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Abstract 

Most of the research regarding multilevel modelling focusses on so-called macro-micro models, 

where the outcome is measured at the lowest level of the model, and these models are generally 

well understood. Much less is known about methods to analyse data where the outcome is 

measured at the highest level of the model (micro-macro models), with one or more predictors at 

the lowest level. In this study, we demonstrate not only that the analysis of such data is possible 

using standard software, we perform a simulation study to compare the performance of a full 

information maximum likelihood multilevel structural equations modelling (ML-SEM) approach to a 

limited information 2-step latent covariate regression method (2-step LCM). We will show that both 

methods are viable alternatives for the analysis of micro-macro models. The 2-step LCM method 

generally provides less biased estimates of the model parameters (except the intercept) when the 

independent variables are correlated. The ML-SEM method provides more accurate estimates of the 

standard errors for some parameters, except when the number of groups included in the analysis is 

small. 

 

Samenvatting 

Een groot deel van het onderzoek naar multilevel modellen draait om de zogenaamde macro-

micromodellen, waarbij de uitkomst wordt gemeten op het laagste niveau van het model. Over deze 

modellen is vrij veel bekend. Veel minder weten we over methodes voor het analyseren van data 

waarbij de uitkomst wordt gemeten op het hoogste niveau van het model met één of meer 

predictoren op het laagste niveau (micro-macromodellen). Met het huidige onderzoek laten we zien 

dat de analyse van dit soort data mogelijk is met standaard software en we voeren een 

simulatiestudie uit met als doel de prestaties van twee methodes te vergelijken. De eerste methode 

is multilevel structural equations modelling (ML-SEM), wat een full information maximum likelihood 

benadering is. De tweede methode is de 2-step latent covariate regression method (2-step LCM), wat 

een limited information benadering is. We zullen aantonen dat beide methodes geschikt zijn voor de 

analyse van micro-macro modellen. De 2-step LCM methode zorgt over het algemeen voor minder 

bias van de geschatte parameters (met uitzondering van het intercept) wanneer de onafhankelijke 

variabelen met elkaar correleren. De ML-SEM methode geeft betere schattingen van de 

standaardfouten voor sommige parameters, behalve wanneer het aantal  groepen in de analyse klein 

is. 
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From micro to macro: multilevel modelling with group-level outcomes 

Multilevel modelling (MLM) is a name for a range of techniques that allow for the analysis of 

data with a hierarchical, or nested, structure. Such data is quite common in the social and 

behavioural sciences. The hierarchical structure arises when one level of observations is nested in 

another, for example students who are nested in school, or employees who are nested in firms. It is 

also possible for observations to be nested in individuals, as is the case with repeated measurements. 

Sometimes, the nesting arises as a side effect of the design of a study, for example when participants 

in a survey are nested in interviewers. Regardless of the source of the nesting, what these data 

structures have in common is that the observations at the lowest level (the students, the employees, 

the repeated measures) are not independent. Observations within the same level-2 cluster (group) 

have more in common with one another than with observations from a different level-2 cluster, 

because they are all influenced by the same group characteristics, and because the level-1 units 

within the same cluster can (potentially) influence one another. Because of this, the analysis of 

multilevel data calls for specialized models that can take the dependency of the observations into 

account, and that can separate the within group variation from the between group variation. When 

the dependency of the observations is not taken into account, the analysis may lead to incorrect 

inferences about the relationships in the data. There are two common mistakes that may occur when 

the relationship between units at different levels is  not taken into account. The first mistake is 

generalization of relationships at the group level, expecting them to hold at the individual level. This 

is known as the ecological fallacy (Robinson, 1950). The second mistake is generalizing findings from 

the individual level to the group level, which is known as the atomistic fallacy (Diez-Roux, 1998). 

Before more sophisticated methods were available, the analysis of hierarchically structured data 

was handled by aggregating or disaggregating variables to a single level of analysis and essentially 

ignoring the hierarchical structure of the data. Analysing data this way, without taking the level of 

the observations into account, can lead to problems when the relationship between variables is not 

the same at the individual level and the group level. When aggregating the lower level variable(s) to 

the higher level (e.g. by computing the group average), researchers run the risk of succumbing to the 

ecological fallacy. Additionally, this approach reduces the variability in the data, resulting in 

inappropriate estimates of the standard errors of the regression parameters (Croon & Van 

Veldhoven, 2007), reduced statistical power, unreliable group-level information, and the incorrect 

weighting of groups during parameter estimation (Lüdtke et al., 2008; Preacher, Zyphur & Zhang, 

2010). When disaggregating the higher level variable(s) to the lower level (e.g. by assigning all 

members of the group the same score on the group-level variable as if it was measured at the 

individual level),  researchers may succumb to the atomistic fallacy. This may also lead to inaccurate 

estimates of the standard errors of the regression parameters due to confounding of between group 
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and within group variation (Croon & Van Veldhoven, 2007).  In short, methods that are appropriate 

for analysing multilevel data should take the hierarchical structure of the data and the level of the 

observations into account to lead to correct inferences. 

Traditional approaches to MLM focus mainly on so-called macro-micro models (Snijders & 

Bosker, as cited in Croon & Van Veldhoven (2007)). In a macro-micro model, the dependent variable 

is included at the lowest level of the model, and independent variables can be included at any level. 

Say, for example, that the outcome we are interested in is children’s reading ability (an individual-

level variable), and that we have two independent variables that may predict the outcome: a 

measure of intelligence (an individual-level variable), and the number of hours each week that the 

teacher spends exercising reading with the class (a group-level variable, measured at the level of the 

class). This is a simple macro-micro model that can be analysed using traditional MLM. Models for 

this type of data are generally well understood (see Hox (2010) for a good introduction to MLM). 

Models for micro-macro data, on the other hand, have until recently been largely neglected in 

the literature on MLM (Croon & Van Veldhoven, 2007). There are many areas of research, however, 

where such models would be of substantial interest. Sometimes, this is because we are interested in 

the group-level outcome specifically. We may want to predict the performance of schools, 

organizations, or teams using both group-level and individual-level characteristics. At other times, we 

may be dealing with data that is only available at the aggregated level. For example when the 

outcome of interest is students’ absenteeism rate, team productivity, or (country-level) pollution 

indices. Recent studies show that methods using latent variables, or structural equation modelling 

(SEM) can be used for the analysis of micro-macro data. We will start this paper with a short general 

overview of SEM, and then proceed to discussing the specific models we will be investigating in the 

current study.  

Structural Equations Modelling 

Structural equations modelling is a statistical modelling technique that can be described as a 

combination between factor analysis and regression, or path, analysis. When using SEM, it is possible 

to represent  theoretical constructs by latent factors. Latent factors are variables that have not been 

directly observed, but that are inferred from the observed (measured) variables. These latent 

variables are free of random error, because error has been estimated and removed, leaving only a 

common variance (Hox & Bechger, 1998). Both the independent (or endogenous) variables and 

dependent (or exogenous) variables can be either measured or latent. The SEM consist of two parts: 

a measurement model, which relates the measured variables to the latent variables, and a structural 

model, which relates the latent variables to one another. SEM does not test the hypothesis that two 

(or more) variables are related directly by comparing the measured values of the variables, instead it 
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tests the hypothesis indirectly by comparing the variances of the variables. Throughout this paper, 

we will use an adapted version of the SEM notation of Muthén and Asparouhov (2008). The 

measurement model of the SEM is:  

 

𝒚𝑖 = 𝜷0 + 𝜷1𝜼𝑖 + 𝜷2𝒙𝑖 + 𝝐𝑖 

 

where i indexes individuals. 𝒚𝑖 is a p-dimensional vector of measured endogenous variables for 

individual i; 𝜷0 is a p-dimensional vector of variable intercepts; 𝜷1 is a 𝑝 × 𝑚 loading matrix, where 

m is the number of random effects (latent variables), this matrix also includes random slopes if any 

are specified; 𝜼𝑖  is an 𝑚 × 1 vector of random effects for individual i; and 𝜷2  is a 𝑝 × 𝑞 matrix of 

regression coefficients (slopes) for the q exogenous covariates in 𝒙𝑖; and 𝝐𝑖 is a p-dimensional vector 

of error terms for individual i. 

The structural model is: 

 

𝜼𝑖 = 𝜶0 + 𝜶1𝜼𝑖 + 𝜶3𝒙𝑖 + 𝜻𝑖 

 

where 𝜶0 is an 𝑚 × 1 vector of intercept terms; 𝜶1 is an 𝑚 × 𝑚 matrix of structural regression 

parameters; 𝜶3 is an 𝑚 × 𝑞 matrix of slope parameters for exogenous covariates; and 𝜻𝑖 is an m-

dimensional vector of latent variable regression residuals for individual i. Residuals in 𝜺𝑖  and 𝜻𝑖 are 

assumed to be multivariate normally distributed with zero means and covariance matrices Θ and Ψ, 

respectively. Additionally, the residuals in 𝜺𝑖  and 𝜻𝑖 are assumed to be independent. 

The assumption of independent residuals seems to make SEM inherently unsuitable for 

modelling multilevel data. However, in the early 1990’s, researchers have shown that  that for data 

involving repeated measures, SEM and MLM are analytically equivalent (Meredith & Tisak, 1990; 

Willet & Sayer, 1994; MacCallum, Kim, Malarkey & Kiecolt-Glaser, 1997). The main difference is that 

for MLM the time variable is used as a predictor variable, while for SEM time is incorporated into the 

factor loading matrix, thereby relating the repeated measures to the underlying latent factors 

(Curran, 2003). Others later capitalized on this equivalence and described that any level-1 predictor 

could be incorporated into the SEM factor loading matrix (Curran, 2003; Mehta & Neale, 2005), 

making SEM suitable for a broader range of multilevel models and not just those that model 

individual change over time. This application of SEM regards the cluster as the unit of analysis, and 

the individuals as variables, and is also known as the people-as-variables approach (Mehta & Neale, 

2005). In its early stages, this method was very impractical and data management intensive, because 

it involved manually rearranging the data matrix to properly relate the level-1 units to the level-2 

units, while grouping the level-1 units that had the same values on the level-2 predictors. Currently, 
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multilevel models can be estimates in some standard SEM software, such as Mplus, using full 

information maximum likelihood estimation without the additional data management steps being 

necessary.  

For our current research, we are interested in models suitable for the analyses of micro-macro 

multilevel data. By means of a simulation study, we will investigate the performance of two different 

methods for the analyses of such data and determine whether or not either of the methods performs 

better than the other. In the remainder of this chapter, we will describe the methods, starting with a 

latent covariate regression method developed specifically for the analysis of micro-macro data, and 

then we will take a look at a multilevel SEM (ML-SEM) method. 

Latent Covariate Model  

As we discussed in the previous section, using the observed group mean of an individual-level 

variable as a covariate in an ordinary least squares (OLS) regression leads to biased parameter 

estimates. We can eliminate this bias by treating the unobserved group mean (ξ𝑔) as a latent 

variable, with the individuals as indicators. The first method we describe in more detail is based on 

an aggregation approach, and uses a correction procedure to adjust the group mean for bias (Croon 

& Van Veldhoven, 2007). We will refer to this method as the 2-step latent covariate method (2-step 

LCM). 

The SEM we described in the previous section, as well as the multilevel SEM we will describe in 

the next section are general models. The ML-SEM allows any variable to be decomposed into latent 

group and individual-level variation, while the 2-step LCM we discuss here only allows for the 

independent variables to have both within group and between group variation, because it was 

developed specifically for the analysis of micro-macro data (although a similar procedure could be 

used for other types of data). Because of this, we use a slightly different notation here to distinguish 

more clearly between the independent variables measured at the individual-level and those 

measured at the group-level. 

Consider the simple micro-macro model shown in figure 1, which includes one group-level 

independent variable (here denoted as 𝑍) and one individual-level independent variable (𝑋). This 

model can be expressed as a set of linear equations. The first equation relates the group scores on 

the explanatory variables 𝑍 and ξ to the outcome variable 𝑌: 

 

 𝑦𝑔 = 𝛽0 + 𝛽𝑖ξ𝑔 + 𝛽𝑔𝑧𝑔 + 𝜖𝑔 

 

where g indexes groups. 𝑦𝑔 is the outcome for group g; ξ𝑔 is the latent group mean of the individual-

level variable for group g; 𝑧𝑔is the value of the group-level variable for group g; and 𝜖𝑔is the error (or  
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Figure 1. A micro-macro model with correlated independent variables. 

A simple micro-macro model with one independent variable at the 

group level, and one independent variable at the individual level. The 

latent group mean of the individual-level variable is represented by ξg. 

 

disturbance) for group g. The error variable 𝜖𝑔 is assumed to be homoscedastic (to have constant 

variance 𝜎𝜖
2 for all groups). 

The regression parameters in this model satisfy the following relationships: 

 

(
𝜎ξ

2 𝜎ξz

𝜎ξz 𝜎𝑧
2

) (
𝛽1

𝛽2
) = (

𝜎ξy

𝜎𝑧𝑦
) 

 

and 

 

𝛽0 = 𝜇𝑦 − 𝛽1𝜇ξ − 𝛽2𝜇𝑧 

 

where 𝜇𝑦, 𝜇ξ, and 𝜇𝑧, are the grand means of the variables 𝑌, ξ, and 𝑍, respectively. 

The second equation relates the group score ξ𝑔 to the individual score 𝑥𝑖𝑔 of each individual in 

group g: 

 

𝑥𝑖𝑔 = ξ𝑔 + 𝑣𝑖𝑔 
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The variance of the disturbance term 𝑣𝑖𝑔 (𝜎𝑣
2, which is the within-group variance of variable 𝑋) is 

assumed to be constant for all subjects and groups. Additionally, 𝜖𝑔 and 𝑣𝑖𝑔 are assumed to be 

mutually independent and to be independent from the group variable ξ.  

Croon and Van Veldhoven (2007) have shown analytically that regression of 𝑦𝑔 on the observed 

group mean 𝑥̅𝑔 (instead of ξ𝑔) and 𝑧𝑔 leads to biased estimates of the regression parameters, unless 

the within-group variability of the individual-level variable (𝑋) is zero. The relationship between the 

regression parameters for the unadjusted model and the parameters for the latent covariate model 

are an expression of this bias. We indicate the intercept for the unadjusted model by 𝛽𝑢0; the 

parameter for the ξ variable by 𝛽𝑢𝑖; and the parameter for the 𝑍 variable by 𝛽𝑢𝑔. The relationships 

between the parameters for the unadjusted model and the parameters for the 2-step LCM are (see 

Croon & Van Veldhoven (2007) for a derivation of these results): 

 

𝛽𝑢0 = 𝛽0 + ((1 − 𝑤𝑔1)𝜇ξ − 𝑤𝑔2𝜇𝑧)𝛽1, 

𝛽𝑢𝑖 = 𝑤𝑔1𝛽𝑖, 

𝛽𝑢𝑔 = 𝑤𝑔2𝛽𝑖 + 𝛽𝑔, 

with 

 

𝑤𝑔1 =
𝜎ξ

2𝜎z
2 − 𝜎ξz

2

(𝜎ξ
2 + 𝜎v

2 𝑛𝑔⁄ )𝜎z
2 − 𝜎ξz

2
 

 

and 

 

𝑤𝑔2 =
𝜎ξz 𝜎v

2 𝑛𝑔⁄

(𝜎ξ
2 + 𝜎v

2 𝑛𝑔⁄ )𝜎z
2 − 𝜎ξz

2
 

 

where 𝑛𝑔 is the size of group g. 

Now that we know the extent of the bias introduced by regressing 𝑦𝑔 on the observed group 

mean 𝑥̅𝑔  and 𝑧𝑔, we can correct for it using the following formula to compute the adjusted group 

mean 𝑥̃𝑔 (Croon & Van Veldhoven, 2007): 

 

𝑥̃𝑔 = (1 − 𝑤𝑔1)𝜇ξ + 𝑤𝑔1𝑥̅𝑔 + 𝑤𝑔2(𝑧𝑔 − 𝜇z). 
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In this formulation, the adjusted group mean 𝑥̃𝑔  is the expected value of ξ𝑔, taking into account all 

the observed scores on both the individual and group-level explanatory variables. 

Regression of the group-level outcome 𝑦𝑔 on the adjusted group mean 𝑥̃𝑔 and the group-level 

variable 𝑧𝑔, leads to unbiased estimates of the regression parameters. However, the model satisfies 

homoscedasticity only when group sizes (𝑛𝑔) are equal between groups. When group sizes are not 

equal, the weight matrices 𝑤𝑔1 and 𝑤𝑔2 have to be determined for each group separately, and the 

standard errors can be corrected using the heteroscedasticity-consistent covariance matrix estimator 

defined by White (1980), and further developed by Davidson & MacKinnon (1993).  

In a simulation study Croon and Van Veldhoven (2007) examined the difference between the 

latent covariate method and an unadjusted regression analysis (using the observed group means 𝑥̅𝑔) 

in their effect on the relative bias of the parameter estimates. For the parameter estimate (𝛽𝑔) of the 

group-level explanatory variable 𝑧𝑔, both methods performed about equally well, except when the ξ𝑔 

and 𝑧𝑔 variables were correlated and the ICC was low, in which case their latent covariate method 

produced less biased estimates. For the parameter estimate of the (adjusted) group mean of the 

individual-level variable 𝑥𝑖𝑔 (𝛽𝑖), the latent covariate method performed better in all examined 

conditions. No differences were found regarding bias for the intercept. 

Multilevel Structural Equations Modelling 

The 2-step latent covariate method described in the previous section is a limited information 

approach, in contrast to the ML-SEM method we will be discussing in the current section, which 

allows for full information maximum likelihood estimation and requires only a single analysis step.  

Multilevel structural equation modelling, as the name implies, combines multilevel modelling 

with structural equations modelling. ML-SEM has, in a short period of time, come a long way from 

the people-as-variables approach discussed previously. Work by (among others) Muthén & 

Asparouhov (2008) and Lüdtke et al. (2008) has led to the proposal of a general ML-SEM framework  

(Preacher, Zhang & Zyphur, 2010) which allows for the estimation of a multitude of ML-SEM models 

using standard SEM software. Though developed in the context of mediation models, the authors 

touch on the possibility of using ML-SEM to estimate micro-macro models. 

 The basis for the ML-SEM approach is that each variable is decomposed into unobserved 

components, which are considered latent variables (Asparouhov & Muthén, 2006), using the 

observed data to infer the latent group mean and the latent within component. Using ML-SEM, the 

unreliability of the group mean is taken into account when estimating the corresponding model 

parameter (Lüdtke et al., 2008). For the model illustrated in figure 1, the decomposition of the 

individual-level variable 𝑥𝑖𝑔 into separate between and within components looks like this: 
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𝑥𝑖𝑔 = ξ𝑔 + 𝑣𝑖𝑔 

 

where ξ𝑔 is the latent group mean, and 𝑣𝑖𝑔  is the latent individual deviation from the group mean. 

Note that this is the same formula we have seen before when we discussed the 2-step LCM.  

The single level SEM described in the beginning of this chapter can be extended to the multilevel 

case and can accommodate several different designs, including mediation models and micro-macro 

models (Preacher, Zhang & Zyphur, 2010). Following the adapted version of the SEM notation by 

(Muthén & Asparouhov, 2008), the measurement model for the ML-SEM is: 

 

𝒚𝑖𝑔 = 𝜷0𝑔 + 𝜷1𝑔𝜼𝑖𝑔 + 𝜷2𝑔𝒙𝑖𝑔 + 𝝐𝑖𝑔 

 

where 𝒚𝑖𝑔 is a p-dimensional vector of measured variables; 𝜷0𝑔 is a p-dimensional vector of variable 

intercepts; 𝝐𝑖𝑔 is a p-dimensional vector of error terms; 𝜷1𝑔is a 𝑝 × 𝑚 loading matrix, where m is the 

number of random effects (latent variables), this matrix includes random slopes if any are specified; 

𝜼𝑖𝑔 is an 𝑚 × 1 vector of random effects; and 𝜷2𝑔 is a 𝑝 × 𝑞matrix of slopes for the q exogenous 

covariates in 𝒙𝑖𝑔. Residuals in 𝝐𝑖𝑔 are assumed to be multivariate normally distributed with a mean 

of zero and covariance matrix Θ. Elements in Θ are not permitted to vary across clusters. 

The within structural model for the ML-SEM is: 

 

𝜼𝑖𝑔 = 𝜶0𝑔 + 𝜶1𝑔𝜼𝑖𝑔 + 𝜶3𝑔𝒙𝑖𝑔 + 𝜻𝑖𝑔 

 

where 𝜶0𝑔 is an 𝑚 × 1 vector of intercept terms; 𝜶1𝑔 is an 𝑚 × 𝑚 matrix of structural regression 

parameters (with zeros on the diagonal, indicating the latent variables cannot cause/influence 

themselves); 𝜶3𝑔 is an 𝑚 × 𝑞 matrix of slope parameters for exogenous covariates; and 𝜻𝑖𝑔 is an m-

dimensional vector of latent variable regression residuals. Residuals in 𝜻𝑖𝑔 are assumed to be 

multivariate normally distributed with a mean of zero and covariance matrix Ψ. Elements in Ψ are 

not permitted to vary across clusters. In both equations, the group (g) and individual (i) subscripts 

indicate that some elements of these matrices are allowed to vary within and between clusters, but 

it is not necessary that they do, as this is a general ML-SEM model (for the micro-macro models we 

are currently considering,  the outcome variable 𝑌 is measured at the group level, which means that 

not within variation of 𝑌 is possible). 

The multilevel part of the model is expressed in the level-2 (between) structural model: 
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𝜼𝑔 = 𝜸0 + 𝜸1𝜼𝑔 + 𝜸2𝒙𝑔 + 𝜻𝑔 

 

Note that 𝜼𝑔 is different from the 𝜼𝑖𝑔 in the first two equations. The vector 𝜼𝑔 contains all the 

random effects. It stacks the random elements of all the parameter matrices with g subscripts from 

the equations for the measurement and structural model. Also,  𝒙𝑔 is different from 𝒙𝑖𝑔. 𝒙𝑔 is an s-

dimensional vector of all cluster-level covariates. The vector 𝜸0 (𝑟 × 1) and matrices 𝜸1 (𝑟 × 𝑟) and 

𝜸2 (𝑟 × 𝑠) contain estimated fixed effects. Where 𝜸0 contains means of the random effect 

distributions and intercepts of between structural equations, 𝜸1 contains regression slopes of 

random effects (i.e., latent variables and random intercepts and slopes) regressed on each other, and 

𝜸2 contains regression slopes of random effects regressed on exogenous cluster-level regressors. 

Cluster-level residuals in 𝜻𝑔 have a multivariate normal distribution with mean zero and covariance 

matrix ψ.  

In a simulation study by Lüdtke et al. (2008), the ML-SEM method was compared to the 2-step 

LCM. However, they considered a macro-micro model and were only interested in the estimate of 

the contextual effect. They found that both methods performed about equally well in estimating the 

contextual effect, except when the sample size at both levels of the model was small and the ICC was 

low, in which case the ML-SEM estimates showed less bias and were less variable. To date, there has 

been no systematic comparison of the 2-step LCM and ML-SEM for micro-macro models. The present 

study is primarily aimed at investigating how both methods perform for the analysis of micro-macro 

data, while we also wish to show that there are viable options available for the analysis of micro-

macro models in general.  

Method 

We will perform a simulation study to compare the 2-step LCM to the general ML-SEM method 

for the analysis of micro-macro models. Several considerations come into play when analysing data 

for both MLM and SEM. One of these is sample size, which in MLM concerns the sample size at all 

levels of analysis. For the current study, we restrict ourselves to two-level models, which means we 

need to take into account the total sample size (the number of individuals / level-1 units), and the 

number of groups (level-2 units).  It is generally recommended that the total sample size for SEM 

should be at least 200 units (Hoogland & Boomsma, 1998). The number of level-2 units for MLM and 

ML-SEM is recommended to be at least 50, as a lower number of groups can lead to biased estimates 

of the level-2 standard errors (Hox, 2010; Maas & Hox, 2004; Meuleman & Billiet, 2009). Some 

software supports Bayesian estimation for ML-SEM. When this estimation method is used, as few as 

20 groups may suffice for accurate estimation (Hox, Van de Schoot & Matthijsse, 2012), while some 

other estimation methods may need even more than 50 groups for accurate estimation (Hox, Maas & 
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Brinkhuis, 2010). A last consideration regarding sample size concerns the effect one wishes to test. 

According to Snijders (2005), the level-1 sample size is most important when we are interested in 

testing the effect of the level-1 variable, and the level-2 sample size is most important when we are 

interested in testing the effect of the level-2 variable. Generally though, when using MLM or ML-

SEM, group size is not as important as it is to include a sufficient number of groups (Snijders, 2005; 

Hox, 2010). 

Next, we should consider the intraclass correlation (ICC). For the model in figure 1, the ICC of the 

individual-level variable 𝑥𝑖𝑔 is defined as: 

 

𝜌 =
𝜎ξ

2

𝜎ξ
2 + 𝜎𝑣

2 

 

which is the ratio of the between group variance of 𝑥𝑖𝑔 (𝜎ξ
2) and the total variance of 𝑥𝑖𝑔. The ICC is a 

measure for the proportion of variance that is explained by the grouping structure in the population. 

ICCs of 0.1, 0.2, and 0.3 are commonly found in practice (Maas & Hox, 2004). 

Lastly, we will follow the example of Croon & Van Veldhoven (2007) and consider the correlation 

between the individual-level 𝑋 variable and the group-level 𝑍 variable as a condition to be 

manipulated in the simulation. 

Based on the considerations outlined above, we choose the following conditions for our 

simulation study: (1) the number of groups is varied at five levels, including a condition with a 

number of groups that is generally considered too small for multilevel modelling: Ng = 20, 50, 100, 

200, or 500; (2) the number of individuals per group is varied at five levels: Ni = 5, 10, 25, 50, and we 

include a condition where the group sizes are mixed, with each group having an equal probability to 

have either 5, 10, 25, or 50 individuals (resulting in an average group size of about 22.5); (3) the ICC is 

varied at four levels: ICC = 0.05, 0.1, 0.2, or 0.3; (4) lastly, we consider a condition with no correlation 

between  𝑧𝑔 and 𝜉𝑔, and a condition where these variables are correlated: 𝜌𝑧ξ = 0, or 0.3. This leads 

to a design with 5*5*4*2 = 200 conditions.  

Our simulation study assess the performance of both methods using a simple model with a 

group-level dependent variable (𝑦𝑔), a single independent variable at the group level and a single 

independent variable at the individual level (like the model illustrated in figure 1). The population 

regression equation for 𝑦𝑔 is: 

 

𝑦𝑔 = 0.6 + 0.3𝑧𝑔 + 0.3𝜉𝑔 + 𝜖𝑔 
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with 𝜖𝑔normally distributed with a mean of zero and variance 0.35, and 𝑧𝑔 and 𝜉𝑔 normally 

distributed with a mean of zero and a variance of 1. The individual score 𝑥𝑖𝑔 was obtained from 

𝑥𝑖𝑔 = 𝜉𝑔 + 𝑣𝑖𝑔, with 𝑣𝑖𝑔 normally distributed with a mean of zero. The variance of 𝑣𝑖𝑔 was varied to 

create conditions with different ICCs.  

For each manipulated condition, 1000 datasets were drawn from the population described 

above. We used R software version 3.2.1 to generate the data, as well as for performing the analyses 

with the 2-step LCM method.  The generated datasets were saved to be used in an external Monte 

Carlo in Mplus version 6.11 for the analyses using the ML-SEM method.  An external Monte Carlo 

does not provide output for each dataset separately, but instead it gives the averages over all 

replications. Mplus offers maximum likelihood estimation using an accelerated EM-algorithm for ML-

SEM models. By default, standard errors are computed with a Huber-White sandwich estimator to 

correct for heteroscedasticity introduced by unbalanced group sizes. The syntax for both methods is 

included in appendix II and III.  

We want to compare the 2-step LCM method and the ML-SEM method with respect to the bias 

of the parameter estimates  and the accuracy of the  standard errors. The bias of the parameter 

estimates will be determined by computing the difference between the parameter in the population 

and the estimate (raw bias). For the accuracy of the standard errors, we take the observed coverage 

of the 95% confidence interval (the proportion of times the 95% confidence interval correctly 

contains the population parameter).  

To determine which of the simulated conditions contribute most to differences between the 

methods regarding bias and coverage values, we conduct mixed between-within subjects ANOVAs 

(with the method being the within factor) using the relative bias and the coverage as dependent 

variables and the manipulated conditions as (between) factors. These ANOVAs are conducted at the 

cell level (so that the five-way interaction cannot be separated from the error), treating each cell 

average as a single observation. For the sake of interpretability (and to not end up with small 

numbers of observations in each cell), we do not investigate interaction effects higher than three-

way interactions. To describe the results of the ANOVAs, we calculate the partial-η2 effect size for all 

main effects and for the two- and three-way interactions. We will also investigate whether the data 

meets the required assumptions of having normally distributed residuals by inspecting QQ-plots and 

we will test for homogeneous variances using Levene’s test.  

Results 

No problems were encountered in estimating the model coefficients using the 2-step LCM 

method. A few convergence issues were encountered when using ML-SEM, and these were mostly 

restricted to the conditions with a low ICC or a small group size. With the exception of one condition 
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where two of the generated datasets did not converge, we were in all cases dealing with a single 

dataset for which the estimation did not converge (a total of nine datasets over eight conditions did 

not converge).  

Table 1 gives the gives the average raw bias for the parameter estimates for each condition, and 

the coverage value (the proportion of replications where the 95% confidence interval correctly 

included the population parameter). Due to the size of this table, the results of the simulation are 

included in appendix I. Note that in a few cases, the bias for the parameter estimates for 𝛽𝑔 and 𝛽𝑖 is 

very high when the 2-step latent covariate method is used (a bias as large, or larger than the 

parameter value itself), and in some cases the bias for the estimate of 𝛽𝑖 is not only high, but it is 

negative, which means the estimate has the wrong sign and completely misrepresents the 

relationship between 𝜉𝑔 and 𝑦𝑔 in the population. Looking at the coverage values, we can see a few 

extreme values concerning the coverage for the parameter estimate for 𝛽𝑔, which is less than 50% in 

a few conditions when using ML-SEM method. 

We conducted mixed between-within subjects ANOVAs with the bias and coverage values as 

dependent variables and each manipulated condition as a factor to further investigate which 

conditions contributed most to differences between both methods regarding bias and coverage. The 

ANOVAs were conducted at the cell level, with each cell average being treated as one observation. 

Inspections of the residuals using QQ-plots showed moderate deviations from normality for all 

residuals of the independent variables related to bias, and large deviations from normality (skewed 

distributions) for all residuals of the independent variables related to coverage. We used Levene’s 

test to check for homogeneity of variances (for each three-way interaction separately). For most of 

the independent variables, we found that in at least eight of the ten three-way interactions, the 

homogeneity assumption was violated, but this was not related to any specific factor. The exception 

was the independent variable measuring bias for the intercept, here we found that only the six three-

way interactions that included method had groups with non-homogeneous variances. In spite of the 

violations of the assumptions underlying the ANOVA we will discuss the results in the next section, 

and briefly came back to this issue in the discussion section. We will limit our discussion of the results 

to those effects that show a difference in performance of both methods (the strictly between 

subjects effects are not discussed here), and to the highest order significant interactions (in case of 

both a significant two-way interaction and a significant three-way interaction that contain the same 

factors).  

Effects That Influence Bias for the Parameter Estimates 

Bias for the estimate of the intercept. None of the examined conditions, or their interactions, 

had a significant effect on the bias for the estimate for the intercept (see table 2). 



16 
 

Table 2 

Results of a mixed between-within subjects ANOVA on the source of bias for the estimate of the 

intercept 

Source SS df MS F p partial η
2
 

Between subjects       

Correlation 0.002 1 0.002 2.106 0.15 0.04 

ICC 0.004 3 0.001 1.084 0.36 0.06 

Ng 0.003 4 0.001 0.564 0.69 0.04 

Ni 0.003 4 0.001 0.753 0.56 0.06 

Correlation × ICC 0.008 3 0.003 2.253 0.09 0.12 

Correlation × Ng 0.002 4 0.001 0.479 0.75 0.04 

Correlation × Ni 0.004 4 0.001 0.967 0.43 0.07 

ICC × Ng 0.006 12 0.000 0.442 0.94 0.10 

ICC × Ni 0.012 12 0.001 0.87 0.58 0.18 

Ng × Ni 0.022 16 0.001 1.248 0.27 0.29 

Correlation × ICC × Ng 0.007 12 0.001 0.548 0.87 0.12 

Correlation × ICC × Ni 0.014 12 0.001 1.018 0.45 0.20 

Correlation × Ng × Ni 0.014 16 0.001 0.793 0.69 0.21 

ICC × Ng × Ni 0.057 48 0.001 1.072 0.41 0.52 

Error (BS) 0.054 48 0.001    

Within subjects       

Method 0.002 1 0.002 1.861 0.17 0.01 

Method ×  correlation 0.003 1 0.003 2.71 0.10 0.02 

Method × ICC 0.003 3 0.001 1.121 0.34 0.02 

Method × Ng 0.002 4 0.001 0.561 0.69 0.02 

Method × Ni 0.004 4 0.001 0.866 0.49 0.02 

Method ×  correlation × ICC 0.007 3 0.002 2.222 0.09 0.05 

Method ×  correlation × Ng 0.003 4 0.001 0.637 0.64 0.02 

Method ×  correlation × Ni 0.004 4 0.001 1.022 0.40 0.03 

Method × ICC × Ng 0.005 12 0.000 0.439 0.95 0.04 

Method × ICC × Ni 0.011 12 0.001 0.937 0.51 0.08 

Method × Ng × Ni 0.021 16 0.001 1.276 0.22 0.13 

Error (WS) 0.138 136 0.001    
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Bias for the estimate of 𝜷𝒊. Table 3 summarizes the results of the ANOVA on the bias for the 

estimate of the 𝛽𝑖 parameter. There was no significant difference between the amount of bias 

generated by the two methods overall, F(1,136) = 0.44, p > .05. There was, however, a medium effect 

(partial η2 = .09) of the three-way interaction between method, correlation and number of groups,  

F(4, 136) = 3.44, p < .05. When the independent variables are uncorrelated, both methods estimate 

𝛽𝑖 with little to no bias, regardless of the number of groups included in the simulation (figure 2, top). 

When the independent variables are correlated, using the ML-SEM method results in a consistently 

biased estimate of 𝛽𝑖. With only 20 groups included in the simulation (and when the independent 

variables are correlated), the 2-step LCM method performs about the same as ML-SEM, but when 

more groups are included in the simulation, the bias for the estimate of 𝛽𝑖 approaches zero (figure 2, 

bottom).          

 

 

Figure 2. Interaction plot. An illustration of the three-way interaction between  

method, correlation and number of groups on the bias for the estimate of the 

𝛽𝑖  parameter.  
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Table 3 

Results of a mixed between-within subjects ANOVA on the source of bias for the estimate of the 

𝛽𝑖  parameter 

Source SS df MS F p partial η
2
 

Between subjects       

Correlation 0.000 1 0.000 0.009 0.93 0.00 

ICC 0.001 3 0.000 0.044 0.99 0.00 

Ng 0.029 4 0.007 0.686 0.61 0.05 

Ni 0.030 4 0.007 0.71 0.59 0.06 

Correlation × ICC 0.017 3 0.006 0.542 0.66 0.03 

Correlation × Ng 0.178 4 0.045 4.221 0.01 0.26 

Correlation × Ni 0.010 4 0.003 0.241 0.91 0.02 

ICC × Ng 0.149 12 0.012 1.18 0.32 0.23 

ICC × Ni 0.073 12 0.006 0.573 0.85 0.13 

Ng × Ni 0.097 16 0.006 0.577 0.89 0.16 

Correlation × ICC × Ng 0.214 12 0.018 1.691 0.10 0.30 

Correlation × ICC × Ni 0.099 12 0.008 0.782 0.67 0.16 

Correlation × Ng × Ni 0.288 16 0.018 1.703 0.08 0.36 

ICC × Ng × Ni 0.517 48 0.011 1.02 0.47 0.50 

Error (BS) 0.506 48 0.011    

Within subjects       

Method 0.005 1 0.005 0.437 0.51 0.00 

Method ×  correlation 0.007 1 0.007 0.577 0.45 0.00 

Method × ICC 0.050 3 0.017 1.358 0.26 0.03 

Method × Ng 0.018 4 0.005 0.365 0.83 0.01 

Method × Ni 0.009 4 0.002 0.176 0.95 0.01 

Method ×  correlation × ICC 0.025 3 0.008 0.675 0.57 0.01 

Method ×  correlation × Ng 0.170 4 0.043 3.443 0.01 0.09 

Method ×  correlation × Ni 0.019 4 0.005 0.377 0.82 0.01 

Method × ICC × Ng 0.169 12 0.014 1.136 0.34 0.09 

Method × ICC × Ni 0.144 12 0.012 0.97 0.48 0.08 

Method × Ng × Ni 0.147 16 0.009 0.742 0.75 0.08 

Error (WS) 1.682 136 0.012    

 

Bias for the estimate of 𝜷𝒈. Table 4 summarizes the results of ANOVA on the bias for the 

estimate of the 𝛽𝑔 parameter. There was a was a medium effect (partial η2 = .08) of method, F(1,136) 

= 12.24, p > .001, with the 2-step LCM method providing a less biased estimate of 𝛽𝑔 overall (figure 

3). Additionally, there was a medium effect (partial η2 = .06) of the two-way interaction between 

method and correlation, F(1,136) = 9.34, p > .001. When the independent variables are uncorrelated, 

both methods estimate 𝛽𝑔 with little to no bias. When the independent variables are correlated, the 

2-step LCM method provides an accurate estimate of 𝛽𝑔, but the estimate obtained with ML-SEM is 

biased upward (figure 4).     
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Table 4 

Results of a mixed between-within subjects ANOVA on the source of bias for the estimate of the 

𝛽𝑔 parameter 

Source SS df MS F p partial η
2
 

Between subjects       

Correlation 0.031 1 0.031 13.524 0.00 0.22 

ICC 0.010 3 0.003 1.528 0.22 0.09 

Ng 0.008 4 0.002 0.932 0.45 0.07 

Ni 0.004 4 0.001 0.48 0.75 0.04 

Correlation × ICC 0.009 3 0.003 1.335 0.27 0.08 

Correlation × Ng 0.006 4 0.001 0.662 0.62 0.05 

Correlation × Ni 0.009 4 0.002 1.016 0.41 0.08 

ICC × Ng 0.037 12 0.003 1.361 0.22 0.25 

ICC × Ni 0.016 12 0.001 0.581 0.85 0.13 

Ng × Ni 0.029 16 0.002 0.794 0.68 0.21 

Correlation × ICC × Ng 0.026 12 0.002 0.939 0.52 0.19 

Correlation × ICC × Ni 0.009 12 0.001 0.337 0.98 0.08 

Correlation × Ng × Ni 0.032 16 0.002 0.878 0.60 0.23 

ICC × Ng × Ni 0.106 48 0.002 0.975 0.53 0.49 

Error (BS) 0.109 48 0.002    

Within subjects       

Method 0.025 1 0.025 12.243 0.00 0.08 

Method ×  correlation 0.019 1 0.019 9.339 0.00 0.06 

Method × ICC 0.001 3 0.000 0.231 0.87 0.01 

Method × Ng 0.009 4 0.002 1.124 0.35 0.03 

Method × Ni 0.010 4 0.003 1.245 0.30 0.04 

Method ×  correlation × ICC 0.004 3 0.001 0.643 0.59 0.01 

Method ×  correlation × Ng 0.006 4 0.001 0.68 0.61 0.02 

Method ×  correlation × Ni 0.005 4 0.001 0.673 0.61 0.02 

Method × ICC × Ng 0.036 12 0.003 1.465 0.14 0.11 

Method × ICC × Ni 0.015 12 0.001 0.628 0.82 0.05 

Method × Ng × Ni 0.033 16 0.002 1.022 0.44 0.11 

Error (WS) 0.277 136 0.002    
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Figure 3. Interaction plot. An illustration of the main effect of 

method on the bias for the estimate of the 𝛽𝑔 parameter. 

 

 

Figure 4. Interaction plot. An illustration of the two-way interaction 

between method and correlation on the bias for the estimate of the 

𝛽𝑔 parameter. 

 

Effects That Influence Coverage of the 95% Confidence Interval of the Parameter Estimates 

Coverage for the estimate of the intercept. Table 5 summarizes the results of the ANOVA on the 

coverage for the estimate of the intercept. There was a large effect (partial η2 = .65) of method, 

F(1,136) = 255.33, p > .001, where the coverage values for the 95% CI of the intercept obtained with 

the ML-SEM method were closer to the desired value of .95 than the coverage values for the 2-step 

LCM method (figure 5). There was also a large effect (partial η2 = .33) of the two-way interaction 
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between method and number of groups, F(2,136) = 17.09, p > .001. When only 20 groups are 

included in the simulation, the coverage values for both methods are low, and there is no difference 

between the methods. Increasing the number of groups to 50 results in an improvement of the 

coverage values for both methods, but the improvement is larger for the ML-SEM method. The 

coverage values for both methods continue to improve as the number of groups is increased further, 

and the ML-SEM method continues to perform better than the 2-step LCM method (figure 6). 

 

Table 5 

Results of a mixed between-within subjects ANOVA on the coverage values  for the estimate of 

the intercept 

Source SS df MS F p partial η
2
 

Between subjects       

Correlation 0.000 1 0.000 3.232 0.08 0.06 

ICC 0.008 3 0.003 36.324 0.00 0.69 

Ng 0.026 4 0.007 94.892 0.00 0.89 

Ni 0.007 4 0.002 25.384 0.00 0.68 

Correlation × ICC 0.000 3 0.000 2.341 0.08 0.13 

Correlation × Ng 0.000 4 0.000 1.32 0.28 0.10 

Correlation × Ni 0.000 4 0.000 1.14 0.35 0.09 

ICC × Ng 0.003 12 0.000 3.36 0.00 0.46 

ICC × Ni 0.003 12 0.000 4.096 0.00 0.51 

Ng × Ni 0.006 16 0.000 5.702 0.00 0.66 

Correlation × ICC × Ng 0.002 12 0.000 1.818 0.07 0.31 

Correlation × ICC × Ni 0.001 12 0.000 1.423 0.19 0.26 

Correlation × Ng × Ni 0.001 16 0.000 1.124 0.36 0.27 

ICC × Ng × Ni 0.007 48 0.000 2.005 0.01 0.67 

Error (BS) 0.003 48 0.000    

Within subjects       

Method 0.013 1 0.013 255.329 0.00 0.65 

Method ×  correlation 0.000 1 0.000 0.997 0.32 0.01 

Method × ICC 0.030 3 0.010 202.909 0.00 0.82 

Method × Ng 0.003 4 0.001 17.09 0.00 0.33 

Method × Ni 0.027 4 0.007 135.275 0.00 0.80 

Method ×  correlation × ICC 0.000 3 0.000 0.142 0.93 0.00 

Method ×  correlation × Ng 0.000 4 0.000 0.196 0.94 0.01 

Method ×  correlation × Ni 0.000 4 0.000 0.196 0.94 0.01 

Method × ICC × Ng 0.001 12 0.000 0.969 0.48 0.08 

Method × ICC × Ni 0.019 12 0.002 31.73 0.00 0.74 

Method × Ng × Ni 0.001 16 0.000 1.529 0.10 0.15 

Error (WS) 0.007 136 0.000    
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Figure 5. Interaction plot. An illustration of the main effect of 

method on the coverage values for the estimate of the intercept. 

The dotted line represent the desired coverage value of .95.  

 

 

Figure 6. Interaction plot. An illustration of the two-way interaction 

between method and number of groups on the coverage values for 

the estimate of the intercept. The dotted line represent the desired 

coverage value of .95. 

 

Additionally, there was a large effect (partial η2 = .74) of the three-way interaction between 

method, intraclass correlation and group size, F(12,136) = 31.73, p < .001. When the ICC is 0.2 or 0.3, 

there is little difference between the coverage values obtained with both methods, and the size of 

the groups seems to have little effect (figure 7, bottom). A lower ICC of 0.1 seems to mainly effect 
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the 2-step LCM method, which produces a lower coverage value when the groups consist of only 5 

individuals. Larger groups result in better coverage values for the 2-step LCM method (figure 7, top 

right). When the ICC is as low as 0.05, the difference between both methods becomes more 

pronounced. When the groups consist of only 5 individuals, the coverage value obtained with 2-step 

LCM is very low, while the coverage obtained with ML-SEM seems to be a bit higher than 0.95. 

Increasing the size of the groups improves the coverage values obtained with 2-step LCM, and both 

methods perform about the same when each group contains 50 individuals (figure 7, top left).     

 

 

Figure 7. Interaction plot. An illustration of the three-way interaction between method, ICC and group size on 

the coverage values for the estimate of the intercept. The dotted line represent the desired coverage value of 

.95. 
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Coverage for the estimate of 𝜷𝒊. Table 6 summarizes the results of the ANOVA on the coverage 

for the estimate of the 𝛽𝑖 parameter. There was a large effect (partial η2 = .46) of method, F(1,136) = 

115.44, p > .001. In general, the coverage values for the 95% CI of 𝛽𝑖 obtained with the ML-SEM 

method were closer to the desired value of .95 than the coverage values for the 2-step LCM method 

(figure 8). There were three significant three-way interactions that include the effect of method, and 

we will discuss each in turn. 

 

Table 6 

Results of a mixed between-within subjects ANOVA on the coverage values  for the estimate of 

the 𝛽𝑖  parameter 

Source SS df MS F p partial η
2
 

Between subjects       

Correlation 0.002 1 0.002 15.462 0.00 0.24 

ICC 0.067 3 0.022 142.945 0.00 0.90 

Ng 0.103 4 0.026 165.117 0.00 0.93 

Ni 0.083 4 0.021 132.902 0.00 0.92 

Correlation × ICC 0.001 3 0.000 1.333 0.27 0.08 

Correlation × Ng 0.000 4 0.000 0.236 0.92 0.02 

Correlation × Ni 0.001 4 0.000 1.532 0.21 0.11 

ICC × Ng 0.002 12 0.000 1.158 0.34 0.22 

ICC × Ni 0.099 12 0.008 53.251 0.00 0.93 

Ng × Ni 0.003 16 0.000 1.005 0.47 0.25 

Correlation × ICC × Ng 0.002 12 0.000 1.214 0.30 0.23 

Correlation × ICC × Ni 0.002 12 0.000 1.275 0.26 0.24 

Correlation × Ng × Ni 0.002 16 0.000 0.961 0.51 0.24 

ICC × Ng × Ni 0.008 48 0.000 1.038 0.45 0.51 

Error (BS) 0.007 48 0.000    

Within subjects       

Method 0.007 1 0.007 115.44 0.00 0.46 

Method ×  correlation 0.000 1 0.000 4.504 0.04 0.03 

Method × ICC 0.045 3 0.015 264.258 0.00 0.85 

Method × Ng 0.014 4 0.004 62.711 0.00 0.65 

Method × Ni 0.054 4 0.013 237.472 0.00 0.87 

Method ×  correlation × ICC 0.000 3 0.000 0.387 0.76 0.01 

Method ×  correlation × Ng 0.000 4 0.000 1.744 0.14 0.05 

Method ×  correlation × Ni 0.000 4 0.000 0.49 0.74 0.01 

Method × ICC × Ng 0.001 12 0.000 2.105 0.02 0.16 

Method × ICC × Ni 0.023 12 0.002 33.116 0.00 0.75 

Method × Ng × Ni 0.003 16 0.000 2.924 0.00 0.26 

Error (WS) 0.008 136 0.000    
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Figure 8. Interaction plot. An illustration of the main effect of method 

on the coverage values for the estimate of the 𝛽𝑖  parameter. The 

dotted line represent the desired coverage value of .95. 

 

First, there was a large effect (partial η2 = .16) of the three-way interaction between method, ICC, 

and number of groups, F(12,136) = 2.11, p < .05. When only 20 groups are included in the simulation, 

the coverage values are consistently low when the ML-SEM method is used, regardless of the ICC 

(figure 9, top left). Increasing the number of groups improves the performance of the ML-SEM 

method, which continues to be unaffected by the ICC (figure 9). The 2-step LCM method, on the 

other hand, shows a consistent pattern of performing poorly when the ICC is 0.05, with the coverage 

values improving as the ICC increases. This results in the 2-step LCM method outperforming the ML-

SEM method when the number of groups is small and the ICC is high (figure 9, top), and the ML-SEM 

method outperforming the 2-step LCM method when the ICC is low. 
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Figure 9. Interaction plot. An illustration of the three-way interaction between method, ICC and number of 

groups on the coverage values for the estimate of the 𝛽𝑖  parameter. The dotted line represent the desired 

coverage value of .95. 

 

Second, there was large effect (partial η2 = .75) of the three-way interaction between method, 

ICC, and group size,  F(12,136) = 33.12, p < .001. When the groups sizes are large (mixed, 25, or 50 

individuals), the coverage values for both methods are mostly good, and not influenced by the ICC 

(figure 10, middle and bottom). With 10 individuals in each group, the 2-step LCM performs poorly 

when the ICC is 0.05 (figure 10, top right). With only 5 individuals in each group, the coverage value 

obtained with 2-step LCM is even lower when the ICC is 0.05, and the ML-SEM method seems to 

perform a little less well also (though the effect is much smaller). The performance of the 2-step LCM 

method increases as the ICC increases, and when the ICC is 0.3 both methods perform about equally 

well (figure 10, top left). 
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Figure 10. Interaction plot. An illustration of the three-way interaction between method, ICC and group size on 

the coverage values for the estimate of the 𝛽𝑖  parameter. The dotted line represent the desired coverage value 

of .95. 

 

Last, there was a large effect (partial η2 = .26) of the three-way interaction between method, 

number of groups and group size, F(16,136) = 2.92, p < .001. The ML-SEM method shows a consistent 

pattern of performing poorly when only 20 groups are included in the simulation, and the coverage 

values improve as the number of groups increases. This effect does not seem to be influenced by 

group size (figure 11). The 2-step LCM method performs poorly when the group size is 5, and slightly 

worse when only 20 groups of 5 individuals each are included in the simulation, compared to 50, 100, 

200, or 500 groups of 5 individuals each (figure 11, top left). When the group size is this small, the 

ML-SEM method always performs better than the 2-step LCM. The difference between both methods 

is much smaller when the group size is increased to 10, and both methods perform equally well in 

the case of mixed group sizes (figure 11, top right and middle left). When the size of the groups is 

increased further to 25 or 50, the 2-step LCM method performs well regardless of the number of 

groups, resulting in the 2-step LCM method outperforming the ML-SEM method when only a small 

number of large groups is included in the simulation (figure 11, middle right and bottom).  
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Figure 11. Interaction plot. An illustration of the three-way interaction between method, number of groups and 

group size on the coverage values for the estimate of the 𝛽𝑖  parameter. The dotted line represent the desired 

coverage value of .95. 

 

Coverage for the estimate of 𝜷𝒈. Table 7 summarizes the results of the ANOVA on the coverage 

for the estimate of the 𝛽𝑔 parameter. There was a large (partial η2 = .52) effect of method,  F(1,136) = 

148.95, p > .001. In general, the coverage values for the 95% CI of 𝛽𝑔 obtained with the 2-step LCM 

method were closer to the desired value of .95 than the coverage values for the ML-SEM method 

(figure 12). There were five significant three-way interactions that include the effect of method, and 

we will discuss each in turn. 
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Table 7 

Results of a mixed between-within subjects ANOVA on the coverage values  for the estimate of 

the 𝛽𝑔 parameter 

Source SS df MS F p partial η
2
 

Between subjects       

Correlation 0.130 1 0.130 500.81 0.00 0.91 

ICC 0.137 3 0.046 176.235 0.00 0.92 

Ng 0.069 4 0.017 66.369 0.00 0.85 

Ni 0.116 4 0.029 111.663 0.00 0.90 

Correlation × ICC 0.056 3 0.019 71.926 0.00 0.82 

Correlation × Ng 0.086 4 0.022 83.202 0.00 0.87 

Correlation × Ni 0.060 4 0.015 57.633 0.00 0.83 

ICC × Ng 0.055 12 0.005 17.734 0.00 0.82 

ICC × Ni 0.051 12 0.004 16.525 0.00 0.81 

Ng × Ni 0.064 16 0.004 15.36 0.00 0.84 

Correlation × ICC × Ng 0.047 12 0.004 15.243 0.00 0.79 

Correlation × ICC × Ni 0.021 12 0.002 6.768 0.00 0.63 

Correlation × Ng × Ni 0.045 16 0.003 10.919 0.00 0.78 

ICC × Ng × Ni 0.026 48 0.001 2.111 0.01 0.68 

Error (BS) 0.012 48 0.000    

Within subjects       

Method 0.140 1 0.140 148.954 0.00 0.52 

Method ×  correlation 0.096 1 0.096 101.735 0.00 0.43 

Method × ICC 0.010 3 0.003 3.634 0.01 0.07 

Method × Ng 0.058 4 0.015 15.434 0.00 0.31 

Method × Ni 0.009 4 0.002 2.491 0.05 0.07 

Method ×  correlation × ICC 0.043 3 0.014 15.287 0.00 0.25 

Method ×  correlation × Ng 0.101 4 0.025 26.83 0.00 0.44 

Method ×  correlation × Ni 0.043 4 0.011 11.454 0.00 0.25 

Method × ICC × Ng 0.037 12 0.003 3.273 0.00 0.22 

Method × ICC × Ni 0.005 12 0.000 0.419 0.95 0.04 

Method × Ng × Ni 0.043 16 0.003 2.827 0.00 0.25 

Error (WS) 0.128 136 0.001    

 

First, there was a large effect (partial η2 = .25) of the three-way interaction between method, 

correlation, and intraclass correlation, F(3,136) = 15.29, p < .001. When the independent variables 

are uncorrelated, the coverage values are about equal for both methods, regardless of ICC (figure 13, 

top). When the independent variables are correlated, the ML-SEM method performs worse than the 

2-step LCM method when the ICC is 0.05. Increasing the ICC, mainly increases the performance of the 

ML-SEM method, but when the ICC is 0.3 ML-SEM still performs somewhat worse than the 2-step 

LCM method (figure 13, bottom). 

 



30 
 

 

Figure 12. Interaction plot. An illustration of the main effect of 

method on the coverage values for the estimate of the 𝛽𝑔 parameter. 

The dotted line represent the desired coverage value of .95. 

 

 

Figure 13. Interaction plot. An illustration of the three-way 

interaction between method, correlation and ICC on the coverage 

values for the estimate of the 𝛽𝑔 parameter. The dotted line 

represent the desired coverage value of .95. 

 

Second, there was a large effect (partial η2 = .44) of the three-way interaction between method, 

correlation, and number of groups, F(4,136) = 26.83, p < .001. When the independent variables are 

uncorrelated, the coverage values are about equal for both methods, except when only 20 groups 

are included in the simulation, in which case the ML-SEM method performs poorly (figure 14,  top). 
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When the independent variables are correlated, something interesting happens. The 2-step LCM 

method still performs well, regardless of the number of groups, and the ML-SEM method still 

performs poorly when only 20 groups are included in the simulation. When the number of groups is 

increased to 50 or 100, the performance of ML-SEM increases somewhat, but is decreases again 

when the number of groups is increased to 200 or 500. At 500 groups, the coverage values obtained 

with ML-SEM are even worse than they were at 20 groups (figure 14, bottom).  

 

 

Figure 14. Interaction plot. An illustration of the three-way 

interaction between method, correlation and number of groups on 

the coverage values for the estimate of the 𝛽𝑔 parameter. The 

dotted line represent the desired coverage value of .95. 

 

The third large effect (partial η2 = .25) was that of the three-way interaction between method, 

correlation, and group size, F(4,136) = 11.45, p < .001. When the independent variables are 

uncorrelated, the coverage values are about equal for both methods, and they don’t seem to be 

influenced much by the size of the groups (figure 15, top). When the independent variables are 

correlated, the 2-step LCM method consistently outperforms the ML-SEM method. The biggest 

difference between both methods occurs when each group contains only 5 individuals, and this 

difference decreases somewhat as the size of the groups increases (figure 15, bottom). 
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Figure 15. Interaction plot. An illustration of the three-way 

interaction between method, correlation and group size on the 

coverage values for the estimate of the 𝛽𝑔 parameter. The dotted 

line represent the desired coverage value of .95. 

 

The fourth large effect (partial η2 = .22) was the three-way interaction between method, ICC, and 

number of groups, F(12,136) = 3.27, p < .001. The coverage value obtained with the 2-step LCM 

method is somewhat low when the ICC is 0.05, regardless of the number of groups (figure 16, top 

left). At the higher ICC’s, the coverage values for the 2-step LCM method seem to increase slightly as 

more groups are used in the simulation. This pattern is the same, whether the ICC is 0.1, 0.2, or 0.3 

(figure 16, top right and bottom). The ML-SEM method shows a different pattern, and its coverage 

values are never better than those obtained with the 2-step LCM method. The coverage value 

obtained with ML-SEM is always low when only 20 groups are included in the simulation, and the 

value increases when 50 or 100 groups are used. When the ICC is 0.05, the coverage value decreases 

again when the number of groups is increased to 200 or 500, and at 500 groups the coverage is even 

worse than it was at 20 groups (figure 16, top right). When the ICC is 0.1 or 0.2, we also see this 

decrease in coverage when the number of groups in increased to 200 or 500, but to a much lesser 

extend (figure 16, top right and middle left). When the ICC is 0.3, the coverage stays pretty much 

what is was when the number of groups is increased from 100 to 200 and 500 (figure 16, bottom 

right).   
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Figure 16. Interaction plot. An illustration of the three-way interaction between method, ICC  and number of 

groups on the coverage values for the estimate of the 𝛽𝑔 parameter. The dotted line represent the desired 

coverage value of .95. 

 

Finally, there was a large effect (partial η2 = .25) of the three-way interaction between method, 

number of groups, and group size, F(16,136) = 2.83, p < .001. The 2-step LCM method performs well 

in terms of coverage when each group is 25 or 50 individuals large, regardless of the number of 

groups included in the simulation (figure 17, middle right and bottom). When each group contains 

only 5 individuals the method performs slightly worse, and is again unaffected by the number of 

groups (figure 17, top left). In the conditions with 10, or a mixed number of individuals per group the 

coverage values are lower when only 20 groups are included in the simulation, and the coverage 

value increases as the number of groups increases (figure 17, top right and middle left). The ML-SEM 

method shows a pattern similar to the one described for the interaction between method, ICC, and 

number of groups. The coverage values are always low when only 20 groups are included in the 

simulation, and the value increases when the number of groups is increased to 50 or 100. When the 

size of each group is only 5, the coverage value decreases again when the number of groups is 

increased to 200 or 500, and at 500 groups the coverage is lower than it was at 20 groups (figure 17, 
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top left). The same pattern can be seen when each group contains 10 or a mixed number of 

individuals, but the drop in coverage at 200 and 500 groups is less extreme than it was when the 

groups were small (figure 17, top left and middle right). When each group contains 20 or 50 

individuals, there seems to be little to no drop in coverage going from 100 to 200 and 500 groups 

(figure 17, middle left and bottom).     

 

 

Figure 17. Interaction plot. An illustration of the three-way interaction between method, number of groups and 

group size on the coverage values for the estimate of the 𝛽𝑔 parameter. The dotted line represent the desired 

coverage value of .95. 

 

Conclusion 

Overall, we have not seen one of the methods surface as clearly better than the other, much 

depends on the examined conditions and which parameter estimate we are interested in. Looking at 

the bias for the estimates of both 𝛽𝑖 and 𝛽𝑔, we can see that the 2-step LCM method almost always 

performed better than ML-SEM in the presence of correlated independent variables. When the 

independent variables are uncorrelated, both methods perform about the same. The coverage values 

for the 95% CI’s provide a more varied picture. Looking at the coverage for the 95% CI of the 
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estimate of the intercept, ML-SEM outperforms the 2-step LCM method in conditions with 50 or 

more groups, and in conditions with a low ICC combined with a small group size. In other conditions, 

both methods perform equally well. Looking at the coverage values for the 95% CI of the estimate of 

𝛽𝑖, ML-SEM generally performs better, especially when the group size is small. Only in conditions 

with a high ICC combined with a small number of groups does the 2-step LCM perform better. Lastly, 

we looked at the coverage for the 95% CI of the estimate of 𝛽𝑔, where the 2-step LCM generally 

performs better, especially in conditions where the independent variables are correlated.      

These results lead us to conclude that there is currently, for the conditions we have examined, no 

clear preference as to which method should be used when analysing micro-macro data. Even though 

the 2-step LCM seems to perform better in terms of bias, the coverage values (for the intercept and 

𝛽𝑖) indicate that standard errors are not estimated optimally. We conclude that both methods have 

their strengths, and the choice for either method should be guided by the design of the study and 

which parameter estimate is of most interest. 

Discussion 

Some of the conclusions outlined in the previous chapter hinge on the results of ANOVAs that did 

not meet the required assumptions of normally distributed residuals and homogeneous variances. 

Failure to meet these assumptions may lead to an increased chance of committing a type-I error (see 

Glass, Peckham, and Sanders (1972) for an overview of the consequences of not meeting the 

assumptions for ANOVA). Though ANOVA is generally robust against moderate violations of the 

underlying assumptions, especially when the sample size is large (note that our sample size was not 

very large because we were forced to used cell-averages), a large number of groups actually 

increases the sensitivity of the ANOVA and the risk of finding false-positive results (Glass, Peckham, & 

Sanders, 1972). Unfortunately, there is no viable non-parametric alternative for the type of design 

we have investigated (a mixed design with more than two factors), and an extended search for a 

better alternative was beyond the scope of the current study. We decided that the ANOVA was our 

best option to summarize the results and compare the performance of the 2-step LCM and the ML-

SEM method. Though this certainly does not mean all (or even most) of our conclusions are invalid, 

we should be cautious about interpreting the results. The plots we have shown to illustrate the 

interaction effects give a good indication that there are differences between methods for a number 

of the conditions we have examined. In the future, we could take some interesting results from the 

current study, and use those in a simulation with a simpler design to further investigate the 

performance of 2-step LCM and ML-SEM.     

At the same time, we need to be careful not to dismiss ML-SEM for designs with only a small 

number of groups. For the current study, we used the default accelerated EM-algorithm in Mplus for 

estimation, but Mplus also offers a Bayesian estimation method that may perform better when the 
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number of groups is small (Meuleman & Billiet, 2009). The exact behaviour of the Bayesian 

estimation method for the analysis of micro-macro data with a small number of groups would be an 

interesting topic to investigate in a separate study.  

We should also keep in mind that the model we investigated was fairly simple, as our intention 

was both to illustrate that there are viable options for the analysis of multilevel models with group-

level outcomes, and to initiate the systematic comparison of different methods for the analysis of 

such models. In the future, the research could be expanded to more complex models with multiple 

level-1 and/or level-2 independent variables. We could also investigate the performance of the 

methods in the presence of missing data, interactions between the independent variables, and 

mediation effects. 

Lastly, we should consider the fact that not all researchers will have access to specialized 

software such as Mplus. The 2-step LCM method only requires the use of the freely available R 

software, which can certainly be a reason to opt for the 2-step method (provided it performs well, 

which we found it did). It does require the researcher to have a little knowledge of programming, 

which may make the method less appealing for some..  

 

  



37 
 

References 

Asparouhov, T., & Muthén, B. (2006). Constructing covariates in multilevel regression. Mplus Web 

Notes: No. 11. Retrieved 2015, from 

http://www.statmodel.com/download/webnotes/webnote11.pdf. 

Bakk, Z., Tekle, F. B., & Vermunt, J. K. (2013). Estimating the association between latent class 

membership and external variables using bias-adjusted three-step approaches. Sociological 

Methodology, 43, 272-311. 

Bennink, M. (2014). Micro-macro multilevel analysis for discrete data. Ridderkerk: Ridderprint. 

Croon, M. A., & Van Veldhoven, M. J. (2007). Predicting group-level outcome variables from variables 

measured at the individual level: a latent variable multilevel model. Psychological Methods, 

12(1), 45-57. 

Curran, P. J. (2003). Have multilevel models been structural equation models all along? Multivariate 

Behavioral Research, 38(4), 529-569. 

Curran, P. J., & Bauer, D. J. (2007). Building path diagrams for multilevel models. Psychological 

Methods, 12, 283-297. 

Davidson, R., & MacKinnon, J. G. (1993). Estimation and inference in econometrics. Oxford: Oxford 

University Press. 

Diez-Roux, A. V. (1998). Bringing context back into epidemiology: Variables and fallacies in multilevel 

analysis. American Journal of Public Health, 88, 216-222. 

Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions 

underlying the fixed effects analyses of variance and covariance. Review of Educational 

Research, 42(3), 237-288. 

Grilli, L., & Rampichini, C. (2012). Multilevel models for ordinal data. In R. Kenett, & S. Salini (Eds.), 

Modern Analysis of Customer Surveys: with Application using R (pp. 391-412). New York, NY: 

Wiley. 

Hedeker, D. (2008). Multilevel models for ordinal and nominal variables. In J. De Leeuw, & E. Meijer 

(Eds.), Handbook of Multilevel Analysis (pp. 239-276). New York, NY: Springer. 

Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure modeling. 

Sociological Methods & Research, 26(3), 329-367. 

Hox, J. J. (2010). Multilevel Analysis (2nd ed.). New York, NY: Routledge. 

Hox, J. J., & Bechger, T. M. (1998). An introduction to structural equation modeling. Family Science 

Review, 11, 354-373. 

Hox, J. J., Maas, C. J., & Brinkhuis, M. J. (2010). The effect of estimation method and sample size in 

multilevel structural equation modeling. Statistica Neerlandica, 64(2), 157-179. 



38 
 

Hox, J., Van de Schoot, R., & Matthijsse, S. (2012). How few countries will do? Comparative survey 

analysis from a Bayesian perspective. Survey Research & Methods, 6(2), 87-93. 

Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. (2008). The 

multilevel latent covariate model: a new, more reliable approach to group-level effects in 

contextual studies. Psychological Methods, 13, 203-229. 

Maas, C. J., & Hox, J. J. (2004). Robustness issues in multilevel regression analysis. Statistica 

Neerlandica, 58(2), 127-137. 

Maas, C. J., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodology, 1(3), 86-

92. 

MacCallum, R. C., Kim, C., Malarkey, W. B., & Kiecolt-Glaser, J. K. (1997). Studying multivariate 

change using multilevel models and latent curve models. Multivariate Behavioral Research, 

32(3), 215-253. 

Mehta, P. D., & Neale, M. C. (2005). People are variables too: multilevel structural equations 

modeling. Psychological Methods, 10, 259-284. 

Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 1, 107-122. 

Meuleman, B., & Billiet, J. (2009). A Monte Carlo sample size study: How many countries are needed 

for accurate multilevel SEM? Survey Research Methods(3), 45-58. 

Muthén, B., & Asparouhov, T. (2008). Growth mixture modeling: Analysis with non-Gaussian random 

effects. In G. Fitzmaurice, M. Davidian, G. Verbeke, & G. Molenberghs, Longitudinal Data 

Analysis (pp. 143-165). Boca Raton: Chapman & Hall/CRC Press. 

Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2010). A general multilevel SEM framework for assessing 

multilevel mediation. Psychological Methods, 15, 209-233. 

Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. American Sociological 

Review, 15(3), 351-357. 

Snijders, T. A. (2005). Power and sample size in multilevel modeling. In B. S. Everitt, & D. C. Howell, 

Encyclopedia of Statistics in Behavioral Science (pp. 1570-1573). Chicester: Wiley. 

White, H. (1980). A heteroskedasticity-consistent covariance estimator and a direct test of 

heteroskedasticity. Econometrica, 48, 817-838. 

Willet, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and 

predictors of individual change over time. Psychological Bulletin, 116(2), 363-381. 

 

 

  



39 
 

Appendix I: Results simulations 
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Appendix II: Syntax 2-step latent covariate model 

Original S-plus syntax taken from Croon & Van Veldhoven (2007). Only a few minor alterations 

were needed to make the script run in R, some comments were added to make the script easier to 

read. 

 

# script file calls a user defined function called: varnames 

varnames <- function(name, m){ 

  test <- is.character(name) 

  if(!test) 

    stop("Variable names should be alphanumeric!") 

  v <- paste(name, 1:m, sep = "") 

  v 

} 

 

# fmt is a formula specifying the regression model for y on the  

# group explanatory variables x and the corrected group means xtilde 

# example: fmt <- as.formula (y~z1+z2+z3+xtilde1+xtilde2) 

fmt <- as.formula(y~z1+xtilde1) 

 

# data1 contains the group-level variables 

# data2 contains the individual-level variables 

data1 <- my_data_ind 

data2 <- my_data_group 

# number of groups 

ng <- dim(data1)[1] 

# number of individuals 

nt <- dim(data2)[1] 

# group id numbers 

g <- data2[,1] 

# number of individuals per group  

ns <- tapply(rep(1,nt),g,sum) 

# number of group level independent variables  

mgroup <- dim(data1)[2]-1 

# number of individual level independent variables 

mind <- dim(data2)[2]-1 

# matrix of individual level independent variables 

x <- as.matrix(data2[,1+(1:mind)]) 

# matrix of group level independent variables 

z <- as.matrix(data1[,1:mgroup]) 

# matrix of group level dependent variable 

y <- data1[,1+mgroup] 

# mean x  

mux <- apply(x,2,mean) 

# mean z 

muz <- apply(z,2,mean) 

# observed scores on z minus mean z 

dz <- z - matrix(rep(muz,ng),ncol=mgroup,byrow=T) 

# placeholder matrix 

xmean <- matrix(0,ng,mind) 
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# group-mean for each variable in x  

for (k in 1:mind){ 

  xmean[,k]<- tapply(x[,k],g,mean) 

} 

# variance matrix 

vv <- var(cbind(z,xmean)) 

# number(ed) group level independent variables (1, 2, 3,..., mgroup) 

ind1 <- 1:mgroup 

# number of group level independent variables + number(ed) individual  

# level independent variables (1+mgroup, 2+mgroup, 3+mgroup,..., mind+mgroup) 

ind2 <- mgroup + (1:mind) 

# variance z_group  

vzz <- vv[ind1,ind1,drop=F] 

# covariance z_group and x_ind (?)  

vzxi <- vv[ind1,ind2,drop=F] 

# individual deviations from group mean 

mm <- matrix(rep(c(xmean),rep(ns,mind)),ncol=mind) 

d <- x -mm 

# MSE (SSE/G-1) 

mse <- t(na.omit(d)) %*% na.omit(d)/(nt-ng) 

vu <- mse 

# group level deviations from grand mean 

d <- mm - matrix(rep(mux,nt),ncol=mind,byrow=T) 

# MSA (SSA/N-G) 

msa <- t(d) %*% d/(ng-1) 

# estimation between group covariance matrix 

cc <- (nt - sum(ns^2)/nt)/(ng-1) 

vxi <- (msa-mse)/cc 

# computation of adjusted group means 

xtilde <- matrix(0,ng,mind) 

r2 <- solve(vzz,vzxi) 

r1 <- vxi - t(vzxi) %*% r2 

id <- diag(mind) 

# adjusted group means 

for (l in 1:ng){ 

  p <- solve(r1 +vu/ns[l],r1) 

  q <- r2 %*% (id-p) 

  xtilde[l,] <- xmean[l,] %*% p +mux %*% (id-p) + dz[l,] %*% q 

} 

# combine z_group, group means x_ind, adjusted group means x_ind, and y_group in df 

daf <- data.frame(z,xmean,xtilde,y) 

# set column names 

dimnames(daf)[[2]]<- 

 c(varnames("z",mgroup),varnames("xmean",mind),varnames("xtilde",mind),"y") 

# regression analysis according to model specified by fmt 

res <- lm(fmt,daf)  

# White-Davidson-MacKinnon correction for heteroscedasticity 

# formula, independent variables 

tm <- unlist(fmt[[3]]) 
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# unlist variable names  

var <- unlist(strsplit(as.character(tm), " ")) 

lab <- var[!var=="+"] 

u <- cbind(rep(1,ng),as.matrix(daf[lab])) 

e <- res$residuals 

p <- solve(t(u) %*% u) 

h <- diag(u %*% p %*% t(u)) 

d <- e^2/(1-h) 

v <- p %*% t(u) %*% diag(d) %*% u %*% p 

se <- sqrt(diag(v)) 

# parameter estimates 

estim <- summary(res)$coefficients[,1:2] 

# combine with corrected se 

estim <- cbind(estim,se) 

# set column names 

dimnames(estim)[[2]] <- c("b","uncorrected se","corrected se") 
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Appendix III: Syntax multilevel structural equations model 

This Mplus syntax is copied from Preacher, Zhang & Zyphur (2010) and adapted for use with the 

micro-macro model described in this paper. 

 

TITLE: Micro-macro ML-SEM 

DATA: FILE IS data.csv; ! file containing raw data in long format 

VARIABLE: NAMES ARE group x_ind z_group y_group; 

USEVARIABLES ARE group x_ind z_group y_group; 

CLUSTER IS group; ! Level-2 grouping identifier 

BETWEEN ARE z_group y_group; ! identify variables with only between variance; 

ANALYSIS: TYPE IS TWOLEVEL RANDOM; 

MODEL: ! model specification follows 

%WITHIN% ! model for within effects follows 

x_ind; ! estimate level-1 (residual) variance for x_ind 

%BETWEEN% ! model for between effects follows 

z_group y_group; ! estimate level-2 (residual) variances for z_group and y_group 

y_group ON z_group; ! regress y_group on z_group 

y_group ON x_ind; ! regress y_group on x_ind 

OUTPUT: TECH1 TECH8; ! request parameter specifications, starting values, 

! and optimization history for all effects 

 


