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Abstract

B0 magnetic field non-uniformity is the cause of a large amount of image artifacts in
MRI. B0 inhomogeneities arise due to magnetic susceptibility differences between tissues.
In particular, the 9 ppm magnetic susceptibility difference between air and tissue gener-
ate disturbances in the B0 main field near the skin. We study the B0 passive shimming
approach of covering the skin with a susceptibility-matching material from both an ex-
perimental and a mathematical viewpoint. In the experimental study, a lightweight and
simple to shape pyrolytic graphite composite foam is used to compensate for the field inho-
mogeneities in the region of the neck. We experimentally demonstrate that the pyrolytic
graphite foam improves the uniformity of the static field in a phantom and in vivo at 3T.
In the numerical study, we aim for a design of a neck shim which efficiently homogenizes
the B0 field while being practically implementable. We propose a level set optimization
method as an approach to find the optimum design for a neck shim. Simulations prove
that the proposed method is able to solve the topological optimization problem while
preserving the imposed constraints.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is a compelling medical imaging technique which
offers a wide range of applications in medical diagnosis. Worldwide there are estimated to
be 36000 MRI scanners [1]. This imaging technique was first described by Peter Lauterbur
in 1973 [2]. Since then, MRI has been proven to be a very useful imaging technique as it is
capable of producing detailed spatial images and physical and chemical data while being
harmless for the patient.
MRI is based on the physical phenomenon of nuclear magnetic resonance (NMR). In the
presence of an applied magnetic field certain nuclei can absorb and re-emit electromag-
netic energy. Most MRI scanners image the nucleus of the proton in the hydrogen atoms
because these atoms exist in abundance in biological tissues, predominantly, in the form of
water and fat. The main static magnetic field, known as the B0 field, aligns the hydrogen
nuclei in the body and pulses of radio waves are used to excite the nuclear spin energy
transition. Magnetic field gradients localize the signal in space by spatial encoding of the
spins. The biophysical surroundings of each tissue cause different movement characteris-
tics of the protons which provides ‘tissue contrast’. Thus, MRI relies on the differences
in the physical properties of protons in the water molecules to distinguish one tissue from
another.

1.1 Motivation

In many clinical and research MRI methods, the uniformity of the B0 main field is crucial
for image signal and contrast. However, obtaining a fully homogeneous field is still a
challenging issue. Perturbations of the field mostly arise due to differences in magnetic
susceptibilities between tissues. In particular, the 9 ppm (ppm stands for parts per million)
susceptibility difference between air and tissue causes considerable B0 inhomogeneities
near the skin and near the lungs. The image gets distorted and signal is lost leading to
artifacts such as unreliable fat suppression, intravoxel dephasing, blurring and geometrical
distortions.
The process by which the main magnetic field is made more uniform is called B0 shimming.
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In this thesis, we focus on a passive shimming approach which relies on covering the skin
with a tissue susceptibility-matched material. In this way, the field inhomogeneities in
region of interest (ROI) are corrected. In this project, we aim to improve the homogeneity
of the B0 magnetic field in the region of the neck and shoulders. Due to the difference in
magnetic susceptibility of tissue types and materials around the neck (especially the air-
tissue interface), achieving an artifact-free image of the neck and shoulder region is very
difficult. Compensating for the perturbations generated around the skin is essential for
clinical applications. For example, a homogeneous B0 field around this region could lead
to an artifact-free imaging of the brachial plexus, which is a network of nerves extending
from the spinal cord to the armpit. Magnetic Resonance Neurography (MRN), which is a
powerful technique to image the nerves, provides information about the internal state of
the nerve facilitating diagnosis and monitoring diseases affecting the brachial plexus [3–5].
Eliminating the sample-induced inhomogeneities around the neck could benefit a large
amount of clinical diagnoses.

1.2 Goal

The goal of this project is to improve theB0 uniformity in the neck using pyrolytic graphite.
We aim for a numerical algorithm that provides us with an experimentally applicable
design for a pyrolytic graphite composite foam that could efficiently homogenize the B0

field in any given ROI. We study the B0 passive shimming approach of covering the skin
with a susceptibility-matching material from both an experimental and a mathematical
viewpoint.
In the experimental study, our goal is to create a device that homogenizes the B0 field in
the region of the neck. We follow the procedure presented in the article of Lee et al. [6].
The material used is a pyrolytic graphite (PG) composite foam. PG microparticles are
uniformly and randomly dispersed into a polyurethane foam. By determining the volume
fraction of PG microparticles inside the foam, we want to create a bulk isotropic material
with a specific magnetic susceptibility for passive shimming of the B0 field inhomogeneities.
Other studies used a bag of pineapple juice in order to homogenize the B0 field in the area
of the brachial plexus [7]. However, this fluid bag is usually very heavy and therefore,
uncomfortable for the patient. In contrast, we use a lightweight and simple to shape PG
foam. The PG foam is a good alternative to the fluid-matching agents as it is comfortable
for the patient and it can be embedded directly within a radio frequency (RF) coil [6].
Furthermore, it is non-conductive and it does not produce MRI signal [6]. As PG foams
can more easily be shaped than the other passive shimming approaches using bags of
fluids, they allow for more complex designs.
Parallel to the experiments, we aim to investigate this shimming approach from a more
mathematical and computational viewpoint as opposed to the experimental studies which
already exist in the literature [6–8]. We wish to create a numerical algorithm for the design
of a shim that homogenizes the B0 field in a desired ROI. The algorithm should provide
us with a magnetic susceptibility distribution for a neck shim, which generates a magnetic
field that compensates for the field inhomogeneities in the ROI caused by the body.
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1.3 Thesis Outline

The outline of this thesis is as follows:

Chapter 2: Preliminaries

First, we introduce some of the basic principles of MRI including the main static magnetic
field B0. Then, we explain the origin of B0 field inhomogeneities and we focus on the
passive shimming technique as a tool for eliminating these field disturbances. We finish
this chapter by briefly explaining B0 field mapping techniques.

Chapter 3: PG Foam for B0 Passive Shimming: an Experimental Study

In this chapter, we study the tissue susceptibility matched PG foam. First, we introduce
the PG and the properties of the PG composite foam. We present the formula of the
magnetic susceptibility of the PG foam as a function of the volume fraction of the PG
particles and the bare foam (the foam without any PG). Then, we describe the PG foam
construction, and the phantom used to observe and quantify field gradients near different
susceptibility interfaces. Next, we experimentally investigate the dependence of the mag-
netic susceptibility of the PG foam on the volume fraction of PG microparticles. Finally,
we show the in vivo B0 field maps using a PG foam that we built for the neck. We compare
the experimental field with simulations.

Chapter 4: Optimum PG Foam Design: a Numerical Study

This chapter covers the main mathematical and computational steps taken to attain an
optimum design of PG foam capable of homogenizing the B0 field perturbations generated
near the skin. We show the numerical results by using two type of algorithms to solve
the problem: a gradient descent algorithm and an improved version of it, a level set
optimization integrated into a gradient descent framework.

Chapter 5: Conclusion

Chapter 5 completes this thesis by giving a summary and outlining the conclusions of this
project.
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Chapter 2

Preliminaries

In this chapter, we give a brief introduction to the MRI physics, B0 shimming and B0

field mapping. For a more comprehensive survey on MRI physics, imaging and hardware,
the reader may refer to [9].

2.1 Basic Principles of MRI

In this section the basic phenomena involved in MRI are explained. For a detailed study
of the physics behind the magnetic resonance, the reader should refer to the following
books: [9–11]. MRI is a medical imaging technique used in radiology to non-invasively
visualize internal structures of the human body and physiological processes. MRI is based
on the physical phenomenon of nuclear magnetic resonance (NMR) to generate images of
certain nuclei in the body. Atoms with an odd total number of protons and/or neutrons
in their nuclei possess a fundamental quantum mechanical property known as spin. Hy-
drogen (1H), carbon (13C), sodium (23Na), and phosphorous (31P) are some examples of
these type of atoms. We study the case of a proton as it is the simplest one.
Spin is an intrinsic form of angular momentum (P ) and it can be viewed as the proton
spinning around an internal axis of rotation. This rotation results in a magnetic mo-
ment (µ) because the proton is charged. In quantum mechanics, angular momentum is
quantized, meaning that it cannot vary continuously, but only between certain allowed
values [12]: ∣∣∣~P ∣∣∣ =

h

2π
[I(I + 1)]1/2 (2.1)

where h is the Planck’s constant and I is the spin quantum number. For this analysis, we
consider I to be 1

2 as it corresponds to atoms such as 1H, 13C and 31P.
The magnitude of the magnetic moment is given by [9]:

|~µ| = γ
∣∣∣~P ∣∣∣ =

γh
√

3

4π
, (2.2)

where γ is the nuclear gyromagnetic ratio [13].
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The x, y and z components of µ can have any value that satisfy the above equation.
However, when a magnetic field is applied in the z direction, the B0 field, the z component
of µ is quantized. In the case of a proton, for which the magnetic quantum number takes
values ±1

2 , µz can have 2 different values [12]:

µz = ±γh
4π

(2.3)

In the following figure two cases are represented. In the first case (fig. 2.1(a)) there is no
B0 field applied and the µ has random orientations. The nuclei occupy a single energy
level. In the second case (fig.2.1(b)) there is a B0 field and this leads to the creation of
two energy levels (Zeeman spliting [14]) depending on whether the µz is aligned parallel
or anti-parallel to the B0. The energy difference of the two energy levels in the presence
of a magnetic field is:

∆E = B0[
γh

4π
− (−γh

4π
)] =

γhB0

2π
(2.4)

Fig. 2.1 (a) The µ-s of the protons are randomly orientated when there is no a magnetic field

applied. The nuclei populate a single energy level. (b) In this case an external magnetic field is applied

(B0 6= 0) and the µz of the protons becomes quantized. µz can take two different orientations either in the

direction of the B0 or against it. These two orientations correspond to two different energy levels and the

energy difference between them is ∆E. There are more nuclei in the lower energy level which corresponds

to the orientation parallel to the B0.

The sum of all the net moments µ gives a net magnetization M0. M0 is the maximum
value of net magnetization at equilibrium along the direction of the main magnetic field
(fig. 2.2(a)). Hence, M0 is proportional to the difference in populations between the two
energy levels [9]:
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M0 =

Ntotal∑
N=1

µz,n =
γh

4π
(Nparallel −Nanti−parallel), (2.5)

where Ntotal is the total number of protons, i.e., Ntotal = Nparallel +Nanti−parallel.
Using Boltzmann’s and the first two terms of the Taylor series expansion of the exponent,
the ratio of the number of protons in the two energy levels is given by:

Nanti−parallel

Nparallel
= exp (− ∆E

KBT
) ≈ 1− ∆E

KBT
, (2.6)

where KB is the Boltzmann constant and T is the absolute temperature in degrees Kelvins.

In general, the exponent is extremely small and Nparallel and Nanti−parallel are nearly the
same and approximately half of the total number of nuclei. Therefore: ∆N = Nparallel −
Nanti−parallel =

Nparallel∆E
KBT

≈ Ntotal∆E
2KBT

. And the M0 is given by:

M0 ∝
γ2h2B0Ntotal

KBT
(2.7)

The net magnetization is directly proportional to the B0 field. As a consequence, strong
B0 fields are required for a bigger energy difference between the two levels and therefore,
a bigger difference of populations which leads to a better MR signal.

In order to detect an MR signal, transitions between the two energy levels must occur.
By applying an RF field orientated orthogonal to the B0 field for a short duration, an RF
pulse is created and energy is applied to the nuclear spin system. The pulse is applied at
a specific resonance frequency (w0) which is related to the ∆E of the system via:

∆E = h̄ω0 (2.8)

The ω0 is known as the Larmor frequency and depends linearly on γ and B0: w0 = γB0.

Classical mechanics predicts that the RF pulse, which is applied along one axis, produces
a torque perpendicular to that axis (fig. 2.2(b)). M0 is rotated by the tip angle α [9].
After applying the RF pulse with tip angle α about the x-axis, the magnetization along
the x, y and z directions is:

Mx = 0,My = M0 sinα,Mz = M0 cosα (2.9)

When the RF pulse is turned off, the transverse component of the magnetization (Mxy)
precesses around the B0 axis at the Larmor frequency (fig.2.2(c)). It should be noted that
the exact precession frequencies of different nuclei within a molecule depend also on the
chemical shift and scalar coupling. For information about these topics, the reader may
refer to the reference [9].
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Fig. 2.2 (a) After applying a external magnetic field B0 the nuclei of the protons align with the B0

giving a net magnetization M0. (b) An RF pulse is applied along the x axis. The magnetization rotates

by an angle α about the x axis. (c) Immediately after the RF pulse, the magnetization starts to precess

at a frequency. This frequency is the same as the frequency of radiation ω0.

Nevertheless, the magnetization components do not stay in those conditions forever, they
will return to their thermal equilibrium values: My = 0,Mx = 0,Mz = M0. The time-
evolutions of Mz, My and Mx are given by the Bloch equations [15]:

dMx

dt
= γMy(B0 −

w

γ
− Mx

T2
)

dMy

dt
= γMzB1 − γMx(B0 −

w

γ
− My

T2
)

dMz

dt
= −γMyB1 −

Mz −M0

T1

(2.10)

T1 is the spin-lattice relaxation time and it governs the return of Mz to its equilibrium
value. At the same time, T2 is the spin-spin relaxation time and it governs the return of
the components Mx and My. The values for the two relaxation times depend on the types
of sample, but T1 is always greater than T2.

In MRI experiments, a volume coil is typically used to transmit the RF pulses while
multiple surface coils are typically used to receive the signal. The MR signal is measured
via the inductive coupling between the magnetization vector and the receiver coils. While
Mxy is precessing around B0 with the Larmor frequency, a time-varying magnetic flux
is induced in the coil which induces a measurable time-varying voltage. The strength of
the received signal does not only depend on the T1 and T2 relaxation times, but also on
the spin density (ρ0). ρ0 is the number of protons per unit volume and M0 is directly
proportional to it.
In order to have information about the spatial position of the received MR signals, mag-
netic field gradient coils are necessary. The gradient coils are conductors through which
current passes. This results on the generation of a gradient field, which produces a linear
dependence of the magnetic field on spatial location.
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Particular combinations and timings of RF pulses, gradient field waveforms and signal
acquisitions are known as pulse sequences. In most pulse sequences there are two main
parameters: the repetition time (TR) and the echo time (TE). TR is the interval time be-
tween corresponding consecutive points on a repeating series of pulses and echoes. The TE
is the time between the RF pulse and echo time, which refocuses the spin magnetization.

2.2 B0 Shimming

One of the biggest challenges in MRI technology is to obtain a homogeneous main magnetic
field B0. The spatial uniformity of the B0 is crucial for most of the MR applications. The
presence of inhomogeneities in this magnetic field can lead to a large number of artifacts
such as image distortions, intravoxel dephasing, blurring and non-accurate fat suppression.
Furthermore, the B0 inhomogeneities are directly proportional to the magnitude of the
applied magnetic field B0, which results on high perturbations at 3T or above. For some
clinical applications, artifact-free imaging at 3T and above may become very difficult. The
majority of the field perturbations are sample-induced, i.e., the difference in magnetic sus-
ceptibility between materials or tissues leads to a disturbance in the magnetic field.

Applying a homogeneous magnetic field B0 to a continuous material, the total magnetic
field (Btotal) inside the material is given by [9]:

Btotal = B0 + µ0M, (2.11)

where M is the magnetization induced inside the material: M = (χ/µ0)B0. In this expres-
sion χ is the magnetic susceptibility of the material and µ is the magnetic permeability.
They are related according to χ = (µ/µ0)− 1, where µ0 is the vacuum permeability. χ is
dimensionless and describes how µ deviates from µ0. Magnetic susceptibility is a property
of every material and indicates the degree of magnetization of a material in response to
an applied magnetic field. If χ is negative, the material is classified as diamagnetic and
the magnetization inside the material opposes the applied field B0. This results in a net
reduction of the B0. Examples of diamagnets are water and soft tissues. If χ is posi-
tive, the material is classified as paramagnetic and the magnetization inside the material
strengthens the B0. A well known paramagnetic material is air. Both diamagnetic and
paramagnetic materials loose their magnetization when the external magnetic field is re-
moved. Ferromagnets, which have a large and positive χ, retain their magnetization and
they are usually incompatible with MRI experiments. In table 1, we show a list of the
different magnetic susceptibilities of the most important anatomical tissues.
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Table 1 Magnetic susceptibility values of anatomical tissue types.

In the following figure the susceptibility distribution of the coronal axis of the upper part
of the human body is shown (fig. 2.3a); and also, the magnetic field induced by that
susceptibility distribution (fig. 2.3b). The human body model used for these simulations,
and also throughout this thesis, is DUKE [19].

Fig. 2.3 (a) Magnetic susceptibility of the human body model. (b) Magnetic field induced by the

magnetic susceptibility distribution in a. The B0 offset ranges between -2 ppm and 2 ppm.

Magnetic field inhomogeneities are created due to the differences in magnetic suscepti-
bilities in the human body (table 1). Mostly air-tissue interfaces generate high spatial
frequency perturbations. The change in induced magnetization is given by:

∆M = (
χtissue − χair

µ0
)B0 (2.12)

The change in magnetization leads to a magnetic field distribution (∆B(~r)). The B0

inhomogeneity induced by a magnetic susceptibility distribution in space, (χ(~r′)), is given
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by [22]:

∆B(~r) = B0

∫
r′∈v′

G(~r − ~r′) · χ(
~r′)d~r′, (2.13)

where r′ denotes the position vector in the region of varying susceptibility, v′, and r denotes
the position vector in the region within to evaluate the ∆B(~r). G is the Green’s function
of the system, i.e., it relates the χ(~r′), to the induced field perturbations ∆B(~r) (see figure
2.4).
The most common approach to solve this direct problem is to apply the convolution
theorem to equation 2.13, so that Fast Fourier Transforms (FFT) may be used. The use
of FFT-s improves the computation speed and the quantities numerically convolved (G
and χ) must have the same matrix size and consistent coordinate axes. Using FFT-s, the
field homogeneities are given by the expression [20,21]:

∆B(~r) = B0 · FT−1 [FT (G(~r)) · FT (∆χ(~r))] ,

where, G(~r) =
1

4π

2z2 − x2 − y2

(x2 + y2 + z2)5/2

(2.14)

G(~r) is the Green’s function of the system in the spatial domain and FT and FT−1 are
the forward and inverse Fourier Transformations (FT). And ∆χ(~r) = χtissue − χair.
After computing the FT of G(~r), the equation can be rewritten as [20]:

∆B(~r) = B0 · FT−1

[
(
1

3
− k2

z

k2
) · FT (∆χ(~r))

]
, (2.15)

where k is the coordinate in reciprocal k -space and k2 = k2
x + k2

y + k2
z . Not only the

amplitude of the magnetic susceptibility, but also its spatial distribution (i.e. the geometry
of the body) strongly affects the field inhomogeneity.

Fig. 2.4 Figure taken from reference [22]. A source susceptibility region (black) and a target region

(red with black outline). The spatial Green’s function originates from a source susceptibility region and it

overlaps a target region.
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B0 shimming is the process by which the main magnetic field is made more homo-
geneous. The non-uniformity of the B0 field can be reduced with either passive or active
methods. In active shimming, currents are directed through specialized coils to further
improve homogeneity. In passive shimming, however, a magnetic material is placed at
strategic locations in order to compensate the B0 within an adjacent ROI. A very com-
monly used active shimming approach to minimize magnetic field variations is to super-
impose secondary magnetic fields with a spatial variation governed by spherical harmonic
(SH) functions [9]. Nevertheless, the static spherical harmonic shimming applications do
not usually go above the 3rd order of correction [23–25]. Hence, the high spatial frequency
field perturbations in some regions of the body cannot be corrected with this shimming
method. A method to correct these uniformities could be to cover the skin with a tissue
susceptibility-matched material to move the inhomogeneities outside the ROI. This is a
simple and passive technique and its good performance has been proven previously with
several different materials. Most of the versions of this technique include bags of fluid,
such as perfluorocarbon [26], barium sulfate-doped water [27] or pineapple juice [7]. In
2010, Lee et al presented a passive method to improve the B0 uniformity near the skin
using PG [6]. By uniformly dispersing PG microparticles in a closed-cell foam, they ex-
perimentally create a PG foam with the same magnetic susceptibility of water, which is
χwater = −9× 10−6 = −9 ppm.

2.3 B0 field mapping

The characterization of the magnetic field inhomogeneity is a process known as B0 map-
ping. The B0 field perturbations are usually obtained from the phase difference of two
images acquired at two different echo times during a period of free precession, which yields:

∆φ = φ2 − φ1 = ω(TE2 − TE1), (2.16)

where φ1 = φ0 + ωTE1 and φ2 = φ0 + ωTE2. φ0 is the initial phase given by the RF
excitation. ω is related to the local B0 inhomogeneities and it is given by: ω = γ∆B0,
where γ is the gyromagnetic ratio of the proton.

The B0 field variation is given by:

∆B0 =
∆φ

γ∆TE
, (2.17)

where ∆TE = TE2 − TE1.
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Chapter 3

PG Foam for B0 Passive
Shimming: an Experimental Study

In MR studies, image signal and contrast is highly dependent on the uniformity of the B0

static field. The B0 field becomes inhomogeneous due to the difference in magnetic suscep-
tibilities between materials and tissues; in particular, the 9 ppm susceptibility difference
between air and tissue produces strong perturbations. In this chapter, we study the PG
composite foam as a B0 passive shimming approach to reduce the non-uniformities in the
B0 main field. The advantages of the PG foam is that it is lightweight, simple to shape
and can be embedded directly within an RF coil [6]. Comparing with other susceptibility
matching materials, such as fluid bags, PG foam may be more comfortable for the patient
as it can be shaped to conform the body and it is less heavy. Also, it is non-conductive
and it does not produce MRI signal [6]. First, we introduce the properties of the PG
foam and the formula for its magnetic susceptibility. Next, we explain the materials and
methods used for our experiments. Finally, we present the results, which experimentally
demonstrate that the PG foam compensates for the inhomogeneities generated by the air-
water interface and it improves the inhomogeneities of the static field in the region of the
neck.

3.1 Pyrolytic Graphite foam as a magnetic susceptibility
matching material

Pyrolytic graphite or pyrolytic carbon is a polycristalline form of carbon that has a hexag-
onal crystal structure and is similar to graphite. PG is an artificial material, it is not found
in nature [28]. It is generally produced by heating a hydrocarbon nearly to its decompo-
sition temperature, and permitting the graphite to crystallize. This crystallization occurs
in a planar order producing a single cleavage plane. This leads to the unusual character-
istic of PG: it posses anisotropic properties [29]. It is more electrically conductive parallel
to its crystal plane than perpendicular to the plane: up to 104 times more [30]. It is
also one of the best planar thermal conductors available. However, what makes PG a
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powerful tool for B0 passive shimming is that it exhibits the highest diamagnetism of
any room-temperature diamagnet. This high χ is only presented in the plane orientated
perpendicular to the crystal plane (χ⊥ = −595 ppm) [31]. PG’s anisotropic magnetic
susceptibility exhibits 70 times greater χ in the perpendicular orientation rather than the
parallel orientation (χ‖ = −8.5 ppm) [31].

3.1.1 Magnetic Susceptibility of PG foam

Powdered PG particles are embedded into a closed-cell polyurethane foam. The average
susceptibility of the PG foam is given by [6, 31]:

χaverage =
fχ

1 + αχ
, (3.1)

where f is the volume fraction of the PG particles, χ is the overall magnetic susceptibility
of the particles and α is a shape dependent factor [31].
The value of χ is of the order of 10−6, therefore the above equation can be simplified to:

χaverage ≈ fχ (3.2)

In our case, the magnetic susceptibility of the PG foam (χPGf) is a three component
mixture of: PG particles, bare foam and air. It is given by:

χPGf = χPG · fPG + χf · ff + χair · fair, (3.3)

where χPG is the magnetic susceptibility of randomly dispersed PG particles with a volume
fraction fPG. χf is the magnetic susceptibility of the foam when there is no particles inside
and it takes takes the volume fraction ff . Air is the third component of the mixture and
it will take the volume fraction fair = 1 − fPG − ff , because the sum of all the volume
fractions gives 1.
χPG is the average of the directional components of the magnetic susceptibility of PG:

χPG =
χx + χy + χz

3
=
χ⊥ + 2χ‖

3
=
−595 + (2× (−8.5))

3
[ppm] = −204[ppm] (3.4)

The magnetic susceptibility of the bare foam (without any PG particles) can be estimated
from literature. Wapler et al. published in 2014 the magnetic susceptibilities of a large
number of polyurethane foams. They found that all the polyurethane foams they studied
have a susceptibility close to the one of water (χwater = −9 ppm) [32]. This statement
opposes Lee et al. articles ([6,8]) in which they claim that their polyurethane foams have
a χ close to the one of air (χair = 0.36 ppm). By relying on Wapler et al. results for the
χf , we conclude that the theoretical value of the magnetic susceptibility of the PG foam
depends on the volume fraction of the PG particles and on the volume fraction of the bare
foam in the following way:
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χPGf = −204.4fPG − 9.4ff + 0.36[ppm], (3.5)

where we consider that χair = 0.36 ppm.

Consequently, by determining the volume fraction fPG of PG particles and the one of the
bare foam ff , we can obtain a PG foam with a desired magnetic susceptibility.

3.1.2 Electrical Conductivity of the PG foam

It is very important that the material used for MRI applications is non-conductive. Under
a radio frequency magnetic field, conductive materials generate eddy currents creating
thermal heat. This could be harmful for the patient and must always be avoided. More-
over, the electrical conductivity of the PG foam can also lead to noise in our signal, as the
noise scales linearly with the conductivity [33].
In order to study the electrical conductivity of the PG foam, the effective Medium Theory
(EMT) is used. EMTs are used to describe the macroscopic properties of composite ma-
terials [34, 35]. To predict the conductivity of the effective media (σem) the EMTs utilize
the symmetric media Bruggeman equation for spherical inclusions of high conductivity in
a low conductivity matrix [6, 36]:

fl
σl − σem

σl + 2σem
+ fh

σh − σem

σh + 2σem
= 0, (3.6)

where fh is the volume fraction of the highly conducting component with conductivity σh

and fl is the volume fraction of the insulating component with conductivity σl.

In our case, the highly conducting component is the PG particles and the insulating
component is the bare foam. The PG has a very high conductivity in plane (σPG = 1.9×106

S/m) [6,30]. The conductivity of the bare foam, however, is σf = 10−4 S/m [37]. For safety
reasons, the conductivity of the PG foam should be two orders of magnitude below that
of human tissue, which is in the order of 1 S/m. Equation 3.6 shows that the PG foam
is MRI compatible until the volume fraction of PG particles is ≈ 0.16, i.e. the electrical
conductivity of the foam should ideally be below 5 mS/m (two orders of magnitude below
the σ of the human tissue), and we obtain that value when the volume fraction of the PG
particles is approximately 16% [6,38].
Also, we must avoid the PG foam to add significant amount of noise to the MRI scan. In
section 3.3.1, we study the signal-to-noise ratio and the effect of the PG foam on it.

3.2 Materials and Methods

We present the materials and the methodology to construct the PG foam and to subse-
quently characterize it. All MR experiments are performed in a 3T Philips MR scanner.
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3.2.1 PG foam construction

For creating a PG foam foam, we use high purity PG powder and two-component polyurethane
polymer foam. The PG powder is manufactured by Graphite Machining, Inc., Topton,
Pennsylvania. The diameter of the particles is 44 µm. The polyurethane foam is purchased
from Smooth-On, Inc., Amsterdam, The Netherlands. The product name is FlexFoam-
it(6), which expands 10 times its original volume. Our goal is to obtain a PG foam with a
randomized, uniform dispersion of PG microparticles throughout the entire foam. First,
we mix the PG powder and one component of the foam. We throughly mix them so
that the PG powder is uniformly dispersed. Next, we pour the second component to the
mixture. We again make sure the mix is as homogeneous as possible so that the PG
microparticles are uniformly distributed. Before the foam expands, the foam is poured in
plastic containers or custom built plastic molds. Finally we allow it to rise and cure.
The magnetic susceptibility of the final PG foam depends on the amount of PG powder in
the foam. The volume fraction of the PG powder that we use in our mixture is inversely
proportional to the volume where we let the foam expand. The amount of bare foam
used does not play a mayor role when constructing the foam. The reason for this is that
the magnetic susceptibility of the PG (-204 ppm) is much more negative than the one of
the bare foam (-9 ppm), therefore, relatively small changes in the volume fraction of the
bare foam do not significantly change the final magnetic susceptibility of the PG foam.
Nevertheless, we want to underline that even if the density of the bare foam does not
dramatically change the outcome, it does have an effect.

Fig. 3.1 PG powder. The diameter of the particles is 44 µm.

3.2.2 SNR

In order to test whether the PG foam has an effect on the Signal-to-Noise Ratio (SNR),
we used a cylinder filled with doped water as an SNR phantom. Gradient echo images
were acquired both with a regular foam as well as a PG foam below the cylinder. The
foams have a thickness of 2 cm. The FOV is 18 × 26 cm2 and the slice thickness is 2.8
mm. Repetition time and echo time are: TR = 6 ms and TE = 2.6 ms, respectively.
∆TE = 0.8 ms. The formula of the SNR is the following:
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SNR =
S

σN
, (3.7)

where S is the signal amplitude and σN is the standard deviation of the background noise.
We compare a PG foam with a volume fraction of 4% of PG powder, i.e., with a magnetic
susceptibility of -9 ppm, and a regular foam with no PG powder, i.e., with a magnetic
susceptibility of roughly zero (after expansion).

3.2.3 Phantom

A phantom was constructed to measure the B0 field inhomogeneity near different suscepti-
bility interfaces. The phantom has the shape of a hollow cylinder, with an external radius,
R, and an internal radius, r. The outer cylinder is filled with regular water. Inside the
inner cylinder we place a cylindrical plastic tube, which we fill with either water, air or
different PG foams (fig.3.2). The plastic tubes have a total volume of 58 ml.

Fig. 3.2 (a) The phantom has a shape of a hollow cylinder with an inner radius of r= 1.5 cm, and

an external radius of R= 7.5 cm . The plastic tubes next to the phantom are filled with water, air and PG

foam (left to right). (b) Tube filled with PG foam placed in the phantom.

We acquire B0 maps of the phantom. The phantom is oriented orthogonal to the static
B0 field. We acquire 2D gradient echo images with a FOV of 16 × 16 cm2 and a 20 mm
slice thickness. The repetition time is 10 ms and the echo time is 2.2 ms. The difference
between the echo times is ∆TE = 0.8 ms.

3.2.4 PG foam neck shim

We construct a 2 cm thick sheet of PG foam (fig. 3.3a). We conform this sheet such that
it covers the neck (fig. 3.3b).
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Fig. 3.3 PG foams with 4% volume fraction of PG microparticles, generating a PG composite

foam with -9 ppm magnetic susceptibility. (a) 2cm thick sheet of PG foam. (b) PG foam neck shim, which

can be placed around the neck in order to homogenize the B0 field near the skin.

To test the PG foam neck shim, a healthy internal volunteer was recruited for the experi-
ment. Sagittal 2D gradient echo images of the neck are acquired with and without a PG
foam neck shim. The FOV is 32× 48 cm2 and the slice thickness is 2 cm. The repetition
time is 10 ms and the echo time is 1.23 ms. ∆TE = 0.8 ms.

3.3 Results and Discussion

In this section we present the experimental results. We begin by proving that the PG foam
does not add any noise to the signal. Next, we characterize the PG foam in a phantom.
We analyze B0 field maps for different concentrations of PG in a fixed volume. Finally,
we show in vivo field maps when using a PG foam neck shim and we compare them with
the simulations.

3.3.1 SNR

In figure 3.4, we analyze the SNR values of each pixel along a line of the image. The SNR
in every point is taken following equation 3.7. The SNR for the phantom with the PG
foam and with the regular foam are virtually identical. Hence, we guarantee that the PG
foam does not add any noise to the system.
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Fig. 3.4 SNR value along the phantom with a regular foam (orange) and with a PG foam (blue

stars). The black line in the two figures of the inset represents the slice along which the SNR profiles are

plotted. Figure on the left represents the SNR map of the phantom with the regular foam and the image

of the left of the one with the PG foam.

In figure 3.4, we evaluate the pixel-wise SNR. Now, we take the average over the 2D slice,

thus obtaining the total SNR, given by S
σN

, where S is the mean of the signal. We obtain
a total SNR of 176 for the phantom with the PG foam and a total SNR of 175 for the
phantom with a regular foam. The values are almost exactly the same.

Similar observations were made in a PG foam with a 7% of volume fraction of PG
powder. With this percentage of PG powder, we expect a magnetic susceptibility around
-17 ppm. In this case, we obtain a total SNR of 126 for the phantom with the PG foam
and total SNR of 125 for the phantom with the regular foam. When plotting the pixel-wise
SNR along the phantom, the SNR of the PG foam corresponds well to the SNR of the
regular foam, showing the same behavior as the previous experiment (fig. 3.4).
Hence, we have demonstrated that the SNR is not reduced when using PG foams with a
PG volume fraction up to 7% .
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3.3.2 PG foam characterization

In this section we characterize the PG foam. We study foams with different concentrations
of PG microparticles. We acquire the B0 field maps using the phantom with the small
cylinder filled with water, air and different PG foams. 3T coronal field maps are shown
in figure 3.5. When the small cylinder of the phantom is filled with air (fig. 3.5(a)), the
air-water interface causes the classical dipole pattern [58]. This pattern alternates positive
and negative regions of B0 field perturbations and it is created by a cylinder orientated
perpendicular to the main magnetic field. When the inner cylinder of the phantom is filled
with water, the B0 field is constant, i.e., a perfect susceptibility matching is shown (fig.
3.5(b)). Figures 3.5(c), 3.5(d), 3.5(e), 3.5(f), 3.5(g) and 3.5(h) show the B0 field maps
generated when the volume fraction of PG in the foam is 0%, 1%, 2%, 3%, 4% and 5%,
respectively. Note that the amount of bare foam is the same in all the cases so that the
change in magnetic susceptibility only arises from the volume fraction of the PG.

Fig. 3.5 B0 field maps acquired in a 3T MRI scanner using a gradient echo sequence. TR = 10

ms, TE = 2.2 ms, slice thickness= 20 mm, FOV = 22.4× 22.4 cm2, matrix = 256× 256. ∆TE is 0.8 ms.

Note that in all the cases, there are inhomogeneities arising around the outer interface of the phantom due

to the air-water interface. (a) When the inner cylinder of the phantom is filled with air, a dipole effect is

created. The difference of magnetic susceptibility of air and water generates perturbations in the B0 field.

(b) With water, however, the B0 field is very homogeneous throughout the phantom (except in the outer

interface, because there is air outside the phantom). (c) With bare foam, i.e., without any PG particles,

the B0 field is still very inhomogeneous. (d)-(h) Foams with different concentration of PG particles. We

can see that as we increase the volume fraction of PG powder, the B0 becomes more homogeneous.

26



We demonstrate that when the volume fraction of PG is 4% (fig. 3.5g), the PG foam
demonstrates good susceptibility matching to water, thus creating the same pattern as in
figure 3.5b. This implies that a foam with a 4% of volume fraction of PG powder presents
the same magnetic susceptibility of the one of water: −9 ppm.
Next, we want to obtain the value of the magnetic susceptibility of each PG foam from
the MR data. For this, we need to calculate the B0 field inhomogeneities generated by
only the PG foam. Hence, we need to get rid off any perturbations generated by the air
or water.

B0,PGf′ =
B0,PGf

B0,air

B0,water′ =
B0,water

B0,air
,

(3.8)

where B0,air is the data obtained by filling the inner cylinder of the phantom with air,
B0,water with water and B0,PGf with PG foams. B0,PGf′ is the B0 inhomogeneities gen-
erated only by the PG foam inside the tube and B0,water′ by only the water inside the tube.

Equation 2.13 shows the B0 inhomogeneity induced by a magnetic susceptibility distribu-
tion in space. However, if the magnetic susceptibility is constant throughout the space,
i.e., it is not position dependent, it can be moved outside the integral. In our case, the χ
of the PG foam inside the tube is constant throughout the volume of the tube. Therefore,
the B0 field inhomogeneities generated by the PG foam and the water (inside the plastic
tube) are given by:

B0,PGf′(~r) = B0

∫
r′∈v′

G(~r − ~r′) · χPGfd~r′ = B0 · χPGf

∫
r′∈v′

G(~r − ~r′)d~r′

B0,water′(~r) = B0

∫
r′∈v′

G(~r − ~r′) · χwaterd~r′ = B0 · χwater

∫
r′∈v′

G(~r − ~r′)d~r′,
(3.9)

where r′ denotes the position vector in the region of varying susceptibility, i.e., the volume
of the tube v′, and r denotes the position vector in the region within to evaluate the field
inhomogeneities. G is the Green’s function of the system.

We want to solve these system of equations for the χPGf . By dividing B0,PGf′ and B0,water′ ,
we eliminate the geometric factor given by the Green’s function. Using the theoretical value
of the magnetic susceptibility of water, -9 ppm, we can solve for the magnetic susceptibility
of the PG foam:

χPGf = (
B0,PGf′

B0,water′
)× χwater = r ×−9 [ppm], (3.10)

where the line over the ratio between the B0,PGf′ and the B0,water′ represents the mean:
B0,PGf′
B0,water′

= r = 1
N

∑N
i=1

Bi
0,PGf′

Bi
0,water′

. N is the number of scalar observations in the data.
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In this way we can obtain the value of the magnetic susceptibility of the PG foams from
the experimental data. In the following figure we plot the magnetic susceptibility of the
PG foam as a function of the volume fraction of the PG particles.

Fig. 3.6 Magnetic susceptibility of the PG foam versus the concentration of PG microparticles in

the foam. The red line represents a linear fit to the data (blue dots).

The data is fitted to a first degree polynomial equation f(x) = ax + b, with a = −191.9
ppm and b = −1.86 ppm. We relate these values to the formula derived in section 3.1:

χPGf = (χPG − χair)fPG − (χf − χair)ff + χair [ppm] (3.11)

From the experimental data, we find the value for the magnetic susceptibility of the PG
and the value for the magnetic susceptibility of the bare foam to be:

χPG = [−191.5± 15.2] ppm

χf = [−8.9± 1.9] ppm,
(3.12)

where we consider that χair = 0.36 ppm. In this experiment, the volume fraction of the
bare foam before it expands, ff , is 0.24. We used 14 g of bare foam. The density of the
bare foam, before the expansion, is ≈ 1 g/ml. The total volume of the plastic tubes, where
we pour the PG foam, is 58 ml.

The theoretical value of the magnetic susceptibility of the PG microparticles is −204 ppm,
which we calculated at the beginning of this chapter. The theoretical value lies within
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the uncertainty range of our experimental result. Moreover, we find that the magnetic
susceptibility of the bare foam is similar to the one of water. This result is in good
agreement with values found in literature for the magnetic susceptibility of polyurethane
foams [32]. This reassures the reliability of the experiment.

3.3.3 In vivo Experiments

We present the results of the in vivo experiments to evaluate the effectiveness the PG
foam neck shim. The PG foam neck shim has a 4% volume fraction of PG microparticles,
which implies a final magnetic susceptibility close to the one of water. In figure 3.7a and
3.7b we show the in vivo B0 field maps through the sagittal plane without foam and with
the PG foam neck shim, respectively. In these images, there are some phase wrapping
artifacts, which is a commonly encountered problem in B0 field mapping [9]. The data
obtained from the MR scanner is in Hertz, which differs from the B0 field inhomogeneities
by a scaling factor. We transform this data to B0 inhomogeneities (in ppm), using this
formula: ∆B0 = ∆ν2π

γ , where ∆ν is difference in phase (Hertz) and γ is the gyromagnetic
ratio of the proton.

In order to quantitatively measure the B0 main field in the region of the neck with
and without PG foam, we plot values from the shoulders to the brain throughout a line,
i.e., fixing x and y dimensions while taking values along the z direction from the shoulders
to the neck (black lines in figure 3.7a and 3.7b). The PG foam acts as a susceptibility
matching material effectively moving the air-tissue field gradient outside the subject’s
body. The inhomogeneity of the B0 field is improved, as shown in figure 3.3c, where it is
plotted the in vivo B0 field along a line without PG foam (red) and with PG foam (blue).
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Fig. 3.7 B0 field maps (sagittal view) without foam (a) and with PG foam neck shim (b). The

two images are acquired with a gradient echo sequence in a 3T MR scanner. FOV= 32× 48 cm2 and TR=

10 ms. The slice thickness is 2 cm and the echo time is 1.23 ms. The difference between echo times is 0.8

ms. The black line represents the region we considered for the analysis of the B0 field values in (c). Here

it is shown the B0 field along the z direction, from the shoulders to the brain along the black line in the

field maps.The blue line represents the case where the subject has a PG foam around the neck, the red

line, however, represents the case without the foam. The dip in the B0 field is smaller when the PG foam

is used. This implies that the perturbations arising from the air-tissue interface in the neck are slightly

corrected using the PG foam.

In order to confirm the trustworthiness of our experimental results, we compare the in vivo
results with simulations using MATLAB. We simulate a neck shim with a similar shape
to the one we built and with a magnetic susceptibility of −9 ppm. For our simulations we
use a male body model [19]. In the following figures 3.8a and 3.8b, we show the simulated
B0 field maps without PG foam and with a PG foam. In figure 3.8c, we plot the B0 field
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along a line for both cases.

Fig. 3.8 Simulations of the B0 field inhomogeneities in a human body model (sagittal view) without

PG foam (a) and with PG foam surrounding the neck (b). The B0 field is measured in ppm-s. The black

line represents the region we considered for the analysis of the B0 field values in (c). Here it is shown the

B0 field along the z direction, from the shoulders to the brain. The blue line represents the case where the

subject has a PG foam around the neck, the red line, however, represents the case without the foam. The

PG foam improves the uniformity of the B0 field as expected

There is a clear correlation between the in vivo B0 plot in figure 3.7c and the one obtained
with simulations in figure 3.8c. This demonstrates that the experimental results are in
good agreement with simulations. It should be noted that the simulations show a slight
better improvement of the B0 inhomogeneities rather than the in vivo results. This could
be due to small air-gaps between the subject’s neck and the PG foam neck shim.
In conclusion, the B0 inhomogeneities near the skin are reduced using a PG foam neck
shim with a 4% volume fraction of PG powder. The PG foam is simple to shape and
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lightweight. Another benefit of the PG foam neck shim is that it can be embedded within
an RF coil, allowing for localized B0 shimming at the same time. Furthermore, the SNR
does not decrease using PG foams. The experimental results of the B0 field maps are in
agreement with the simulations, thus implying a reliable performance of the PG foam neck
shim.
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Chapter 4

Optimum PG Foam Design: a
Numerical Study

In the previous chapter we investigate the effect of the PG composite foam for B0 passive
shimming from a mostly experimental viewpoint. We would like to go one step further
and find the optimum design of a PG foam that homogenizes the B0 field most efficiently.
To do so, we investigate the B0 passive shimming problem from a more mathematical and
computational viewpoint. In this chapter we preset a numerical algorithm which generates
the optimum design for a shim that homogenizes the B0 field in a desired ROI. First, we
present the mathematical modeling used for the design of the shim. Then, we present the
results of a neck shim and we discuss the benefits and drawbacks of the algorithm.

4.1 Mathematical Modeling

This section presents the basic ideas of the mathematical modeling which could be used to
optimally design a PG foam. The goal is to obtain the optimum design for a shim which
is able to homogenize the B0 main static magnetic field in specific regions of the human
body. The design must be efficient and applicable, i.e. not only it must homogenize the
magnetic field in the ROI, but it also must be experimentally implementable. We begin
by explaining the forward problem (also called direct problem) for which we present a
different method from the general approach that uses Fast Fourier Transforms (FFT).
Next, we explain the inverse problem framework. Then, we explain the gradient descent
algorithm, which provides us with the least square solution (LSQ) to the inverse problem.
This solution takes all type of values as it is defined without any constraint. In order to
find a solution under some imposed constraints, we integrate a level set-based topology
optimization approach into the gradient descent algorithm. We outline the concept of
reinizialization as it is an essential part for the performance of the algorithm. We finish
this chapter proposing a way to reduce the computation time of the algorithm.
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4.1.1 B0 modeling: the forward problem

The goal is to design a shim that creates a magnetic field which compensates for the
B0 field inhomogeneities generated by the susceptibility distribution of the human body.
We will approach this problem as a domain decomposition scheme [39]. The final total
field can be decomposed into a primary field ∆B(~r)body, produced by the human body
magnetic susceptibility distribution (without foam shim) and a secondary field ∆B(~r)f ,
produced by the magnetic susceptibility distribution of the PG foam shim. A schematic
illustration of the domain decomposition method is given in the following figure.

Fig. 4.1 Illustration of the domain decomposition from the sagittal view. The total susceptibility

(right) is the sum of the susceptibility generated by the human body (left) and the PG foam shim (center).

As mention in section 2.2, a susceptibility distribution generates non-uniformities in the
B0 field. In the spatial domain, the B0 field perturbation, given in tesla units, induced by
the magnetic susceptibility of a foam (χf) is [22]:

∆Bf(~r) = B0

∫
r′∈Df

G(~r − ~r′) · χf(~r′)d~r′ (4.1)

In this expression ~r = (x, y, z) denotes the position vector: ~r ∈ DROI. DROI is the spatial
domain that encompasses the ROI. Df , however, is the spatial domain that encompasses
the foam and r′ ∈ Df . Note that DROI and Df need not to be coincident and can be
at a distance from each other [40]. Furthermore, the Green’s function of the system is
denoted by G(~r − ~r′) and it relates the magnetic susceptibility distribution of the foam
to the generated magnetic field perturbation in the ROI [20, 21]. The Green’s function is
independent of the foam susceptibility value or geometry; it represents the sensitivity of
the B0 field to any foam. The background B0 field is outside the integral because it is not
position dependent.

The equation 4.1 represents a mathematical operation known as convolution [41], which
can also be denoted with the symbol ⊗. Moreover, by dividing the field inhomogeneities
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with the B0 main field, we represent ∆Bf(~r) in parts per million (ppm). Hence, the
following expression is equivalent to equation 4.1 but in ppm units:

∆Bf(~r) = G(~r)⊗ χf(~r) (4.2)

Throughout the thesis the field inhomogeneities are expressed in ppm unless the contrary
is clearly stated.
A very popular approach to solve this problem is by using Fast Fourier Transforms. By
applying the convolution theorem [41] to equation 4.2, efficient FFT-s may be used to
improve computation speed [20,21]. This leads to the equations 2.14 and 2.15 in chapter 2.
This method has been extensively evaluated [20,21,40,42,43]. In spite of being a valuable
tool in the prediction of the B0 field perturbations generated by magnetic susceptibility
distributions, the FFT method requires that the quantities being numerically convolved
have the same matrix size and consistent coordinate axes. Nevertheless, we want to reduce
the problem region and perform a volume of interest based approach [22]. This method
would imply lower memory requirements [22]. The method we propose does not need
the use of Fourier Transforms. The magnetic field inhomogeneities are expressed in the
following matrix manner:∆Bf(r1)

...
∆Bf(rn)


n×1

=

G(r1 − r′1) · · · G(r1 − r′m)
...

. . .
...

G(rn − r′1) · · · G(rn − r′m)


n×m

χf(r
′
1)

...
χf(r

′
m)


m×1

(4.3)

The size of the G matrix (n × m) is the number of points in the ROI (n) times the number
of points in the foam design domain (m). In our method, the value of G at each point
in the design domain is different. This spatial Green’s function is subject to the design
domain, Df and the spatial domain of the ROI, DROI.

4.1.2 Inverse Problem Framework

Associated with any forward problem there is an inverse problem. In the case of B0

shimming, the forward problem seeks to determine the magnetic field inhomogeneities
generated by an object with a certain susceptibility distribution, i.e., it calculates some
physical response. The inverse problem, however, consists in determining the properties
of the object given the (desired) generated magnetic field. There is a variety of inverse
problems and optimal design problems, where the unknown variable is a geometric object,
whose topology is unknown. The direct problem is usually well-posed, whereas the inverse
problem is usually ill-posed. In order to briefly explain the ill-posedness concept, we
use a linear operator equation Ax = b, as an example. A is a bounded linear operator
A : H → K, which maps from a Hilbert space H to a Hilbert space K. The forward
problem is defined as finding b assuming x is known, while the inverse problem is defined
as finding x from the knowledge of b. The problem is well-posed if there exists only an
exact solution and it depends continuously on the data [46]. One consequence of these
statements is that A−1 must exist. Our inverse problem, as most of the inverse problems
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encountered in physics, do not satisfy these requirements. Hence, we are dealing with
an ill-posed problem. As we cannot directly invert the matrix A, we use methods from
optimization to solve the inverse problem.
In our inverse problem, the known parameters are: the magnetic field perturbations that
we want to correct (∆Bf(~r)), the applied main static magnetic field (B0) and the Green’s
function of the system (G(~r, ~r′)). The unknown parameter that we want to solve for is the
magnetic susceptibility distribution of the foam (χf(~r′)). In summary, for a given field, a
solution is sought in terms of the foam.
We define the cost function as a functional that measures the difference between the desired
∆B(~r) and the actual one. The method is formulated by minimizing the cost function,
denoted by F . Defining P, G, χsf , ∆Btarget and F as matrices, the cost function is given
by:

F = ‖Gχf −∆Btarget‖2DROI
(4.4)

∆Btarget(~r) is the ideal magnetic field that we want the foam to generate in order to
fully compensate for the inhomogeneities generated by the body, hence: ∆Btarget(~r) =
−∆Bbody(~r) + Const. The constant is just an offset, which can be determined during the
scanner. We want the final total magnetic field to be homogeneous, i.e., to be either zero
or a constant.

We need to find a solution for χf(~r′) that minimizes F and that can be implemented using
a PG foam. In the following sections, we explain the gradient descent algorithm and level
set-based topology optimization. First, the gradient descent algorithm provide us with a
solution for χf(~r′) that minimizes the cost function. Next, the level set method is used
to optimize the material layout within a given design domain, boundary conditions and
constraints. In this way, we can impose the system to give a solution for the magnetic
susceptibility distribution of the foam, which we can also practically implement.

4.1.3 Gradient Descent Algorithm

The gradient descent is an algorithm that finds the minimum of a function by using
iterative optimization. We consider our function to be defined by a set of parameters.
The gradient descent starts with an initial set of parameter values and iteratively moves
toward a set of parameter values that minimize the function. To attain a minimizer, steps
should be taken in the negative direction of the gradient of the function [47]. We assume
our initial point to be χ(k). To find a point χ(k+1) (which is closer to the minimizer than
the initial point), we start at χ(k) and move by an amount −βk∇F. βk > 0 is the time-step
in the kth iteration and ∇F is the gradient of the cost function. This is expressed by the
following iterative algorithm [47]:

χ(k+1) = χ(k) − βk∇F(χ), (4.5)

where the βk represents the magnitude of the update in step k.
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The gradient descent algorithm provides us with the least square solution to the inverse
problem. It should be noted that there are other methods to obtain a least square solu-
tion. One of the common methods to find a solution to an inverse problem is by using the
Moore-Penrose pseudoinverse matrix. Nevertheless, we use the gradient descent algorithm
because it allows us to incorporate constraints. The values of the least square solution
may be arbitrary, i.e., we do not have any control over the values that the solution takes.
However, we are looking for a solution which is not only effective, but also experimentally
applicable. Therefore, we implement the gradient descent algorithm together with a nu-
merical technique called level set method, so that we can iteratively update the geometry
of the foam shim under specific constraints as to what values can be attained.

4.1.4 Level Set Methodology Integrated into a Gradient Descent Algo-
rithm

The level set method was first described by Osher and Sethian in 1998 [44] as a versatile
method for representing an interface in two or three dimensions. In the level set method the
shape of an object is represented implicitly by one higher-dimensional level set function.
The outer limit of the shape coincides with the zero level of this function, and the interior
of the shape is defined by the positive values of the level set function. Figure 4.2 illustrates
this relationship. Moreover, with the level set method topological discontinuities are well
defined and easily performed which is of great advantage [45].
The inverse problem that we are dealing with can be stated in the following way [48]:

Find Ω in the equation

min F(χf),

where

χf(x) =

{
χint for x ∈ Ω

χext for x /∈ Ω

The domain Ω is the desired unknown, Ω ⊂ IRn, i.e., in our case the desired geometry of
the foam. χint is the magnetic susceptibility value of the PG foam and χext indicates the
no material region: χext = 0. Note that x = (x1, ...., xn) ∈ IRn.

Let ∂Ω be the boundary of Ω (fig. 4.2(b)). The level set method uses an auxiliary
function φ, called the level set function, to represent the interface ∂Ω as the set where
φ(x) = 0. Here x = (x1, ...., xn) ∈ IRn. Hence, ∂Ω is represented as the the zero level set
of φ by:

∂Ω(t) = {x|φ(x) = 0} (4.6)

Accordingly, the level set method implicitly manipulates the function ∂Ω through the
level set function φ. The latter one is positive inside Ω, negative outside Ω and zero inside
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∂Ω. Under this description, we can state the inverse problem in a more convenient way [48]:

Find φ in

χf(x) =

{
χtarget {x : φ(x) > 0}
0 {x : φ(x) ≤ 0}

such that

min F(χf)

The expression for the χf is the equivalent to the Heaviside function of φ:

χ = χtargetH(φ), (4.7)

where the Heaviside function H(φ) is defined by:

H(φ) =

{
1 if φ > 0

0 if φ ≤ 0

Representing the unknown foam geometry Ω through the level set function φ provide us
with a great advantage: there is no need to make any assumption about the nature and
topology of Ω, such as whether Ω is composed by connected subregions or it is homogeneous
[48].

Fig. 4.2 Figure taken from reference [49]. Level set representation of a 2D structure. (a) The level set

method. (b) Design domain.

Our aim is to combine the level-set based topology optimization approach and the gradient
descent algorithm to find a solution that complies with our constraints. Following equation
4.5, the level set function iteratively updates as:

φ(k+1) = φ(k) − β(k)dF

dφ
(4.8)
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In this way, the level set function reduces, and eventually minimizes, the cost functional.

The gradient of F , dF
dφ , must be chosen such that the cost functional F decreases in each

iteration. By using the chain rule, we formally differentiate the cost functional F (χ(φ))
with respect to φ [50].

dF

dφ
=
∂F

∂χ

∂χ

∂φ
=
∂(‖Gχ−B‖2)

∂χ

∂(χtargetH(φ))

∂φ
(4.9)

In order to solve the first partial derivative ∂F
∂χ we make use of the Fréchet Derivative,

which is implicitly defined through the following relation [51,52]:

lim
‖h‖→0

F (χ+ h)− F (χ)− Re〈∂f
∂χ

, h〉 = 0 (4.10)

Next, by substituting h = tφ and taking the limit t→ 0 instead, we find:

Re〈∂F
∂χ

, φ〉 = lim
‖t‖→0

F (χ+ tφ)− F (χ)

t

= lim
‖t‖→0

‖G(χ+ tφ)−B‖2 − ‖Gχ−B‖2

t

= lim
‖t‖→0

‖Gχ+Gtφ−B‖2 − ‖Gχ−B‖2

t

= ‖Gχ−B‖2 + 〈Gχ−B,Gφ〉+ 〈Gφ,Gχ−B〉 − ‖Gχ−B‖2

= 2 Re〈Gχ−B,Gφ〉
= 2 Re〈G∗(Gχ−B), φ〉,

(4.11)

where G∗ is the complex conjugate transpose of the Green’s function matrix G.

From this relation we find the gradient of the cost function to be:

∂F

∂χ
= G∗(Gχ−B) (4.12)

Using the expression for ∂F
∂χ we have just obtained and taking into account that the

derivative of a Heaviside function is a Dirac delta function, we get:

dF

dφ
= G∗(Gχ−B)χtargetδ(φ), (4.13)

where δ(φ) ≡ dH(φ)
dφ .
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Therefore, the update rule is given by:

φ(k+1) = φ(k) + βk(G∗(Gχ−B)χtargetδ(φ)) (4.14)

We still need to find out the stepsize βk, which represents the magnitude of the update in
step k. The optimal stepsize is found by minimizing the cost function in the kth iteration
for a variation in βk: min

βk
F . In other words, βk satisfies the following equation [52]:

∂F

∂βk
= 0 (4.15)

The mathematical derivation of the equation above is outside the scope of this thesis. In
our numerical algorithm we use the embedded Matlab function fminsearch (see Appendix
A). The reader seeking an in-depth understanding of the level set methods may refer to
more advanced books such as [53,54].

Smooth approximations to H, δ and S functions

For level sets that iteratively update, it is necessary to replace the Heaviside functionH and
the delta function δ by some smooth equivalent functions. In numerical implementations,
it is beneficial to use epsilon-approximations to these equations in order to avoid outcomes
as zero or infinity. In our simulations, the following smooth functions are used to replace
H and δ [57]:

Hε(φ) =
1

π
arctan

φ

ε
+

1

2
(4.16)

δε(φ) =
ε

π(φ2 + ε2)
, (4.17)

where ε is sufficiently small.

Reinizialization

While equation 4.14 implicitly updates the object boundary δΩ by a level set function φ,
this can become irregular after some number of iterations [55]. The level set function can
become really flat and this can lead to high numerical errors [56]. In other words, if the
gradient of φ is very small around the interface, the Heaviside function is not well defined.
This implies that χf(φ) will take not only the values of zero and χtarget, but also the values
in between. A simple example is illustrated in figure 4.3.
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Fig. 4.3 In the top figure, two level set functions are plotted. The black line represents a simple example

of a non-irregular level set function φ(x). Its slope is constant. The blue line represents an irregular level

set function: in the point where φ = 0 is it very flat. In the bottom figure, the χ(φ) = H(φ) is plotted.

The χblack, which represents the Heaviside function of φblack is well defined, i.e., χ(φ) can only take two

values. However, the χblue, which represents the Heaviside function of φblue, is not well defined, i.e., χ(φ)

can take more than two values.

To maintain a regular shape for the level set function and to assure reliable results,
reinizializing the level set function becomes a crucial step in the level set methodology.
We need to assure that the absolute value of the gradient of the level set function remains
unity [55]:

|∇φ(x)| = 1 (4.18)

If the gradient of the level set function has a value of unity around the interface, this
would imply that the level set function does not become very flat or steep and χf will
take only the assigned values zero or χtarget, which is what we are aiming for. We can
use an iterative process to change φ until its gradient gives unity. This can be formulated
mathematically as follows [55]:

φj+1 = φj + S(φ0)(|∇φ| − 1), (4.19)

where φ0 is the starting level set function [55] and S is the sign function.
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For the numerical implementation, it is necessary to smooth the sign function as [55]:

S(φ0) =
φ0√
φ2

0 + ε2
, (4.20)

where ε is sufficiently small.

4.1.5 Subdomains to increase the speed of the algorithm

The level set method may be a very powerful tool to solve the optimization problem. How-
ever, the minimization problem can be composed by a very large system of equations, i.e.
the parameters of eq. 4.4 may involve very big matrices. The computation time to solve
these system of equations using the previously explained level set method can become
prohibitive. In this section we present a method to make the algorithm faster and simpler
by using subdomains. In the numerical results presented in this thesis (section 4.2) we
did not use this subdomain approach as the computation time for our ROI was not exces-
sively large. We believe that this method could potentially be implemented in topological
optimization problems, leading to a fast and efficient performance of the algorithm. We
consider it worthwhile to briefly explain the idea behind the method in this section, as it
may be beneficial for future research.

The subdomain approach is based on replacing the total magnetic susceptibility of the
foam χf(~r′) with a reduced magnetic susceptibility χsf(r

′) and a matrix P . The following
expression is the matrix representation of the subdomain approach.

P (r′1, r
′
1) · · · P (r′s, r

′
1)

...
. . .

...
...

...
P (r′1, r

′
m) · · · P (r′s, r

′
m)


m×s

χsf(r
′
1)

...
χsf(r

′
s)


s×1

=


χf(r

′
1)

...

...
χf(r

′
m)


m×1

(4.21)

P is a matrix with only values zero and one. The size of the P matrix (m × s) is the
number of points in the foam design domain (m) times the number of subdomains (s). In
the first column of P the elements belonging to the first subdomain take the value one
and all others zero, in the second column the elements belonging to the second subdomain
take the value one and all the others zero and so forth. χsf is the reduced magnetic sus-
ceptibility vector of the foam and its length is the number of subdomains (s). Hence, by
multiplying this matrix with the reduced χsf we recover the total χf of the system.

Next, we use this equality for the minimization problem of the cost function F (eq.
4.4). Defining P, G, χsf , ∆Btarget and F as matrices, we write:

min F
n×1

= min ‖ G
n×m
· P
m×s
· χsf
s×1
−∆Btarget

n×1

‖2DROI
(4.22)

42



In this equation the symbol · represents the matrix multiplication. G ·P can be regarded
as the reduced Green’s function of the system.

It should be emphasized that after this replacement, the unknown parameter of the inverse
problem is not the total magnetic susceptibility of the foam anymore, but the reduced one
(χsf). As a consequence, the system of equations that the level set has to solve reduces
considerably. The speed of the algorithm increases depending on the chosen amount
of subdomains, i.e. the more subdomains, the smaller the size of χsf and the faster the
inverse problem is solved. Using the subdomain approach we loose resolution and accuracy
in our solution. Nevertheless, this lost in precision does not have a negative effect in the
final outcome, as we do not need high resolution for our practical χf(~r′). Therefore, the
subdomain approach reduces the complexity of the problem and it is an advantage both
for the computation time and applicability of the solution.

4.2 Results and Discussion

In this chapter, we present the results of the numerical simulations to obtain an optimum
design of one PG foam. We present results using both a gradient descent algorithm (with-
out constraints) and an optimized algorithm that consists of level sets integrated into a
gradient descent iterative minimization. The Matlab code of the latter algorithms is in-
cluded in the Appendix A. Our aim is to find a optimum design of a shim that compensates
the B0 field inhomogeneities in the neck generated by the different magnetic susceptibilities
of the body. For our simulations the following parameters should be considered:

• Design domain. A design for the PG foam shim is sought for the design domain
Df . In our case, we choose a design domain that covers the human body from the
eyes to the shoulders, as shown in figure 4.1 (center).

• ROI. DROI is the spatial domain in which we are trying to homogenize B0. We
chose the ROI to be the neck, as there are strong B0 field perturbations. The ROI
chosen for our simulations is shown in the following figure.
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Fig. 4.4 Simulation of the B0 field inhomogeneities generated in the upper part of the human

body in the sagittal view (a) and coronal view (b). The part inside the black square is the region

that we want to homogenize, i.e., the ROI.

• Green’s function. The spatial Green’s function relates the geometry and values of
the foam to the magnetic field correction in the ROI.

• B0 target. It must be a constant value. In this case, we chose the final value for
the B0 in the ROI to be zero. This means that we want to find a shim that fully
compensates for the inhomogeneities in the neck and provides a final B0 = 0.

• Number of iterations. The maximum number of iterations to find a solution to
the inverse problem.

• Initial χf . Only used in the gradient descent algorithm. We chose the initial value
of the function χf to have all elements zero.

• Initial φ. Only used in the level set algorithm. We chose the initial value of the
level set function φ to have all elements zero. The reason to choose a zero matrix is
that the derivative of the Heaviside function is maximal when the level set function
is zero. Therefore, this will introduce updates throughout the design domain.

• χtarget. Only used in the level set algorithm. It is the susceptibility value that
we want the shim to have. In our simulations we use χtarget = −10 ppm. The
reason to choose -10 ppm of magnetic susceptibility for our shim is that we have
already experimentally construct a PG foam with such magnetic susceptibility value,
experimentally demonstrating that it improves the uniformity of the B0 field. Hence,
-10 ppm is a realistic and experimentally practical value.

• ε. Only used in the level set algorithm. It is used for the smooth approximations
of the Heaviside function and the Dirac delta function (equation 4.16 and 4.17). In
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our simulations we iteratively decrease the value of epsilon. In this way, we allow
the system to make more updates at the beginning and the constraints get gradually
imposed. Typically, we give an initial ε = 0.9 and it decreases five to six orders of
magnitude.

• Reinizialization. For the reinizialization of the level set function we use the Matlab
toolbox by Baris Sumengen [59]. Parameters used are: alpha=0.7, iterations= 10
and accuracy= ‘ENO3’.

Gradient descent algorithm

First, we present the results from the simulations using the gradient descent algorithm.
The initial value for the function χf is a zero vector. In every iteration the cost function
decreases as the algorithm approaches a better solution to the inverse problem (fig. 4.5a).
Using a gradient descent algorithm the final susceptibility can take all values as we are
not imposing any constraint (fig. 4.5b).

Fig. 4.5 (a) Cost function versus the number of iterations. The cost function decreases iteratively. Maxi-

mum number of iterations: 500. (b) Histogram of the values for the magnetic susceptibility of the foam χf .

In figure 4.6, B0 field perturbations produced by the human body (a) and the magnetic
field produced by the LSQ solution (b) are shown. The total final magnetic field (c) is the
sum of the previous two, and it shows a corrected B0 field in the neck. Thus, it demon-
strates that the gradient descent algorithm efficiently homogenizes the ROI.
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Fig. 4.6 (a) Magnetic field inhomogeneities produced by the human body. (b) Magnetic field produced

by the LSQ solution for the neck shim, which should be able to compensate the inhomogeneities in the

ROI. (c) Final magnetic field, which is the sum of the B0 inhomogeneities generated by the human body

and magnetic field generated by the LSQ solution for the neck shim.

The results show that LSQ solution for the design of the PG foam is very effective, i.e., the
B0 field in the ROI becomes very homogeneous. However, the practical implementation
of this design is impossible: the magnetic susceptibility takes values from -100 ppm to 50
ppm (fig. 4.5b). This design is not experimentally applicable. As a consequence, we need
to give some constraints to the system. This is achievable by using the level sets, which
results will be discussed next.

Level set optimization integrated into a gradient descent algorithm

By implementing the level set method into the above algorithm, the results we obtain are
subject to our desired constraints, i.e., the final susceptibility distribution can only take
two values, either zero or χtarget. As a consequence, the final solution for the magnetic
susceptibility of the PG foam becomes experimentally implementable. The design domain
covers the entire region from the eyes to the shoulders (fig. 4.7a). The level set algorithm
reconstructs the geometry of the neck shim (fig. 4.7b) such that it fulfills the imposed
requirements. This is demonstrated in figure 4.8b, where the histogram of the values for
the magnetic susceptibility of the foam is plotted. In contrast with the LSQ case, the final
values for χf can only be zero or χtarget = −10 ppm.
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Fig. 4.7 (a) Design domain. (b) Reconstructed geometry by the level set algorithm.

The reconstructed geometry for the neck shim fully covers the entire region of the neck,
while partially covering the shoulders (figure 4.7b). We believe that the reconstructed
shim has a reasonable shape. In the remaining of this paragraph, we give an intuitive and
qualitative explanation for this statement. We may view the shim as a three dimensional
grid composed by individual elements, each one being a magnetic susceptibility point in
space. Hence, each element of the grid generates a magnetic field and the total field gener-
ated by the shim will be the sum of all of them. Each source susceptibility region generates
a magnetic field with a shape of the well-known dipole pattern, with positive and negative
lobes [22], as it is shown in figure 2.4. A point source with a negative magnetic suscepti-
bility generates main lobes that are negative and side lobes that are positive. When all
these elements are placed around the neck, the positive lobes are the ones contributing
the most to the generated magnetic field in the neck. Hence, the generated field correc-
tion is positive and it compensates for the B0 field perturbations in the neck (figure 4.9).
Therefore, we expect the design to be filled with material around the neck, as we obtain
in the numerical simulation. The other regions of the design domain have a smaller effect
in the homogenization of the B0 field of the ROI and that is why they are partially filled
with material or they do not have material at all.
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Fig. 4.8 (a) Cost function versus the number of iterations. The number of iterations is 100. (b) His-

togram of the values of final magnetic susceptibility within the design domain: either zero or χtarget = −10

ppm.

In the level set method, the cost function decreases for few iterations and then, it increases
(4.8a). The increase in the cost function implies that the solution is not improving in every
iteration, which may seem contradicting the good performance of the algorithm. However,
there is an explanation to the behavior of the cost function: in every iteration we are reduc-
ing the epsilon, i.e., imposing gradually the constraints and forcing the algorithm to chose
between fewer values in every iteration. This gradual enforcing of the constraints results
in a decrease in F at the beginning (when the constraints are still quite loose) and in an
increase in F once the constraints start playing a bigger role, which implies a less-effective
solution. This clearly shows the trade off between effectiveness and practicality: the more
constraints are imposed to the solution in order to be experimentally implementable, the
more ineffective the solution becomes compared with the ideal case. So, although the cost
function increases, the solution is optimized, but under the given constraints.

Figure 4.9 shows the B0 field inhomogeneities before applying any correction (a), the
magnetic field generated by the neck shim from the level set solution (b) and the final
total magnetic field. The latter is the sum of the previous two. The solution of the
level set algorithm homogenizes the B0 field, but the perturbations are less corrected than
when we use the LSQ solution, as expected. We are imposing constraints to the solution
that highly restrict the values it can take. Hence, the final value of the cost function
may be much higher than the ’ideal’ least square solution. Nevertheless, the main field
perturbations are sufficiently compensated.

48



Fig. 4.9 (a) Magnetic field inhomogeneities produced by the human body. (b) Magnetic field produced

by the level set solution for the neck shim, which should be able to compensate the inhomogeneities in the

ROI. (c) Final magnetic field, which is the sum of the B0 inhomogeneities generated by the human body

and magnetic field generated by the level set solution for the neck shim.

In the following figure 4.10, we compare the final B0 field correction along a line from the
shoulders to the brain (as in figure 3.8), using the neck shim generated by the gradient
descent algorithm and the one generated by the level set method. The inhomogeneities of
the human body (blue line) are effectively corrected with the neck shim generated by the
unconstraint gradient descent algorithm (yellow line). The level set method corrects the
field inhomogeneities in a less effective way compared to the gradient descent minimization
procedure. As mentioned before, this is expectable due to the highly restrictive constraints
that we impose to the final solution.
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Fig. 4.10 B0 field inhomogeneities along the z-direction, from the shoulders to the brain. The blue line

represents the B0 field disturbances of the human body without any correction. The yellow line is the final

B0 field after applying the neck shim generated by the gradient descent (GD) algorithm. The red line is

the final B0 field after applying the neck shim generated by the level set (LS) method.

The level set optimization integrated into the gradient descent algorithm allows us to have
a solution for χf with only two values, thus forcing the algorithm to give a solution which
is more practical. In our simulations, we find that the final values of χf lie within the
given constraints. This characteristic makes the method a potentially useful tool for the
design of shims to compensate the inhomogeneities of the B0 field in the human body.
However, our algorithm presents a main drawback: the final solution is dependent on the
initial value of level set function. This happens to be a well-known problem that has
been previously encountered in research on structural shape and topology optimization
using level set methods [60]. The levels set method is a popular computational tool that
optimizes structures defined by an implicit function, i.e., the level set function. In our
algorithm, we use the direct approach to the level set based optimization, which is based
on updating the level set function in every iteration, such that it advances towards an
optimum. Even if the level set method is considered to be a powerful and flexible tool,
the imposed constraints restrict the creation of new holes during the optimization. This
can be a significant limitation for the robustness of the algorithm. Moreover, the given
constraints harshly restrict the updates in the level set function and this can lead to
the cost function getting stuck in a local minimum. This problem is stated in the book
’Topology Optimization’ by Bendsøe and Sigmund: “In implementations, it is often seen
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that a too severe penalization of the intermediate density can lead to designs which are
local minima and which are very sensitive to choice of the initial design for the iterative
optimization procedure (one jumps too fast to a 0-1 design)” [61]. Various methods have
been proposed to improve robustness in the level set topology optimization [60, 62, 63].
Due to time constraints, we could not further improve the algorithm and we leave this
to future research, so that the best performance of the design optimization algorithm is
attained.
All in all, we believe that the level set optimization integrated into a gradient descent
algorithm can be a great approach to find the optimum design of shims to compensate the
perturbations in the B0 field in the human body. This algorithm could eventually provide
us with a tool to find optimum designs of experimentally implementable PG foam shims
that would be able to most efficiently homogenize the B0 field in any ROI.
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Chapter 5

Summary and Conclusion

In this thesis we have investigated the B0 passive shimming approach of covering the skin
with a magnetic susceptibility matching material from both an experimental and a math-
ematical viewpoint.
In the experimental study, we have demonstrated that a PG foam improves the uniformity
of the B0 field in a phantom and in vivo at 3T, thus confirming results from literature.
We have derived the formula for the magnetic susceptibility of the PG foam, which is a
function dependent on the volume fraction of both the PG microparticles and the bare
foam. By fitting the experimental data to the formula, we have obtain the experimental
values for the susceptibility of the PG powder and the susceptibility of the bare foam.
Our values are in good agreement with theoretical values. Moreover, we have built a PG
foam neck shim and we have compared the in vivo B0 field maps with simulations: the
experimental field corresponds well to the simulated one.
In the numerical study, we have presented an algorithm that aims to provide a solution
to the topological optimization problem of finding an optimum design of a neck shim that
efficiently homogenizes the B0 field. The algorithm integrates the level set topology opti-
mization method into a gradient descent minimization procedure. This algorithm imposes
constraints to the design variable, thus providing a design which may be experimentally
implementable as a PG foam for B0 passive shimming. We show that the algorithm can
be applied in the large-field-view that includes the neck and shoulders. The algorithm
may further be improved by the implementation of hole insertion methods and other reg-
ularization techniques.
We believe that the level set method integrated into a gradient descent algorithm is a
potential compelling approach to optimally design PG foams for passive B0 shimming
purposes. PG foams are simple to shape and lightweight, allowing for more complex de-
signs than the magnetic susceptibility matching fluids. Therefore, we believe that the
combination of a clever algorithm, which is able to give optimum designs, and the prop-
erties of PG foams, simple to shape and adjustable, could result in a great advance in the
field of passive B0 shimming.
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Appendix A

The following function uses a level set method approach integrated into a gradient descent
algorithm. The inputs of the function are the initial value of the level set function, χtarget,
the Green’s function, the desired B0 field that the neck shim should create to obtain a
final homogeneous B0 field, infinitesimal elements in x and y direction for the integrals,
epsilon, number of iterations, design domain and ROI domain. The last two functions are
the smooth function for the Dirac-delta and the Heaviside function. The function gives
two outputs: the final distribution of the magnetic susceptibility of the neck shim and the
final value for the level set function.

1 f unc t i on [ chi , phi ] = s o l v e l e v e l s e t R e i n i z i a l i z a t i o n 3 D ( phi ,
t a r g e t ch i , green , B0 f i e ld , dx1 , dx2 , ep s i l on , nmax , maskshim , maskROI
)

2 t=ze ro s ( s i z e (nmax) ) ;
3 e p s i=e p s i l o n . ˆ ( 1 : nmax) ;
4 A=green
5 B=B 0 f i e l d
6 FDin = ze ro s (1 ,nmax) ;
7

8 dx =0.005;
9 dy =0.005;

10 dz =0.005;
11

12 f o r nin = 1 :nmax
13 e p s i l o n= e p s i ( nin ) ;
14

15 %% COMPUTE GRADIENT
16 %t h i s i s g rad i en t o f the co s t func t i on
17 g r a d i e n t p h i = −t a r g e t c h i ∗ ( (A’ ) ∗(A∗( t a r g e t c h i ∗

approx heav i s ide ( phi , e p s i l o n ) ) − B) ) .∗ approx d i rac ( phi ,
e p s i l o n ) ;

18

19

20 %% FIND OPTIMAL STEPSIZE
21
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22 beta = fminsearch (@( beta ) o b j e c t i n n e r p r o d u c t ( t a r g e t c h i ∗
A∗ approx heav i s ide ( phi + beta ∗ grad i en t ph i , e p s i l o n ) −

B, t a r g e t c h i ∗A∗ approx heav i s ide ( phi + beta ∗
grad i en t ph i , e p s i l o n ) − B, dx1 , dx2 ) , 0 . 1 ) ;

23

24 %% REINIZIALIZE
25 temp=ze ro s ( s i z e ( maskshim ) ) ; temp ( maskshim )= phi ;
26 temp1= maskshim==0;
27 temp2=temp1∗(−10ˆ(9) ) ;
28 temp3=temp+temp2 ;
29

30 temp4=re in i t SD 3D ( temp3 , dx , dy , dz , 0 . 5 , ’ENO3 ’ , 10) ; %
method f o r r e i n i z i a l i z a t i o n : re in i t SD 3D ( Matlab Toolbox

by B. Sumengen )
31

32 phi=temp4 ( maskshim ) ;
33

34 % UPDATE LEVEL−SET FUNCTION
35 phi = phi + r e a l ( beta ∗ g r a d i e n t p h i ) ;
36

37 ch i = t a r g e t c h i ∗ approx heav i s ide ( phi , e p s i l o n ) ;
38 r = A∗ ch i − B; % ob j e c t e r r o r
39

40 FDin( nin ) = o b j e c t i n n e r p r o d u c t ( r , r , dx1 , dx2 ) ;
41

42 end
43

44 f unc t i on y = approx heav i s ide (x , e p s i l o n )
45

46 i f e p s i l o n==0
47 y = h e a v i s i d e ( x ) ;
48 e l s e
49 y = 0 .5 + atan ( x/ e p s i l o n ) / p i ;
50 end
51

52 f unc t i on y = approx d i rac (x , e p s i l o n )
53

54 i f e p s i l o n==0
55 e p s i l o n = eps ;
56 end
57 y = (1/ p i ) ∗ e p s i l o n . / ( e p s i l o n ˆ2 + x . ˆ 2 ) ;
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