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Abstract

In this thesis we present and scrutinize a technique to reconstruct the
surface profile of a sample using a low energy electron microscope

(LEEM). This technique is added to the rich catalogue of surface analysis
techniques available in LEEM. We demonstrate that the surface profile of a
sample can be deduced from the local tilt angles. This is done by studying

the change in diffraction pattern. The procedure is then applied to two
samples: a flake of MoTe2 that has a bump on it and a flake of MoTe2 that

has collapsed into a trench. We show that we can correct for lensing effects
that are introduced due to a non-flat surface. In these samples we

determine the local tilt angle with an accuracy of 0.3°.
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Chapter 1
Introduction

1.1 Two-dimensional materials

We live in a three-dimensional world and are used to the materials around
us also being three-dimensional. In 2004 though, a two-dimensional mate-
rial was first isolated and characterized: graphene [1]. A two-dimensional
material consists of a sheet of material with a thickness of only one atom.
In figure 1.1 a schematic picture of such a material is drawn. Strictly speak-
ing a material with a thickness of one atom does have a height, so it is not
two-dimensional. The electronic and mechanical properties of a monolayer
material do show the effects of the strong confinement in the z-direction.
Such materials where predicted theoretically, but to actually isolate them
was done never before 2004.

There are many special properties of such a material. Since it is very
thin, it is also a lightweight material. It is exceptionally strong relative to
the thickness: due to the strong bonds of atoms within the layer, there can
be a lot of force exerted on a two-dimensional material before it breaks
apart. Several ideas for applications based on the strength of the material
have been put forward. Reinforcing plastics or other materials by mixing

Figure 1.1: Schematic picture of
graphene, a two-dimensional material.
The grey dots depict atoms and the
rods the bonds in between the atoms.
Reprinted from [2].
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2 Introduction

graphene in has been proposed [3]. Another idea is to use graphene in
space: using a graphene sail to propel a satellite by shining laser light on
the sail has been suggested by Stephen Hawking [4].

Graphene also is an excellent conductor with an electron mobility that
can exceed 15 000 cm2V−1s−1 [5]. This opens the door to applications that
are not yet feasible because smaller or thinner conductors are necessary.
Due to the excellent conduction properties of graphene it can possibly be
used as a very thin, flexible, and transparent component in electrical cir-
cuits [6].

1.2 Transition metal dichalcogenides

Most of these applications are still very far away, although a lot of research
is being done on two-dimensional materials. Graphene is only the first
of these materials we managed to isolate, many more exist. An example
of other layered materials is the family of transition metal dichalcogenide
(TMD) materials. TMD monolayers have a more complex structure than
graphene, and their properties are also different. Graphene is not easy to
make transistors of, since it has zero band gap, but TMD monolayers can
have a band gap, which makes them interesting.

Another application of TMD monolayers is in the fabrication of thin de-
vices. TMD monolayers can be semiconducting or metallic. This depends
on the crystal structure, as shown in figure 1.2. The hexagonal 2H structure
behaves as a semiconductor and the strained 1T’ as a metal. The same ma-
terial thus behaves as a metal or a semiconductor depending on the crystal
structure. This opens up possibilities to mechanically change the electronic
properties of the materials [7].

The switching between metal and semiconductor is interesting because
contacting a semiconductor is difficult. There is a Schottky-barrier in a con-
tact between a metal and a semiconductor, yielding a large resistance over
the contact [8]. Having the contacted part of the thin device behave as a
metal, would make the contact resistance much lower. The semiconductor-
metal transition within the monolayer has been shown to not have this
Schottky-barrier [9].
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1.2 Transition metal dichalcogenides 3

Figure 1.2: a) On the left a TMD monolayer in a hexagonal, or 2H, crystal structure.
On the right the strained, or 1T’, crystal structure. b) Current vs. voltage for a
TMD monolayer in the 2H and 1T’ crystal structure. In the 2H crystal structure
the material behaves as a semiconductor, in the 1T’ crystal structure as a metal.
Adapted from [10].
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4 Introduction

1.3 Measurements on two-dimensional materials

A way to study the switching of two-dimensional materials between being
semiconducting and metallic, is to suspend them over a hole, forming a
drum. In this way, so called ’freestanding’ monolayers can be created. In
figure 1.3 a diagram of this is sketched. Suspending a material makes it
possible to look at the mechanical properties. Castellanos et al. used this
structure to construct a mechanical resonator [11], but we want to use this
design to induce strain in the monolayer. By pulling on the suspended part
of the monolayer by capacative coupling, we want to bend the monolayer.
This bending will strain the material. When the strain is large enough,
we expect to observe the phase transition from the 2H to the 1T’ crystal
structure.

~F

Figure 1.3: Cut of a sample to induce strain in a monolayer. In red the monolayer
and in blue the back gate that can be used to pull on the monolayer. The grey layer
in between is an insulating substrate.

The diameter of such drums is typically a few microns since it is diffi-
cult to create larger TMD monolayers. Such small structures are not easy to
make, and not easy to do experiments on. Creating larger structures would
be even harder though. Over the years, specific recipes to create samples
with suspended monolayers have been developed. Still it often goes wrong
and suspended parts of monolayers collapse into the holes they are sus-
pended over. Understanding why and how this happens can help improve
the existing recipes for fabricating samples.

1.4 Low energy electron microscopy (LEEM)

Studying the straining of drums and the structure of collapsed drums can
be done in a low energy electron microscope. Using LEEM we are able to
probe the crystal structure of a material. Electronic transport measurements
can also be done. This makes LEEM a fitting method to study the straining
of drums. What is still needed is a method to determine the deformation of
the monolayer when there is a straining force on it.

For examining the structure of a collapsed drum we also need a method
to probe the surface profile of a sample. In this thesis we will examine a
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1.4 Low energy electron microscopy (LEEM) 5

method that makes it possible to access information on the surface profile.
It is not possible to directly see depth in a LEEM, but we can see if a part
of a sample locally has an angle with the surrounding part of the sample.
When we know the angles different parts of a sample relative to each other
have, we can reconstruct the surface profile. In this way it is possible to
gain knowledge of the structure of the sample in the third dimension.
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Chapter 2
Low Energy Electron
Microscopy (LEEM)

2.1 Introduction to LEEM

Analog to a standard optical microscope, a low energy electron microscope
(LEEM) illuminates a part of a sample and then focuses the reflected image
on the detector. The main difference with an optical microscope is that we
use electrons instead of photons, which reduces the limit on resolution that
is imposed by the wavelength of the particles. The lenses that are used are
electromagnetic instead of glass-based. The lenses enlarge the illuminated
field of view, which is typically in the order of a few micron, to see details
down to a lateral resolution of 1.4 nm [12].

A low energy electron microscope uses electrons with an energy of less
than 100 eV for imaging the surface of materials. The low energy of the
electrons means that they have a low mean free path when interacting with
a sample, which makes LEEM a relatively surface sensitive technique com-
pared to other electron microscopy techniques such as scanning electron
microscopy (SEM) and transmission electron microscopy (TEM). The pen-
etration depth of the electrons in LEEM is a few atomic layers [13].

In figure 2.1 a schematic overview the LEEM instrument is shown. The
electrons are emitted by the gun, in the top of the figure. In the gun the elec-
trons are then accelerated to 15 kV. In this architecture the electron beam
travels through the optics at 15 kV because the electron optics function bet-
ter when using high energy electrons. A set of lenses focuses the beam
before it enters the first magnetic prism array (MPA1, after this referred to
as ’the first prism’). The first prisms bends the electron beam towards the
sample. The beam is then focused on the sample by an objective lens.

The sample voltage is raised to −15 kV to decelerate the incoming elec-
trons. We can then modify this −15 kV by a potential of up to 100 V to tune
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8 Low Energy Electron Microscopy (LEEM)

Figure 2.1: An overview of the LEEM instrument. Reprinted from [14]

8



2.2 Imaging modes 9

the energy with which the electrons reach the sample. The reflected elec-
trons are accelerated back to 15 kV. The objective lens focuses a diffraction
pattern in the back focal plane of the lens, the real-space image is focused in
the center of the first prism (MPA1). In figure 2.1 an image plane is located
in the places where the red lines cross the optical axis, a diffraction plane is
located in the places where the blue line crosses the optical axis.

The first prism bends the electron beam back into the projector column,
where lenses P1-4 transfer the image to the detector (green in figure 2.1).
Choosing between focusing the diffraction pattern or the real-space image
on the detector is possible by turning lens P2 on or off.

2.1.1 Aberration correction

The objective lens introduces aberrations in the measured images. Elec-
trons with different energies do not have exactly the same focal point (chro-
matic aberrations) and electrons that go through the objective lens near
the edge of the lens are focused to a different point than electrons that go
through the center (spherical aberrations). The aberrations are corrected by
an electrostatic mirror. The electrostatic mirror is designed such that that
the chromatic and spherical aberrations of the mirror are to the first order
opposite to those of the objective lens. The opposite aberrations of the mir-
ror effectively cancel the aberrations of the objective lens. This enhances
the lateral resolution of LEEM from 5 nm to 1.4 nm [12][15].

The electrostatic mirror is introduced in the LEEM system by putting
a second magnetic prism array in the projector column (MPA2). The sec-
ond prism bends the electron beam to the mirror, and bends the reflected
electron beam towards the detector.

2.2 Imaging modes

The LEEM can image in both real-space and diffraction as mentioned in
section 2.1. These two methods can also be combined to do bright-field
and dark-field LEEM. In real-space mode the reflected electrons are focused
such that the image plane is on the detector. In diffraction mode the diffrac-
tion plane is focused on the detector.

2.2.1 Diffraction

Electrons that are reflected by a crystalline sample, are reflected under a
specific set of angles only. These angles are determined by Bragg’s law.
Bragg’s law states that waves need to constructively interfere when re-
flected from a crystalline lattice. The interference between the waves is

9



10 Low Energy Electron Microscopy (LEEM)

d

dsin(θ)

θ

Figure 2.2: Schematic drawing of Bragg’s law. In blue the electrons that scatter of
the lattice are shown. Constructive interference happens for all angles that yield
a difference in the optical path length that is a multiple of the wavelength of the
used wave, in our case electrons.

determined by the angle with which the waves leave the sample. Mathe-
matically this can be expressed as

dsin(θ) = nλ, (2.1)

with d the distance between two layers, θ the angle of the reflected waves
and λ the wavelength. The reflected waves interfere constructively for a
multiple of λ, which gives the n in equation 2.1. This process is drawn
schematically in figure 2.2.

Applying this to LEEM, means that the electrons are reflected in certain
angles. These angles are determined by the lattice structure of the material
of the sample and the energy of the electrons. Instead of projecting the
real-space image on the detector, we can image the angle distribution. The
angle distribution is called the diffraction pattern. The reflected electrons
go through the objective lens and a diffraction pattern is formed in the back-
focal plane of the objective lens. This is illustrated in figure 2.3. The central
spot in figure 2.3(b) corresponds to the electrons that were reflected with a
90° angle. The six spots around the central spot correspond to electrons that
were reflected with with an angle corresponding to a path length difference
of one wavelength. The back-focal plane can then be transferred to the
detector by changing the projector column. This way of imaging is called
low energy electron diffraction (LEED).

The distance between a point in diffraction space and the central spot
corresponds to the the magnitude of the angle of the reflected electrons.

10



2.2 Imaging modes 11

The direction in which a spot is located corresponds to the direction in
which electrons are reflected. Two electrons can be reflected under the same
angle, but in a different direction. This shows up in the diffraction pattern
as two separate spots that are located at the same distance from the central
spot, but in a different direction.

µLEED

The LEED procedure is normally done on the complete field of view of
the LEEM. This is the illuminated part of the sample with a diameter of a
few micron. In some cases the diffraction pattern of a smaller part of the
sample is needed. This can be done by inserting an illumination aperture
in an image plane. The illumination aperture can be moved to select a part
of the sample down to a diameter of 200 nm to illuminate. The diffraction
pattern that is then focused on the detector, is only formed by this smaller
area on the sample.

(a)
(b)

Figure 2.3: a) Ray diagram of the way a LEED pattern is obtained. Electrons that
leave the sample under a certain angle are focused in a plane and form a diffraction
image. After that, the plane is transferred to the detector. b) Example of a diffrac-
tion image, in this case of MoTe2. The middle spot corresponds to the blue lines
in the ray diagram and is called the central of specular spot. The six surrounding
spots correspond to the same angle of reflection, but in different directions and are
called first order spots.

2.2.2 Combining real-space and diffraction

One of the strengths of the LEEM is the possibility to combine real-space
and diffraction information. There are not only apertures in image planes,
but also in diffraction planes. Using the apertures in a diffraction plane,
only those electrons leaving the sample with a certain angle can be selected.

11



12 Low Energy Electron Microscopy (LEEM)

By selecting for instance the central spot, the electrons that leave the
sample with the angle of incidence are selected. This is called bright-field
imaging. Focusing the real-space image on the detector then yields an im-
age where height differences are accentuated since electrons destructively
interfere at a step edge.

By selecting a non-central spot, the area on the surface that contributes
to that spot can be imaged in real-space. This is called dark-field imaging
and gives information on the lattice structure and -orientation on a sample.

12



Chapter 3
Angle determination using
diffraction

For examining the surface profile of a sample a new method needs to be
developed. The method we demonstrate here is based on measuring local
tilt angles on a sample. From the local tilt the surface profile can then be
reconstructed.

In section 2.2.1 it is shown that it is possible to image the angle distribu-
tion, or diffraction pattern, of the electrons that are reflected by the sample.
Each diffraction spot is related to a certain angle. That the electrons make
an angle with the surface, implies that the momentum of the electrons has
an in-plane and an out-of-plane component. This is illustrated in figure
3.1(a).

When two parts of a sample are locally tilted with respect to each other,
the tilt shows up in the image of the diffraction pattern. For purposes of
clarity, we will call the orientation of the major part of the sample ’flat’, and
the usually smaller part with a different orientation ’tilted’. The electron
microscope is aligned such that the electron beam reaches the flat part of
the sample under an angle of 90°.

Tilt of a sample changes the angle with which the reflected electrons
leave the sample. For the specular spot the angle of incidence is the same
as the angle of refraction. For a flat surface this means that the electrons are
reflected with an angle of 90° with the sample. However if the surface is
tilted, the angle of incidence is no longer 90° and the electrons will not be
reflected straight back. The angle the reflected electrons make with the in-
coming electron beam will be two times the angle the tilted part of sample
makes. This is illustrated in figure 3.1(b). Note that an electron that is re-
flected under an angle with the electronic potential, will follow a parabolic
trajectory. The electron is accelerated by the potential in the out-of-plane
direction, but the in-plane momentum is constant.
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14 Angle determination using diffraction
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Figure 3.1: a) Reflection of electrons on a flat sample. In blue the path of the elec-
trons, in red the sample. Both the specular reflected electrons and the first order
diffracted electrons are drawn. In black the momentum of the outgoing first order
diffracted electrons, separated in in-plane and out-of-plane momentum. b) Reflec-
tion of electrons on a tilted sample. In blue the path of the electrons, in red the
sample. Only the specular reflected electrons are drawn. In black the momentum
of the outgoing electron, separated in in-plane and out-of-plane momentum.

Since all electrons will be reflected with an angle that includes the tilt
angle of the sample, the position in the diffraction plane where the diffrac-
tion pattern is focused will change. The relative angle differences between
the diffraction spots will not change, since they are only dependent on the
lattice structure of the material. Thus the diffraction pattern itself will stay
the same, but the position it has in the diffraction plane will change. We
will use the angle information in the diffraction planes now to gather infor-
mation on the local tilt of the sample.

3.1 LEED pattern interpretation

The next step is to quantify the relation between the shift in diffraction
space and the angle with which electrons leave the sample. This can be
done using the diffraction spots of a flat part of the sample as a gauge.

The angle of the electrons is determined by the ratio between the out-of-
plane momentum and the in-plane momentum. In figure 3.1(b) this ratio
is illustrated for an electron that is reflected by a tilted part of a sample.
The out-of-plane momentum is accelerated to 15 keV after the electron is
reflected*, so effectively it is the in-plane momentum that determines the
angle.

*This is not exactly true, since the out-of-plane momentum with which the electrons
leave the sample is added to this 15 keV. The extra out-of-plane momentum is three orders
of magnitude smaller than the 15 kV though, thus it can be neglected.

14



3.1 LEED pattern interpretation 15

The in-plane momentum corresponding to the different diffraction spots
can be calculated from the crystal structure of a material [16]. When we im-
age a flat part of the sample, we can then calculate the angle with which
the electrons that make up these spots leave the sample.

When determining angles, we can use the specular spot and the first
order spots as gauge points. For both we can calculate the in-plane mo-
mentum, and thus the angle the electrons have with the surface. The space
in between these points then needs to interpolated.

3.1.1 Gauging of diffraction space

To get an accurate interpolation of diffraction space, we measured the diffrac-
tion pattern of a Si(111) sample. The structure of the surface of silicon de-
pends on the direction in which the surface cuts through the lattice struc-
ture of the silicon. This particular surface structure has periodicities on a
scale seven times as big as the atom-atom distance. The extra periodicities
show up in the diffraction pattern as seven spots in a row. In literature this
is known as a 7x7 reconstruction.

These seven spots corresponding to the 7x7 reconstruction we can use
to gauge diffraction space. In figure 3.2(a) the diffraction pattern of a clean
Si(111) sample is shown. We know that the spots in between the central
spot and the first order spots have equally spaced in-plane momentum [17].
An intensity profile of one of the rows of spots is shown in figure 3.2(b).
The conversion from in-plane momentum to position in diffraction space is
sample independent, so we can use the position of these spots in diffraction
space as a gauge.

(a) (b)

Figure 3.2: a) The diffraction pattern of Si(111). Beneath the coloured lines are the
spots corresponding to extra periodicities. The coloured lines correspond to the
graphs in figure 3.3 in the same colour. Adapted from [18]. b) The intensity profile
of the diffraction pattern along a straight line between the left first order spot and
the central spot. Only the region in between the first order and the central spot is
shown, the outer spots themselves are not included.

15



16 Angle determination using diffraction

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: The distance of the 7 diffraction spot from the central spot, for all six
directions. The line colors correspond to the colors in figure 3.2(a).

16



3.1 LEED pattern interpretation 17

In figure 3.3(a) to figure 3.3(f) we show the distance between the central
spot and the other diffraction spots, for the seven spots corresponding to
the periodicities of the surface structure. This is done in six different direc-
tions. Linear fits are taken through the data points, and match well with the
data points. In the following analysis we will thus use a linear dependency
between distance in diffraction space and in-plane momentum.

3.1.2 Calculating tilt angles

Now we can derive a formula for the angle a material makes locally. In
figure 3.1(b) α is the angle we want to calculate. Trigonometry gives us that

α =
1
2

sin−1
( k‖

ktotal

)
. (3.1)

The momenta ktotal and k‖ are known. For ktotal it is known that

ktotal =

√
2mE
h̄

, (3.2)

with m the electron mass and E the energy of the electron when it reflects
of the sample. We can deduce k‖ from the in-plane momentum of the first
order spots of the material we look at. This yields

k‖ =
rshi f t

r1storder
k‖1storder, (3.3)

with r1storder the distance between the central spot and the first order spot
in diffraction space, and rshi f t the distance between the shifted central spot
and the position of the central spot in diffraction space for the flat areas.
This is illustrated in figure 3.4. Here we use the linear distribution of in-
plane momentum in diffraction space.

Figure 3.4: Diffraction pattern with the
distance between the central and first
order spot (r1storder) and the distance be-
tween the central spot and an example
of where the shifted central spot could
be (rshi f t). Adapted from [18].

17



18 Angle determination using diffraction

Putting equations 3.2 and 3.3 in equation 3.1 now gives us

α =
1
2

sin−1
(

rshi f t

r1storder
k‖1storder

h̄√
2mE

)
. (3.4)

This is the equation we will use to calculate the local tilt of area on samples,
based on the shift of spots in diffraction space.

3.1.3 Direction of tilt angles

To examine the profile of the surface of a sample, not only the magnitude
of tilt angles is needed but also the directions of the tilt angles. In figure
2.3 it is shown that opposite positions in diffraction space (the green and
the red rays in the figure), correspond to opposite angles with which the
electrons leave the surface. The correspondence between the angle that we
see in diffraction space and the direction of the tilt is one-on-one: a 45°
angle between the spot shifts in diffraction means a 45° angle between the
directions of the tilt at the corresponding positions on the surface.

The absolute direction of the angles in real-space can not be deduced
from measurements. The image in diffraction space shows differences be-
tween angles for different positions on the surface. In the imaging process
in the LEEM there are rotations and flips of the image, that are different for
real-space and diffraction images. To find the absolute direction, an idea
of what the surface approximately looks like is needed. The measured rel-
ative angles can then be oriented in such a way that the angles correctly
describe the surface.

3.2 Position determination of LEED spots

The accuracy of the calculation in section 3.1 depends on the accuracy of the
position determination of a diffraction spot in diffraction space. Typically
the highest point of a spot is called the center, and the center’s coordinates
the position of the spot. The accuracy of finding the position is dependent
on the smoothness and size of the spot. Finding the center of a spot gets
increasingly more difficult with spot size and spot roughness. An example
is shown in figure 3.5. Figure 3.5(a) is an example of a relatively smooth
spot where the position of the center is well defined, while the center of
the spot in figure 3.5(b) is more difficult to determine. The error in the
determination of angles as described in section 3.1 is mainly decided by
the precision of the determination of the center of spots.

For all experiments presented in this thesis the position determination
was done by hand. The procedure followed was to estimate by eye where
a fit of the observed spot would have the peak. The position of the peak is
then called the center. This is prone to errors, because chances are the point

18



3.2 Position determination of LEED spots 19

(a) (b)

Figure 3.5: Examples of the profile of a) a smoothly shaped diffraction spot and b)
a more roughly shaped diffraction spot.

picked as the center of a spot will vary from person to person, especially
when dealing with spots where the center is ill defined. It would be bet-
ter to automatize this, because that makes the procedure more consistent.
More on this will be said in the outlook.

19





Chapter 4
Improving resolution using
deconvolution

The accuracy of the angle determination is limited by the resolution of de-
termining the position of LEED spots. Especially for rough spots, the uncer-
tainty in the position determination can grow to one fifth of the spot size. It
might be possible to improve this resolution. The image that is seen on the
detector is a convolution of the diffraction pattern created by the sample,
and effects that are introduced because of imperfections in the LEEM. The
effects of the imperfections in the LEEM combined are called the instru-
ment response function (IRF). If it is possible to deconvolve these two parts
of the image, we can improve the resolution of the position determination
and with that the accuracy of the angle determination.

Mathematically the measured image can be expressed as

h = f ⊗ g + n, (4.1)

with h the measured image, f the true image, g the IRF, and n the noise.
Here f contains the information we want to access. [19] By Fourier trans-
forming the image a deconvolution can be performed, since a convolution
in real-space is multiplication in Fourier space:

H = F · G + N, (4.2)
H/G = F + N/G, (4.3)

with H, F, G and N the Fourier transforms of h, f , g and n respectively.
The practical feasibility of this technique depends on our knowledge of

the instrument response function and the amount of noise in the measure-
ment. If there is a lot of noise, the noise term in 4.3 can become larger than
the image term. When the IRF that is used in the deconvolution differs
from the actual IRF, parts of the resulting image can blow up.

21



22 Improving resolution using deconvolution

A positive side effect of the deconvolution could be that the resolution
improves enough to make it possible to see the information on the surface
smoothness that is in a spot. The profile of a spot contains information
about the smoothness of the surface and defects that are on it [20], but at
the moment our resolution is not good enough to see this. If the resolution
improves by the deconvolution, this information might become accessible.
A possible issue here is the resolution of our measurements. The typical
spot size in our current diffraction patterns is approximately 50 pixels. If
the size of a spot is drastically reduced, there might be not enough pixels
left to access the information on the surface structure.

In this section we will try to come as close to the IRF as we can and
perform the deconvolution. If we succeed in this it will enhance the pre-
cision with which we can determine the position of diffraction spots and
thus enhance the resolution of the angle determination.

4.1 The Instrument Response Function

The instrument response function (IRF) of a measurement instrument is
defined as the output the instrument gives when the input is a delta peak.
In the context of diffraction patterns, the input is the diffraction pattern as
the sample produces it. For an infinite crystalline sample without defects
the pattern consists out of delta peaks for every allowed reflection angle.
The output is then the measured diffraction spot. Thus the IRF of the LEEM
is the measured diffraction spot when the input is a delta function, or a
perfectly sharp spot. The shape that is measured in such a case, is provided
exclusively by the instrument and is thus the IRF.

This can be measured. By looking at the shape of the gun spot with-
out interaction with the sample, we image the effects of the LEEM. This
is called ’mirror mode’. In mirror mode, we make the (negative) poten-
tial on the sample a little bigger than the energy of the incoming electrons.
This means that just before the electrons reach the sample, they are reflected
back. In mirror mode the electrons travel through the complete instrument,
but without interacting with the sample. The delta peak input is then the
specular reflection of all electrons. The shape of the spot that is measured
then, contains all the effects of the instrument.

The gun spot in mirror mode, measured in diffraction mode, is shown
in figure 4.1(b). The spot is shaped ellipsoid, where the short axis is labeled
in blue and the long axis in black. This measurement of the gun spot is
used as the IRF to perform the deconvolution, or g in equation 4.1.

In figure 4.1 the result of the deconvolution operation is shown. Equa-
tion 4.3 is applied, using the measurement of the gun spot in mirror mode
as the IRF. The resulting image shows a larger intensity at some of the posi-
tions of the diffraction spots, but others are no longer visible. The resulting

22



4.1 The Instrument Response Function 23

(a) (b) (c)

Figure 4.1: a) A measured diffraction pattern. Contrast is inverted for clarity, the
darkest spots have the highest intensity. b) The gun spot in mirror mode, mea-
sured in diffraction mode. This picture is enlarged for clarity, in reality the spot
size is comparable to the spot sizes in figure 4.1(a). The spot is shaped ellipsoid,
where we call the blue line the short side and the black line the long side. c) The
result of deconvolving the diffraction pattern in figure 4.1(a) using the gun spot in
mirror mode as the IRF.

image also has a lot of noise and extra periodicities. There are two possible
reasons for this: either the noise term N/G is too big, or the G we use here
is not correct.

If the noise term is too big, the deconvolution will simply not work. But
if the problem is the IRF, it might be possible to solve this. The disadvan-
tage of measuring the IRF is that there also is noise in the measurement.
The noise in the measurement of the IRF leads to the IRF that is used in the
deconvolution being not exactly the IRF of the instrument, but the IRF plus
noise.

Another way to get to the IRF is to look analytically at the shape the IRF
should have. This shape can then be fitted on a measurement of the gun
spot in mirror mode and be used to construct a mathematical model for the
spot. This model is then the input for the deconvolution, and hopefully the
noise can be eliminated that way. This will be discussed in the next two
sections.
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24 Improving resolution using deconvolution

Figure 4.2: Diagram of the set up of the LEEM. The electrons start in the top of the
picture, when the are emitted by the gun. They travel down and via both arms
until they reach the detector in the bottom. The upper inset depicts the working of
the electron gun, the lower set in the effect of the magnetic prisms on the electron
paths. Adapted from [14].
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4.2 Non-parallel extraction

To make a model of the gun spot the elements of the LEEM that contribute
to the shape of the IRF need to be found. There are two main factors: the
electrons do not leave the gun exactly parallel, and the electrons do not
have exactly the same energy. The electron gun emits an electron beam
that is not exactly parallel, which introduces a broadening of the diffraction
spots. When the electrons do not have exactly the same energy, the prisms
stretch the diffraction spots. In figure 4.2 these elements are highlighted.
By calculating the effect of these two factors, we can calculate the shape of
the IRF.

We first look at the non-parallel extraction of electrons out of the gun tip
because an angle is a displacement in diffraction space. Diffraction spots
are broadened because of this non-parallel extraction since the diffraction
image displays the angle distribution of the reflected electrons. The goal
is to find a mathematical description of the resulting distribution that is
seen in diffraction space. This mathematical description can then be used
to construct a model spot.

The upper inset in figure 4.2 shows the design of an electron gun. The
exact details of the electron gun we use are not publicly known, but the
general principle of an electron gun is. The type of gun that is used is a cold
emission gun. Cold emission means that the gun is not heated. Heating the
electron gun is often done to make extraction of electrons more easy. A side
effect of heating is a larger spread in the energy of the electrons, which is
an unwanted side-effect.

In a cold emission gun there is a sharp metal gun tip above an extrac-
tor plate. Between the extractor plate and the gun tip there is a potential
difference, which is called the extraction voltage. The extracted electrons
are accelerated towards the extractor plate. There is a small circular aper-
ture in the extractor plate, which transmits a part of the electrons to create
a parallel beam. The gun tip needs to be exactly above the aperture in the
extractor plate for this procedure to work [21].

4.2.1 Checking the alignment of the gun tip

We can check whether or not the gun tip is correctly aligned above the
aperture. When the prisms are turned off, the electron beam goes straight
through the LEEM without interacting with the sample or the mirror. In
figure 4.2 this would mean the beam would go directly from the gun tip
at the top of the picture to the detector plate at the bottom. The beam can
then be focused on the detector and should give a perfectly round spot.
This round spot is under the assumption that the alignment of the lenses
that are in between the gun and detector is perfect.
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26 Improving resolution using deconvolution

Figure 4.3: Image of the electron beam, directly focused on the detector with the
prisms turned off. Contrast is inverted for clarity, the darkest spot has the highest
intensity.

In figure 4.3 the image of the focused beam is shown: it is not round
but ellipsoid. There are two possible causes for this. It is possible that the
gun tip is not exactly above the aperture in the extractor plate, but shifted.
This would stretch the spot in one direction. On the other hand it could
also be that somewhere in the system the alignment was not perfect. The
threefold symmetry in the brightest part of the spot is because there are
aberrations in the electron optics. A large part of the aberrations gets cor-
rected as described in section 2.1.1, but this is not the case for threefold
symmetric aberrations. Our lenses are octopole magnets, so the lenses do
not have the correct symmetry to correct threefold symmetric aberrations.
This would require for instance a dodekapole magnet.

It is not clear whether or not the aberrations in the gun alignment will
show in the measurements. When there are distortions in the measure-
ments, it is a good idea to realign the gun.

4.2.2 Calculation of the spot profile

Now we can calculate the broadening of diffraction spots due to the beam
being non-parallel. By transmitting only a small part of the emitted elec-
trons through the aperture in the extractor plate, a nearly parallel electron
beam is achieved. By accelerating the electrons to 15 keV the beam is made
even more parallel. Nonetheless, there will still be some variation in the an-
gle with which electrons come through due to the size of the aperture. To
look at the intensity for different angles that come through, we do trigono-
metric analysis.

We want to know the distribution of angles with which electrons go
through the aperture. In the paraxial approximation sin(θ) = θ the distri-
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bution in θ is proportional to the distribution of position where the elec-
trons go through the aperture. In figure 4.4 this is illustrated: for small θ, θ
and x are proportional.

This gives an approach to calculate the distribution of electrons. Let x
be the distance from the center of the aperture and d the distance between
the center of the aperture and the gun tip, then

r =
√

d2 + x2, (4.4)

is the distance between a point in the aperture and the gun tip. The inten-
sity of a point source as a function of distance in three dimensions follows

I ∼ 1/r2, (4.5)

so the intensity as a function of distance from the center of the aperture (x)
can be expressed as

I ∼ 1
d2 + x2 . (4.6)

Figure 4.4: The distance determination
between a point in the aperture and the
gun tip. The gun tip is drawn in blue,
the extractor plate in red. The opening
between the two parts of the extractor
is the aperture, with d the distance be-
tween the tip and the center of the aper-
ture, x the distance between the center
of the aperture and the point where we
want to know the intensity and r the
distance between the point in the aper-
ture and the gun tip. θ Is the angle be-
tween r and d.

d

x

r

θ

The broadening of the spot should also follow this relation. In this
derivation we have assumed that the gun tip acts as a point source and that
the electrons go in a straight line from the gun tip to the extractor plate.
To check if the broadening of the spot indeed follows equation 4.6, we can
fit the equation to a slice of the gun spot in mirror mode. As explained in
section 4.1, the gun spot in mirror mode is approximately the IRF of the
LEEM. It contains the broadening of diffraction spots caused by the non-
parallel electron beam as described above, and the stretching of spots due
to energy dispersion in the prisms. By taking a slice through the short side
of the spot as described in figure 4.1(b), only the broadening effect is taken
into account, not the stretching.

27



28 Improving resolution using deconvolution

Figure 4.5: In blue
the profile of the
gun in mirror mode.
The slice was taken
through the short side
of the spot. In red a fit
of equation 4.6 on the
data.

In figure 4.5 the result of fitting equation 4.6 on the slice is shown. There
is a slight disagreement between the data and the equation. The assump-
tions that the gun tip is a point source and that the electrons go in a straight
line are probably the cause for this disagreement. Still the equation does
describe the slice of the gun spot in mirror mode quite closely. The equa-
tion is thus appropriate to use to describe the shape of the IRF as a first try.
Is is possible though to improve here by taking into account the shape of
the gun tip and the path of the electrons.

This slice is one-dimensional, but the result can be extrapolated to a
two-dimensional shape. The x in figure 4.6 can be taken as distance from
the center of the aperture in two dimensions. Taking the x in two dimen-
sions translates to a two-dimensional image by rotating the fit in figure
4.5 around the peak of the fit. The result is then a two-dimensional shape
that describes the broadening of the diffraction spot due to the non-parallel
electron beam.

4.3 Energy dispersion

The next step is to look at the effects of the energy dispersion of the elec-
trons when they are emitted. Also here the goal is to find a mathematical
description that can be used to construct a model spot. The distribution in
diffraction space is caused by the prisms in the LEEM that deflect the elec-
trons based on their energy. The distribution can be seen in the long slice
through the gun spot in mirror mode, shown in figure 4.1(b).

As described in section 2.1 LEEM has two prisms that deflect the elec-
tron beam. The first prism bends the electron beam to the sample, the sec-
ond prism bends the electron beam to the aberration correcting mirror. The
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prisms of the LEEM deflect the electron beam by applying a magnetic field.
The magnetic field is perpendicular to the direction of the deflection. The
Lorentz force then deflects the electrons that go through the magnetic field.
This means that electrons with varying energies get scattered and stretch
the electron beam in the direction of the deflection. This is largely compen-
sated for in the system, but not entirely. The intensity distribution in the
resulting, stretched spot is directly correlated to the energy distribution in
the electrons when they enter the prism. In figure 4.2 there is an overview
of the whole system. The lower cut-out shows the energy dependent scat-
tering of electrons in the prisms.

The origin of the energy distribution is in the electron gun. The emitted
electrons all have approximately the same energy, but not exactly. Fowler-
Nordheim theory describes what the energy distribution should look like.

It can be calculated what this spread in energy looks like. According
to SPECS, the manufacturer of our LEEM, the spread in energy is about
300meV, but they do not specify what form the spread takes. For a cold
emission gun, the energy spread is described by cold field emission theory,
and already in 1928 Fowler and Nordheim published about this [22].

In a cold emission gun, the electrons are emitted by applying an extrac-
tion voltage on the gun tip. This potential enables the electrons to tunnel
out of the gun tip into the surrounding vacuum. This process is drawn
schematically in figure 4.6.

εFermi e−

h

x

K

Figure 4.6: Schematic image of the electron extraction in a cold emission gun.
The potential in which the electrons move is drawn in black. On the x-axis is the
distance in the direction perpendicular to the surface of the emitter, on the y-axis
kinetic energy relative to the bottom of the conduction band of the emitter. The
dotted blue line indicates the Fermi-level inside the emitter. The wiggly blue line
is the electron tunneling through the potential barrier at the surface of the emitter.
The height of the barrier as seen by the electrons on the Fermi surface is called h.
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There are two effects that now determine the energy dispersion of the
emitted electrons. The electrons that are available for tunneling have an
energy distribution that is described by the Fermi-Dirac distribution. The
probability of the electrons tunneling out of the gun tip goes exponentially
with energy. The equation that describes the spread in energy is

j(ε) = zS fFD
2F

3bφ1/2
exp

(
bφ1/2(3ε/2− φ)

F

)
, (4.7)

with zS Sommerfeld’s electron supply constant, fFD the Fermi-Dirac distri-
bution, F the field gradient used to extract electrons from the gun tip, φ the
work function of the gun tip and ε the energy of the electrons relative to
the Fermi energy. Furthermore the constant b = 4

√
2m

3eh̄ with m the electron
mass and e the electron charge. The derivation of equation 4.7 is shown in
appendix A.

In figure 4.7 equation 4.7 is plotted. The tunneling transmission goes
exponentially with energy. The energy dispersion will then be a balance
between the Fermi-Dirac distribution - which declines with energy - and
the exponentially increasing transmission probability. For electron energies
bigger than the Fermi energy the transmission is limited by the Fermi-Dirac
distribution and eventually goes to zero, for energies lower than the Fermi
energy the transmission is limited by the tunneling probability and also
goes to zero.

Figure 4.7: The current density of escaping electrons as a function of the electron
energy as described by equation 4.7. Values used are φ = 4.5eV since that is the
work function of tungsten, F = 1V/m and T = 300K.
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To make sure that equation 4.7 describes a distribution that goes to zero
in both the positive and negative extremes, values for the constants need
to be chosen that are not realistic. In the case of figure 4.7 we chose the
field gradient to be 1 V/m. This is not corresponding to reality, since the
extraction voltage typically is around 3000 V, while the size of the complete
gun is in the order of 10 cm. These values would lead to a field gradient of
hundreds of volts per centimeter.

The explanation for this the assumption that our gun is a flat surface
that is big enough to use periodic boundary conditions in calculating the
density of states. This assumption is very strong, and probably quite wrong
since an electron gun tip is made very sharp. The diameter of a gun tip can
be in the order of 10 nm. This leads to incorrect values for the constants in
equation 4.7. Especially the field gradient at the surface of the gun tip will
be influenced by the different surface structure. To see whether or not the
shape of the distribution describes reality though, it can be compared to the
shape of the IRF.

4.3.1 Comparison to the measured distribution

Now the result can be compared to the actual spot shape that is seen in
diffraction patterns. The energy dispersion translates to a distance in diffrac-
tion space since the prisms scatter the electrons based on their energy. Elec-
trons with different energies will thus have slightly different angles when
interacting with the sample. Imaging this in diffraction mode gives a stretch-
ing of the diffraction spots in one direction. Just as in section 4.2, the func-
tion we get out of the analysis is fitted to the gun spot in mirror mode.
The gun spot in mirror mode is approximately the IRF of the LEEM, so this
gives an idea whether or not the analysis is correct.

Figure 4.8: In black
the profile of the gun
spot in mirror mode,
taken through the
long side. In red
equation 4.7 is fitted
on the data.
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In figure 4.8 a slice of the gun spot in mirror mode along the direction
of the stretching is plotted. This is the long axis in figure 4.1(b). That means
that the effect of the prisms is visible in this direction. Equation 4.7 is fitted
on the slice of the gun spot in mirror mode, and matches the data very well.
From this similarity we can conclude that equation 4.7 indeed describes
the stretching of the gun spot due to scattering by the prisms. It can also
be concluded that the approximations that were made (taking the shape of
the potential barrier as a triangular barrier, Taylor-expanding the Gamow
exponent G(h) and the WKB-approximation) are good approximations in
this case.

It can be concluded that we have accurate equations for the shape of
the IRF, both for the short side and the long side of the spot as it is seen
in mirror mode. That means these equations can be used to make a model
spot, which can then be used in the deconvolution.

4.4 Model spot

Using equations 4.7 and 4.6 a model IRF can be constructed. The broaden-
ing in diffraction caused by the non-parallel beam (equation 4.6) describes
a two-dimensional distribution. This two-dimensional distribution is con-
volved with the one-dimensional distribution caused by the energy disper-
sion (equation 4.7). The result is the model IRF.

Numerically this is done by padding the one-dimensional equation with
zeros to give it the same shape as the two-dimensional equation. This
model spot can then be used to deconvolve the IRF out of our measured
diffraction images.

In figure 4.9 the model IRF is compared with the measured gun spot
in mirror mode. The images of the spots given in figures 4.9(a) and 4.9(b)
are barely distinguishable, and by comparing the slices in figures 4.9(c) and
4.9(d) we can see that they indeed describe the same shape, but the model is
more smooth. The smoothness should make the deconvolution easier since
it describes the IRF more precisely than the measured gun spot in mirror
mode.
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(a)

(b)

(c) (d)

Figure 4.9: a) The measured gun spot in diffraction mode. The electron beam
was reflected without interaction with the sample, so called mirror mode. b) The
model spot constructed with equations 4.7 and 4.6. c) Slice through the short side
of both spots, indicated with black in (a) and (b) of this figure. In blue the slice
of the measured spot, in red the slice of the model spot. d) Slice through the long
side of both spots, indicated with black in part (a) and (b) of this figure. Here in
black the slice of the measured spot, in red the slice of the model spot.
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Chapter 5
Applications of angle
determination in LEEM

In chapter 3 it is shown that measuring angles in a LEEM can be done. The
procedure was tested on two different samples. One sample had a flake of
MoTe2, transition metal dichalcogenide (TMD) put on a substrate of Si(100).
The flake was meant to be suspended over a trench, but collapsed into it.
This is an interesting situation to look at, since collapsing flakes happen
more often in the fabrication of samples. Understanding why and how the
collapsing happens can help improve the recipes used to produce samples.

The other sample is also a flake of MoTe2. It is not suspended, but was
put on top of a substrate that has a micro-particle on it. This made the flake
bend over the micro-particle, creating a bump on the material.

5.1 Profile of a bump

5.1.1 Sample

To test the angle measurement procedure, an approximately ten layer thick
flake of MoTe2, put on top of a silicon substrate was imaged. A silicon
wafer is used as starting substrate. On top a layer of silicon oxide is formed
by exposure to air. A flake of MoTe2 is then exfoliated from a crystalline
piece of MoTe2. The flake is transferred to a polymer stamp and the stamp
is used to carefully transfer the flake to the silicon substrate. The resulting
sample is shown in figure 5.1

In figure 5.3 we see an image of a part of the flake. The white spot is
defocused, which means that that part of the sample is a bit higher than
the surrounding part. Since there is a height difference, there should also
be tilted areas around this defocused part of the flake. In the rest of this
section, we will refer to this defocused part of the flake as the ’bump’.
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Figure 5.1: Schematic image of the sample as it is prepared. In gray the silicon
substrate, blue lines indicate the oxidized part. In red the flake of MoTe2.

The cause for the bump is most likely a micro-particle that was still on
the silicon substrate when the flake of MoTe2 was put on top of it. Such a
micro-particle would push the flake slightly up and cause the defocusing
on the bump. This is illustrated in figure 5.2. It is possible that the actual
cause is something different, but the main point is that it is likely to find
tilted parts on this sample.

Figure 5.2: Schematic image of the reason there is a bump on the flake of MoTe2.
The flake is shown in red, the silicon substrate in gray and the micro-particle in
black. The image is not to scale.

5.1.2 Measurement

In a LEEM it is possible to look at the diffraction pattern of a part of a sam-
ple down to 200 nm. This can be done by putting a plate with an aperture
in the electron beam. By choosing the position of the aperture, only the
electrons coming from a certain part of the sample can be selected.

This way, different parts on the bump can be selected. In section 3 it
is shown that a tilted part of the sample shifts the diffraction pattern with
respect to the original position. The angles that the material locally makes
with the flat surface can be studied by looking at the shift of the diffraction
pattern when it is taken on different parts of the bump.

In figure 5.3 a real space image of the MoTe2 flake is shown. The po-
sitions where we illuminate the flake using an aperture are marked with a
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Figure 5.3:
Real-space
image of the
part of the
sample with
the bump on
it. The crosses
indicate the
positions
at which a
diffraction
image was
taken, with
the size of the
crosses the
size of the
illuminated
part of the
sample.

cross. For each of these positions the position of the specular spot is deter-
mined. The position of the specular spot in the position marked 1 is taken
as the gauge for a flat part.

5.1.3 Results

We expect the specular spots from the diffraction pattern on the bump to
be shifted with respect to the one that is not from a diffraction pattern on
the bump. This is visible in the measurements. The central diffraction spot
follows the track indicated in the inset of figure 5.4(b) clockwise when we
go through the positions on the sample.

In figure 5.4(b) the position of the specular spot corresponding to all
positions of the aperture is indicated on the background of the position of
the spot in the flat situation. For this figure the spot corresponding to po-
sition 1 is selected to represent the flat situation. Two things are apparent:
the distance the spot has moved from the flat situation changes, and the
direction in which it has moved changes.
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(a) (b) (c)

Figure 5.4: a) Examples of the position of diffraction spots for different places on
the sample. The x- and y-axis are gauged equally for all three images to show the
shift of the spot. b) The diffraction pattern of the MoTe2 flake. The inset shows the
movement of the central diffraction spot when we go through the positions on the
flake. The numbers correspond to positions on the flake. c) The angles of the tilt
of the sample at the different positions on the flake.

The distance the spot has moved directly corresponds to the magnitude
of the angle the material makes with the flat surface. In figure 5.4(c) these
angles are plotted for all positions of the aperture. Indeed it can be seen
that for the middle positions in the graph, which are on the bump, the
angle is bigger than on the side parts of the graph, which correspond to flat
parts of the sample next to the bump. In the middle there is no dip in the
magnitude of the angle, because all positions are taken on the side of the
bump. The top of the bump would be expected to also be flat, but there
were no measurements taken on the top of the bump.

Direction of angles

The direction in which the spot has moved corresponds to the direction
of the tilt angles of the surface. As described in section 2.2.1 we need an
approximate idea of the structure of the surface to determine the absolute
directions of tilt angles. In this case we know that the highest part of the
bump should be the defocused, white spot. From that it can be concluded
that the angles should approximately be in the direction of the top of the
bump.

In figure 5.5 the angles between the horizontal direction in diffraction
space and the direction in which the spot has shifted are plotted. Com-
paring these angles with the positions on the surface where the diffraction
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Figure 5.5: The direc-
tions of the local tilt
for the different po-
sitions on the flake.
The angles are defined
relative to each other,
so have only meaning
with respect to each
other. The absolute
direction needs to be
determined with help
of the knowledge of
the sample.

picture is taken shows a clear correspondence. At position four both the tilt
angle and the angle of the direction change. In figure 5.3 it is shown that
position four is the first position that is on the bump.

Positions three to 14 show a tilt angle with the rest of the sample surface
in figure 5.4(c). In figure 5.6 the directions of the tilt angles are shown in
the real-space picture, in such a way that they describe a slope towards
the defocused spot. The direction of the angles relative to each other is
measured, the choice of which direction is 0° is interpretation.

Constructing the surface profile

Doing these angle measurements on a surface, gives a vector field of angles.
When the resolution of the measurements is good enough, the surface pro-
file can be deducted from this vector field. In figure 5.6 it is apparent that
that is not possible for this measurement. To construct the surface profile,
the angle of the surface between two points where a diffraction surface is
taken is needed. In the figure it can be seen that the direction of the angles
do not connect two points. Since it is not possible to connect two points,
we also can not determine the profile of the surface in between. For that it
would be needed to do these angle measurements in a grid over the bump,
or in a line that by chance lines up with the direction of the angles.

To do this in a reliable way, the points where the angle is measured
should not be much further apart than the size of the position we measure.
For the aperture we used to select a part of the surface, this is 200 nm.
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Figure 5.6: The direction and
magnitude of the tilt for the
different positions close to the
defocused part of the bump.
The magnitude of the angle is
shown by the length of the ar-
rows, the direction of the tilt
by the direction of the arrows.
The direction where the an-
gle equals zero is given by the
large, white arrow. It is cho-
sen such that the tilt on the
measured positions is approx-
imately pointing to the defo-
cused part of the bump.

5.2 Profile of collapsed material in a trench

As seen in section 3, the in-plane momentum of a reflected electron is de-
pendent on the energy with which an electron comes in. The in-plane mo-
mentum is then imaged as position in diffraction space, so the position in
diffraction space is also dependent on energy. To check this energy depen-
dency, we took the diffraction picture of a sample at various energies.

5.2.1 Sample

We stamped a flake of MoTe2 on a substrate of Si(100), which has a trench
etched into it. The trench was etched using electron-beam lithography and
reactive ion etching. It is prepared in the same way as the sample in sec-
tion 5.1, with the difference that before transferring the MoTe2 flake to the
substrate, there is a trench etched in the substrate. In figure 5.7 there is an
optical picture of this situation. The flake then collapsed into the trench,
but it did not rip apart. A schematic picture of this is shown in figure 5.8.
At the edges of the trench the flake makes an angle with the surface, while
in the center of the trench and next to the trench it is flat.

5.2.2 Results

As seen before, a tilted part of the sample means a shift in diffraction space.
In the case of a collapsed flake on a trench, there are two tilted parts: one
on either side of the trench. Since the situation is approximately symmetric
across the trench, we expect these angles to be approximately equal. The
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Figure 5.7: Optical image of a flake of MoTe2 on a Si(000) substrate with a trench
in it.

Figure 5.8: Schematic drawing of a collapsed flake on a trench. The trench is
drawn in black and the flake in red.

diffraction pattern of this area is shown in figure 5.9. Instead of a single
central spot, there is now a central spot with on the upper and lower side
two satellites. The middle spot corresponds to the flat part of the surface.
This consists of the flat parts in and next to the trench. Each of the satellite
spots corresponds to the part of the flake on one of the sides of the trench
as confirmed by µLEED measurements.

Figure 5.9: The diffraction image of a collapsed flake
of MoTe2 on a trench. Contrast is inverted for clar-
ity, the darkest spots have the highest intensity. The
dark spots correspond to flat parts of the flake, the
satellites above and below the dark spots correspond
to the parts that have an angle. The red arrow corre-
sponds to the distance that is plotted in figure 5.10.

The position of these spots changes with energy. In figure 5.10 the dis-
tance between the central spot and the satellite spot on the lower right side
(indicated in red in figure 5.9) are plotted as a function of energy. The dis-
tance grows as a function of energy. Fitting a power law to the data shows
that the distance goes with energy to the power 0,21, with an error of 0,18.

From equation 3.4 it is expected that the in-plane momentum goes with
the square root of energy. In the data this is not the case, it goes with
E0,2±0,18. The uncertainty in the exponent is relatively large, but not large
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Figure 5.10: The dis-
tance of the bottom
left point of the bot-
tom satellite spot to
the central spot as
a function of energy.
Fitting a power law to
the data points gives
the relation distance ∼
E0.21±0.18.

e−

Figure 5.11: Schematic drawing of the effect of lensing on the angle with which
electrons reflect of a tilted sample. In blue the electron beam, only the specular
reflected electron path is drawn. In red the sample and in green one of the equipo-
tential lines.

enough to justify an exponent of 0,5.
This can be explained because there are lensing effects. The potential

landscape that slows down the electrons when they approach the sample
is deformed around the trench. Since the surface is not flat, the potential is
not only a function of distance from the sample, but also of position on the
sample. This deflects the electrons and changes the angle with which they
reach the sample.

In figure 5.11 the lensing effect is explained. Since there is a decelerating
potential, the angle of incidence of the electrons gets bigger. That means
the angle with which the electrons are reflected is also bigger. In diffraction
space this larger angle leads to a larger distance from the original spot.

The next step is to correct for this energy dependence. Is is concluded
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that the energy dependence follows the relation α ∼ E0,2±0,18. Since the
uncertainty in the exponent given by the fit in figure 5.10 is about as large
as the exponent itself, the value of the exponent that removes the energy
dependency needs to be found manually.

In figure 5.12 the angle is plotted after having corrected for energy, such
that the energy dependency has vanished. When using an exponent of 0,39
for the energy dependency, a linear fit through the corrected data points
gives a slope of 0,0005. From this we conclude that the exponent of 0,39 is
correct. This is within the error margin of the fit in figure 5.10. This way
the angle determination is also corrected for lensing.

By taking more measurements on the collapsed part of the flake, it
would be possible to determine the distribution of angles over that part
of the flake. From that the profile of the collapsed part of the flake could be
calculated. Unfortunately we do not have enough measurements to calcu-
late the profile here.

Figure 5.12: The an-
gles the flake makes at
the edge of the trench
after we corrected for
energy. A linear fit
was done on the an-
gles to check if the an-
gle is constant, which
gave a slope of 0.0005.

5.3 Discussion

The presented experiments show that the angle a material makes with its
surroundings can be determined. The shift a spot gets in diffraction space
due to the tilt of the material can be observed, and from that the angle a
material has with the flat part of the surface can be calculated. By taking
a set of measurements close to each other, the profile of a material can be
deducted.

The main source of uncertainty in the angle determination is the error
in determining the position of the diffraction spot. This leads to an un-
certainty in angle of around 0.3°. The error is dependent on the energy
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of the electrons. There are possibilities to improve the error in the posi-
tion determination, which will be discussed in the outlook. The error also
determines the resolution of our angle determination procedure. We can
distinguish angles up to 0.3°.

The energy dependency of the angle determination procedure is cal-
culated, but not yet completely explained. We see that lensing affects the
angle with which electrons leave the sample. The effect of lensing can be
taken out in the data analysis we do, but it would be good to rigorously
calculate the electron paths in a potential that is created around a trench.
We need to note though that the effects of lensing are strongly dependent
on the surface profile of the sample. The effects of lensing need to be cal-
culated per sample, to have an accurate idea of how lensing influences our
measurements.
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Chapter 6
Conclusion

In this work a method to determine the local surface profile of samples is
described. The surface profile can be studied by looking at the local tilt an-
gle on the surface of samples. By determining the local tilt angle at multiple
positions a vector field of angles can be constructed. From that vector field
the surface profile can be deduced.

The local tilt angle on a sample surface can be determined by analyzing
a diffraction image. If there is an angle between two parts of the surface,
this shows in diffraction as a shift of the complete pattern. Using the spec-
ular and first order spots as a gauge, the angle between the two parts of the
surface can be calculated via

α =
1
2

sin−1
(

rshi f t

r1storder
k‖1storder

h̄√
2mE

)
.

The accuracy of this equation depends on the accuracy of the position
determination of diffraction spots. The more smooth and small a spot is,
the better the accuracy will be. We have tried to improve the resolution of
the diffraction image, and by that lower the size of diffraction spots. It is
not yet clear whether or not the deconvolution will improve the resolution;
more work needs to be done on this.

The angle determination procedure is shown to work on two differ-
ent samples. Angles can be determined to a precision of 0.3°. When the
electronic potential field at the surface is not flat, for instance because of
structures on the surface, lensing effects need to be taken into account. For
a trench etched in the surface, this is shown to be possible.
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Chapter 7
Outlook

7.1 Improving resolution by automatization of spot find-
ing

In section 3.2 it is described that the accuracy with which the center of a
spot can be determined limits the resolution of the angle determination. A
way to improve the accuracy of determining the center of a spot is doing
this automatized instead of manually.

If the position of every diffraction spot is determined in exactly the
same way, the error that is in the human estimation of the position of a
peak is eliminated. Automatizing the position finding procedure would
also make it possible to handle larger data sets, extending the possibilities
of the technique. In the examples mentioned in chapter 5 only a few angle
measurements were taken. Both the density of points and the area covered
can be increased when the spot finding is automatized.

Automatizing finding the position of a diffraction spot can be done by
fitting the expected shape of a spot on the diffraction spot. The fitting pro-
cedure gives coordinates for the center of the spot. This should be more
consistent and more precise than doing it by hand. There will still be an
error in this since fitting on a non-smooth spot will be a bit imprecise. Also
spots that deviate a lot from the standard shape of a diffraction spot will
not be possible to fit.

For smooth spots though, automatizing the spot finding procedure can
open up new possibilities [23].

7.2 Quantifying lensing effects

In section 5.2.2 it is described that the energy dependency of the angle with
which electrons are reflected is not completely understood. It is possible to
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compensate the energy effects, but we only have a qualitative explanation
of the physics behind it.

Lensing effects happen close to the sample, because the potential land-
scape around a trench is not constant in the direction parallel to the surface.
Qualitatively we can argue what the effect of lensing should be. Looking at
the data, the explanation seems to match the data. To really understand the
effect of lensing though, it is good to calculate the effects of the change in
potential field rigorously. There is software for modelling electron optics,
that could be useful for this.

Modelling the effect of a non-constant potential field on the electron
paths would not only be useful for understanding what happens on our
samples, but also for other experiments where lensing effects are seen. An
example of such an experiment is imaging materials that are next to each
other with different work functions, creating a step in potential at boundary
as felt by the electrons.

Lensing effects are strongly dependent on the surface structure of sam-
ples. This dependency means that in principle the effects need to be calcu-
lated per sample. Some structures are used a lot, and those can be carried
over per sample. The trenches we used consist for example of two step
edges next to each other. The step edge is one of the most fundamental sur-
face profile elements, and is used in a lot of different samples. A rigorous
calculation of the electronic potential around a step edge would be useful
in most of these samples.

7.3 Phase transitions in transition metal dichalcogenide
monolayers

A specific subject where angle measurement in a LEEM can contribute, is
the phase transition in transition metal dichalcogenide (TMD) monolayers.
These materials consist of a layer of transition metal atoms, squeezed in be-
tween two layers of chalcogenide atoms. This structure of three sublayers
is then called a TMD monolayer.

There are a few different crystal structures that TMD monolayers can
have. The structure of a specific material is not fixed: by adding energy to
the system it is possible to change the crystal structure. One way of doing
this is by applying strain in the in-plane direction. Some materials, like
MoTe2, have a phase transition between two crystal structures already at
0.2 % strain.

A way to induce strain in a LEEM, is to place a monolayer of a TMD
on a cavity, and then to put a voltage on the bottom of the cavity, creating
a back-gate. The potential difference between the monolayer and the back-
gate will create a force on the monolayer that pushes it outwards or pulls
it inwards. Since the monolayer sticks to the surface of the sample by Van
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der Waals-forces, it will not slip but the part of the monolayer on top of the
cavity will strain. This is depicted in figure 7.1.

~F

Figure 7.1: Schematic drawing of a set up to induce strain in a monolayer. In red
the monolayer and in blue the back gate that can be used to pull on the monolayer.
The grey layer in between is an insulating substrate.

To quantify the strain, angle measurement can be used. When the part
of the monolayer on top of the cavity is pushed out, it will locally have
an angle with the part of the flake next to the cavity. This angle can be
determined using the procedure described in section 3. It is then possible
to measure the relation between the strain in a TMD monolayer, and crystal
structure it has.
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Appendix A
Derivation of the energy
dispersion of tunneled electrons

In this section the derivation of the energy dispersion of electrons that tun-
neled out of an electron gun tip will be shown. We will follow the deriva-
tion for Cold Field Emission by Richard Forbes [24].

There are several factors influencing the electron energy dispersion
when the electrons leave the gun tip. First we have the electrons arriving
at the gun tip, described by Fermi-Dirac statistics, and the supply function,
which describes the current density crossing a surface inside the metal. All
these electrons then have a chance to tunnel through the potential barrier
between the metal and the surrounding vacuum. The electrons that do tun-
nel then form the electron beam that is used in the electron microscope. In
figure A.1 this process is drawn schematically. To be able to calculate the
energy states in the gun tip we will assume in this derivation that the sur-
face of the metal is perfectly flat. This is quite a strong assumption, but
the resulting calculations give us a lot of insight in the shape of the energy
distribution.

A.i The energy of the available electrons

The first step is to calculate the energy of the electrons that are available for
tunneling. This is done using the supply function. The supply function de-
scribes the current density through a surface in a metal. Taking this surface
to be the surface of the metal, the function describes the electrons available
for tunneling out. Mathematically this is done by calculating the number of
available states in k-space, then calculating the contribution from a single
state and finally transform the result from k-space to energy space. This is
then multiplied by the Fermi-Dirac distribution to use the correct occupa-
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εFermi e−

h

x

K

Figure A.1: The most commonly used barrier shape: the triangular barrier, here
drawn in black. In reality the top of the barrier is more rounded, which is indicated
in red. On the x-axis is the distance in the direction perpendicular to the surface
of the emitter, on the y-axis kinetic energy relative to the bottom of the conduction
band of the emitter. The dotted blue line indicates the Fermi-level inside the emit-
ter. The wiggly blue line is the electron tunneling through the barrier. The height
of the barrier as seen by the electrons on the Fermi surface is called h.

tion numbers for non-zero temperatures.
The first step is to calculate the number of electronic states per ele-

ment in k-space. Since we assumed a flat surface of sufficient size, peri-
odic boundary conditions can be used. The number of electronic states per
element in k-space for an atomic lattice is given by

d3n =
2L3

(2π)3 dkxdkydkz, (A.1)

with
( 2π

L

)3 the size of a state in k-space [16]. Putting this in cylindrical coor-
dinates (kp, θ, kz) with kz the direction perpendicular to the emitter surface,

kp =
√

k2
x + k2

y the direction parallel to the emitter surface and integrating
over the angle gives

d2n =
2L3

(2π)3 dkpdkz ·
∫ 2π

0
kpdθ, (A.2)

=
4πL3kp

(2π)3 dkpdkz. (A.3)

Each of the states in k-space contributes with its charge density normal
to the emitter surface, which is the charge density in the state times the
occupation number fFD for that state. The charge density then needs to
be multiplied with the velocity in the z-direction to get the current density.
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The charge density in the state is given by e
L3 and we denote the velocity in

the z-direction by cz. Multiplying this with equation A.3 yields the current
density

d2 J = d2n · e
L3 fFDcz, (A.4)

=
4πe
(2π)3 fFDkpdkpczdkz. (A.5)

The occupation number for a state is given by the Fermi-Dirac distribu-
tion. Putting this in then gives us the actual current density:

d2 J =
4πe
(2π)3 ·

1
exp((ε)/kBT) + 1

kpdkpczdkz. (A.6)

Here ε is defined as the energy of an electron relative to the Fermi-energy.
Equation A.6 can be converted to an expression in energy differentials in-
stead of k-differentials. Since we use a free-electron model, the energy of the
electrons is only kinetic energy. We will define the total energy of the elec-
trons as the kinetic energy relative to the bottom of the conduction band.
This energy K can be expressed as a function of kz and kp via

K =
h̄2

2m
(k2

z + k2
p). (A.7)

Similarly, the parallel component of the kinetic energy is given by

Kp =
h̄2

2m
k2

p, (A.8)

and the z-component by

Kz =
h̄2

2m
k2

z = K− Kp. (A.9)

The differentials are then given by

dKp =
h̄2

2m
kpdkp, (A.10)

dKz =
∂K
∂kz

dkz, (A.11)

since Kp is independent on kz.
Finally cz can be expressed in these differentials. Since the electron is

a quantum mechanical wave we can interpret cz as a group velocity. It is
known that for a group velocity with angular frequency ω

cz =
∂ω

∂kz
, (A.12)

K = h̄ω, (A.13)
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from which follows that
cz =

1
h̄

∂K
∂kz

. (A.14)

Putting equations A.10, A.11 and A.14 into equation A.6 then yields

d2 J =
4πem

h3 · 1
exp((ε)/kBT) + 1

dKpdKz. (A.15)

For a constant value of Kp, dKz = dK holds. Since we assumed free-
moving electrons, furthermore dK = dε with ε the total energy relative to
the Fermi energy. Combining this gives

d2 J =
4πem

h3 · 1
exp((ε)/kBT) + 1

dKpdε, (A.16)

= zS fFDdKpdε, (A.17)

where zS is Sommerfeld’s electron supply constant and fFD is the Fermi-
Dirac distribution.

A.ii Tunneling through the potential barrier

Equation A.17 yields the charge density arriving at the surface of the gun
tip, but not all these electrons actually leave the tip. They have to tunnel
through the potential barrier, which goes with a certain probability D. The
final energy distribution is then equation A.17 times D.

This parameter D depends on the energy of the electron and the shape
and height of the barrier it has to tunnel through. To exactly calculate
the escape probability of the electron, a Schrödinger equation needs to be
solved. This is not always possible to do analytically, depending on the
shape of the barrier. The simplest case, a triangular barrier, can be analyt-
ically solved and is used as a basis for approximating other shapes. The
triangular barrier is shown in figure A.1. We will use a triangular barrier in
the following calculations.

This is an approximation of the true form of the potential in cold emis-
sion, but quite a good one since the region in which the potential of the
work function is felt is typically in the order of an inter atomic distance.
The external field though works on much greater distances, so the part of
the barrier which is actually curved is very small.

The calculation of D now takes place in two steps: first it is expressed
in the unreduced barrier height h, which can be interpreted as the height of
the barrier as seen by an electron relative to its own energy. Next this h is
converted to ε and Kp.

We define h as
h = φ− ε + Kp, (A.18)
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with φ the work function. Equation A.18 says that the reduced barrier
height is the work function, or the barrier height relative to the Fermi level,
minus the energy of the electron perpendicular to the surface of the emit-
ter. Since this describes a tunneling process we know that D should be an
exponentially declining function of h. That means that it can be described
by

D(h) = exp[−G(h)], (A.19)

where G(h) is called the Gamow exponent. The exact shape G(h) takes
depends on the shape of the barrier. G(h) can be Taylor expanded around
φ since the electron energy relative to the barrier height is small:

G(h) ' G(φ + δh), (A.20)

= GF +
∂G
∂h

δh + . . . , (A.21)

= GF +
δh
dF

+ . . . , (A.22)

where dF is defined via

d−1
F ≡

∂G
∂h

, (A.23)

and expresses the sensitivity of the tunnel probability on a change in the
barrier height. Putting this into equation A.19 yields

D ' DF exp
(
− δh

dF

)
. (A.24)

The label F on the parameters signal that these outcomes are only valid for
electron energies close to the Fermi surface.

From equation A.18 it follows that

δh =
∂h
∂ε

∣∣∣∣
Kp

δε +
∂h

∂Kp

∣∣∣∣
ε

δKp, (A.25)

= −δε + δKp. (A.26)

For an electron at the Fermi energy that is normally incident on the emitter
surface ε = 0 and Kp = 0 hold, and D can be expressed as

D ' DF exp
(

ε

dF

)
exp

(
−

Kp

dF

)
, (A.27)

where DF and dF are determined by the shape of the barrier.
Combining approximation A.27 with equation A.17 and integrating over

Kp, the kinetic energy parallel to the emitter surface, gives an expression for
the current density coming out of the emitter as a function of the electron
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energy. The integration runs over all electron energies in the conduction
band:

j(ε) = zS fFDDF exp
(

ε

dF

)
·
∫ KF+ε

0
exp

(
−

Kp

dF

)
dKp. (A.28)

Evaluating this integral gives

j(ε) = zS fFDdFDF

[
exp

(
ε

dF

)
− exp

(
−KF

dF

)]
. (A.29)

For a metal it is known that the conduction band is large, which means
that the energy of the Fermi-level relative to the bottom of the conduction
band KF is large. dF is called the decay width and describes the sensitivity
of the tunneling probability on a change of the barrier height. Since the
tunneling probability depends exponentially on the barrier height, a small
change in energy has a large effect on the tunneling probability. We can
thus conclude that dF is small, while KF is big. Forbes concludes from this
that the second exponential in equation A.29 can be neglected [24]. The
equation then becomes

j(ε) = zS fFDdFDF exp
(

ε

dF

)
, (A.30)

and we have a result in which a barrier shape can be inserted.
To evaluate this, G(h) has to be known. This can be a very complex

quantum mechanical problem, so it is a good idea to use an approximation
here. Wentzel, Kramers and Brillouin found out that it is possible to ap-
proximate the wave function of a particle when it is in a sufficiently slowly
changing potential. An expansion of the wave function of a particle in a
constant potential will be a good approximation in that case [25] [26] [27].
This is called the WKB-approximation.

This makes the wave function much more easy to calculate since the
exact solution of a particle in a constant potential with V < ε is known to
be

Ψ = exp
(

ipx
h̄

)
, (A.31)

where p =
√

2m(ε−V). Here V is defined relative to the Fermi-level. We
will now follow the derivation of David Bohm [28] to get to the transmis-
sion coefficient D. First we approximate the wave function with

Ψ = exp
(

iS
h̄

)
, (A.32)

with S being a function of x. If V would be constant S would be px, but to
do this for a non-constant V, S is approximated as a series of powers in h̄:

S = S0(x) + h̄S1(x) +
h̄2

2
S2(x) + . . . . (A.33)
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Equation A.32 can now be put in the time-independent Schrödinger equa-
tion and S substituted with equation A.33. Solving it then yields

Ψ =
A

4
√

ε−V(x)
exp

[
i
∫ x

x0

√
2m(ε−V)

dx
h̄

]
+

B
4
√

ε−V(x)
exp

[
−i
∫ x

x0

√
2m(ε−V)

dx
h̄

]
,

(A.34)

which is a superposition of a wave moving in the positive direction and
one moving in the negative direction. Equation A.34 reduces to the plane
waves exp(ipx/h̄) and exp(−ipx/h̄) in the case that V is constant.

This can be applied to the penetration of a potential barrier. We calcu-
late the amplitude of the wave function on both sides of the barrier, and
then the ratio of these amplitudes will be the penetration probability. The
constants A and B need to be determined for this. They depend on the
wave function inside the barrier, which can also be calculated within the
WKB approximation, but with V > ε. In this case the solution consists of
real exponentials:

Ψ =
C

4
√

2m(ε−V)
exp

[∫ x

x0

√
2m(V − ε)

dx
h̄

]
+

D
4
√

2m(ε−V)
exp

[
−
∫ x

x0

√
2m(V − ε)

dx
h̄

]
.

(A.35)

The solutions inside and outside the barrier now need to be connected.
This is not trivial, since the WKB approximation is not valid around the
turning points of the barrier. The turning points are the points where the
energy of the electrons is equal to the barrier height (ε = V), which leads
to dividing by 0 at these points (see figure A.1). There is however a trick
to solve this. If the region where the WKB approximation does not apply
is small enough, it can be approximated with a straight line. In that case,
Schrödinger’s equation looks like

− h̄2

2m
∂2Ψ
∂x2 + C(x− a)Ψ = 0, (A.36)

with C = (∂V/∂x)x=a. Equation A.36 can be solved using Bessel’s func-
tions of order 1⁄3. I will only quote the results here, for the complete proce-
dure see the article by R.E. Langer on this [29]. Connecting the left, middle
and right part of the wave function and taking the ratio of the left and right
part then yields

D = exp
(
−2

∫ b

a

√
2m(V − ε)

dx
h̄

)
, (A.37)
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which can be rewritten as

D = exp
(
−ge

∫
U1/2dx

)
, (A.38)

with

ge ≡
√

8m/h̄, (A.39)
U ≡ V − ε. (A.40)

Here ge is a constant for electron tunneling and U is an energy-like quan-
tity which expresses the height of the barrier relative to the energy of an
electron. Comparing this to equation A.19 it can be seen that

G(h) = ge

∫
U1/2dx. (A.41)

Now we can put in the shape of the triangular barrier. For a triangular
barrier U can be expressed as

U = h− eFx, (A.42)

with F the strength of the applied field. Putting this in equation A.41 yields

Gtr(h) =
bh3/2

F
, (A.43)

with
b =

2
3e

ge. (A.44)

Now it follows from equations A.19, A.23 and A.43 that

Dtr
F = exp

(
−bφ3/2

F

)
, (A.45)

dtr
F =

2
3b

φ−
1/2F. (A.46)

These results we can then put into equation A.30. This gives

j(ε) = zS fFD
2F

3bφ1/2
exp

(
bφ1/2(3ε/2− φ)

F

)
, (A.47)

which describes the energy dispersion of the electrons that have tunneled
out of the emitter.
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