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Abstract

In this thesis an analysis of the resonance slice as found in MRFM
experiments is developed and the derived model is used to gain

insight in the role of experimental parameters. With this
knowledge experiments are proposed to test the model. The

influence of the cantilever amplitude and the bandwidth of the
RF-pulse according to this analysis are also shown. Lastly a

mathematical analysis of partial differential equations arising
from spin diffusion in inhomogeneous magnetic fields is

performed.
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Chapter 1
Introduction: Description of the
idea MRFM

1.1 Motivation

To measure the structure of matter on atomic scale several technologies
are nowadays available. Examples include Magnetic Resonance Imag-
ing (MRI), Atomic Force Microscopy variants (STM/AFM) and Nuclear
Magnetic Resonance and Electron Spin Resonance (NMR/ESR). However,
none of these technologies can give local atomic scale information on the
interior of matter: NMR/ESR concern bulk measurements, conventional
MRI can not achieve high enough resolution and STM/AFM-like mea-
surements only reach the absolute surface of matter. To achieve this, a
cross-over between MRI and AFM was proposed: Magnetic (Resonance)
Force Microscopy. Instead of the large scale magnetic field in MRI a single
small magnet would be used as both the source of the magnetic field and
local probe at the same time. By now, progress has been made as far as
the imaging of Tobacco Virus particles [1], the measurement of pure spin
transport [2] and spin diffusion [3][4].
Interpretation of the result in MRFM depend on geometrical details of the
experiment and thus most publications resort to often quite involved sim-
ulations to validate their data, because exact understanding of these ge-
ometrical aspects of the measurement methods is far from complete. In
this report I will shed light on some facets of the experiments, such as the
geometry of the resonance slice, to gain insight into the role of the var-
ious aspects. As will be shown in chapter 2 we found some symmetry
arguments and relations between parameters which may help to develop
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2 Introduction: Description of the idea MRFM

an intuition for the interpretation of simulations and experimental results.
We take a slightly different path from that of the group of J. A. Marohn [5],
but our results tend to agree and extend upon their earlier results. In chap-
ter 1 we will describe the basics of MRFM and in chapter 3 we attempt an
mathematical analysis of spin diffusion.

1.2 Experimental idea

In the Oosterkamp group at Leiden University M(R)FM experiments are
done in various experimental setups. Following in the footsteps of Kamer-
lingh Onnes, we like to think one of our strongest advantages is the fact
that we are able to reach temperatures of 10 mK in a cryogenic material free
dilution refrigerator with vibrational damping good enough to do atomic
scale STM measurements. [6]
Different versions are being developed, but all are based on cantilever os-
cillation measurements by magnetic flux detection using a SQUID [7]. This
as opposed to cantilever oscillation optically detected via interferometry
as is done by various other groups. One setup is developed to couple a
cantilever with single spins in nitrogen-vacancy complexes in diamond
(NV-centres), one to measure on bulk and surface states of for example
topological insulators and lanthanum aluminate - strontium titanate in-
terfaces. Also in early development is a setup to measure on biological
samples. We will focus on the setup tuned for bulk and surface states, but
would like to stress that most of the techniques discussed in this report
can be easily adapted to analyse measurements on the other setups.

The general layout of the setup is shown in figure 1.1. A small perma-
nent dipole magnet is attached to the end of an ultrasoft cantilever. The
ferromagnet is magnetized in the y-direction, while the primary mode of
oscillation of the cantilever is in the x-direction, perpendicular to the mag-
netic moment. A closed superconducting circuit connects a pick up loop
on the sample to a second coil further away. This second coil is coupled to
a superconducting quantum interference device (SQUID), which is used
as a detection system.
The exact theory of SQUIDs is quite involved, but extensively described in
literature. Wijts gives a comprehensive explanation of the relevant pieces
in Section 3.3 of his thesis [3], here I will only introduce the vital aspects
needed to comprehend the setup. The system detects changes in the lo-
cal magnetic field, as changes in flux through the pick up loop due to the
movement of the magnet induce a small current in the circuit, which in-

2
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1.2 Experimental idea 3

Figure 1.1: Schematic representation of the experimental setup. ~B0 is the magnetic
field of the magnet on the cantilever which gives a flux through the detection coil.
An alternating current IRF through the superconducting RF wire induces an elec-
tromagnetic field with magnetic component ~B1(t) to do resonance experiments.
Note: The dipole in our setup is actually oriented in the y-direction. This figure
is adapted from Wijts’ thesis[3].

duces via the second coil a magnetic field through the SQUID. The mag-
netic flux through the SQUID is quantized in units of Φ0 = h

2e due to the
two Josephson junctions in the SQUID. This gives a measurable potential
variation, as the magnetic flux through the SQUID is countered by a small
current. The high sensitivity of the SQUID enables us to measure the res-
onance frequency of the cantilever with high precision. Thus it is possible
to measure the small deviations from this frequency stemming from the
interaction between the magnet and the spins in the sample.
It is this interaction we are interested in. Since the magnetic field from
the tip is highly spatially variant, very local manipulations of the spins
in the sample can be done, as explained in Section 1.3.1. As the measure-
ment system can be sensitive enough to measure these manipulations, this
means we can extract information about the local aspects of the spins with
a very high resolution.

1.2.1 Samples

The analysis as presented in Part II can be used on various sample types,
but we apply it here for a copper sample as made by De Haan and Wa-
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4 Introduction: Description of the idea MRFM

genaar, as shown in figure 1.2. This sample will be used as a first test of
the setup. The sample is deposited on a silicon substrate through focused
ion beam and sputtering techniques. The actual copper sample is 30µm by
30µm and 300nm thick. The cantilever is an IBM-style cantilever, but with-
out the usual mirror as this is not needed for our measurement method.
A spherical NdFeB particle of 3.5 µm diameter with a magnetisation ms is
attached to the cantilever, in such way that the magnetisation is perpen-
dicular to the primary direction of oscillation and parallel to the sample
surface. The sample Wijts used had the same cantilever and magnet, but
the sample itself was SrTiO3 deposited on a silicon substrate.

Figure 1.2: An optical microscope image of the sample as Wagenaar and Den
Haan use. Visible are the pickup coil (center rectangular grey loop), the copper
sample with a grounding wire (white square) and the RF-line (vertical line to the
right of the other features).

1.3 Theoretical aspects

1.3.1 Resonance and slices

In a magnetic field the Zeeman-splitting gives rise to an energy difference
depending on the orientation of the spin and the magnetic field, propor-
tional to the magnetic field:

E− E0 = −~µ · ~B (1.1)

4
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1.3 Theoretical aspects 5

Here µ is the magnetic moment of the spin and ~B is the magnetic field.
In paramagnetic systems where the spins will align only parallel or anti-
parallel (known as ’up’ and ’down’) to the magnetic field, this reduces to:

E− E0 = −|~µ||~B| (1.2)

Or looking at the difference between up and down:

∆E = E↓ − E↑ = 2|~µ||~B| (1.3)

Photons can interact with this system only if the energy of the photon
matches the energy splitting of the Zeeman-system. This is called reso-
nance. Using De Broglie’s formula Ephoton = h f we have as resonance
condition:

fres =
2|~µ||Bres|

h
(1.4)

In our case µ is the Bohr magneton or some g-factor (order of magnitude 1)
times the nuclear magneton, depending on whether we work with electron
spins or nuclear spins. This frequency on which photons and spins can
interact is known in NMR as the Larmor frequency. Using the definition
of these magnetons ( µ = eh̄

2m ) we have:

fres =
ge|Bres|

πm
=

γ|Bres|
2π

(1.5)

Where e is the elementary charge and m is the mass of the electron or pro-
ton and γ is the gyromagnetic ratio. Of course we can only measure on the
bulk if the photons can reach the bulk of the material and we are not only
interested in the surface properties of our sample. The resulting frequen-
cies are however in the radio regime, for which our sample is transparent,
so we do reach the bulk.

Polarization

We define the polarization of an ensemble of spins as the difference be-
tween the fraction of spins in the up state and the fraction of spins in the
down state. For bulk spins in the described two-level Zeeman system in
thermodynamic equilibrium the polarization is given by the Boltzmann
polarization:

p(T, B) =
exp

(
2µB
kBT

)
− 1

exp
(

2µB
kBT

)
+ 1

= tanh
(

µB
kBT

)
(1.6)
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6 Introduction: Description of the idea MRFM

In MRFM experiments pulses of RF radiation of a frequency resonant with
the local magnetic field Bres are used to induce absorption and stimulated
emission, resulting in a lowering of the absolute polarization |p|. Since the
RF radiation is only resonant for one value of B, this only happens in an
isomagnetic surface, a surface where the absolute value of the magnetic
field is constant, called the resonant slice. If p = 0 is reached, we speak
of saturation which corresponds to the maximum achievable change and
thus maximum signal.

1.3.2 Signal of a single spin

We will now explain the interaction of a single spin and the cantilever. For
this system the spin Hamiltonian is given by the Zeeman splitting:

Hspin(~B,~µ) = −~µ · ~B(~r) (1.7)

If we assume that the magnetic moment of the spin is aligned to the local
field, this reduces to:

Hspin(~B,~µ) = ∓|~µ|
~B(~r)
|~B(~r)|

· ~B(~r) = ∓|~µ|~B| (1.8)

Where the sign is negative (positive) if the spin and the magnetic field are
(anti-)parallel.
We will measure the effects on the cantilever. It can act as a sensitive force
sensor, since any external force on the cantilever will influence its potential
and thus the oscillation frequency. The force on the spin is given by ~F =
∇Hspin. Newton’s third law now gives that the force on the cantilever is
given by: ~F = −∇Hspin. Since the cantilever primarily moves in the x
direction, all relevant forces are those in this direction. Thus we only need
to consider the x-component of the force, which equals the x-derivative of
−H. The effective spring constant is given by (ignoring non-linear effects):

F = Fcantilever + Fspin = (kcantilever + kspin)x = kx (1.9)

So, taking another derivative in the x-direction we come to a formula for
the influence of the spin on the effective spring constant:

kspin =
dFspin

dx
= − d2

dx2 Hspin (1.10)

This would lead together with equation (1.8) to kspin = d2

dx2 (|µ|B). How-
ever since the oscillation of the cantilever, and thus the variation of the

6
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1.3 Theoretical aspects 7

magnetic field direction, takes place on a slower time scale than the pre-
cession of the spin, the mean angle between the spin and the magnetic
field is a constant of motion and the derivative, which is in the slow time
scale, should only work on the second factor in equations (1.7) and (1.8).
Thus we find the following equation for the influence of a single spin on
the effective spring constant:

kspinlocal =
|µ|~B(~r)
|~B(~r)|

· d2~B(~r)
dx2 (1.11)

The shift in effective spring constant is however not what is measured, we
measure the effect of this shift on the resonance frequency of the cantilever.
From the change in spring constant the shift in the frequency of oscillation
can be easily calculated with a first order Taylor perturbation, which is

valid for
kspin

k0
� 1. This is equivalent with the statement that the force due

to the magnetic interaction with the sample is much smaller than the force
due to the stiffness of the cantilever itself, which is certainly the case for
us. This gives the following equation:

∆ f =
f0

2
kspin

k0
(1.12)

Which, combined with equation (1.11), corresponds to the equation de-
rived by Lee for the CERMIT protocol [5].
Typical values for our setup are f0 = 3kHz and k0 = 10−4Nm−1, yield-
ing a conversion factor between kspin and measured frequency shift of
1.5 · 107Hz/ (N/m).
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Chapter 2
Analysis and Simulations

Our goal is to analyse the interaction of the magnetic dipole on the can-
tilever with the ensemble of spins in the sample. From this we hope to get
a more fundamental understanding of the system, and we will devise eas-
ily verifiable simulations, calculations and some symmetries. In Section
2.1 the theoretical properties of the measurement system are derived and
some further analysis is done to be able to do numerical calculations. In
Section 2.2 numerical and qualitative results are presented, experiments
to check this analysis and results are proposed in Section 2.3. Finally we
discuss advantages and disadvantages of this method.

2.1 Theoretical work

2.1.1 Total signal

In the previous chapter an expression was derived for the influence of a
single spin on the cantilever spring constant. However, since we are mea-
suring a sample full of spins, we must sum the signal of a single spin for
all spins in resonance in the sample. To do this we make the assumption
that the spin density ρ is reasonably high, such that the sample can be con-
sidered as a continuum and we can integrate over the entire slice to get the
total kspin.
Given the fact that in our setup the magnetic field closely resembles a
dipole field which falls off as one gets further away from the dipole, it
makes sense to model the slice as a mathematical surface with a certain
thickness dsl, which may or may not depend on the location. The signal,
as explained in Section 1.3.1, is given by the difference between the equi-
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10 Analysis and Simulations

librium polarization and zero. Taking this together we have the following
formula for the signal:

kspin = p(T, Bres) ρ

¨
resslice

dslkspinlocaldA (2.1)

Where p(T, Bres) is the spin polarization for the resonant slice, given by
equation (1.6). If we now substitute the signal of a single spin from equa-
tion (1.11) we have:

kspin = p(T, Bres) ρ
µ

Bres

¨
resslice

dsl~B ·
d2~B
dx2 dA (2.2)

The dsl term will be further explored in the following Section. The last
aspect missing is the actual shape of the resonance slice, expressed in the
actual shape of the integral and integrand. Beforehand it is not clear that
the requirement B = Bres will lead to a closed form, but in Section 2.1.4 we
derive a closed expression.

2.1.2 Slice thickness

Near the slice we can approximate the magnetic field by using a Taylor
approximation. Because the resonance slice is an isosurface, the gradient
of |~B| is the normal of the resonance slice. Using again formula (1.4) we
can extract the slice widening due to a spread in the frequency of the RF-
pulse ∆ fres. To do this we must however assume that the total width of
the slice is small (compared to the magnetic field gradient terms). This
is equivalent to the requirement dsl � rres, since every extra derivative
working on |~B| will give another factor of 1/rres. This is reasonable, since
this condition is nothing more than the requirement that the slice is an
actual slice and not a round blob. The Taylor expansion now gives:

∆ fres =
µ

h
dsl

∣∣∣∣∇|~B|∣∣∣B=Bres

∣∣∣∣+O (d2
sl∇2|~B|

)
Neglecting the higher order terms and rewriting for dsl, we get:

dsl,∆ f =
h∆ fres

µ
∣∣∣∇|~B|∣∣∣

Another factor contributing to the slice width is the physical movement
of the magnet on the cantilever relative to the sample. This contribution

10
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2.1 Theoretical work 11

to the local slice thickness is the inner product between the normal of the
surface and the displacement vector. The normal to the surface is given
by the direction of the gradient of |~B|. Since the movement of the primary
mode of oscillation is in the x-direction, we have:

dsl,Acanti =
∇|~B|∣∣∣∇|~B|∣∣∣ · ~Acanti =

Acanti∣∣∣∇|~B|∣∣∣
(
∇|~B| · x̂

)
=

∂|B|
∂x∣∣∣∇|~B|∣∣∣Acanti (2.3)

Where Acanti is the amplitude of oscillation in the primary direction. Thus
we arrive for the contributions of both effects to kspin at the following equa-
tions:

kspin,∆ f = p(T, Bres) ρ
h∆ fres

Bres

¨
resslice

1
|∇|B||

~B · d2~B
dx2 dA (2.4)

kspin,Acanti = p(T, Bres)
ρµAcanti

Bres

¨
resslice

1
|∇|B||

∂|B|
∂x

~B · d2~B
dx2 dA (2.5)

kspin = p(T, Bres)
ρµ

Bres

¨
resslice

(
h∆ fres

µ
+ Acanti

∂|B|
∂x

)
~B

|∇|B|| ·
d2~B
dx2 dA

(2.6)
Where equation (2.4) and (2.5) give the contributions and equation (2.6)
gives the combination.

2.1.3 Requirements for full saturation and adiabatic rapid
passage

The amplitude of the cantilever oscillation can be tuned, as the cantilever
oscillation can be driven by a piezoelectric element. The bandwidth of the
RF-radiation can be tuned as well, and as such we can vary the slice width
and thus the volume of the resonance slice. This raises the question: what
are the constraints to reach full saturation in the slice in a reasonable time?
A first idea here is to simply look at the energy constraints: the energy fed
to the spin system by the RF radiation must be larger than the energy lost
via spin-lattice relaxation.

To be able to do adiabatic rapid passage it is necessary to check whether
the adiabatic condition is met. The adiabatic condition is given by Abragam
[8] as:

dB0

dt
� γB1

2 (2.7)
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12 Analysis and Simulations

Where B0 is the (amplitude of the) time dependent magnetic field due to
the moving tip, γ is the gyromagnetic ratio of the spins in the sample and
B1 is the amplitude of the magnetic field of the RF-wire. Looking at the res-
onance slice we have the fastest change of B0 in the middle of the thickness
of the resonance slice as the cantilever passes through its centre position.
Using the chain rule to evaluate the time derivative, we have:

dB0

dt
=

dB0

dx
dx
dt

=
dB0

dx
d
dt

[Acanti sin(2π f0t)]t=0 =
dB0

dx
Acanti2π f0

Approximating the gradient of |B|with the radial derivative (as explained
in Section 2.1.6) and substituting this derivative from Appendix B we get:

dB0

dt
≤ 3Bres/rres Acanti2π f0 ≤

(
4πBres

µ0ms

)1/3

3Bres Acanti2π f0

Substituting this in the adiabatic condition 2.7 we have as requirement:(
4πBres

µ0ms

)1/3

3Bres Acanti2π f0 � γB2
1

If we substitute numerical values for the copper sample we have:

B4/3
res Acanti � 1.67 · 10−3T2/3m B2

1

To be able to apply the adiabatic theorem it is also required that the mod-
ulation frequency of the magnetic field of the dipole is much smaller than
the Larmor frequency of the B1 field, which yields:

2π f0 � γcuB1

6π103

7.1118 · 107 � B1

B1 � 2.66 · 10−4T

2.1.4 Elaboration and simplification

To come to an actual calculation we introduce a coordinate system as men-
tioned before, where the magnet at the end of the cantilever is positioned
at the origin. The sample is assumed to be positioned under the magnet
(in the negative z-direction). We use equation (2.2) given in the previous
section. However, before we get to an actual number it has to undergo

12
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2.1 Theoretical work 13

somewhat more analysis.
We will exploit the fact that |B| is constant in the resonant slice to gain
more insight in the equation to calculate kspin. Elaborating on equation
(2.2), using spherical coordinates and the analytic expression for the mag-
netic dipole field, we have the following (a full derivation, definition of
the polar coordinates r, θ, φ and the dipole field can be found in appendix
B):

~B · d2~B
dx2 = |B|2 3

r4

(
(5x2 − 2r2) +

y2(10x2 − r2)

3y2 + r2

)
= |B|2 3

r2

(
(5 cos2 θ sin2 φ− 2) +

sin2 θ sin2 φ(10 cos2 θ sin2 φ− 1)
3 sin2 θ sin2 φ + 1

)
= |B|2 3

r2 h(θ, φ)

Since switching to polar coordinates introduces a factor r2 sin φ in the sur-
face integral, we find:

kspin = 3p(T, Bres)ρ µBres

¨
resslice

dsl h(θ, φ) sin φdθdφ (2.8)

All information in the signal about the shape of the resonance slice now
lies in the integration boundaries of θ and φ! In the next section we will
discuss the implications of this.

2.1.5 Boundaries of integration

For a large enough sample θ will run all the way from 0 to 2π.∗ Sadly,
the limits for φ are not so simply determined. Since samples are mostly
flat, and because the resonant slices are not spherical , the range of φ will
depend on θ (Illustrated in figure 2.2). But as soon as we have solved
this problem, finite depth samples are no challenge any more, since for
a sample of depth D the signal will be the difference between an infinite
sample at height d and one at height d + D. The equation relating the
height above the sample d and the edge of the resonance slice at angles φ
and θ is the following:

d = rres(φ, θ) cos φ

∗Note that, due to the symmetry in x and y, if the cantilever is positioned above a side
or corner of the sample, the signal will simply be respectively halved or quartered. This
is quite easily verifiable in experiment and in combination with the knowledge of what
parts of the slice contribute positive or negative to the signal.
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14 Analysis and Simulations

Rewriting the equation for the dipole field to express rres as a function of
location and Bres (Appendix B), we come to the following implicit equation
for the boundary of integration for φ as function of d and θ:

d = cos φ 3

√
µ0ms

4πBres

6
√

3 sin2 θ sin2 φ + 1

Taking the sixth power of both sides now gives:(
µ0ms

4πBres

)2 (
3 sin2 θ sin2 φ + 1

)
cos6 φ− d6 = 0

Moving the constants to one term, we find a formula describing the im-
plicit dependence of φ on θ for the boundary of the integral:

(
3 sin2 θ sin2 φ + 1

)
cos6 φ−

(
4πBresd3

µ0ms

)2

= 0 (2.9)

This equation is the last one needed to describe the resonance slice. Since it
has no simple analytic solution, we will numerically study what the equa-
tions from this section can tell about the resonance slice in the next section.

2.1.6 Approximations for thickness effects

To readily make the simulations of the effects described in Section 2.1.2
some approximations were used. We first (see appendix B) note that the
radius of the resonance slice is not wildly varying:(

µ0ms

4πBres

)1/3

1 ≤ rres ≤
(

µ0ms

4πBres

)1/3

(4)1/6

Which is equivalent to:

1 ≤ rres

(
µ0ms

4πBres

)−1/3

≤ 21/3 ≈ 1.26

Since the resonant slice resembles a (part of a) spheroid it makes sense
to estimate the gradient of |~B| with the derivative in the r-direction. To
do this properly we need an upper bound to the error. To this end we
introduce the angle α between the normal of the resonance surface n̂ =

14
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2.1 Theoretical work 15

∇|B|
|∇|B|| and normalized r-vector r̂. Since |~B| is radial symmetric in the y-
axis, we need only look in the xy-plane here. We have:

∂|B|
∂r

= ∇|B| · r̂ = ∇|B| · (cos αn̂ + sin αm̂)

= cos α (∇|B| · n̂) + sin α (∇|B| · m̂)

Where sin αm̂ is the projection of r̂ onto the local in plane coordinate. We
use that the normal is parallel to the gradient:

= cos α |∇|B||+ sin α (∇|B| · m̂)

Since this is an isomagnetic surface, we have m̂ · ∇|B| = 0, and thus:

∂|B|
∂r

= cos α |∇|B||

From the equation for rres in appendix B we define (taking φ = π to again
restrict to the xy-plane):

f (r, θ) = r6 − (sin2 θ + 1)

The normal vector can now be expressed as follows:

n̂ =
1
|~n|

(
∂ f
∂r

dr +
∂ f
∂θ

dθ

)
=

6r5r̂− sin(2θ)θ̂√
36r10 + sin2(2θ)

Since cos α is the projection of n̂ on r̂, we have now:

cos α =
6r5√

36r10 + sin2(2θ)

=
1√

1 + sin2(2θ)
36r10

≥ 1√
1 + 1

36

≈ 0.986
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16 Analysis and Simulations

Thus we can reasonably approximate the gradient of B with the r-derivative.
(On the symmetry axes this approximation is of course exact.) Again from
the appendix we have:

∂B
∂r

= −3
r

B

∂B
∂r

∣∣∣∣
Bres

≈ −3Bres

rres

Thus it is reasonable, keeping in mind we introduce an error of at most
1.5% to approximate the gradient term at the isosurface by:

1∣∣∣∇|~B|∣∣∣
∣∣∣∣∣∣
B=Bres

=
rres(φ, θ)

3Bres
(2.10)

This also justifies the following approximation of equation (2.3):

∇|~B|∣∣∣∇|~B|∣∣∣ · ~Acanti = Acanti (n̂ · x̂) ≈ Acanti (x̂ · r̂) = Acanti cos θ sin φ (2.11)

2.2 Numerical results

Since the integrand in equation (2.2) is a purely geometrical function and
independent of rres, there are aspects of the resonance slice that do not
depend on its size. The next section will explore those aspects before we
simulate actual experiments.

2.2.1 Scaleless results

Using equation (2.9), with all constants set equal to 1, as an implicit bound-
ary condition we evaluate the integral for different relative heights using
MATLAB (relativesimulation.m in appendix C).

It was beyond the scope of this project to do exact calculations/simu-
lations with the extra location dependent terms in the slice thickness as
given in paragraph 2.1.2, but from the equations we can derive qualitative
statements about their influence. Using the approximations from Section
2.1.6 we can make reasonably accurate simulations to study their influence
on the measurements, but as those simulations were done for the applied
case of the experiment, they will be given in the next section.

16
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2.2 Numerical results 17

Figure 2.1: The resonant slice as produced by the code in relativesimulation.m.
Coordinates are as introduced in Section 1.2, so the dipole would be at (0,0,0)
oriented in the y-direction. The color corresponds to the local contribution of the
slice to the total frequency shift. All scales are relative to the distance between the
dipole and the bottom of the resonance slice.
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Figure 2.2: Illustration of the shape of the resonant slice at a sample surface for
different values of the resonant magnetic field. (Dipole is again oriented in the
y-direction, blue is lower Bres, red higher, scale is arbitrary)

Since the gradient term can be approximated as given in equation (2.10),
it will not vary wildly over a resonance slice and an amplification of the
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18 Analysis and Simulations

signal from a larger bandwidth RF-pulse excitation will thus amplify the
signal from different parts of the resonance slice quite homogeneously.

The effect of the cantilever movement is however different. Since the can-
tilever movement is in the x-direction, this will (relatively) amplify the
signal from the regions where the resonance slice is perpendicular to x.
As one can already see in figure 2.1, this would roughly mean the positive
contributing parts of the slice would be amplified relative to the negative
contributing parts. As in the next section the overall signal is shown to be
negative, the effect of driving the cantilever to larger amplitudes would
be at best small or possibly even counter-effective! In figure 2.3 the effect
of the pure cantilever movement induced slice thickness is compared to
constant slice thickness, the effects of this on the total signal are shown in
the next section.

Figure 2.3: Comparison between the local signal contribution with a constant slice
thickness (left) and with a slice thickness induced purely by cantilever movement
(right, using equation (2.11)). The approximation made for this plot is that the
gradient is exactly in the r-direction everywhere on the resonance slice as elabo-
rated in Section 2.1.6.

2.2.2 Simulations of experiments

To get reasonable ranges and some general idea of the values of our vari-
ables we substitute numerical values for the constants (as given in ap-
pendix A) in the equations for Bres and r:

B(φ, θ, r) =
2.3224 · 10−18

r3

√
3 sin2 θ sin2 φ + 1

rres(π, θ) = 3

√
µ0ms

4πBres
=

1.32 · 10−6T1/3m
3
√

Bres

18
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2.2 Numerical results 19

Higher resonance fields yield smaller resonance slices. Taking the distance
between the magnet centre and the surface 3.5µm we have as maximum
value for Bres:

Bres(π, θ, 3.5 · 10−6) = 5.4 · 10−2T

And taking the sample width and length to be 30µm, using Pythagoras’
Theorem and some trigonometry, we have as minimum value for Bres to
have the slice in our sample for all values of θ:

Bres

(
π + arctan(3.5/15), 0,

√
3.52 + 152 · 10−6

)
= 6.4 · 10−4T

As we will see, this means that our sample is effectively infinite in the x-
and y-direction if we measure on the middle of the sample. Combining
with equation (1.4), we can also get a frequency regime for the RF-field to
be resonant with spins in the sample:

4.9kHz ≤ fres ≤ 4.1 · 102kHz

Using again equation (2.9) and combining this with equation (2.8), we can
now simulate the signal as function of Bres and d as shown in figures 2.4
and 2.5.
All figures of this Section 2.2.2 and Section 2.2.3 use for the non-varying
parameters the values as given in Appendix A, unless stated otherwise.

Version of July 15, 2014– Created July 15, 2014 - 15:15

19



20 Analysis and Simulations

0.01 0.02 0.03 0.04 0.05
−14

−12

−10

−8

−6

−4

−2

0

2
x 10

−12

B
res

 (T)

k
sp

in
 (

N
m

−
1 )

 

 

T =0.1K
T =1K
T =4K

Figure 2.4: The signal as function of the magnetic field corresponding to the
resonance frequency as produced by the code in wrapper.m (Appendix C). The
sharp kink around B = 0.04T is due to the fact that the bottom of the resonance
slice moves out of the sample on the underside. Three different temperatures are
given, corresponding to different polarizations. Tip height is 3.5 µm, the simu-
lated sample is 300nm thick.
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2.2 Numerical results 21
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Figure 2.5: The signal as function of height above the sample corresponding to the
resonance frequency as produced by the code in wrapper.m. Three different tem-
peratures are given, corresponding to different polarizations. Note the similarity
with figure 2.4. The difference for low magnetic field/close to the surface, is due
to the fact that when varying d, the signal is not quenched by the p(Bres, T)Bres
term. The simulated sample is 300nm thick, RF-field is Bres = 0.02T. Note that the
shape of the curves does not change when Bres is altered, only the amplitude and
location of the peak will change, as Bres is effectively a constant scaling factor in
both equation (2.2) and equation (2.9).
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22 Analysis and Simulations

Thickness terms

Using the approximations as made in Section 2.1.6 we can alter mrfmsignal.m
slightly to show the effects of both the cantilever movement and a RF-
bandwidth on the signal. In figure 2.6 the results for the influence of the
RF-bandwidth on the B-dependency of the signal are shown.
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Figure 2.6: The signal as modulated by a finite RF bandwidth as a function of
the magnetic field corresponding to the resonance frequency as produced by a
slightly modified version of the codes. As one can see there is hardly any differ-
ence in the main features of the curve. Tip height is 3.5 µm, the approximations
from Section 2.1.6 were used.

In figures 2.7 and 2.8 the result for the influence of the cantilever move-
ment are shown for different sample thicknesses. As predicted in the pre-
vious section the result is more profound, resulting in the shifting of fea-
tures (in particular the zero crossings) and softening of the peak feature.
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Figure 2.7: The signal as modulated by the movement of the cantilever as a func-
tion of the magnetic field corresponding to the resonance frequency as produced
by a slightly modified version of the codes. Data for four different sample thick-
nesses is shown. Tip height is 3.5 µm, Acanti = 100nm, such that the maximum
of dsl is comparable to other figures. The approximations from Section 2.1.6 were
used.
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Figure 2.8: The signal as modulated by the movement of the cantilever as a func-
tion of height above the sample corresponding to the resonance frequency as pro-
duced by a slightly modified version of the codes. Data for four different sample
thicknesses is shown. The RF-field is 0.02 T, Acanti = 100nm. The approximations
from Section 2.1.6 were used.
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2.2.3 Code considerations

Since the code is fully modular, that is, mrfmsignal.m (see Appendix C)
can be used as a function where all relevant parameters are an input, we
can now easily simulate various systems. For example in figure 2.9 we
simulate the signal of three stacked layers, each 300 nm thick, giving the
signal each of the layers would generate. Or as shown in figure 2.10, even
for layers of different thickness. Going even further, one can simulate data
for an arbitrary sequence of sets of parameters, making a close comparison
to experiments possible.
Since the entire calculation boils down to analytically known factors and
one numerical integral, it is easy to verify the numerical error, as MAT-
LAB’s built-in routine for integration does adaptive error checking. De-
fault values for absolute tolerance and relative tolerance are respectively
10−10 and 10−6, but other values can be set. Also formulae are embed-
ded in the function at one central place, so they can be easily modified or
enhanced for future projects.
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Figure 2.9: The shift in effective spring constant as function of the magnetic field
corresponding to the resonance frequency as produced by a slightly altered ver-
sion of wrappermultilayer.m. Each line corresponds to the signal due to one
layer of 300nm. Again d = 3.5µm. Note that this simulation can be equiva-
lently interpreted as the signal of a 300nm layer at d = 3.5µm, d = 3.8µm and
d = 4.1µm.
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Figure 2.10: The shift in effective spring constant as function of the magnetic field
corresponding to the resonance frequency as produced by wrappermultilayer.m.
Each line corresponds to the signal due to a layer, the deepest two layers 600nm,
the top one 300nm. Comparing to figure 2.9, we see that the shape of the curve
only depends on the thickness of the layer, the amplitude on the depth. Again
d = 3.5µm.

2.3 Suggested experiments

Based on the analysis and calculations shown in the preceding sections we
propose several experiments below.
Assuming the alignment of the magnet, cantilever and sample is at least
reasonable, with the magnetization perpendicular to the primary direction
of oscillation and both of these parallel to the sample surface, the sample
edges parallel to x and y, our system is symmetrical under reflection in
the xz-plane and in the yz-plane. Note that these symmetries also hold if
the magnetization is parallel to the oscillation. As mentioned in Section
2.1.5 a good experiment to check these symmetries of the system would
be to measure at the middle of the sample, above the edges and above the
corners. Leaving all other parameters equal, the signal should be halved
on the edges and quartered on the corners.

From the equation for kspin and the equation determining the boundaries
of the integral (equations (2.8) and (2.9)), we derive that another worth-
while experiment would be to keep the boundaries of the integral in equa-
tion (2.8) constant. From (2.9) we see that the following proportionality
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26 Analysis and Simulations

would have to be held:
Bres ∝ d−3

Using this the total signal would be:

kspin ∝ p(T, Bres)Bresdsl

This would give a signal as shown in figure 2.11. As the only term not fully
known here is dsl, the deviation from a fit with dsl constant would give an
idea of the different effects of slice broadening as discussed in Section 2.1.2,
since although the location (in the resonance slice) dependency is scaleless,
the magnitudes of the effects scale differently.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
B (T)

k
sp

in

 

 

with bandwidth

constant slice width

with cantilever

Figure 2.11: The shift in effective spring constant as function of the magnetic field
corresponding to the resonance frequency when Bres = 0.042T · (3.5 · 10−6/d)−3 is
fixed. Vertical scale is arbitrary as data has been scaled to comparable magnitude.
Data is shown for the RF-bandwidth modulated signal, for the standard signal
and for the signal with the effects from cantilever movement shown. (blue, green
and red respectively).

The effect of the physical movement of the cantilever on the slice width
does not scale with the resonant magnetic field at all, since its magnitude
is fully determined by the physical movement of the cantilever. But the
effect from the RF bandwidth scales as 1 over the divergence of |B| at Bres.
Since for the dipole field we have the following:

∇|~B| ∝ |B|/r ∝ |B|4/3

26
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2.4 Discussion 27

We can thus hypothesise that the effects due to RF-bandwidth should scale
roughly as (Bres)

−4/3 compared to the rest in this experiment, i.e.:

kspin∆ f ∝ p(T, Bres)B−1/3
res

This means that by doing this experiment we can experimentally deter-
mine the magnitude of the different slice width terms.

2.4 Discussion

The method as discussed has some limitations: it only generally works for
systems where the relevant spin Hamiltonian only depends on the mag-
nitude of B, such that we can use this as a constant in the resonant slice.
For example the electron resonance experiments on SrTiO3 as done by Wi-
jts can not be simulated, as the crystal field splitting, which depends on
the angle of ~B relative to the crystal of the sample, creates more complex
effects such as multiple slices. Another limitation is that the resulting in-
tegrals still need to be evaluated numerically, although as mentioned in
Section 2.2.3, the error can be adequately controlled.
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Chapter 3
Spin Diffusion

In this chapter we will do a mathematical analysis of the system of par-
tial differential equations that arises from the problem of spin polarization
diffusion in an inhomogeneous magnetic field.

3.1 Motivation for the model

As Vinante et al. concluded in 2011 [4], an important aspect in the un-
derstanding of MRFM is how spin polarization diffuses through a sample.
The main interaction facilitating this diffusion are flip-flops: in a reason-
ably homogeneous field two neighbouring opposed spins can interchange
their alignment without a large energy mismatch. While this behaviour
is well studied both theoretically in the case of a homogeneous magnetic
field and using Ising model assumptions and experimentally using MRFM
[2], little is known in the continuous limit in an inhomogeneous field.
Genack and Redfield [9] derive a set of coupled partial differential equa-
tions for the high temperature limit kBT � µB0. Both Wijts in his PhD
thesis [3] and Vinante et al. in the supplement of their article [10] derive
a set of coupled partial differential equations describing the behaviour for
the low temperature limit, since for electron spins in applied fields up to a
fraction of a Tesla at milliKelvin temperatures this is a valid assumption.
Here we will further elaborate on these equations and look at fundamental
properties arising from them.
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30 Spin Diffusion

3.2 The starting point: the equations of the model

The system of coupled partial differential equations as derived by Wijts
are as follows: ∗

∂M(x, t)
∂t

= − ∂

∂x
Jm(x, t)− 1

T1

(
M(x, t)−Meq(x)

)
∂E(x, t)

∂t
= Jm(x, t)

∂B(x)
∂x

+ Dd
∂2

∂x2 E(x, t)− 1
T1

(
E(x, t)− Eeq(x)

)
Jm(x, t) = −D

(
∂M(x, t)

∂x
+

M2(x, t)
ρµBloc

∂B(x)
∂x

+
E(x, t)

B2
loc

∂B(x)
∂x

)

Meq(x) = ρµ tanh
(

µB0(x)
kBTL

)

Eeq(x) = −ρµBloc

1−
1− µBloc

kBTL

cosh
(

µB0(x)
kBTL

)


Where M is the local magnetization, E the local dipole energy, Jm the mag-
netization flux, ρ the spin density, µ the constant magnetic moment of the
spins, Bloc the amplitude of the local magnetic field due to the neighbour-
ing spins, B0 the amplitude of the external magnetic field, B the sum of
those two, T1 the spin-lattice relaxation time, D the diffusion constant re-
lated to the diffusion of the magnetization, Dd the diffusion constant re-
lated to the dipole energy, kB Boltzmann’s constant and TL the lattice tem-
perature. x is the (one-dimensional) location variable (not necessarily the
x as it is used in part I and II), t the time variable in seconds. Both Meq
and Eeq are the thermodynamic equilibrium values for respectively M and
E based on the energy differences between the up- and down states of the
spins due to the (location dependent) magnetic field.

3.2.1 Non-dimensionalisation

Although it can be beneficial in physics to keep all the constants in the
equations for the benefit of quick estimation, in this chapter we adapt a di-
mensionless notation to reduce the number of constants in the equations to
simplify the grasp of the mathematical concepts hidden in the equations.

∗Some missing dependencies were added for notational completeness

30
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3.2 The starting point: the equations of the model 31

To achieve this we first introduce some constants, allowing us to rewrite
the system of equations as: (For the time being we drop the dependencies
for legibility reasons)

1
D

∂M
∂t

= − 1
D

∂Jm

∂x
− γ

(
M−Meq

)
1
D

∂E
∂t

=
1
D

Jm A + β
∂2E
∂x2 − γ

(
E− Eeq

)
Jm = −D

(
∂M
∂x

+ αM2A + δEA
)

Where the constants are defined as:

α =
1

Blocρµ
, β =

Dd
D

, γ =
1

T1D
, δ =

1
B2

loc

A(x) =
∂B(x)

∂x

We now introduce a time scaling as τ = Dt, such that 1
D

∂
∂t =

∂
∂τ , yielding:

∂M
∂τ

= − 1
D

∂Jm

∂x
− γ

(
M−Meq

)
∂E
∂τ

=
1
D

Jm A + β
∂2E
∂x2 − γ

(
E− Eeq

)
Jm = −D

(
∂M
∂x

+ αM2A + δEA
)

To scale out as many constants as possible, we want to introduce dimen-
sionless equivalents of M, E, Jm and A. To find these we both used the
clustering of the constants around certain terms (for example every J-term
carries a D) and the physical dimensions of the functions and constants.
(For example the dipole energy E in units of Joule is divided by the only
constant in the equations associated with Joules, µ in J/T. The units of
Tesla resulting from this are compensated by dividing by Bloc).
Using these methods, we come to the following dimensionless functions:
m(x, τ) = 1

ρµ M, e(x, τ) = 1
Blocρµ E, j(x, τ) = Jm

Dρµ and a(x) = A(x)
Bloc

=
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1
Bloc

∂B(x)
∂x . Thus we obtain the dimensionless system:

∂m(x, τ)

∂τ
= − ∂j

∂x
− γ(m−meq) (3.1)

∂e(x, τ)

∂τ
= ja + β

∂2e
∂x2 − γ(e− eeq) (3.2)

j(x, τ) = −∂m
∂x
− a(m2 + e) (3.3)

Where a(x) is a given function corresponding to the derivative of the mag-
netic field, γ and β are dimensionless constants related to the ratios of the
different characteristic times, e(x, τ), m(x, τ) and j(x, τ) are the functions
of interest and the x-dependent (thermal) equilibrium terms are given by:

meq(x) = tanh
(

µB0(x)
kBTL

)
= tanh

(´
a(x)dx
CL

)
(3.4)

eeq(x) =
1− µBloc

kBTL

cosh2
(

µB0(x)
kBTL

) − 1 = (CL − 1)
1
a

∂

∂x
meq − 1 (3.5)

Where we have introduced CL, a function related to the lattice tempera-
ture, which is constant here. (Assuming B0(x) = B(x))
From the physical meaning of originally E and M we can also derive some
information of the codomain of both m and e:
Since the number of spins and their location is fixed in this model and all
spins must be either in up or down state, there is both a maximum and a
minimum to M. In the dimensionless system this corresponds to:

−1 ≤ m(x) ≤ 1

There must be such a limit for e as well, but we can not be more precise,
than stating that the energy can either be fully lowered, corresponding to
all spins aligning to the field Bloc of their neighbours or fully heightened
by all being disaligned, corresponding to:

−1 ≤ e ≤ 1

.

3.3 A Contradiction: amending the equations

We now look for stationary solutions. One would assume the statistical
equilibrium solutions would be a good guess for this. We will set the

32
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3.3 A Contradiction: amending the equations 33

time derivatives to zero and substitute the statistical equilibrium solutions.
Rewriting equation (3.5) we have:

eeq(x) = (CL − 1)
1
a

∂

∂x
meq − 1

So when we multiply by a we get:

aeeq = (CL − 1)
∂meq

∂x
− a

Setting e = eeq and m = meq and substituting this in equation (3.1) we find:

0 =
∂meq

∂τ
=

∂

∂x

(
∂meq

∂x
+ ameq

2 + (CL − 1)
∂meq

∂x
− a
)
− 0

=
∂

∂x

(
∂meq

∂x
CL + a(meq

2 − 1)
)

Integrating with respect to x and setting the integration constant equal to
zero (corresponding to zero flux j = 0), we obtain a separable ODE:

∂meq

∂x
CL = a(1−meq

2)

So we seperate terms to get:

1
1−meq2

∂meq

∂x
=

a
CL

And integrate both sides, yielding:

tanh−1(meq) =

´
adx
CL

=
B

BlocCL

Which is consistent with the definition of meq derived from statistical physics.
If we now look at the equation for eeq, we have:

∂eeq

∂τ
= 0 + β

∂2eeq

∂x2 − 0
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Since the left-hand side equals zero, so does the right-hand side, so we
arrive at an inconsistency with equation (3.5):

∂2eeq

∂x2 = 0

It seems reasonable that this second derivative of e should be compared to
the equilibrium solution, so for now we assume that the correct (amended)
equations are:

∂m(x, τ)

∂τ
= − ∂j

∂x
− γ(m−meq) (3.6)

∂e(x, τ)

∂τ
= ja + β

∂2(e− eeq)

∂x2 − γ(e− eeq) (3.7)

j(x, τ) = −∂m
∂x
− a(m2 + e) (3.8)

Where we have added a eeq term in the middle term on the right-hand side
of equation (3.7), as this amendment alleviates the inconsistency and gives
m = meq, e = eeq and j = 0 as a stationary solution.

3.4 Perturbation of the known solution

To obtain the stationary solution in the previous section, we assumed zero
flux j. To find solutions with non-zero flux, we assume a small flux εj0(x)
and a constant (equivalent to B linear in x). We perturb from the known
solution. We introduce ẽ = e − eeq and assume the perturbed solutions
will be of the following form:

j = 0 + εj1(x) + h.o.t.

ẽ = 0 + εζe1(x) + h.o.t.
m = meq + εηm1(x) + h.o.t.

34
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3.4 Perturbation of the known solution 35

Where ζ and η are strictly positive constants to be determined by the
matching conditions, and h.o.t. stands for any terms of higher order in
ε. Substituting this in equations (3.6), (3.7) and (3.8), we have:

ε
∂j1(x)

∂x
= −γεηm1(x) + h.o.t.

εζ ∂2e1(x)
∂x2 = εζ γ

β
e1(x)− ε

α

β
j1(x) + h.o.t.

∂meq

∂x
+ εη ∂m1

∂x
= −εj1(x)− a

(
m2

eq + 2εηmeqm1 + εζe1 + eeq

)
+ h.o.t.

We know the first order terms are a solution of the system, so we can elim-
inate those from the last equation:

εη ∂m1

∂x
= −εj1(x)− a

(
2εηmeqm1 + εζe1

)
+ h.o.t.

We match η = ζ = 1, resulting in the following linear system at order ε:

∂j1(x)
∂x

= −γm1(x)

∂2e1(x)
∂x2 =

γ

β
e1(x)− α

β
j1(x)

∂m1(x)
∂x

= j1(x)− a
(
2meq(x)m1(x) + e1(x)

)
When we define y1 = β ∂e1

∂x and v1 = (j1, m1, e1, y1)
> we have:

dv1

dx
=


0 −γ 0 0
−1 −2ameq(x) −a 0
0 0 0 1

β

−a 0 γ 0

 v1

To find the solutions of this system we need to find its eigenvalues λ and
eigenvectors ~v, as its general solution will be a linear combination of the
following form:

∑
i

ci~vieλix

Version of July 15, 2014– Created July 15, 2014 - 15:15

35



36 Spin Diffusion

Where the ci ∈ R are arbitrary constants to be determined by specific
boundary conditions. The matrix has the following characteristic polyno-
mial:

P(λ) = λ4 + 2amλ3 − γ

(
1 +

1
β

)
λ2 − γ

2am
β

λ + γ
a2

β
+ γ2 1

β

This polynomial has no obvious roots, so there is no easy way to find
the eigenvectors and eigenvalues. We will postpone the treatment of this
problem to the next section.

3.5 Solutions in the quasi-static limit

There is another simplification of the equations given in (3.6), (3.7) and
(3.8) we can study. We will now look at the solutions for large |x|, i.e. x
such that meq ≈ ±1. Substituting this and setting the time derivatives to
zero we have:

0 = − ∂j
∂x
− γ(m∓ 1) (3.9)

0 = ja + β
∂2e− eeq

∂x2 − γ(e− eeq) (3.10)

j(x, τ) = −∂m
∂x
− a(m2 + e) (3.11)

We now reintroduce ẽ = e− eeq and y = β ∂ẽ
∂x . This gives:

dj
dx

= −γ(m∓ 1) (3.12)

dm
dx

= −j− a(m2 + ẽ + eeq) (3.13)

dẽ
dx

=
y
β

(3.14)

dy
dx

= −ja + γẽ (3.15)

For which we write:

dv
dx

= F(v) with: v =


j

m
ẽ
y

 (3.16)

36
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3.5 Solutions in the quasi-static limit 37

Solving now F(v) = 0 gives:

m = ±1 from (3.12)
y = 0 from (3.14)

ja = γẽ from (3.15)
j = −a(1 + ẽ + eeq) from (3.13)

Or, substituting the last equation in the one above it:

ẽ = −
1 + eeq
γ
a2 + 1

j = −a
1 + eeq

1 + a2

γ

from (3.15)

Linearising around this fixed point, we have the following system:

dv
dx

=


0 −γ 0 0
−1 −2am −a 0
0 0 0 1

β

−a 0 γ 0

 v

This matrix we recognise from the previous chapter as equivalent to the
system as arising from the approach there. It (still) has the following char-
acteristic polynomial:

P(λ) = λ4 + 2amλ3 − γ

(
1 +

1
β

)
λ2 − γ

2am
β

λ + γ
a2

β
+ γ2 1

β

This polynomial has no easy roots, so although a very involved closed
form solution exists, we will now use perturbation methods to find ap-
proximations of these roots, corresponding to the eigenvalues of the ma-
trix. To do this we make the reasonable assumption that γ � 1, which
corresponds to the physical property of a long T1 time compared to the
time scale of the diffusion. We introduce λ = λ0 + γαλ1 +O

(
γ2α
)
, where

α is a strictly positive constant to be determined by the matching condi-
tion. Looking at the leading order terms, we have:

O (1) : λ4
0 + 2amλ3

0 = 0
λ0 = 0, ∨ λ0 = −2am
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38 Spin Diffusion

We now want to know the first order correction terms to the zero solutions:
(Note that all cross terms of the form λ

j
0λk

1 drop out as we substitute λ0 =
0)

O (γ) : γ4αλ4
1 + γ3α2amλ3

1 − γ1+2α

(
1 +

1
β

)
λ2

1 − γ1+α 2am
β

λ1 + γ
a2

β
+O

(
γ2
)
= 0

Since α > 0 the following hold: 1 + 2α > 1 + α > 1 and 4α > 3α. These
terms thus can’t be matched, but we match the lowest two: 1 = 3α. Thus
we have:

2amλ3
1 +

a2

β
+O

(
γ4/3

)
= 0

λ1 = −
(

a
2mβ

)1/3

∨ λ1 = e
π
3 i
(

a
2mβ

)1/3

∨ λ1 = e
5π
3 i
(

a
2mβ

)1/3

So for m = 1 we have:

λ1 = −
(

a
2β

)1/3

∨ λ1 = e
π
3 i
(

a
2β

)1/3

∨ λ1 = e
5π
3 i
(

a
2β

)1/3

And for m = −1 we have a phase shift in the complex plane of +π/3:

λ1 =

(
a

2β

)1/3

∨ λ1 = e
2π
3 i
(

a
2β

)1/3

∨ λ1 = e
4π
3 i
(

a
2β

)1/3

So in each case we have two (in leading order) strictly real eigenvalues and
two complex eigenvalues, where the real eigenvalues have the opposite
sign of m, and the real part of the complex eigenvalues has the same sign
as m.
To find approximate eigenvectors we write the following:

A = A0 + γA1

λ = λ0 + γ1/3λ1 + γ2/3λ2 +O (γ)

v = v0 + γ1/3v1 + γ2/3v2 +O (γ)

Yielding the following equations for the first orders:

O (1) : 0 = (A0 − λ0 I)v0

O
(

γ1/3
)

: 0 = (A0 − λ0 I)v1 + (O− λ1 I)v0

O
(

γ2/3
)

: 0 = (A0 − λ0 I)v2 + (O− λ2 I)v0 +−λ1v1

38
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3.6 Outlook 39

Solving the first order system gives the eigenvectors of A0:

v0(−2am) = (0, 1, 0, 0)>, v0(0) = (0, 1,−2m, 0)>

To use this method to find the first correction terms for the eigenvectors
one would need to calculate the eigenvalues upto third order (that is:
O (γ)) to be able to match with the first correction on A, which is of that
same order. This seems to be a quite fruitless exercise, keeping in mind the
large number of assumptions we have already made.

3.6 Outlook

After non-dimensionalising and amending the equations, finding solu-
tions by analytical means proved difficult. Beside the trivial equilibrium
solution with the assumption of zero flux, no solutions were found. Per-
turbing this solution with a small flux yielded a four dimensional linear
system with non-constant coefficients which proved not particularly easy
to solve. However, we trust that although it fell beyond the scope of this
project, this analysis can serve as a proper basis to do numerical simula-
tions of this model of spin diffusion.
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Appendix A
Notation and symbols

Below are the used symbols and where applicable their numerical values
as used in Chapters 1 and 2. Values in brackets give values used in simu-
lations for non-varying parameters.

ms = 2.3224 · 10−11Am2 The magnetic moment of the dipole magnet

µ0 = 4π · 10−7Tm/A Vacuum permeability

µN = 5.05078324 · 10−27J/T Nuclear magneton

µB = 9.27400968 · 10−24J/T Bohr magneton
µ = µB ∨ µ = gµN Magnetic moment of a spin in the sample

gCu = 1.4849 (1) g-factor (value used in simulations)

ρ = 8, 8 · 1029m−3 Density of spins in copper

h = 6.62606957 · 10−34Js Planck’s constant
Acanti = (100nm) Amplitude of the cantilever oscillation

d = 1.75− ...µm(3.5µm) Distance centre of the dipole - sample surface
rres(φ, θ) Distance from O to the resonance slice

Bres = 0.02T Magnetic field corresponding to the RF-frequency
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42 Notation and symbols

fres Larmor frequency applied to induce resonance
∆ fres Bandwidth of the RF-frequency

dsl = (100nm) The (local) thickness of the resonance slice
f0 = 3kHz Eigenfrequency of oscillation of the cantilever

k0 = 10−4Nm−1 Spring constant of the cantilever
T = (0.1K) Temperature of sample
D = (300nm) Sample thickness

γCu = 71.118 · 106rad(sT)−1 Gyromagnetic ratio of the copper nucleus

Below are the extra symbols used in Chapter 3.

m(x, τ) Normalised magnetisation, equivalent to polarization
e(x, τ) Normalised dipole energy
D Diffusion constant for magnetization
Dd Diffusion constant for dipole energy
τ = Dt Normalised time
T1 Mean spin-lattice relaxation time

a =
1

Bloc

∂B(x)
∂x

x-derivative of the normalized magnetic field

γ =
1

T1D
Dimensionless ratio between

spin-lattice relaxation and diffusion speed

β =
Dd
D

Dimensionless ratio between magnetization

and dipole energy diffusion time

v1 = (j1, m1, e1, y1)
> Vector of quantities

42
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Appendix B
Basic formulae and derivations

In this appendix the basic formulae and some derivations of mathematical
results from the report will be given. The polar coordinates, where θ is
defined, as is customary in mathematics, as the angle in the xy-plane and
φ is the angle with the z-axis:

r2 = x2 + y2 + z2

x = r cos θ sin φ

y = r sin θ sin φ

z = r cos φ

The components of the magnetic dipole field ~B are:

Bx =
µ0ms

4π

3xy
r5

By =
µ0ms

4π

3y2 − r2

r5

Bz =
µ0ms

4π

3zy
r5

The magnitude of the dipole field:

|~B|(y, r) =
µ0ms

4πr4

√
3y2 + r2

|~B|(φ, θ, r) =
µ0ms

4πr4

√
3r2 sin2 θ sin2 φ + r2

=
µ0ms

4πr3

√
3 sin2 θ sin2 φ + 1
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44 Basic formulae and derivations

Some first derivatives:

∂|~B|
∂r

= −3µ0ms

4πr4

√
3 sin2 θ sin2 φ + 1

= −3
r

B

∂|~B|
∂θ

= −3µ0ms

4πr4
3 sin2 φ sin θ cos θ√

3 sin2 θ sin2 φ + 1

∂|~B|
∂φ

= −3µ0ms

4πr4
3 sin2 θ sin φ cos φ√

3 sin2 θ sin2 φ + 1

And some second derivatives:

d2Bx

dx2 =
µ0ms

4π

15xy(7x2 − 3r2)

r9

d2By

dx2 =
µ0ms

4π

3(35x2y2 + 5z2r2 − 4r4)

r9

=
µ0ms

4π

(
15y2(7x2 − r2)

r9 +
3(r2 − 5x2)

r7

)
d2Bz

dx2 =
µ0ms

4π

15zy(7x2 − r2)

r9

Taking B = Bres constant we can express the radius as a function of φ and
θ:

rres(φ, θ) =

(
µ0ms

4πBres

)1/3 (
3 sin2 θ sin2 φ + 1

)1/6

In Section 2.1.4 we use a result of the following derivation:
We start with filling in the components and second derivatives in Carte-
sian coordinates:

~B · d2~B
dx2 =

(µ0ms

4π

)2 1
r14

(
3xy · 15xy(7x2 − 3r2)+

+(3y2 − r2) · 3(35x2y2 + 5z2r2 − 4r4) + 3zy(15zy(7x2 − r2))
)

44
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A lot of reordering of terms:

=
(µ0ms

4π

)2 3
r14

(
15x2y2(7x2 − 3r2)+

+(3y2 − r2) · (5(7x2y2 + z2r2)− 4r4) + 15z2y2(7x2 − r2)
)

=
(µ0ms

4π

)2 1
r14

(
45y2r2(5x2 − r2)− 15y2r2(7x2 − r2)

−9y2r2(5x2 − r2) + 3r4(5x2 − r2)
)

=
(µ0ms

4π

)2 3
r12

(
12y2(5x2 − r2)− 5y2(7x2 − r2) + r2(5x2 − r2)

)
=
(µ0ms

4π

)2 3
r12

(
(7y2 + r2)(5x2 − r2)− 10y2x2

)
We reintroduce a term |B|2, which gives a denominator:

= |B|2 3
r4
(7y2 + r2)(5x2 − r2)− 10y2x2

3y2 + r2

Which we try to compensate as much as possible:

= |B|2 3
r4
(5x2 − 2r2)(3y2 + r2) + y2(10x2 − r2)

3y2 + r2

= |B|2 3
r4

(
(5x2 − 2r2) +

y2(10x2 − r2)

3y2 + r2

)
We reintroduce spherical coordinates and gather all r terms:

= |B|2 3
r2

(
(5 cos2 θ sin2 φ− 2) +

sin2 θ sin2 φ(10 cos2 θ sin2 φ− 1)
3 sin2 θ sin2 φ + 1

)

Since all terms share the same power of r, we can introduce a function
h(θ, φ):

= |B|2 3
r2 h(θ, φ)

So by introducing the term |B|2 we achieved that only a 1/r2 factor is left
as r-dependency. This means that in an integral in spherical coordinates
as in equation (2.8) all r-dependencies cancel.
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Appendix C
Computer Code

relativesimulation.m

This code is used to generate (visualisations of) scaleless results as in Sec-
tion 2.2.1. It forms the basis of mrfmsignal.m, but uses no numerical values
and has added code to generate the actual plots of the resonance slice and
do some sanity checks.

1 function [ fighandles ] = relativesimulation ( symmap )
2 %Calculates the expected Kspin signal assuming full saturation using a

3 %dimensionless integral over the analytic expression g(t,p). The analytic

4 %formula for kspin is also used to generate visualizations of the local

5 %signal in the slice.

6 %Code is written by Tobias de Jong. Last edited: 12 June 2014

7 r = @ (t , p ) ( 3 .∗ ( sin ( t ) .∗ sin ( p ) ) . ˆ 2 +1) . ˆ ( 1 . / 6 ) ;
8 kspin = @ (t , p ) 5 .∗ cos ( t ) . ˆ 2 .∗ sin ( p ) .ˆ2−2 . . .
9 + ( sin ( t ) . ˆ 2 .∗ sin ( p ) . ˆ 2 .∗ ( 1 0 .∗ cos ( t ) . ˆ 2 .∗ sin ( p ) . ˆ2−1) ) ./(3∗ sin ( t ) . ˆ 2 .∗ sin ( p ) . ˆ 2 + 1 ) ;

10 g = @ (t , p ) kspin (t , p ) .∗ sin ( p ) ;
11
12 res = 1 0 0 ;
13 Q = zeros ( res , 1 ) ;
14 Q2 = zeros ( res , 1 ) ;
15
16 c lose a l l ;
17 phi = ( pi /2) ∗ ( 1 + ( 1 : res ) /res ) ;
18 theta = ( ( 1 : res )−1)∗2∗pi/res ;
19 phiedge=zeros ( res ) ;
20 phimax=zeros ( res , 1 ) ;
21 phimin=zeros ( res , 1 ) ;
22 Qmin=zeros ( res , 1 ) ;
23 Qmax=zeros ( res , 1 ) ;
24
25 for i=1: res
26 a = ( ( i+3) /(res+4) ) . ˆ 6 ;
27 phidet = @ (t , phi ) ( ( 3 .∗ ( sin ( t ) .∗ sin ( phi ) ) . ˆ 2 +1) .∗ ( cos ( phi ) . ˆ 6 ) − a ) ;
28 edge = @ ( t ) fzero2d ( phidet , t ) ;
29 phiedge ( : , i ) = edge ( theta ) ;
30 phimax = max ( phiedge ) ; %LELIJK!
31 phimin = min ( phiedge ) ;
32 Qmin ( i ) = integral2 (g , 0 , 2∗ pi , phimin ( i ) , pi ) ;
33 Qmax ( i ) = integral2 (g , 0 , 2∗ pi , phimax ( i ) , pi ) ;
34 Q ( i ) = integral2 (g , 0 , 2∗ pi , edge , pi ) ;
35 end
36
37 hoogte = ( ( 4 : ( res+3) ) /(res+4) ) ;
38 f igure ( ) ;
39 hold on ;
40 plot ( hoogte , Q )
41 t i t l e ( ’ T o t a l k {s p i n} as f u n c t i o n o f magne t i c f i e l d ’ ) ;
42 hold off ;
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43
44
45 res = 1000 ;
46 [X , Y , Z ] = sphere ( res−1) ;
47 [t , p , R ] = cart2sph (X , Y , Z ) ;
48 p = p ( ( 1 : res/2) , : ) ;
49 t = t ( ( 1 : res/2) , : ) ;
50 R = R ( ( 1 : res/2) , : ) ;
51
52 R = r (t , pi/2−p ) ;
53 Kspin = kspin (t , pi/2−p ) . / ( r (t , pi/2−p ) . ˆ 2 ) ;
54
55 [X , Y , Z ] = sph2cart (t , p , R ) ;
56 c lose a l l ;
57 s e t ( 0 , ’ d e f au l t Te x tF on tN am e ’ , ’ P a l a t i n o ’ )
58 s e t ( 0 , ’ d e f au l tAxesFontName ’ , ’ P a l a t i n o ’ )
59 s e t ( 0 , ’ d e f a u l t A x e s F o n t S i z e ’ , 12 )
60 s e t ( 0 , ’ d e f a u l t T e x t F o n t S i z e ’ , 12 )
61 fighandles ( 1 ) =f igure ( ) ;
62 mesh (X , Y , Z , Kspin , ’ E d g e c o l o r ’ , ’ none ’ , ’ F a c e C o l o r ’ , ’ i n t e r p ’ , ’ F a c e L i g h t i n g ’ , ’ phong ’ )
63 xlabel ( ’ x ’ )
64 ylabel ( ’ y ’ )
65 zlabel ( ’ z ’ )
66 c a x i s ( [ −3 , 3 ] )
67 xlim ( [ − 1 . 5 , 1 . 5 ] )
68 ylim ( [ − 1 . 5 , 1 . 5 ] )
69 colormap ( symmap ) ;
70 hold off ;
71
72 fighandles ( 2 ) =f igure ( ) ;
73 mesh (X , Y , Z , R , ’ E d g e c o l o r ’ , ’ none ’ , ’ F a c e C o l o r ’ , ’ i n t e r p ’ , ’ F a c e L i g h t i n g ’ , ’ phong ’ )
74 xlabel ( ’ x ’ )
75 ylabel ( ’ y ’ )
76 zlabel ( ’ z ’ )
77 xlim ( [ − 1 . 5 , 1 . 5 ] )
78 ylim ( [ − 1 . 5 , 1 . 5 ] )
79 colormap ( symmap ) ;
80 hold off ;
81
82 Kspin = Kspin .∗ abs ( cos ( t ) .∗ cos ( p ) ) ;
83 fighandles ( 3 ) =f igure ( ) ;
84 mesh (X , Y , Z , Kspin , ’ E d g e c o l o r ’ , ’ none ’ , ’ F a c e C o l o r ’ , ’ i n t e r p ’ , ’ F a c e L i g h t i n g ’ , ’ phong ’ )
85 %camlight left

86 xlabel ( ’ x ’ )
87 ylabel ( ’ y ’ )
88 zlabel ( ’ z ’ )
89 c a x i s ([−3 3 ] )
90 xlim ( [ − 1 . 5 , 1 . 5 ] )
91 ylim ( [ − 1 . 5 , 1 . 5 ] )
92 colormap ( symmap ) ;
93 hold off ;
94 end
95
96 function philim = fzero2d ( twoargfun , t )
97 [n , m ] = s ize ( t ) ;
98 philim = zeros (n , m ) ;
99 for i=1:n

100 for j=1:m
101 philim (i , j ) = fzero ( @ ( p ) twoargfun ( t (i , j ) ,p ) , 0 . 6 .∗ pi ) ;
102 end
103 end
104 end

mrfmsignal.m

This code calculates the integral as given by equations (2.8) and (2.9) for
one specific set of values for the parameters. Wrapper codes such as wrapper.m
can be used to produce relevant plots.

1 function [ Kspin ] = mrfmsignal ( varargin )
2 %Calculates the expected Kspin signal assuming full saturation using a

3 %numerical computation of the dimensionless integral over the analytic

4 %expression g(theta,phi) It takes the following arguments (with it’s default

5 %values): d = 3.5e-6, T = 0.1, B = 0.0522, dsample = 0.3e-6,

6 %dslice = 0.1e-6, rhospin = 8.5e26

48
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7 %Code is written by Tobias de Jong Last edited: 12 June 2014

8
9

10 %Default parameters for sample

11 %height above sample (m), Temperature (K), Resonant field (T), Sample

12 %thickness (m), resonant slice thickness (m), rhospin (m^-3)

13 defaults = [ 3 . 5 e−6, 0 . 1 , 0 . 0 5 2 2 , 0 . 3 e−6, 0 . 1 e−6, 8 . 5 e26 ] ;
14 defaults ( 1 : nargin ) = cell2mat ( varargin ) ;
15
16 %argh!

17 d = defaults ( 1 ) ;
18 T = defaults ( 2 ) ;
19 B = defaults ( 3 ) ;
20 dsample = defaults ( 4 ) ;
21 dslice = defaults ( 5 ) ;
22 rhospin = defaults ( 6 ) ;
23
24
25 %Geometrical functions

26 r = @ ( theta , phi ) ( 3 .∗ ( sin ( theta ) .∗ sin ( phi ) ) . ˆ 2 +1) . ˆ ( 1 . / 6 ) ; %relative radius of the slice

27 kspin = @ ( theta , phi ) 5 .∗ cos ( theta ) . ˆ 2 .∗ sin ( phi ) .ˆ2−2 . . .
28 + ( sin ( theta ) . ˆ 2 .∗ sin ( phi ) . ˆ 2 .∗ ( 1 0 .∗ cos ( theta ) . ˆ 2 .∗ sin ( phi ) . ˆ2−1) ) ./(3∗ sin ( theta ) . ˆ 2 .∗ sin ( phi ) . ˆ 2 + 1 ) ;
29 g = @ ( theta , phi ) kspin ( theta , phi ) .∗ sin ( phi ) ;
30
31 %Physical constants (SI)

32 mu0 = 4∗pi∗10ˆ−7;
33 mNdFeB = 2.3224∗10ˆ−11;
34 mFePt = 0 . 6 e−11;
35 muN = 5.05078324∗10ˆ−27;
36 muB = 9.27400968∗10ˆ−24;
37 kb = 1.3806488∗10ˆ−23;
38
39 pol = @ (T , B ) tanh ( (2∗ muN .∗B ) . / ( 2 .∗ kb .∗T ) ) ;
40
41
42 Qupper=0;
43 Qlower=0;
44 %Calculating the integral for different values

45 temp = ((4∗ pi .∗B .∗d . ˆ 3 ) . / ( mu0 .∗ mNdFeB ) ) . ˆ 2 ;
46 i f ( temp>0 && temp<0.992)%because numerical calculations hate edgecases

47 phidet = @ ( theta , phi ) ( ( 3 .∗ ( sin ( theta ) .∗ sin ( phi ) ) . ˆ 2 +1) .∗ ( cos ( phi ) . ˆ 6 ) − temp ) ;
48 edge = @ ( theta ) fzero2d ( phidet , theta ) ;
49 %Exploit the symmetry in horizontal directions to greatly improve

50 %performance:

51 Qupper = 4∗integral2 (g , 0 , 0 . 5∗ pi , edge , pi ) ;
52 end
53 temp = ((4∗ pi .∗B .∗ ( d+dsample ) . ˆ 3 ) . / ( mu0 .∗ mNdFeB ) ) . ˆ 2 ;
54 i f ( temp>0 && temp<0.992)
55 phidet = @ ( theta , phi ) ( ( 3 .∗ ( sin ( theta ) .∗ sin ( phi ) ) . ˆ 2 +1) .∗ ( cos ( phi ) . ˆ 6 ) − temp ) ;
56 edge = @ ( theta ) fzero2d ( phidet , theta ) ;
57 %Exploiting again the symmetry in horizontal directions:

58 Qlower = 4∗integral2 (g , 0 , 0 . 5∗ pi , edge , pi ) ;
59 end
60
61 %Convert dimensionless integral to signal

62 Kspin = (3∗muN .∗pol (T , B ) .∗ rhospin .∗ dslice .∗B ) ’ .∗ ( Qupper−Qlower ) ;
63 end
64
65 function philim = fzero2d ( twoargfun , t )
66 %Accepts a function handle in two arguments and a maximally 2 dim array t,

67 %and returns the value of the second argument of the function for which the

68 %function, with values t in the first argument, is zero.

69 [n , m ] = s ize ( t ) ;
70 philim = zeros (n , m ) ;
71 for i=1:n
72 for j=1:m
73 philim (i , j ) = fzero ( @ ( p ) twoargfun ( t (i , j ) ,p ) , 0 . 6 .∗ pi ) ;
74 end
75 end
76 end

wrapper.m

This is an example of a wrapper file invoking mrfmsignal.m to generate
data for some plots. This specific code generated plots 2.4, 2.5.
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1 %Plots the expected mrfm-signal as a function of magnetic field and

2 % height above the sample for different temperatures using mrfmsignal.m

3 res = 7 7 ;
4 T = [ 0 . 1 1 4 ] ;
5 Kspin = zeros ( 1 , res ) ;
6 d = 3 . 5 e−6;
7 B = l inspace ( 0 . 0 0 5 , 0 . 0 5 5 , res ) ;
8
9 %Generate the legendentries and set some plot layouts

10 legendentries = cell ( 3 , 1 ) ;
11 for i=1:3
12 legendentries{i} = strcat ( ’T = ’ , num2str ( T ( i ) ) , ’K ’ ) ;
13 end
14 s e t ( 0 , ’ d e f au l t Te x t F on tN am e ’ , ’ P a l a t i n o ’ )
15 s e t ( 0 , ’ d e f au l tAxesFontName ’ , ’ P a l a t i n o ’ )
16 s e t ( 0 , ’ d e f a u l t A x e s F o n t S i z e ’ , 12 )
17 s e t ( 0 , ’ d e f a u l t T e x t F o n t S i z e ’ , 12 )
18
19 %Calculate signal as a function of B

20 for j=1: res
21 for i=1:3
22 Kspin (i , j ) = mrfmsignal (d , T ( i ) , B ( j ) ) ;
23 end
24 end
25
26 %Plot that

27 f igure ( ) ;
28 hold on ;
29 plot (B , Kspin , ’ x− ’ )
30 xlabel ( ’ B { r e s} ( T ) ’ )
31 ylabel ( ’ k {s p i n} (Nmˆ{−1}) ’ )
32 legend ( legendentries , ’ L o c a t i o n ’ , ’ SouthWest ’ )
33 hold off

34
35 %Calculate signal as a function of heigt above sample d

36 B = 0 . 0 2 ;
37 d = l inspace ( 1 . 7 5 e−6,5e−6,res ) ;
38 for j=1: res
39 for i=1:3
40 Kspin (i , j ) = mrfmsignal ( d ( j ) , T ( i ) , B ) ;
41 end
42 end
43
44 %plot

45 f igure ( ) ;
46 hold on ;
47 plot (d , Kspin , ’ x− ’ )
48 xlabel ( ’ d (m) ’ )
49 ylabel ( ’ k {s p i n} (Nmˆ{−1}) ’ )
50 legend ( legendentries , ’ L o c a t i o n ’ , ’ SouthWest ’ )
51 hold off

52
53 %Calculate signal for B*d^3 = constant

54 B = 0 . 0 4 2 .∗ ( 3 . 5 e−6./d ) . ˆ 3 ;
55 Kspinequal = zeros ( 1 , res ) ;
56 for j=1: res
57 for i=1:3
58 Kspinequal (i , j ) = mrfmsignal ( d ( j ) , T ( i ) , B ( j ) ) ;
59 end
60 end
61
62 %plot

63 f igure ( ) ;
64 hold on ;
65 plot (B , Kspinequal , ’ x− ’ )
66 xlabel ( ’ B { r e s} ( T ) ’ )
67 ylabel ( ’ k {s p i n} (Nmˆ{−1}) ’ )
68 legend ( legendentries , ’ L o c a t i o n ’ , ’ SouthWest ’ )
69 hold off

wrappermultilayer.m

This is an example of a wrapper file invoking mrfmsignal.m to generate
data for plots. This specific code generated plot 2.10.

1 %Uses mrfmsignal.m to simulate the signal for different layers lying

50
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2 %directly on top of each other at depths layerdepth beneath the surface,

3 %and generates a figure with a nice legend.

4 res = 9 1 ;
5 T = 0 . 1 ;
6 d = 3 . 5 e−6;
7 layerdepth = [0 3 6 9 ] .∗ 0 . 1 e−6;
8 numlayers = s ize ( layerdepth , 2 ) −1;
9 Kspin = zeros ( res , numlayers ) ;

10 B = l inspace ( 0 , 0 . 0 5 5 , res ) ;
11 legendentries = cell ( numlayers , 1 ) ;
12 t i c
13 %Calculations

14 for j= 1 : ( numlayers )
15 parfor i = 1 : res
16 Kspin (i , j ) = mrfmsignal ( d+layerdepth ( j ) , T , B ( i ) , layerdepth ( j+1)−layerdepth ( j ) ) ;
17 end
18 legendentries{j} = strcat ( ’ l a y e r d e p t h = ’ , num2str ( layerdepth ( j )∗1e9 ) , ’nm ’ ) ;
19 end
20 toc
21
22 %Convert from Kspin to frequencyshift

23 Df = Kspin .∗0 .5 .∗3000 ./10ˆ −4 ;
24
25 %Plotting

26 f igure ( ) ;
27 hold on ;
28 plot (B , Df )
29 legend ( legendentries , ’ L o c a t i o n ’ , ’ SouthWest ’ )
30 xlabel ( ’B ( T ) ’ )
31 ylabel ( ’\D e l t a f ( Hz ) ’ )
32 hold off

Version of July 15, 2014– Created July 15, 2014 - 15:15

51



52 Computer Code

52

Version of July 15, 2014– Created July 15, 2014 - 15:15



References

[1] C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar,
Nanoscale magnetic resonance imaging, Proceedings of the National
Academy of Sciences 106, 1313 (2009).

[2] J. Cardellino, N. Scozzaro, M. R. Herman, A. J. Berger, C. Zhang, K. C.
Fong, C. Jayaprakash, D. V. Pelekhov, and P. C. Hammel, Observation
of Pure Spin Transport in a Diamond Spin Wire, ArXiv e-prints (2013).

[3] G. H. C. J. Wijts, Magnetic resonance force microscopy at milliKelvin tem-
peratures, Casimir PhD series, 2013.

[4] A. Vinante, G. Wijts, O. Usenko, L. Schinkelshoek, and T. H. Oost-
erkamp, Magnetic resonance force microscopy of paramagnetic electron
spins at millikelvin temperatures, Nat Commun 2, 572 (2011).

[5] S. Lee, E. W. Moore, and J. A. Marohn, Unified picture of cantilever fre-
quency shift measurements of magnetic resonance, Physical Review B 85,
165447 (2012).

[6] A. M. J. den Haan, G. H. C. J. Wijts, F. Galli, O. Usenko, G. J. C. van
Baarle, D. J. van der Zalm, and T. H. Oosterkamp, Atomic resolution
scanning tunneling microscopy in a cryogen free dilution refrigerator at 15
mK, Review of Scientific Instruments 85, (2014).

[7] A. Vinante, A. Kirste, A. den Haan, O. Usenko, G. Wijts, E. Jeffrey,
P. Sonin, D. Bouwmeester, and T. H. Oosterkamp, High sensitivity
SQUID-detection and feedback-cooling of an ultrasoft microcantilever, Ap-
plied Physics Letters 101, (2012).

[8] A. Abragam, The principles of nuclear magnetism: the international series
of monographs on physics, Oxford University Press, Oxford, 1961.

[9] A. Z. Genack and A. G. Redfield, Theory of nuclear spin diffusion in a
spatially varying magnetic field, Phys. Rev. B 12, 78 (1975).

Version of July 15, 2014– Created July 15, 2014 - 15:15

53



54 References

[10] A. Vinante, G. Wijts, O. Usenko, L. Schinkelshoek, and T. H. Oost-
erkamp, Supplementary material of Magnetic resonance force microscopy
of paramagnetic electron spins at millikelvin temperatures, Nat Commun
2 (2011).

54

Version of July 15, 2014– Created July 15, 2014 - 15:15


	Introduction: Description of the idea MRFM
	Motivation
	Experimental idea
	Samples

	Theoretical aspects
	Resonance and slices
	Signal of a single spin


	Analysis and Simulations
	Theoretical work
	Total signal
	Slice thickness
	Requirements for full saturation and adiabatic rapid passage
	Elaboration and simplification
	Boundaries of integration
	Approximations for thickness effects

	Numerical results
	Scaleless results
	Simulations of experiments
	Code considerations

	Suggested experiments
	Discussion

	Spin Diffusion
	Motivation for the model
	The starting point: the equations of the model
	Non-dimensionalisation

	A Contradiction: amending the equations
	Perturbation of the known solution
	Solutions in the quasi-static limit
	Outlook

	Notation and symbols
	Basic formulae and derivations
	Computer Code



