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Abstract 

As part of my Master’s Degree in Psychology and my internship at the Netherlands Forensic Institute 
I have structurally studied the performance of several score-based likelihood ratio methods. The 
method is a promising technique to establish the evidential value of forensic items, yet there is a 
need for research into the implementation of this method. A score function is part of the method 
and there are many to choose from. This thesis has attempted to expose a variability in performance 
between different score methods and to determine which scores are most appropriate for different 
forensic data. Several scores have been tested for a forensic dataset. In addition, this data was 
transformed four times for the purpose of testing the same scores under different conditions. These 
new four datasets separately included extreme values, negative values, a combination of extreme 
and negative values and binary values. Performance was measured by proportions of misleading 
evidence, the Cost Likelihood Ratio metric and the distributions of likelihood ratios. Results show 
that there is indeed variability in performance between scores. The Canberra and Clark distances 
appeared to perform best at establishing evidential value for continuous data and the Manhattan 
distance for binary data. Additionally, the Canberra and Clark distances also performed well for data 
with extreme values. Contrarily, none of the scores selected for this thesis managed to perform well 
on the two datasets with negative values. The results show that it is advisable to properly select a 
score for the likelihood ratio method. 
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1. Introduction 

1.1 Problem Statement 

Forensic science is firmly intertwined with statistics, chiefly concerning the strength of evidence. 

Statistics have long been used to define the strength of a particular evidence and its application is 

occasionally present in criminal law. (Finkelstein & Levin, 1990; Aitken & Stoney, 1991; Gastwirth, 

2000). Due to the diversity of forensic expertise (e.g. biology, psychology, chemistry) statistics are 

applied to a diverse collection of data. As a result, the forensic science had not known a uniform 

definition of the strength of evidence and its calculation. (Sjerps, 2004). This has changed as of the 

slow Bayesian revolution (Aitken, 1995; Robertson & Vignaux, 1995) which set on about 20 years ago 

and has developed after (Aitken & Taroni, 2004). The introduction of the likelihood ratio (ܴܮ) to the 

forensic field opened the door to a possibly uniform statistic. Forensic science often occupies itself 

with comparative research, i.e. two objects (e.g. glass pieces, DNA or fibres) are compared to each 

other in such a way that an expert can estimate how strong the evidence is. The estimation of the 

strength of evidence is traditionally based on the expert’s evaluation and he or she concludes with a 

definite estimate of the origin. Contrarily, the Likelihood Ratio, as the name already discloses, is not 

a definite estimate of the origin, rather a probability. The probability is based on hypothetical 

statements on the origin of the evidence. 

The ܴܮ being a probability is supposed to overcome the problem of case-specific conclusions. Many 

scientists believe that forensics should not be involved with conclusions on judicial ground. This 

conveys that when forensic scientists are to examine evidence, their findings should not explicitly 

point out any definite charges towards anyone or anything that is being accused. Instead, forensics 

should deal with evidence-specific hypotheses and they should report the likelihoods without 

drawing any conclusions who or what is responsible for these events. This leaves a jury, a judge or 

whatever legal body that is entitled to make juridical decisions to interpret the ܴܮ and other case-

specific information, in order to form a conclusion.   

Another problem that the ܴܮ addresses is that of the lack of objectification in forensic science. This 

is a concern that has been expressed by Evett (1998) and the US National Research Council (2009). 

The absence of a uniform and quantitative assessment of evidential value meant there were no 

possibilities to measure validity and reliability of the results that were provided by the forensic field. 

And there is little need to explain the importance of the measurements of validity and reliability in a 

scientific field, particularly in such which is concerned with matters as criminal law. The ܴܮ enables 

objectification of the methods that aim to calculate the involved probabilities. Besides, repetition of 
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the method enables validity and reliability even more. The more the method is applied, the more 

and the better the method can be reviewed. Fortunately, the ratio has been applied in many articles 

already, e.g. Davis et al. (2011) and Neumann (2007). Consider the list of references for more articles 

on the ܴܮ, which have been or will be discussed in this thesis. The ܴܮ can be both verbal and 

numerical. Some institutes, such as the Netherlands Forensic Institute and the Swedish National 

Forensic Centre, already report their findings through verbal ܴܮ’s.  

Despite its opportunities and growing popularity there are still many challenges to overcome. There 

is not just one ܴܮ method, as it is applied to a variety of data with many different characteristics. 

One method which implications can still be explored is the score-based approach. This approach is 

promising and overcomes some of the technical difficulties that other approaches sometimes fails to 

conquer. (Davis et al., 2012; Egli et al., 2007; Gonzalez-Rodriguez et al., 2007; Meuwly, 2006; 

Neumann et al., 2006; Neumann et al., 2009; Neumann et al., 2012; Nordgaard & Höglund, 2011). If 

the objects that are being compared have too many dimensions for modern-day computers, the 

score-based approach overcomes this problem by collecting most of the information in just one 

dimension. However, the score-based approach is still far from perfect and even this approach in 

turn knows several variations.   

One of the variable aspects is the way of comparing forensic objects to each other. The score-based 

approach applies score formulas to realise this comparison (e.g. distances and similarities). There are 

many formulas to choose from (Cha, 2007; Choi et al., 2010) and they generally create different 

scores among each other. Different scores, which implies different comparison results, lead to 

different ܴܮ conclusions. Yet this is seldom acknowledged. There are plenty of examples of studies 

that either apply conventional scores or justify one choice of score. For example, in a study on 

comparisons of striated tool marks, Baiker et al. (2014) used a cross-correlation metric, in which this 

score is successfully proven to be capable of performing comparisons between striation marks on 

bullets. Baiker et al. concluded that the cross-correlation metric was found to be successful, 

validated by the results of training-test data.  Although they justified their score selection by an 

article of De Kinder (1999) other potential scores may have outperformed the current results. More 

examples of literature in which one score is considered, may it be justified or not, are Chazal et al. 

(2005) and Pierrini et al. (2006), suggesting that this is not an incidental case. In addition, there are 

authors that explicitly affirmed the potential consequences of choosing just 1 score. Neumann 

(2007), for instance, was aware of the fact that he based his results solely on 1 score and noted that 

undoubtedly more research is needed on the score itself, which could lead to more convincing 

results. Other authors who explicitly state the limitation of their selective choice of score (and may 



5 
 

justify this) are Davis et al. (2011), Hepler et al. (2011), Horswell et al. (2002) and Inoue et al. (2003). 

Fortunately, at times effort is attributed to score selection and often it yields insight in the behaviour 

and fit of the chosen scores. For instance, the Bray-Curtis distance was found to be best suited 

compared to the Euclidean distance in a study by Quaak and Kuiper (2011) on the comparison of 

bacterial profiles in forensic soil comparisons. More examples of such score comparisons are Esseiva 

et al. (2003), Lociciro et al. (2007), Marquis et al. (2008), Neumann & Margot (2008) and 

Pervouchine & Leedham (2006). 

All of these studies show that, first of all, it seems to be that often just 1 score is considered and, 

second of all, it may be beneficial to consider more than just one score. Since forensic data is a 

diverse collection of various data types, there is a need for research into the appropriateness of 

score selection for certain types of data. This concern has also been expressed by i.a. Hepler et al. 

(2012) and Neumann (2006), yet I have not found any author who has carried out such a study, at 

least not in a ܴܮ framework. In this thesis, I do not aim to come up with one universal supreme 

score, as the performance of a score will vary among types of data. Furthermore, I cannot cover all 

types of data, merely a selection of common ones in the forensic field. Nonetheless, my intentions 

are that at the end of this thesis I will have illustrated that score selection is a vital part of the score-

based method construction phase and to provide insight into the appropriateness of scores for 

specific types of data. Based on methodological research, rather than on a theoretical debate, I aim 

to answer the question: To what degree is score selection a vital part of the Likelihood Ratio method 

and which score should be used for specific types of data? 

The following paragraph of this chapter will elaborate more on the technicalities of the ܴܮ method, 

particularly the score-based approach. In chapter 2 the methods will be discussed, in chapter 3 the 

results and in chapter 4 the discussion on those findings. 
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1.2 Likelihood Ratio Specifics 

Before we continue, the ܴܮ should will be explained in order to understand what is being 

researched. In the forensic field, the ܴܮ is a number that often represents the strength of evidence. 

More specifically, it often represents a likelihood value that some particular item originates either 

from a particular source or from any other random source. The ܴܮ is based on the Bayesian rule, 

which constitutes the conditional probability of event A given event B:  

[ܤ|ܣ]ܲ =  
௉ൣܤหܣ൧∙௉[஺]

௉[஻]
        [1] 

The Bayes rule in odd terms can be put into the forensic notation, which is: 

൧ܧ௣หܪൣܲ
[ܧ|ௗܪ]ܲ

 =  
௣൧ܪൣܲ
[ௗܪ]ܲ

   ∙   
௣൧ܪหܧൣܲ
[ௗܪ|ܧ]ܲ

 

    ቄ
.ݐݏ݋݌
ݏ݀݀݋

ቅ   = ቄݎ݋݅ݎ݌
ݏ݀݀݋

ቅ  ∙      ሼܴܮሽ     [2] 

 stands for evidence and is usually a combination of evidence features or a comparison between ܧ

features of some recovered item from a crime scene (measurement ܻ) and a control item 

(measurement ܺ). ܪ௣ is generally the hypothesis in which both ܺ and ܻ originate from the same 

source and ܪௗ is usually the hypothesis in which they do not originate from the same source, 

however depending on the case these can be stated otherwise. The formula signifies that the 

multiplication of the prior odds and the ܴܮ generates the posterior odds. For example, firstly a judge 

estimates the probability of a particular person committing a crime versus another random person 

committing that same crime, before the strength of evidence is evaluated by an expert, which in 

turn updates the odds from prior to post. The traditional forensic mode of operation focused on the 

posterior odds, which is the final product on which a juridical verdict is based. Now the focus of the 

forensic experts is shifted towards the LR, leaving the prior and the posterior odds for a legal entity 

to be interpreted, as it is believed that forensics should not be immersed with the events and/or 

circumstances related to the evidence. Consider, for example, two glass pieces: one that was found 

at a crime scene (ܻ) and one that is questioned whether or not it originates from the crime scene 

 ௗ is theܪ .௣ is the hypothesis that states that both glass pieces come from the same sourceܪ .(ܺ)

hypothesis that stated that they do not come from the same source. The ܴܮ nominator gives the 

probability of finding ܧ (the combination and/or comparison of the two glass pieces) given that ܪ௣ 

holds and the ܴܮ denominator gives the probability of finding ܧ given that ܪௗ holds. If the 

probability under ܪ௣ is bigger than the probability under ܪௗ, the ܴܮ will be bigger than 1, indicating 
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that the evidence is pointing in the direction that it is more likely the two glass pieces come from the 

same source. The opposite is true for ܴܮ values that are below 1. The further the value from 1 

(approaching infinity for ܪ௣-supporting values and 0 for ܪௗ-supporting values), the stronger the 

support for that hypothesis. The Netherlands Forensic Institute maintains a verbal scale for the 

values that the ܴܮ can take, which can be found in appendix I. For instance, a ܴܮ between 2 and 10 

means that the forensic findings are slightly more probable given ܪ௣ relative to ܪௗ. ܴܮ’s between 

100 and 10,000 mean that the forensic findings are much more probable given ܪ௣ relative to ܪௗ. 

The arrangement of ܧ is what this thesis is most engaged with. There are two major approaches to 

the ܴܮ method: The feature-based approach and the score-based approach. The first one is the 

probability evaluation of the combination of characteristics (features) of the forensic items. Consider 

the two glass pieces again, and this time it is also made known that both are made of a specific type 

of sand that contains a specific amount of silicon. ܺ contains .8 gram of silicon and ܻ contains .9 

gram. In this case the nominator of the ܴܮ is the joint probability of finding this combination of 

silicon quantities, given that the pieces are indeed from the same source. Imagine that this type of 

glass with silicon quantities within the .5 - 1.0 gram range is extremely rare, then this probability 

would be high. The ܴܮ denominator is the probability of finding this combination under the 

hypothesis that they do not originate from the same source. In this ‘rare-glass-case’, this probability 

would be low. Eventually this leads to a high ܴܮ, whereas the ܴܮ would be lower if the sand were to 

be very common.  

The score-based approach produces ܧ in a different way. Instead of looking at the combination of 

features, a comparison between the two features is considered. Let us consider the glass pieces 

again, but now a different characteristic, namely the quantity of silicon that is measured in both 

pieces. The score-based approach does not combine these two quantities, rather compares them to 

each other. The comparison is often conducted by means of scores. If ܺ would have .5 gram of 

silicon and Y would have .9 gram, then the Manhattan distance would simply be a score of .4 gram. 

See also Figure 1, in which ܺ and ܻ are compared to each other by means of a score formula, which 

creates ܧ. The ܴܮ numerator is the probability of finding this score under the hypothesis that the 

pieces do indeed originate from the same source, i.e. the likelihood of finding this score, given the 

population of scores that are comparisons between glass pieces that are known to be from the same 

source. The ܴܮ denominator is the probability of the same score under the hypothesis that they do 

not originate from the same source, i.e. the likelihood of finding this score, given the population of 

scores that are comparisons between glass pieces that are known not to be from the same source. 

The first population of scores are called the within scores (ܧ௪) and the second are called the 
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between scores (ܧ௕). These are available through a background database, which consists of a 

substantial sample of items from several sources. In our glass case this database would consist of 

several measurements of silicon quantities in several glass sources. The probabilities can be 

estimated through a standard statistical distribution model, such as Gaussian, Weibull or Gamma. 

However, as the distribution in Figure 2 shows, it is often hard to find an appropriate model. We see 

a distribution of between scores. This distribution might come close to a Gamma distribution, 

however, that model does not take the peak between .1 and .15 into account. Non-parametric 

methods, such as the Kernel Density Estimation [8], instead, use the data in order to smooth the 

distribution. (Silverman, 1986). Often distributions of scores even have more peaks than the 

example in Figure 2 and KDE is able to account for this.  
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Fig.1. The score-based approach to the ܴܮ method. The quantitative measurements of ܺ and ܻ are compared 
to each other by means of a particular score formula which produces ܧ. Through a probability estimator 
method, the probabilities of finding that score under ܪ௣ (ܲ(ܪ|ܧ௣)) and under ܪௗ  are estimated ((ௗܪ|ܧ)ܲ) 
and the division between these two is the ܴܮ.   

 

 

Fig. 2. Example of a distribution of between scores with the red line being the density curve (as estimated by 
the KDE).   



10 
 

2. Methods 

In this chapter, two methods will be explained that aim to expose a difference in score behaviour 

and performance among scores. Hence the question which scores are most appropriate for which 

type of data can be answered. First of all, in 2.1 a series of modest experiments have been 

conducted, which have indicated differences in behaviour and performance of scores in simple 

settings. These simple settings are 3 different types of data that have characteristics which can be 

obstacles for scores: data with extreme values, data with negative values and binary data. This 

provided a reasonable footing for a more complex methodology. In 2.2 the data that was used for 

this thesis is explained and justified. In 2.3 it is explained how the distances and data were compared 

to each other and what computations needed to be done to realise an answer to the research 

question. Finally, the tools that helped to analyse the results and draw conclusions are explained in 

2.4.  

2.1 Score experiments 

2.1.1 Euclidean Distance 

,ܺ)ݏ  ܻ) =  ඥ∑ ( ௜ܺ − ௜ܻ)ଶ௡
௜ୀଵ       [3] 

One of the most well-known and used score measures is the Euclidean distance [3], based on the 

Pythagorean theorem. Here, ݏ(ܺ, ܻ) means the score that is a result of a comparison between the 

(quantitative) features of two forensic items. It is probably also one of the most discussed scores. In 

general, this distance behaves and performs well and is therefore widely used. As soon as the data 

introduces difficulties, its application may become problematic. For example, if multivariate data is 

not equally scaled (i.e. different units), the Euclidean distance is not trustworthy. In particular, due 

to the fact that it squares over  ௜ܺ − ௜ܻ  , which enhances the effect of distortion in case of different 

units. Ertöz et al. (2003) found that the Euclidean distance does not function well in case of 

binary/categorical data and data with many variables. The last instance is also described in the study 

by Aggarwal et al. (2001). Troyanskaya et al. (2001) claim that the Euclidean distance performs 

poorly for noisy data (lots of spikes/outliers).  
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2.1.2 Manhattan Distance 

,ܺ)ݏ  ܻ) =  ∑ | ௜ܺ − ௜ܻ|௡
௜ୀଵ       [4] 

The Manhattan distance is similar to the Euclidean distance, yet simpler. It takes the absolute value 

of the difference between ܺ and ܻ. This property of absoluteness should make the score more 

robust to extreme values in comparison to the Euclidean distance. Consider point 1 (p1) and point 2 

(p2) in a 10-dimensional-space (see Table 1). The Euclidean distance between these two points is 

6.32 and the Manhattan distance is 16. (see Table 2 for the results). Now consider a point 3 (p3) 

which is equal to p2, except for variable B which now has a clear extreme value of 21. For p1 and p3 

the Euclidean distance increases by a factor of 3.16 to 20 and the Manhattan distance increases by a 

factor of 2.13 to 34. While the Manhattan distance does not feature a particularly strong defence 

mechanism against the influence of an outlier, it does manage to control it better than the Euclidean 

distance. According to Aggarwal et al. (2010), the Manhattan distance works better in higher 

dimensional spaces than other scores, which could be attributed to its simplicity. One problem that 

the Manhattan distance, like the Euclidean distance, does not overcome well, is the problem of 

binary and categorical data.  

 

 

 

 

 

 

Table 2 
 
Results of Experiment 1 
 Euclidean 

Distance 
Manhattan 

Distance 
Bray-Curtis 

Distance 
Jaccard 

Distance 
,1݌)ݏ  47. 36. 16 6.23 (2݌
,1݌)ݏ  83. 55. 34 20 (3݌
Factor 3.16 2.13 1.51 1.77 
Note: This experiment applied the continuous versions of the 
scores. 

 

  

Table 1 
 
Experiment 1: Extreme Values 
Point A B C D E F G H I J 
p1 3 2 4 0 1 2 3 1 2 0 
p2 0 3 3 2 2 2 5 3 2 4 
p3 0 21 3 2 2 2 5 3 2 4 
Note: p1 and p2 are two imaginary measurements 
with 10 variables and p3 only differs from p2 in 
variable B 
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2.1.3 Bray-Curtis Distance 

,ܺ)ݏ  ܻ) =  
∑ |௑೔ି௒೔|೙

೔సభ

∑ (௑೔
೙
೔సభ ା௒೔)

       [5] 

This score is favourite among the ecologists (Looman & Campbell, 1960), which often work with 

count data. It might not be so useful for non-count data, given that this data may contain negative 

values which could result into a negative denominator. This could then again lead to a difficult 

interpretation of the metric value itself.  

 

 

 

 

 

 

 

 

 

 

 

Consider 4 different points in a 10-dimensional-space (see Table 3). The Manhattan distance 

between p4 and p5 is 26 and the Bray-Curtis distance is -13. (See Table 4 for the results). The sum of 

p5 is a negative value, leading to the negative quality of the score. Point 6 differs from p5 in such a 

way that two negative values are transformed into their positive equivalents (variable B and E). The 

individual Manhattan distances of B and E between p4 and p6 are now bigger than the distances 

between p4 and p5. Depending on the context, the whole p4 vs. p6 distance should intuitively be 

bigger too. The results show that the Manhattan distance between p4 and p6 is 32 and the Bray-

Curtis distance is 4. Both are higher numbers, so the assumption was correct. Now consider p7, 

which differs from p5 in such a way that variable G is turned into its negative equivalent. This time it 

feels as if p7 and p4 are closer to each other than p5 and p4. The Manhattan distance is 20, which 

Table 3 
 
Experiment 2: Negative Values 
Point A B C D E F G H I J 
p4 3 -2 4 0 -1 -2 -3 1 2 0 
p5 0 -3 3 -2 -2 -2 5 3 -2 -4 
p6 0 3 3 -2 2 -2 5 3 -2 -4 
p7 0 -3 3 -2 -2 -2 -5 3 -2 -4 
Note: These are 4 imaginary measurements of which p6 
differs from p5 in variable B and E and p7 from p5 in 
variable G 

Table 4 
 
Results of Experiment 2 
 Euclidean 

Distance 
Manhattan 

Distance 
Bray-Curtis 

Distance 
Jaccard 

Distance 
,4݌)ݏ  94. 13.00- 26.00 10.77 (5݌
,4݌)ݏ  1.06 4.00 32.00 12.17 (6݌
,4݌)ݏ  60. 1.66- 20.00 7.48 (7݌
Note: This experiment applied the continuous versions of the 
scores. 
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supports that assumption, but the Bray-Curtis distance is -1ଶ

ଷ
. Suddenly, the Bray-Curtis distance 

becomes hard to interpret, when the intuitive sequence of dissimilarity from small to big is: p4 vs. 

p7, p4 vs. p5, p4 vs. p6 and the according Bray-Curtis distance sequence is: -1ଶ

ଷ
, -13, 4. A bigger 

problem arises when the denominator sums up to zero, as this is mathematically impossible, yet, 

theoretically, this could occur with non-count data. The experiment of Table 1, in which p3 

introduces an extreme value, can also be applied to the Bray-Curtis distance in comparison to the 

previous two. The distance between p1 and p3 is 1.51 times bigger than the distance between p1 

and p2. This shows that the Bray-Curtis distance is more robust to extreme values than the 

Manhattan and the Euclidean distances. 

2.1.4 Jaccard Distance 

,ܺ)ݏ   ܻ) =  
∑ (௑೔ି௒೔)²೙

೔సభ

∑ ௑೔
మ೙

೔సభ ା∑ ௒೔
మ೙

೔సభ ି∑ ௑೔௒೔
೙
೔సభ

  (Continuous)   [6] 

,ܺ)ݏ ܻ) =  
௕ା௖

௔ା௕ା௖
     (Binary)    [7] 

a = Amount of variables that are both present (1) 
b = Amount of variables which are present in ܺ (1) and absent in ܻ (0)  
c = Amount of variables which are absent in ܺ (0) and present in ܻ (1) 

 

The Jaccard distance, like the previous and more scores, is diverse as it knows different versions for 

different types of data. The experiment of Table 1 shows that the version for continuous data [7] 

provides a distance that is a 1.78 factor bigger due to the introduction of an extreme value.  This is 

lower than the Euclidean and the Manhattan shifts and slightly higher than the Bray-Curtis factor. 

Consider the points in Table 5. The Euclidean and Manhattan distances1 between p8 and p9, and 

between p10 and p11 are exactly the same, respectively 1.41 and 2. (See Table 6 for the results). 

This is odd in some cases where the mutual absence of a variable does not imply similarity. When 

two measurements both share a variable (presence), it logically implies a similarity. However, when 

they both lack a variable (absence), it does not necessarily mean that they are very similar to each 

other. According to this understanding, the distance between p8 and p9 should be bigger than the 

distance between p10 and p11. This phenomenon is tackled by Jaccard and Jaccard-like distances 

that consider the properties of absence and presence. For Table 5 the Jaccard distances are 1 and 

                                                           
1 Note that the proper binary distances can be found in the appendix III. In this case the formulas 3, 4 and 5, 
however, do give the same results as their binary cousins.  
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0.22. The Bray-Curtis distance¹ demonstrates the same relationship (distances of 1 and 0.13 

respectively). Of course, it depends on the context and the meaning of the binary values, whether 

shared absence or presence means similarity, which is the case for all previous intuitive assumptions 

made.  

 

 

 

 

 

 

Table 6 
 
Results of Experiment 3 
 Euclidean 

Distance 
Manhattan 

Distance 
Bray-Curtis 

Distance 
Jaccard 

Distance 
,8݌)ݏ  1 1 2 1.41 (9݌
,10݌)ݏ  22. 13. 2 1.41 (11݌
Note: This experiment applied the binary versions of the scores. 

 

 

2.1.5 Final Scores 

The previous paragraph shows that scores behave differently with respect to the anticipated result 

in a rather uncomplicated setting. Whether or not this is also true for the likelihood ratio method is 

to be observed next. And if so, which score would be most appropriate? The studies by Cha (2007) 

and Choi et al. (2010) list several scores that have been carefully inspected. These are 56 potential 

scores for continuous data and 76 potential scores for binary data. Note that some of these are 

written as similarity measures instead of distance measures. This would not affect the interpretation 

of the final results and these similarity measures can be used instead. For time and computation 

power reasons the number of scores had to be reduced. Cha and Choi used hierarchical clustering to 

find similarities between the scores. Their results and the popularity of scores in the forensic field 

are the foundations on which the selection of 20 continuous and 20 binary scores have been made. 

The selected scores and their formulas can be found in appendices II and III.  

Table 5 
 
Experiment 3: Binary Data 
Point A B C D E F G H I J 
p8 1 0 0 0 0 0 0 0 0 0 
p9 0 0 0 0 0 0 0 0 0 1 
p10 1 1 1 0 1 1 1 1 1 0 
p11 0 1 1 0 1 1 1 1 1 1 
Note: These are 4 imaginary measurements 
with only binary values of 0 and 1. 



15 
 

2.2 Data and Transformation 

For this thesis, essentially any type of data would have been suitable, as there is yet much to be 

discovered about the role of data with respect to the performance of LR methods. A dataset adapted 

for experimental usage, but extracted from real data, had been made available by Peter Zoon, a 

scientific researcher at the Netherlands Forensic Institute. The dataset contained multiple 

measurements of 7 chemical elements of certain knives, conducted with the use of a Scanning 

Electron Microscope (SEM). There are 15 knives and for each knife, 20 measurements had been 

carried out on 20 different locations on the knife. One knife is one source, indicating that there were 

15 sources, each containing 20 measurements, which is a total of 300 measurements. For each 

measurement, the quantities of 7 chemical elements had been measured. Some summary statistics 

can be found in Table 7. There were not many curiosities in the data. At first glance the variables did 

not seem to follow any conventional or the same distribution. What they all did have in common is 

that the variables were continuous and the measurements did not take any negative values.  

 

 

 

 

 

 

 

 

There were two qualities of the data that needed attention: Absence of some variables in some 

sources and the number of outliers. The knives mostly consisted of element E and C and those plus 

element A were always present in any knife, whereas the rest were sometimes absent. Especially 

element B (only present in 2 of the 15 sources) and G (only present in 4 of the 15 sources) were rarer 

than the other elements. This indicates that this data knew many zeroes, which represented absence 

of that variable. It was expected that this would affect the LR performance. Zeroes are 

mathematically quirky numbers which sometimes behave differently and/or unexpectedly compared 

to other numbers. This has also been illustrated by Ertöz et al. (2003), who performed similar 

Table 7 
 
Statistics of Element Concentrations (in %) 
Chemical Element A B C D E F G 
Mean .88 .03 14.60 .34 83.11 .78 .26 
Median .59 .00 14.19 .30 84.36 .39 .00 
SD 1.12 .07 1.71 .36 3.94 1.69 .50 
Min .13 .00 12.21 .00 68.59 .00 .00 
Max 5.38 .38 23.68 1.47 87.26 8.26 1.83 
No. Outliers * 15 2 14 4 12 8 1 
Presence in source ** 15 2 15 8 0 12 4 
Note: The mean, median, standard deviation, minimum value and maximum value refer to the  
complete dataset of 300 measurements. 
* The number of outliers out of 300 measurements 
** The amount of times the element was present in a source (out of 15 sources).  
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experiments as in paragraph 2.1. They found that the Euclidean and the Manhattan distance do not 

perform well in data with many zeroes, as opposed to the Jaccard distance. The scores as a result of 

this data may also have been affected and consequently the LR’s too. The other data characteristic 

worth mentioning are the number of outliers detected. Outliers were detected per cluster (i.e. the 

measurements per source per element, e.g. all the 20 measurements of element A in knife 1) that 

were located outside the range of the corresponding quartile ± 1.5 × the interquartile range. The 

outliers may have distorted the distribution of scores and therefore the probabilities in the 

numerator and the denominator of the ܴܮ. Also, this may have had an impact on the performances 

of some scores and, consequently, on the ܴܮ performance.  

In 2.1, three other data qualities had been disclosed, which seem to affect score performance. These 

three qualities were the inclusion of extreme values, the inclusion of negative values and binary 

data. These three qualities are not uncommon in the forensic field. The number of outliers in the 

knife dataset already suggest the presence of extreme values, although one may not necessarily 

classify these values as extreme. In a forensic context, extreme data can be a result of measurement 

error. Because the data conclusions may have a substantial judicial impact, the omission of 

outliers/extreme values is not always uncontroversial. Besides, there may be financial and/or 

technical restrictions. Data with negative values is most common when the data is scaled. One could 

argue to rescale the data so that it loses its negative property. However, some data is constituted in 

such a way that the negative property is meaningful and should not be lost in the process. Binary 

data does occur too and requires specialised score formulas. It was decided to transform the original 

dataset to additional datasets which incorporated these three qualities.  

For the data with extreme values, in each cluster 2 random values have been replaced by a value 

that was the maximum value of that cluster plus the cluster’s standard deviation multiplied by a 

factor that randomly lay between 2 and 4. If such a cluster happened to have only values of 0, the 

cluster has been left untouched, as it makes no sense to insert extreme values, which would indicate 

the presence of that chemical element, for a source knife that does not even contain that element at 

all. This dataset does not differ from the original one in terms of outlier presence, yet this time the 

outliers are significantly more extreme.  

For the transformation into data with negative values, the cluster has been demeaned. Also, the 

previous generated data with extreme values has been demeaned in order to create a dataset for 

the interaction effect between the two qualities. Perhaps the effect of extreme values differs 

whether or not the data includes negative values.  
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For the binary data, the transformation was conducted by variable. The variable values had to be 

split into two halves, of which one was attributed a 0 and the other was attributed a 1. The split 

criterion needed to be the same across the variables, but it also needed to gain the same effect. 

Because some variables were sparse, the median of each variable should be the split criterion, rather 

than the mean. For some variables, this was identical to the logical argument of the presence or 

absence of that particular chemical element. No interaction effects between the binary data and the 

other two have been explored, as it made no sense to transform negative and extreme data into 

binary data, since the properties would get lost in the transformation.  

 

 

2.3 Computations 

Each score is applied in combination with each dataset, except for score 6 till 9 in combination with 

 .ସ, for these formulas contain natural logs and roots that cannot process negative valuesܣ ଷ andܣ

For both scenarios, the following was considered: a piece of metal is found on a victim’s bone, which 

is assumed to come from a knife. This is synonymous to 1 measurement of 1 source from a data set. 

This measurement was called the ܻ (recovered). The ܺ (control) was a measurement that was 

carried out on a certain knife. This is also 1 measurement of 1 source from a dataset. Please take 

note that although 1 measurement may seem slim, in real practice, although not necessarily this 

dataset, it is often not feasible to carry out more measurements, due to technical and/or financial 

limitations. 

In order to measure performance, it was necessary to establish the origin of ܺ and ܻ. Fortunately, an 

experimental dataset as described in 2.2 gives the opportunity to keep track of this. There were two 

propositions to be taken into account. Proposition 1 is the scenario for which ܪ௣ is true, which 

indicates the hypothesis that ܺ and ܻ come from the same source, and proposition 2 is the scenario 

for which ܪௗ is true, which indicates the hypothesis that ܺ and ܻ do not come from the same souce. 

Under ܪ௣, ܧ is a score between ܺ and ܻ that must come from the same source, a within score (ܧ௪). 

Table 8 
 
Overview of datasets 
 .ଵ Adapted dataset, extracted from real data, including 15 sources with 20 measurements eachܣ
 ଵ, to which extreme values are addedܣ ଶ Transformed dataset ofܣ
 .ଵ, which has been demeaned to create negative valuesܣ ଷ Transformed dataset ofܣ
 .ଶ, which has been demeaned to create in interaction datasetܣ ସ Transformed dataset ofܣ
 .ଵ to binary values with the cluster median as the split criterionܣ ହ Transformed dataset ofܣ
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Under ܪௗ, ܧ is a score between ܺ and ܻ that must come from different sources, a between score 

 ,The following procedure have been executed for every score and dataset combination. Firstly .(௕ܧ)

all the possible ܧ௪ scores were computed, out of all the possible ܺ and ܻ comparisons under ܪ௣. 

The first measurement was compared to all other 19 measurements from that same knife, the 

second measurement was compared to all the remaining 18 measurements and not 19, so that no 

double scores were computed. Then the third measurement was compared to all other 17 

measurements and eventually this leads to the summation of 19 + 18 + 17 + 16 … + 1. Because 

this was done for every knife, this summation was carried out 15 times. This has led to 2850 

௪ܧ  scores ((19 + 18 + 17 + 16 … + 1) ×15 = 2850). Secondly, all the ܧ௕ scores were computed 

out of all the possible ܺ and ܻ comparisons under ܪௗ. The first measurement was compared to all 

measurements from other knives, which are 280. The first measurement of the second knife was 

compared to all other measurements from other knives, except for the first knife, in order to avert 

double scores, which are 260 scores. Eventually this leads to the summation of 280 + 260 + 240 +

220 … + 20. Since this counts for each measurement within a knife, this summation was carried out 

20 times. This has led to 42,000 ܧ௕ scores ((280 + 260 + 240 + 220 … + 20) ×20 = 42,000).  

Because there are 2850 ܧ௪’s and 42000 ܧ௕’s, it was possible to compute 2850 ܴܮ’s under ܪ௣ (ܴܮ௣) 

and 42000 ܴܮ’s under ܪௗ (ܴܮௗ). In other words, there were 2850 ܴܮ’s of which was established that 

ܺ and ܻ came from one knife and 42000 ܴܮ’s of which was established that ܺ and ܻ came from two 

different knives. In order to get from ܧ to ܴܮ௣ and ܴܮௗ, the numerator and the denominator of the 

 ௪ܧ is the probability of finding an (௣൯ܪ௪หܧ൫ܲ) ௣ numeratorܴܮ needed to be calculated. The ܴܮ

score in an ܧ௪ distribution and the ܴܮ௣ denominator (ܲ(ܧ௪|ܪௗ)) is the probability of finding that 

same ܧ௪ score in an ܧ௕ distribution. The two probabilities have been estimated through Kernel 

Density Estimation with a Gaussian Kernel [8]. For ܲ൫ܧ௪หܪ௣൯ it means that the ܧ௪ is ݏ and it is 

evaluated against all other ܧ௪’s, which are the ݏ௜’s. All of these evaluations add up to the probability 

of finding that within score under ܪ௣. For ܲ(ܧ௪|ܪௗ) the ܧ௪ is evaluated against all other ܧ௕’s. These 

add up to the probability of finding that within score under ܪௗ. Inversely, the ܴܮௗ numerator 

(ܲ൫ܧ௕หܪ௣൯) is the probability of finding an ܧ௕ score in an ܧ௪ distribution and the ܴܮௗ  denominator 

  .௕ distributionܧ ௕ score in anܧ is the probability of finding that same ((ௗܪ|௕ܧ)ܲ)
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݌ = .݋ܰ    (1 ݏݕܽݓ݈ܽ ݏ݅ ℎ݅ܿℎݓ) ݏ ݂݋ ݏ݊݋݅ݏ݊݁݉݅݀ ݂݋

݊௦ =    (42,000 ݎ݋ 2850 ݎℎ݁ݐ݅݁) ݏ ݂݋ ℎݐ݃݊݁ܮ

2.4 Analysis 

After all the calculations, there was a pair of two ܴܮ distributions (ܴܮ௣ and ܴܮௗ) for each of the 20 

scores and for each dataset (ܣଵ till ܣହ). Intuitively, one could say, the more support for the 

corresponding hypothesis (e.g. the higher the score is under ܴܮ௣), the better the ܴܮ-method. A 

good starting metric for this would be one that represents misleading evidence. Misleading evidence 

is when the ܴܮ supports a hypothesis which is not true. For this to evaluate, a threshold is required, 

which theoretically could be anywhere on the ܴܮ scale. From a mathematical point of view, 1 = ܴܮ 

would be the most appropriate threshold, which means that there is no support for either of the two 

hypotheses. Therefore, in this thesis, a correct ܴܮ would be when the ܴܮ is higher than 1 if ܪ௣ holds 

and lower than 1 if ܪௗ holds. A more conventional way of reporting this is the opposite one: The 

False Positives (ܲܨ) and the False Negatives (ܰܨ), which represent misleading evidence. A 

convenient graphical representation of the ܲܨ and the ܰܨ is the Tippett plot. Please consider Figure 

3, which is an example. The Tippett plot presents two cumulative lines, one for the ܴܮ௣ (red solid) 

and one for the ܴܮௗ (green dashed). On the x-axis are the log-transformed ܴܮ’s and the y-axis tells 

what proportion of an ܴܮ distribution is higher than the log-LR that it corresponds to. The threshold 

is now log(1), which is 0. The ܲܨ is the green line right from the 0 line, the ܰܨ is the red line left 

from the 0 line. An ideal Tippett plot would present the red line pushed to the upper right corner, 

whereas the green line would be in the lower left corner. 
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Fig. 3. A Tippett Plot example 

 

But this only captures 1 element of the method’s performance. An even better way of ranking and 

comparing the methods is by applying the log-likelihood-ratio cost (ݎ݈݈ܥ), adapted for validation 

purposes by Morrison (2011), based on a more general introduction by Van Leeuwen and Brümmer 

(2007). The ݎ݈݈ܥ is computed using the following formula:  

ݎ݈݈ܥ =  
ଵ

ଶ
൬

ଵ

ேಽೃ೛
∑ 2௟௢௚ ൬1 +

ଵ

௅ோ೛೔
൰

ேಽೃ೛

௜ୀଵ +  
ଵ

ேಽೃ೏

∑ 2௟௢௚൫1 + ௗ೔ܴܮ
൯

ேಽೃ೏
௜ୀଵ ൰ [9] 

The metric can be interpreted as a metric that expresses the cost of faulty decisions that could be 

made, based on the threshold of ܴܮ = 1. Anything below a Cllr value of 1 is acceptable and the 

lower, the better. If, for instance, ܴܮ௣ is below 1, which is faulty because it is calculated in the 

scenario that ܪ௣ holds, then it can be deduced from the formula that ݎ݈݈ܥ will increase. The lower 

 ௗ. In this way, not only the quantity of instances aܴܮ The opposite counts for .ݎ݈݈ܥ ௣ is, the higherܴܮ

faulty decision could be made, but also the cumulative probability of actually making that decision is 

evaluated.  
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Fig. 4. Example of a PDF plot of a ܴܮ௣ (red) and ܴܮௗ (green).  

 

Apart from Tippett plots, the distributions of ܴܮ௣ and ܴܮௗ  can be visualised through probability 

density functions (PDF’s, also created through Kernel Density Estimation). These are very informative 

as they illustrate the coherence between the two hypotheses and depict what consequences the 

choice of score has on the distributions. An example of a PDF and the coherence between the 

ௗܴܮ  and the ܴܮ௣ distribution can be found in Figure 4.  This graph portrays the PDF’s of the ܴܮௗ’s 

(the green dashed line) and the ܴܮ௣’s (the red solid line). On the x-axis are the ܴܮ’s and on the y-axis 

is the density. The green area illustrates the ܲܨ and the red area illustrates the ܰܨ. The bigger the 

area, the more misleading evidence. Please bear in mind that a steep descent after the LR=1 

threshold, which would still form a considerable green area right after it, is a result of KDE 

smoothing, which does not take the threshold into account. Line peaks indicate a higher density of 

those ܴܮ’s in the corresponding ܴܮ distribution. The location of the peaks of the two lines are the 

most important. In Figure 4 there are three peaks. The first one is the green peak below the 

threshold of 1. This indicates that a lot of ܴܮௗ’s are between 0 and 1, exactly what they should be. 

However, there is also a smaller green peak around 7 = ܴܮ, indicating another concentration of 

 ௗ’s, which is on the wrong side of the threshold. Please bear in mind that it is hard to compareܴܮ

peak heights between the two threshold areas (below and above 1 = ܴܮ). The higher peak of the 

green line on the left side of the threshold compared to the lower peak on the right side of the 
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threshold does not directly imply a bigger concentration of ܴܮௗ’s below the threshold. Due to ܴܮ 

being a ratio, the density in range 0 < x < 1 is naturally higher than the density in range x > 1. This 

could theoretically be solved by a log transformation. Unfortunately, the ܴܮௗ and ܴܮ௣ data know 

many zeroes and even when the same rules are applied as during the score calculation process (See 

Appendix II and III), the figures are often less illegible than the original figures. Peaks within a 

threshold area are easier to compare, with the red peak on the right indicating a higher 

concentration of ܴܮ௣’s compared to ܴܮௗ’s in that same area.  
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3. Results 

The results for the misleading evidence can be found in Table 9 and 10 and the results for the Cost 

Likelihood Ratio can be found in Table 11. There are too many results to discuss all of them, 

however, I detected a pattern among the probability density curves and scores. Therefore I will 

discuss the results by score group and I will show one or two PDF’s per group. The rest of the PDF’s 

can be found in Appendices IV till VIII. An overview of the score groups can be found in Table 12.  

3.1 Dataset ܣଵ 

Let us start with the LR distributions of ܣଵ, the original dataset (see Table 8). The Euclidean 

ௗܴܮ  curve (see Figure 5), the green curve which displays the distribution of ܴܮ’s under ܪௗ, peeks 

below the ܴܮ = 1 threshold and slowly descends above it, after which it approaches the x-axis. This 

comes close to what an ideal ܴܮௗ   curve should be. It could improve on the False Positive area as 

there is still a considerable green area, but it is doing not too bad, compared to other scores. In 

Table 9 the ܲܨ proportions are shown for all datasets and distances, including the respective 

rankings. (Lowest proportion means best ranking). From this table one can conclude that the 

Euclidean distance (13ܿݏ) ranks 10th. Much worse are the Euclidean False Negatives, which is 

ranked last. Taking a look back at the PDF, one can see that the red area is considerably large, which 

holds one of the two peaks the red ܴܮ௣ curve knows, the other one located around x = 4. This is 

obviously not a preferred characteristic of an ܴܮ௣ curve, as there should only be a peak above the 

threshold. Other distributions that show similar patterns are those of the following scores, which I 

will call ݀஺: the Chebyshev (2ܿݏ), the Minkowsky L3 (11ܿݏ), the Tanimoto (14ܿݏ), the Avg(L1, Loo) 

 All PDF’s can be) .(18ܿݏ) and the Bray-Curtis (17ܿݏ) the Manhattan ,(16ܿݏ) the Kulczynski ,(15ܿݏ)

found in Appendices IV-VIII). All of these have relatively high ܰܨ proportions and relatively average 

 .proportions. Take a look at Figure 7, which illustrates the Tippett lines for the Euclidean distance ܲܨ

The ܪ௣ line descends already very quickly, before the log(ܴܮ) = 0 threshold, which indicates high 

 .ݎ݈݈ܥ ஺’s are also doing average on theݏ The .ܰܨ
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Fig.5. PDF for Euclidean distance (ܣଵ)                      Fig. 6. PDF for Pearson χ² (ܣଵ) 

 

Figure 6 holds the curves for the Pearson χ² (1ܿݏ). The ܴܮௗ   curve peaks below the threshold and in 

the 27 < x < 37 range. There is an evident distinction between these two peaks, with almost no 

density in between. The relatively major extent of the green area cannot be missed. The Pearson χ² 

is also ranked last for the ܲܨ propotions. The ܴܮ௣  curve peaks at the same areas as the ܴܮௗ  curve, 

yet to a lesser extent below the threshold. The Pearson χ² ranks first in the ܰܨ list. The imbalance in 

the ܰܨ and ܲܨ ranks is also clear in Figure 7, along with the somewhat healthier Euclidean Tippett 

plot. The ܴܮௗ almost vertically descends from a proportion of more than a half to 0 around 

log(ܴܮ) = 1.5, which indicates a very high ܲܨ. Other scores with similar distributions, albeit around 

different ܴܮ values, are those of the following scores: The Neyman χ² (3ܿݏ), the K divergence (6ܿݏ), 

the Taneja (7ܿݏ), the Kullback-Leibler (8ܿݏ), the Kumar Johnson (9ܿݏ), the Additive Symmetric χ² 

  .஻ݏ These are referred to as .(12ܿݏ) and the Jaccard (10ܿݏ)
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Fig. 7. Tippett plot with solid red (ܴܮ௣) and dashed green (ܴܮௗ) lines for the Euclidean distance (ܣଵ) and solid 
blue (ܴܮ௣) and dashed orange (ܴܮௗ) lines for the Pearson χ² (ܣଵ).  

Table 9 
 
  ܲܨ

 ହܣ **ܫܫ ସܣ ଷܣ ଶܣ ଵܣ *ܫ
 (11) 0.1759 1ܾݏ (15) 0.9298 (14) 0.8476 (19) 0.7397 (20) 0.5736 1ܿݏ
 (1) 0.0267 2ܾݏ (5) 0.1411 (7) 0.1916 (11) 0.3171 (13) 0.3029 2ܿݏ
 (14) 0.2034 3ܾݏ (12) 0.913 (15) 0.9305 (16) 0.5433 (16) 0.4644 3ܿݏ
 (13) 0.1924 4ܾݏ 5e-04 (1) (1) 0.0644 (3) 0.1535 (2) 0.161 4ܿݏ
 (7) 0.0883 5ܾݏ 5e-04 (1) (2) 0.0645 (4) 0.1611 (1) 0.1598 5ܿݏ
 (1) 0.0267 6ܾݏ  NA  NA (6) 0.2088 (3) 0.1673 6ܿݏ
 (5) 0.0405 7ܾݏ  NA  NA (5) 0.2072 (4) 0.1676 7ܿݏ
 (18) 0.2933 8ܾݏ  NA  NA (15) 0.4662 (15) 0.348 8ܿݏ
 (16) 0.2052 9ܾݏ  NA  NA (20) 0.7889 (14) 0.3225 9ܿݏ

 (19) 0.3826 10ܾݏ (14) 0.9144 (13) 0.826 (17) 0.6181 (5) 0.2169 10ܿݏ
 (6) 0.0849 11ܾݏ (10) 0.187 (5) 0.1797 (13) 0.3193 (12) 0.2988 11ܿݏ
 (19) 0.3826 12ܾݏ (12) 0.513 (12) 0.47 (18) 0.6883 (17) 0.5477 12ܿݏ
 (1) 0.0267 13ܾݏ (9) 0.173 (6) 0.1832 (12) 0.3186 (10) 0.2912 13ܿݏ
 (1) 0.0267 14ܾݏ (1) 0.0002 (11) 0.4068 (7) 0.2785 (6) 0.2592 14ܿݏ
 (14) 0.2034 15ܾݏ (7) 0.1593 (8) 0.2096 (14) 0.322 (11) 0.2934 15ܿݏ
 (11) 0.1759 16ܾݏ (16) 0.9956 (16) 0.9997 (10) 0.3029 (9) 0.2815 16ܿݏ
 (10) 0.1693 17ܾݏ (8) 0.1694 (10) 0.2701 (9) 0.2942 (7) 0.2688 17ܿݏ
 (8) 0.1153 18ܾݏ (11) 0.3196 (9) 0.249 (8) 0.2888 (7) 0.2688 18ܿݏ
 (17) 0.2655 19ܾݏ (6) 0.1455 (3) 0.1445 (1) 0.0899 (19) 0.5515 19ܿݏ
 (9) 0.1399 20ܾݏ (4) 0.0675 (3) 0.1445 (2) 0.136 (18) 0.5495 20ܿݏ
Note: Ranking between brackets, 1st means best in terms of performance.  
* For score names, please see appendix II (for  ܣଵ -  ܣସ).  
** For score names, please see appendix III (for  ܣହ). 
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Fig. 8. Tippett plot with solid red (ܴܮ௣) and dashed green (ܴܮௗ) lines for the K divergence (ܣଵ) and solid blue 
  .(ଵܣ) lines for the Canberra distance (ௗܴܮ) and dashed orange (௣ܴܮ)

Table 10 
 
  ܰܨ

 ହܣ **ܫܫ ସܣ ଷܣ ଶܣ ଵܣ *ܫ
 (3) 0.1351 1ܾݏ (2) 0.0067 (2) 0.0063 (2) 0.0077 (1) 0.0239 1ܿݏ
 (16) 0.4481 2ܾݏ (10) 0.8084 (10) 0.6909 (17) 0.4407 (14) 0.287 2ܿݏ
 (6) 0.1618 3ܾݏ (4) 0.0154 (3) 0.0098 (4) 0.0151 (2) 0.027 3ܿݏ
 (6) 0.1618 4ܾݏ (13) 0.9986 (15) 0.8768 (6) 0.0747 (5) 0.073 4ܿݏ
 (14) 0.3418 5ܾݏ (13) 0.9986 (15) 0.8768 (7) 0.0996 (6) 0.0772 5ܿݏ
 (16) 0.4481 6ܾݏ  NA  NA (10) 0.3821 (9) 0.1316 6ܿݏ
 (15) 0.4214 7ܾݏ  NA  NA (5) 0.0509 (7) 0.0839 7ܿݏ
 (12) 0.2772 8ܾݏ  NA  NA (9) 0.2284 (8) 0.0856 8ܿݏ
 (3) 0.1351 9ܾݏ  NA  NA (1) 0.0039 (3) 0.0344 9ܿݏ

 (1) 0.0877 10ܾݏ (3) 0.0105 (4) 0.0102 (3) 0.013 (4) 0.0442 10ܿݏ
 (13) 0.3046 11ܾݏ (7) 0.7561 (12) 0.7095 (17) 0.4407 (19) 0.3088 11ܿݏ
 (1) 0.0877 12ܾݏ (4) 0.3709 (5) 0.3561 (8) 0.1579 (10) 0.1453 12ܿݏ
 (16) 0.4481 13ܾݏ (8) 0.7674 (11) 0.7014 (16) 0.4333 (20) 0.3105 13ܿݏ
 (16) 0.4481 14ܾݏ (15) 0.9996 (6) 0.5221 (14) 0.4189 (18) 0.2947 14ܿݏ
 (6) 0.1618 15ܾݏ (9) 0.7842 (9) 0.6691 (15) 0.427 (17) 0.2888 15ܿݏ
 (3) 0.1351 16ܾݏ (1) 0.0004 (1) 0 (11) 0.3961 (13) 0.2772 16ܿݏ
 (6) 0.1618 17ܾݏ (6) 0.7404 (7) 0.5902 (12) 0.4053 (14) 0.287 17ܿݏ
 (20) 0.6667 18ܾݏ (5) 0.574 (8) 0.6204 (13) 0.4088 (14) 0.287 18ܿݏ
 (10) 0.1719 19ܾݏ (11) 0.8481 (13) 0.8702 (20) 0.9235 (12) 0.1586 19ܿݏ
 (11) 0.2456 20ܾݏ (12) 0.9305 (14) 0.8705 (19) 0.8895 (11) 0.154 20ܿݏ
Note: Ranking between brackets, 1st means best in terms of performance.  
* For score names, please see appendix II (for  ܣଵ -  ܣସ).  
** For score names, please see appendix III (for  ܣହ). 
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Fig. 9. PDF for K Divergence (ܣଵ)   Fig. 10. PDF for Canberra distance (ܣଵ) 

Table 11 
 
  ݎ݈݈ܥ

 ହܣ **ܫܫ ସܣ ଷܣ ଶܣ ଵܣ *ܫ
 (1) 0.552 1ܾݏ (11) 1.0292 (1) 0.9543 (18) 0.992 (20) 1.4695 1ܿݏ
 (7) 0.6019 2ܾݏ (7) 0.9964 (6) 0.9869 (13) 0.9367 (13) 0.8004 2ܿݏ
 (5) 0.5945 3ܾݏ (16) 1.8284 (15) 1.2827 (19) 1.0103 (19) 1.1288 3ܿݏ
 (8) 0.6095 4ܾݏ (12) 1.0655 (14) 1.0893 (1) 0.4496 (2) 0.4235 4ܿݏ
 (12) 0.6813 5ܾݏ (12) 1.0655 (13) 1.0887 (2) 0.4729 (1) 0.4134 5ܿݏ
 (19) 0.9957 6ܾݏ  NA  NA (14) 0.9397 (3) 0.5489 6ܿݏ
 (11) 0.6181 7ܾݏ  NA  NA (3) 0.5146 (4) 0.5583 7ܿݏ
 (17) 0.8153 8ܾݏ  NA  NA (9) 0.8963 (6) 0.6599 8ܿݏ
 (4) 0.5819 9ܾݏ  NA  NA (20) 1.0809 (18) 0.9187 9ܿݏ

 (15) 0.7475 10ܾݏ (14) 1.1059 (9) 0.9905 (4) 0.8412 (5) 0.6312 10ܿݏ
 (14) 0.7271 11ܾݏ (6) 0.9957 (8) 0.9876 (12) 0.9316 (14) 0.8075 11ܿݏ
 (16) 0.7508 12ܾݏ (1) 0.9842 (2) 0.9719 (15) 0.9582 (17) 0.9095 12ܿݏ
 (10) 0.6179 13ܾݏ (4) 0.9951 (7) 0.987 (10) 0.9205 (12) 0.8003 13ܿݏ
 (20) 1.0059 14ܾݏ (15) 1.1166 (12) 1.031 (5) 0.8749 (7) 0.7623 14ܿݏ
 (6) 0.6017 15ܾݏ (5) 0.9952 (4) 0.9857 (11) 0.9251 (11) 0.7911 15ܿݏ
 (2) 0.5596 16ܾݏ (8) 0.9967 (16) 22.2835 (7) 0.8798 (10) 0.768 16ܿݏ
 (3) 0.573 17ܾݏ (3) 0.9902 (3) 0.9816 (8) 0.8839 (8) 0.7648 17ܿݏ
 (18) 0.8537 18ܾݏ (2) 0.9888 (5) 0.986 (6) 0.8771 (8) 0.7648 18ܿݏ
 (13) 0.6922 19ܾݏ (10) 1.0031 (10) 1.0126 (17) 0.9851 (15) 0.8921 19ܿݏ
 (9) 0.6177 20ܾݏ (9) 1.0025 (10) 1.0126 (16) 0.9695 (16) 0.8978 20ܿݏ
Note: Ranking between brackets, 1st means best in terms of performance.  
* For score names, please see appendix II (for  ܣଵ -  ܣସ).  
** For score names, please see appendix III (for  ܣହ). 
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Table 12 
 
Overview of score groups 
 Description ܣଵ 
 .஺ PDF similar to Figure 5. Performance is averageݏ

 
,2ܿݏ  ,11ܿݏ

13ܿݏ −  18ܿݏ
 

 .஻ଵ PDF similar to Figure 6. Performance is poorݏ
 

,1ܿݏ  ,3ܿݏ
,9ܿݏ  12ܿݏ

 
 .஻ଶ PDF similar to Figure 9. Performance is goodݏ

 
6ܿݏ −  8ܿݏ

 10ܿݏ
 

 .஼ PDF similar to Figure 10. Performance is bestݏ
 

 5ܿݏ & 4ܿݏ

 20ܿݏ & 19ܿݏ .஽ PDF similar to Figure 11. Performance is poorݏ
 

Although the ݏ஻ score PDF’s seem to be very much alike, they differ substantially in terms of 

performance. For example, the Pearson χ² is doing worst with a ݎ݈݈ܥ of 1.4695, whereas the K 

divergence is ranked third with a ݎ݈݈ܥ of .5489 and the PDF looks much healthier (see Figure 9). The 

 ஻ଶ. The Pearson χ², the Neyman χ², the Kumar Johnsonݏ ஻ଵ andݏ ஻ scores can be subdivided intoݏ

and the Jaccard belong to the former and the K divergence, the Taneja and the Kullback-Leibler 

belong to the latter. The ݏ஻ଵ score have in common that they all use powers in their equations, yet 

they do not consider roots (which for example the Euclidean distance does). This results in an 

asymmetry, which does not favour the performance. The ܲܨ proportions are scoring worst and the 

 proportions, however, could ܰܨ proportions are scoring best and dominates the top 3. The low ܰܨ

not prevent these scores having the 4 highest ݎ݈݈ܥ scores. The ݏ஻ଶ scores are doing much better, 

with both low ܲܨ scores and ܰܨ scores. The ݎ݈݈ܥ scores make the ݏ஻ଶ scores the second most 

successful. These scores do not use powers and instead they use natural logs in their respective 

equations. The Additive Symmetric χ² does not belong to ݏ஻ଵ, as the asymmetry is solved. Despite 

lacking in the use of a natural log, in terms of performance the score should be assigned to ݏ஻ଶ.  

The next group, the ݏ஼ scores, seem to perform the best. The Canberra curves (5ܿݏ) can be found in 

Figure 10 and only the Clark distance (4ܿݏ) generates similar patterns. The ܴܮௗ  curve peaks below 

the threshold and little significant green area is visible. The ܴܮ௣ curve is quite flat and almost 

uniform, still favouring the correct side of the threshold. They rank best in ܲܨ and ݎ݈݈ܥ and still very 

well in ܰܨ and if it weren’t for the unfair asymmetry of the ݏ஻ଵ scores, they would have done even 

better. One common feature, which they share with the ݏ஻’s (except for the Jaccard), is the level of 

normalisation, which is different from the ݏ஺’s. The division in the ݏ஼’s takes place on the individual 

level, implying that the division is done before the summation, whereas for the ݏ஺’s the division is 
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done after the summation(s). This is, for instance, the only distinction between the Canberra and the 

Bray-Curtis distance.  

The two remaining scores, the ݀஽ scores, are the Pearson’s ρ (19ܿݏ) and the Cosine similarity (20ܿݏ). 

The equations appear complicated, but by the use of some math tricks, one can easily prove that 

these scores are fairly similar. Hence the similar curves (see Figure 11 for the Cosine similarity). The 

ௗܴܮ   curve has three peaks, of which one is above the threshold, located at the same spot as one of 

the ܴܮ௣  peaks. The other ܴܮ௣ peak is below the threshold. Seemingly, these scores are not of great 

value.  

The results for the first dataset show a considerable diversity in score behaviour and performance. 

They also suggest that the ݀஼  scores, the Canberra and the Clark distances, have the best 

performances. Whether or not this holds for the remaining datasets as well, will be discussed next. 

 

Fig. 11. PDF for Cosine similarity (ܣଵ)  Fig. 12. PDF for Euclidean distance (ܣଶ) 

 

3.2 Dataset ܣଶ 

The addition of more extreme values to the ܣଶ data, has changed the distributions of the ܴܮ. Figure 

12 shows the PDF’s for the ܴܮௗ   and the ܴܮ௣ for the Euclidean distance. Compared to Figure 5 the 

density appears to be shifted more towards the threshold, suggesting that the ܴܮ weakens, which 

might not come as a surprise, considering that the original data is not as coherent anymore. All of 

the ݏ஺ scores for dataset ܣଶ have reacted similarly as for dataset ܣଵ. The ܴܮ௣ curve above the 

threshold is flatter and both curves below the threshold are higher compared to the pdfs under ܣଵ. 

Apart from the expected rise in ܲܨ and ܰܨ proportions, the PDF’s have not remarkably changed. In 

fact, the ݎ݈݈ܥ of these scores have improved from an average ranking of 10.375 in ܣଵ to 9 in ܣଶ. The 

 .஻ଵ score PDF’s preserve their shapes, except for the Jaccard, which looks slightly more like a ݀஽ݏ
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Just like the ݏ஺ scores, the ݀஻ଵ peaks have become higher and the LRs higher than 1 have decreased. 

The ݎ݈݈ܥ scores are still as poor, ranking once again last (Jaccard is ranking 15th). Also, the ݏ஻ଶ scores 

appear to have been affected differently among each other. The K divergence now looks more like a 

 ௣ peak is centred around 1 and it is now dropping eminently from 3rd to 14thܴܮ ஺ , with which theݏ

place in the ݎ݈݈ܥ ranking. The Kullback-Leibler turns out to be more like a ݏ஽ and has undergone the 

same shift towards the threshold as was seen before. Only the Taneja and the Additive Symmetric χ² 

come out well. Despite the lower ܴܮ’s above the threshold, the shapes remain relatively similar, 

keeping the peaks on the right sides, except for that ܴܮௗ  bump right under the ܴܮ௣ peak. The Taneja 

ranks 3rd in the ݎ݈݈ܥ and the Additive Symmetric χ² ranks 4th.  

All data considered, the Canberra and the Clark distance appear to be most suited again. The curves 

are a bit jerkier above the threshold, yet the peaks have not become as sharp as for the previously 

discussed scores. The ܲܨ and ܰܨ proportions are still relatively low.  

3.3 Dataset ܣଷ −  ହܣ

The conclusion for the negative data, ܣଷ and ܣସ, can be very short: All of the scores are performing 

relatively bad. Many of the ݎ݈݈ܥ scores, 15 out of 32, are above the acceptable value of 1 and the 

misleading evidence proportions are relatively high. The lowest ݎ݈݈ܥ is .9543 for ܣଷ and .9842 for ܣସ. 

(See Table 11). The PDF’s often depict overlapping curves or sometimes behave fairly strange, e.g. 

Kulczynski distance for ܣଷ and the Clark distance for ܣସ. Despite the evasive results, the conclusion 

that either a more appropriate score measure should be found and negative data should be treated 

differently and more carefully is valuable.  

The typical ݏ஻ଵ curves are also present in the PDF’s for ܣହ, the binary data. In Figure 13 the Simpson 

similarity curves (12ܾݏ) look like the ݏ஻ଵ curves; highest peaks on the right side of the threshold with 

almost no density in between and a smaller faulty located peak beneath them. The other three 

similarities that are comparable are the Sokal&Sneath-III (6ܾݏ), the Peirce (8ܾݏ) and the Yule W 

 these are the six ,(18ܾݏ) and the Forbes-I similarity (14ܾݏ) Together with the Kulczynski-I .(10ܾݏ)

worst ranked in the ݎ݈݈ܥ list, having a score of more than .7475. There is another group of scores 

that show similar PDF’s, with one major difference. (See Figure 14 for the Manhattan PDF). The 

overall ܲܨ area is usually smaller, yet, there is an additional ܴܮௗ  peak just after the threshold. These 

scores include the Manhattan (1ܾݏ), the Euclidean (2ܾݏ), the Bray-Curtis (3ܾݏ), the Stiles (4ܾݏ), the 

Pearson-I (7ܾݏ), the Pearson-III (9ܾݏ), the Braun&Banquet (13ܾݏ), the Jaccard (15ܾݏ), the 

Driver&Kroeber (17ܾݏ) and the Sokal&Sneath-I (20ܾݏ). The Anderberg (5ܾݏ), Tarantula (11ܾݏ) and 

Eyraud (16ܾݏ) similarities are similar, yet the area above the threshold is more jerky. Together these 
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dominate the top 14 in the ݎ݈݈ܥ ranking. Most of the successful ones seem to lack the d in their 

respective equations, which is when i and j are both 0. If the average results for scores that use d 

(average rank = 11.33, average 704. = ݎ݈݈ܥ) are compared to those that do not (average rank = 9.81, 

average 6783. = ݎ݈݈ܥ) with a simple independent t-test, no significant results are found (t = -.411, df 

= 17.3, p = .686). Apparently, the inclusion or exclusion make no difference and do not necessarily 

determine the shape of the curves.  

 

 
Fig.13. PDF Simpson similarity (ܣହ)   Fig.14. PDF Manhattan distance (ܣହ) 
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4. Discussion 

My intentions were that at the end of this thesis I would have illustrated that score selection is a 

vital part of the score-based method construction phase and I would have provided insight into the 

appropriateness of scores for specific types of data. I have accomplished this by systematically 

testing different score methods on a real dataset and transformed versions of it and by analysing the 

performances based on relative statistics and graphical representations. The first intention has 

evidently been proven. There is much variation between the scores in terms of performance and 

anticipated results. The Canberra and Clark distances are outperforming the other groups of scores 

in terms of discriminating power (ݎ݈݈ܥ) and ܴܮ distributions that they produce. The variation 

between scores is compatible with the score experiments in 2.1. In just one experiment, which 

applies 4 scores in a very simple dataset, there is already difference in performance with respect to 

the anticipated result. There is also much variation between the datasets, which indicates that 

special attention should be devoted to the appropriateness of the chosen score in relation to the 

dataset that is worked with. The variation between the datasets is shown in the experiments of 2.1, 

in which the same variation between scores in different experiments explains that not every score 

will perform well in every situation. Relatively, the Euclidean distance, which is considered to be the 

most conventional one, did not appear to be very successful overall. Ertöz et al. (2003), Aggarwal et 

al. (2001) and Troyanskaya et al. (2001), as discussed in chapter 1, already told that the Euclidean 

distance is not robust against data difficulties. The original data contained many zeroes, which has 

been an obstacle for the Euclidean distance, and the transformations with added difficulties have 

not been tackled well by the Euclidean distance either. There is much to gain if proper score 

selection were not to be neglected and more conventional and unconventional scores would be 

considered more. A more suitable score leads to a more valid and reliable method, which is 

undoubtedly crucial in the forensic field and part of the objectification of strength of evidence. 

Moreover, as the ܴܮ is to be interpreted and put into context by other juridical parties, the ܴܮ 

should be handed to them without too many complicated caveats that may confuse them even 

more. The score-based approach method is by many authors acclaimed to be very promising  and 

devoting more effort to the improvement of the method is worth considering.  

The second part of the question was: Which score should be used for specific types of data? The 

Clark and Canberra distances seem to be most appropriate for this thesis’ data, which was 

continuous data, and the distances are relatively robust against extreme values. For binary data, the 

Manhattan distance is most appropriate. The results show that powers easily enhance distortions 

and are best accounted for by roots. The Clark distance, for example, is doing better than the 
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Pearson and the Neyman χ². In addition, normalisation should take place on the individual level. The 

Canberra distance is doing better than the Bray-Curtis distance. Both apply the same formula, yet 

the former normalises on the individual level and the latter on all variables at once. Therefore, it is 

wise to reconsider opting for a score that takes these two remarks about powers and normalisation 

into account. This, however, may be true for the types of data that have been used for this thesis, 

whereas other, easier types may even be beneficial for distances as the Pearson and the Neyman χ² 

and the Bray-Curtis. The Bray-Curtis, for instance, may flourish in count data as what it was originally 

designed for. (Looman & Campbell, 1960).  

Although these are some conclusive remarks, contrarily to the first part of my intentions, the second 

part does not have a conclusive answer overall. The research question encompasses many facets of 

the score-based likelihood method, i.e. many scores and data to choose from. There is not one 

universal score that can be classified as the best score for score-based ܴܮ methods which could be 

appropriate for all kinds of data, although the Clark and Canberra for continuous data and the 

Manhattan for binary data are advisable choices. 

There is yet a score to be found that is applicable for negative data. The results show that ܴܮ 

distributions become very corrupt and misleading evidence proportions are very high. None of the 

scores applied in this thesis could accurately cope with the complications that negative data 

introduces. Because ܣସ was a combination of extreme values and negative data, little could be said 

about the interaction effect, as these results were even more distorted. It is not unexpected that this 

type of data is difficult to manage. However, the selection of 20 scores was not sufficient to find at 

least one acceptable score. Research into the mathematics of other scores should help to identify 

the right score. Another surprising result was that the ܴܮ’s remained relatively low. Hardly could 

they ever get over a ܴܮ of 50, which is only in the second lowest verbal scale that is maintained by 

the NFI. There are two main reasons that account for this. Firstly, it is most probably a result of the 

quality of the data, which forms score distributions (ܧ௪ and ܧ௕) that are rather similar. 

Consequently, the numerator and the denominator of the ܴܮ differ to a lesser extent, resulting in 

low ܴܮ’s. Secondly, in general score-based approached to the ܴܮ method tend to provide lower 

 s. Since all information is reduced to 1 score, there is a loss of information which leads to a’ܴܮ

decrease in the strength of evidence.  

As the results lead to the conclusion that score performance relies on the type of data, this is in turn 

a caution for the rest of the conclusions that could be drawn. The results may differ in other types of 

data and more research is necessary. During the final stage of this thesis, the procedure was also run 

for another type of real data that has just recently been made accessible by the NFI, used in drugs 
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comparisons. Some results were similar, for example the Canberra and the Clark distance doing 

relatively well and the ݏ஼ scores doing relatively poor. Other results were very different, e.g. the 

Pearson’s ρ succeeded remarkably, which is in contrast with this thesis’ results. It indicates that 

much is left to be discovered on the behaviour of scores in an environment as the forensic fields that 

holds a considerable diversity of data types. This research could be repeated with other types of real 

data, such as categorical data, non-sparse data, high-dimensional data and oddly distributed data. 

Additionally, simulated data enables the regeneration of results. A systematic and repetitive process 

will provide the forensic world with more valuable information on the behaviour of scores in the 

score-based ܴܮ method.  

This thesis is one of the first works that has systematically tested several score-based likelihood ratio 

methods and the results are rewarding. It has shown that there is variability in performance 

between a handful of score-based likelihood ratio methods and between a handful of data settings. 

Hopefully, more researchers will continue to bring in more knowledge of score behaviour and 

performance in various likelihood ratio method environments.   
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Appendix I: Verbal Scale of LR 

Verbal Scale of Likelihood Ratios maintained by NFI (2016) 
Values* of LR Verbal equivalent (two options of phrasing are suggested) 

1-2 
 
The forensic findings provide no assistance in addressing the 
issue. 

2 – 10  
 
The forensic findings are slightly more probable given one 
proposition relative to the other. 

10 – 100 
 
…are more probable given…proposition...than proposition... 

100 – 10,000 

 
…are much more probable given… proposition...than 
proposition... 
 

10,000 – 1,000,000  …are very much more probable given… proposition...than proposition... 

1,000,000 and above 

 
…are extremely more probable given… proposition...than 
proposition... 
 

* Likelihood ratios corresponding to the inverse (1/X) of these values (X) will express the 
degree of support for the specified alternative compared to the first proposition. 
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Appendix II: Continuous Scores 

In-text the continuous scores are referred to as ܿݏ’s. All formulas in this list are distances, except for 

the Cosine similarity (20ܿݏ). ܺ and ܻ are the two measurements being compared to each other and 

݊ is the number of variables a measurement has, which is 7 in this thesis.  

1. Pearson χ²   ∑ (௑೔ି௒೔)మ

௒೔

௡
௜ୀଵ  

2. Chebyshev   ݉ܽݔ௜| ௜ܺ − ௜ܻ| 

3. Neyman χ²   ∑ (௑೔ି௒೔)మ

௑೔

௡
௜ୀଵ  

4. Clark    ට∑ ቀ
|௑೔ି௒೔|

௑೔ା௒೔
ቁ

ଶ
௡
௜ୀଵ  

5. Canberra   ∑ |௑೔ି௒೔|

௑೔ା௒೔

௡
௜ୀଵ  

6. K divergence  ∑ ௜ܺln 
ଶ௑೔

௑೔ା௒೔

௡
௜ୀଵ  

7. Taneja   ∑ ቀ
௑೔ା௒೔

ଶ
ቁ௡

௜ୀଵ ln ൬
௑೔ା௒೔

ଶඥ௑೔௒೔
൰ 

8. Kullback-Leibler  ∑ ௜ܺ ln
௑೔

௒೔

௡
௜ୀଵ  

9. Kumar Johnson  ∑ ቆ
൫௑೔

మି௒೔
మ൯

మ

ଶ(௑೔௒೔)
య
మ

ቇ௡
௜ୀଵ  

10.  Additive Symmetric χ² ∑ (௑೔ି௒೔)మ(௑೔ା௒೔)

௑೔௒೔

௡
௜ୀଵ  

11.  Minkowski ܮଷ  ඥ∑ | ௜ܺ − ௜ܻ|ଷ௡
௜ୀଵ

య  

12.  Jaccard   
∑ (௑೔ି௒೔)మ೙

೔సభ

∑ ௑೔
మ೙

೔సభ ା∑ ௒೔
మ೙

೔సభ ି∑ ௑೔௒೔
೙
೔సభ

 

13.  Euclidean   ඥ∑ | ௜ܺ − ௜ܻ|ଶ௡
௜ୀଵ  
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14.  Tanimoto   
∑ ௑೔

೙
೔సభ ା∑ ௒೔

೙
೔సభ ିଶ ∑ ୫୧୬(௑೔,௒೔)೙

೔సభ

∑ ௑೔
೙
೔సభ ା∑ ௒೔

೙
೔సభ ି∑ ୫୧୬(௑೔,௒೔)೙

೔సభ
 

15.  Avg(ܮଵ,    (ஶܮ
∑ |௑೔ି௒೔|ା௠௔ ೔|௑೔ି௒೔|೙

೔సభ

ଶ
 

16.  Kulczynski   
∑ |௑೔ି௒೔|೙

೔సభ

∑ ୫୧୬(௑೔,௒೔)೙
೔సభ

 

17.  Manhattan   ∑ | ௜ܺ − ௜ܻ|௡
௜ୀଵ   

18.  Bray-Curtis (Sørenson) 
∑ |௑೔ି௒೔|೙

೔సభ

∑ (௑೔
೙
೔సభ ା௒೔)

 

19.  Pearson ρ   

ଵି
∑ ൬೉೔ష

∑ ೉
ಿ ൰൬ೊ೔ష

∑ ೊ
ಿ ൰೙

೔సభ

ඨቆ൬೉೔ష
∑ ೉
ಿ ൰

మ
ቇቆ൬ೊ೔ష

∑ ೊ
ಿ ൰

మ
ቇ

ଶ
∙ 100 

    
ଵି

೎೚ೡ(೉,ೊ)

ඥೡೌೝ(೉)∙ೡೌೝ(ೊ)

ଶ
∙ 100 

20.  Cosine   
∑ ௑೔௒೔

೙
೔సభ

ට∑ ௑೔
మ೙

೔సభ ට∑ ௒೔
మ೙

೔సభ

 

              

Please note that sometimes data causes technical problems for some scores. The following issues 
were found and the corresponding treatments were implemented: 

1) 0 divided by 0;    This is treated as 0 
2) Anything else divided by 0;  The 0 is replaced by 1݁ି଴ସ  
3) 0 log0;     This is treated as 0 
4) Log of 0;   The 0 is replaced by 1݁ି଴ସ  
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Appendix III: Binary Scores 

In-text the continuous scores are referred to as ܿݏ’s. The first 3 formulas in this list are distances and 

the rest are similarity measures. The two measurements ܺ and ܻ are first transformed into ܽ, ܾ, ܿ 

and ݀. Here ܽ is the number of variables that are both present in ܺ and ܻ, ܾ is the number of 

variables that is only present in ܺ, ܿ is the amount of variables that is only present in ܻ and ݀ is the 

amount of variables that are absent in both ܺ and ܻ. Because there are 7 variables, ܽ + ܾ + ܿ +

݀ =  7, which is in turn ݊. 

1. Manhattan   ܾ + ܿ 

2. Euclidean   √ܾ + ܿ 

3. Bray-Curtis   ௕ା௖

ଶ௔ା௕ା௖
 

4. Stiles    logଵ଴
௡ቀ|௔ௗି௕௖|ି 

೙
మ

ቁ
మ

(௔ା௕)(௔ା௖)(௕ାௗ)(௖ାௗ)
 

5. Anderberg   ఙିఙᇲ

ଶ௡
 

ߪ      = max(ܽ, ܾ) + max(ܿ, ݀) + max(ܽ, ܿ) + max(ܾ, ݀) 

ᇱߪ      = max(ܽ + ܿ, ܾ + ݀) + max (ܽ + ܾ, ܿ + ݀) 

6. Sokal & Sneath-III  ௔ାௗ

௕ା௖
 

7. Pearson-I   ௡(௔ௗି௕ )మ

(௔ା௕)(௔ା௖)(௕ାௗ)(௖ାௗ)
= ߯² 

8. Peirce   ௔௕ା௕௖

௔௕ାଶ௕௖ା௖ௗ
 

9. Pearson-II   ට ఞ²

௡ାఞ²
 

10.  Yule w   √௔ௗି√௕௖

√௔ௗା√௕௖
 

11.  Tarantula   ௔(௖ାௗ)

௖(௔ା௕)
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12.  Simpson   ௔

୫୧୬ (௔ା௕,௔ା௖)
 

13.  Braun & Banquet  ௔

୫ୟ୶ (௔ା௕,௔ା௖)
 

14.  Kulczynski-I   ௔

௕ା௖
 

15.  Jaccard   ௔

௔ା௕ା௖
 

16.  Eyraud    ௡²(௡௔ (௔ା௕)(௔ା௖))

(௔ା௕)(௔ା௖)(௕ାௗ)(௖ାௗ)
 

17.  Driver & Kroeber  ௔

ଶ
ቀ

ଵ

௔ା௕
+

ଵ

௔ା௖
ቁ 

18.  Forbes-I   ௡௔

(௔ା௕)(௔ା௖)
 

19.  Fager & McGowan ௔

ඥ(௔ା௕)(௔ା௖)
−

୫ୟ୶ (௔ା௕,௔ା௖)

ଶ
 

20.  Sokal & Sneath-I  ௔

௔ାଶ௕ାଶ௖
 

             

Please note that sometimes data causes technical problems for some scores. The following issues 
were found and the corresponding treatments were implemented: 

1) 0 divided by 0;    This is treated as 0 
2) Anything else divided by 0;  The 0 is replaced by 1݁ି଴ସ  
3) 0 log0;     This is treated as 0 
4) Log of 0;   The 0 is replaced by 1݁ି଴ସ  
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Appendix IV: PDF’s of ࡾࡸ’s for ࡭૚ 
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Appendix V: PDF’s of ࡾࡸ’s for ࡭૛ 
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Appendix VI: PDF’s of ࡾࡸ’s for ࡭૜ 
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Appendix VII: PDF’s of ࡾࡸ’s for ࡭૝ 
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Appendix VIII: PDF’s of ࡾࡸ’s for ࡭૞ 
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