0.85 0.95, 0.89 0.97, 0.99

Table 5.1: Table containing the properties of HH, HV, VH and VV configuration for the ”No
loop” setup experiment. See figure 5.2 and 5.3.

Conclusions

• Single photons reaching the detector are indeed vertically polarized, as predicted.
• Almost no coincidences possible between horizontally and vertically polarized

photons, since horizontally polarized photons reach a beam dump. The detected
coincidences are probably because of the inaccuracy of the PBS. We can estimate
the error of the PBS from the single photon counts.
• Not only a VV experiment will result in a single photon dip. For the HV and VH

configuration, measurements show it is possible to measure the single photon dip.
However, the number of coincidence counts is much less than for VV.
• The lowest dip depth of the VV configuration for g(2) through our ”No loop” setup

is 0.38, which is limited by the detector response.

5.2 Delay loop setup (one round trip R)

In this section we investigate the loop effect of the delay loop setup, with 1 round trip
R in a loop before entering the HBT setup. The scheme of this setup is given in figure
5.4. This setup is almost the physical equivalence of a Mach-Zehnder interferometer,
where a light beam is split into two by a BS and recombined at another BS. In our setup
this is done by one polarizing beam splitter PBS. The first letter and second letter of the
polarization configuration are the detected polarizations of detector A and B.

Patel et al. (2008) [29] used this Mach-Zehnder interferometer to demonstrate, by post-
selection, the indistinguishability of single photons. In the paper, we see the effect of
parallel polarization, see figure 5.5, and orthogonal polarization input in the HBT setup
on g(2)(τ). Proux et al. (2015) [32] repeat this experiment and introduce a coalescence

40
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5.2 Delay loop setup (one round trip R) 41

Figure 5.4: Scheme of the HBT setup for the Delay loop setup experiment with the quantum dot
single photon source light entering various optical elements. There is no λ

2 -wave plate in the
loop.

Figure 5.5: HBT and two-photon interference results for the Mach-Zehnder interferometer with
parallel polarization between input photons. Three dips are visible, one single photon dip and
two ’delay dips’. Figure is taken from the paper from Patel [29], FIG. 3.
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time window (CTW) to measure the temporal indistinguishability of single photons by
continuous wave excitation of the quantum dot. Both papers show a single photon dip
and two ’delay dips’ for this setup. In the next section we try to predict the outcome of
our experiment and compare with the results from these papers.

5.2.1 Delay loop (one round trip R) prediction

This prediction is based on a stream of photons from quantum dot excitation by a con-
tinuous wave laser (CW). Results are described in creation operator notation acting on
vacuum state. We assume that the photons are perfectly indistinguishable.

Two photon input
Here P̂†

t is the quantum state creation operator, with time t and polarization P, acting
on |Vac〉 and time t = R is the duration of one round trip. For the λ

2 -wave plate we use
equations 3.1 and 3.2.
After the λ

4 -wave plate and λ
2 -wave plate, incoming light gets horizontally polarized by

the polarizer. Assuming interference, thus a tensor product, between photons that go
one round trip through the PBS with time t = R and incoming photons in the PBS with
t = R:

Ĥ†
t (5.2)

WP−−→ 1√
2
(Ĥ†

t + V̂†
t ) (5.3)

1 Roundtrip + 2nd photon−−−−−−−−−−−−−−→ 1√
2
(Ĥ†

t+R + V̂†
t )⊗

1√
2
(Ĥ†

t+R + V̂†
t+R) (5.4)

1 Roundtrip−−−−−−→ 1√
2
(Ĥ†

t+R + V̂†
t )⊗

1√
2
(Ĥ†

t+2R + V̂†
t+R) (5.5)

=
1
2

(
Ĥ†

t+RĤ†
t+2R + Ĥ†

t+RV̂†
t+R + V̂†

t Ĥ†
t+2R + V̂†

t V̂†
t+R

)
. (5.6)

Using this prediction method for one round trips we can create the following table 5.2.
The time difference between the incoming photons is equal to the length of the loop,
t = R. With the prediction we can predict the detection probabilities of the experiment.

Time difference (R) Photon configuration Det. Probability
1, -1 HH 1

4
-2, 0, 2 HV, VH 1

2
1, -1 VV 1

4
Table 5.2: Table containing the predicted configurations, for one round trips, with time differ-
ences and detection probabilities. For this calculation the input time difference is R.

42
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5.2 Delay loop setup (one round trip R) 43

For HH and VV detection.
Detection probability at |τ| = 0 sec:

PHH = PVV = 0. (5.7)

Detection probability at |τ| = R sec:

PHH = PVV =
1
4

. (5.8)

For HV and VH detection.
Detection probability at |τ| = 0 sec:

PHV = PVH =
1
4

. (5.9)

Detection probability at |τ| = R sec:

PHV = PVH = 0. (5.10)

Detection probability at |τ| = 2R sec:

PHV = PVH =
1
4

. (5.11)

Predictions

• For the HH and VV configuration we expect a dip at a time difference of |τ| = 0
for the correlation measurement.
• For the HV and VH configuration we expect a dip at a time difference of |τ| = R

for the correlation measurement.
• The time difference between the dips for the HV and VH configuration will be 2

round trips as we can see in equation 5.6.

5.2.2 Delay loop (one round trip R) experiment

For this experiment we couple light from the quantum dot setup and start the delay
loop setup (one round trip R) experiment. Now we can test the prediction with our
setup. A scheme for the setup can be seen in figure in figure 5.4. See table 5.3 and 5.4 for
all the properties of the VV, HV, VH and HH configuration measurement for the aligned
and misaligned case.

In figure 5.6 and tables 5.3 and 5.4 we can see the results of our experiment for the HH
and VV configuration. There is dip at τ = 0 for both configurations. For the VV con-
figuration misalignment shows a higher dip depth the HH configuration misalignment
shows a lower dip depth.
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44 Spatial alignment

Figure 5.6: g(2) vs the time delay between detections for the VV (a) and HH (b) configuration in
the delay loop setup experiment. g(2) with misalignment is also added in red. See table 5.3 and
5.4

44
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5.2 Delay loop setup (one round trip R) 45

Figure 5.7: g(2) vs the time delay between detections for the HV (a) and VH (b) configuration in
the delay loop setup experiment. g(2) with misalignment is also added in red. See table 5.3 and
5.4
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Detector A,B HH HV VH VV
Duration 50 min 50 min 50 min 50 min
#coincidences(τ � 0) 7526 9855 6737 7742
SP counts (at A) 1.6e5 1.4e5 1.4e5 1.8e5
Normalization #coincidences

7526
#coincidences

9855
#coincidences

6737
#coincidences

7742
Parameters τ0, A, -0.22, 0.29 3.43, 0.29 -3.89, 0.25 -0.45, 0.25
Parameters σ, λ ∞, 0.20 29.08, 0.22 ∞, 0.19 ∞, 0.21
g(2)(0) 0.66 0.97 0.98 0.78
g(2)(−3.5), g(2)(3.5) 0.96, 0.97 0.98, 0.64 0.73, 0.97 0.98, 0.99

Table 5.3: Table containing the Aligned properties of HH, HV, VH and VV configuration for the
delay loop setup experiment. See figure 5.6 and 5.7. Data for the visibilities is not collected.

Detector A,B HH HV VH VV
Duration 50 min 50 min 50 min 50 min
#coincidences(τ � 0) 2685 3200 2787 5414
SP counts (at A) 8e4 7e4 1.2e5 1.3e5
Det. A polarization H H V V
Det. B polarization H V H V
Normalization #coincidences

2685
#coincidences

3200
#coincidences

2787
#coincidences

5414
Parameters τ0, A, -0.65, 0.15 3.35, 0.14 -3.39, 0.21 -0.31, 0.23
Parameters σ, λ ∞, 0.19 29.44, 0.21 ∞, 0.17 30.13, 0.18
g(2)(0) 0.76 0.96 0.96 0.56
g(2)(−3.5), g(2)(3.5) 0.94, 0.97 0.97, 0.79 0.59, 0.95 0.97, 0.95

Table 5.4: Table containing the Misaligned properties of HH, HV, VH and VV configuration for
the delay loop setup experiment. See figure 5.6 and 5.7. Data for the visibilities is not collected.

In figure 5.7 and tables 5.3 and 5.4 we can see the results of our experiment for the HV
and VH configuration. There is dip at τ = 3.5 for the HV configuration. There is dip
at τ = −3.5 for the VH configuration. For the VH configuration misalignment shows a
higher dip depth the HV configuration misalignment shows a lower dip depth.

Conclusions

• For the HH and VV configuration we see a dip at a time difference of |τ| = 0 for
the correlation measurement, as predicted.
• For the HV and VH configuration we see a dip at a time difference of |τ| = R for

the correlation measurement, as predicted.
• The time difference between the dips for the HV and VH configuration is 2 round

trips, as predicted.

46
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• In figure 5.6a the dip depth for the misaligned case is deeper than for the aligned
case. Figure 5.6b shows the opposite. Also figure 5.7a and b, should have the same
dip depth with misalignment. This is an interesting result, we think it is related to
a recent study of Loredo et al. (2018) [22].
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Chapter 6
Cluster States and indistinguishability

In this chapter a specially designed loop setup is used for the generation of cluster
states. We first introduce the cluster states, then we create a prediction and perform
experiments for various degrees of photon indistinguishability.

6.1 Cluster states

N-qubit quantum states can be located on a lattice with d dimensions. This lattice is
needed to realize Cluster states, which are highly entangled qubits, from a Hamiltonian
as is shown by Briegel and Raussendorf [6]. Photons, existing in a quantum superposi-
tion of polarization states, can be seen as qubits (two-level quantum systems). Qubits
can be described in the ’computational basis’, given by{|0〉 , |1〉}. For two qubits the
basis of the corresponding ’tensor space’ is |00〉, |01〉, |10〉 and |11〉. One can think of
photons in a linear cluster state to be produced by a Hamiltonian interaction for a short
range [6].

Hint = h̄g(t)∑
a,a′

f (a− a′)
1 + σ

(a)
z

2
1− σ

(a′)
z

2
, (6.1)

where the Pauli matrix operator σ
(a)
z (also Pauli-Z operator) acts on the basis vector

states as:
σ
(a)
z |0〉a = |0〉a , (6.2)

σ
(a)
z |1〉a = − |1〉a . (6.3)

Here the indices a ∈ Zd are all occupied lattices sites, f (a− a′) is the interaction range,
here we only consider next-neighbour interaction, g(t) is a time-dependence term. Trans-
lating to quantum information, the interaction Hamiltonian eq. 6.1 can be seen as the
Phase shift (Rφ) quantum logic gate between the qubits.
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50 Cluster States and indistinguishability

1D Example: Linear chain of N qubits

Preparation method introduced by Briegel and Raussendorf (only next-neighbour in-
teraction) [6]. The unitary operator for the interaction hamiltonian takes the form:

U(φ) = exp
(
−iHintt

h̄

)
= exp

(
−ig(t)t ∑

a,a′
f (a− a′)

1 + σ
(a)
z

2
1− σ

(a′)
z

2

)
, (6.4)

since we got next-neighbour interaction and g(t) is constant:

f (a− a′) = δa+1,a′ , (6.5)

φ =
∫

g(t)dt = gt. (6.6)

hence

U(φ) = exp

(
−iφ

N

∑
a

1 + σ
(a)
z

2
1− σ

(a+1)
z

2

)
, (6.7)

where N is the number of qubits in the system. The chain becomes disentangled when
φ takes values: 0, 2π, 4π, ... and entangled for: π, 3π, 5π, ... Initially all qubit states in
the linear chain are given by:

|ψ〉a =
|0〉a + |1〉a√

2
. (6.8)

Applying the evolution operator eq. 6.4 on the qubit states using φ = π for an entangled
state:

|φN〉 = U(φ = π) |ψN〉

=
1

2N/2

N⊗
a=1

(
|0〉a σ

(a+1)
z + |1〉a

)
.

(6.9)

This is the formula for linear cluster states, which is the same as equation (2) from [6].
Here we use σ

(N+1)
z ≡ 1, since there is no possibility to entangle with an empty qubit

state.

Using the formula for the generation of cluster states, equation 6.9, we can calculate for
N qubits the resulting linear cluster state:

• For N = 2 qubits we obtain:

|φ2〉 =
1
2
(|0〉1 σ

(2)
z + |1〉1)(|0〉2 + |1〉2) =

1
2
(|0〉1 (|0〉2 − |1〉2) + |1〉1 (|0〉2 + |1〉2)) .

(6.10)

50
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6.2 Cluster state setup prediction 51

Writing it in the standard form with local unitary transformation:

|φ2〉 =
1√
2
(|0〉1 |0〉2 + |1〉1 |1〉2). (6.11)

This is one of the 4 Bell states, which is a maximally entangled state. In general
the four Bell states are written as

|φ2〉 =
∣∣Φ+

〉
=

1√
2
(|0〉1 |0〉2 + |1〉1 |1〉2), (6.12)∣∣Φ−〉 = 1√

2
(|0〉1 |0〉2 − |1〉1 |1〉2), (6.13)∣∣Ψ+

〉
=

1√
2
(|0〉1 |1〉2 + |1〉1 |0〉2), (6.14)∣∣Ψ−〉 = 1√

2
(|0〉1 |1〉2 − |1〉1 |0〉2). (6.15)

• For N = 3 qubits we obtain:

|φ3〉 =
1√
2
(|0〉1 |0〉2 |0〉3 + |1〉1 |1〉2 |1〉3), (6.16)

• For N = 4 qubits we obtain:

|φ4〉 =
1
2
(|0〉1 |0〉2 |0〉3 |0〉4 + |0〉1 |0〉2 |1〉3 |1〉4 + |1〉1 |1〉2 |0〉3 |0〉4−|1〉1 |1〉2 |1〉3 |1〉4).

(6.17)

6.2 Cluster state setup prediction

6.2.1 Method

Here we create a prediction for the outcome of the cluster state setup, see figure 6.1,
for a stream of photons from quantum dot excitation by a continuous wave laser (CW).
Results are described in creation operator notation acting on vacuum state. We assume
that the photons are perfectly indistinguishable.
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52 Cluster States and indistinguishability

Figure 6.1: Optical setup used in this thesis for the generation of cluster states based on a single
photon (SP) source. Arrows in the figure illustrate the direction of the photons and light beams.
The SP light passes through a single mode fiber (SMF), through wave plates, polarizers, (po-
larizing) beam splitters (BS), a Loop and the Perkin Elmer Avalanche Photon Detectors (APD)
in the Hanbury Brown & Twiss (HBT) setup. The loop stabilization is done with an attenuated
He-Ne laser, that is sent through an optical isolator, before it enters the loop. Data is processed
by a computer, which also controls the piezo mirror in the loop with a proportional-integral
controller.

52
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6.2 Cluster state setup prediction 53

6.2.2 Single photon input (red operator in loop)

Here P̂†
t is the quantum state creation operator, with time t and polarization P, acting on

|Vac〉 and time t = R is the duration of one round trip. Using equations 3.1 and 3.2:

No round trip (Q0(t)):
1√
2
(Ĥ†

t + V̂†
t ). (6.18)

1 round trip (Q1(t)):
WP−−→ 1√

2

(
1√
2

(
V̂†

t+R + Ĥ†
t+R

)
+ V̂†

t

)
. (6.19)

2 round trips (Q2(t)):

WP−−→ 1√
2

(
1√
2

(
1√
2

(
−V̂†

t+2R + Ĥ†
t+2R

)
+ Ĥ†

t+R

)
+ V̂†

t

)
. (6.20)

3 round trips (Q3(t)):

WP−−→ 1√
2

(
1√
2

(
1√
2

(
1√
2

(
V̂†

t+3R − Ĥ†
t+3R

)
+ Ĥ†

t+2R

)
+ Ĥ†

t+R

)
+ V̂†

t

)
. (6.21)

4 round trips (Q4(t)):

WP−−→ 1√
2

(
1√
2

(
1√
2

(
1√
2

(
1√
2

(
−V̂†

t+4R + Ĥ†
t+4R

)
− Ĥ†

t+3R

)
+ Ĥ†

t+2R

)
+ Ĥ†

t+R

)
+ V̂†

t

)
.

(6.22)

Conclusions

• The same number of single photons reaching the detector is vertically or horizon-
tally polarized.
• Only horizontally polarized light leaves the loop.
• Each round trip R the probability that photons remain in the loop is:

P(R) =
(

1
2

)R+1

. (6.23)

For two photon interference the two photons must be identical in their spatial, temporal
and polarization degrees of freedom. The second photon enters the loop at t = R, 2R, ...
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54 Cluster States and indistinguishability

6.2.3 Two photon input with 2 round trips (red operator in loop)

In this example we consider two photon interference with a time difference of 1
round trip. After 1 round trip of the first photon the total quantum state creation
operator, acting on |Vac〉, is:

Ψ† = Q1(t) ⊗ Q0(t + R). (6.24)

Using Q0 from equation 6.18 and Q1 from equation 6.19 and time t = 0:

Q1(0) ⊗ Q0(R) =
1√
2

(
1√
2

(
V̂†

t+R + Ĥ†
t+R

)
+ V̂†

t

)
⊗ 1√

2
(Ĥ†

t + V̂†
t ). (6.25)

The 2nd round trip of both photons gives

Q2(R) ⊗ Q1(2R) =
1√
2

(
1√
2

(
1√
2

(
−V̂†

3R + Ĥ†
3R

)
+ Ĥ†

2R

)
+ V̂†

R

)
⊗ 1√

2

(
1√
2

(
V̂†

3R + Ĥ†
3R

)
+ V̂†

2R

)
(6.26)

After calculation of this tensor product, due to the fact that the commutation relation
for bosons is zero, see equation 2.31, the following part stands out:

=
(

Ĥ†
3R−V̂†

3R

)
⊗
(

Ĥ†
3R + V̂†

3R

)
(6.27)

= Ĥ†
3RĤ†

3R + Ĥ†
3RV̂†

3R − V̂†
3RĤ†

3R − V̂†
3RV̂†

3R (6.28)

= Ĥ†
3RĤ†

3R − V̂†
3RV̂†

3R. (6.29)

Using the probabilities, this results in the following quantum entangled Bell
state: NB

1
4
√

2

(
Ĥ†

3RĤ†
3R − V̂†

3RV̂†
3R

)
|Vac〉 (6.30)

=
1√
2
(|HH〉 − |VV〉) =

∣∣Φ−〉 . (6.31)

Which is the cluster state we would like to detect in our setup.
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6.2 Cluster state setup prediction 55

Conclusions

• For a two photon input with quantum interference, we detect one of the maximally
entangled Bell states |Φ−〉. Y.Pilnyak et al. (2017) [30] suggest here to ignore the
rest of the results and use postselection.
• We can generate the total quantum state creation operator for each configuration

of photons with different time differences.

NB: Normalization of the resultant quantum state is perserved due to the fact that cre-
ation operators squared (spatial, temporal and polarization identical) acting on vacuum
will give an extra factor

√
2, see equation 2.17.

6.2.4 Prediction after 3 round trips

Using this prediction method for 3 round trips we can create the following table 6.1. The
time difference between the incoming photons is equal to the length of the loop, t = R.
With the prediction we can predict the detection probabilities of the experiment. Here
we used Q1(t) ⊗ Q0(t + R) for the prediction, developed for 3 round trips.

For VV detection.
Here the extra 1

2 comes from the beam splitter in the HBT setup:
Detection probability at |τ| = 0 sec:

PVV = 0. (6.32)

Detection probability at |τ| = R sec:

PVV =
1
2

(
1
4

1
4 +

1
16 +

1
16

)
=

1
3

. (6.33)

For HH detection.
Here the extra 1

2 comes from the beam splitter in the HBT setup:
Detection probability at |τ| = 0 sec:

PHH =
1
2

(
1
16 +

1
64

1
8 +

1
16 +

1
64 +

1
64 +

1
64 +

1
64

)
=

5
32

. (6.34)

Detection probability at |τ| = R sec:

PHH =
1
2

(
1

16
1
4 +

1
16 +

1
16

)
=

1
12

. (6.35)
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Time difference (R) Photon 1 Photon 2 Det. Probability HH det. VV det.
0 H V 1

8 - -
0 H H 1

16 Yes -
0 H H 1

64 Yes -
0 H V 1

64 - -
0 V H 1

64 - -
0 V V 1

64 - -
1, -1 V V 1

4 - Yes
1, -1 H H 1

16 Yes -
1, -1 H V 1

16 - -
2, -2 V H 1

8 - -
2, -2 H V 1

32 - -
2, -2 V V 1

32 - -
2, -2 H H 1

32 Yes -
2, -2 H V 1

32 - -
3, -3 V H 1

16 - -
3, -3 V V 1

16 - -
Total = 1

Table 6.1: Table containing the predicted configurations, for 3 round trips, with time differences
and detection probabilities. For this calculation the input time difference is R and the input is a
single photon Fock state. Yes in the column for HH and VV configuration means that the state
can be detected.

Predictions

• For the VV configuration we expect a dip at a time difference of |τ| = 0 for the
correlation measurement.
• For the HH configuration we expect dips at a time difference of |τ| = R that are

5
32
1
12
≈ 2 times bigger than a dip at |τ| = 0

• The dip depth at |τ| = 0 is for the VV configuration bigger than HH.
• The dip depth at |τ| = R is for the HH configuration bigger than VV.

6.3 Cluster state setup experiment 1

For this experiment we couple light from the quantum dot setup and start the cluster
state setup experiment 1. Now we can test the prediction with our setup. A scheme for
the setup can be seen in figure 6.1. The length of a round trip here is R = 3.5 ns. See
table 6.2 for all the properties of the VV and HH configuration measurement. The first
letter and second letter of the polarization configuration are the detected polarizations
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6.3 Cluster state setup experiment 1 57

Detector A,B VV (94%) HH (94%) VV (46%) HH (46%)
Duration 50 min 50 min 50 min 50 min
#coincidences(τ � 0) 13949 9700 2801 2323
SP counts (at A) 2e5 1.5e5 1e5 5e4
Det. A visibility 96% 96% 42% 42%
Det. B visibility 92% 92% 49% 49%
Normalization #coincidences

13949
#coincidences

9700
#coincidences

2801
#coincidences

2323
Parameters τ0, A, -0.24, 0.18 -0.64, 0.11 -0.35, 0.22 -0.04, 0.17
Parameters σ, λ ∞, 0.17 17.09, 0.11 4139.52, 0.19 16.14, 0.11
g(2)(0) 0.69 0.95 0.82 0.87
g(2)(−3.5), g(2)(3.5) 0.96, 0.98 0.89, 0.89 0.96, 0.97 0.94, 0.90

Table 6.2: Table containing the properties of HH and VV configuration for the cluster state setup
experiment 1 for a visibility of 94% and 46% . See figure 6.2a and b.

Detector A,B VV (67%) VV (37%) VV (10%) HH (67%) HH (37%) HH (10%)
Duration 50 min 50 min 50 min 50 min 50 min 50 min
#c.c.(τ � 0) 20243 24190 2357 13196 8744 879
SP counts (at A) 3.4e5 3e5 6e4 2.2e5 1.6e5 5e4
Det. A vis. 63% 33% 9% 63% 33% 9%
Det. B vis. 71% 40% 10% 71% 40% 10%
Norm. #coincidences

20243
#coincidences

24190
#coincidences

2357
#coincidences

13196
#coincidences

8744
#coincidences

879
Parameters τ0, A, -0.38, 0.27 -0.20,0.35 -0.11,0.36 -0.68, 0.16 -0.57, 0.19 0.48,0.21
Parameters σ, λ ∞, -0.38 ∞, 0.18 ∞, 0.20 12.17,0.08 14.65, 0.09 10.05,0.08
g(2)(0) 0.75 0.57 0.57 0.89 0.88 0.83
g(2)(−3.5) 0.97 0.98 0.97 0.88 0.91 0.87
g(2)(3.5) 0.99 1.00 0.99 0.89 0.92 0.87

Table 6.3: Table containing the properties of HH and VV configuration for the cluster state setup
experiment 2 for a visibility of 67%, 37% and 10% . See figure 6.3a and b.

of detector A and B. In figure 6.2a we can see the results of our experiment.

Conclusions

• For the VV configuration we see a dip at a time difference of |τ| = 0, with a dip
depth of 0.31, for the correlation measurement, as predicted.
• For the HH configuration we see dips at a time difference of |τ| = R that are

0.11
0.05 ≈ 2 times bigger than a dip at |τ| = 0, as predicted.

• The dip depth at |τ| = 0 is for the VV configuration bigger than HH, 0.31 < 0.05,
as predicted.
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58 Cluster States and indistinguishability

• The dip depth at |τ| = R is for the HH configuration bigger than VV, 0.11 < 0.04,
as predicted.

6.4 Cluster state setup experiment 2

For this experiment we couple light from the quantum dot setup and start the cluster
state setup experiment 2. However now we misalign this setup in steps. A scheme for
the setup can be seen in figure 6.1. The length of a round trip here is R = 3.5 ns. We
call the dip depth at τ: dip depth = (1 - g(2)(τ)). As we can see in the figure 6.2a and
6.2b the depth of the dips at zero for the HH and VV configuration, change as a func-
tion of the visibility. The first letter and second letter of the polarization configuration
are the detected polarizations of detector A and B. For dips at |τ| = 3.5 we see small
differences. We now would like to test this behavior at |τ| = 0 for 5 different visibilities
by misaligning the PBS in the Loop setup. The visibilities we used in this experiment
are: V ≈ 94%, 67%, 46%, 37% and 10%. The measurement results for a visibility of V
≈ 50% are plotted in figure 6.2b. See the tables 6.2 and 6.3 for all the properties of the
VV and HH configuration measurements. All measurements where done on the 19th of
June (2019).

To compare the visibilities and number of coincidences as a function of the visibility we
plot this information for the HH configuration in figure 6.3. When starting the V ≈ 50%
measurements the loop could not be locked properly, the lock uses the interference in
the loop and for reduced visibility it is not possible to lock the loop. So for the visibilities
V ≈ 50%, 35% and 10% the loop is not locked.

Conclusions

• For the HH configuration the g(2)(0) can be approximated as a function of the
visibility,

g(2)HH(0) ≈ 0.12 (Visibility) + 0.82, (6.36)

with a Standard error (SE) of 0.02 and an error of≈ 4% (0.04) for the visibility. The
coefficient of determination, R-Square, is ≈ 0.93.
• As already argued for the loop with one round trip we expect that for the VV

configuration the dip depth at τ is affected by misalignment. We speculate that
the reason for this difference is the excitation of a different quantum dot.

Discussion
Have we measured two-photon cluster states? We found a relationship between the dip
depth at |τ| = 0 as a function of the visibility, so we expect that the alignment of the
setup creates this maximum entangled bell pair of equation 6.13, which is an indication
of the creation of cluster states. However, further investigation is needed to confirm this
result.
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6.4 Cluster state setup experiment 2 59

Figure 6.2: HH and VV configuration in the cluster state setup experiment 1. a) The visibility of
the measurement is approximately 94%. b) The visibility of the measurement, due to misalign-
ment of the PBS, is approximately 46%. See table 6.2.
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60 Cluster States and indistinguishability

Figure 6.3: g(2)(0) for the HH configuration for 5 different visibilities, with errors indicated. The
red line is a fit through these data points. See table 6.3.
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Chapter 7
Conclusion

7.1 Research questions

How does a change in the properties of the quantum optical single photon source
affect the indistinguishability?
We see that our normalization results for the Hanbury Brown and Twiss setup with only
the quantum dot source results in a single photon purity of ≈ 60%, which is because of
the detector response and jitter.

Which consequences does a spatial or temporal misalignment have on the quantum
interference in the cluster state loop setup?
Spatial misalignment can decrease the number of single photons entering the loop (or
going one round trip), only for horizontally polarized photons in our setup. For two
photon quantum interference the two photons must be identical in their spatial, tempo-
ral and polarization degrees of freedom. Our results show that quantum interference
happens when the time between the single photons matches the time of the delay loop
for the cluster state setup. For the HH configuration the dip depth can be approximated
as a function of the visibility.

What impact have partial distinguishable single photons on the quantum informa-
tion processing with quantum entangled qubits in cluster states?
For a two photon input with quantum interference, we should be able to detect, by post-
selection, one of the maximally entangled Bell states |Φ−〉. However, at this moment,
we can only predict with analytical software. We could not find a relation between the
number of coincidences and the dips for partial distinguishable photons.
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