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Abstract

Deep reinforcement learning has solved the game of Go, along with all
other board games. Can it also be applied to real-world use cases? This

research combines a literature study and experimental evaluation,
focusing on the case of automation for tele-operated robotics. This is
necessary because tele-operation of robots is slow and cumbersome.

Classical robotics solutions are expensive, and limited in precision, but
deep reinforcement learning provides an opportunity for learning

visuomotor skills using partial information.
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Chapter 1
Introduction

The Problem

Sub-sea, a building that is on fire or at the verge of collapsing due to an
earthquake, space. These are hazardous environments where remotely-
operated robots are necessary. Robots have been doing manufacturing
work for decades, and right now, the technology is there to make them
more capable so they can be used to save lives in these strenuous and
unknown environments. This requires a number of solutions which are
studied under the i-botics program at TNO, where I did this internship.

The goal of the i-botics project is ”...to provide the human operator
with full perceptual and manipulation capabilities to intuitively perceive
the remote environment and act as if being present at the remote site. ” [1]

One of the problems is latency: actions of the operator arrive at the
robot after some lag time T1, and information about the environment of
the robot takes another period T2 to reach the operator. This makes com-
plex interactions at large distances awkward and may cause instability of
the system when using feedback control schemes. Automation of such
interaction is non-trivial due to the variance of tasks.

The goal

The goal of this project is to investigate if and to which extent Deep Re-
inforcement Learning can be used to automate tasks in real-world robotic
applications. What are its requirements? What are its strengths?
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2 Introduction

The state of Deep Robotic Learning

As an example of a task, let’s say we want to automate turning a screw. A
traditional robotics approach to this problem would be: write a screw-
localizer module, then use an inverse dynamics module and trajectory
planner to move the robot arm to the correct position, then use sensors
to determine if the screw was grasped, and if not retry, until the screw is
grasped, then turn it. All of these modules traditionally require a lot of
programming and/or expensive sensors. This is called the robot control
pipeline [2].

Deep Robotic Learning is the science of incorporating artificial neural
networks in the robotic pipeline. Artificial neural networks have radically
improved automatic image classification [3] [4] [5], and more recently rev-
olutionized reinforcement learning [6]. The ability of a neural network
to learn a generalizable function from training is exceptionally useful in
robotics.

A task that has been widely studied in Deep Robotic Learning research
is grasping [7] [8] [9]. Convolutional Neural Networks are very good at
image classification, and can combine image input with other modalities.
This has been leveraged by the robotics field, where the neural network
is used as a grasp success predictor or GQ-CNN (Grasp Quality Convo-
lutional Neural Network). These methods require an enormous amount
of samples [8] [7], but the interest in grasping research has also led to the
Dexnet databases with objects and optimal grasps[10][11][12], which can
be used to train a GQ-CNN without needing thousands of hours of robot
time (and wear and tear).

However, a GQ-CNN can only do that: predict a grasp quality based
on input from a depth sensor. There are many more tasks that robots do
that would benefit from automation, and just training a network from a
database is relatively simple. So we looked for a different method for more
general robotic automation.

Another prominent research topic in Deep Robotic Learning is imita-
tion learning. Neural networks can be trained to accomplish all kinds of
tasks if enough demonstrations are provided: neural networks are excel-
lent function approximators. The main problem with this approach, how-
ever, is the multi-modality of demonstrations. A human might not use the
exact same trajectory to demonstrate a task, but instead the distribution
of trajectories (in joint and/or end effector space) may be multi-modal.
In grasping a bottle, a human demonstrator may choose to approach the
bottle from either the front or the side, which makes it impossible for the
network to learn: a single function cannot represent both movements. A

2
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solution to this problem is proposed in [13], where a neural network learns
the entire distribution of actions for a given input. Their neural network
also integrates vision input and a recurrent (memory) element, which al-
lows it to remember what it has previously experienced during a rollout,
so it can remember its choices (e.g. front or side approach). With demon-
strations, the number of samples is relatively low compared to GQ-CNNs.
It is hard to train a vision network with such limited samples. Their so-
lution is to use an auto-encoder (see Section 3.2.4). This means, however,
that only features that take up a significant portion of the pixels in the
input, are ’sensed’ by the network. Even though the sample count is rel-
atively low for vision Deep Learning, it is still too high for an actual ap-
plication: they used multi-task training on 5 tasks and gathered 15 hours
of demonstration data for 5 tasks (success rates on all tasks in excess of
75%). Their performance for only 3 hours training on a single task are at
best 44%. This means that 15 hours (or a comparable number) of training
data is necessary to learn a robust network, and you cannot successfully
train for a single task using only 3 hours of demonstrations. 15 hours of
human demonstrations is not financially viable for most applications.

We will be using the approach proposed by Levine et al. [2]: to use
an algorithm called Guided Policy Search to train a network to do all of
the subtasks of the robotic pipeline end-to-end: from input (vision, joint
states) to output (motorspeeds). An advantage of end-to-end training is
that it allows the algorithm to learn ’shortcuts’ or ’tricks’ to accomplish a
task. For example, imagine a human running to catch a ball. The classic
robotic pipeline way of solving this challenge is modeling the forces on
the ball to calculate the landing position, then using a planning algorithm
to adjust the running pace. Humans have learned a much easier heuristic:
watch the angle of the ball in the sky. If the ball looks like it is getting lower,
run faster; if it looks like the ball is higher above you, slow down. End-
to-end training allows robots to learn similar tactics. This same paper also
contains a more versatile solution for the image training problem, using
a soft-argmax function (see Section 4.1.2) to find the location of learned
features in the image. The Guided Policy Search algorithm requires that
the full state of the system is known at every timestep during training (for
example, the exact position of certain objects that need to be moved), but
can act based on limited observations at test time (such as images of the
scene).
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4 Introduction

Research question and overview

The main research questions are ”Can Deep Reinforcement Learning be used to
automate tasks in real-world robotic applications? To which extent? What are its
requirements? What are its strengths and weaknesses?”. To answer these ques-
tions, a literature study was conducted and experiments were performed
on a subset of the algorithms. The methods of the literature study are de-
scribed in Chapter 2. The methods used in the experiments are explained
in Chapter 4

The questions answered with the literature study in Chapter 3 are
Which kinds of Deep Reinforcement Learning algorithms are available? What is
their sample efficiency? Which algorithms have been used successfully in robotics
and which functionality do they provide?.

The experiments that were carried out answer the following questions:
Can a neural network learn a vision-based policy for moving a heavy 2-joint arm
to 1 of 2 target positions by applying torques in a 2D environment that generalizes
to different initial positions? How do choices in number of layers and pre-trained
visual processing in the neural network architecture affect the performance of the
policy network? Can a neural network learn a torque-based policy for 2D peg
insertion? Can a neural network learn a policy for moving a 7-joint arm to a
commanded target position in a 3D environment using joint velocity commands?

Descriptions of the experiments can be found in Chapter 5, along with
their results.

Chapter 6 contains a discussion of the results of the experiments and
the literature study. The main research question is answered in Chapter 7,
and an outlook is shared, indicating possible improvements on the current
setup. The obvious question ”Why does a physics master student inves-
tigate the applicability of Deep Reinforcement Learning?” is answered in
Chapter 8.

4
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Chapter 2
Literature Methods

The questions I wanted to answer are: Which kinds of Deep Reinforcement
Learning algorithms are available and what is their sample efficiency?
Which algorithms have been used successfully in robotics and which func-
tionality do they provide?

I started my search using the search terms in the left column of Table 2.
I searched the Leiden Univsersity Library Catalogue and Google (Scholar).
Another starting point of my search was the work of Levine’s group in
Berkeley, specifically [2]. Using the papers I found, I continued my search
with the terms in the second column of Table 2.

Initial Derivative
Deep Reinforcement Learning Grasping
Deep Robotic Learning Grasping Quality
Reinforcement Learning GQ-CNN
Guided Policy Search Q learning

Value learning
Reinforcement Learning
Demonstrations
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Chapter 3
Theory

Introduction

The goal of this theory section is twofold: on the one hand, it introduces
the reader to Deep Learning and Reinforcement Learning. It also answers
the research questions of the literature study.

3.1 Research questions

Which kinds of Deep Reinforcement Learning algorithms are available?
What is their sample efficiency? Which algorithms have been used suc-
cessfully in robotics and which functionality do they provide?

3.2 Introduction to Deep Learning

3.2.1 Short history

Neural networks were first invented in the 1950s in an effort to replicate
the low-level functionality of the brain by mimicking a network of neu-
rons. These were called multi-layer perceptrons, and are also called ’fully
connected layers’ when incorporated into a larger network architecture.

The first network that was applied to a real-world problem was MADA-
LINE, a three-layer perceptron. It was used to filter echoes from phone sig-
nals, and implemented in hardware with vacuum tubes and memistors[14].

However, in 1969, Marvin Minsky and Seymour Papert published Per-
ceptrons[15], a book in which they showed how limited perceptrons are,
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8 Theory

Figure 3.1: Multi-layer perceptron network and neuron function diagrams.[18]

by proving that a single-layer perceptron cannot learn an XOR-function.
Multiple layers with non-linear activation functions can learn that, but
this was not widely known, and there was no learning algorithm for such
a network.

Thus the ’XOR argument’ spread, and as a consequence, funding was
withdrawn and the research ceased.

The second deep learning revolution happened in the 80s. A new
learning rule for multi-layer perceptrons was popularized: backpropaga-
tion [16]. This allowed the error of the output neuron to be backpropa-
gated through multiple layers of a network to update all weights accord-
ingly. This made it possible to have a network learn the XOR-function. In
a regular MLP, every input scalar would need its own unique associated
weights: this is problematic when processing large images or other high-
dimensional data. In 1989, Lecun et al. [17] invented a convolutional neu-
ral network: a special kind of architecture with only local connections and
weight sharing which makes it very suitable for image processing. This is
the building block that would later allow neural networks to process arbi-
trarily large images, or other locally correlated input such as speech and
time series data. Throughout the 1990s and early 2000s, neural networks
lost popularity, but in the last decade, deep learning has gained popular-
ity due to the availability of big data and computing power in relatively
cheap Graphical Processing Units, and a host of new architectures, some
of which are explained in section 3.2.4.

3.2.2 Multi-layer perceptron

Each neuron receives n inputs from the previous layer, which are weighted
according to the strength of the connection to the neuron. The weighted
sum is passed through a non-linear function (the activation function) to

8
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3.2 Introduction to Deep Learning 9

produce an output, which is passed along to all m neurons in the next
layer [19]. The output of a single neuron is thus: y = f (∑i wixi + b)

The inputs, summation and output represent the dendrites, soma and
axon of biological neurons.

During training, the weights are updated according to the following
update rule:

wnew = w + η(t− y) · x (3.1)

with x the input vector, w the weights vector, y output, t target (desired
output).

Instead of using the error (t − y) directly, a loss function is usually
defined to map the output vector to some scalar error. For example, a re-
gression task would typically use a mean square error (MSE) loss function.

3.2.3 Convolutional Neural Networks (CNNs)

For this explanation, I will assume that the input to a convolutional layer is
an RGB image: this could of course also be a higher or lower dimensional
input. Convolutional layers work by sharing the same weights all over
the image, making them translation-invariant. The weights are stored in
filters, or local receptive fields[19]. A filter has a dimension of f ∗ f ∗ d,
where d is the depth of the input image (3 for an RGB image), and f is the
filter size, a number usually much smaller than the size of the input image.
Thus, the convolution is usually only applied in the spatial direction.

cm,n =
k,l=F̃,F̃

∑
k,l=−F̃,−F̃

wk,lxm+k,n+l (3.2)

The output at the m,n position is the product of the filter with the input
pixels in a small (filter size) region around the m,n position in the input.

Every filter in the layer convolves separately with the input to create
a different (grayscale) feature map. These feature maps together form the
input image to the next layer: the depth is now the number of filters in the
previous (input) layer.

Thus, an i ∗ i ∗ d input, convolved with an f ∗ f ∗ d filter produces an
output that is i− f + 1 in both height and width. Of course, one could also
choose to not calculate the output for every possible position, and instead
move the filter by s steps for computing the next output value. This is
called stride and will create a smaller output image. The output image
can also be kept the same size by padding around the edges of the input
with zeros. [20] is a guide containing all possible combinations of padding
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10 Theory

Figure 3.2: Convolutional networks convolve input with a filter, then output a
feature map which indicates where this feature is present[19]. The output at a
point is calculated as the product of the filter with the input pixels around the
same position.

10

Version of April 13, 2018– Created April 13, 2018 - 15:49



3.2 Introduction to Deep Learning 11

and strides, including the arithmetic for transposed convolution (a similar
inverse-like operation which creates a larger output image).

Max-pooling is often used in-between convolutional layers to shrink
the height and width of the feature maps and to reduce the number of
parameters. Max-pooling of size n is an operation with an output half the
height and width of the input. This is done by dividing the input into n ∗ n
blocks; then for each block, the maximum value is set as output. This is
done separately for each feature map, so depth is preserved. Thus, spatial
information is lost, while depth (feature information) is preserved: this is
desired for classifier networks, but not for robot control, where position
information is more important, and less feature information is necessary
than for classification. Section 4.1.2 contains information about convolu-
tional neural network architectures used for robot control.

3.2.4 Unsupervised Learning

In the previous examples, training a neural network was done by present-
ing it with training examples consisting of input and the corresponding
desired output. This is called supervised learning. However, most real data
is unlabeled: when there is no label, we cannot do supervised learning.

There are a few things that one can do with unsupervised learning in
combination with neural networks: learning a low-dimensional encoding
of high-dimensional data such as images [22], training a generator for syn-
thesizing real-looking data [23], using unlabeled data to aid in training a
classifier [24].

For dimensionality reduction, an autoencoder is typically used: a con-
volutional network can serve as an encoder. It transforms the input data
into a latent vector of reduced dimension. This latent vector is then fed
into the decoder: a deconvolutional network, essentially the inverse of a
convolutional network that tries to reconstruct the image. (the values of
the weights are not forced to be related to those of the encoder though).
The error is then the deviation from the input image. Due to the shape of
the network diagram, an autoencoder is sometimes called a diabolo net-
work [25].

The other popular deep unsupervised learning technique is called Gen-
erative Adversarial Networks (GANs) [23]. A GAN also typically consists
of a convolutional and a deconvolutional network. In this context, the de-
convolutional network is the generator: it generates high dimensional data
using a random latent vector as input. The convolutional network is the
discriminator: it tries to judge whether the presented input is from the real
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12 Theory

Figure 3.3: Autoencoders encode and decode an input, and aim to minimize the
reconstrution loss[21].

Figure 3.4: A Generative Adversarial Network is built up from a generator, which
generates images from noise, and a discriminator which tries to discriminate be-
tween real (training) data and generated images. [26] The generator is optimized
to fool the discriminator.

12
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3.2 Introduction to Deep Learning 13

Figure 3.5: Fake celebrity images generated by a GAN. This GAN was trained by
gradually adding layers and scaling up the resolution during training [27].

data or from the generator. In a GAN, the generator is rewarded for fooling
the discriminator: thus it learns to generate output that the discriminator
cannot distinguish from real.

This technique can be used to generate images and other high dimen-
sional data, based on an unlabeled dataset. Notable examples include
Image-to-Image translation [28] [29] and speech synthesis [30], a well as
the celebrity face generator [27] (see Figure 3.5).

Both auto-encoders and GANs can be used to aid training of a classifier
when using a big unlabeled and a small labeled dataset [24]. Learning an
encoder is a similar task to learning a classifier: there is commonality in
learning common patterns in the input data and encoding the differences
between samples: this aids both reconstruction and classification. A dis-
criminator is also similar to a classifier: the classes is separates are simply
’all the real classes’ and the ’fake class’.

3.2.5 Overfitting

Neural networks typically have millions, or tens of millions of parame-
ters. Thus, overfitting is a major problem, especially with larger networks
and/or smaller datasets. There are multiple techniques which can be used
to prevent overfitting.

Data augmentation is one way to prevent overfitting [31]: adding noise
to data, rotating and distorting images, subtly changing color. Another is
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14 Theory

using batch normalization between convolutional layers (see section 4.1.2).
Other ways to prevent overfitting address the dependency of the network
on a limited number of weights. Dropout [32] is one such method, where
a fraction (usually 0.5) of the connections in the network are removed dur-
ing training. Finally, a penalty can also be set on having some very strong
connections by adding a regularization term to the loss function of the
form ∑i w2

i where wi are the weights of the network.

3.3 Reinforcement Learning

Figure 3.6: The setup of Reinforcement Learning. An agent interacts with the
environment, sending actions and receiving observations and rewards. The ovals
are functions: the policy, which selectst an action based on an observation, the
quality assigns a score (expected future reward) to an action in a certain state,
and the value function specifies the expected future reward for the state. The
dynamics, which determine the likelihood that a state will follow from a previous
state and action, can be modeled by the agent to perform planning.

Reinforcement Learning is a class of problems which revolves around
an agent choosing actions to maximize the sum of received rewards from
the environment: in short, sequential decision-making. The basic model
in the theory of reinforcement learning is the Markov Decision Process
(MDP): the probability to transition from state st to s′t+1 is only dependent
on the current state st and the action at, and not on previous states. When

14
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3.3 Reinforcement Learning 15

the observation is not the full state, it is called a Partially Observed Markov
Decision Process (POMDP).

At every timestep t the agent receives an observation ot and reward
rt from the environment, and processes those to take an action at. The
objective to maximize is the sum over all rewards ∑t(rt). Sometimes the
word cost function is used instead of reward, they are the same thing, but
with opposite sign.

The key concept of reinforcement learning is sequential decision-making.
Although I will mainly talk about Deep Reinforcement Learning in this
section, reinforcement learning is a field that is much older than deep neu-
ral networks.

However, there are some functions in reinforcement learning that can
be approximated by neural networks. Instead of listing a number of al-
gorithms, I would like to focus on the relevant functions and explain how
they are used in recent papers in Deep Reinforcement Learning, namely:
the policy in section 3.3.1), the Q-function in section 3.3.2, the model in sec-
tion 3.3.3, and the value function in section 3.3.4. After that, I will look at
2 specific solutions to the sample-efficiency problem in robotic deep learn-
ing: learning from human demonstrations in section 3.4 and meta-learning
(from simulations) in section 3.5.

Note that reinforcement learning is a very old research area, and all of
these concepts have been around since the 1950s [33]. The only thing that
is new is the use of deep neural networks in this context.

3.3.1 Policy

πθ(at|ot) or πθ(at|st) (3.3)

The policy π is the distribution over actions at, given an observation ot (or
the full state st). The policy is defined by the parameters θ. This is the
function that represents what the agent is likely to do given an observa-
tion.

A variation on the above definition that is often used is to implement a
recurrent network as a policy: a network that receives not only the input
at each timestep, but also has a memory which can be written to and read
from. The disadvantage is that a recurrent neural network is effectively an
extremely deep network and usually requires more samples.

The simplest reinforcement learning algorithms are policy gradient meth-
ods. They sample from the (noisy) policy and then directly update the
policy parameters θ by gradient descent on the objective. The first such
method was REINFORCE [34].
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16 Theory

A new, very sample-efficient policy search method is called Guided
Policy Search [35] [2] [36] [37] [38]. This method uses optimization in ac-
tion space of very simple local linear-Gaussian controllers. These local
controllers consist of a linear feedback and feedforward term (plus Gaus-
sian noise) at every timestep and can thus only learn a fixed sequence
from point A to point B. However, for Guided Policy Search, the network
tries to learn a policy function that behaves similarly to these trajectories,
and then the local controllers adapt to and improve upon the network’s
behaviour. A fit of the dynamics can be used for faster optimization of
the local controllers. This is the most sample-efficient end-to-end learning
method available for deep reinforcement learning. For more information
on Guided Policy Search, see section 4.1.

3.3.2 Q-function

Q(st, at) (3.4)

The Q-function assigns a ’quality’ to state-action pairs and can be used
to decide which action is most likely to eventually lead to a high cumula-
tive reward.

The basic Q-learning update rule is:

Q(st, at) = (1− α)Qold(st, at) + α · (rt + γ ·maxaQ(st+1, a)) (3.5)

Here, the learning rate (step size) is α, st, at, rt are state, action and reward
respectively, at timestep t, and γ is the discount factor. This is a factor by
which future rewards are discounted: this is the same factor that is used
in finance when calculating future expected profits. Future rewards are
uncertain and thus are worth less than the same reward now.

This update rule, however, assumes that the next action will be the one
with the highest Q-value. However, a policy that would always do that
would never explore other actions. This is at the heart of the exploration-
exploitation problem: a balance needs to be struck between exploiting what
the agent knows will work and exploring new actions. Other words used
in this context are variance for an algorithm with a lot of exploration and
bias for an algorithm that does more exploitation. Q-learning is usually
done with an epsilon-greedy policy: take the optimal action with proba-
bility (1− ε), take a random action with probability ε.

If we change the update rule by taking into account the actual next
action that the agent has taken, instead of assuming it will always take the
optimal action, it will lead to:

Q(st, at) = (1− α)Qold(st, at) + α · (rt + γ ·Q(st+1, at+1)) (3.6)

16
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3.3 Reinforcement Learning 17

This update rule is called SARSA [39], because it takes those 5 parameters
as input: St, At, Rt, St+1, At+1.

A recent Deep Learning example where the Q-function was represented
by a network can be found in [40], where a neural network learns to play
Atari games. The input is the state of the pixels, and the outputs are the
Q-values for all the possible actions. This network achieved superhuman
performance on Breakout, Enduro and Pong. But not on Q*bert, Seaquest
and Space Invaders.

In Robotic Deep Learning, the classifying power of convolutional neu-
ral networks is used to classify potential grasps on depth image data [8]
[10] [11] [12]. This is called a grasping quality convolutional neural net-
work (GQ-CNN). In an application, this network is presented with several
hundred grasp candidates, it assigns a grasp quality to each of them, then
the robot executes the grasp with the highest quality. This is an example
of a Q-function for a discrete action space of grasp candidates.

3.3.3 Model (transition function and reward function)

dynamics/transition: p(st+1|st, at) or st+1 = f (st, at) (3.7)
reward: rt+1 = g(st, at) (3.8)

A model approximates the environment: based on the current state
and action, it returns (the probability distribution over) the next state, and
sometimes the reward function is also modeled.

The advantage of fitting a model is increased sample efficiency: less
samples are needed if you use the gathered information to infer a model.
The disadvantage is that the performance of the learned policy is limited
by the accuracy of the model. This is very important in Robotic Learning,
as taking samples with an actual robot is time-consuming, and learning
in simulation usually does not transfer easily to real environments [41].
When tens of thousands of samples can be taken using simulation, model-
free is the way to go, as it allows for more complex tasks to be learned [37].

3.3.4 Value function

The value function represents the expected cumulative reward from a given
state, using the policy and an estimate of the dynamics. Given the Q-
function, we can say that:

V(st) = maxa(Q(st, at) (3.9)
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18 Theory

The foundation of Value learning is the Value Iteration algorithm as
developed by Bellman[33]. This algorithm requires a transition function
p(st+1|st, at) and a reward function r(st, at, st+1 and is thus model-based.
The algorithm is described in pseudocode in Algorithm 1.

Algorithm 1 The Value Iteration algorithm

Require: S set of all states; A set of all actions; λ threshold
Require: P(s′|s, a) transition function and R(s, a, s′) reward function

1: Assign V0(S) arbitrarily
2: k← 0
3: repeat
4: k← k + 1
5: for all states s ∈ S do
6: Vk(s) = maxa ∑s′ P(s′|s, a)(R(s, a, s′) + γVk−1(s′))
7: end for
8: until |Vk(s)−Vk−1(s)| < λ∀s
9: return Vk

Tamar et al.[42] developed a neural network implementation of this
Value Iteration algorithm to learn to plan (see figure 3.8). To do this, they
implemented a neural network architecture that includes the reward and
transition function (see Section 3.3.3), as well as an iteration module that
refines the value function, and a policy. They applied this algorithm to a
grid-world, a crater landscape, web search and a simple continuous con-
trol obstacle avoidance task. Note however, that this method assumes fully
observable MDPs, and does not cover the case of partial observability.

Another common family of methods that uses a neural network to
learn a value function is (advantage) actor-critic based methods. This en-
tails separately learning a value network (the critic) and an advantage net-
work (the actor). Advantage is defined as A(s, a) = Q(s, a) − V(s). By
optimising for advantage instead of reward (like REINFORCE, see 3.3.1),
the actor can learn optimal actions in bad situations (low value states):
from a state with very low value, a reward that is not very bad is actually
a very good move. REINFORCE cannot learn this, since it has no infor-
mation about the (estimated) value of a state. Another advantage of this
method is that it allows the critic to learn from mini-batches: value itera-
tion can only learn after it has reached the final state. The critic can learn
from small mini-batches using its current estimate of the value function.
This introduces some bias into the system: less exploration, more sam-
ple efficiency. Combining this with asynchronous updates from multiple

18
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3.4 Learning from demonstrations 19

Figure 3.7: The Value Iteration Network. All functions are implemented as neural
networks: reward fR, dynamics fP, Q-function, Value function and policy. Top
left: the full network. Top right: The Value Iteration module. The iterative nature
of this algorithm is implemented using a recurrent neural network. Bottom: the
environments that this method was applied to: grid world and Mars. Note that
this method assumes full observability.

agents introduces enough variance to counter the inherent bias of actor-
critic methods [43]. Sample efficiency is thus better than most value and
Q-learning methods, but still orders of magnitude behind Guided Policy
Search.

The difference between the definitions of the Q and Value functions
may seem small and trivial. The difference between Q-learning and Value-
learning algorithms, however, is not small and trivial: Q-learning algo-
rithms work by trial and error and are model-free. Value learning algo-
rithms are generally model-based.

3.4 Learning from demonstrations

There is a number of ways in which demonstrations can help a neural
network policy learn a robotic task. The simplest is to train the neural
network through regression on the dataset (observation, action) that was
gathered through demonstrations. This is done in [13], using a recurrent
neural network. A recurrent neural network has a memory: it receives
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an additional input that is dependent on the state of the network in the
previous timestep. They used a one-hot vector to do multi-task training:
a vector of zeros with a 1 in a single dimension to indicate which task is
being performed. See section 1 for more about this paper.

A standard improvement on this method for reactive (non-memory)
policies is DAgger [44]. This involves doing a roll-out of the policy, then
annotating the new inputs that are received with appropriate outputs.
This is useful, since a trained reactive policy may not exactly follow the
demonstrated trajectory, and instead encounter inputs that are outside the
distribution of demonstrations.

Another way in which demonstrations can help is by providing a start-
ing point for Guided Policy Search. This is especially useful when using a
model-free optimizer [37]. For more information on Guided Policy Search,
see section 4.1.

The most sample-efficient way of doing demonstration learning is Guided
Cost Learning [45]. This Inverse Optimal Control method uses Guided
Policy Search, and optimizes a cost function that is represented by a neu-
ral network at each iteration. In this way, it adapts the cost function so that
it not only encodes the right information for a successful policy, but is also
easily learnable at each iteration of policy optimization.

3.5 Meta-learning and transfer learning

Gathering a lot of samples is easy in simulation. This is an important rea-
son why deep reinforcement learning is so successful in games, but not
so much in robotics: the real world is different from simulations in ways
that are important for robotic task execution. There is a number of ways
to improve the transfer of simulation learning to the real world.

The CAD2RL algorithm [46] uses a number of simulation environments
with different colours and rendering settings. A policy is trained for col-
lision avoidance of a drone in these very different looking environments.
The trained policy can then be deployed to a real drone, since the real
world looks like ’just another simulation’. The diversity in the synthetic
environments is apparently good enough so the policy can generalize to
the real world.

This idea of training in multiple environments to generalize to a new
one is also present in meta-learning or ’one-shot learning’. The goal in
these fields is to train a network that can very easily adapt to a new task (or
environment). The most successful algorithms are Model-Agnostic Meta-
Learning (MAML) [47] and its derivative Reptile [48]. The basic idea is that

20
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3.6 Conclusion 21

instead of searching for the parameters θ that deliver optimal average task
performance, we are looking for the parameters θ̃ that deliver optimal task
performance after 1 gradient step update for that specific task. As such,
it finds a point in parameter space from where it can quickly learn all of
the trained tasks with just 1 (or a few) steps. This allows it to generalize to
new tasks.

As such, MAML could be used to train a policy network on a lot of dif-
ferent simulation environments, which could then quickly learn a similar
policy for a real robot.

Figure 3.8: The MAML [47] algorithm optimizes for performance after 1 gradient
step. As such, it finds a point in parameter space from where it can quickly learn
all of the trained tasks with just 1 (or a few) steps. This allows it to generalize to
new tasks. Figure from [47].

3.6 Conclusion

Learning from demonstrations is possible, using an LSTM that learns the
entire distribution of human actions, however this requires 15 hours of hu-
man demonstrations and has not been shown to work with a sophisticated
vision architecture, only with an autoencoder (which can only learn to see
large objects)[13]. Model-free Deep Reinforcement Learning algorithms
perform best, but they need lots of samples and are thus only suitable for
use in simulated environments.

The easiest robotics application of Deep Learning is Grasping Qual-
ity Convolutional Neural Networks (GQ-CNNs), which rate grasp can-
didates based on RGB-D image data. Training can be performed using
synthetic data, thus sample-efficiency is not an issue. Implementation of
such a method on a grasping robot arm would be straight-forward.

The sample problem can be solved by using meta-learning, allowing
pre-training of a policy network that can then easily adapt to new tasks
or environments. However, this has only been shown to work with very
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similar and/or simple tasks. Another option is pre-training in simulation:
this works best with meta-learning, since the simulation is likely different
form reality: training a network to adapt easily to different simulations
could allow it to work well in the real world too.

The only sample-efficient end-to-end training method which has been
shown to work in a complex (7 joints) continuous action space environ-
ment with a sophisticated vision network is Guided Policy Search[35].
This method requires the full state (such as positions of relevant objects)
to be known at training time to train a reactive policy network that can
act based on limited information. The Inverse Optimal Control method
Guided Cost Learning is also based on Guided Policy Search, and other
expansions exist for tasks that require memory and for using camera im-
ages instead of position trackers (see sections 4.1.2 and ??) that make it an
attractive framework for Deep Robotic Learning.

22
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Chapter 4
Experimental Methods

This chapter consists of an explanation of the Guided Policy Search algo-
rithm and some of its extensions in Section 4.1, and an exposition of the
methods and materials in Section ??, including software and hardware.

4.1 Guided Policy Search

Guided Policy Search is a family of algorithms that use Linear Gaussian
state-feedback controllers (which are in this context referred to as trajecto-
ries) to guide a neural network in learning an optimal control policy.

Overview

There are different local controllers for different conditions: different con-
ditions are typically defined by different initial and/or target positions.
Thus each controller learns a sequence of actions and feedback terms to
reach a different target state.

A single neural network is then trained to imitate these local controllers:
for each timestep, the neural network input and the local controller’s out-
put have been stored, and the network is trained through regression to
return an output similar the actions that the controllers.

So far, this is just imitation learning: however, the network may not
be able to learn the same policy as the trajectories: the local controllers
are no function approximators and are not dependent on the input, they
only have a mapping from a timestep to a fixed command. Thus the net-
work is rolled out: samples are taken of the network controlling the robot
for each condition, and the trajectory optimization is then constrained to
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this roll-out by limiting the KL-divergence between the trajectories and
the network’s global policy.

If no network is used, the trajectories are constrained to their previous
roll-out.

The parameters of a trajectory include a feedback term and a forward
action term at each timestep.

The parameters of the trajectory can be optimized in a variety of ways,
with model-free updates, model-based updates, or combining both kinds
of updates. [38] This is discussed in Section 4.1.1

4.1.1 Trajectory Optimization

The standard trajectory optimizer is the iterative Linear Quadratic Regulator[49].
This method is based on a linear fit of the local dynamics of the system,
and a quadratic expansion of the cost function. Then, the cost is mini-
mized, constrained to a certain KL-divergence, since the first and second-
order approximations are only valid close to the trajectory. For details,
see [35]. Another optimizer is the path integral-based PI2 optimizer [37],
which is stochastic. The lack of a dynamics fit means this optimizer is
slower, but can learn more complex actions because it is not constrained
by any assumptions about the dynamics of the system being linear and
smooth. This can be useful for tasks like door opening.

A third option is to combine the model-based LQR update with the PI2
model-free update, which is done in the PILQR optimizer [38].

4.1.2 Neural network architecture

The neural network architecture used is a fairly straight-forward convolu-
tional neural network that receives the image as input. Its output is then
concatenated with robot state information (joint angles and speeds), and
passed through 2 fully connected layers with 40 hidden units. The output
layer consists of 7 nodes, the number of joints of the robot arm. All activa-
tions are ReLu (rectified linear unit f (x) = x if x > 0, else 0) except for the
output layer, which is linear.

Batch normalization

The convolutional layers also use batch normalization [50] after each ac-
tivation function. This is a layer that learns the distribution of the ac-
tivations and normalizes each batch, thus preventing the distribution to
change radically. This is especially important for the deeper layers: if the

24
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4.1 Guided Policy Search 25

input to those layers changes drastically due to weight updates of earlier
layers, their own weights will have to be adjusted to handle this different
input. It also reduces sensitivity to initialization.

Soft-argmax

Most convolutional neural networks transform an input image with large
spatial dimensions and low depth to a feature vector where all spatial in-
formation is lost and only feature information is left.

However, for control tasks, it is important to keep the spatial informa-
tion. It is still desirable to reduce the size of the output of the convolutional
layer, to reduce the number of weights in the fully connected layers. This
is why the feature maps of the last convolutional layer are passed through
a soft-argmax layer to extract the positions of the highest activation for
each feature. First, a spatial softmax is applied to the input acij, then the
expected position ( fcx, fcy) is calculated as the mean of this softmax distri-
bution:

scij = eacij /Σi′ j′e
aci′ j′

fcx = Σijscijxij (4.1)

fcy = Σijscijyij

Supervised and unsupervised pre-training

In order for the policy network to learn a controller, the vision layers must
be pre-trained to learn the features of relevant objects. There are 2 ways to
do this: supervised or unsupervised.

For supervised pre-training, a dataset of images with position labels is
used: position labels can be positions of parts of the robot and/or target
marker/object. Add 1 fully connected layer behind the soft-argmax for
rescaling.[2]

For unsupervised pre-training, no labels are used. Instead the network
is set up like an autoencoder, where the target output is a down-sized
grayscale version of the input image. The network learns to ’reconstruct’
this image by applying 1 fully connected layer to the output of the soft-
argmax layer. In order to make sure that the network learns the posi-
tions that are useful for predicting the dynamics, a smoothness penalty
is added to the loss function: gslow(ft), the L2-norm of the second time
derivative of the feature points, to disencourage learning features whose
position changes in a non-smooth (noisy) way.
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gslow(ft) = ||(ft+1 − ft)− (ft − ft−1)||2

L = ∑
t,k
||Idownsamp,k,t − hout( fk,t)||2 + gslow( fk,t) (4.2)

The unlabeled dataset can be generated simply by training a trajectory
on a task with constant target and initial position. The trained feature
extractor can then also be used to translate images into feature coordinates,
which can be used as state variables for cost functions and trajectories.[36]

In other words, it allows trajectory training on tasks that require visual
position information. An image can then be used to define a target state.

4.1.3 Memory States in Guided Policy Search

Guided Policy Search has mostly been used to train a reactive policy: a
function from observation to action, independent from previous timesteps.
Some tasks however, require memory. These are often trained using a re-
current network: a network with layers that receive inputs from the state
of the network at the previous timestep. However, this effectively makes
the network as deep as the number of timesteps and makes a lot more
difficult to train than a reactive policy.

In [51], an extension of Guided Policy Search is proposed and proven
to work using memory as part of the state. In this work, a number of
state (and observation) dimensions have been added, with numbers that
can be directly modified by the policy using additional action dimensions.
By separating the memory from the policy, the policy is effectively still
reactive. The only difference is that it now also learns to write to and read
from the memory.

4.2 Experimental methods and materials

The experiments were done by applying variations of the Guided Policy
Search [52] algorithm to different experiments in 2D (using Box2D [53])
and 3D (using Gazebo [54]) simulation environments.

Experiments were designed to test whether the system could learn
policies that need to estimate:

• (local) inverse dynamics for 2D

• (local) inverse kinematics for 3D

26
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• strategies for 2D peg insertion (non-linear dynamics)

Experiments consist of a number of conditions, which typically have
different initial and/or target positions. Each sample is 5 seconds, each
timestep 0.05 seconds for a total of 100 timesteps per sample.

For every experiment, the MDGPS algorithm[55] is used, the network
receives the joint angles, joint velocities and end effector position as in-
put. Comparisons are made between the performance of the network as
a function of additional input. In these comparisons, tgt stands for direct
target position input; img means image input from which the target posi-
tion can be inferred; blind networks have no target information, only pose
information.

The 2D environment was used to compare the performance of different
network architectures.

For all vision experiments, the convolutional layers of the network are
pre-trained on pose and target position estimation from images. All net-
work optimization uses the Adam [56] optimizer.

The software I used consists of the Guided Policy Search repository [52],
which is implemented in Python 2.7 [57] and uses the Tensorflow [58] li-
brary for deep learning. This was run on Ubuntu 16.04 LTS.

Among the modifications I made to the Guided Policy Search reposi-
tory are: image input for Box2D; efficient storage of image data in sample
objects; an upgrade from tensorflow 0.8 to tensorflow 1.3, which adds new
functionality and compatibility; extensive neural network architecture op-
tions through hyperparams.py; improvements to interfacing with Gazebo.

m

Hardware used:

CPU Intel(R) Core(TM) i7-6700K CPU
@ 4.00GHz

Motherboard ASUS MAXIMUS VIII RANGER
RAM 2x8GB 2133MHz DIMM
GPU Nvidia GeForce GTX 970 4GB

The specific setup, research question and conclusion per experiment can
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be found in Chapter 5.

28
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Chapter 5
Experiments

In this chapter, the performed experiments are described for the 2D and
3D simulation envrionments. Sections 4.1-4.4 are built up as follows: each
section starts with the respective research questions, then the hypothesis
is stated, followed by the specific methods used in the experiment. The
results are then presented, and the conclusion answers the research ques-
tion.

5.1 Box2D inverse dynamics

Research Questions

Can a neural network learn a vision-based policy for moving a heavy 2-
joint arm to 1 of 2 target positions by applying torques in a 2D environ-
ment that generalizes to different initial positions? How does a vision-
based network compare to a blind network, and a policy network that
receives the exact target position directly?

Hypothesis

By pre-training a vision network on estimating the position of the target in
images, the vision-based network will surpass the blind network, which
does not have any information to indicate which of the 2 target positions
it should move to. It is expected that the policy network with direct target
position input will perform better than the policy network that receives an
approximate target position from the vision network.
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Methods

We use the Box2D [53] environment with a heavy 2-joint arm and weak
motors. The target is marked by a blue star figure at a distance (x, y) of
(10, 5) or (10,−5) from the base of the arm. Both arm segments are length
10.

The vision network has 3 convolutional layers followed by a soft-argmax
layer and then 3 fully connected layers and is pre-trained on images of
random target and arm positions to estimate the target position. The net-
work’s square filters have sizes 7,5,5, the first conv layer has a stride of 2,
and the activations are all ReLu, excrept for the last layer which is linear.

The policy network that receives the joint state and end effector po-
sition, along with the optional target input, consists of 2 fully connected
hidden layers of 20 units with ReLu activations, the final layer has a linear
activation function.

Initial positions of the robot arm are shown in figure 5.1, figure 5.2 and
in table 5.1 as defined by the joint angles in radians: angle 1 is 0 if the first
segment of the arm points straight up, and the positive direction is anti-
clockwise. angle 2 is 0 if the second segment is aligned with the first, also
anti-clockwise.

The trajectories (Linear Gaussian Policies) for each training condition
are pre-trained with 5 iterations of LQR, taking 3 samples per condition
per iteration. Guided Policy Search training was done using the Mirror-
Descent Guided Policy Search algorithm for 4 iterations with 3 samples
per condition per iteration.

The cost function used consists of 3 terms: a small cost on the square
magnitude of the action vector to punish unnecessary and high forces,
an L1L2 norm on the end effector distance of the following form: L =

0.5l2d2 + l1
√

α + d2 whose weight increases quadratically with the time
since the start of the trial, and a binary cost term for the end effector dis-
tance at the last timestep.

During training, the policy and trajectory controllers are trained on
both target positions for every initial position. For testing, 2 of the initial
positions are changed and testing is again done for both target positions.
This means training is done on a total of 6 conditions, testing on 4.

30
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5.1 Box2D inverse dynamics 31

Figure 5.1: Train conditions for the 2-joint arm Box2D environment. The arm is
shown in the initial pose, the target position is marked by the blue star and the
condition number (index) is shown in white. The yellow lines intersect at (0,0),
the green base of the arm is at (0,15).

Condition number Training Test
for (high, low) target
positions

joint angles (a1, a2) in π radians

0, 3 -0.5, 0
1, 4 -0.6, 0.4 -0.6, 0
2, 5 -0.4, -0.4 -0.4, 0
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Figure 5.2: Test conditions for the 2-joint arm Box2D environment. The arm is
shown in the initial pose, the target position is marked by the blue star.

32
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5.1 Box2D inverse dynamics 33

Results

Because the value of the cost function for an optimal policy is ill-defined,
we decided to evaluate the performance of the policy in terms of the end
effector distance from the target at the final timestep.
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Figure 5.3: Performance of the policy on the trained conditions in terms of the
end effector distance from the target position, for all 3 inputs to the network.
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Figure 5.4: Performance of the policy on the test conditions in terms of the end
effector distance from the target position, for all 3 inputs to the network.
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Conclusion

As expected, the vision-based policy network’s performance exceeds that
of the blind network, which has learned a mapping from initial to target
position that, given our train and test conditions, can only be right for half
the conditions: there are 2 different target positions but the blind policy
receives the exact same input regardless of target position so it can, at best,
learn to move toward one target position.

The vision-based policy has a very low end effector deviation for all
train and test conditions, except for train condition number 6. In this con-
dition, the arm entered a part of joint space for which it was not trained,
which just so happened to lead to a positive feedback.

Surprisingly, the vision-based policy outperforms the policy that re-
ceives exact target information. This is probably due to the slight move-
ment of the estimated target position as the end effector covers part of the
target. Instead of degrading the performance of the policy, this ’extra in-
formation’ combined with the joint state apparently makes it easier for the
network to position the arm more accurately.

36
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Figure 5.5: The yellow lines intersect at the estimated position of the target, which
corresponds perfectly to the actual target position when the arm does not overlap
the target.
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Figure 5.6: The yellow lines intersect at the estimated position of the target. As
shown here, this estimation deviates slightly when the arm overlaps the target.
Remarkably, the policy network that received this input actually performed better
than the one that received the actual target position.

This remarkable result already shows the power of end-to-end learn-
ing: a conventional robotic pipeline would have chased the erroneous esti-
mated target position, perhaps causing an offset from or oscillation around
the actual target position, but a neural network can learn to use the in-
formation that this ’erroneous sensor’ provides to outperform the perfect
baseline. Strictly speaking, this is a form of overfitting: the policy network
will only avoid this kind of overfitting if it harms its performance in one
of the trained conditions. If it does not, it is a valid strategy.

38

Version of April 13, 2018– Created April 13, 2018 - 15:49



5.2 Network architecture comparison 39

5.2 Network architecture comparison

Research question

How do choices in number of layers and pre-trained visual processing in
the neural network architecture affect the performance of the policy net-
work?

Hypothesis

The convolutional layers have to be pre-trained, but it is best to imme-
diately feed the output of the convolutional layers (the soft-argmax fea-
tures) into the policy network, which can then learn during Guided Policy
Search (on the job) how to use that information. This is expected to work
better than using the fully connected layers from the pre-trained model to
feed only the estimated target position, since a lot of visual information is
then lost. Due to the complexity of the task, one hidden layer is probably
not enough: differences between distances must first be calculated, then a
control decision must be made, so there is likely some optimum between
2 and 4 hidden layers.

Methods

The experiment from section 5.1 is used, with the exception that the on-
axis alignment cost term is not used, and only 3 samples are taken per iter-
ation per condition. A comparison is made using the lowest cost achieved
on the training conditions only: we want to see which network can learn to
best use the visual information to follow the guiding trajectories and mim-
imize cost, and are not interested in the generalization for this experiment.
The compared architectures are:

tgt, n A target estimation network as in section 5.1: 2 fully connected hid-
den layers after the feature position layer are trained to predict a
target position (x,y) which is then passed into a policy network with
n hidden layers.

fp, n After training the target estimation network, only the convolutional
layers are used: the (x,y) positions of all 10 features of the last con-
volutional layer are then passed into a policy network with n hidden
layers.
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Results
network Cost
type, n
tgt, 2 463
fp, 1 286
fp, 2 261
fp, 3 682

Conclusion

No pre-trained processing of the visual features is better than using a fully
pre-trained target position estimator. The optimal number of hidden lay-
ers is 2, which aligns with the expectations.

5.3 Box2D peg insertion

Research questions

Can a neural network learn a torque-based policy for 2D peg insertion, a
task with non-linear, non-smooth dynamics, using Guided Policy Search
with an LQR trajectory optimizer? Can a neural network learn to use vi-
sual information to generalize to different target positions, and how does
this compare to a blind network and one that receives exact target infor-
mation?

Hypothesis

A neural network peg insertion policy can be learned using GPS with an
LQR trajectory optimizer. The blind network may perform well for a spe-
cific (range of) target positions, but will have lower performance when
averaging across multiple target positions when compared to the vision
and target network.

Methods

The simple Box2D environment is modified with an extra joint and a peg-
shaped segment consisting of 2 triangles. The widest part of the ’peg’
triangle is the tip, which has a width of 1 . The length of the peg from the
tip to the broadside of the ’wrist’ part of the end effector is 3 . In addition,

40
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2 static collidable blocks are placed just below the target with a small hole
(width 1.6 ). The target position corresponds to the peg position when it is
fully inserted.

The network architecture is slightly different for this one: the fully con-
nected layers of the vision network have been removed, such that the pol-
icy network receives the full output of the soft-argmax layer (x,y positions
of the highest activation of 5 filters in the final layer: 10 numbers in total),
as this was found to improve performance (see section 5.2).

In this experiment, the coordinates of 2 points on the end effector, at
the base and the tip, are used as end effector points data, so that the cost
takes into account both the position and orientation of the end effector. For
evaluation, only the distance of the tip from the goal was considered.

The binary cost term is now set to a distance of 2.5, so that it rewards
only poses where the peg is almost fully inserted. An additional cost
term is introduced when training the neural network using Guided Pol-
icy Search (but not during pre-training of the trajectories) using the same
L1L2 norm ( L = 0.5l2d2 + l1

√
α + d2) as the quadratically increasing cost,

but with a weight of zero on the y-coordinates of both end effector points:
thus it rewards alignment with the axis of the hole. 8 samples per iteration
per condition were used during Guided Policy Search, for 4 iterations. 15
samples per condition per iteration were used during LQR trajectory pre-
training, for 24 iterations.

For training conditions, the arm uses the same initial position (joint
angles: (−0.5π, 0)), and 4 different target positions, see figure 5.8. For
testing conditions, we tried 3 different target positions that are within the
trapezium formed by the 4 training conditions. To evaluate the policy,
20 samples were taken per condition, with Gaussian noise added to the
policy output.
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Figure 5.7: Target positions for train and test conditions for the 3-joint peg inser-
tion experiment. The base of the arm is at (0,15).

Figure 5.8: Train conditions for the 3-joint peg insertion experiment. The arm is
shown in the initial pose, the target position is marked by the blue star and the
condition number (index) is shown in white. The yellow lines intersect at (0,0),
the green base of the arm is at (0,15).
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Results
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Figure 5.9: Performance of the policy on the trained conditions in terms of the
end effector distance from the target position, for all 3 inputs to the network.
The horizontal lines are the average score across all conditions, the vertical lines
indicate standard deviation per condition. As expected, the performance of the
vision network is between the tgt and blind performance.
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Figure 5.10: Performance of the policy on the test conditions in terms of the end
effector distance from the target position, for all 3 inputs to the network. The lines
are the average score. The horizontal lines are the average score across all con-
ditions, the vertical lines indicate standard deviation per condition. The perfor-
mance of the blind policy is comparatively better than on the training set, because
the test target positions are all closer to the center of the target area than under
training conditions.

Discussion and conclusion

This experiment is significantly more difficult. There are 2 reasons for this.
The first is the non-linear, non-smooth nature of the peg insertion task.
Theoretically, there is no proof that LQR trajectory optimization should
work for this task[49], yet we still found it to work more reliably than the
model-free trajectory update. The sudden movements it learned caused
divergence during policy optimization. Secondly, there is an artificial dif-
ficulty due to the extreme inertia of the robot arm: no real robot arm would
need as much torque to stop a rotation as this one, which was originally
designed for the under-actuated arm balancing experiment.

Due to these difficulties, none of the learned policies can insert the peg
consistently at each of the target positions. Still, the blind policy has a
clearly worse score than the other policies. The difference is compara-
tively small during testing conditions due to the target positions being
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close there, but still the target and vision policies outperform the blind
network on all but one condition. Condition (test, 1) is placed almost per-
fectly in the center, so it is to be expected that the blind policy has learned
to move to that position.

5.4 3D 7-joint robot arm inverse kinematics

This may seem like a big step, but the algorithm is the very same: the
only thing that changes is the number of dimensions. We also switch
from torque commands to velocity commands: in the literature, the PR2
robot is used, which receives commands that are interpreted as the cur-
rent through the electromotors. Due to the low inertia of the arms and
the counter-weights, this is closer to joint velocity commands than to the
commands in the previous experiments.

Research Questions

Can a neural network learn a policy for moving a 7-joint arm to a com-
manded target position in a 3D environment using joint velocity com-
mands?

Hypothesis

A neural network policy for inverse kinematics of a 7-joint arm can be
trained using Guided Policy Search.

Figure 5.11: Screenshot of the KUKA robot model in the Gazebo environment.
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Figure 5.12: Target positions for train and test conditions for the 7-joint 3D exper-
iment. The z-coordinate for all target points is 0.4 meters.

Methods

We use the KUKA IIWA 7-joint robot arm both in the real world and in the
Gazebo 3D simulation environment. A joint velocity controller was imple-
mented in Python to translate the joint velocity commands from the robot
to joint position commands for the robot controller. The network now has
40 units per hidden layer, to account for the increased dimensionality of
the system.

The end effector distance cost terms are now slighty modified: the L1
term is replaced by a logarithm to reward precise placement of the end
effector: this presumably works better in 3D. The action term is still there,
now the distance cost terms are L = 0.5l2d2 + llog log(α + d2)

The target positions for train and test sets are shown in Figure 5.12.
The policy is evaluated on end effector distance at final timestep, using 20
rollouts per condition for both train and test set.

Results

46
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Figure 5.13: Performance of the policy on the trained conditions in terms of the
end effector distance from the target position, for both networks at different KL
step sizes. The horizontal lines are the average score across all conditions, the
vertical lines indicate standard deviation per condition. Note the much smaller
standard deviations of the tgt policy: this indicates stronger feedback terms, al-
lowing less exploration: the tgt policy is surer of where to go than the blind pol-
icy. As expected, performance on target position 4 (center) is comparable for the
2 networks. Oddly enough, the tgt policy has failed to learn a good policy for
condition 3.
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Figure 5.14: Performance of the policy on the test conditions in terms of the end
effector distance from the target position, for both networks. The horizontal lines
are the average score across all conditions, the vertical lines indicate standard
deviation per condition. As the test conditions are rather close to the center, there
is not much difference in performance between both networks. The tgt policy
only substantially outperforms the blind policy in condition 1.
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Discussion and conclusion

The experiment is not successful yet: the policy only performs slightly bet-
ter than a blind policy: it has learned how to move the arm to the approx-
imate target area, but is only barely using the specific information about
the target position that it has been given. This could be due to the dynam-
ics fit: a lot of time has been put into tuning the fitting hyperparameters
for the 2D environment. Also, the dynamics GMM fit was designed for
(simple, low inertia) torque control: it requires that there are at least twice
as many state as action dimensions. The state would be given by the joint
angles and velocities in torque control, but for velocity control the previ-
ous joint velocity is not really relevant. Since it is provided anyway, the
dynamics fit is fitting to irrelevant values.

As in previous experiments, we also see severe limitations in the gen-
eralization of the learned policy. There are a number of ways to improve
generalization in the policy network: add more conditions, add noise to
policy inputs during training and/or use a non-adaptive optimizer [59]
such as SGD (with (Nesterov) momentum).
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Chapter 6
Discussion

Theory

Most Deep Learning methods need a lot of data and a lot of training time.
However, this mainly due to the complexity of the function the network
needs to learn. In order to learn a more complex function, a deeper net-
work with more parameters is needed: this also increases the need for
training data and training time.

Reinforcement Learning methods with little bias (thus: a lot of explo-
ration) (such as Q-learning methods) need a lot of samples (data) because
the Q-function is often quite complicated: it is only fully specified once
every possible sequence of states and actions has been visited.

In robotics, we need a very sample-efficient method: combining the
above statements seems to indicate that Deep Learning and Reinforcement
Learning together are not a good fit: they both need a lot of data, which
we cannot provide.

This is why Deep Learning in Robotics initially focused on Grasp Qual-
ity Convolutional Neural Networks: using synthetic data means there is a
lot of data available, and the problem of grasp quality is not a reinforce-
ment learning problem, it’s just classification. [11] [12] [10]

Learning from demonstrations with a regular recurrent network is only
feasible with multi-task learning, and even then it requires on the order of
2 full workdays of demonstrations [13].

The solution to the problem of reinforcement learning in robotics, as
used in Guided Policy Search, is in the cost (or reward) function: using a
very rich reward with a non-zero gradient in large parts of the state-space,
shapes the cost landscape to guide the policy network to a locally optimal
solution. Additionally, such a cost function allows application of the rela-
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tively simple time-varying LQR optimizer: using a second-order approxi-
mation of the cost and a linear approximation of the dynamics, the action
can be optimized per timestep. Optimizing in action-space like this is a lot
more sample-efficient than optimizing the neural network parameters di-
rectly using the cost function. The resulting time-varying linear-gaussian
controllers can be used to guide the neural network to a locally optimal
solution.

But doesn’t the network need a lot of samples to learn to imitate these
controllers? The answer is that the policy network does not need to learn
a very complicated function: a non-linear controller based on positions
and joint angles. Unlike a classifier for classifying images into thousands
of categories, this is a kind of function that could almost be handcrafted.
As a result, the network is smaller and does not need as many samples.
Because this is a reactive policy, and it does not need to take into account
observations from previous timesteps, every single timestep of the sam-
pled linear-gaussian controller is a datapoint.

This makes Guided Policy Search a very sample-efficient way of Deep
Reinforcement Learning. [8] [2] [36] [37] [38] [55] [51] [45]

Experiments

Sections 5.1 and 5.3 show that with Guided Policy Search, the policy net-
work can learn to use incomplete information to its advantage.

We found that using pre-trained trajectories was necessary due to the

inertia of the arm, which complicated the dynamics: undesirable local op-
tima were easily reached where the arm would be spun around by a neu-
ral network which only provided positive feedback. This was probably in
part due to the dynamics fit: a Gaussian Mixture Model is fit to the global
dynamics (every timestep), then linear dynamics are found by linear re-
gression starting from the global prior. This is optimized for systems with
a high number of dimensions compared to the number of samples (7 joint
robot arm: at least 14 dimensions (joint angles and joint velocities)), and
the hyperparameters had to be tuned significantly to work for the 2-joint
arm. The best way to evade this behaviour is starting guided policy search
from trajectories that overshoot: this demonstrates the negative feedback
to the network, so it can learn a proper feedback policy. When shown sam-
ples that do not change movement direction, this may lead to the network
learning a bias.

When reading about the trajectory optimizers in Section 4.1.1, it would
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appear that the PILQR optimizer that combines model-based and model-
free updates is best suited to tasks like peg insertion. In our experiments
however, the model-free update would cause divergence when optimiz-
ing the policy, unless the covariance damping parameter was set so high
that the model-free update did not change the trajectory noticeably, and
performance was not improved over the standard LQR optimizer.

Overfitting shoud be mitigated by use of noise on inputs during policy
optimization, and/or non-adaptive optimizers[59].

Training time was not much: at 5 seconds per sample, the first exper-
iment, including pre-training, clocks in at 6x9x3 = 162 seconds (without
any demonstration). For peg insertion, many more samples were used, but
even the total sample time for that experiment is 4x(8x4 + 15x24) = 1568
seconds, less than half an hour. This is a factor 30 less robot time than the
demonstration experiment, and can be done without any human involve-
ment: the robot controls itself. So how about the network optimization?
Training times for state-of-the-art classifier or generator networks can be
weeks or months, but in our case, 16.000 optimization passes take only
a few minutes (2 minutes if there are no convolutional layers). Multiply
this by the number of iterations and we are looking at about an hour of
calculation time on a 3 year old GTX970 GPU. This could be sped up fur-
ther by doing the network optimization on a cloud service using multiple
high-end GPUs if necessary.
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Chapter 7
Conclusion

Can Deep Reinforcement Learning be used to automate tasks in real-world
robotic applications? To which extent? What are its requirements? What
are its strengths and weaknesses?

Deep Reinforcement Learning works best when exploration and learn-
ing can be done in simulation. For real-world applications that require a
high sample efficiency, Guided Policy Search allows training of a neural
network that generalizes and can act based on partial observations. It re-
quires that the full state of the system is known during training, unless
a clever encoding can be trained. This has been done on image data and
might be adapted to other data with spatial correlations.

The main strength of a network trained with Guided Policy Search is
that it can learn to use incomplete or erroneous data. The main weakness is
that it only works if a proper cost function has been designed. Cost func-
tion design can be replaced with human demonstrations using Guided
Cost Learning [45]. This is a more sample-efficient method ( 10 minutes
of demonstrations) than training a recurrent network directly on demon-
strations ( 15 hours of demonstrations) and involves using sample-based
Inverse Optimal Control to train a neural network to learn a non-linear
cost function that can be optimized effectively.

Specifying a cost function that is both easily learnable and rewards suc-
cessful policies is often difficult. Then, demonstrations can be provided
and a neural network can then be used to learn an effective cost func-
tion in the inner loop of Guided Policy Search: this is called Guided Cost
Learning [45].

Yes, real-world reinforcement learning tasks can be automated using
Guided Policy Search, but generalization remains difficult and limited,
and a lot of human effort is till required to implement such a method.
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Chapter 8
Connection with the physics
master

Deep Learning is not usually the subject of a physics master’s project. In
this section, I will answer two common questions: Why did I choose for
this subject? What is the value of this project for LION?

Motivation

Deep Learning has revolutionized pattern recognition and reconstruction
in numerous modalities: image [3] [4] [5], speech [60] [61], radar [62].

More importantly, a Deep Learning method has recently been invented
which mastered all board games [6].

This suggests that Deep Learning can do more than just pattern recog-
nition: artificial intelligence can now learn complex tasks.

If artificial intelligence can learn complicated tasks like playing Go,
then an application in the physics laboratory is not far off.

I wanted to know what artificial intelligence can and can’t learn, and
how to train a network for such tasks.

Value for physics department

This internship within the center of Deep Learning in TNO has taught me
a lot about Deep Learning methods and their strong and weak points. This
will allow me to recognize problems tha can benefit from a Deep Learning
approach and help inform colleagues about which Deep Learning solu-
tions are likely to work for a given problem.
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This kind of inter-disciplinary knowledge within the institute is needed
for a new and unknown area like Deep Learning outside the pattern recog-
nition domain.

Deep Learning has solved all board games, can it solve the problems
in our physics laboratory?

One example of a physicist who uses deep neural networks to solve a
real problem in the laboratory is Baireuther [63], who trained a recurrent
neural network to function as a decoder in Quantum Error Correction,
surpassing the performance of all previous decoders.
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