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Preface  

After finding out about the existence of the strange world of quantum mechanics at the age of 14 in a 
library in Rotterdam, like many others, I was confused yet intrigued at the same time. It was certainly one 
of the ideas of modern physics that made me decide to study physics at Leiden University. Before starting, 
I spent three days at the Lorentz Institute as part of my final school project to observe the building of a 
Michelson interferometer by former PhD student Jelmer Renema and observe quantum interference of 
single photons myself. During my studies, it came as no surprise that wave function collapse, the reduction 
of a wave function describing a system with many quantum states to a single eigenstate, is still poorly 
understood. It is, however, a crucial element in the unification of quantum physics and general relativity.  

This thesis describes the work done as part of a feasibility study of a proposed interferometric experiment, 
that is expected to falsify the existence of spontaneous wave function collapse. Next to quite challenging 
and diverse, ranging from quantum optics and thermodynamics to obtaining accounts for the national 
supercomputer facility, it has certainly been an instructive and interesting experience.   

During this project, I have been supported by a number of people to whom I want to express my sincere 
gratitude and appreciation. First and foremost, my supervisors prof. Tjerk Oosterkamp and Tom van der 
Reep, who have given me the opportunity to take part in this project and have shown great patience during 
this research. Secondly, Ruben Guijs, who joined project as a BSc. student and proved to be a nice and 
helpful companion in the quest of calculating interference visibilities for a larger value of the infamous 
kappa. Thirdly, the excellent support of the following people: the Oosterkamp Group members and FMD 
for the nice working atmosphere and technical support for the cryogenic calorimeter; Leonardo Lenocil 
for setting up an account on the Maris Cluster of prof. Carlo Beenakker and answering all my questions, 
while he and the other users of the cluster tolerated my intensive use of its resources; prof. Portegies Zwart 
for bringing me into contact with the Dutch national high-performance computing support center 
SURFsara; Marco Verdicchio and Nuno Ferreira, IT consultants at SURFsara for their much appreciated 
support in discussing the possibilities of doing the computer calculations with more resources available 
and for setting up a user account on the High Performance Computing Cloud and the Lisa system; Paul 
Nation, one of the developers of the QuTiP module, for answering my questions on the GitHub forum, 
and Oliver Ostojić, who answered quite a few of MatLAB-related questions. Last but not least, I would 
like to thank my friends (especially Wouter, Bart and Fleur) for their moral support and of course my 
parents, who supported me in many ways during my studies at Leiden University.  
   
  
I hope you will enjoy reading this thesis!  
  
Xavier Le Large  
  
Leiden, June 13, 2018  
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Abstract  

For a phenomenological explanation of the absence of macroscopic superpositions, mass-dependent non-
linear and stochastic terms are added to the Schrödinger equation in some models of wave function 
collapse. This thesis describes a feasibility study of a microwave interferometer experiment with the 
purpose of falsifying the existence of spontaneous wave function collapse. Traveling wave parametric 
amplifiers in the interferometer arms effectively increase the mass of these superpositions, resulting in an 
interference visibility and an expected vanishing visibility in case of wave function collapse. The main 
question arises if the visibilities for these cases can be distinguished from each other in case of a gain of  
20 dB and a (typical) insertion loss of 4 dB of the parametric amplifiers.                                                    
Calculations of the interference visibilities were extended and performed by a Python program with the 
QuTiP module by using a Master Equation solver and Monte Carlo simulations on different computer 
infrastructures with up to 1.5 TB of RAM available. The limitations of the solvers were the QuTiP internals 
and computational time respectively. Visibilities are calculated using the Master Equation solver for gains 
up to 13.4 dB when neglecting losses, and for gains up to 5.3 dB and insertion losses up to 6.5 dB when 
including the effect of dissipation using both solvers. The differences between both visibilities appear to 
converge to constant values in the limit of large gain. Further calculations can be carried out on the Lisa 
Cluster to explore this promising observation.                       
In addition, a cryogenic calorimeter for determining the insertion loss of an amplifier is characterized by 
its thermal time constants. Efforts were made to reduce the time constant attributed to a 3 dB attenuator, 
allowing for a precise determination of its power dissipation.                                                                         
On the basis of the results of this study, it can be concluded that significant steps in determining the 
feasibility of the proposed interferometer experiment are taken and future research is encouraged.   
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1   Introduction  

Quantum theory is a highly successful conceptual framework about the origin of microscopic nature, both 
in fundamental and applied physics proven to be highly effective. However, this framework starts failing 
to hold when the time evolution of the mechanics of larger systems is considered, as expected for a 100 
nm virus and shown for organic molecules with masses up to 6,910 AMU [1][2], and is even completely 
invalid for macroscopic systems, which have not been brought in a quantum superposition to date. The 
wave function, a mathematical description of a quantum state, is attributed to this superposition and 
hypothesized to collapse upon measurement [3]. The absence of macroscopic superpositions is a yet 
unexplained phenomenon and simultaneously an important unsolved problem concerning the 
interpretation of quantum mechanics.  

Over the years, various explanations have been proposed to bridge the gap between quantum mechanics 
and general relativity, some of them suggesting that the fact that absence of macroscopic superposition 
indicates that the Schrödinger equation in this form is incomplete and needs to be modified [4]. All 
collapse models are based on the hypothesis of a spontaneous collapse of the wave function, where the 
presence of a superposition at the macroscopic level is theoretically possibly yet highly unlikely to subsist. 
With the number of constituents of a system as amplification mechanism for this rate of wave function 
collapse, an interferometric experiment proposed by Rademaker et al. [5] and described in [6] could be 
able to falsify the concept of spontaneous collapse. In short, traveling wave parametric amplifiers in this 
balanced microwave interferometer can effectively enlarge the mass of a superposition when their gain is 
increased. It is argued that if the process of spontaneous collapse exists, the visibility of the interference 
pattern will be reduced once the collapse process sets in. This deviation of the visibility between these 
scenarios may provide a hint for a mechanism that determines when the spontaneous collapse process 
sets in.  

This thesis describes two preparatory experiments as part of a feasibility study of this proposed 
interferometric experiment. The first one concerns the numerical calculations of the magnitude of the 
interference visibility: can we distinguish the visibilities of the interference patterns of the two scenarios 
from each other in the case of a gain of 20 dB and an insertion loss of 4 dB of a traveling wave parametric 
amplifier? Before, this calculation has been performed for gains up to 11.6 dB when neglecting losses in 
the set-up and up to 1.8 dB in the presence of loss. Calculations for higher gain failed due to computer 
memory issues. Using different computers with more memory, we want to study calculate the interference 
visibilities for higher gains.                                                                   
The second experiment consists of measurements on the thermal time constants of components in a 
calorimeter, in particular that of a 3 dB microwave attenuator, which we consider as comparable to the 
amplifier regarding its loss. Determining these allows one to calculate the power resolution of the 
calorimeter, which make accurate measurements of the power dissipation of the parametric amplifier 
possible. It is linked by the first experiment by the expectation that the power dissipation of the parametric 
amplifier is a considerable part of the insertion loss in the set-up, which reduces the interference visibility. 
Combining both experiments, a step towards conducting the interferometric experiment is taken.  

The structure of this thesis is as follows. In each of the chapters, the calculations of the interference 
visibilities and the performance of the cryogenic calorimeter are treated subsequently. Chapter 2 starts 
with a review of wave function collapse models and the proposed interferometric experiment, continues 
with an explanation of the computer calculations and ends with a description of heat transfer within the 
calorimeter. Thereafter, the experimental set-up of the calorimeter is discussed in detail in chapter 3, 
while the methods used to obtain the computational results are provided in appendix B. Then, in chapter 
4, the obtained results of the calculations of the interference visibilities and the measurements of the 
thermal time constants are presented and discussed simultaneously. Finally, the conclusions of both 
experiments are stated in chapter 5, which ends with an outlook to further research on this topics.   
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2  Theory  

In this chapter, we will discuss and develop the theory that forms the starting point of our experiments. 
The first section (2.1) concerns the collapse of the wave function and the goal of the final experiment, 
motivating our experiments. The quantum optics involved here is intended to give the reader an 
introduction to the physics of the experiment as implemented in the computer program. It is important 
to study the attainable visibility for such a interferometric experiment. Therefore, section 2.2 describes 
the two solvers used in the computer program to calculate the interference visibilities. In the last section, 
2.3, the cryogenic loss-compensated calorimeter is discussed and the heat flow equations specific to our 
experimental set-up are presented.  

2.1  Collapse of the wave function   

2.1.1  Models of wave function collapse  

Collapse models modify the Schrödinger equation by adding the collapse of the wave function to the 
standard quantum evolution. The origin of this collapse is yet unknown, but hypothesized to be the 
coupling to a noise field or gravity [7][8]. In its most basic form, the fundamental dynamics for the wave 
function in these models is given by the following stochastic differential equation [4]:  

      ,         (2.1)  

where H is the quantum Hamiltonian of the system, λ is the (positive) collapse rate that sets the strength 
of the collapse mechanism,  is the reduced Plank's constant,  is the expectation value of 
the operator A, here assumed to be self-adjoint and Wt is a standard Wiener process (the mathematical 
explanation of the stochastic one-dimensional Brownian motion). The second and third term on the RHS 
tend to collapse the wave function towards one of the eigenstates of the operator  in a stochastic fashion. 
If these (nonlinear) collapse terms are dominant, the evolution of the wave function is stochastic and the 
wave function collapses very rapidly, eliminating the quantum behavior of a particle.  
As these terms have negligible effects on the dynamics of microscopic systems, due to the deterministic 
evolution of their wave functions, but, at the same time their effects are strongly present for macroscopic 
objects, there must be an amplification mechanism. It has been proposed that the collapse strength of the 
center of mass is proportional to the number of constituents of the system [3]:   

                                                       (2.2)  

With this amplification mechanism, which is an important feature  of collapse models, this equation 
allows one to describe quantum, mesoscopic and classical phenomena at the same time with a single 
choice of .  

The most direct way of testing collapse models, which forbid the existence of macroscopic superpositions, 
is doing interferometric experiments [5.]. Over the past years, larger masses have been brought into 
quantum superpositions for longer periods of time during which coherence is maintained in the 
experiment, after which the presence of quantum interference is detected [2][9]. In the next section, the 
interferometric experiment as proposed by Van der Reep and Oosterkamp [6] will be described, 
motivating the experiments done as part of a feasibility study during this master research project.  
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2.1.2  Preview of the final experiment  

Here we discuss both the approach of the experiment that will be carried out in the future to falsify the 
spontaneous collapse of the wave function and the corresponding theory. Both parts of the discussion 
fully reflect the content of the research article about this experiment [6].  

The set-up of this experiment consists of a microwave interferometer with a travelling wave parametric 
amplifier (TWPA) in each of its arms (fig. 2.1). First, single photons at GHz frequency are brought in a 
superposition by injecting them into a 90°-hybrid (the microwave analogue of a beam splitter). This 
entangles the amplifiers, which effectively enlarge the mass of the superposition (explained later on). After 
passing through a second 90°-hybrid, two detectors are used to measure the visibility of the interference 
pattern by measuring the number of signal and idler photons in each of the two output arms.  

  
Figure 2.1. Schematic overview of the set-up of the final experiment as described in [6]  A single photon source is used to 
inject photons into a 90°-hybrid, where they are brought in a superposition of a single-photon input and a no-photon 
input. With the pump serving as energy source for the amplifications (characterized by κ and κ’, corresponding with a 
gain, and scaling with the pump power and photon frequency), the TWPAs effectively enlarge the mass of the 
superposition. The phase-shift Δθ is assumed to account for all phase differences within the set-up. After recombining 
the photon currents in the second hybrid, the output radiation from arms 6 and 7 is measured in two detectors [6].  

In this thesis, we do not provide an explanation for the effectively increased mass of the superposition by 
increasing the gain of the amplifiers in each of the arms of the interferometer. Using TWPAs, the entire 
set-up can microscopically be described by a single Hamiltonian, even when the gain of the amplifiers is 
increased. As we will not treat this balanced amplifier in detail, a short overview of its characteristics is 
given. It appears to be an appropriate tool in this microwave experiment due to its high gain and 
nearquantum limited noise, consisting of Josephson junctions [10]. In a four-wave mixing process, via 
frequency mixing such that , a signal and idler photon pair is created by annihilating two 
pump photons. The amplitude of the pump power is taken constant, the so-called undepleted pump 
approximation. A gain of 20 dB has been achieved for these devices [11].   

We give an overview of the partial Hamiltonians in the set-up, i.e. for the 90°-hybrids, the phase shifters 
and the TWPAs. These Hamiltonians will be combined in the computer program (section 2.2) used to 
numerically evaluate the evolution of the wave function. This in turn makes it possible to compute the 
expectation values of the number of signal and idler photons in the output arms of the interferometer, 
after which the visibility of the resulting interference pattern can be calculated as well. We present the 
numerical implementations so that losses can be added straightforwardly to this model in section 2.2  
[6].  

As input state we take   

       ,               (2.3)  

where the labels ‘low’ and ‘up’ refer to the lower arm and the upper arm of the interferometer respectively, 
and involve this by the time evolution operator,  

      ,                    (2.4)  
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in the interaction picture. By comparing this equation with the transformation operator for an ordinary 
90°-hybrid,   

      ,                               (2.5)  

its Hamiltonian within this framework can effectively be described as   

      ,                      (2.6)  

with Δth being the time that the state spends in the hybrid.   

By the same reasoning, the Hamiltonian for the phase shifter is given by  

      ,                          (2.7)  

with Δθ being the applied phase shift.  

For the TWPAs, we rewrite their Hamiltonian in the interaction picture,  

                     (2.8)  

describing the four-wave mixing process of creating a signal and idler photon pair by annihilating two 
pump photons (and vice versa) with a coupling constant χ, to  

                      (2.9)  

where the amplitude of the (coherent) pump is taken as a constant under the undepleted pump 
approximation and absorbed in a new coupling constant χ’. For the numerical calculations (section 2.2), 
this has again been rewritten using  to parameterize the total gain of the amplifiers.  

From the computed distribution of Fock states in the output arms 6 and 7 of the interferometer, the 
visibility of the interference pattern can be calculated in two manners. A large integration time of the 
photon detector results in measuring the average photon number, which gives an average visibility that 
can be defined as  

       .                          (2.10) 
Contrarily, single shot experiments done with an measurement apparatus with a short integration time 
result in a statistical visibility that can be defined as   

      .                   (2.11)  

The average photon number expected at the output of each of the TWPAs for both the signal and idler 
photons is  

      .      (2.12)  

Filling in  and  as number of input photons in eq. 2.12 and the resulting value of 
 in eq. 2.10, it can be seen that the amplification  can be translated into an experimentally 

comprehensible TWPA signal gain G can be calculated by  

      ,      (2.13)  
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where we have taken  and  as input states. The factor 2 in front of the hyperbolic 
sine comes from dividing by the average signal photon number in the amplifiers, which is ½.   

Computer calculations on the signal and idler visibilities (as defined in eqs. (2.10) and (2.11)) have been 
carried out by Van der Reep to plot their magnitudes as a function of amplification when neglecting losses 
in the interferometer components. It is shown that the average idler visibility indeed has a constant value 
of 1/3, while the average signal visibility decreases from 1 to 0.4 for , tending to 1/3 as well for large 
amplification (fig. 2.2.).   

Figure 2.2.  Expected visibilities of the 
interference pattern for signal (red) and 
idler (blue) photons as a function of 
amplification  where losses in the 
components of fig. 2.1 are neglected.  The 
average idler visibility has a constant value 
of 1/3, while the signal visibility decreases 
from 1 to 1/3 for large amplification. Picture 
taken from [6].  

  

  

  

For the statistical values of the visibilities the average value is plotted and the shaded areas gives the single 
shot 1σ-confidence interval. The computer calculations will be treated in more detail in section 2.2. An 
important notion is the deviation of the calculated statistical idler visibility, which becomes larger than 
1/3 (the magnitude of the average idler visibility) when the calculations are done for . This is a 
strong indication that the program needs to run with different parameters and requires more computer 
resources. Figure 2.2 therefore marks the starting point of this part of the project.  

    
Having introduced the visibility of the interference pattern that is expected for the proposed experiment, 
we now argue the importance of its magnitude. In order to be able to falsify the spontaneous continuous 
collapse model in the previous section, it is essential to make a distinction between the calculated 
visibilities as described above and those in the case of a collapse event. If the wave function collapses, the 
interference visibility is expected to decrease to zero.                                                           
The argument for this negative deviation in (signal) visibility is depicted in figure 2.3. For each state 
collapse, the exact opposite collapse occurs with the same probability according to the Wigner 
quasiprobability distribution (fig. 2.3, a). When a superposition of Fock states (with maximum phase 
uncertainty) collapses, we assume that it does so into classical coherent states with a well-defined phase 
(fig. 2.3, b). The output photon number in arms 6 and 7 is examined for two different scenarios as 
described below to argue what happens with the statistical and average (signal) visibilities in the case of 
wave function collapse (fig. 2.3, c).  

In the case that these are the same (fig. 2.3, case i)) , the 90° phase shift of the hybrid causes the average 
photon number in arms 6 and 7 to be equal, resulting in  (  as well). When the wave 
function collapses into different coherent states (fig. 2.3, case ii), the individual collapses produce a 
visibility . However, for each collapse, the exact opposite collapse occurs with the same 
probability according to the Wigner quasi-probability distribution. Hence, if the experiment is repeated, 
statistically  and  will average out to 0. This reasoning is expected to hold for the case where 
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the effect of dissipation on the visibility is included as well, so that the question arises whether the 
magnitude of this reduced visibility is still large enough to observe the interference pattern. The same 
reasoning is expected to hold for the idler visibilities. This argument makes it possible to distinguish this 
scenario from the one where the visibility is positive and motivates further calculations of the signal and 
idler visibilities as a function of losses and increasing TWPA gain. These numerical calculations carried 
out by the Python program are described in the next section.   

 
Figure  2.3. Expected scenarios 
regarding state collapse. The second 
part of the set-up depicted in fig. 2.1 
is shown. (a) The bright centers 
within the two Wigner quasi-
probability distributions (circles) 
indicate the undetermined phase of 
the states. In case of a collapse 
event, the states can collapse into 
the same state (b, case (i), triangles 
in both arms). A phase swift of 90° in 
one hybrid and transmission (0°) in 
the other one then results in Vstat =  0 
(c, upper and lower triangles with 
different colors) according to eq. 
(2.11). 

    ……………………………….........                                     
If the wave function collapses into 
different states or if the phase shifts 
in both hybrids is the same (b, case 
(ii), stars and squares), there is a 
positive statistical visibility. 

Averaging over multiple events twins (stars) then still gives Vavg = 0 (c, upper and lower stars and squares with different 
colors). Thus in case of a collapse event, as soon as collapse event start to play a roll, it will deviate from the expectation 
in fig. 2.3 and go down. The same reasoning is expected to hold for the idler visibilities.  

    
2.2   Overview of the computer program    

We use the two different solvers of the QuTiP module [12][13], a quantum computation toolbox in Python, 
to numerically evaluate the time evolution of the wave function (eq. (2.4)) with a Hamiltonian in the 
interaction picture that consists of the Hamiltonians of equations (2.6), (2.7) and (2.9). These are the 
Master Equation (ME) solver and the Monte Carlo solver (MC), of which the utilization in our calculations 
is described in subsections 2.2.1 and 2.2.2 respectively. In these subsections, we give a short description of 
how the aforementioned visibilities of the interference pattern are calculated using these solvers and treat 
both the case where insertion losses are neglected and the case where the effect of the power dissipation 
in the TWPA on the interference pattern is included. Before doing this, we give a short overview of the 
two parameters that are used by both solvers.  

The dimensions of the signal and idler Hilbert space, the space of wave functions, are denoted as Ns and 
Ni respectively and referred to as N = Ns = Ni. Regarding the limitations of the program (which are mainly 
the available resources), only a truncated Hilbert space can be created. The truncation error that results 
from these finite dimensions is calculated in eq. (2.18) in section 2.2.1.     
The amplification parameter , corresponding to the gain of a TWPA (eq. (2.13)), can be set as loop variable 
to investigate the magnitude of the interference visibility for an increasing TWPA gain. A larger photon 
number n in each of the arms with an amplifier requires a higher dimension of the Hilbert space N. 
Therefore,  is limited by the aforementioned truncation error. Its maximum values for which the 
visibilities can be calculated with a maximum truncation error of 0.10% are plotted as a function of N in 
fig. C1 (Appendix C).  
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2.2.1  Master equation solver  

For a given Hamiltonian, the function qutip.mesolve calculates the unitary (non-dissipative) timeevolution 
of a state vector . Using an ODE solver, it also evaluates the expectation values for the expect and 
collapse operator using the partial Hamiltonians in eqs. (2.6) – (2.9), at the times listed in the variable 
t_list. By evaluating the points in time in this list, the correct coefficients as calculated by the functions 
for the partial Hamiltonians are passed on to the total Hamiltonian. After the output states have been 
calculated, the conditional photon distribution is computed. This in turn enables the program to calculate 
the expectation value of the signal and idler photons in detectors A and B. Finally, both the signal and 
idler average and statistical visibility of the interference pattern are calculated using these photon 
numbers and eq. (2.10) and eq. (2.11).   

As doing ODE evolution requires multiple copies of the state vectors (or density matrices in the next case) 
in dense form, the required amount of RAM is significant and an important reason to run the calculations 
on a computational infrastructures with enough resources available. Because of the two arms of the 
interferometer with both signal and idler photons, the RAM usage is expected to scale with N4. For density 
matrices, the same argument holds, except for the fact that these have dimensions N x N instead of N. 
The RAM usage for calculations with these objects then is expected to scale with (N2)4 = N8.  

In the case where the effect of dissipation on the visibility is included, three different main elements 
appear in the calculations. First of all, density matrices instead of ket vectors are used. Secondly, jump 
operators1 are initialized to account for the possibility of wave function collapse after interaction with a 
measurement apparatus. Thirdly, the time evolution of the density matrix ρ is expressed by the Lindblad 
formalism [14]:  

      ,                                       (2.14) 

where  are the jump operators. Specifically, photons leaving the system and entering a thermal 
bath and vice versa are described by   

                                             (2.15)  

and  

                                  (2.16)  

respectively, where  is the dissipation rate and 
 

   
 
is the thermal occupation number of photons in the bath. In all calculations, we set  GHz 
and  mK, resulting in  

.   

The insertion loss (IL) of the components is determined by the product , where we take  for the 
whole set-up and where  represents the time that a photon state spends in a particular component 
shown in fig. 2.1, with corresponding Hamiltonians described in the time domain by eqs. (2.6) – (2.9). The 
insertion loss for the hybrids is known, which is why we keep this parameter fixed ( ). For the 
TWPA, however, the insertion loss is unknown. To examine its effect on the signal and idler visibility, we 
vary , the time that a photon state spends in the TWPA.  

                                                           
1 To avoid confusion with state collapse, the transition from a photon to the heat bath and vice versa is referred to as a jump, and therefore 
described by a jump operator in this context.  
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      .         (2.17)  

As such, looping over  in the computer program while keeping  for the other components 
allows for a convenient way to vary the total dissipation in the TWPAs, calculate its effect on the 
magnitude of the interference visibilities and investigate if it has a limiting value for which the 
interference pattern cannot be observed. Recently fabricated TWPAs are reported to have an insertion 
loss of 4 dB at 10 GHz [15].  

We define the truncation error (TE) as the relative error of the idler visibility that is calculated by using 
the ME solver (for example Vi,ME = 0.3330) compared to the exact values of the idler visibility of 1/3:  

      .                               (2.18)  

This definition allows for using a criterion based on which the calculated visibilities can be rejected if the 
truncation error is larger than 0.10%, an error margin which is chosen for practical reasons. If this is the 
case, the idler visibility has a value below 0.3330 and the signal visibility is rejected as well.  

    
2.2.2  Monte Carlo solver  

To avoid the memory problem of the ME solver, we have investigated and used the Monte Carlo (MC) 
solver as an alternative [12][13]. The MC solver considers individual paths rather than the full time 
evolution. Continuously monitoring the environment of the quantum system, dissipation is always 
included in the calculations (originating from quantum jumps that occur randomly during the time 
evolution of the system) and information about the state of the system is increased [16][17]. The initial 
state must be a ket vector instead of a density matrix, but apart from this nearly all input arguments are 
taken the same as the ME solver. Regarding the steep increase of the RAM usage with N (which is expected 
to follow an N8 dependence due to the density matrices, as discussed in the previous section), this is 
definitely an advantage of using the MC solver for large quantum systems as ours. In this case the RAM 
usage is expected to scale with N4, as only the state vector is required to be kept in the computer's memory.  

The only new parameter is , the number of stochastic trajectories to be simulated, on which the 
accuracy of the result depends. Simulating the individual realizations of the system dynamics instead of 
describing the ensemble average over many identical realizations as done by the density matrix formulism 
introduces the so-called Monte Carlo error, defined as the standard deviation of the Monte Carlo 
estimator [18]:  

      ,                                         (2.19)  

where   denotes the standard deviation of some target quantity .   

Denoting  as a sample of   replicates, then by the strong law of large numbers,  

. As the total amount of simulated trajectories increases linearly  
with the amount of runs of the MC solver for a fixed number of paths,  is also expected to decreases as

. In line 6 in table B2 (Appendix B), the batch command that enables a user of the Maris cluster to 
run an example program multiple times (in this case 200) with the exact same parameters by submitting 
a job array is shown.  
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2.3  Heat-loss compensated calorimeter  

In the final part of this chapter, we describe the heat transfer in the heat-loss compensated calorimeter 
regarding the processes which are expected to be present in our experiments. The insertion loss 
mentioned in the previous section, parameterized by  in eq. (2.17) and reducing the interference 
visibility, can be measured using this cryogenic calorimeter. A high power resolution of the calorimeter 
therefore enables us to make accurate predictions of the expected visibilities in the proposed 
interferometric experiment. After some of the concepts of heat transfer and calorimetry are introduced in 
the first subsection, a mathematical description of our thermal model is presented (2.3.2) and a preview 
of the calculation of the measured quantities is given (2.3.3).  

2.3.1  Heat transfer and calorimetry   

Given the three types of heat transfer (thermal conduction, thermal radiation and convection), we focus 
on the first one. The negligible role of convection is mentioned in the following discussion of the thermal 
properties relevant to our experiment, while in section 2.3.2. it is argued why we can neglect the 
contribution of thermal radiation.  

The heat capacity C is a measure of how much heat Q an object can store,  

      ,                                                                   (2.20)  

where we define Cp (J/K) to be the lumped thermal capacitance of a solid for which the pressure p is kept 
constant. In this model the assumption is made that the temperature of the solid is spatially uniform at 
any moment during the transfer of heat, resulting in rapid conduction [19]. It is the most convenient 
method that can be used to solve transient heating and cooling problems. As a suitable criterion for 
substantiating the assumption of lumped system analysis to be applicable, we consider the Biot number 
(Bi). This is the ratio between the resistance to thermal conduction and that of convective heat transfer  
(or in other words, the ratio of the heat transfer resistances inside of and at the surface of a body),   

      ,                                                      (2.21)  

where L is the characteristic length of the object (m), k the thermal conductivity of the material (W/K) 
through which the heat is transferred, A is the area (m2) of the interface between the body and the helium 
gas the inner vacuum chamber of the cryostat (IVC), and h is the (convective) heat transfer coefficient 
q/ΔT (W/(m2K)) (not to be confused with Planck’s constant). The general view is that the error associated 
with the lumped capacitance method is small if . Since  is typically kept at a value of  
mbar, we can regard the role of convective heat transfer as negligible, allowing for the application of 
lumped system analysis.    

Anticipating on the experiment in which the thermal time constants of the components of the calorimeter 
will be determined by measuring their temperature as a function of time, we give a description of Newton's 
law of cooling, which is expected to be accurate in this case. This law states that the rate of heat loss per 
unit area for an object with a temperature T is proportional to the temperature difference between the 
object and its surroundings,  

      ,                                                     (2.22)  

where this time A is the heat transfer surface area (m2), Q is the thermal energy (J), and Ta is the ambient 
temperature [20]. Since the heat transfer coefficient is temperature-dependent, the regime of validity of 
this model is given by , i.e. is it not valid for large difference between a body and its 
surroundings. This is not a strict and limiting criterion in our experiments, as is shown in chapter 3.   
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Given the definition of the heat capacity, C , we can rewrite eq. 2.22 in terms of the timedependent 
temperature,  

      ,                             (2.23)  

where  is a positive constant in units of inverse time.   

Its solution2,   

      ,                          (2.24)  

describes the exponential decay of the temperature difference to the ambient temperature for an object 

with initial temperature , with thermal time constant . In literature [19][21], the value of the 
latter quantity is given as , with Rth being the thermal resistance (K/W):  

      .                                            (2.25)  

Throughout the calculations for the quantities describing the heat transfer, we assume all values of the 
heat capacity and thermal resistance to be constant over the temperature range of our measurements. The 
validity of these approximations is considered in section 3.2. In the next section (2.3.2), this description of 
heat transfer will be used to calculate the thermal time constants for each of the components in our set-
up in a different manner to check for the applicability of the solutions of Newton's law of cooling.  

The importance of these time constants lies in the 
working principle of the calorimeter (fig. 2.4). The 
dissipated power of a sample can be calculated by 
keeping constant set temperatures and measuring 
the difference in the feedback power in the case of an 
applied power to the sample and in the case of no 
applied power.  [22][23]. In order to make the two 
feedback systems effectively independent, the heat 
flow from the reference heat bath to the 4He bath 
needs to be smaller than that from the target heat 
bath to the reference heat bath (i.e. ), which 
can be realized by having  for the heat links 
between the components. This results in thermal 
time constants .    

Figure 2.4. Schematics of a cryogenic dual compensated calorimeter, representing the (similar) set-up of an experiment 
conducted by Kajastie et al. The target and the reference bath are located inside a vacuum can. Constant set 
temperatures and feedback power allow for determining the dissipated power of a sample. Figure taken from [22].  

  
  

  

                                                           
2 For , Newton's law becomes a law of heating, describing heat transfer in the reverse direction, with the same (higher) equilibrium 
temperature .  
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A schematic overview is given in fig. 2.5, showing how the measurable variables and the components in 
the calorimeter are modeled for this experimental set-up (which is shown in fig. 3.1 in chapter 3). It is 
drawn in a way similar to fig. x in the next section (2.3.2) to allow the reader to verify the answers that 
follow from the calculations.   

Figure 2.5. Schematic overview of the calorimeter. The heat 
capacities and thermal resistances of the components of the 
calorimeter are denoted as C and R respectively. The heat 
flow, measured temperatures and applied powers are 

denoted as , T and P respectively. The applied power to the 

heat bath, Pbath, is denoted by Pref in chapter 3, since the 

heater is attached to the reference plate, which is part of the 
heat bath. From top to bottom: Catt (3 dB attenuator), Ras 
(connection to sample plate), Csam (sample plate with sample 

heater and thermometer), Rsb (stainless steel piles connected 

to the heat bath), Cbath (heat bath consisting of a Cu holder 
and a reference plate with reference heater and 
thermometer), Rb10 (connection to the 10 mK plate) and C10 
(the 10 mK plate).  

2.3.2  From a thermal model to differential equations  

In this section, we transform the thermal model of our system (fig. 2.5) into an analogous electrical one, 
derive the corresponding differential equations for the heat flow and present the expressions for the 
quantities of interest.   

We start with the notion that although there are physical differences between heat flow and current flow 
[24], the differential equations describing the flow are analogous. Writing the heat flow equation in a form 
similar to Ohm's law,  

      ,                                          (2.26)  

it can be seen that we can draw temperatures as voltage sources, depict the heat flow as a current flow 
and replace thermal resistances by electrical resistances [25][26]. Equivalently, heat capacitances can be 
drawn as electrical capacitances.  

 
Figure 2.6. Electrical analogical scheme of heat transfer within the calorimeter that is attached to the 10 mK plate of the cryo-                             
stat. The electrical components equivalent to the temperature, thermal resistance and heat capacitance within the experi-                             
mental set-up are drawn. Using the law of conservation of energy around a closed circuit path, differential equations descry-                              
bing the heat flow within this system can be written down.   
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Using the law of conservation of energy around a close circuit path, an incoming heat flux can be stored 
and result in an outgoing heat flow at the same time. For the described components in our calorimeter, 
this results in the following coupled (thermal) differential equations of the system:  

Attenuator (att):                (2.27)  

Sample plate (sam):          (2.28)  

Heat bath (bath):         (2.29)  

10 mK plate (10):                         (2.30)  

where T represents the temperature (K) of a component, P represents the dissipated power (W) at a 
component, R represents the thermal resistance (K/W) between the components: attenuator and sample 
plate (Ras), sample plate and heat bath (Rsb), and heat bath and 10 mK plate (Rb10), C represents the heat 

capacity (J/K) of a component,  represents the heat transfer rate due to thermal 

radiation from the 50 mK plate to the 10 mK plate and   represents the rate of the heat flow due 
to the cooling of the mixing chamber by the Helium flow.  

We now justify why we can neglect the role of radiative heat transfer between the lowest two stages of the 
cryostat and the components of the calorimeter. The heat transfer between these copper plates is given 
by   

      ,                  (2.31)   

where σ represents the Stefan-Boltzmann constant (5.67 x 10-8 Wm-2K-4), A represents the surface of the 
two parallel plates (we take A1 = A2 ≈ 0.5 m2) and  =  = 0.03 is the emissivity of gold-plated copper. The 
assumption is made that all heat that is transferred from the surface of the 50 mK plate is intercepted by 
the surface of the 10 mK plate (i.e. the view factor, which is the proportion of the radiation that leaves one 
of the plates and strikes the other one, is taken equal to one and both the absorptivity as well as the 
reflectivity, which reduce the heat transfer, are not included in eq. (2.31).                ………………………………..                              
As the surfaces of the components in the calorimeter are about one order of magnitude smaller, the 
temperature differences are comparable to those in our experiments and the minimum amount of 
dissipated power at a component is in the order of nanowatts, we can conclude that radiative heat transfer 
does not play a role of importance in our setup as well.   

The 10 mK stage effectively acts as a heat sink, i.e. all heat that is dissipated in the calorimeter is eventually 
absorbed by the Helium flow. During our measurements, its temperature was constant, so we can take 

 in eq. x.  

We  focus  on  the  first  three  ordinary  differential  equations  (ODEs),  eqs.  (2.27)-  
(2.29). Combining those gives the following third order ODE for Tatt:  

2.32)               
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Before solving this, it is noteworthy to mention that the equilibrium temperature of the attenuator, Tatt(∞), 
can easily be derived from this ODE. When this component is in thermal equilibrium, its first order time 
derivative equals zero, removing the higher order derivatives as well. We end up with the following 
expression:  

  

          ,                                       (2.33)  

where the second expression is equivalent to the first one, but in terms of thermal conductance  
between the stages. Similarly, for the sample plate and heat bath we have:  

                                    (2.34)  

                                                (2.35)  

Returning to eq. (2.32). This is a third order ODE, in general not trivial to solve. We use Euler's Ansatz 
for solving the homogeneous linear differential equation of the m-th order with constant  

coefficients to arrive at the following characteristic equation:  

,                               (2.36)  

where  

,  

and     

Rewriting eq. (2.36) gives  

,                                (2.37)  

where  

  

and  ,  

which is in agreement with the expression given by Domen et al. [27]. As the exact values of the coefficients 
are unknown, we consider the cases that one of the three temperatures is constant and proceed with 
finding the two remaining roots of this new characteristic equation. In fact, in the experiments this is 
achieved by PID control and the relaxation-time method (section 3.3). Therefore, in theory the reciprocal 
values of these roots should be equal to the two time constants.  

Consider the case where the temperature of the heat bath is kept constant and Psam and Patt are 
timeindependent as well. Rewriting eq. (2.32) for dTbath/dt = 0 then gives rise to the following second order 
ODE for Tatt:  

  

                    (2.38)  

Its characteristic equation has two roots and is as follows:  

,                                 (2.39)  
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where  

,      and     

Applying the quadratic formula, we find  

                             (2.40)  

Now consider the case where the temperature of the sample plate, Tsam, is kept constant and Pbath and Patt 
are time-independent as well. Rewriting eq. (2.32) for dTsam/dt = 0 then gives rise to the following a second 
order ODE for Tatt that is similar to eq. (2.38), with f and g  are replaced by f' and g' respectively, where   

  and   ,  

with roots given by eq. (2.39) with f and g replaced by f' and g' respectively.  

For a complete description of the temperatures as a function of time in terms of all thermal properties of 
the calorimeter, we refer again to the article by Domen et al. [27]. The general solution of the similar  
ODE describing the heat flow in a three-body calorimeter is given by  

,                                (2.41)  

with coefficients   for a fixed component i (  that sum up to the temperature difference with 
the ambient, , where  describes the equilibrium temperature of component i (of which 
the expressions are strikingly similar to those given in eqs. (2.33) – (2.35)). The values of these coefficients 
for the components in our calorimeter are supposed to be given by a similar expression that follows from 
eqs. 15 - 22 in the article, but for practical reasons we do not derive these as well. Besides, an accurate 
estimate of these coefficients would require a very accurate estimate of the (temperature dependent) 
thermal properties, which is discussed in section 3.1.2.  

In conclusion, Newton's law, as discussed in section 2.3.1 (eq. 2.24) and expected to be of importance in 
determining the thermal time constants, indeed follows from the differential equations that describe the 
heat flow through the components of the calorimeter (eqs. (2.27) – (2.29)). The solution of these ODEs is 
a sum of i exponentials, where i denotes the number of components with a non-constant temperature. 
Fitting this to cooling curve of a component then allows one to obtain the thermal time constants of the 
other time-dependent temperatures.  
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3  Experimental setup & Methods  

In this chapter, the set-up is introduced in section 3.1. Details of the configuration used during the three 
runs that we performed are provided. Then, the material properties during the three runs are given and 
discussed in section 3.2, where calculations on the predicted thermal resistances, heat capacities and time 
constants are done as well. In the final section, section 3.3, an explanation about the measurement process and 
data acquisition is given.  

3.1  Cryogenic dual loss compensated calorimeter  

The measurements on the calorimeter have been taken in a cryogenic environment, making use of 'The 
Little Snowman' at the Leiden University Institute of Physics (LION). This 3He-4He dilution refrigerator 
decreases the temperature of the lowest stage to 10-20 mK, enabling us to do our experiments at 30 mK 
and higher. The calorimeter is designed by Koen Bastiaans and fabricated by the Fine Mechanical 
Department at LION to investigate the power dissipation of a detection chip, achieving a power resolution 
of 100 nW at 4 K [28]. It has been attached to this copper plate to reach the same base temperature when 
no power is applied (fig. 3.1).   

Figure 3.1. Picture of the calorimeter attached to the 
10 mK plate, taken just before the third run (run 77). 
Some of the main components of the cryostat and 
calorimeter are indicated: the still (1), the 10 mK 
plate (2), a calibration line and a 3 dB attenuator (3), 
the brass base connecting the calorimeter to the 10 
mK plate (4), the stainless steel cylinder (5), the Cu 
heat bath with the sample plate and 3 dB attenuator 
inside (6) and the reference plate (7).  

  

  

  

  

  

  

Well-calibrated 4-point low-temperature thermometers are attached to the sample plate as well as the 
reference plate. Next to each of the thermometers an resistor (referred to as heater) is attached, resulting 
in an applied power for a given voltage (according to ). For the sample plate, this is the MPR-20 22 
ICJ with a temperature-independent resistance of 220 Ω and for the reference plate the RTO 20F 47Ω 5% 
W3 (R ≈ 60 Ω at T = 50 mK) is used. Heaters with a higher resistance have been used during the third run, 
namely the MP930-1.00K-1% with a resistance of 1 kΩ (R ≈ 10 kΩ at T = 50 mK). Details on the performance 
of both the thermometers and power are given in section 3.2.3.  
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3.2  Material properties and calculations on the three different experimental set-ups  

The thermal conductivity and specific heat at temperatures as low as a few tens of millikelvins are 
investigated by Pobell [29]. The curves are given for a various amount of materials, including some of the 
ones present in our experiment: copper, alpha brass (65%Cu-35%Zn), aluminum and stainless steel (figs. 
3.2 and 3.3). A characteristic feature in both graphs for almost all materials is the linear dependence of 
temperature in a log-log manner, the signature of a power law. Since most of the measurements of these 
properties have not been done at T = 30 – 80 mK, we have used this feature to extrapolate the curves to 
find an estimate for their corresponding values. We are aware however, that this extrapolation is 
completely dependent from the assumption that the same power law holds in our range of temperatures. 
A possibly large error with respect to the other measured dimension of the components is introduced by 
extrapolation, but it still gives an estimate of the values that are required to do the calculations of the 
thermal properties shown later in this section.  

 The specific heat capacity of stainless 
steel (SS) is not well-known in our 
temperature range, but with a similar 
power law dependence at low 
temperatures and a value of CSS = 4 x 10-1 
Jkg-1K-1 at 1 K [30], we expect this property 
to have values between 1 x 10-2 and 3 x 10-2 

Jkg-1K-1 for temperatures of 30 and 90 mK 
respectively. It is plausible that stainless 
steel has a higher specific heat capacity 
than both copper and brass, so we include 
its contribution to the specific heat 
capacity of component Cbath as displayed 
in fig. 2.5.   

  

  

  

  

  

  

  
Figure 3.2.  Typical specific heat capacities c of various materials 
below 1 K [29].  

  

There are no values known for the specific heat capacity of brass in the temperature range of our 
measurements, yet there have been taken measurements at temperatures from 200 K down to 2 K for 
65%Cu-35%Zn brass, where a value of Cbrass = 3 x 10-2 Jkg-1K-1 has been reported [31]. Regarding the fact that 
the heat capacity of copper is only slightly lower at the same temperature, while having a similar slope, 
we assume that the heat capacity of brass is comparable to that of copper.  
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Figure 3.3.  Typical thermal 
conductivities k of various 
materials below 1 K [29].  

      

  

  

  

  

  

  

  

  

  

  

  

  

  

We summarize the extracted and extrapolated values from both graphs in SI units for a range of 
temperatures in table 3.1.        
    
Thermal property  T=30 mK  T=40 mK  T=50 mK  T=60 mK  T=70 mK  T=80 mK  T=90 mK  
cCu (Jkg-1K-1)  4.7 10-4  6.0 10-4  6.9 10-4  7.8 10-4  9.0 10-4  9.4 10-4  1.1 10-3  
cSS (Jkg-1K-1)                
cBrass (Jkg-1K-1)    1.4 10-3             
cAl  (Jkg-1K-1)  1.4 10-3  1.9 10-3  2.3 10-3  2.9 10-3  3.3 10-3  3.7 10-3  4.1 10-3  
kCu  (Wm-1K-1)                
kSS  (Wm-1K-1)  4.0 10-3  5.0 10-3  6.8 10-3  7.6 10-3  9.0 10-3  1.0 10-2  1.1 10-2  
kBrass (Wm-1K-1)  1.2 10-2  2.3 10-2  2.9 10-2  3.8 10-2  4.2 10-2  4.9 10-2  5.4 10-2  
kAl (Wm-1K-1)                
 

Table 3.1.  Temperature-dependent specific heat capacities and thermal conductivities for the materials used in our experiment.  

   
The thermal conductivity of copper is several orders of magnitude higher than that of the other materials 
we used, which is why we neglect their contribution to the thermal resistance of the components as 
displayed in fig. 2.5.   
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We now provide the measured properties of the components for each of the three used set-ups and use 
these to calculate their thermal resistances and heat capacities of our thermal model in fig. 2.5. To this 
end, we use formula (2.25),  (where the heat capacitance of an object equals its specific heat 
capacity times its mass) and  and show the results in table 3.2. The material properties of the 
components during the first run (run 75) are used for the listed results to serve as an example for the 
calculated thermal properties in tables 3.3 and 3.4. Temperatures of 30 mK for the reference plate and 40 
mK for the sample plate are used within these calculations, to reflect their typical temperature difference 
of 10 mK in the experiments. We do not take an integral over the different temperatures at the two sides 
of a thermal resistance, since the difference between the corresponding thermal conductivities is assumed 
to be smaller than the error resulting from reading and extrapolating the values in the graph. Instead, we 
choose to pick the value for the thermal conductivity at the highest temperature. We also mention any 
particularities and modifications with respect to the previous set-up.  
 

Properties of system components  Value  Units  
      
Sample plate (40 mK)      
Mass of the brass sample plate  

2.6 10   
kg  

cbrass  1.4 10 Jkg-1K-1  
Csam  3.6 10-5  JK-1  
kSS  5.0 10-3  Wm-1K-1  
R_4_SS_piles  4.2 105  KW-1  
R_4_SS_screws                           2.0 104  KW-1  

Rsb = Rpiles + Rscrews  4.4  
   1.6 10  s  

      
Reference plate (30mK)      
Mass of the Al (Au-coat) reference plate  8.0 10-2  kg  
Specific heat capacity Al @ 30 mK  1.4 10-3  Jkg-1K-1  
C Al (Au-coat) reference plate  1.1 10-4  JK-1  
Mass of the Cu holder  7.3 10-1  kg  
Specific heat capacity Cu @ 30 mK  4.7 10-4  Jkg-1K-1  

C Cu holder  3.4 10-4  JK-1  
Mass of the SS cylinder  6.7 10-1  kg  
Specific heat capacity_SS @ 30 mK  1    10-2  Jkg-1K-1  

C SS cylinder  6.7 10-3  JK-1  
Cbath  7.1 10-3  JK-1  
kSS @ 30 mK  4.0 10-3  Wm-1K-1  
R SS cylinder  1.5 103  KW-1  
kbrass @ 30 mK  1.2 10-2  Wm-1K-1  
R_brass_base  3.2 103  KW-1  
Rb10 = Rcylinder + Rbase  4.8 103  KW-1  

     3.4 101  s  
 

Table 3.2.  Measured and calculated properties of the components in the calorimeter during the first run.  
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Figure 3.4. Picture of the 3 dB attenuator 
attached to a brass sample plate. The 
sample plate is connected to the Cu heat 
bath by four piles made of stainless steel.  

  

  

  

  

  

  

  

In the first run (23/11/17 - 11/01/18), the 3 dB attenuator is connected to the brass sample plate by a brass 
rectangle (fig. 3.4). The 3 dB microwave pi attenuator consists of stainless steel connector bodies, 
goldplated beryllium copper center conductors, thin films on ceramic resistive circuits as resistors (with 
a total impedance of 50 Ω) and PTFE (Teflon) insulators. Presumably, the specific heat capacity of PTFE 
is at the order of only a few micro joules  between 40 and 90 mK [32]. In principle, this would result in a 
small value of the heat capacity of the attenuator.  

  
Heat capacity (C) or thermal resistance (R)  Value  
Csam  3.6 10-5 J/K  
Rsb  4.4 105  K/W  

    1.6 101 s  

    
Cbath  7.1 10-3 J/K  

Rb10  4.8 103  K/W  

   3.4 101 s  
 

Table 3.3.  Measured and calculated properties of the components in the calorimeter 
during the first run.  
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For the second run (01/03/18 - 12/03/18), a Cu sample 
plate with a better thermalization to the attenuator is 
used (fig 3.5). The latter was made in-house with the 
same goal. The mass of the copper sample plate is the 
same as the one made of brass. The specific heat 
capacity of the materials being comparable, C2 is 
probably smaller but is well-known this time. The heat 
flow through this new attenuator is discussed in 
section 4.3.1.   

Figure 3.5. During this run, a new 3 dB 
attenuator is used designed to have a 
better thermalization. It is attached 
to a Cu sample plate.  

    

  

  
Heat capacity (C) or thermal resistance (R)  

 
Csam  1.6∙10 J/K  
Rsb  4.4∙105  K/W  

   7.3 100 s   

    
Cbath  7.1∙10-3 J/K  

Rb10  4.8∙103  K/W  

   3.4 101 s  
 

Table 3.4.  Measured and calculated properties of the components in the calorimeter 
during the first run.  

    
Figure 3.6. The same set-up as in the previous 
run is used, except that the reference plate 
attached to the heat bath is made of copper. 
Next to this, silver epoxy is applied to the 
attenuator, again with the goal of having a 
better thermalization.  
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Run 3 (22/03/18 - 29/03/18): A Cu reference plate is used instead of the Al(Au-coated) one. The same                             
attenuator is used, but silver epoxy is applied this time, so its thermal resistance should be lower than                                         
in run 2.   

Heat capacity (C) or thermal resistance (R)  Value  
Csam  1.6∙10-5 J/K  
Rsb  4.4∙105  K/W  

    7.3 100 s   
    
Cbath  4.7∙10-4 J/K  

Rb10  4.8∙103  K/W  

   2.3 100 s  
 

Table 3.5.  Measured and calculated properties of the components in the calorimeter 
during the first run.  
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3.3  Methods  

The data are acquired as follows. A cryogenic resistance bridge (AVS-46) uses a 4-wire measurement to 
determine the temperature-dependent resistance of a calibrated sensor (the low-temperature 
thermometer mentioned in section 3.1.1). Resistances of the thermistors and heaters are measured by a 
breakout box. The measuring current is kept at a minimum to maintain a good accuracy of the sensor, 
which is very sensitive to  heating and therefore kept at a minimum of picowatts.                                                   
The corresponding output voltages are read and recorded by a DAQ card (NI USB-6343 16-Bit, 500 kS/s), 
which is connected to a PC. A Python program named Calorimeter.py is written by Tom van der Reep to 
convert these by using the relationship between temperature and measured resistances. The temperatures 
of the sample plate and reference plate (which is part of the heat bath) can both be calculated from these 
resistances and displayed real-time. An example of the user interface of this program during the 
measurements is shown in fig. C11 (Appendix C).   

We report typical values for the first run (Run 75), which was the most successful one due to reference 
temperature being at a minimum of 30 mK, about 10 mK above the temperature of the mixing chamber. 
Using a PID controller, we are able to keep the sample plate and reference plate at constant temperatures 
with standard deviations of 0.03 mK at 33.00 mK up to 0.15 mK at 80.00 mK. Tuning of the controller 
parameters is done manually and based on the Ziegler-Nichols rules [33], with values for the proportional 
gain Kp between 10-12 and 10-7, integral gain Ki between 10-14 and 10-11, and differential gain Kd between 10-20 
and 10-15. The heaters on the sample plate and reference plate, which are connected to the PC the same 
way as the thermometers, are programmed to adjust their power input according to these controller 
parameters in order to reach the set temperatures. The amount of applied power depends on the 
temperature difference between the sample plate and the reference plate, the temperature difference 
between the reference plate and the 10 mK plate, and on the temperature of each of the components of 
the calorimeter. Typical values of Psam and Pref that are applied to keep the sample and reference plate at 
their set temperatures are plotted as a function of the temperature difference between these components, 
showing a linear dependence (fig. C9, Appendix C).  

The measurement procedure for determining the thermal time constants of the components in the 
calorimeter consists of the following steps. First of all, the set temperatures of the sample and reference 
plate are chosen in a range of 30 - 110 mK, with the sample temperature being higher than that of the heat 
bath. For most measurements, the initial temperature difference  between the two plates is 10 mK, but 
cooling curves for larger differences up to 40 mK are also measured. Regarding eq. (2.41) in section 2.3.2 
and the discussion of the temperature-dependent thermal properties of the component, it can be seen 
that the choice of the set temperatures affects the thermal time constants. Secondly, the PID constants 
are tuned (as described above). The applied powers of both heaters need to be constant to prevent 
additional heat flow from components with a non-constant temperature. Tuning parameters are adjusting 
until the observed margin of error of all measured temperatures and applied power are as small as possible.              
Thirdly, we apply the relaxation-time method as described in [21]. The PID controller for the temperature 
of the sample plate or the reference plate is turned off, resulting in an sudden drop of temperature and 
eventually to the equilibrium temperature of the reference plate or 10 mK plate respectively. As discussed 
in section 2.3.2, two remaining thermal time constants are expected to determine the slope of the cooling 
curve.                                                                                                                                                                                                                  
Finally, the output data, consisting of the measured temperatures for and applied powers to both the 
sample and reference plate, is saved as text file and processed in MATLAB. Using MATLAB's Curve Fitting 
Toolbox, eq. (2.41) is used as fitting equation, where we take the sum of two exponentials instead of three 
(since one of the temperatures is kept constant).     
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4   Results & Discussion  

After the theoretical considerations about the calculations of the interference visibility and the heat 
transfer in our experimental set-up, in this chapter the experimental results are presented in the same 
order, alongside with a discussion of the obtained results. Section 4.1 starts with the resulting visibilities 
for the set-up as depicted in fig. 2.1. in the case that the effect of insertion losses on the visibilities is 
excluded. Then, in section 4.2, this effect is included in the calculations, both for those in which the Master 
equation (ME) solver is used and those in which is made use of the Monte Carlo (MC) simulations. The 
chapter ends with the results of the three experiments in which the thermal time constants of the 
attenuator, sample plate and heat bath are determined (section 4.3).  

4.1  Calculations excluding losses  

4.1.1  ME solver  

Following the description of the signal and idler visibility in section 2.1.2, we have calculated these 
quantities again using the ME solver in the computer program (section 2.2) and eqs. (2.10) and (2.11). 
Regarding the visibility criterion (eq. 2.18) and the available resources, we have used a dimension of the 
Hilbert space of N = 99 to calculate the visibilities for 18 loop steps from κ = 0.0 to κ = 1.7, corresponding 
to a TWPA gain up to 13.4 dB (fig. 4.1). As expected, for increasing κ, all curves come close to the exact 
value of 1/3 in the limit of large gain.  

 
Figure 4.1. Expected signal and idler  average and signal visibilities as a function of κ (corresponding with the gain of each 
of the TWPAs) according to the expression for the average and statistical values given by eqs. (2.10) and (2.11). In the limit 
of large gain, all curves come close to 1/3. Comparing this graph to the previous calculations of the visibility (fig. 2.2), we 
see that the statistical idler visibility does not exceed the average idler visibility.  

    
By using the sacct command in Slurm (line 6 in table B1, Appendix B), we have found the required amount 
of RAM and computation time for completed jobs. To show the vast amount of required resources, the 
RAM usage of the program with the ME solver is plotted as a function of N for the case where dissipation 
excluded and included in figures 4.2 and 4.3 respectively. They indeed follow an N4 dependence, as 
expected in section 2.2.1.  
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Figure 4.2. Monitored peak RAM usage as a function of the dimension of the Hilbert space N. As expected in section 2.2.1, 
the RAM usage scales with the fourth power of N.  

After running the program with the memory profiler mem_profiler for different N, it was confirmed that 
creating the operators and the Hamiltonians accounts for the majority of the RAM usage (e.g. 9.4% for 
creating the Hamiltonian for the first hybrid and 59.3% in total). The other part is required to store the 
coefficients that are calculated in the functions designated for this purpose. Regarding fig. 4.2, it is not 
clear at this point why the program crashes for N > 111, as the 500 GB of RAM on the used node should be 
sufficient. Table C1 (Appendix C) combines the results of this figure with the empirical formula of fig. C1  
for one loop step to extrapolate for higher kappa.  

 

Figure 4.3. Monitored peak RAM usage as a function of the dimension of the Hilbert space N. As expected in 
section 2.2.1, the RAM usage scales with the eighth power of N.  
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The program crashes for N>10 for the same reason as stated in section 4.1.1. Since  the required amount of 
RAM for the density matrices created here scales with (N4)2=N8 instead of N4, this means that the 
prediction made in section 2.2.1. made sense. To check whether the RAM usage is monitored correctly by 
SLURM, we have tested the program with the same parameters on a high memory node with 1.5 TB of 
RAM available (Appendix A). As shown in in table C1 in Appendix C, we expected to be able to run the 
program with a value of N that was sufficiently high to calculate the visibilities for κ = 2.0 (or at least a 
higher κ than calculated on the Maris cluster). Instead, the program crashes again at N = 112. The received 
error is in both cases the same:  

TypeError: fast_csr_matrix allows only int32 indices.  

The error is raised, because QuTiP uses 32 bit indices. At the time that this module was written, this was 
all that SciPy supported. By explaining the issue on the GitHub forum to the developers of QuTiP along 
with other users who experienced similar problems, a discussion of how to solve this has been initiated. 
It is uncertain if using int64 for the compressed sparse matrix indices in QuTiP will be possible in the 
nearby future, but it is clear that the program itself contains no wrong code and that the QuTiP internals 
need to be modified in order to calculate the visibilities for higher amplifications.  

4.2  Calculations including losses  

When including the effect of dissipation on the interference visibility, this quantity is lower compared to 
the lossless case. Here we investigate if the reduced visibility is still large enough for high gain and a large 
insertion loss at a temperature of 50 mK, so that it can be distinguished from the case where the wave 
function has collapsed (resulting in a visibility of zero). We approximate the value of the insertion loss in 
dB by  (eq. 2.17). First we show the results that follow from solving the master equation with 
density matrices, then the resulting visibilities calculated by taking the average value of the outputs from 
the Monte Carlo simulations are shown together with the results from the ME solver for comparison.  

4.2.1  ME solver  

Regarding the increased amount of required RAM compared to the lossless case due to the presence of 
density matrices and the aforementioned TypeError, a dimension of the Hilbert space of N = 10 is used to 
calculate the average visibilities for 10 loop steps from κ = 0.0 to  κ = 0.6 and insertion losses up to 6 dB 
(fig. 4.4). The idler visibilities seem to converge to a constant value in the limit of large gain, independent 
of the insertion loss. This is good news, since their magnitude was already quite low but remains 
sufficiently greater than zero, allowing the experimentalist to observe the interference pattern. For the 
signal visibilities, there is no conjecture about its magnitude for large gain at this point.  
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Figure 4.4. Expected reduced average signal and idler visibilities as result of heat dissipation of the TWPAs, plotted as  
a function of κ for an insertion loss of 2 dB (blue), 4 dB (light blue) and 6 dB (green). To give a clear view, the curves for  
the insertion losses in between are not shown. The reader is referred to figure C6 in Appendix C for these curves. The  
theoretical visibilities for the lossless case have been included as well as comparison.     
    
In figure 4.5, the calculated values for the average visibilities in the lossless case have been subtracted 
from the ones in figure 4.4. In this way, it is easier to see to which extent they differ from each other and 
how this difference behaves for a large amplifications. As mentioned at the beginning of this section, the 
idler visibilities seem to converge to a constant value in the limit of large gain, which is expressed by the 
differences that converge to a constant value as well. It can be seen that the difference in the signal 
visibilities appear to also become constant, e.g. for κ = 0.6 and an insertion loss of 6 dB, this is almost 0.2 
lower than in the lossless case. If this is true, the magnitude of the signal visibilities  remains also greater 
than and distinguishable from  zero in the limit of large gain.  
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Figure 4.5. Difference plot 
of the average signal 
(solid lines) and 
(dotted lines) visibilities 
calculated by the ME 
solver, where ΔVavg = Vavg - 
Vexact as a function of κ for 
an insertion loss of 2 dB 
(blue), 4 dB (light blue) 
and 6 dB (green). To give a 
clear view, the curves for 
the insertion losses in 
between are not shown. 
All differences appear to 
converge to constant 
values.  

  

  

  
 

 

4.2.2  MC solver  

We continue with the results obtained by running Monte Carlo simulations. In figure 4.6, the average 
signal visibility Vavg,s is taken as target quantity and its histogram is plotted to show how the realizations 
of the MC solver with a fixed number of trajectories are distributed. Fitting a Gaussian to this histogram 
shows that the strong law of large number indeed seems to hold, with a mean signal visibility 

 close to .    

  
Figure 4.6. Distribution of the average signal visibilities (Vis_s) calculated by using the Monte Carlo solver. The program 
has run this solver 1,304 times, each with N=8 and 2,000 simulated stochastic trajectories used to calculate Vs,MC for  
and . A Gaussian fit (black) to this histogram shows that the visibilities that follow from the MC solver follow 
a normal distribution. The obtained mean value of this distribution is the resulting (signal) visibility, a relative error of 
only 0.04 % compared to the visibility calculated with the same parameters by the ME solver (indicated by the red line).  
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As shown above, the MC solver is an accurate way of obtaining the visibilities for the same Hamiltonian. 
As it concerns a statistical approach instead of an analytical solution, the visibilities are accompanied by 
error bars, calculated for κ = 0.1 - 0.8 (fig. 4.7) and insertion losses up to 6 dB. In both this figure and figure 
4.4., the analytical visibilities from the previous section, calculated by solving the master equation, are 
included for comparison. Furthermore, additional data points for κ = 0.0 - 0.2 obtained by the ME solver 
are shown to complete the curves for a low gain.   

All ME visibilities lay within the confidence intervals obtained from the MC solver and in most cases even 
in the exact middle, showing good agreement between the two approaches of calculating the interferences 
visibilities. Equally important, although by inductive reasoning, it gives a good reason to trust the 
outcomes for the visibilities calculated for κ = 0.7 and κ = 0.8, which cannot be calculated and verified by 
the ME solver at this moment. Finally, we also note that we now have more evidence that points in the 
direction of constant visibilities in the case of large gain and power dissipation in the amplifiers. For the 
idler visibility this is evident, while for the signal visibility the plot that shows the deviation from the 
visibility in the lossless case (fig. 4.1) hints that this difference is constant in the limit of large gain.  

  

 
 
Figure 4.7. Expected reduced average signal and idler visibilities (shown with error bars) as result of heat dissipation 

 of the TWPAs obtained from running Monte Carlo simulation and plotted as a function of κ for an insertion loss of  
2.2 dB (blue), 4.3 dB (light blue) and 6.5 dB (green). The ME visibilities are shown as well, showing good agreement 
 between the two approaches. To give a clear view, the curves for the insertion losses in between are not shown. The  
theoretical visibilities for the lossless case (red-dotted line) have been included as well as comparison, just like some  
additional points for κ = 0.0 - 0.2 resulting from the ME solver (not fitted to the ME visibilities for κ = 0.1 - 0.6).       
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Figure 4.8. Difference plot of the average signal (solid lines) and idler (dotted lines) visibilities using the MC solver,  
where ΔVavg = Vavg - Vexact as a function of κ for an insertion loss of 2 dB (blue), 4 dB (light blue) and 6 dB (green). To  
give a clear view, the curves for the insertion losses in between are not shown. Even for this larger amplification, all  
differences appear to converge to constant values.  
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4.3  Thermal time constants    

In this section, the measurements done on the time constants of the components within the calorimeter 
are presented in sections 4.3.1 for runs 75 until 77 respectively. While these measurements have been 
carried out for a various range of temperatures, we have chosen to show only a few of them. The focus lies 
on understanding the magnitudes of the time constants that follow from the exponential fits that follow 
from section 2.3.2, regarding the different configurations of the calorimeter (3.2.2).   

4.3.1  Run 75, 76 and 77    

Figure 4.9 shows the cooling of the sample plate. By keeping a constant temperature of the reference plate, 
two thermal time constants characterizing the heat flow in the calorimeter can be determined. Using eq. 
(2.41), we use the following fitting equation:  

)   

where t(0) = 734.321 s and Tsam (0) = 107.1323 mK denote the initial measurement time and initial sample 
temperature respectively, a and b denote the coefficients, which are both multiplied by the temperature 
difference between the initial temperature of the plate and the ambient (and equilibrium) temperature 
and which add up to 1 for a perfect fit, Tsam (∞) = 70 mK has been chosen as equilibrium temperature 
(since Tref = 70 mK during the whole measurement), and  and  denote the two time constants.   
 

 
Figure 4.9. Fit of eq. (4.1) to the measured temperature of the sample, which temperature dropped in an exponential 
way. With coefficients a = 0.7758 and b = 0.2232, their sum a + b = 0.9990 is close to 1, indicating a good fit to the 
measured data.  

We find  and , where we have attributed the largest time constant 
to that of the 3 dB attenuator, as the sample plate was designed to enable fast heat transfer and the 
attenuator could be poorly thermalized. Possibly, microwave attenuators have a higher temperature when 
dissipating power [34]. An overview of both time constants for all three runs is given in fig. 4.10 and fig. 
4.11. In order to use the calorimeter to measure the dissipated power of the 3 dB attenuator when turned 
on,  needs to be much lower than the thermal time constants found for this run.   
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Figure 4.10. Overview of all measured 
thermal time constants of the 
attenuator during the three runs of 
the calorimeter. Error bars of 5% 
originate from the maximum error 
that follows from the fitting function 
and procedure in MATLAB. The 
attenuator appears to be better 
thermalized in runs 76 and 77. The 
general trend is that the thermal time 
constant decreases for increasing 
temperatures.  
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In the second and third run (runs 76 and 77) a newly fabricated 3 dB attenuator, designed to conduct heat 
faster to the sample plate, is used. As can be seen in fig. 4.10, the resulting thermal time constants are 
indeed lower than in the first run. However, in the last two runs the temperature of the reference plate 
was higher than 56 mK, which made measurements of  at lower temperatures impossible. The time 
constants depend on the (sample) temperature, as was expected from the discussion of the temperature-
dependent thermal properties in section 3.2. Due to the large error associated with extrapolating these 
properties for lower temperatures, we are not able to calculate in which way the time constants depend 
on the temperature. However, the general trend is that  decreases for increasing temperatures.    

The thermal time constants of the sample plate, as obtained from the fits, all have a smaller value than 
those of the attenuator (fig. 4.11). Again, we see that they are temperature-dependent, but we can only 
suggest that  might increase with temperature if the sample plate is made of brass, and decrease if the 
sample plate is made of copper.  

   

Figure 4.11. Overview of all measured 
thermal time constants of the sample 
plate during the three runs of the 
calorimeter. Error bars of 5% originate 
from the maximum error that follows 
from the fitting function and procedure 
in MATLAB. The sample plate appears to 
be better thermalized in runs 76 and 77. 

 might increase with temperature if 
the sample plate is made of brass, and 
decrease if the sample plate is made of 
copper.  

  

  
  
  

  
  
  

  
A possible explanation for the observed higher thermal time constants than those calculated in 3.2 might 
be that the thermal contacts have a higher thermal resistance in reality.                                                    
In conclusion, measurements done at higher temperatures show that the time constants of both the 
attenuator and the sample plate are reduced. This means that if the working temperature of the 
calorimeter can be reduced, the goal of having a characterized calorimeter with reasonably long thermal 
time constants is achieved, enabling an accurate measurement of the power dissipation of a 3 dB 
attenuator and that of a TWPA in the future as well.  
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5  Conclusion & Outlook  

 Conclusion  

This thesis describes some of the steps of a feasibility study that is required before conducting the 
proposed interferometer experiment with traveling wave parametric amplifiers (TWPAs), which could be 
able to falsify the existence of spontaneous wave function collapse using the visibility of the interference 
pattern as. The main question was if the interference visibility was still large enough to be observed for a 
TWPA gain of 20 dB and an insertion loss of 4 dB.  

To this end, calculations on the visibility of the interference pattern are carried out by running Python 
programs with the QuTiP module on multiple computer infrastructures, thereby varying the gain and 
insertion loss of a TWPA in the proposed experiment. Visibilities as a function of amplification up to κ=1.7 
(13.4 dB gain) have been calculated when the effect of insertion los on the interference visibility is 
excluded. While following an N4 dependence for the required amount of RAM, the limiting factor turned 
out to be the int32 type used for the indices in the compressed sparse row (CSR) matrices in the QuTiP 
module.              

The effect of dissipation in the TWPAs on the visibility for insertion losses up to 6.5 dB and visibilities for 
amplifications up to κ=0.6 (3.5 dB gain) have been calculated. While the density matrices used in the same 
solver of the master equation follow an N8 dependence for the required amount of RAM, the program was 
again limited by the int32 type for CSR indices. By doing Monte Carlo (MC) simulations and running each 
program with the same parameters multiple times, we have collected statistics resulting in visibilities for 
amplifications up to κ=0.8 (5.3 dB gain). The visibilities calculated by the Master Equation (ME) solver lie 
within the confidence intervals of those calculated by the MC solver.   

A cryogenic calorimeter is characterized to determine the length of the thermal time constants of its 
components. Measurements on the times constants of both the sample and the heat bath have led to the 
conclusion that the attenuator was not well thermalized. In the two follow-up experiments, presumably 
a parasitic power prevented the temperature of the heat bath to drop to that of the mixing chamber. 
However, measurements done at higher temperatures show that the time constants of both the attenuator 
and the sample plate are reduced. This means that if the working temperature of the calorimeter can be 
reduced, the goal of having a characterized calorimeter with reasonably long thermal time constants is 
achieved, enabling an accurate measurement of the power dissipation of a 3 dB attenuator and that of a 
TWPA in the future as well.  

Outlook  

For further calculations of the expected interference visibilities for a higher TWPA gain, we need to 
consider the limitations of the ME and MC solvers, being the QuTiP internals and required amount of 
computational time respectively. The issue with the integer type of the CSR matrices has been reported 
to the QuTiP developers, with the result that this module will be updated in the future to support these 
as well. It is not possible to predict whether this will be done within the time frame of the research. If so, 
it is expected that the calculations of the visibilities for amplifications up to κ=2.0 (16.1 dB gain) when 
excluding losses and visibilities for amplifications up to κ=0.7 (4.4 dB gain) when including losses can be 
extended using the ME solver on the high memory node with 2 TB RAM available.                               
We are able to extend the calculations that include the effect of losses on the interference visibility by 
running Monte Carlo simulations on the Lisa Cluster in the future. At the moment of writing, access to 
this system has been granted with a budget of 100,000 core hours. We expect that this amount of 
computation time is sufficient to do these calculations for κ=0.9 (6.2 dB gain). It might be an interesting 
alternative to calculate the interference visibilities for κ>0.9 as well, while reducing the number of Monte 
Carlo trajectories for each value of κ. In that case, the calculations can be done for higher TWPA gains, 
which comes with the price of larger error bars (following the discussion in section 2.2.2).   
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Appendix A: Computer infrastructures  

Overview of the distributed computer systems  

To do the calculations as described in section 2.2, we have made use of two different computer systems: 
the NovaMaris Cluster (at the Lorentz Institute, Leiden) and the High Performance Computing (HPC) 
Cloud, the latter being maintained by SURFsara. Details of their specific infrastructure and way of 
operating are given in this appendix. Next to this,  a short description of the data processing is given.  

Each version of the SPI program has been run in a Linux environment with Python 3 (Python 3.5.2 and 
higher). Version 4.2.0 of the QuTiP module has been used [12][13], which has been installed after the 
required packages NumPy (1.8+), SciPy (0.15+) and Cython (0.21+) have been installed as well. In order to 
initialize programs on the Maris Cluster and the Lisa Cluster, customized batch scripts have been 
submitted to Slurm (version 17.02.9), which is an open-source job scheduler that is able to manage the 
resources available on the systems [35]. The batch scripts contain options for allocating these resources, 
such as the node on which the program should run, the maximum available amount of RAM, the amount 
of available CPU's and the directories in which the output and the error file(s) should be stored. An 
example of a used batch script can be found in Appendix B.   

The SPI programs using the ME solver have saved the variables of interest as .mat files, which have been 
opened by MATLAB R2017a. Here, a script processes the arrays after which the relevant figures can be 
created. For the SPI programs using the MC solver, however, we have used a different approach as multiple 
runs results in the same number of output files. After merging the output files with the same parameters 
and saving the resulting file with an .xls extension, the rows that contain the variables of interest have 
been imported as arrays. In this way, again the relevant figures have been created using a statistical 
approach.  

Maris Cluster  

The Maris Cluster is a small computational cluster at the Lorentz Institute. Access is primarily given to 
the research groups that have purchased the machines (e.g. the Beenakker group), but it can be granted 
to other researchers within the institute as well. We are part of the latter group and have been granted a 
guest account. Strictly spoken, this account does not have the same privileges as a Beenakker account (i.e. 
access to all nodes, no maximum amount of allocated CPUs and no maximum amount of running jobs). 
However, by discussing the required resources for our jobs and aligning these needs with those of the 
other users, we have managed to make use of a fair amount of resources during this Master Project.  

The configuration and specification of the relevant part of the cluster is summarized as follows:  

• The playground partition, consisting of 19 nodes, each with 8 CPUs and 16 GB of RAM, and 24 
nodes, each with 8 CPUs and 32 GB of RAM. The clock speeds of all processors in this cluster is 2 
GHz.  

• The computation partition, consisting of 13 nodes, each with 48 CPUs with a clock speed of 2.2 
GHz and 128 GB of RAM, and 15 nodes, each with 64 CPUs (apart from two nodes with 48 CPUs) 
with a clock speed of 3.2 GHz and 128 (1x), 192 (2x), 256 (4x) and 512 (8x) GB of RAM.  

• The compintel partition, consisting of 2 nodes, each with 96 CPUs with a clock speed of 2.1 GHz 
and 512 GB of RAM.  

The other three partitions are the notebook, emergency and GPU partitions. The cluster is optimized for 
multithreading applications and embarrassingly parallel problems.   
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HPC Cloud  

The HPC Cloud is a virtualizing environment where a user is able to build his/her own cluster. We have 
access to d-node41, which is the 2 TB high memory node with 40 CPUs. We share this node with one other 
user and have been able to use 1.5 TB and 20 CPUs. This amount of resources can be adjusted in a flexible 
way, in consultation with the contact person of the HPC Cloud (Nuno Ferreira).3  

     

                                                           
3 More details on the system can be found on https://userinfo.surfsara.nl/systems/hpc-cloud  
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Appendix B: Quick start guide SLURM & Maris Cluster  

In order to enable a future user of the described infrastructures with a basic knowledge of Linux to run 
his/her program as fast as possible, we give a guide of the essential elements. First, we give a table in 
which the commands in SLURM are listed that we have found of most use during our computations. 
Then, we describe how to access the Maris Cluster and how to build a Virtual Machine (VM) on the HPC 
Cloud. Finally, we provide the reader with some general tips on making use of the resources in an 
effective way.  

Table of SLURM commands  

Command  Purpose  
sinfo  Quick view of available nodes  

scontrol show nodes  Detailed information about all nodes  

sbatch [name of batch file]  Submit a batch file to initiate a job  

squeue -u [username]  List of all jobs  

scontrol show jobid -dd [JobID]  Show status of job  

sacct --format  
JobID,jobname,NTasks,nodelist,MaxRSS, 
maxVMSize,AveRSS,AveVMSize,jobs=[JobI 
D]  
  

Provides with information about completed 
jobs  

scancel [JobID]  Cancel job  

scancel -u [username]  Cancel all jobs of a certain user  

scancel [JobID]  Cancel job with specific JobID  

ls . | wc -l  Count the amount of files within directory  

grep -rnw '[path name]' -e '[pattern]  Search for files with a particular string in name  

find . -name "[string pattern]" -size 1000c 
delete  

Delete files with a particular string in name 
and larger than 1000 bytes  

Table B1.     
  

Access to the Maris Cluster  

Once granted access to the cluster, a user can login to its head node to access it. When starting with a 
Windows OS, one can use PuTTY4, a secure shell (SSH) client that is able to establish the two required 
connections (tunnels). The first tunnel leads to Styx, a platform with a Linux OS, while the second 
tunnel is used to connect with the Maris Cluster itself. It is not possible to SSH directly to the nodes, 
because of security reasons.  

At the cluster itself, it is recommended to store all data in the /marisdata/[username] path instead of in 
the home directory, as there is a 10 GB quota enforced on the latter. Next to this, it is advisable to 
maintain a clear structure when creating directories. In this way, the user is able to manage his/her data 
easily and a third party could find its way through the files as well.                               
Transferring data from Windows to the cluster and vice versa can be done with WinSCP, a file transfer 
protocol client that safely copies files between a local and remote computer. For example, WinSCP is 
used to upload the file to the Styx platform.   
Then, in Styx, the command 'scp [filename] novamaris:/marisdata/[username]/[path to directory]' is used 
to copy the file to the preferred directory on the Maris Cluster.   

                                                           
4 See https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=linux:putty for more details.  

https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=linux:putty
https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=linux:putty
https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=linux:putty
https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=linux:putty
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Submitting jobs on the cluster should be done with a batch file. This is a script that contains the 
command to run the program and the required environment definitions. An example of such a batch file, 
with explanation given as comments, given below:  
 
#!/bin/env bash  

##comment out lines by adding at least two `#' at the beginning  

#SBATCH --job-name=job_example  #this name will be listed in the list of submitted jobs   

#SBATCH --account=guests  

#SBATCH --partition=computation    #should be the name of the partition of the node  

#SBATCH --array=1-200      #runs this job 200 times (with the same resources)  

#SBATCH --output=/marisdata/lelarge/qutip_files/out+err/example_dir/%A_%a_output_file_name.out  

#SBATCH --error=/marisdata/lelarge/qutip_files/out+err/example_dir/%A_%a_ error_file_name.err  

#SBATCH --time=3-23:00:00   #forces the program stop after 3 days and 23 hours  

#SBATCH --mem=50000      #a maximum amount of 50,000 MB is available for this job  

#SBATCH --ntasks-per-node=1  

#SBATCH --cpus-per-task=2   #if the program uses multithreading, multiple CPUs can be used  

#SBATCH -w maris060   #specifies on which nodes the program should run (here node 060) #SBATCH --no-requeue  

#SBATCH --mail-type=BEGIN     

#SBATCH --mail-type=END    #sends an email when the program is finished  

#SBATCH --mail-type=FAIL  

#SBATCH --mail-user=user@example.com      

##export OMP_NUM_THREADS=2    #should be the same as in --cpus-per-task 

##export MKL_NUM_THREADS=2    #should be the same as in --cpus-per-task  

  

/usr/bin/python3 /marisdata/lelarge/qutip_files/my_program     

          #/usr/bin/python3 picks makes sure that the right version of     
       Python is used to run the program listed in the absolute path     
       mentioned hereafter. Note the space in between. Make sure that     
       the batch file and program are both in the same directory.    
                        
              

Table B2.     
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Appendix C: Additional results   

All raw and processed data can be found on the \\data02 drive at LION in the folder ‘Xavier’ with clear 
subdirectories.  

Master Equation solver  

As discussed in section (2.2.1), a finite dimension of the Hilbert space that is created in the program leads 
to a truncation error. With the criterion stated in eq. (2.18), we have found an empirical estimate of the 
maximum value of kappa for a given dimension N (fig. x). For higher values of kappa, the truncated Hilbert 
space results in idler visibilities with an offset larger than 0.10%.   

Figure C1. The maximum value of kappa that 
can be calculated for a given dimension of the 
Hilbert Space N, due to the truncation error as 
defined in eq. (2.18). For increasing kappa, a 
much higher dimension N is needed.  

  

  

  

  

  

  

However, a strange feature that 
occurs for N > 40 is found (fig. x).   
First we assumed that higher 
dimensions of the Hilbert space 
would result in computed visibility 
values that converge to the 
analytical ones, as these would 
approach an infinite Hilbert space. 
The reality is that some dips in the 
visibility occur for higher N, which 
can increase the relative error to 
values as high as 0.55% for N = 105. 
For higher values of kappa, the 
errors seems to be reduced for the 
same N. The origin of this feature is 
yet unknown.   

Figure C2. Idler visibilities calculated for certain values of N, showing that for increasing N dips may occur that can result                       
in errors that are even larger than the truncation error.  

file://data02
file://data02
file://data02


 

48  
  

  

Figure C3. Computation time required for the ME solver excluding dissipation as a function of N, showing again an N^4 
dependence. Deviating points are due to the varying load on the nodes of the cluster.   
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Figure C4. Computation time required for the ME solver including dissipation as a function of N, showing again an N^8 
dependence.  

   

  

  

  

    
Table C1 combines the results of figure 4.2 with the empirical formula of fig. C1 for one loop step to 
extrapolate for higher kappa. It can be seen that the required amount of RAM when running the ME solver 
is extremely large for higher values of kappa.  
 

κmax  N  RAM (MB)  Computation 
time (h)  

1.7  104  102,994  0.9  

1.8  127  229,031  2  

1.9  157  534,907  4  

2.0  193  1,221,544  11  

2.1  236  2,731,040  25  

2.2  290  6,226,901  56  

2.3  356  14,140,997  128  

2.4  437  32,107,448  290  

2.5  536  72,667,328  657  
 

Table C1.  
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Figure C5. Difference 
with analytical 
visibility appears to 
converge to a 
constant value, 
which is promising if 
it's not possible to 
compute for all 
kappa's.  

  

  

  
 Figure C6. ME solver visibility as                                        
a function of losses, plotted for                               
multiple values of kappa. The dips                          
show that bugs might appear within                            
the calculations.   
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MC solver  

MC solver: statistics  

Histogram of the calculated signal visibilities for N=8 and 2,000 paths, showing a Gaussian distribution.  
Running the program multiple times with the same parameters (job array) decreases the relative error  

Figure C7. Optimization problem which led us to calculate the visibilities with the MC solver with 2,000 paths for kappa 
= 0.7 – 0.9 and N=12, 15 and 18 respectively.  

Figure C8. Specific heat capacity for various materials at temperatures between 1 – 300 K. We 
use this graph to extrapolate this property for stainless steel (SS) to 30 mK. Figure taken from 
[30].  
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Figure C9. The magnitude of amount power to maintain the set temperatures for both the sample and the reference 
plate depends on the temperature difference between these set temperatures.  

 
Figure C10. Cooling of the heat bath. Again an exponential fit is used to determine the two remaining time 
constants.  
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Figure C11. Overview of the Calorimeter.py program, used to measure the temperature of the sample plate and reference 
plate, enable PID  control and turn on the microwave attenuator.  
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