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Abstract

A new dipstick is built for the Lead Zeppelin project but with
elliptical coils. We want to find the harmonic potential of this new

configuration.
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Chapter 1
Introduction

1.1 MRFM

Magnetic Resonance Force Microscopy (MRFM) is a technique which uses
Atomic Force Microscopy (AFM) and Magnetic Resonance Imaging (MRI)
to obtain images at nanometer scales.

The MRFM technique uses an ultrathin silicon cantilever with a ferromag-
netic (iron cobalt) tip. Because an electron has a magnetic property called
”spin”, it can attract or deflect the magnetic tip depending on the spin-
position. The spins are repeatedly flipped by a high-frequency magnetic
field induced by a coil. The result is that the cantilever oscillates due to
the repelling and attracting forces of the flipping spins. By monitoring
the cantilever oscillation with an interferometer while the sample moves
underneath the cantilever creates data for a two of three dimensional re-
construction. These measurements are usually performed at low temper-
atures to reduce the noise of Brownian motions[1].

1.2 New Sensors using Magnetic Levitation

Because we are measuring particles on a nanoscale, we can conclude that
the corresponding forces are very small and in this case in the order of
zeptonewtons. Any loss of energy will have an influence on the very sen-
sitive detecting systems. The MRFM technique loses energy on bending
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2 Introduction

the cantilever, therefore the measurements will be more accurate when
these energy losses are decreased or even better, removed.

A ingenious solution was published by Romero-Isart in his article “Quan-
tum Magnetomechanics with Levitating Superconducting Microspheres”[2].
A superconducting particle is trapped in an anti-Helmholtz configuration.
Because the potential is zero in the middle of the configuration, the super-
conductor tends to stay there due to the Meissner effect[3]. This system
has no mechanical energy losses which allows it to have a higher Q factor,
a measure for the quality of an oscillating device, than ever before. More
information about specifically these kinds of sensors can be found in ”The
Lead Zeppelin Project” by M. De Wit[4].

1.2.1 Benefits of using Elliptical Coils

The original Lead Zeppelin project consisted of a small spherical piece of
lead trapped in between two circular coils with repelling magnetic fields.
The lead in this system has 6 degrees of freedom, where three are transla-
tional and three rotational. Because the field is symmetric in the x=0 and
y=0 plane it becomes hard to distinguish the two translational frequencies
in the x and y direction. Also, due to symmetry, the rotational frequency is
immeasurable. This is more thoroughly explained in the ”Theory” chap-
ter.

A way to distinguish the translational frequencies better is by making the
magnetic field more asymmetrical. The most practical form is the elliptic
one, which is just a squeezed circle. By using two elliptical coils we can
now find which frequencies correspond to the translation frequency in the
x and y direction. The rotational frequencies can be found by making the
Zeppelin aspherical.

1.3 Goals

• Making the Lead Zeppelin with elliptical coils

• Finding the corresponding frequencies

• Finding the Q factor

• Making the Lead Zeppelin aspherical

2
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Chapter 2
Theory

2.1 Magnetic Fields

2.1.1 Magnetic Flux

Flux is a key concept when talking about magnetic fields. In electromag-
netism, the magnetic flux Φ is the surface integral of the normal compo-
nent of the magnetic field ~B passing through that surface, or in equation-
form:

Φ =

∫∫
~B · d~S (2.1)

When reading through this thesis, you will often find the word ”twisted
wires” and this has everything to do with flux.

Say, for instance, that we have a closed circuit with area A.

+
-V A

Every electromagnetic noise (cellphones, transmission lines, fluorescent
light etcetera) will go through this area and deliver a flux. Every difference
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4 Theory

in flux will induce an electromotive force or EMF which is given by

EMF = −dΦ
dt

(2.2)

And because EMF is measured in voltage, the total voltage over the circuit
will be different than the voltage of the source.

In present-day circuits, we almost never calculate with these kind of noise
fluxes because they are too small to make any significant differences. How-
ever, when we zoom in into a quantum scale these noises can become dis-
astrous.

We can solve this by giving this wire a twist in the middle as seen below.

+
-V

Flux in
Flux out

Let us assume that both sides have an equal area and the magnetic field
is a constant. The flux is then the same on both sides. But because of the
twist, the two ~A vectors will have opposite sign and the fluxes will cancel,
resulting in a zero EMF.

In reality it is much harder to twist the wire exactly in the middle and
keeping the areas in the same plane. It then becomes more practical to just
twist the wires as tightly as possible.

4
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2.1 Magnetic Fields 5

2.1.2 The Biot-Savart Law

The Biot-Savart Law helps us calculating magnetic fields. Almost all the
equations in this experiment can be derived from this law:

~B(~r) =
µ0

4π

∫
~I × r̂

r 2 dl′ =
µ0

4π
I
∫

d~l′ × ~r
r 3 (2.3)

Where the constant µ0 is called the permeability of free space:

µ0 = 4π × 10−7 N/A2 (2.4)

The integration is along the path of the current ~I. This path consists of
the infinitesimal small dl′. The script r ”~r ” is the vector from the current
source to the point~r. The resulting magnetic field is given in Tesla.

Figure 2.1: The elements of the Biot-Savart law in a sketch taken from Griffths’
”Introduction to Electrodynamics”[5]

2.1.3 On-Axis Magnetic Field of Circular Coils in an AH-
Configuration

One of the easiest examples of the Biot-Savart law (equation 2.3) in use is
the on-axis magnetic field of a round current loop.

We want to find the magnetic field a distance z above the center of a circu-
lar loop of radius R, which carries a steady current I (Fig. 2.2).
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6 Theory

Figure 2.2: The elements for calculating the on-axis magnetic field of a circular
current loop

The cross product of d~l′ and ~r is in the direction of the d~B as shown in
the figure. As we integrate d~l′ around the loop, d~B sweeps out a cone.
Because of the circular symmetry, the horizontal components cancel and
the resulting ~B points only upward. This means we only have to look
at the vertical component of d~B which is cos(θ)d~B. The Biot-Savart law
becomes

B(z) =
µ0

4π
I
∫

d~l′

r 2 cos θ =
µ0 I
4π

(
cos θ

r 2

)∫
d~l′. (2.5)

The cos θ and r are constants so we place these in front of the integral, so
we only have to integrate over d~l′. The path is over a circle so the path
integral becomes the circumference 2πR. The field becomes:

B(z) =
µ0 I
4π

(
cos θ

r 2

)
2πR =

µ0 I
2

R2

(R2 + z2)3/2 . (2.6)

We now place two circular loops at distance z = d and z = −d as shown
in fig. 2.3. This type of configuration is known as an ”anti-Helmholtz
configuration” or shortened: ”AH-configuration”.

6
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2.1 Magnetic Fields 7

Figure 2.3: An anti-Helmholtz configuration

This means that for the loop at z = −d the equation for the on-axis mag-
netic field (equation 2.6) will be the same except now the variable z is sub-
stituted for z + d. For the loop at z = d the substitution will be z− d and
the field will be negative because of the opposite current flow.
We can then add these two magnetic fields to get the total on-axis magnetic
field at distance z of the origin:

B(z) =
µ0 IR2

2

(
1

(R2 + (z + d)2)3/2 −
1

(R2 + (z− d)2)3/2

)
(2.7)

We can approximate the magnetic field of a coil by overlapping the loop n
times on the same position of the loop, where n is the number of windings.
The equation for two opposite placed coils with both the same number of
windings will then be:

Bcoils(z) = n · µ0 IR2

2

(
1

(R2 + (z + d)2)3/2 −
1

(R2 + (z− d)2)3/2

)
(2.8)

Although we want to look more at the off-axis magnetic fields, this section
provides a good understanding of the mathematical properties of mag-
netic fields. The mathematics tend to become more difficult the more
asymmetrical we get.
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8 Theory

2.1.4 Off-axis Magnetic Field of Circular Coils in an AH-
Configuration

Calculating the off-axis field of a circular loop at point~r breaks some sym-
metry and therefore requires more use of the elements of the Biot-Savart
law (equation 2.3). We will look at the elliptical coil hereafter so it is better
to calculate it in Cartesian coordinates instead of cylindrical.

Figure 2.4: Off-axis magnetic field of a circular current loop

The point~r is where we want to calculate the magnetic field and the point
~r′ describes the path of the current flow. Both in Cartesian coordinates are

~r =

x
y
z

 and ~r′ =

R cos ϕ′

R sin ϕ′

0

 . (2.9)

A segment d~l′ is basically the same as d~r′ and can be found by
d~r′

dϕ′
dϕ′.

The vector ~r is equal to the vector difference~r−~r′, so we get

d~l′ =

−R sin ϕ′

R cos ϕ′

0

dϕ′ and ~r =

x− R cos ϕ′

y− R sin ϕ′

z

 . (2.10)

8
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2.1 Magnetic Fields 9

The integral of Biot-Savart law requires the cross product d~l′ × ~r :

d~l′ × ~r =

 zR cos ϕ′

zR sin ϕ′

R2 − yR sin ϕ′ − xR cos ϕ′

dϕ′ (2.11)

and it requires r 3:

r 3 = (~r · ~r )3/2 = (x2 + y2 + z2 + R2 − 2xR cos ϕ′ − 2yR sin ϕ′)3/2

(2.12)

Combining 2.11 and 2.12 gives us the magnetic field

Bx(~r) =
µ0 IRz

4π

∫ 2π

0

cos ϕ′

r 3 dϕ′ (2.13)

By(~r) =
µ0 IRz

4π

∫ 2π

0

sin ϕ′

r 3 dϕ′ (2.14)

Bz(~r) =
µ0 IR
4π

∫ 2π

0

R− x cos ϕ′ − y sin ϕ′

r 3 dϕ′ (2.15)

We have seen in section 2.1.3 that going from one loop to two opposite
placed loops is just a matter of substituting z for z + d and z − d. The
magnetic field at point~r for an anti-Helmholtz configuration with coils of
n number of windings will be

Bx(~r) =
µ0 IRn

4π

∫ 2π

0

(
(z + d)

r 3
+

− (z− d)
r 3
−

)
cos ϕ′ dϕ′ (2.16)

By(~r) =
µ0 IRn

4π

∫ 2π

0

(
(z + d)

r 3
+

− (z− d)
r 3
−

)
sin ϕ′ dϕ′ (2.17)

Bz(~r) =
µ0 IRn

4π

∫ 2π

0

(
1

r 3
+

− 1
r 3
−

)
(1− xR cos ϕ′ − yR sin ϕ′)dϕ′ (2.18)

With

r 3
+ = (x2 + y2 + (z + d)2 + R2 − 2xR cos ϕ′ − 2yR sin ϕ′)3/2 (2.19)

r 3
− = (x2 + y2 + (z− d)2 + R2 − 2xR cos ϕ′ − 2yR sin ϕ′)3/2 (2.20)
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10 Theory

2.1.5 Off-axis Magnetic Field of Elliptical Coils in an AH-
Configuration

Elliptical current loops will have different field lines in the x and y direc-
tion. In figure 2.5 we see that the radius constant R for a circular loop has
taken place for two constants: a and b. The constant a is the distance from
the centre to the ellipse along the x axis, the constant b the distance from
the centre to the ellipse along the y axis.

x

y

b

a

~r′

ϕ′

Figure 2.5: The elliptical loop in the z = 0 plane

The only difference in calculating the magnetic field of the elliptical loop
is that the coordinates of ~r′ now become

~r′ =

a cos ϕ′

b sin ϕ′

0

 (2.21)

The whole derivation is just the same as the circular loop, so we can skip
instantly to the equations for the elliptical coils in an anti-Helmholtz con-
figuration:

10
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2.1 Magnetic Fields 11

Bx(~r) =
µ0 Ibn

4π

∫ 2π

0

(
(z + d)

r 3
+

− (z− d)
r 3
−

)
cos ϕ′ dϕ′ (2.22)

By(~r) =
µ0 Ian

4π

∫ 2π

0

(
(z + d)

r 3
+

− (z− d)
r 3
−

)
sin ϕ′ dϕ′ (2.23)

Bz(~r) =
µ0 In
4π

∫ 2π

0

(
1

r 3
+

− 1
r 3
−

)(
ab− bx cos ϕ′ − ay sin ϕ′

)
dϕ′ (2.24)

Where

r 3
+ = (x2 + y2 + (z + d)2 + a2 cos2 ϕ′ + b2 sin2 ϕ′ − 2ax cos ϕ′ − 2by sin ϕ′)3/2

(2.25)

r 3
− = (x2 + y2 + (z− d)2 + a2 cos2 ϕ′ + b2 sin2 ϕ′ − 2ax cos ϕ′ − 2by sin ϕ′)3/2

(2.26)

Note how substituting both a and b for R gives the same equations as the
circular magnetic fields.

Unfortunately, we have broken the symmetry so much that we can not de-
rive these equations any further, even with a Taylor expansion the equa-
tions will still be troublesome. The only way to calculate the fields quickly
is with computing software.
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12 Theory

2.2 Superconductivity

2.2.1 Characteristics of Superconductors

Superconductors are elements, inter-metallic alloys, or compounds that
conduct electricity with zero resistance below a certain temperature and
external magnetic field.[6]
There are two types of superconductors: type I and type II. Type II usually
have higher critical fields than type I superconductors.

Figure 2.6: Critical magnetic field as a function of temperature for (a) type I su-
perconductors and (b) type II superconductors. [7]

In this experiment two types of conducting wires are being used: a type II
niobium and a type II niobium-titanium. Niobium has a critical tempera-
ture of 9.2 Kelvin [8] and niobium-titanium at 10 Kelvin. [9]

The particle floating in the anti-Helmholtz configuration is made of pure
lead which is a type I and has a critical temperature of 7.3 Kelvin. [10]

2.2.2 Superconductor in a Magnetic Field

The total force on a superconductor in a magnetic field is given by the
equation 2.27 found in ”Local model for magnet-superconductor mechan-
ical interaction: Experimental verification” by E. Diez-Jimenez et al. [11]

~F =

∮
2µ0(~n× ~H)~H dS. (2.27)

12
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2.2 Superconductivity 13

Where the surface integral encloses the surface of the superconducting
particle. The vector ~n is the normal on the surface and ~H is the magnetic
field strength ~H = ~B/µ0 − ~M, where ~B is the extern magnetic field. We
work in vacuum so we assume ~M = 0 which results in a magnetic field
~Bext = µ0~Hext.

Equation 2.27 can then be rewritten as:

~F = − 2
µ0

∮ [
~n||~B||2 − ~B(~n · ~B)

]
dS. (2.28)

2.2.3 Resonance Frequencies of a Sphere

The force on a spherical particle in an anti-Helmholtz configuration with
circular coils has been calculated in the thesis ”Beweging van een supergelei-
dende bol in een anti-Helmholtz-configuratie by T. de Jong and D. Kok.[12]

~F(r, z) = −6πa3µ0n2 I2R4d2

(R2 + d2)5 (rr̂ + 4zẑ) (2.29)

This is equal to the equation of motion of an harmonic oscillator. The
spring constants are:

kr =
6πa3µ0n2 I2R4d2

(R2 + d2)5 and kz =
24πa3µ0n2 I2R4d2

(R2 + d2)5 (2.30)

And we get the omega out of the spring constant by:

ω =

√
k
m

(2.31)

So the resulting omegas are:

ωr = nIR2d

√
6πr3µ0

m(R2 + d2)5 and ωz = 2nIR2d

√
6πr3µ0

m(R2 + d2)5 (2.32)

Where r is the radius of the superconducting sphere.
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13



14 Theory

We see that ωz = 2ωr. This means that the frequency peak for the trans-
lation z frequency is found at two times the frequencies in the x and y
direction.

For the Lead Zeppelin with elliptical coils we can approximate the mag-
netic field as:

~B(x, y, z) = axx̂ + byŷ + czẑ (2.33)

Where we need to compute a, b and c because the Taylor expansion is
analytically hard to do.

Using the same approximations as in the thesis gives us the following
force:

~F(x, y, z) =− 8πr3

3µ0
(a2xx̂ + b2yŷ + c2zẑ) =

− 2V
µ0

(a2xx̂ + b2yŷ + c2zẑ)
(2.34)

And the following frequencies:

ωx = |a| ·
√

2V
µ0m

= |a|
√

2
µ0ρ

ωy = |b| ·
√

2V
µ0m

= |b|
√

2
µ0ρ

ωz = |c| ·
√

2V
µ0m

= |c|
√

2
µ0ρ

(2.35)

Where ρ is the density of lead.

2.2.4 Resonance Frequencies of a Cube

The easiest shape of superconductor to apply equation 2.28 to is a cube
(that does not necessarily mean it is the easiest to solve). The cube has

14
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2.2 Superconductivity 15

edges with a length of 2l and its center at (x′, y′, z′). The faces are in the
same plane as the Cartesian planes.

z

y

x

2l

(x′, y′, z′)

ẑ

x̂

ŷ

Figure 2.7: A cube in Cartesian coordinates.

We start by splitting the integral 2.28 in two parts:

~F = − 2
µ0

[∮
~n||~B||2 dS−

∮
~B(~n · ~B)dS

]
(2.36)

For the magnetic fields we use the approximation from equation 2.33 again.
The front and the back plane (with normal vector x̂ and−x̂) are calculated
first.

The first part becomes:

∮
~n||~B||2 dS =

∮
x̂(a2x2 + b2y2 + c2y2)dS =∫ y=l

y=−l

∫ z=l

z=−l

[
a2(x′ + l)2 + b2y2 + c2z2 − a2(x′ − l)2 − b2y2 − c2z2

]
x̂ dS =∫ y=l

y=−l

∫ z=l

z=−l
4a2x′lx̂ dS = 4a2x′l · (2l)2x̂ = 16a2l3x′ x̂ = 2Va2x′ x̂

(2.37)
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16 Theory

The second integral:

∮
~B(~n · ~B)dS = · · · =

∫∫∫
Bx(~∇Bx)dV =∫∫∫

a2xx̂ dV = (2l)2
∫ x′+l

x′−l
a2xx̂ dx =

2a2l2x̂ · x2
∣∣∣∣x′+l

x′−l
= 8a2l3x′ x̂ = Va2x′ x̂.

(2.38)

A more detailed derivation can be found in the thesis of T. De Jong and D.
Kok [12]

Combining both integrals gives the solution of the force in x direction:

Fx(x′) = − 2
µ0

(2Va2x′ −Va2x′) = −2Va2x′

µ0
(2.39)

The total force will be:

~F(x, y, z) = −2V
µ0

(a2xx̂ + b2yŷ + c2zẑ) (2.40)

Which is exactly the same as equation 2.34, meaning that a superconduct-
ing sphere and cube both have the same frequencies.

We can also see that this is the same force acting on a superconducting
block with different lengs l1, l2, l3. The integrand in the first integral is
only a constant with a result depending only on the volume. In the second
integral we can replace the limits with x′ + l1 and x′ − l1 and see that the
result stays the same.

2.2.5 Mixing Frequencies

The force can be approximated linearly when it has a small deviation , but
when we move further from the origin, other polynomials and crossterms

16

Version of August 18, 2015– Created August 18, 2015 - 10:34



2.2 Superconductivity 17

become important in the expansion. The complete expansion should look
like:

Fx(x, y, z) =− axx− axxx2 − · · · − ayy− ayyy2 − · · · − azz− azzz2 − . . .

− axyxy− axzxz− ayzyz− axxyx2y · · · =

−
∞

∑
nx=0

∞

∑
ny=0

∞

∑
nz=0

a(nx, ny, nz)xnx yny znz

(2.41)

The solutions are not linear any more. This section and 2.2.6 are about
these non-linearities.

In a Fourier spectrum we sometimes find the following frequencies as
shown below:

Amplitude

Frequency0

f1 f2

f2 − f1 f2 + f1

Figure 2.8: Two frequencies with their corresponding mixing frequencies.

The frequencies at f2 + f1 and f2− f1 are called mixed frequencies and are
caused by two signals multiplied together.

Let us assume two signals x(t) and y(t) with the condition f2 > f1:

x(t) = A cos(2π f1t) (2.42)
y(t) = B cos(2π f2t). (2.43)

The product of the two signals become:

x(t) · y(t) = AB cos(2π f1t) cos(2π f2t). (2.44)
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18 Theory

For the Fourier Transform we can use a little trick called the ”Convolution
Theorem”. This theorem states that the Fourier transform of a product is
equal to the convolution of the Fourier transform of each component:

F (x(t) · y(t)) = F (x(t))⊗F (y(t)) (2.45)

The convolution is an important tool in signal processing and is given by:

X( f )⊗Y( f ) =
∫ ∞

−∞
X( f̃ )Y( f − f̃ )d f̃ . (2.46)

Whereby the capital X is used from now on for the Fourier transform.

Anyhow, we still need to Fourier transform both signals apart, but this
should be easy because the Fourier transform of a cosine is just two delta
peaks.

∫ ∞

−∞
cos(2π f1t)e−2πi f t dt =

1
2

[
δ( f − f1) + δ( f + f1)

]
(2.47)

The Fourier Transform of both signals then become:

X( f ) = A
∫ ∞

−∞
cos(2π f1t)e−2πi f t dt =

A
2

[
δ( f − f1) + δ( f + f1)

]
(2.48)

Y( f ) = B
∫ ∞

−∞
cos(2π f2t)e−2πi f t dt =

B
2

[
δ( f − f2) + δ( f + f2)

]
. (2.49)

Putting this in the convolution integral 2.46 gives:

X( f )⊗Y( f ) =
AB
4

∫ ∞

−∞

[
δ( f̃ − f1) + δ( f̃ + f1)

]
[

δ( f − f2 − f̃ ) + δ( f + f2 − f̃ )
]

d f̃ . (2.50)

We can split this integral into two parts:

18
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2.2 Superconductivity 19

AB
4

∫ ∞

−∞

[
δ( f̃ − f1) + δ( f̃ + f1)

]
δ( f − f2 − f̃ )d f̃ (2.51)

+
AB
4

∫ ∞

−∞

[
δ( f̃ − f1) + δ( f̃ + f1)

]
δ( f + f2 − f̃ )d f̃ . (2.52)

Using the property of the Dirac-delta:∫ ∞

−∞
X( f̃ )δ( f − f̃ )d f̃ = X( f ), (2.53)

the answer to the whole Fourier Transform becomes:

AB
4

[
δ( f − f1 − f2) + δ( f + f1 − f2) + δ( f − f1 + f2) + δ( f + f1 + f2)

]
.

(2.54)

We only want to look at the positive frequencies. We also stated that f2 >
f1, so the only interesting part then becomes δ( f − f1− f2)+ δ( f + f1− f2).
This says that two peaks will be shown, one at f2 + f1 and one at f2 − f1.

2.2.6 Double Frequencies

In the Fourier Spectrum of the spherical Lead Zeppelin with the circular
coils we also find double frequencies. We think that these arise from the
back action of the connected coils.

Amplitude

Frequency0

f0

2 f0

Figure 2.9: A frequency with its corresponding double frequency.

Version of August 18, 2015– Created August 18, 2015 - 10:34

19



20 Theory

Double frequencies are caused by the signal squared. The procedure of
getting the Fourier transform is almost the same as above so some parts
will be shortened.

We start with one signal

x(t) = A cos(2π f0t) (2.55)

And multiply it with itself

x(t)2 = A2 cos2(2π f0t) (2.56)

We will use the convolution theorem 2.45 again but now with the signal
itself

F (x(t)2) = X( f )⊗ X( f ) (2.57)

By using the Fourier transform of a cosine, which was given in 2.47, we
can find the answer to the convolution integral.

A2

4

∫ ∞

−∞

[
δ( f̃ − f0) + δ( f̃ + f0)

][
δ( f − f0 − f̃ ) + δ( f + f0 − f̃ )

]
d f̃ =

A2

4

[
δ( f̃ − 2 f0) + δ( f ) + δ( f ) + δ( f + 2 f0)

]
=

A2

4

[
2δ( f ) + δ( f − 2 f0) + δ( f + 2 f0)

]
(2.58)

The δ( f − 2 f0) indicates that it shows a peak at 2 f0.

20
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Chapter 3
Materials and Methods

3.1 The Circuit

3.1.1 The Scheme

The circuit being used for this experiment is shown in figure 3.1. Al-
most all the wires are type II superconducting niobium-titanium, which
are stronger wires than niobium so easier to work with. Only the shortcut
running through the big coil is niobium.

The number correspond to the following sources and meters:
1 - Voltage meter.
2 - Current source.
3 - Voltage source for the big coil.
4 - An extra pair of wires which can be used for improvements later, there-
fore not visible in the figure.
5 - Function generator.

The dashed box is the switch with the shortcut running through. The
essence of this switch will be explained in the next subsection. The current
source provides a current through the shortcut and elliptical coils. The
voltage meter measures the voltage over this part. In between the two el-
liptical coils we see a pick-up loop connected to a SQUID. This loop picks
up the flux running through and the SQUID, a sensitive magnetometer,
converts it to data. The excitation loop is connected to a function gener-
ator and can drive the lead particle. Finally, the Zeppelin can be seen in
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22 Materials and Methods

between.

The part of the circuit which stays at room temperature is in the pink box.
The part which goes in the barrel of helium at 4.2 Kelvin, is given in the
blue box.

Figure 3.1: The circuit used in the project.

3.1.2 The Switch

We want to enforce a steady current through the elliptical coils. However,
when we connect the current source directly to the elliptical coils, the coils
will pick up the noise from the current source and the wires outside the
coils. Therefore it would be better to have a current flow only through loop

22
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3.1 The Circuit 23

of the coils with the source cut off. This loop can be seen in the blue part
of figure 3.1 and consists of the elliptical coils and the blue wire through
the big coil.

The switch consists of a big coil which can reach a magnetic field above
the critical magnetic field of the niobium wire running through.

The shortcut and elliptical coils are parallel connected, so they both receive
the same voltage.

V = IRR = −L
dIL

dt
(3.1)

Where R is the resistance of the shortcut wire and L the inductance of
both coils. This is a first order differential equation so the solution for the
current through the coils, with condition IL(0) = 0, is:

IL = IT(1− e−
R
L t) (3.2)

With IT as total current IT = IR + IL.

When the switch is turned off, the resistance R through the shortcut is
zero. This means that IL = 0 and all the current will run through the
shortcut. When the switch is turned on, the shortcut will become a wire
with a normal resistance and we can see a charge build-up in the elliptical
coils.

We can first let the charge build up in the elliptical coils. When they are al-
most loaded and have enough electrical energy, we can turn off the switch.
Because the wires running back to the source have a higher resistance, the
energy built up in the coils will release through the zero resistance short-
cut. This results in an independent current through the RL-circuit, thus
the current source can be turned off.

For this to happen, we have to be sure that the magnetic field created by
the big coil is higher than the critical field of niobium. The critical field
for niobium to become normal conducting is at 400 mT in vacuum. The
on-axis magnetic field of a solenoid is calculated in Martin’s thesis ”The
Lead Zeppelin Project” [4]:

B =
nµ0 I

2r
(3.3)
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For r the middle between the outer and inner radius of the coil can be
chosen. A quick estimation with constants: I = 0.5A, r = 8mm, B =
400mT gives n ≈ 104.

One may see that the coils are connected in series. This is because the
moving lead particle induces an electromotive forces in the coils which
changes the magnetic field. To keep the field constant, it is connected in
series so every induced electromotive force in one coil is equally given to
the other coil to keep the sum of the forces zero.

3.1.3 Twisting Wires

To keep the incoming flux as minimum as possible, the wires are twisted
(see section 2.1.1). Some wires can only be twisted by hand but for long
wires there is a little trick. Start by cutting off a wire twice as long. Put
equal weights on both ends of the wire.

Figure 3.2: The weights used for the ends

Determine the middle of this wire and hang it from somewhere high. One

24
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3.1 The Circuit 25

weight should just be above the other. Twist the top part of the wire and
the weights will start to follow in a circular motion. After some twists, the
weights have gained a momentum and the wire will start twisting on its
own. The reason for having the weights not on the same height is that they
will keep spinning longer in the end.

When the wires are done spinning, glue can be applied to the whole wire
to make it stronger. Do not take the wire off immediately, try to keep it
as straight as possible. When the tension on the wire releases, curls will
sometimes occur like the figure below.

Figure 3.3: The telephone curl effect on a wire.

Hold the big loop of the curl and twist it in the other direction until it
does not appear any more. It is important not to pull the wire straight
because after the curls have formed, they will cause sharp bends in the
wire which can affect the conductivity. The bends will also cause trouble
when inserting the wires in a teflon sock, which offers protection from
breaking the wires when pulled.
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26 Materials and Methods

3.2 The Elliptical Coils

3.2.1 Winding the Coils

In the circuit we see two opposite placed coils which are connected in se-
rie. The blueprint for one holder of the coils is shown below in figure 3.4.
These holders are made of plastic.

Figure 3.4: A holder

We see that the elliptical base has a diameter of 4 mm and 2 mm, a niobium-
titanium wire is wounded up 255 times around this part. The diameter of
the whole coil is 7 mm. The dimensions of the length do not really matter.
There is a cave at the top where we can trap the lead particle when the
two coils are placed against each other. Around this cave we see a groove
where the pick-up loop can be placed. The groove leads to the outside,
which is not shown in the picture. The wire is made of niobium and picks
up the flux of the field. This wire eventually leads back to the SQUID.
Furthermore, we see a slit around the top where we will glue in a excita-
tion loop which can give a driving force on the lead particle. We only need
one pick-up loop and one excitation loop so we can give one coil the pick-
up loop while the other one has the excitation loop. This way we make
sure that they will be less in each others way.

26
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3.2 The Elliptical Coils 27

The windings are made by placing the holder in a rotating device as seen
in figure 3.5 which can be spun by a motor or by hand. Spinning by hand
gives more control but requires more effort. Winding the coil becomes
easier when a microscope is used.

Figure 3.5: The holder in the rotating device. One end of the wire is taped to the
rotator and the other is held with tension from the wire coil.

The coil where the niobium-titanium wire comes from should be able to
freely rotate without much resistance and should be mounted in a place
where the wire to the holder does not become obstructed.
The wire is rolled out to the holder. Around 10 cm from the beginning of
the wire, a part is glued to the corner which is closest to the long part of
the holder, the left corner in figure 3.5. We can rotate the device, but it is
important to remember which way the rotating occurs because the second
holder should also be rotated in the same direction. The wires should be
as tight as possible. A needle can be used but be aware that the sharp
point does not scrape the coating of the wire. After a few windings, some
glue can be applied on top to make sure the wire stays in place. This is
repeated until the coil has 255 windings. The wire should come out at
the left corner and be cut off at length of around 10 cm. These two wires
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should be twisted together. The process for the second coil is exactly the
same.

One coil has the pick-up loop while the other gets the excitation loop.
Winding the excitation loop is just a case of fitting a niobium-titanium
wire around the top and glueing, leaving ends of 10 cm. The pick-up
loop requires more work: it is made of more fragile 50 µm niobium wire
and winded around the smaller loop around the cave. The excitation loop
wires needs to be twisted with itself and the pick-up loop wire also with
itself.
Finally, a layer of phenol is applied to keep the coil really firm.

If a small mistake occurs, the glue can be dissolved using acetone. The
remaining glue could be scraped off with the needle. If there is still too
much glue, the holder can be placed in a beaker with acetone and shaken
thoroughly.

3.2.2 Assembling the Coils

The two coils are assembled in a special case as seen below in figure 3.6.
We can neglect the green part. It is necessary that the long side of the
ellipses are placed along the same direction without any deviation. The
grooves where the pick-up loop comes out can be seen from the outside.
These grooves both run out at the long side of the coils and can therefore
be used to calibrate the ellipses. The grooves should be on top of each
other.

Figure 3.6: The assembly for the coils.

28
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3.2 The Elliptical Coils 29

In figure 3.6 we can see a circular cut out part at the right side of the as-
sembly. A similar cut can be seen on the other side on the right of the
assembly. The niobium-titanium wires should run along one cut and the
niobium pick-up wire along the other cut.

The whole assembly is placed in a niobium container with the wires run-
ning out as seen in figure 3.7.

Figure 3.7: The metal container with the wires running out marked ”Boven” and
”Onder”.

The superconducting Nb container encloses a Faraday cage and keeps the
assembly free from EM noise.
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3.3 The Big Coil

3.3.1 The Machine

A machine (figure 3.8) is used for winding the big coil. This is because the
big coil requires a lot more windings: around 10.000. This was calculated
with equation 3.3.

Figure 3.8

The machine consists of:

A wire coil
This is the white coil on top where the niobium-titanium wire runs off. Be
sure that it still has enough wire: the big coil needs around 500 m!

30
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3.3 The Big Coil 31

The big coil
The big coil is the coil in the middle of the figure where the light shines
upon and is made of plastic.
The dimensions of the big coil are:
length = 18mm, inner radius = 4.5mm and the outer radius = 11mm. The
big coil also has a hole for the shortcut to run through which has a radius
of 1.5mm. The dimensions are chosen such that with wire of a diameter of
120µm, n = 8125 can be reached.

A leading wheel
The wire from the wire coil runs through a leading wheel, which goes back
and forth to spin the wire evenly over the big coil. The leading wheel can
be seen just above the big coil. The back and forth motion of the leading
wheel can be turned off on the machine. The velocity at which is goes is
determined by setting the diameter of the wire. The boundaries at which
it goes back and forth is limited by adjustable locks on each side.

A microscope
The microscope can be seen on the left side and is directed at the big coil.

A counter
The counter is on the left side of the green machine and gives the count in
numbers. Be sure to set the counter to zero when you start with wiring.
In this case, the counter gives one count every two windings so the value
must be doubled to get the true number of windings.

A pedal
The pedal is on the ground and turns on the rotating device. The velocity
depends on how far the pedal is pushed in. The maximum velocity is
adjustable on the machine.

3.3.2 Making the Big Coil

Locking something in the rotating device works the same as locking a drill
bit into a drill machine. So a drill bit has to be found which can fit in the
hole of the big coil. To make it tight, we can use teflon tape around the
drill bit.

Start with a segment glued to the side of the coil away from the drill. Tape
the rest of the wire to the outside radius of the big coil. The reason for not
taping the wire to the other side is because the wire can break when the
machine keeps spinning but the big coil stops, which occurred in several
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cases.
Try to keep everything as tight as possible, especially the sides. After a
while this becomes impossible but how tighter it is in the beginning, how
easier the rest of the winding becomes.

Figure 3.9: A picture of the big coil taken to the microscope, hence the black circle
on the bottom. Note how tightly the wire is stuck together.

A way to keep it tight is to let the leading wheel run a bit behind the posi-
tion of the wire on the coil and have some tension on the wire. The tension
causes the wire to fall tightly to the side of the winding before. Glue can
applied every once in a while to keep it in place, but the downside in this
case is that the wire becomes harder to use when everything needs to be
done again.

In this experiment the wire ran out at 6828 windings. We can look at the
current needed to provide a field higher than the critical field of niobium.

32
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3.3 The Big Coil 33

Equation 3.3 rewritten gives:

I =
2Bcritr

µ0n
≈ 0.723A. (3.4)

This is quite a high current, and can result in the experiment heating up.
Experiments have to be made to make sure that this does not happen.

A layer of Stycast is put over the wires to make it stable. The Stycast needs
a day to dry at room temperature. This process can be accelerated using a
blow-dryer.
The ending of both wires should also be twisted and put in a teflon sock.
This sock should then be hold on one side of the big coil with a thread. Let
the big coil stand on the other side and apply a layer of Stycast over the
side with the teflon sock. Be careful that no Stycast comes into the hole
where the niobium wire goes through, we can close this hole off with a
cotton bud. The same procedure is done on the other side.
Put the coil back on the machine and let it run at a low velocity with a big
layer of Stycast all around it. This amount of Stycast is necessary to make
sure the coil does not explode when it reaches a temperature of 4 Kelvin.

The big coil now looks like a black barrel with a clear hole in the middle
and a teflon sock with wires running out of it.

Figure 3.10: The final product of the big coil

Version of August 18, 2015– Created August 18, 2015 - 10:34

33



34 Materials and Methods

3.4 The Lead Particles

The lead particles are made by scraping off a little bit from a bigger block
of lead. Gloves can be worn to protect against lead dust on the hands. The
scraped off lead is put on a thick piece of metal. This metal will become
really hot so it must be placed well. With the help of a Dremel burner we
heated up the lead scrape until it starts to melt a bit. The burner should
not heat the scrape too long, there must be small pauses between every
heating.

Figure 3.11: The Dremel burner

The scrape melts faster when it is occasionally turned around. Eventually
the scrape will turn into a round ball.

In this experiment five balls are made: 2 small sized and 3 large sized as
can be seen in figure 3.12.

0.5mm

Figure 3.12: The balls seen under a microscope.

34
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3.4 The Lead Particles 35

The wire running underneath the balls is a 50 µm niobium wire. The di-
ameter, and therefore the mass can be approximated with the picture. We
look at how many times the wire fit in the balls by zooming in the picture.

The volume is calculated by V = 4
3 πr3 = 1

6 πd3.
The mass is calculated by m = ρV where ρ = 11.34 g/cm3.

n times width wire d (cm) V (cm3) m (g)
small balls 4.5 2.25·10−2 5.96·10−6 6.76·10−5

large balls 6 3.00·10−2 1.41·10−5 1.60·10−4

The balls are given different shapes with the help of pliers until they look
like the figure below.

0.7mm

Figure 3.13: The balls after giving dents

From left to right they got the shape by:
2 light dents - 2 hard dents - 2 light dents - 3 light dents - 3 hard dents.
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3.5 Preparing the Dipstick

The dipstick is a long stick with a plate on the end where the experiment
will be mounted. The stick goes in a barrel with helium-4 where it will
reach a temperature of 4 Kelvin, therefore below the critical temperature
of niobium-titanium, niobium and lead.

We begin by making two cables which send data back and forth through
the stick. One cable is for the SQUID and connects to a 14 pins female
LEMO on the top, the other cable ensures data flow from the coils and
connects to a 24 pins Fischer.

Below we see the 24-pins Fischer with the corresponding data numbers.
We want to solder 10 niobium-titanium wires to the numbers 1 to 10 but it
becomes easier if we prepare the wires first.

Figure 3.14: 24 pins Fischer LEMO

36
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3.5 Preparing the Dipstick 37

One wire with a length a bit longer than double the dipstick is twisted
with the method used in section 3.1.3. The wire is cut in the middle so
it becomes two wires. Enter these two wires through a teflon sock. Any
bends will make it harder for the wire to be entered through the sock.
Another way to get them through is by soldering a stronger wire to the
two wires and running this wire first through the sock. The two wires can
then be pulled through when the stronger wire is starting to exit.
We end with five teflon pairs. The pairs are labeled 1 to 5 with the label
close to one end.

Solder the wires with the label ’1’ to the pockets 1 and 2, label ’2’ to pockets
3 and 4 etc. The labels need to be close to the other end of the wires.

We make sure they conduct by measuring the resistance. The ten wires are
run through a metal coating to ensure a Faraday cage. The coating has the
same length as the tube of the dipstick, but because the wires are longer,
the wires will stick out with the labels on this end. To ensure stability, we
put a layer of Stycast around the coating where it makes contact with the
Fischer. We put silver coating around this to close the Faraday cage.

The second cable can be bought to fit from the SQUID to a 14-pins LEMO.

Run these two cables first through the dipstick so they end at the plate.
The labels need to be visible here.

Figure 3.15: The wires with their corresponding labels.
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We then mount the elliptical coils on the plate with a special design with
screws the tube to the plate.

Figure 3.16: The wires are not in this picture because we did it the other way
around and ended up taking apart everything because one cable did not fit
through.

The wire which runs from the pickup coil in between the elliptical coils
to the SQUID needs to be put in a teflon sock first, and then through a
lead tube which fits tightly around the sock. To cut the lead tube, be sure
to have a thicker wire running through so the pressure will not close the
ends together.

We can put the squid on the plate to see where it fits.

Figure 3.17: The elliptical coils are put some notches back to make room for the
SQUID.

38
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3.5 Preparing the Dipstick 39

The big coil is put on this plate next to the SQUID and held using teflon
tape.

Everything is spot welded together using niobium as the connector be-
tween the wires and Kapton tape around to ensure everything stays in
place. The labels correspond to the numbers in the scheme (figure3.1).

The wire which goes through the big coil is spot welded as seen in the
circuit (figure 3.1). This wire is bend in the middle and twisted. After this
it is then put through the big coil. This way we can easily remove the wire
if there occur any problems.

The SQUID cable is fit into the SQUID. Layers of teflon tape are wound up
around the plate until everything stays tightly together.

Figure 3.18: The experiment taped together with teflon tape. This way everything
stays tight together.

The last thing to do is to slip a cone around the plate, this way we can
suck the experiment until it creates a vacuum. Some high-vacuum grease
must be applied at the point where it makes contact with the cone. The
end product is shown in figure 3.19.
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Figure 3.19: The final product of the dipstick.

The only work to do on the other side is to assemble a manometer.

40
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Chapter 4
Numerical Calculations and
Predictions

4.1 The Magnetic Field

The codes are written in Mathematica. They are meant for the elliptical
coils, but can be used for the circular coils when a and b are made equal.
The equations for the magnetic field are exactly the same as 2.22, 2.23 and
2.24.

The constants we use are close to the correct constants of the experiment.

mu0 = 4*Pi*10^(-7) (*The magnetic permeability of air*);

i = 0.25 (*The current in Ampere*);

a = 2 (*Distance between origin and ellipse along x in mm*);

b = 1 (*Distance between origin and ellipse along y in mm*);

d = 1 (*Distance between the origin of the ellipse and z=0 in mm*);

n = 255 (*Number of windings*);

The reason why millimeters are used instead of the SI-Unit ”meter” is be-
cause Mathematica gives much better streamplots when higher numbers
are used.

The code for the magnetic field of two elliptical coils in an AH-configuration
are given below. We use NIntegrate instead of Integrate because Integrate
tends to calculate the integration in mathematical form while NIntegrate
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calculates everything numerically, and is therefore quicker.

bx[x_?NumericQ, y_?NumericQ, z_?NumericQ] :=

mu0*i*b*n/(4*Pi)*

NIntegrate[((z +

d)/(x^2 + y^2 + (z + d)^2 + a^2*Cos[t]^2 + b^2*Sin[t]^2 -

2*a*x*Cos[t] - 2*b*y*Sin[t])^(3/2) - (z -

d)/(x^2 + y^2 + (z - d)^2 + a^2*Cos[t]^2 + b^2*Sin[t]^2 -

2*a*x*Cos[t] - 2*b*y*Sin[t])^(3/2)) Cos[t], {t, 0, 2 Pi}]

(*The x component of the magnetic field*)

by[x_?NumericQ, y_?NumericQ, z_?NumericQ] :=

mu0*i*b*n/(4*Pi)*

NIntegrate[((z +

d)/(x^2 + y^2 + (z + d)^2 + a^2*Cos[t]^2 + b^2*Sin[t]^2 -

2*a*x*Cos[t] - 2*b*y*Sin[t])^(3/2) - (z -

d)/(x^2 + y^2 + (z - d)^2 + a^2*Cos[t]^2 + b^2*Sin[t]^2 -

2*a*x*Cos[t] - 2*b*y*Sin[t])^(3/2)) Sin[t], {t, 0, 2 Pi}]

(*The y component of the magnetic field*)

bz[x_?NumericQ, y_?NumericQ, z_?NumericQ] :=

mu0*i*n/(4*Pi)*

NIntegrate[(1/(x^2 + y^2 + (z + d)^2 + a^2*Cos[t]^2 +

b^2*Sin[t]^2 -

2*a*x*Cos[t] - 2*b*y*Sin[t])^(3/2) -

1/(x^2 + y^2 + (z - d)^2 + a^2*Cos[t]^2 + b^2*Sin[t]^2 -

2*a*x*Cos[t] - 2*b*y*Sin[t])^(3/2)) (a*b - a*y*Sin[t] -

b*x*Cos[t]), {t, 0, 2 Pi}] (*The z component of the magnetic

field*)

42
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It would be nice to look at the symmetric properties of the elliptical fields.
We can therefore plot the field in a y=0 and x=0 plane.

StreamPlot[{bx[x, 0, z], bz[x, 0, z]}, {x, -3, 3}, {z, -3, 3},

StreamColorFunction -> "Rainbow",

PlotLabel -> "Magnetic Field Lines",

FrameLabel -> {"x(mm),", "z(mm)"},

PlotLegends ->

BarLegend[Automatic,

LegendLabel -> "Magnetic Field Intensity (kT)"]] (*Streamplot in

y=0 plane*)

StreamPlot[{by[0, y, z], bz[0, y, z]}, {y, -3, 3}, {z, -3, 3},

StreamColorFunction -> "Rainbow",

PlotLabel -> "Magnetic Field Lines",

FrameLabel -> {"y(mm)", "z(mm)"},

PlotLegends ->

BarLegend[Automatic,

LegendLabel -> "Magnetic Field Intensity (kT)"]] (*Streamplot in

x=0 plane*)

This code gives the figures 4.1(a) and 4.1(b).

(a) Magnetic field lines in the y=0
plane

(b) Magnetic field lines in the x=0
plane

Figure 4.1
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We can clearly see the radii1 of the current loop. In the y=0 plane the upper
current loop shows a radius of 2 and in the x=0 plane a radius of 1. Because
we work in millimeters, the unit of the magnetic field is in kT.

The graphs show some problems: anti-symmetry around (0,0) in both fig-
ures 4.1(a) and 4.1(b). This is probably because of the way how Mathemat-
ica calculates the streams. The way the upper half of the function interacts
with the lower half around (0,0) can force Mathematica to take arbitrary
values. We can look if this is true by plotting with different limits.

Figure 4.2: The limits are changed: x = {-1, 1} and z = {-2,0}

We see that the function is now symmetric and the anti-symmetry is caused
by Mathematica.

1The meaning of the radius of an ellipse can differ. In this case we mean the distance
a and b.
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4.1 The Magnetic Field 45

To see the elliptical field in the z=0 plane clearly, we can make a vectorplot.

VectorPlot[{bx[x, y, 0], by[x, y, 0]}, {x, -3, 3}, {y, -3, 3},

VectorColorFunction -> "Rainbow",

PlotLabel -> "Magnetic Field Vectors",

FrameLabel -> {"x(mm)", "y(mm)"},

PlotLegends ->

BarLegend[Automatic, LegendLabel -> "Field Intensity (kT)"]

(*Vector plot in the z=0 plane*)]

With its corresponding figure:

Figure 4.3: The largest vectors are close to the shape of the elliptical coils

We see that in the middle it has no magnetic field. This is a property of the
anti-Helmholtz configuration. The potential is lowest at this point so the
particles tend to stay as close as possible to this point.

A 3D Plot can also be made of the magnetic field. Unfortunately, there is
no 3D streamplot function in Mathematica. We can use a 3D vector plot
but this function scales the vectors to the vector with the highest value. If
we look at figure 4.3 we see that it has large red vectors around the ellipse
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and small vectors on the side of the graph. The big difference between
values of the vectors causes the 3D plot to act chaotically.
Also, the experiment takes place around the origin. So for the 3D plot it is
better to take values limits close to the origin.

VectorPlot3D[{bx[x, y, z], by[x, y, z], bz[x, y, z]}, {x, -0.8,

0.8}, {y, -0.8, 0.8}, {z, -0.8, 0.8},

VectorColorFunction -> "BlueGreenYellow",

PlotLabel -> "Magnetic Field Vectors",

AxesLabel -> {"x(mm)", "y(mm)", "z(mm)"},

PlotLegends ->

BarLegend[Automatic, LegendLabel -> "Field Intensity (kT)"]] (*3D

Vector plot*)

Figure 4.4: A three dimensional plot of the field close to its zero potential.

In the 3D plot we see how the magnetic fields build up around the origin.
How further we go, how intenser the magnetic field gets.

46

Version of August 18, 2015– Created August 18, 2015 - 10:34



4.2 Approximating the Magnetic Field 47

4.2 Approximating the Magnetic Field

The constants are converted to SI-units so the magnetic field is calculated
in Tesla. This is convenient because the magnetic field is going to be nu-
merically approximated.

mu0 = 4*Pi*10^(-7) (*The magnetic permeability of air*);

i = 0.25 (*The current in Ampere*);

a = 2*10^-3 (*Distance between origin and ellipse along x in m*);

b = 10^-3 (*Distance between origin and ellipse along y in m*);

d = 10^-3 (*Distance between the origin of the ellipse and z=0 in

m*);

n = 255 (*Number of windings*);

ds = 10^-5 (*The infinitesimal length for the derivatives*);

The code for the plots of the magnetic fields is shown below.

Plot[bx[x, 0, 0], {x, -10^-3, 10^-3},

PlotLabel -> "Value Magnetic Field", AxesLabel -> {"x(m)",

"Bx(T)"}] (*The x-component of the magnetic field*)

Plot[by[0, y, 0], {y, -10^-3, 10^-3},

PlotLabel -> "Value Magnetic Field", AxesLabel -> {"y(m)",

"By(T)"}] (*The y-component of the magnetic field*)

Plot[bz[0, 0, z], {z, -10^-3, 10^-3},

PlotLabel -> "Value Magnetic Field", AxesLabel -> {"z(m)",

"Bz(T)"}] (*The z-component of the magnetic field*)

This code creates three plots with the components of the magnetic field to
their corresponding directions. These are the plots needed to look at the
linearities of the field around the origin. If they are linear enough, we can
safely calculate the polynomial constants. The plots of the code are shown
below:
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(a) (b)

(c)

Figure 4.5: The magnetic fields with the same limits as the sphere in which the
Zeppelin can move.

At the edges we can see the slope decreasing which indicates a third de-
gree polynomial. However, for the following calculations we assume that
the particle stays close to the origin and can therefore be approximated
with a first degree polynomial as shown in equation 2.33).

These constants are found by taking the derivative of the function at their
origins. The derivative is calculated by:

a1 := (bx[ds, 0, 0] - bx[-ds, 0, 0])/(2*

ds) (*The derivative of bx to x*)

b1 := (by[0, ds, 0] - by[0, -ds, 0])/(2*

ds) (*The derivative of by to y*)

c1 := (bz[0, 0, ds] - bz[0, 0, -ds])/(2*

ds) (*The derivative of bz to z*)

The 1 indicates the slope constants, because a and b are already defined
for the elliptical properties.
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4.2 Approximating the Magnetic Field 49

And gives the following slopes:

In[228]:= {a1, b1, c1}

Out[228]= {7.90315, 24.6639, -32.567}

The resulting magnetic field will then be:

~B(x, y, z) = 7.90xx̂ + 24.66yŷ− 32.567zẑ. (4.1)

Remarkable is how the absolute of the slope in the z direction is the sum of
the other two slopes. This is explained by one of the Maxwell’s equations,
namely:

~∇ · ~B = 0 (4.2)

Which gives:

∂

∂x
a1x +

∂

∂y
b1y +

∂

∂z
c1z = a1 + b1 + c1 = 0 (4.3)
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4.3 Resonance Frequencies

4.3.1 Translational Frequencies

The force components of a superconducting sphere is given by the code
below. The forces are calculated and given by equation 2.34.

forcex[x_] := -(8*Pi r^3)/(3*mu0)*a1^2*

x (*Force in the x direction*)

forcey[y_] := -(8*Pi r^3)/(3*mu0)*b1^2*

y (*Force in the y direction*)

forcez[z_] := -(8*Pi r^3)/(3*mu0)*c1^2*

z (*Force in the z direction*)

The spring constants are given by:

kx := (8*Pi*r^3)/(3*mu0)*a1^2

(*Spring constant in the x direction*)

ky := (8*Pi*r^3)/(3*mu0)*b1^2

(*Spring constant in the y direction*)

kz := (8*Pi*r^3)/(3*mu0)*c1^2

(*Spring constant in the z direction*)

The constants given above will give the following spring constants:

In[156]:= {kx, ky, kz}

Out[156]= {0.00124919, 0.0121662, 0.0212122}

As expected, the spring constants become higher in the order kx < ky < kz.
This is logical because the superconductor gets more pushed back in areas
where the density is larger. Since the ellipse lies along the x axis, we expect
it to push harder in the shorter y direction than the longer x direction.
The magnetic field increases the most when we move along the z axis and
therefore we expect this to have the highest spring constant.
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4.3 Resonance Frequencies 51

We get the frequency out of the spring constant by:

f =
1

2π

√
k
m

(4.4)

With the corresponding code:

fx := 1/(2*Pi)*Sqrt[kx/m] (*frequency in the x direction*)

fy := 1/(2*Pi)*Sqrt[ky/m] (*frequency in the y direction*)

fz := 1/(2*Pi)*Sqrt[kz/m] (*frequency in the z direction*)

And at last, the resulting frequencies are:

In[203]:= {fx, fy, fz}

Out[203]= {10.2701, 32.0506, 42.3206}

We also see here that the frequency in the z direction is the sum of the
other two frequencies. This is explained by the fact that the slope of the
magnetic field in the z direction is the sum of the other two slopes as seen
in 4.3.

We take the z frequency from equation 2.35 and rewrite it:

fz =
|c|
2π

√
2

µ0ρ
=
|a + b|

2π

√
2

µ0ρ
=
|a|
2π

√
2

µ0ρ
+
|b|
2π

√
2

µ0ρ
= fx + fy (4.5)

And we see that the translational z frequency is indeed the sum of the
other translational two frequencies.
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4.3.2 Rotational Frequencies

Unfortunately, we have not been able to find the rotational frequencies.
Nonetheless we can make assumptions on how to find these.

We can calculate the magnetic dipole moment by using the equation:

~F = ∇(~B · ~m). (4.6)

The magnetic dipole moment was also calculated this way in the thesis of
T. De Jong and D. Kok [12], however there will only be a magnetic dipole
moment when it is off-axis. Further calculations with these off-axis results
will be difficult.

The next step is to calculate the torque exerted on the particle:

~τ = ~m× ~B. (4.7)

The work the torque does is given by the integral:

W =

∫ θ2

θ1

τ dθ, (4.8)

which is equal to the energy:

ER =
1
2

Iω2. (4.9)

Where I is the moment of inertia. The ω will be the rotational frequency.
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Chapter 5
Results and Discussion

5.1 The Lead Zeppelin Experiment

The whole dipstick for the new asymmetrical Lead Zeppelin is now fin-
ished. All the components are made to fit in the dipstick. The dipstick is
airtight and gives no problems when sucking vacuum.

A lot of time was put in the big coil. The wire kept breaking and glue was
accumulating on the wire which made it harder to wind. Optimal would
be to have around 10.000 windings, but 6828 should in theory be enough.

Furthermore, five lead balls have been made for following experiments.
These should be enough because they all have different properties.

The wires running through the big coil and elliptical coils have been mea-
sured and show a resistance in the right range. The resistance of the other
wires have also been tested and they are all conducting with sensible re-
sistances.

An effort has been made to make the components as invulnerable as pos-
sible. All the wires are put in teflon socks. The wires are then bounded
together so no wire gets hooked behind something.
The Lead Zeppelin has three Faraday cages to reduce the EM noise.

The dipstick was carefully placed in a barrel of helium-4. The manome-
ter showed a pressure of 10−3 millibar. The SQUID and voltage meter
showed indications that the dipstick was not cold enough, so helium has
been added to the inside of the dipstick. The pressure increased to 0.1
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millibar. This did not make any difference.

The results on the computer showed that the voltage meter measures a
charge build-up when the switch was still turned off. This means that the
current flows through the elliptical coils instead of the shortcut. We have
replaced the shortcut with a new niobium wire but the results stay the
same. It could be the case that the shortcut is not cold enough to super-
conduct, but the reason has not been found.

5.2 Numerical Results

The magnetic field of the elliptical coils with I = 0.25A is approximated
by:

~B(x, y, z) = 7.90xx̂ + 24.66yŷ− 32.567zẑ. (5.1)

With resulting frequencies: fx = 10.2701 Hz, fy = 32.0506 Hz and fz =
42.3206 Hz.

When we calculate the field for circular coils with a radius of
√

ab, so the
areas stay the same, we get:

~B(x, y, z) = 15.42xx̂ + 15.42yŷ− 30.83zẑ. (5.2)

With resulting frequencies: fx = 20.035 Hz, fy = 20.035 Hz, fz = 40.0686 Hz.

For the ellipse, the field lines get squeezed in the y direction, and therefore
loosened up in the x direction when we assume that the fluxes are the
same. This explains the lower slope in the x direction, and higher slope
in the y direction. This can also be mathematically verified by replacing a
and b with

√
ab in equations 2.22, 2.23 and 2.24.

We see that we can distinguish the x and y frequencies even better by
making the shape more elliptical, or in other words: increase the ratio a

b ,
where a and b are the elliptical properties.

By doubling the current to 0.5 Ampère, we get the following frequencies
for elliptical coils: fx = 20.5402 Hz, fy = 64.1012 Hz and fz = 84.6413 Hz.
We see that the frequencies get doubled, so the difference between fx and
fy should also be twice as much. This property can be used for better
distinguishing.
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5.3 Fourier Spectrum of the Spherical Lead Zep-
pelin with Circular Coils

The Lead Zeppelin with elliptical coils has no results yet. Nonetheless, we
could still look at the results of the circular Lead Zeppelin with a asym-
metrical lead particle.

The Fourier Spectrum of the Lead Zeppelin with circular coils is given
below.

Figure 5.1: Frequency spectrum of an aspherical Zeppelin in between circular
coils at 0.35 A right after a kick to the Dewar. We see many non-linearities from
mixing and doubling frequencies.

With the 6 frequencies marked:

Figure 5.2: The frequency spectrum with its corresponding mixing and doubling
frequencies.

Version of August 18, 2015– Created August 18, 2015 - 10:34

55



56 Results and Discussion

We find the 6 frequencies by choosing sets. We choose fundamental fre-
quencies as seen in the ”calculated” row in figure 5.3. These frequencies
show many similarities but other sets can always be chosen as fundamen-
tal frequencies.

Figure 5.3: Part of the Excel file which includes data of the peaks

The yellow boxes are the frequencies which are in their error margins. The
orange boxes show those outside their error margins. The red boxes are
nowhere to be found. We can apply these peaks to the frequency spectrum
and get figure 5.2 as result.

The translation frequencies in the x and y direction should be close to-
gether, in theory they should be at the same frequency. Therefore, it is
logical to assume B and C are the translational x and y frequencies.

The frequency in the z direction must be twice as high, with closest fre-
quency 15.42 Hz. However, this frequency does not show any mixing fre-
quencies. The peak D shows more properties of a Zeppelin frequency,

56
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5.3 Fourier Spectrum of the Spherical Lead Zeppelin with Circular Coils 57

therefore we assume D is the translational z frequency. However, this as-
sumption is not mathematically verified.

Since we do not have a mathematical model for the rotational frequencies,
we can only find these frequencies by reasoning. The only way to have
a translational frequency around the z-axis, is to have inhomogeneities in
the field. This creates a low frequency since these inhomogeneities are far
lower than the change in magnetic field in other directions. Therefore, we
assume that A is the rotational frequency around the z-axis.

This leaves us only with E and F for the other two rotational frequencies.
The Zeppelin has a long and a short side, and wants to stay in one posi-
tion since the potential must be the lowest in this position. Let us assume
the longer side lies along the x direction. The rotation of the longer side,
around the y-axis, has a bigger moment of inertia. This frequency must be
therefore lower than the rotation frequency over the shorter side, around
the x-axis. Peak E should be the rotation frequency of the longer side and
F of the shorter side.

A higher current for this Lead Zeppelin has been used than the result-
ing frequencies of equation 5.2. However, the numerical frequencies are
higher. A reason is that the field is approximated by loops which over-
lap at the same position, when in reality these loops are distributed over
a length. The approximated loops are placed at the closest distance and
therefore result in a higher magnetic field than the actual coils. An equa-
tion for the magnetic field for the loops distributed over the length of the
coil can be calculated to make a more realistic approach.
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Chapter 6
Conclusions

All the components are built, only the switch needs to be made to work. If
this is done, one could most likely start to measure immediately. After this,
we can look if the theoretical and numerical predictions are correct. The
peak of the rotational frequency around the z-axis must shift to a higher
frequency, the other rotational frequencies are now more defined by the
elliptical properties and the translational frequencies should be better dis-
tinguishable.

There are many variables in this experiment, so it is better to put effort in
experimenting instead of making more mathematical models. However,
the results will make more sense if a model has been calculated for the
rotational frequencies.
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Chapter 7
Follow up Experiments and
Improvements

Since this experiment has just been built, it has a lot of room for follow
up experiments and improvements. The most important follow up exper-
iments are:

• Getting the Lead Zeppelin to work properly.
It is not clear if there are more problems with this new Lead Zeppelin
project because it has not yet been put to the test. Maybe also other
parts need replacement or optimization.

• Calculating the rotational frequencies.
The rotational frequencies have not yet been calculated and require
a bit more work than the translational frequencies.

• Comparing the results to the symmetrical Lead Zeppelin.
In theory only differences between the frequencies should be shown.
In reality there could be more differences and set backs.

• Finding the corresponding frequencies.
There is still some uncertainty about the which frequency correspond
to which degree of freedom. The results get more clear when some
experiments are done with a focus on connecting the frequencies to
their degree of freedom.
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Some improvements could be made like:

• Finding equations for the distributed loops.
The magnetic field of the coils has been calculated by assuming that
the loops overlap at the same position. A better calculation takes care
of this by distributing the loops over the length of the coil.

• Finding the Taylor expansion of ~B of the elliptical coils.
The slopes of the magnetic fields should be a function of the vari-
ables used. The numerical approach is taken in this project, but a
mathematical approach can also be done.

• Distinguish the x and y frequencies better.
This can theoretically be done by increasing the current or making
more asymmetrical coils.

• Finding the Q factor.
The symmetrical Lead Zeppelin uses different material for the as-
sembly of the coils and different Faraday cages. This can result in a
different Q factor.

• Putting the coils in a vibration-reducing cage.
The symmetrical Lead Zeppelin now has a cage suspended by springs
which reduces the mechanical noise from outside. This experiment
could get the same cage built in when it proves its usefulness.
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