
A Concept of Life as an Emergent Property

Originating from the Interplay between Biological

Individuality and Entropy

J. Sieben

MA Thesis

Philosophy of Natural Sciences

Leiden University

March 11, 2017



Abstract

A concept of life as an emergent property, originating from the interaction of two

specific interpretations of biological individuality and entropy, will be discussed

in this thesis. Biological individuality will be shown to be a specific member of

the category of individuality and a notion best interpreted as a relative concept

which is hierarchically structured by interrelated nested entities. A specific in-

terpretation of entropy will described as a statistical notion in which entropy is

able to locally increase order as a stable dynamic kinetic state in a closed sys-

tem. The rise of complex organization will be something that can be explained

scientifically but is interpreted as a predominant emergentist property. In this

thesis I argue that life emerges as a property rising from within the organization

of a compartmentalized entity that is able to locally decrease its entropy due

to a self-replicating autocatalytic web that jumped into existence. Biological

individuality and entropy both relate to a base level of complexity and start to

meet at the lowest level of organization. I argue that living biological individu-

als are not substrate neutral implying life in silico will always be fundamentally

different from biological life.
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Introduction

The biological world is something to wonder about. Life is something to wonder

about. Here that wonder will be analysed and discussed. The driving force

behind this thesis is the question “What is life?”. It would be presumptuous

to assume this question could be answered in this thesis and that won’t be

attempted. Instead, the main aim of this thesis is to add a descriptive concept

of life that is based on a emergentist view of organization within living biological

individuals. In this introduction the living world will be viewed from a distant

perspective to get an idea about its characteristics. Then, two views will be

briefly introduced that will help in conceptualizing life and the storyline of the

thesis is given.

Characteristics of Life

In our daily experience we are able to recognize manifestations of life without

much effort, because it is readily available and because of its subtle charac-

teristics. One of the characteristics of life one may be easily surprised about

is its complexity. Even the simplest life forms show a remarkable high degree

of organization, operating with great accuracy on a scale of nanometers. The

accuracy with which specimens make up their life may seem almost impossible

to attain without some degree of foresight. Observing any sample taken from

the living world one will inevitably come across nature’s impeccable “design”

capabilities. Of course it’s known that nature can be extremely creative without

the need of an intelligent designer or a supernatural force. In fact, the creativity

nature produces is everything but intelligent and nothing gets built for a specific

purpose. Nature doesn’t work in a goal-oriented way nor does it try to fulfil a

detailed plan.

Not only is the complexity of life striking, so is its diversity. The number of

individual forms is very large. The world contains a wide variety of living things

we know plenty about, many others about which we hardly know anything, and

still others we have yet to discover. Living things occupy the land and the sky

1



as well as the seas, with specimens as big as fire engines or so small they can

hardly be seen with microscopes. All these different individual specimens con-

tinually come into existence and perish almost at the same time, maintaining

its diversity and keeping it highly dynamic.

The availability of individuals makes it relatively easy to start observing living

things. Without the need for instruments we can already see many specimens

having their own natural agenda. It is such a profound characteristic of life

which even toddlers can identify. Although this agenda isn’t working towards

anything in particular, it does show life has a broad directionality. In fact,

this facet of most complex living things is so evident that biologists came up

with a special term to address this - teleonomy. Teleonomy is nature’s teleology

without a well-defined telos, therefore lacking any guiding foresight. Because of

this absence the term is used to refer to patterns of behaviour such as hunting

prey, protecting the young, building shelter, mating and reproduction, etc. This

teleonomic character of life is helpful to us for understanding the activity of

many biological individuals that constitute the biological world.

Interpreting the Living World

The concept of life has been much debated and a large effort has been put into

trying to define life. Some have argued that a definition of life is not helpful

or necessary because life is an irreducible fact of nature. Other definitions have

followed the line of Descartes’ dualism and have viewed life as a mechanism,

but this reduction has met a lot of criticism [1][2]. Other attempts have fo-

cused on life as organization [3] but failed to explain the complexity of living

things. Interpreting organization as (bio)chemical patterns led to the belief

that such patterns had special properties [4][1] such as a living systems’ ability

to metabolize, grow, or repair. Current thoughts about life often focus on its

being a process and not a substance and this tends to make definitions more

descriptive. The number of different “descriptive” definitions of life is high and

each description has most probably been fruitful for the author putting it for-

ward. A common strategy to define life is by listing physiological properties

all living things must share. An individual specimen that has all properties

is then said to be alive. Physiological properties of life often include adapta-

tion, growth, homeostasis, metabolism, reproduction, and response to stimuli

[5][6][7][8][9][10][11]. This strategy will not work because there will always exist

living biological things that do not have all properties. For example, a mule is

a living thing but sterile and therefore cannot reproduce. In this thesis life will

also be conceptualized in a descriptive manner with a focus on its organization

and the properties it has. A mechanistic interpretation of life is purely reduc-
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tionistic whilst an organizational view leaves open the possibility of emergent

properties as part of the description. This is why, in this thesis, reductionism

alone isn’t taken to be sufficient to give a description of life that fits with current

thought.

Observing patterns is a method to gather information and gain knowledge

about biological systems. The upside of observing behavioural and some mor-

phological patterns is that it can be done from far away, making gathering

information and gaining knowledge relatively easy. The downside, however, is

that observing such patterns of a living thing will not tell you what makes

the living thing actually alive. Observing chemical pattern is also necessary to

understand biological systems. To find out what makes a living thing “tick”

scientist moved their focus from the point of observation outside the biologi-

cal individual to a perspective within its physical boundaries. Even though no

“elan vital” or “spark of life” is thought to exist these days [12][13], observ-

ing and recognizing patterns on a smaller scale has tremendously extended our

knowledge of the biological world. Recognizing patterns instantiates explana-

tory power and often the patterns observed on a large scale can be explained by

patterns observed on a small(er) scale. Due to the success of this reductionist

approach in science it’s no wonder an answer to the problematic phenomenon

of life that some have tried to formulate is approached in the same way as many

other complex problems. The question “what is life?” has become, besides a

philosophical issue, a scientific one and resides within the domain of not only

biology but chemistry and physics as well. Looking on the inside of living things

has vastly extended our knowledge about what life “does” but the answer to

what life “is” is still not clear. Progress within the sciences that study life have

produced many insights contributing to our understanding of living systems but

a truly satisfying answer to the question “what is life?” remains out of reach.

Because of this, doubts are raised whether a complete answer to the question of

what life is can be found by a purely reductionist interpretation (if at all). Part

of the answer may rely on an emergentist view of life.

One of the reasons for involving an emergentist view besides a reductionist

one is that life is easily distinguishable on the scale of a whole system, but

isn’t necessarily understood best as the mere sum of its parts. Describing the

phenomenon of life depends, to a large degree, on the level of observation.

The same goes for the concept of biological individuality although there is a

slight difference. If one observes one and the same biological individual it could

be possible, depending on the specimen chosen, that the parts of which the

individual consists are, in a way, biological individuals as well. A dog, for

example, a textbook example of a biological individual, is built from many

different cells and although each cell isn’t an individual dog it is possible to
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categorize such cells as biological individuals too. To keep things simple for

now, if we were to use specific criteria that enable us to characterize a dog as

an individual thing then the same criteria could characterize one of its cells as

an individual.1 These are criteria such as: spatial and temporal boundedness,

the ability to adapt, clear life cycle, suffering from impaired function if some

of its parts were to be removed. The criteria listed here, in this oversimplified

example, can be used to pin down what an individual dog is and would single

out a dog cell as well. The difference is that a (whole) living thing can somehow

be made up of smaller non-living entities (or parts) whilst a (whole) biological

individual can be built from smaller biological individuals (or parts).

Depending on both the observer and the level at which the observer actually

observes, his/her language, used to describe patterns, may vary. Problems may

arise due to ambiguous terms, equivocation, or anthropomorphic language. I

want to stress this briefly because if a term, such as “emergent behaviour”, is

used by A without a proper detailed explanation, person B might interpret this

as something mystical or unexplainable. Also, in order to help visualize complex

processes specific patterns are sometimes easily described by attributing mental

capacities to its components without those components actually having such

capacities.

Research Questions and Storyline

In order to build a notion of life two principles for direction are used in this

thesis. First, to get a sense of what life is examples are chosen that are thought

of as being living things. This domain will be covered by describing biologi-

cal individuality. Second, to understand what makes living things alive it is

valuable to understand how they are organized. In this thesis organization is

interpreted as the interactions between parts at specific levels of observation.

Here, unpredictability, stability, and most importantly entropy will be of key

importance.

The main question of this thesis is: ‘How to create a concept of life as an

emergent property which originates from the interplay between biological indi-

viduality and entropy?’. Maybe scientist believe that such an inquiry belongs

to the task of the philosopher. On the other hand, a philosopher might find

the inquiry too scientific. The reason to focus on biological individuality and

entropy is to try and close the gap a little more between philosophy and science

regarding the topic of life.

Two subquestions are put forward in this thesis and build on the two pre-

cepts above. The first subquestion is: How to construct an interpretation of

1This does not hold anymore if specific criteria are whole-organism-level criteria. A way

to characterize large organism is discussed in chapter 2.
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biological individuality that is on a par with the domains in which the scientific

community studies living things? With ‘on a par’ I mean that an interpretation

of biological individuality needs to correspond with different scales at which

biological research is conducted. It will be shown that such an interpretation

should take a hierarchical structure of the biological world into account. The

second subquestion is: How to construct a scientific relevant interpretation of

entropy that doesn’t contradict the description of a biological individual? In

other words, can entropy be described so that it can have a realistic presence

inside living things without the notion of entropy contradicting the interpreta-

tion of biological individuality? The general idea is to form a basis with two

specific notions, that of biological individuality and entropy, from which it is

reasonable to assume that both biological individuals and entropy are needed

for emergent properties to arise that help conceptualize life.

In chapter 1 individuals of any form and/or kind are discussed. The reason

for addressing this broader concept of “individuality” instead of “biological in-

dividuality” originates from the claim that there can be a specific subset of

individuals labelled “biological”. A distinction is made between non-living and

living individuals as well as natural kinds. In section 1.4 “Nature of Nature” a

small sidestep is made towards intrinsic properties of matter and how it limits

interaction. It will become clear throughout chapter 1 why certain individuals

are hard to define and why they are special members of the individuality cate-

gory.

In chapter 2 the subset of biological individuals is discussed. The chapter argues

that biological individuality is a relative concept and endorses pluralism about

the concept. Nevertheless, some conceptualizations more accurately depict the

hierarchy of the biological world and this is done by introducing two (sub)classes

of biological things: Darwinian individuals and organisms. The chapter ends

with an interpretation of biological individuality as a multiplicity of nested enti-

ties. Levels of organization and relations between nesting biological individuals

are argued to be of key importance.

Chapter 3 will discuss notions of entropy. Various physical concepts will be

introduced and explained including dynamic stability, compartmentalization,

percolation threshold, and autocatalysis. Near the end, this chapter will discuss

the basis necessary to understand the relation between biological individuality

and entropy. This relationship is shown to be highly dependent on the organi-

zational structure of (pre-)biological things.

Chapter 4 will address the concept of life as an emergent property originating
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from the interplay between biological individuality and entropy on particular

levels of organization. Additionally, artificial life will be discussed and taken to

be a special case, but not a paradigmatic example, of life and distinct from any

biological living thing but with clear parallels. This chapter will argue against

substrate-neutrality and therefore for authenticity of living things.

6



Chapter 1

Individuality

What do we mean when we talk about individuality? Does it have to do with

distinctiveness, identity, unity, or uniqueness perhaps? Yes, would be an appro-

priate answer to that question since all those terms refer to the same intuitive

feeling of what it must be like to be an individual. The quality one needs to

possess in order to be characterized as being an individual but what, then, do

we mean if we label something as being an individual? Arguably we label “per-

sons” as being individuals, or an individual could be constructed as a being

that is separate from other beings, that may hold certain beliefs and desires,

and strives for particular goals. Still, this generalization is too narrow for many

entities exemplifying individual things. Although persons are great examples of

individuals they cannot define “individuality”. Specific objects are instances of

individual things as well even though beliefs, desires, and goals aren’t part of

the description.

In order to move forward a definition of individuality is given in this chapter,

taken from Thomas Pradeu’s “Immunity and the Emergence of Individuality”

[14]. In this chapter each criterion of Pradeu’s definition will be put to the test

by taking borderline cases of individual things that intuitively feel as individuals

but are not accurately captured by some of the criteria in Pradeu’s definition.

The idea behind this is not to show that Pradeu’s definition holds no value,

because it is possible to make a strong case for his requirements, but rather

to show that even with strong criteria it’s hard to provide an all-satisfying

definition.

There is no universally accepted definition of the notion of individuality, but

a preliminary one is chosen: “An individual in general is an entity that can be

designated through a demonstrative reference (this F), is separable, countable,

has acceptably clear-cut spatial boundaries, and exhibits transtemporal iden-

tity.” [14, p.78]. In general this is a definition capable of capturing a large part

of the living and non-living world. However, the seemingly endless variety of

7



things always tends to include an exception. The reason for choosing Pradeu’s

definition opposed to other definitions (of which some will be introduced below)

is because it allows us to interpret biological individuals as a subset of individu-

ality. In the next chapter part of the critique of his definition is used to illustrate

that biological individuals not necessarily include only living things. This will

be discussed chapter 2 but first, problems with this definition of Pradeu are

discussed.

1.1 Separate Individuals

The image of a tree as a singular thing consisting of roots, a trunk, supporting

branches, and leaves is, in some cases, not adequate. For example, Aspen trees,

or Populus tremula, look like separate1 trees but actually form a network of

contiguous parts. The trees are all connected underground by multicellular

runners which are send out by each tree from their root stocks. These runners

fuse underground and also grow upwards to the light forming new trees. Each

tree uses their root structure to share nutrients and other resources among other

Aspen trees connected to the underground structure [15, p.31]. The connected

Aspen trees form a very large and single grove. If “connected” Aspen trees

are considered individual things the condition of “separateness” doesn’t hold.

An even messier example of connectedness and therefore lack of separateness is

that of a giant fungus, Armillaria solidipes. Like the Aspen trees the fungus

grows and spreads underground and, unlike the Aspen trees, the bulk primarily

lives underneath the surface. One specimen, found in Malheur National Forest

in Oregon, covers an area of nearly 10 square kilometers. The fungus will

grow “honey mushrooms” in the autumn, the only (direct) visible part of this

“Humongous Fungus”. Where it is doable to count single Aspen trees as parts

of one single grove or mushrooms of fungus it is considerably harder to count

parts of fungus belonging to one single specimen because it is not clear where one

part stops and another part ends. A step in the right direction might be Ellen

Clarke’s advice to pay more attention to critical functional roles in biological

individuals, such as (self-)policing and demarcation functions [16]. A little more

on functionality will be discussed in the next chapter.

1.2 Bounded Individuals

Separateness strongly depends on the boundary of things, there where you ob-

serve a boundary one thing stops and another (or nothing) begins. A bowling

ball is separated from other bowling balls due to its boundary made up by its

1I take ‘separable’ to display a disposition of ‘separate’ things and consequently test things

for displaying ‘separateness’.
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hard cover, preventing it to merge with other bowling balls and remaining no-

ticeably distinct from the air around it. The boundary at macro-scale seems

clear but can only be defined precisely on a micro-scale. For example, human

skin functions as a boundary, but what exactly is skin and, more importantly,

where does it “end”? Basically, it consists of three layers of tissue with the

upper layer (epidermis) forming the final boundary. This upper layer of tissue,

however, is made from cells. So whenever one wants to locate the boundary

more precisely one has to keep zooming in. Unfortunately, establishing an exact

boundary is not an easy matter, if possible at all. The answer to the question

“Where does the boundary lie?” depends on the satisfaction or acceptance of the

observer. But such acceptance is (highly) subjective. If one wants to know the

boundary it should be independent of the observer’s idiosyncratic satisfaction.

At the cellular level a cell’s membrane functions as a spatial boundary sep-

arating the internal organization from the external environment, but now the

boundary isn’t just some passive boundary anymore. Instead, it interacts with

its environment. If we zoom in on cell surface receptors, the boundary of three

entities will be observable before interaction. These are the boundaries of the

membrane-domain of the cell, the receptor of the cell and of an extracellular

molecule that is able to bind to the receptor (nutrients, neurotransmitters, hor-

mones, etc). Now, if we take a snapshot in time some may be occupied and

others may not. When viewing the snapshot, we could argue that for that spe-

cific point in time the molecules occupying the receptors belong to or, more

accurately, are “part of” the cell. If we turn time back on again there will be an

average occupancy of receptors but then we wouldn’t feel as compelled to argue

that the average occupancy is part of the cell too. The dynamic aspect of the

cell causes problems. To make things a little more realistic (and complicated);

some molecules are not the right kind of molecules to bind to receptors but

instead move past them and diffuse from the outside environment through the

membrane and into the cell. Other molecules cross the boundary in the other

direction and move out and away from the cell. Compounds outside the cell are

no longer part of or connected to the whole but the cell itself remains one and

the same thing.

1.2.1 Level of Observation

If we discuss the notion of boundedness and describe a process occurring at the

sub-cellular level it’s erroneous to compare it with observations at the cellular

level. If we allow continuous switching of levels of observation it becomes im-

possible to make a valid statement of separateness, or singular things. Trying

to find the exact location at which the boundary lies one can zoom in a little

further, beyond the sub-cellular to the atomic scale but here boundaries dis-

appear completely. Due to the rapid interactions between atoms it’s next to
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impossible to see what atom “belongs to” or is “part of” which individual thing

(unless we freeze time). Interacting atoms do a little dance with one another

and then move to another partner and repeat this over and over again until the

end of time. It’s no use to try and figure out what particular atoms make up a

larger-scale individual for all the atoms making up that one singular thing don’t

tend to stay in the same place in space. For this reason atoms can’t be said

to “belong to” or be addressed as “part of” anyone or anything, rendering the

concept of a boundary meaningless.

The examples above show that it’s rather hard to state that this F is a

separable, countable entity with clear-cut boundaries unless the location of the

boundary is left imprecise. If we now look at Pradeu’s preliminary definition,

given earlier, we have to conclude that thus far the conditions fall short or are

subjective.

1.3 Discrete Individuals

Most, if not all individual non-living things may be grouped together, portray

a sort of “kindhood”, and come in a variety of shapes and sizes, prevalent at

different levels of observation.

Going from astronomically large to atomically small we’re able to observe

galaxies, solar systems, stars and planets, continents, countries, cities, buildings,

rooms, tables, rocks, molecules, atoms, quarks etc. Notice that the examples are

instances of real objects and not concepts such as “whiteness” or “pressured”.2

It should come as no surprise that larger systems may consist of smaller ones

that are not miniature versions of the larger assembly but different individual

parts on their own.

Living things and non-living things are built from the same elementary par-

ticles that make up the matter in our universe. These small entities can be

distinguished by their different intrinsic properties making up different kinds.

(The ones that share the same intrinsic properties belong to the same kind.)

The identity of these entities is independent of time, in other words, taking it

out of existence and recreating it again will yield the same entity.

For example, if one of these entities, a gold atom, is taken out of existence

together with all those entities sharing the exact same intrinsic properties, i.e.

all other gold atoms, no other atom is able to take its place in the periodic table.

This is because all other atoms have different intrinsic properties compared to

2It can be argued pressure is considered a real quantity in science. In this paragraph the

focus lies on observable entities, but this also is troublesome when instruments are needed

and entities are not “directly” observed. Theories about an entity’s characteristics let us

believe certain properties are measurable from which we infer its existence [17]. When moving

towards scientific domains it is unavoidable to move further without the additional burden of

the problems of scientific realism.
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gold atoms. In the periodic table gold has atomic number 79 and fills a spot

between platinum (with atomic number 78), and mercury (atomic number 80).

There are no intermediate levels between platinum and gold or gold and mercury

because no atoms exist with 78.5 or 79.3 protons. Likewise no atoms exist with

78.5 or 79.3 electrons. There is no continuous transition from platinum to gold

or from gold to mercury. This imposes limits on the possible ways atoms can

interact and I will argue the importance of this in chapter 4. If gold is taken out

of existence there will occur a gap in the transition from platinum to mercury.

That gap functions as a hole which can be potentially filled by an atom with 79

protons if it were created.

Theoretically the transformation from platinum to gold is made if a proton

and a neutron are added to the core of a platinum atom and if one electron

gets added to its second most outer shell. For mercury one proton and two

neutrons will have to be taken out of the core and the most outer shell needs to

be stripped of one electron. If such an atom is created, the exact same element

gold will reappear. Exactly one atom can occupy the gap or “slot” between

platinum and mercury, not a tiny bit more and not slightly less but precisely

one. The fact that there is one and not an infinite number of slots in between

platinum and mercury is a consequence of the fabric of nature.

1.4 Nature of Nature

There is a clear borderline between atoms that we can draw due to the discrete

transition from one atom to another, as explained above. This makes atoms

categorically distinct. Also, all gold atoms are members of the same “kind”

of atom (because they all share the same intrinsic properties) and all mercury

atoms are members of a different “kind” and both participate in the laws of

nature [18]. Therefore, atoms can be said to be examples of “natural kinds”.

Atoms of gold and atoms of mercury are built in distinct ways and although

they obey the laws of nature, the way in which the gold and mercury atoms

interact with other matter differs.

In this view the number of ways to create new (stable) things is not limitless.

It is only possible to fill the “slots” the fabric of nature has installed and because

of this constraint the number of possibilities for creation is limited. Atoms are

are able to occupy the slots and belong to a specific natural kind which means

that they will have the same intrinsic properties before they’re taken out and

after they come back into existence. This does not hold for animate matter.

For example, each cell is unique, as is every aggregate structure of cells and

when taken out of existence that unique thing has ceased to exist. Creating a

new cell-like entity will yield a different individual thing for it does not occupy

a “slot” in the fabric of nature.
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1.5 Changing Individuals

The elementary particles that build matter seem to be relatively stable in time

but living things, whether they are small, large, or collectives tend to perish

or adapt. The (evolutionary) timescale over which living things change can be

extremely long (ca. millions to billions of years, depending on the specimen(s))

[19]. Still this is relatively short compared to the longest timeline known to

mankind; that is the estimated origin of the universe until now (ca. 13 billion

years) [20].

Evolution depicts change and every living thing studied in an evolutionary

timewindow will therefore not exhibit a transtemporal identity. Only under

certain time restrictions does it make sense to speak of Pradeu’s criterion of

transtemporal identity and such a restriction will vary from living thing to

living thing. Compared to an evolutionary trajectory a transtemporal identity

will only be exhibited when a living thing is observed in a relative short period

of time.

An evolutionary trajectory accounts for multiple generations and not the

lifespan of one and the same specimen [21]. Therefore, the lifespan of a sin-

gle specimen is mostly relatively short compared to its evolutionary trajectory.

So with regard to that time line a single specimen could be said to display

transtemporal identity but this statement becomes flawed because of an unbal-

anced comparison of timescales. To illustrate this consider a common fruit fly,

e.g. Drosophila melanogaster, being observed for 24 hours. Although the fly

will “look” the same after 24 hours all the metabolic processes going on inside

the fruit fly have changed the original body of the fly. The metabolic processes

itself could be argued to be the same, and maybe the genetic make up of the fly

(although some cells will carry some mutations). The only way to observe the

fly while it’s not changing is by looking at it in a time frame where all intra-

cellular interactions seem to have come to a (complete) stop. This can only be

done if time is frozen but then the term “transtemporal” doesn’t seem to mean

much anymore.

There is one way to save the claim of transtemporal identity for living things

but it is a weak claim especially compared to the transtemporal identity for non-

living individuals. Both living and non-living systems are able to persist in time

but they do so in quite different manners. Non-living systems tend to uphold a

static stability which enables them to endure time while living systems maintain

a dynamic stability to withstand the ticking of the clock.
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1.6 Recapitulation

Individuality is a notion that is hard to define. Even a relatively strong defini-

tion, taken from Pradeu, has criteria that tend to exclude certain individuals.

There exist borderline cases, such as Aspen trees and fungus, that show that the

criterion of separateness is problematic due to their connected characteristics.

A boundary generally separates one thing from another but locating the

boundary was shown to be troublesome. Different levels of observation are

necessary to locate a boundary more precisely. However, scaling too far down

will render the concept of a boundary meaningless or a boundary will depend on

an observer’s personal satisfaction and therefore becomes an subjective notion.

Individuals persist through time, but those that can be characterized as

natural kinds do so in a different way compared to others. Non-living things

were argued to persist through time by being statically stable. Living things,

on the other hand, were argued to persist through time by being dynamically

stable and therefore do not stay the same. This led to the idea that the crite-

rion of transtemporal identity doesn’t fit either living or non-living individual

particularly well.

Some criteria of Pradeu’s definition either fall short or rely on the observer’s

satisfaction. This critique will be shown to have an effect of his definition of “bi-

ological individuality” too. The next chapter sets out to construct an idea what

the subset “biological” within the set of individuals means and how to construct

a notion of biological individuality that matches the hierarchical structure of the

biological world. Also, the term “living thing” instead of “biological individual”

has been used and for a particular reason: although there is overlap between

the two I will argue that they are not necessarily identical to one another.
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Chapter 2

Biological Individual

Intuitively it feels as if every biological individual is a form of life. This chapter

argues that this is important, because when we try to create a concept of life

as an emergent property which originates from the interplay between biological

individuality and entropy, we do not take “biological individuality” to equal

“life”. The main aim of this chapter, however, is to answer the question whether

it is possible to construct an interpretation of biological individuality that fits

with the different scales at which scientists observe biological things.

The biological world is often equated with the living world, but despite many

similarities those two worlds are not identical. I will argue that the biological

world spans a space wider than that of the living world because it encapsulates

domains below the smallest living thing as well as domains far greater than col-

lectives of living things. Without instruments we are able to observe the richness

of life around us and can easily see cats, flocks of birds, fish, and roses. And if

we take a closer look we might see ants, fruit flies, or spores. With instruments

we can take a look at a whole new world that lies hidden at small scales far

beyond our normal visual capacities. With the help of technical devices we can

detect single cells, chromosomes, RNA-strands, and genes. Although not every

entity listed above would be characterized as a living thing they are all suitable

for representing some kind of biological individual and each one has probably

been used as an example as such at some time in the natural science of biol-

ogy. Biologists recognize many different biological individuals in attempts to

better understand, predict, and explain the biological world. These biological

individuals can be found on a wide scale-spectrum. This means biologists study

biological individuals at the molecular level (genes) all the way up to near astro-

nomical sizes (biosphere). The domains of scientific research regarding biology

tend to match1 the hierarchical structure of the biological world relatively well.

1From a standpoint of scientific realism “match” is a fitting word, however, philosophi-

cal objections to this standpoint could argue that the biologists “make” such a hierarchical
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In this chapter first the preliminary definition of Pradeu will be rediscussed.

This time the requirements of his definition are used to look at a difference

between the concepts of biological individual and living thing. In addition to

this discussion the action of defining biological individuality will be argued to

be relative. Because some ideas about biological individuality capture the hier-

archical structure of the biological world better than others the second part of

this chapter deals with two (sub)classes of biological things (because not all are

necessarily alive): Darwinian individuals and organisms.

In section 2.3 the relative interpretation of a biological individual is shown

to lead to a view of a multiplicity of biological individuality. This idea is fur-

ther illustrated by introducing the phenomena of vertical nesting and horizontal

nesting. Lastly, implications of the inherent hierarchy of nested individuals are

addressed which have to do with their levels of organization. An interpretation

of biological individuality that takes into account the hierarchical structure of

the biological world is claimed to stand close to domains of current scientific

research.

But let’s start with an earlier specific perspective on biological individuality

, a preliminary definition from Pradeu.

2.1 Defining Biological Individuality

In the previous chapter we worked with a preliminary definition of individuality

listing several requirements (an entity that has demonstrable reference, is count-

able, bounded and exhibits a transtemporal identity) as to what it must take

to be classified as an individual. According to Pradeu a biological individual is

a living thing that fulfills those requirements [14, p.79]. However, there are

three main reasons why this does not work. The first reason has to do with the

nature of Pradeu’s requirements. The second reason deals with entities fulfilling

the requirements without belonging to the “living world”, and the third reason

focuses on the difference between describing and defining.

First, as described in the previous chapter the notions of separateness, clear-

cut boundaries, being countable, and transtemporal identity are not tenable (at

least not for every biological entity). The last part of the sentence is in between

brackets because establishing boundaries is hard when shifting levels of obser-

vation regardless of what the boundaries “belong to” or demarcate. Even if no

levels of observation are shifted there will remain examples of biological individ-

uals that won’t fulfill the requirements listed by Pradeu. The grove of Aspen

trees and Humongous Fungus fall short due to their “connectedness” character-

structure.
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istic instead of their “separateness”. Another striking example is an uncommon

jellyfish: the Portuguese man o’ war, or Physalia physalis. (Actually, Physalia

physalis is a “siphonophore” but it looks very much like a jellyfish). The Por-

tuguese man o’ war consists of several societies of specialized cell colonies each

belonging to an originally different specialized cell, or zooid. Four zooids even-

tually “built” the jellyfish and are mutually dependent on one another. They

can survive only together and form a physiologically integrated whole. Although

the Portuguese man o’ war starts of as one single zooid it relies on other zooids

for its final stage. A fully developed Man o’ war has boundaries which are not

necessarily clear-cut and, besides that, it exists primarily due to “connected”

colonies of different zooids.

Second, Pradeu’s requirements may characterize an entity that is not a liv-

ing thing but nonetheless a biological individual. This is problematic, because

Pradeu formulates a biological individual as a “living” thing that satisfies his

criteria of individuality. A bacterium frozen at -80 degrees Celsius, as stock for

research, is an example of a biological individual without being in a state that

can be described as being alive. All (sub)cellular processes are put to a stop

making it not a viable entity and therefore not a clear case of a living thing.

However, one might argue that the bacterium’s decay is extremely slowed down

making it only seem as if life has stopped, while it has only paused.2 A virus

raises the same problem in determining whether or not it is a living thing not

for slowed down cellular processes, but for lacking them all together. Since

viruses don’t have their own metabolic processes nor the ability to reproduce

autonomously they rely on the cellular machinery of their host to do so. This

troubling case arguably isn’t a living thing but is in fact a biological individual.

And then there are genes, clear instances of non-living things, but according to

Pradeu biological individuals nonetheless.

In addition to this second argument two other entities display a lack of

livelihood but have been argued to be examples of biological individuals. The

first of these two entities is a species. It was argued by Hull that a concept

of species should not be taken to be something that contains a set of intrinsic

natural properties that are all necessary and jointly sufficient for the entity to

belong to the particular species-kind. It was argued by Ghiselin and Hull that

species are individuals due to their role as units of evolution in evolutionary

theory [22][23]. Although there are other ways to conceptualize species, such as

clusters [24] or sets [25], the notion of species as individuals holds a particular

valuable implication: it is a biological individual but not a living thing. There-

fore, it ways against Pradeu’s definition. The second entity is a superorganism

2A frozen bacterium does not grow, metabolize, react to stimuli, actively performs home-

ostasis, or evolves but once the temperature rises it could.
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which is somewhat similar to the Portuguese man o’ war but instead of being

built from multiple colonies of cells it consist of multiple organisms. Contrary

to the jellyfish these individual organisms can be quite similar but do need one

another for their survival. They rely heavily on their specialised division of

labour. Beehives and ant colonies are examples of such superorganisms often

interpreted as a single individual and biological thing. This is a problem for

Pradeu’s definition because such organisms have been argued to be biological

individuals without being alive.

Third, stating what a biological individual is can best be done by giving a de-

scription of its properties while giving a definition of “biological individuality”

relies on a short3 explanation of its meaning. Usually a description of some-

thing is a detailed conceptualization of the thing’s characteristics and functions

quite well as background information for the thing’s definition. What I mean

by this is that a definition tends to be more strict compared to a description.

For example, a definition of a mouse will not vary much around the world and

most likely state that it is a rodent belonging to a certain family and genus. A

description of a mouse, on the other hand, may vary greatly. It should be noted

that there’s a difference between describing and defining. The biggest differ-

ence may be that philosophers and biologists will, most likely, have no dispute

about a description of biological individuality (whatever specimen taken) but

this generally doesn’t hold for defining biological individuality.

Coming up with a definition of “biological individuality” has not been trouble-

some for philosophers and biologists. However, formulating a definition that is

accepted by all philosophers and biologists hasn’t been done so far [26]. Part of

the reason is the language used to address biological entities where “biological

individual”, “living thing”, and “organism” are often used interchangeably. So

far, the term “organism” has been used only few times in order to minimize con-

ceptual vagueness of the term and relational imprecision between “organism”

and the two other terms, “biological individual” and “living thing”. To prevent

obscurity these concepts will be categorized below, but it should be noted that

that categorization is not the only possible one.

A second reason why defining biological individuality may be troublesome is

that, so far, there have always existed counterexamples in the biological world

against current definitions. Coming up with a refined definition has, so far,

always led to the same problem. Adding to that, particular definitions suit some

biologists well because those definitions happen to correspond to their (current)

work better.4 In general biological individuals are just whatever biologists find

3Although a definition does not require to be “short” it may be more convenient than a

definition taking up numerous pages.
4Definitions in any field need to be usable for researchers working in that field.
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useful to talk about. This suggests that there simply are whatever many kinds

of biological individuals are recognized by competent biologists [25] [27]. This

implies that attempts to define “biological individuality” is dependent upon the

observer’s perspective5 and therefore I move to endorse a form of pluralism

[8][28]. Depending on ones perspective different intuitive understandings may

arise which can be hard to formalize.

Nevertheless, it is possible to categorize definitions about biological individ-

uality into three sets: a biological individual as 1) the level at which fitness is

assigned or 2) the level at which selection is acting or 3) the level at which a

response to selection can occur. This categorization is taken from Goodnight

[29]. The first class depicts a clear example of being a construct made only for

the usefulness of the observer. The second and third class of definitions also

put the focus on evolutionary forces acting on the biological individual either

by natural selection or evolution by natural selection, respectively [29, p.48].

In most cases, practical constraints or focus of study will force a definition of

biological individuality in either one of these categories. It should be noted that,

despite this relativistic note, some ideas about biological individuality are more

fruitful than others.

2.2 Darwinian individuals and Organisms

Our understanding of the biological world is that it’s highly diverse and hi-

erarchically organized with generally ‘species composed of populations6, pop-

ulations of individuals, individuals of cells7, cells of organelles, organelles of

genomes, genomes of chromosomes, and chromosomes of genes’ [30, p.183]. A

description of biological individuality that aims to be complementary with our

recent understanding of the biological world needs to capture such a hierarchical

structure. In the categorization that follows the set of biological individuals is

the overarching collection of entities which is subdivided into two overlapping

categories: Darwinian individuals and organisms. This is no new idea and has

already been argued for by Peter Godfrey-Smith in his 2014 essay, Individuality

5Biologist seem to capture biological individuals on macroscopic scales up to superorgan-

isms but not higher than that. In the same manner biologist do not seem to characterize

biological individuals below the genetic level. Why is that? Because at very large scales the

individual doesn’t seem to play a role anymore in its organization relative to its smaller parts.

At lower levels the descriptions of the trajectory of elementary particles, for example, does

not contribute to a clearer understanding of gene activity or influences on any other biological

individual for that matter. Levels of observation are used at which biologists can best capture

patterns and observe the things that seem relevant to their research of the biological world.
6Species can also be argued to be composed of large groups of organisms or by individuals

that show similar physical attributes. However, here the focus on a hierarchical structure is

what is important.
7Buss may have had trouble placing viruses, because viruses are not composed of cells.
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and Life Cycles [31]. Although Godfrey-Smith doesn’t use the term “biological

individuals” for the adjunction of the two sets, which I take over, I do use that

term in this thesis, because I believe it provides an opportunity to cover the

entire biological world more clearly.

Figure 2.1: Venn diagram of the set of Darwinian individuals (sections 1+2)

and the set of organisms (sections 2+3). Biological individuals = (Darwinian

individuals) ∪ (Organisms).

The best-known formulations of Darwinian in Darwinian individuals have been

put forward by Richard Lewontin [32][33]. Darwin’s theory of evolution by natu-

ral selection is contained in three principles: variation, heredity, and differential

fitness. Entities or collections of entities of which the three principles apply

may be expected to evolve. Simply put: ‘Variation, heredity, and difference in

reproductive success are the features of populations that give rise to Darwinian

change. Any collection that has these features can be called a Darwinian popu-

lation, and any member of such a collection is a Darwinian individual ’ [27, p.19].

Godfrey-Smith’s interpretation of organisms is not tied to the theory of evo-

lution but specified as metabolic units. According to this view ‘organisms are

systems comprised of diverse parts which work together to maintain the sys-

tem’s structure, despite turnover material, by making use of sources of energy

and other resources from their environment’ [27, p.25]. Part of the elegance of

this characterization of organisms is that it doesn’t necessarily depicts living

things but it can contain large non-living collections of organisms as well, such

as superorganisms.

Examples of Darwinian individuals that belong in section 1 in figure2.1 are

genes and viruses. Note that these entities are non-living things. Mules and

symbiotic bacteria are categorized as organisms that fit in section 3 of figure2.1.

The intersection of Darwinian individuals and organisms, depicted by section 2

in figure2.1, contains biological individuals such as trees and dogs (which relate

more to textbook examples of biological individuals).
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Both Darwinian individuals and organisms are viewed in a gradient way em-

bodying both the clear and more marginal specimens. The gradualness in Dar-

winian individuals originates from the fact that they are biological things that

can “reproduce”. Reproductive success is basically a relative interpretation of

the number of newly produced Darwinian individuals, or offspring, originating

from their parents. In some cases new individuals are reproduced not by means

of parents but by being reproduced by “themselves” instead, e.g. cellular re-

production or the reproduction of viruses. In this chapter I recognize three

different types of reproducers: elementary, aggregate, and indirect reproducers.

Examples of elementary reproducers are bacteria or other unicellular Darwinian

individuals that use their own internal processes to make more entities like them-

selves. Aggregate reproducers are multicellular Darwinian individuals that rely

on interactions across levels of multiple cells to reproduce offspring such as dogs

and human beings. Examples of indirect reproducers are genes and viruses

which rely on either elementary or aggregate reproducers to finally “replicate”

themselves. (The concept of reproduction might be more suitable for living bi-

ological things and that of replication for non-living biological things such as

genes and chromosomes.)

It is possible for evolution to gradually give rise to new types of Darwinian

individuals as a Darwinian population evolves. What is meant with new indi-

viduals in this case is the rise of aggregate reproducers from elementary ones.

When complex biological individuals like swans or giraffes exist, their cells still

reproduce themselves (and vary due to mutations along the way). But these

cells, that gave rise to a new Darwinian individual, have their own evolutionary

activities standing in the shadow of the evolutionary trajectory of the new indi-

vidual they make up. Due to aggregate reproduction cells rely on collaborative

organisation to persist through time. Optimizing collaboration and reducing

conflict amongst cells within a multicellular individual enhance the reproduc-

tive success and hence the persistence through time of both the (old) elementary

reproducers and the (newly formed) aggregate reproducers. This optimization

is the result of evolution and a gradual process. This is responsible for both the

gradualness in Darwinian individuals as well as degrees of organismality.89

The categories, Darwinian individuals and organisms, are able to capture

the entire biological world in an unambiguous fashion, containing the smallest

biological individuals in the Darwinian category up to the largest in the organism

8‘Significant metabolic integration at level n implies a lower integration of the objects at

level n− 1. More generally, a high degree of organismality at one level in a hierarchy implies

lower degrees at others’ [27, p.26].
9‘At intermediate stages of any transition, there is a group that has some properties of

an individual and some of a colony. the view that falls naturally out of this perspective is

that whether or not something is an organisms is vague - there are degrees of organismality,

corresponding to a group’s progress along a transition continuum’ [26, p.61].
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category, both non-living and living biological individuals. Examples of non-

living biological individuals are genes and viruses, belonging to the category of

Darwinian individuals, and ant colonies and beehives, belonging to the category

of organisms.

2.3 From Pluralism to Multiplicity

These categories function as a broad definition of biological individuality be-

cause any biological individual either is a Darwinian individual, an organism, or

both. Although this categorization allows for many different individuals there is

no set of reasonable necessary and jointly sufficient properties which individuate

every type of biological individual. No finite list of properties is able to function

as a suitable classification to construct every specimen in the entire biological

world. The lack of necessary and sufficient condition has led many philosophers

to believe that there simply is not just one kind of individuality but several dis-

tinct concepts of biological individuality. Jack Wilson sums it up nicely in his

work Biological Individuality by stating that ‘the assumption that there is only

one kind of individuality is as unjustified as the inference that an entity that

has some of these properties must have all of them.’ [34, p.56]. Due to the lack

of necessary and sufficient conditions Wilson opts for an ontological pluralism

concerning biological individuality. This idea agrees with the statement that

many kinds of biological individuals may be recognized by various biologists.

Wilson’s ontological pluralism contains the following six concepts of individ-

uality: particular, historical entity, functional individual, genetic individual,

developmental individual, and unit of evolution [34]. This conceptualization

proves to be very fruitful for many troubling cases involving some previous ex-

amples listed above and in the foregoing chapter. The grove of Aspen trees,

as stated earlier, may not be a clear instance of a separate thing but forms a

connected functional whole. The same goes for a spider hanging from a leaf by

its silk thread (which is genetically distinct from that leaf), or two people shak-

ing hands. According to Wilson this problem is easily solved by checking the

functionality condition stating that ‘a biological entity is a functional individual

if the parts from which it is composed are integrated into a functional organic

whole. A functional individual is composed of causally integrated heterogeneous

parts’ [34, p.89]. The work of Wilson will not be recapitulated here but does

form the inspiration for another conceptualization: a multiplicity of biological

individuality.
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2.3.1 Vertical Nesting

Arguing for a multiplicity of biological individuality does not deny pluralism. In

fact, it is compatible or maybe even complementary to pluralism but different

in the sense that the concept of multiplicity, set out here, puts the hierarchical

structure of the biological world central by focusing on part-whole relationships

between nested individuals. According to James Elwick it was Herbert Spencer

who first situated individuals in a hierarchy with individuals being able to be

part of larger individuals. Spencer created a hierarchy by introducing first-,

second-, and third-order individuals. In this way biological things could be

visualised as “compounded out of elementary structural elements, added sepa-

rately as first-order individuals; added in groups as second-order individuals; or

added in groups of groups as third-order individuals” [28, p.98].

In extension to this line of thought the relationship between individuals is

established by the hierarchy of the biological world itself. Instead of viewing

each and every biological individual in isolation it becomes possible to view each

biological individual as (a) part of a larger individual. This concept, of individu-

als constructing larger individuals, will be further referred to as vertical nesting.

Spencer’s definition of an individual, either a low “first-order” vertically nested

individual or an aggregate of such (second- or third-order), is characterized as

‘an organized and structured unit that is able to persist in its environment whilst

continuously distinguishing itself from its surroundings’ [28]. According to El-

wick this definition was further generalized by Spencer and he later described a

biological individual as ‘any organized unit capable of maintaining a “dynamic

equilibrium” between its internal and external environment’. Nowadays this

“dynamic equilibrium” is simply referred to as “homeostasis”.

Spencer did make a mistake, or at least has led himself astray, when he

tried to understand the degree to which vertically nested individuals kept their

autonomy whilst being part of a larger thing. Spencer put the emphasis on

lower nesting parts following their own “interest” [28]. For Spencer this made

sense since he wanted to switch back and forth between the physical order and

the social one but biologically this understanding is flawed. Consider a human

being who is an employee in a large organization. From a social perspective this

human being can be understood as being a nested individual integrated in a

larger body which is the entire organization. As an employee certain tasks need

to be fulfilled to benefit and safeguard the success (and hence the persistence

in time) of the organization. On the other hand the person we’re considering

also has interests of his or her own and these may be interests on which he

or she occasionally acts. Those interest do not necessarily have to benefit the

company. Now if we consider the cells that make up this person “acting on

their own interests” a mentalistic fallacy is made. There is no “will” of the

cells nor is there any conscious decision-making taking part at the level of the
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cell. This intentional stance from the perspective of cells makes it seem as if

the idea of retaining autonomy on a low level is acceptable while in reality it

is not. In this example the only individual able to act on its own interest is

the employee. Besides vertical nesting there is another form of nesting that is

hardly ever mentioned: horizontal nesting.

2.3.2 Horizontal Nesting

Another phenomena of “nesting” is related to reproduction too but does not fo-

cus on “direct” parent-offspring lineages. Instead horizontal nesting introduces

phenomena that deviate from this standard (direct) way of thinking. These

phenomena involve more complicated life cycles that interfere with the stan-

dard idea of reproduction but are, nonetheless, a common biological feature.

It’s the biological process of alternation of generations.

Alternation of generations is the primary cause of horizontal nesting. It

is present in fungi, plants, and even some animals. In general the process of

alternation is part of a life cycle where genomes double and halve in size [31].

A classical case are ferns. Take the sporophyte for example, this is a regular

fern-shaped and diploid plant. By the process of meiosis sporophytes are able

to produce spores. Contrary to the sporophyte the spores have only one set

of chromosomes and will therefore grow into haploid plants. These haploid

plants, named gametophytes, function perfectly well but are clearly different

and distinguishable from the diploid sporophytes. The life cycle continues when

gametophytes produce their own ”spores” but now they are called gametes and

are not (cannot be) produced by meiosis. These gametes are sex cells and

are therefore either egg-cells or sperm-cells. When the sperm-cells swim to

the egg-cells and fuse together fertilization occurs. The fused sex cells will

eventually develop into a brand new sporophyte completing the life cycle. To

recapitulate: A diploid sporophyte asexually produces haploid spores that grow

into gametophytes. Then those gametophytes sexually produce sporophytes.

Note that this sporophyte-to-gametophyte transition is not just a metamor-

phosis. It is a different process. In case of an actual metamorphosis, like the

transition from caterpillar to butterfly, only one butterfly can originate from

one caterpillar. In general terms, only one B can occur from one A. In case

of the fern, however, many Bs can come from one single A and on top of that

many As can come from one single B as well. A further dissimilarity arises due

to the bottleneck stage through which the fern goes whereas a butterfly doesn’t

narrow down to a single cell during its transition from the caterpillar phase.

Passing through a single-cell bottleneck stage isn’t necessary for As to produce

Bs and/or Bs to produce As. For example, in the life cycle of one of the most

common jellyfish (the Scyphozoan jellyfish) two forms (medusa and polyp) al-

ternate between generations. The medusa creates sex cells from which polyps
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arise but polyps, on their turn, produce medusae in a multiplicative manner

without passing through a single-cell stage.

Focusing on the diploid fern-shaped plant again, imagine that dogs were all

clones and not distinguishable by sex. The dogs would produce something like

egg-cells and sperm-cells that grow into female and male horses, or mares and

stallions. The mares and stallions would be able to copulate and give birth to

same-sex dogs. Since both the dogs and the horses function as metabolic units

they are easily characterized as organisms. Reproductive success of the dogs

and horses depend on one another. It’s the entire life cycle that matters in

variation, heredity, and reproduction making it rather difficult to ”choose” the

Darwinian individual between dog and horse. Fortunately, there is no reason

not to interpret both dog, or sporophyte and horse, or gametophyte, to be two

organisms nested as one Darwinian individual.

2.4 Hierarchy of Nested Individuals

One thing has been purposely left out when describing vertically and horizon-

tally nested individuals: degrees of complexity. Here degrees of complexity

correspond to different levels of organization by means of vertical nesting. And

vertical nesting follows from the hierarchy of nested biological individuals. Note

that in biological individuals undergoing alternation of generations vertical nest-

ing is also apparent. This idea of vertical nesting inside horizontal nesting can

become complex on its own terms but that is not of importance here. The focus

lies on different levels of individuality.

What is meant by this is certainly not that some biological individuals are

more a biological individual than others. Any biological specimen is either an

individual or it is not. Depending on the measure of activity as well as the kind

of activity a biological individual displays, small individuals nested in others

might be dominated by the larger individual (which might be dominated by

yet a larger one, etc.) [35]. Whether a biological individual dominates or is

dominated by another individual depends on its activity in the organization of

the highest-order biological individual it is nested in.

For example, consider a human, a cell of the human, and a gene of the

human. Generally, the cell is dominated by the activity of the person and has

no will of its own.10 Its activity depends on the internal organization of its

surrounding cells which are all dependent on the (physical) state the human

is in. The level of activity of the humans’ cells depend on the activity of the

person, they demand less energy if the human is in rest, they burn a lot of energy

10Cancerous cells can be argued to not be dominated by the activity of the person. Also

Clarke argues collectives sometimes encourage (instead of suppress) evolutionary processes in

their integrated parts [36].

24



when the human is active. If the person were to fall ill energy production goes

up as well. The point is that in this case the activity of the cells is dominated

by the higher-order biological individual. Intuitively it makes sense that lower-

order individuals are dominated by the higher-order individuals they are nested

in but this need not hold true for every case.

This is nicely captured by the interplay between “human” and “gene of the

human”. Richard Dawkins makes a great effort of making the gene central

in his book The Selfish Gene. He argues that “our bodies” are used by “our

genes” as mere vehicles. Our genes use our bodies as if they are nothing more

than survival machines. This view makes it seem as if there’s nothing more to

a person than his or her package of genes [37]. In many scientific disciplines

concerning biology it is useful to place the emphasis on the importance of genes

but this does not entail that genes are the only relevant players. We as “survival

machines” do in fact have the ability to influence the package of genes we carry.

The point here is that there is no center that instantiates linear causality but

rather a network causality [38]. The interplay between human and its genes

consists of both an upward and downward causation.

Besides degrees of complexity due to different levels of vertical nesting, an-

other thing follows from the hierarchy of nested biological individuals. Biological

individuals are partially characterized through their relations to other biolog-

ical individuals [35]. Perhaps this characterization holds for relations between

biological individuals in general but for now the focus lies on nested individuals.

The hierarchy is important to the biological individuality of each nested individ-

ual because the relations between them lock in their essential roles. This means

that the “individuality” of each biological individual is established through their

place in the organization composed by other biological individuals as well as the

relations it bears on the other individuals.

2.5 Recapitulation

Defining biological individuals as individuals that are living things, as Pradeu

suggested, fails for three reasons. First, there exist (living) biological individuals

that do not fit the criteria for individuality well. Second, there exist non-living

things that are biological individuals and third, a (strict) definition is most likely

to reject current and future living things as biological individuals event though

biologist might characterize them as such.

A descriptive definition of biological individuality is given that consist of

Darwinian individuals and organisms. This characterization includes both clear

and marginal specimens and includes most, if not all, of the specimens in the

biological world. The sets of Darwinian individuals and organisms are likely

to include all biological individuals put forward by competent biologists and
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embraces pluralism.

The notion of biological individuality put forward in this chapter argued for a

multiplicity of nested individuality. Nesting can be both vertical and horizontal

and match the hierarchical structure of the biological world. It also showed that

although higher-order biological individuals are capable of dominating lower-

order biological individuals there is both upward and downward causation. This

implies there is not one favored level of organization.

The hierarchical biological world is then represented by biological individu-

als which belong to the set of are Darwinian individuals, organisms, or both and

display different degrees of complexity. The display of different levels of com-

plexity depends on the biological individuals’ activity and its specific place in

a (large, multi-level) organization. This organization is constructed by vertical

and occasionally horizontal nested biological individuals. The stability of this

order is evident, as is the complexity, but in order to understand how biological

entities are alive the organizational order should be better understood.
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Chapter 3

Unpredictability, Stability,

and Entropy

A hierarchy of nested individuals portraying different degrees of complexity

raises the question where the first forms of complexity came from and how

current forms can be explained. These questions fuel, in part, the challenge of

constructing an interpretation of entropy that doesn’t contradict the description

of biological individuality. That construction is complicated because it cannot

lean too heavily on reductionism and because the notion of entropy is ambiguous.

What follows in this chapter is a technical and condensed story about or-

ganization. Where necessary, some concepts and processes of physics and bio-

chemistry will be discussed in a bit more detail. Analogies are included to get

the message across but are simplified examples of the real thing. The philo-

sophical aspects about biological individuality will be merged with the scientific

depiction of complex organization of viable entities near the end of this chapter

and continue in the next.

After having introduced the idea behind emergent properties I will discuss

the “power” of unpredictability. Emergent properties do not need prediction in

order to be explained and understood. Unpredictability is sometimes an inher-

ent property of nature. Physics knows three branches that deal with probability

instead of predictability, quantum mechanics, chaos theory, and statistical me-

chanics. These disciplines are briefly introduced to explain how a statistical

approach can give a reasonable understanding of a complex system without the

need to know every single detail.

The third topic covers different notions of entropy. Complex biological living

things are stable and highly ordered, and remain ordered. However, according to

physical laws everything should get only more and more disordered. According

to Erwin Schrödinger’s ideas put forward in his written lectures What is Life?

a statistical understanding of entropy shows that a stable state is still in accord
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with physical laws. However, his ideas are both promising in understanding

living things and at the same time show how our understanding remains limited.

Also the problem of all things moving towards thermodynamic equilibrium (the

biological equivalent of death) except for living things is examined.

3.1 Two approaches: Reductionism and Emer-

gentism

Subdividing a system in smaller parts and explaining the entire system solely

by its parts lies at the heart of a reductionist approach. It is undeniable that

reductionist strategies have been fruitful in the scientific enterprise but some-

times the whole cannot be properly explained by the mere sum of its parts. In

some cases natural phenomena require more than a detailed description of their

interacting parts because relevant aspects of the phenomena appear only at the

level of the whole system. The appropriate level of description that captures the

properties of the whole system cannot be found in its parts due to those con-

stituents parts lacking the properties being described. To list a few examples,

‘the properties of H2 and O2 do not allow us to predict the properties of H2O;

understanding the molecular properties of H2O does not allow us to derive the

Navier-Stokes equations; having the Navier-Stokes equations does not give us a

prediction and description of Benard cells’ [8].

In these examples properties (or substances) emanate from more basic entities

and cannot be subdivided with respect to those entities. Higher-level prop-

erties which are not reducible with respect to their parts are called emergent

properties [39][40]. Emergence contrasts reductionism in the sense that from

a reductionist perspective the whole can (and needs to) be explained solely by

the sum of its parts whilst from an emergentist’ viewpoint the whole is more

than the sum of its parts. It should be noted that nothing mystical is meant

by this for the properties can still be rationally explained, that is, without the

help of an unknown force. In other words: ‘Emergent properties provide the

recognition that nature can be creative while denying the occurrence of miracles

or inconsistencies’ [8].

There is another word that accounts for higher-order properties that are

caused by, though not present in, lower-level organization of parts: epiphe-

nomenon. Often the term “epiphenomenon” is defined along the lines of ‘a

secondary phenomenon that arises as a byproduct of a primary phenomenon’

[41]. It’s not particularly clear how the term “secondary phenomenon” and

“byproduct” should be interpreted but it cannot be taken to be completely sep-

arated from the “primary phenomenon”. A good example is Brownian motion,

the random motion of a non-organic particle in a liquid or gas. Without a proper
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understanding of what Brownian motion is it seems as if the particles move on

their own which is physically not possible. This mystery was solved by Einstein

and Brownian motion is now known to be the movement of non-organic parti-

cles in a liquid or gas due to the constant bombardment by atoms coming from

different directions. When the particle is hit on one side more often than any

other side the net force of the bombardment pushes the particle in a specific

though random direction. Brownian motion is a probabilistic process, a sec-

ondary phenomenon that arises as a byproduct of the random motion of other

particles and is one of the simplest emerging phenomena of interacting parti-

cles. It can be described as ‘a phenomenon that emerges independently from

the underlying phenomena that bring it about’ [42]. In this thesis “emergent”

and “epiphenomenal” are therefore taken to be synonymous.

Emergent phenomena are the result of descriptions of properties that refer

to real and often complex processes in nature. The trouble with these processes

is that they can often be explained but not predicted since they arise as “novel”

functions. Inability to predict a process does not mean that it is poorly under-

stood. In fact, unpredictability can itself be predicted as is the case in quantum

mechanics and chaos theory. Because unpredictability is of great importance in

dealing with emergentism it is wise to pay a little more attention to it.

3.2 Unpredictability

There are parallels between emergence and quantum mechanics, chaotic be-

haviour, and statistical mechanics: all involve unpredictability. With emer-

gence, (real) observers are unable to predict higher-level properties of complex

systems by studying the parts and their interactions that make up the whole

system. In case of quantum mechanics, a fundamental indeterminism forbids

us to gain knowledge about specific atomic events [43] and with chaos unpre-

dictable behaviour arises due to extreme sensitivity to initial conditions [8]. In

statistical mechanics there exist an inability to know the details of every par-

ticle’s trajectory. However, this lack of knowledge about the parts that make

up the system does not prevent us from making valuable statements about the

system as a whole.

Uncertainty can lead the way to a statistical interpretation of complex systems.

Especially in statistical physics interactions within a two-state system or be-

tween two separate systems can easily be described by calculating their most

likely macrostate instead of all independent microstates [44, p.59]. Apparent

characteristics of such macroscopic systems like temperature, energy fluctua-

tions, and stability can be derived without knowing the details of every mi-

crostate. The most likely macrostates are energetically more favourable and
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account for the static stability of the system(s) and although these systems are

non-living a similar path for living systems is reached but by means of a dynamic

stability.1 This dynamic stability will play a major role in constructing the idea

behind what makes living systems alive. This will be explained in detail below

but it is of importance to introduce another concept first, the notion of entropy.

On the one hand, dynamic stability is a form of a well organized system in

equilibrium. On the other hand, entropy tells us it’s most likely for a system

to become more disordered. This tension, between the likelihood of order and

disorder, needs to be addressed and solved.

3.3 Notions of Entropy

The concept of entropy has been linked to living things ever since the (writ-

ten) lectures of Erwin Schrödinger’s What is Life?. There exist, however, many

notions of entropy besides a statistical interpretation Schrödinger uses. There-

fore, using the expression “the” notion of entropy is already at fault. Here, the

problem of the ambiguous notion of entropy will be discussed as well as Erwin

Schrödinger’s interpretation in What is Life?.

The first to mathematically define “entropy” was Rudolf Clausius around

1850 and the formulation went through some transformations to finally become

how it is known now in science (although as a classical interpretation of entropy).

The first formulation described the transfer of heat from one body to another:

S =
Q

T
, ∆S = Q(

1

T2
− 1

T1
),

where S denotes entropy, Q denotes heat, and T denotes temperature. Later

Clausius would state that for every cyclical process the expression∫
δQ

T
≥ 0

would hold, even in an idealized system where an energy loss due to friction

could be excluded. He coined the term “entropy” and stated that ‘The entropy

of the world always strives towards a maximum’, which is now often cited as

the Second Law of Thermodynamics [45]. After this “classical” formulation of

entropy in thermodynamic physics other formulations are present nowadays in

statistical thermal physics and information theory. In these fields also different

1Imagine a fountain in a pond. If the fountain is turned off the pond is in equilibrium.

This equilibrium is static. If one were to make a picture of the pond at t = t1, t2, and t3 all

pictures would be similar whilst depicting the same water particles. If the fountain is turned

on and there is no loss of water the system is also in equilibrium. This equilibrium is said

to be dynamic. Now if one were to snap a picture of the pond at t* = t1*, t2*, and t3* the

pictures would be similar whilst depicting different water particles.
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formulations of the Second Law of Thermodynamics have sprouted.

Common thoughts about entropy include statements as ‘entropy always in-

creases’, ‘a system always tends towards a more disordered state’, ‘a system

is most likely to be found in its most probable macrostate’, ‘an ever increas-

ing measure of entropy determines the arrow of time’. All have been used at

one stage or another because a definition of thermodynamic entropy is difficult

to make precise and there are numerous ways to approach that. There is no

room for those strategies in this thesis but a detailed discussion can be found

in Uffink’s work [45].

The formulation put forward by Clausius did not make clear what entropy

is, only what a simple thermodynamic system does. In the 1870s Boltzmann

developed a statistical interpretation of entropy:

S = kbln(Ω)

with kb Boltzmann’s constant and Ω the number of microstates corresponding

to a specific macrostate. It paved the way for the study of systems comprised

of large numbers of particles and studying different interactions associated with

derivatives of entropy. Depending on the system of interest, notions of entropy

governed either interactions associated with energy and temperature, volume

and pressure, or particles and chemical potentials [46].

A statistical interpretation of entropy sometimes led to error whenever the

newly updated Second Law of Thermodynamics was treated as a fundamental

law. This is theoretically incorrect. It is a probabilistic notion which seems to

hold true in practice due to astronomically large numbers being fed into the

statistical formulation. The lower the number of states, the more incorrect it

tends to become. A second problem was the difficulty in understanding the

qualitative nature of evolved mathematical equations of entropy, such as:

S = kbN

(
3

2
ln

(
4πmUV 3/2

3h2oN
5/3

)
+

5

2

)
with N the number of gas particles, ho Planck’s constant, U equals internal

energy, and V denotes volume. This formula is an expression of entropy of a

pure classical monatomic ideal gas. Two qualitative arguments concerning the

dependence of S on m can give opposite results [46].

The ambiguity of the concept of entropy was not all bad as it was used in math-

ematics as a relatively flexible concept that could have multiple meanings [47].

In time the concept of entropy even found its way to information processing,

cosmology and economics. The first of these is worth pursuing as it may have

strong links with the question whether it can demonstrate the consistency of
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statistical mechanics. Both the probabilistic nature of entropy is questioned

as well as the validity of the Second Law of Thermodynamics that states that

entropy always increases.

First, when only partial information is available there still exist ways to

assign numerical values to probabilities. However, setting up rules or consistency

requirements to do so is subject to debate and controversy [48]. Part of the

problem is the meaning of probability itself. A more general statement of a

statistical notion of entropy regarding information is Shannon entropy:

H = −K
n∑

i=1

pilog(pi)

with K a positive constant and pi the probability of event i. In order to assign

numerical values to its probabilities constraints need to be set. Justification of

constraints, however, seems hard on the basis of partial information but there

are various ways to construct constraints from empirical data [49]. For example,

if one uses Boltzmann’s equation for entropy to describe the change in entropy

after a constraint on a specific variable is removed (e.g. removing a partition in

a box that contained an ideal gas on only one side of that partition) then one is

left with a number of microstates, Ω. After the moment the partition is lifted

but before an equilibrium state is reached, the probabilities corresponding to

each microstate are not (yet) equal to 1/Ω. In theory the assumption that all

microstates have the exact same probability could be false. That being said, the

overwhelming body of experimental data concerning states of systems indicates

that the assumption is extremely reasonable [44]. Exceptions in numerical values

of probabilities between microstates corresponding to a specific macrostate may

still be observed in the future but even if probabilities are shown not to be

equal the differences are “most likely” unable to influence outcomes of systems

composed of large numbers of particles. The practical side of systems being

composed of a large number of particles puts a strong constraint on assigning

numerical values to probabilities because the probabilities are defined as being

frequency dependent.

Second, validity of the mechanisms of statistical mechanics has been put to

the test by Maxwell’s Demon, Szilard’s engine [50], and Landauer’s principle.

The literature on this is extensive and touches upon many subjects but for the

sake of space in this thesis the focus will be on the relation between possible

ways to violate the Second Law of Thermodynamics by means of intervention.

The idea behind intervention in a predetermined thermodynamic system, either

by a demon, mechanism, intelligent being, or computational entity, is that with

certain knowledge about the system it is possible to decrease the entropy of

that system and violate the Second Law of Thermodynamics. It can be argued

that acquiring the necessary information about the system brings about an
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entropic cost that more than offsets the decrease in entropy by utilizing that

information. In other words, a local decrease of entropy is possible as long as the

entire system (which includes the demon, intelligent being, etc.) still increases

the total entropy. Up to this day there are still problems with the combination

of knowledge and thermodynamic entropy [51].

The reason for stating this second problem relating to information and ther-

modynamic entropy is the possibility of locally decreasing entropy. This is what

Erwin Schrödinger called negentropy when he used the concept to describe order

in biological systems [52]. His interpretation and use of the concept of entropy

in biological systems is discussed below.

3.3.1 Schrödinger’s Interpretation of Entropy in Biologi-

cal Systems

Erwin Schrödinger set out to answer the questions about a physical and chemical

basis within living things in a series of lectures that were later published as What

is Life?. The actual question ‘What is Life?’ was changed and consisted of two

separate questions: “What is the physicochemical basis of heredity?” and “How

does order arise from disorder?”.

These two questions both strongly fused the development of molecular biol-

ogy and anticipated its ultimate explanatory inadequacy. Inspired by the first

question, the basis for heredity was conceptualized and later found to originate

from a lower level of organization. In the Central Dogma of molecular biol-

ogy it was thought that DNA was the master molecule and the only source of

information [53]. Causality was thought to be all upward from lower levels of

organization to higher ones. Plausible answers to the second question changed

this conceptualization and showed that levels of organization must be taken

seriously for new properties could emerge at each level of organization and in-

fluence lower ones. ‘This showed there was no privileged level of examination

or explanation’ [53].

Schrödinger’s efforts in answering how order could arise from disorder fo-

cused on the thermodynamics of living things. Schroödinger’s answer was con-

structed to deal with the problem how living things could display order whilst

the Second Law of Thermodynamics stated that disorder always increases. Here

“disorder” does not relate to macroscopic properties of a system but to its spe-

cific microscopic description instead. Schrö dinger’s concept of entropy was

Boltzmann’s mathematical description and thus a statistical interpretation.

Although his work may have fused the development of molecular biology

his ideas also limited it. A close inspection of his work shows that plausible

answers to his two questions that should answer the bigger question ‘What is

Life?’ are paradoxical [53]. Also Schrödinger wondered if additional laws might

be necessary to explain life but did not found reasonable ground to support this
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any further [54]. Some even found his book unoriginal and claimed it contained

untrue statements, which could have been prevented if he hadn’t largely ignored

the science of chemistry [55].

Nevertheless, his idea about interpreting living things as thermodynamic

entities that locally reduce entropy in order to maintain and establish order

and prevent their decay could be fruitful in constructing an idea of complex

organization. If a move from chemistry to biology can be made by means of local

reduction of entropy, where entropy is considered to be a measure of disorder, it

may be possible to accept the conceptualization that levels of organization are

important.

3.4 Stability: Static and Dynamic

An energetically favourable state is a stable state and although it relies on the

system’s parts it is actually the whole system that is taken to be stable. In

case of a system consisting of a glass of water with a droplet of ink the stable

state will be the one where the ink molecules are evenly distributed through-

out the water. When a system is in such a static stable state it is said to be

in equilibrium, like a ball at rest at the bottom of a well. And even though

quantum mechanics accounts for some non-zero probability of deviating from

equilibrium (spontaneous formation of the ink droplet) the chances are so small

that in any real situation such chances can be ignored. In a biological context

the parts that eventually make up a stable system are the underlying chemical

reactions responsible for maintenance and organization of cells. These reactions

can produce stable states as well but are dynamic states instead of static ones.

This difference is subtle but important. Ink and water molecules bump into each

other but don’t react but various molecules present in even the smallest biolog-

ical systems do. Upon collision plenty of molecules are able to react if enzymes

are present to catalyze the reactions. However, even in a diverse molecular en-

vironment it is highly unlikely that the right reactants as well as the catalysts

(enzyme) for that particular reaction would meet. Some products, however, are

able to function as catalysts in their own formation and are formally known as

autocatalysts.2 The unlikeliness of the right reactants and catalysts is no issue in

case of an autocatalytic reaction since it is a self-sustaining system [6]. One such

system in particular is of great importance in living systems: self-replicating au-

tocatalytic molecules.

2A big difference between catalysis and autocatalysis, besides the use of products, is the

reaction rate between them. In the autocatalytic reaction, the rate of product formation

proceeds exponentially whilst the catalytic reaction only happens linearly. Autocatalysis will

therefore out-compete normal catalytic reactions almost instantly.
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A self-replicating molecule needs materials for its replication and because its

products have the ability to self-replicate, so too do they. If such a self-

replicating molecule were to replicate every minute then, within 3 hours, the

entire Earth’s mass would be consumed to sustain the replication processes.

Obviously this will not happen because the rate of production is balanced by

a corresponding rate of decay. This balance stabilizes the autocatalytic self-

replicating system but in a specific way. The stable state reached is not an

equilibrium state for that would be a thermodynamic equilibrium and corre-

sponds to death in a biological system [52]. The stable state is dynamic indi-

cating the products are formed and broken down in a continuous fashion and

kinetic in the sense that a high rate of production and low rate of decay adds

to the stability. Therefore no static stability occurs in living things but a dy-

namic kinetic stability originates [56]. This special kind of stability by entropy

of an autocatalytic self-replicating system is able to establish order from disor-

der without breaking The Second Law of Thermodynamics and is a key element

in the structural basis for complex organization.

3.5 Recapitulation

Many systems can be aptly characterized as merely the sum of its parts, but

some systems show higher-order properties at the level of the whole system that

are not present in its parts. Although emergent properties cannot be predicted

beforehand a lack of knowledge of a system’s parts and/or interactions does not

entail a lack of understanding of the whole.

In statistic mechanics it is possible to make sense of a system without de-

tailed knowledge about its many parts. Instead, a system’s macrostate(s) can

be calculated by determining the highest probability frequency of its number of

microstates. The probabilistic nature of a system’s macrostate tends to corre-

spond to the system’s most energetically favorable and stable configuration.

In any thermodynamic system a stable configuration increases (or increased)

entropy except in living systems. A statistical notion of entropy can be used to

explain this exception. Erwin Schrödinger used a statistical notion of entropy

to generate an idea he called negentropy to explain living systems as out-of-

equilibrium systems that locally decrease entropy. The entropy of the whole

system (the universe’s) still increases preventing a violation of the Second Law

of Thermodynamics.

A dynamically stable state on a molecular basis is a self-replicating auto-

catalytic system and functions as a first level of organization. A self-replicating

autocatalytic system forms a chemical basis from which a system can transition

towards a biological one. At this level of organization a response to selection

can occur, because it can out compete other catalytic systems. The system can
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therefore increase its complexity and express a dynamic and kinetic stability.

The next chapter will look at the autocatalytic system as a mechanism that

is able to locally decrease entropy and, over time, can develop further levels of

(complex) organization.
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Chapter 4

Bounded Complex

Organization in Biological

and Artificial Systems

To create a concept of life as an emergent property which originates from the

interplay between biological individuality and entropy two more ideas need to be

put forward. These are notions of contained organization by compartmentaliza-

tion and increased complexity by autocatalysis crossing a percolation threshold

and correspond to biological individuality and entropy, respectively.

The first thing explained in this chapter is that dynamic stability is possible

when things that make up the stability are bounded. A compartment (or vesicle)

allows for a local increase in stability and doesn’t undermine the notion of

entropy described above.

Section 4.2 contains a dense and slightly simplified idea about the emergence

of proto-metabolism inside a vesicle. The most important concepts in this sec-

tion are the rise of autocatalysis and especially the idea of an autocatalytic web

snapping into existence when a percolation threshold is crossed. It ends with

fusing the idea of emergent properties with the concept of a compartmental-

ized entity embodying a minimum degree of complexity. At the lowest level

of organization, where there exist a minimum degree of complexity, biological

individuality and entropy give rise to first signs of life.

The last sections of this chapter discuss interpretations of artificial life. The

prefix “biological” is briefly mentioned and the notion of substrate neutrality is

given attention.
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4.1 Compartmentalization

Static stability is like water in a lake. If one were to shoot multiple pictures of

the lake with small delays between the photographs each picture would still show

the same lake built from the same water molecules. Dynamic kinetic stability

is like water in a mountain river and if one were to shoot multiple pictures of

the river each photograph would show the same stream of water but consisting

of different water molecules. Besides a form of stability the lake and the river

share another feature: they are both bounded. An autocatalytic self-replicating

entity is unable to function if it cannot acquire enough material for the rate

of formation to equal the rate of decay. There is a need for sufficient building

blocks and they have to be in close vicinity to each other for the entire system

to persist in time. The best way to ensure the autocatalytic self-replicating

entity is able to gather enough building blocks and sustain its reaction is to lock

everything up in a small space1 [58].

It is no coincidence that all life on Earth is cellular. Cells compartmentalize

their content with a semi-permeable membrane which allows for diffusion. The

cell membrane of selectively lets through building blocks and waste products

allowing for a dynamic and kinetic stable inner environment [59]. Still, com-

partmentalizing an autocatalytic self-replicating entity with a large amount of

building blocks may look like a cell but isn’t yet a living thing. Compartmental-

ization is one step closer to something we consider to be living but before such

a thing is reached both autocatalysis and self-replication need to be described

from a different, more realistic, perspective.

4.2 Birth of Life: a Hypothesis

Even in a pre-biotic world molecular diversity may be constrained by selection

[19]. Luckily, selection between compartments arises favouring crowded inner

environments over emptier ones [60]. Inside a crowded compartment different

molecules may function as catalysts in other molecules’ reaction(s) producing

yet other chemicals [61]. What happens next might be the most important

step in the transition from a non-living system to a living one. Instead of the

production of one single autocatalyst a variety of molecules and their reactions

produce several autocatalysts creating a giant autocatalytic web. One large

interconnected system forming a closed complex autocatalytic set appears at a

critical value when moving from order to chaos. This will be illustrated with

1“To be an entity, distinguished from the environment, requires a barrier to free diffusion.

The necessity of thermodynamically isolating a subsystem is an irreducible condition of life.

[...] It is the closure of an amphiphilic bilayer membrane into a vesicle that represents discrete

transition from nonlife to life” [57, p.8].
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the example below. Complexity starts to increase as a (large) compartment

becomes more crowded.2 As the number of (diverse) chemicals within the com-

partment rises more reactions become possible and eventually a point is reached

at which an autocatalytic system snaps into existence [63]. This process is easily

visualized by the following thought experiment.

Consider a thousand light bulbs all randomly distributed on a floor. Initially

all light bulbs are isolated and switched off but if a light bulb is connected to at

least one other light bulb it is switched on. Light bulbs are connected by ran-

domly choosing two and putting a simple wire between them. The goal of the

experiment is to find the number of wires to get all light bulbs connected and

burning. In the first stage of the experiment it’s most likely two non-burning

light bulbs will get connected. After a while chances become relatively large

non-burning light bulbs get connected to burning ones leading to the rise of

large clusters. As the ratio of wires to light bulbs continues to increase and

passes 0.5 a sudden transition occurs where almost all large clusters get con-

nected to each other and the entire floor is almost entire lid up by burning light

bulbs. After this transition only a few more non-burning light bulbs need to

get connected.3 It might take a long time to get all light bulbs in the on-state

because many light bulbs will get connected which are already on.

The actual result of the experiment is not of importance but what happens

halfway through the experiment is. As the ratio of wires to light bulbs passes

(roughly) 0.5 a phase transition occurs where the size of the largest cluster of

burning light bulbs suddenly jumps from just under 150 to well over 800 -4,

see figure 4.1. The threshold for the critical ratio of wires to light bulbs giv-

ing rise to the phase transition is called the percolation threshold and is used in

various mathematical models describing complicated systems and networks [64].

Lightbulbs and wires don’t interact but molecules do. The diversity of molecules

increases not only by different substances of building blocks but by difference in

length as well. Through ligation and cleavage the molecular diversity increases

slowly as does the number of reactions between them. As soon as the ratio

of reactions to molecules reaches a critical point and crosses the percolation

2A way to increase molecular complexity is for one to bring together more enzymes and

nucleic acids, or more enzyme species in order to induce, in principle, a metabolic cycle [62,

p.232].
3The chance to select non-burning light bulbs with the first wire is 1 (since all are off at

the start of the experiment). Connecting the last light bulb only has a 1
1000

= 0.1% chance

of getting lit.
4As the number of light bulbs reaches infinity the transition becomes discontinuous. In

the example the jump from 150 to 800 will follow an S-shaped curve but will approximate a

step-function with an increasing number of light bulbs.
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Figure 4.1: Schematic drawing of a phase transition were the number of total

light bulbs (nodes) shows a steep increase as the ratio of (Wires/Bulbs), or

(Edges/Nodes), exceeds 0.5. Image (modulated) from [63, p.57].

threshold an autocatalytic system suddenly jumps into existence. Every “new”

molecule adds to “crowdedness” and leads to (new) possible reactions within the

compartment. This makes it more complex but not yet functional. However,

after the percolation threshold is crossed a self-sustaining entity arises giving

rise to higher-order properties [6][64]. The addition of complexity is quantized

in terms of molecules and the reactions between them. First in terms of an ever

more crowded compartment, second in terms of a higher diversity of molecules

and possible reactions, and third in terms of functionality after the autocatalytic

system occurred.

A closed autocatalytic set with simple molecules can display stunning order

without violating any law of physics. Although the order inside a compartment

shows a local decrease of entropy the entire system, consisting of the inside and

outside environment of the the “cell”, shows an increase in entropy [52]. It’s like

someone gluing a broken piece of china back together, partly restoring order but

using so much physical energy for the local decrease of entropy that the total

amount of disorder still increases. The order inside the compartment gives rise

to complex phenomena eventually leading to emergent properties [65].

Complexity increases until a functional autocatalytic system occurs, which hap-

pens due to a local decrease in entropy. This will be the base level of complexity

necessary to allow for the rise of emergent properties. Examples of such proper-

ties are increased functionality (diversified replicate system), complex structure

(stable double layered cell membrane), catalytic efficiency (effective energy con-

sumption and waste segregation), evolvability, etc. Once a compartmentalized

proto-metabolic unit emerges, evolution by natural selection is able to drive its
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increased complexity further due to the existence of a ground level organization

at which a response to selection can occur. I argue that the meaning of “evolv-

ing increased complexity” is about creating new levels of organization at which

(pre-)biotic entities can be active. By establishing their place in the (internal)

organization composed by other pre-biotic entities the first signs of nested indi-

viduality can appear. These nested individuals show signs or display properties

which may be attributed to living things [57].

From a scientific point of view the scenario described in the paragraph above

is speculative. The reason for this is that there has not (yet) been scientific

success regarding the transition from proto-cell to biological living individual,

in other words making a proto-cell viable. It’s currently not experimentally

feasible to create enough molecular diversity inside a small vesicle (such as a

(one-layered) lipid) or to establish a phase transition into an autocatalytic web

in vivo. At this moment the focus lies on self-replication and building stable

vesicles. It seems hard to move from a vesicle containing a pre-biotic look-a-like

replicate system (genes) and increase its complexity in a stable fashion. This is

not yet scientifically understood. Philosophically, however, there might be an

idea why this transition is hard to establish and that idea has to do with genes

as information bearers.

4.3 Artificial Life

How do we move from a vesicle containing what is believed to be the bear min-

imum number of materials needed for self-replication and maintenance to an

entity that can be claimed to be viable? A possible answer to this question

follows below. Furthermore, life in silico is discussed in the remainder of this

chapter. Here life within a digital domain and robotic life are shortly men-

tioned. And a link is made between substrate-neutrality and living biological

individuals.

4.3.1 Genetic “Genes”

Self-replication needs a template and enough material to operate successfully.

This is known from present-day examples such as RNA and DNA. However, the

most valuable feature of successful, e.g. errorless, replication is conservation of

genetic information. Contrary to previous beliefs the genetic code is a product

of the living world and may have come later as it functioned for more efficient

reproduction of already living things [66]. A self-replicating molecule is not, in

and of itself, genetic, even if it has the potential to become an information bearer

in a later stage of its existence. It will become genetic ‘only if it is placed in a

network of relations associating it with various intracellular functions’ [66, p.19].
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A variety of functions is produced by molecular diversity which originates from

copying errors and/or other chemical reactions. In fact, the rise of molecular

diversity is key in creating a network suitable for a self-replicating entity to

become an informational element, or “genetic”. In and of itself, self-replication

is not able to make a molecule a genetic entity because it doesn’t necessarily

have the capacity to produce the (emergent) properties of a cell that contains it.

Before a particular molecule becomes an information bearer it needs to allow for

a high number of interactions. The better a molecule is at “holding” information

the more resilient it must be to change, for changing the molecule causes loss

of information. The higher the resilience the lower its interactions. So either

information is kept and interactions stunned or interactions are abundant but

information is lost.

On top of this problem an information bearer needs machinery to transcribe

and translate the information it contains. On the other hand, the biological

machinery to execute transcription and translation needs to be produced. The

production, however, relies on reading the information of the information bearer.

So both information bearer and biological machinery to read the information

need to exist simultaneously.

4.3.2 Non-Biological Life

Chapter 3 briefly mentioned the inability to experimentally create a phase tran-

sition where a large number of molecules snap into an autocatalytic functioning

web in vivo. The term in vivo is of importance. Testing the conditions un-

der which the percolation threshold is crossed is with today’s computing power

easily done in silico. Computer technology is often used to gain understand-

ing of the interactions within (or between) living things by translating that

behaviour into a digital world. Synthesizing life in artificial media makes it pos-

sible to ‘develop practical applications involving new technologies that exploit

intuitions and methods it takes from living systems’ [67, p.395]. The synthesis

of life can be done by either creating a living world within digital boundaries or

by introducing robots (or “robotic life”) into the real biological world.

Robots function mainly by regulation of a control center. Sometimes several

control units work in parallel but there always remain cores or centres of control.

This is characteristically non-biological, where the accumulated interactions of

many things work together. No one specific location is solely responsible for

all activity. Living worlds inside digital domains are at least as far from the

real deal as robotic life is. Artificial life does not represent biological systems

but is, nonetheless, exceptionally suitable to generate simple instances of lifelike

phenomena [67, p.396].
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4.4 Substrate Neutrality

The strongest claim of artificial life researchers is the expectation that many of

the most fundamental features of the evolution of life on Earth will be shown

to be independent of the physical media that happen to embody the process

[67, p.397]. I argue that this is wrong. The embodied process is the very thing

realized by internal organization of and relations between the parts that make

up living biological individuals. Putting the focus on the “process” is valid but

the claim that this is independent of the physical media is not.

In chapter 1 it was shown that not every interaction between physical matter

is possible. For example, atoms have a predefined number of electrons they can

carry in each shell. The number of electrons per shell is bounded by physical laws

causing quantized energy levels between them. Atoms are therefore bounded

in their interactions based on the favorability of the energy exchange between

them. Some atoms bind better or more likely to some than to others. Some

are more likely to share electrons than others are. This is a consequence of the

fabric of nature.

The possibilities to create biological life are limited (or bounded) in the same

respect. Interaction of entities depends on the very nature of those entities.

Biological building blocks, even in their inanimate form, are able to interact in

a wide variety of ways but due to their nature this variety is not limitless. Some

building blocks are more likely to interact than others shaping further levels

of organization and complexity later on. Organization and relations between

entities rely on the nature of those entities. Due to the “nature of nature”

life is inherently bounded. Those entities that are able to interact in such a

way as to eventually produce and later on influence life will come to carry the

prefix “biological”. Biological individuals and life are intertwined by the vast

but limited possibilities of interacting matter. The interactions underlying this

entanglement, e.g. an autocatalytic web inside a compartment or an autopoietic

system consisting of aggregates of cells, can be described by the concepts of

biological individuality and statistical thermodynamic entropy put forward in

the previous chapters.

Although some biological individuals are argued not to be living, such as

genes, they do carry the prefix biological. I argue, however, that this is ap-

plicable only after they become part of an entity which has sufficient levels of

organization to bring about emergent properties. Because only then their role in

the total organization will be established by means of the relations with other

(biological) entities. Only after a base level of complexity within a vesicle is

crossed do we speak of viable vesicles, or cells [68]. When taken out of existence

a unique cell has ceased to exist, when recreated another unique cell (different

from the first one) will have arisen. Any stage before that a “protocell” remains
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non-biological.

4.5 Recapitulation

Compartmentalization contains but does not isolate an autocatalytic system

and allows for it to maintain and develop itself. A self-replicating autocatalytic

web snaps into existence when the ratio between molecular species and reactions

between them reaches a percolation threshold. Once the threshold is crossed a

phase transition occurs that produces a dynamic and kinetically stable system

that is able to locally decrease entropy.

Increasing complexity of the system creates new levels of organization at

which a response to selection can occur. What starts as a non-living crowded

vesicle transitions into a protocell that leads the way to the first biological

individual. A further increase in complexity produces emergent properties such

as improved functionality, structure, and catalytic efficiency. Besides single

cells containing a self-replicating autocatalytic web that drives a local decrease

in entropy a collective of cells embodies a autopoietic system that can do the

same.

Complex levels of organization eventually depend on a molecule (or several)

that can function as information bearers for the entire system. However, this

relies on the (molecular) organization as a whole.

Life-like phenomenon can be digitally expressed but are different from bio-

logical life due to a center of control and a lack of interaction or dependence on

its environment. Also, biological life was shown to be limited by the number of

interactions possible by nature. This restriction is unlikely, if not impossible, to

overcome for artificial life and will therefore always be different from biological

life.
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Conclusion

From chapter 1 we know it is hard to define individuality. We used Pradeu’s

definition of individuality to understand were problems of defining individuality

originate from. The chapter showed that there exist individual things that

do not satisfy all criteria very well. The criteria listed by Pradeu’s definition

fitted well with natural kinds, such as atoms, but sometimes poorly with living

things. Living things are not always clearly separated, they change through time

and were argued to have boundaries that are dependent upon the observer’s

satisfaction.

Chapter 2 showed that a definition of biological individuality as individu-

als that are living things displayed similar problems. There exist examples of

biological individuals that are living things but do not satisfy all criteria of

individuality and examples of biological individuals that are not alive. These

problems were solved by constructing a descriptive definition of biological indi-

viduality that is the union of the sets of Darwinian individuals and organisms.

This categorization embraces pluralism and contains all levels of organization at

which a response to selection can occur. Both Darwinian individuals and organ-

isms contain clear and more marginal cases due to reproduction and evolution.

This construction matches a hierarchy of nested individuals, both vertically and

horizontally, spanning the full biological world. Nested biological individuals are

argued to rely on their place inside a larger organization and the relations they

have with other individuals. No level of organization is favored over another

and each level displays a specific form of activity leading to different levels of

complexity within any nested biological individual.

Chapter 3 explained that emergent properties arise due to the parts of a

system producing novel functions at higher levels of organization that could

not have been predicted beforehand. A lack of predictability does not mean a

system is poorly understood and a macrostate of a system can still be known

without knowledge about the details of each and every microstate. Such a

macrostate is often a stable state in a thermodynamic system and refers to

its energetically most favorable state where entropy has increased the most.

Living systems, however, show a decrease in entropy but Erwin Schrödinger

showed that by using of a statistical notion of entropy it is possible for a system
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to locally decrease entropy whilst increasing the entropy of the total system.

This explanation shows that living systems do not violate the Second Law of

Thermodynamics.

Chapter 4 explained, besides the complexity, the stability of living things.

A dynamic kinetic stable system is represented by a self-replicating autocat-

alytic system that is contained within a compartment but not isolated from its

environment. A compartmentalized entity harboring a high degree of various

interacting molecules is able to cross a percolation threshold in order to snap an

autocatalytic web into existence that further drives a local decrease in entropy.

Crossing a minimal degree of complexity will allow for emergent properties to

arise which, at the same time, instantiate the first biological individual. Bio-

logical individuality and entropy meet for the first time at the lowest level of

organization and relate to a minimal level of complexity while maintaining its

internal order. The first living biological individual then is a cell and the chap-

ter argued that from that point on the prefix biological may also be used for

whatever system fulfills a distinctive role inside that organization of the whole

(such as genes as information bearers). Our efforts in trying to represent life in

different media will not work but are capable of broadening our understanding

of it. The reason it will not work in different media is that life in silico is con-

structed in such a way that it favours a level of organization which localizes a

center of control and lacks interaction with the environment. In addition, the

nature of the physical media restricts the interactions of and relations between

matter.

The idea of biological individuality put forward in this thesis embraces pluralism

and is therefore in disagreement with other notions of biological individuality

that endorse monism. De Sousa would disagree with the notion of biological

individuality of this thesis and argues that ‘In the light of bizarre cases, we

have a choice between insisting on a weak criterion of individuality that will

fit the entire gamut of biological diversity, and a strong one which will exclude

most living things. The second view, I [De Sousa] will argue, casts the clearer

light on the living world as a whole and on ourselves in particular’ [69, p.196].

It seems contradictory to me to exclude most living things in order to shed a

clearer light on the living world. The problem of a monoistic interpretation of

individuality is, I believe, besides excluding current borderline cases, there may

be many undiscovered or evolving biological individuals that we will want to

interpret as biological individuals in the near future. A second objection I have

against De Sousa’s view is making human beings a central focus of attention.

In the biological world human beings are just another form of life and are not

more a biological individual than other things in the biological world.

Another categorization of biological individuality has been put forward by R.
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Wilson in his book Genes and the Agents of Life. The Individual in the Fragile

Sciences. Wilson’s idea was not analysed in this thesis, because it cannot be

squared with the rise of emergent properties. Wilson rethinks the place the in-

dividual has in biology and takes agents to be individuals [70, p.7]. He includes

species, organisms, and genes as being agents of life. This is still in alignment

with the main direction of chapter 2 but Wilson’s characterization of agency is

where it becomes problematic. He states: “I intend to characterize an agent in

quite a general way: an agent is an individual entity that is a locus of causation

or action.” [70, p.6]. This characterization does not fit with emergent properties

which may constitute organization without a pre-defined locus of causation.

The idea of life as an emergent property does not fit well in scientific branches

that approach life from a merely reductionist point of view. In this thesis I

already made a case for involving emergentism but I like to stress that this is

not necessarily a common strategy in research about cellular dynamics, origin of

life, or constructing minimal cells. However, systems biology becomes more ap-

parent in these branches and does embrace a holistic interpretation of biological

systems.

Besides arguing for emergentism I stated that the nature of interactions of

organic material is not the same as the nature of the interactions of inorganic

material and that therefore emergent properties would be different. One might

object to this and say it could be possible that different interactions may create

similar emergent properties we might come to conceptualize as life. My critique

on this, however, is that no evidence exist (in systems biology) that would

support that hypothesis.

The idea of life as an emergent property is, for the most part, in agreement

with Bruce Weber’s interpretation of life. Weber argues for the importance of

understanding the origin of life to better understand what life is [71]. In doing

so he focuses his attention on the part Schrödinger was claimed to have left out,

giving attention to a chemical basis as a step prior to biological systems. Weber

also states that understanding information signalling and interpretation will

help explain the emergence of life [72][73]. What I do not agree on with Weber

is his need for additional laws in order to define emergent complexity [73][74].

Weber opts for additional laws after he recognizes three different strengths or

forms of emergence. In my opinion, this complicates an already complex subject

even further without any evidence suggesting there should be new laws. Just as

in Schrödinger’s case Weber’s wonder if additional laws might be necessary to

explain life do not seem to find reasonable ground for further support.
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[12] Friedrich Wöhler. Ueber künstliche Bildung des Harnstoffs. Annalen der

Physik und Chemie, 88(2):252–256, 1828.

[13] Anson Rabinbach. The Human Motor: Energy, Fatigue, and the Origins

of Modernity. University of California Press, 1992.

48



[14] Thomas Pradeu. Immunity and the Emergence of Individuality. In Frédéric

Bouchard and Philippe Huneman, editors, From Groups to Individuals:

Evolution and Emerging Individuality, pages 77–96. MIT Press, 2013.

[15] Ellen Clarke. The Problem of Biological Individuality. Biological Theory,

5(4):312–325, 2010.

[16] Ellen Clarke. The Multiple Realizability of Biological Individuals. Journal

of Philosophy, 110(8):413–435, 2013.

[17] A.F. Chalmers. What is this Thing Called Science? Open University Press,

1980.

[18] B. Ellis. Scientific Essentialism. Cambridge University Press, 2001.

[19] J.W. Schopf. Disparate Rates, Differing Fates: Tempo and Mode of Evo-

lution Changed from the Precambrian to the Phanerozoic. Proceedings of

the National Academy of Sciences, 91(15):6735–6742, 1994.

[20] A.R. Liddle. An Introduction to Modern Cosmology. John Wiley & Sons,

2003.
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[61] Matthew W. Powner, Béatrice Gerland, and John D. Sutherland. Syn-

thesis of Activated Pyrimidine Ribonucleotides in Prebiotically Plausible

Conditions. Nature, 459:239–242, 2009.

[62] Pier Luigi Luisi. The Emergence of Life. From Chemical Origins to Syn-

thetic Biology. Cambridge University Press, 2006.

[63] Stuart Kauffman. At Home in the Universe. Oxford University Press, 1995.

[64] Muhammad Sahimi. Applications of Percolation Theory. Taylor & Francis,

1994.

[65] Bruce H. Weber. Irreducible Complexity and The Problem of Biochemical

Emergence. Biology and Philosophy, 14:593–605, 1999.

[66] Michel Morange. Life Explained. Yale University Press, 2008.

[67] Mark Bedau. The Scientific and Philosophical Scope of Artificial Life.

Leonardo, 35(4):395–400, 2002.

[68] Irene Chen and Peter Walde. From Self-Assembled Vesicles to Protocells.

Cold Spring Harbor Perspectives in Biology, 2(7):1–13, 2010.

[69] Ronald de Sousa. Biological Individuality. Croation Journal of Philosophy,

5(15):195–218, 2005.

[70] Robert A. Wilson. Genes and the Agents of Life: The Individual in the

Fragile Sciences. Cambridge University Press, 2005.

[71] Bruce H. Weber. Emergence of Life. Zygon, 42(4):837–856, 2007.

[72] Bruce H. Weber. On the Emergence of Living Systems. Biosemiotics,

2(3):343–359, 2009.

[73] Bruce H. Weber. Towards a General Biology: Emergence of Life and In-

formation fromo the Perspective of Complex Systems Dynamics. Biological

Information: New Perspectives, pages 533–559, 2013.

52



[74] Bruce H. Weber. What is Life? Defining Life in the Context of Emergent

Complexity. Origins of Life and Evolution of Biospheres, 40:221–229, 2010.

53


