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Abstract 

 

When machine learning techniques are applied to neuroimaging brain data, some type of 

dimension reduction is usually conducted before training a classifier, in order to avoid 

overfitting and therefore improving the generalization ability of the model. Herewith, it is 

often assumed that dimension reduction can increase classification accuracy compared to 

when whole-brain data are being used. Yet, previous studies have shown that when a Support 

Vector Machine (SVM) is used as a classifier, feature selection does not necessarily improve 

classification accuracy compared to whole-brain analysis. However, feature selection methods 

are univariate techniques, which do not take the relationships between the original variables 

into account. In contrast, feature extraction methods are multivariate techniques that take 

interactions between the input variables into account when constructing new features. Since 

strong relationships between voxels are known to exist within neuroimaging data, it is 

hypothesized and evaluated in the current study that feature extraction might be able to 

increase classification accuracy compared to whole-brain analysis. 

In this study, four common feature extraction methods are compared with whole-brain 

analysis in terms of classification performance: (1) Principal Component Analysis (PCA), (2) 

Independent Component Analysis (ICA), (3) Partial Least Squares Regression (PLS-R) and 

(4) Principal Covariates Regression (PcovR). To demonstrate the effect, data regarding seven 

neuroimaging properties that are believe to be related to Alzheimer were used to distinguish 

between people with Alzheimer’s disease (AD) and healthy controls (HC’s). 

The results demonstrated that feature selection, and then especially PLS-R, is able to 

outperform whole-brain analysis in terms of classification performance. This pattern of 

results, however, was only observed for some but not all neuroimaging properties used.  

Among the feature extraction methods, PLS-R and PCA were the most stable and best 

performing techniques. However, PLS-R needed far less extracted components to reach its 

maximum classification accuracy, compared to PCA, and was the best performing technique 

for two of the seven datasets. In general, whole-brain analysis performs stable in terms of 

classification accuracy across a range of neuroimaging modalities. However, feature 

extraction can (modestly) increase classification accuracy compared to whole-brain analysis, 

but it depends on the neuroimaging modality that is adopted.
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Section 1. Introduction 

 

Machine learning techniques, also called Multivariate Pattern Analysis (MVPA) techniques, 

have found their way into neuroimaging research for some time now. The goal of machine 

learning studies using neuroimaging data is often to train a classifier that can differentiate 

between two groups, like, for example, patients and healthy controls (HC). To achieve this 

goal, the assumption is made that relevant information that can discriminate between these 

groups is hidden in (the relationships between) various variables, such as activation levels in 

different areas of the brain (Linden, 2012). An illness which has received a lot of attention 

within this type of neuroimaging research is Alzheimer’s disease (AD). For example, using a 

support vector machine (SVM) as classifier, Yang et al. (2011) showed that structural MRI-

data can be used to distinguish between people with AD, mild cognitive impairment (MCI) 

and HC’s. Like other studies within this field, these authors, however, stressed that 

methodological improvement is still necessary, since the high-dimensional nature of 

neuroimaging data poses serious methodological challenges that have to be addressed 

properly. In most classification studies that use neuroimaging data, the number of variables 

greatly outnumbers the number of cases, which is often referred to as the small-n-large-p 

problem or the curse of dimensionality (James, Witten, Hastie, & Tibshirani, 2015). As a 

result, without some type of selection of the most relevant features, a machine learning model 

has the risk of ‘overfitting’ the data. In that case, the predictive model becomes too much 

tailored towards the oddities and random noise in the training sample at hand rather than 

reflecting characteristics from the overall population, which may result in a model with a 

poor predictive - and therefore generalization - ability; this implies that the learning model is 

not suited to obtain accurate predictions for novel subjects. 

In view of the above, some type of dimension reduction is often applied before fitting a 

predictive model to neuroimaging data (Mwangi, Tian, & Souares, 2014). However, whether 

dimension reduction truly improves classification accuracy (by preventing overfitting of the 

classifier) may depend on the machine learning classifier used. For example, a SVM, which is 

a kernel method, is known to be able to deal with the high-dimensionality of neuroimaging 

data. This is because a SVM classifier searches for a solution in a kernel space, which implies 

a reduction of the solution space when data are high-dimensional. Indeed, in that case, the 

number of parameters that has to be estimated is equal to the number of (non-zero) inner 

products between observations, instead of being equal to the number of predictors (James et 

https://en.wikipedia.org/wiki/Predictive_inference
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al., 2015). In other words, the number of parameters of a SVM is related to the number of 

observations, instead of to the number of variables, which is an advantageous feature in the 

small n-large p case. It could therefore be stated that, when there are less observations than 

variables, which is often true for neuroimaging data, a SVM implicitly reduces the 

dimensionality of the data (Chu et al., 2012) in an effective way such that a good 

classification performance can be obtained. Because of this, some promising results have been 

obtained using whole-brain neuroimaging data as input for a SVM classifier. For example, up 

to 96% of AD patients were correctly classified (AD versus HC), using whole-brain images as 

input for a SVM (Kloppel et al., 2008). Magnin et al. (2008) provided similar efforts, by also 

using a SVM classifier to distinguish people with AD from elderly controls. Using whole-

brain structural gray matter MRI data, the authors reached classification accuracy’s as high as 

94.5%. 

Although, when using a SVM as a classifier, dimension reduction may not be necessary 

to prevent overfitting, doing so can still be beneficial. Aside from practical advantages, like 

speeding up the testing process and enhancing the interpretation of the results (i.e., only 

having to look at a limited number of parameters/variables), dimension reduction may also 

improve classification accuracy (Mwangi et al., 2014). In the literature, two forms of 

dimension reduction are encountered often: feature selection and feature extraction. 

 

1.1 Feature selection 

 

A first way to reduce the number of input features is feature selection, in which a (small) 

subset of the features is selected and used as input for a classifier algorithm. It is often 

assumed that applying feature selection enhances classification accuracy in neuroimaging 

classification studies, because doing so can reduce noise and may increase the 

contrast/differences between the groups. But contrary to popular belief, Chu et al. (2012) 

showed that when a SVM is used as a classifier, feature selection methods do not necessarily 

improve classification accuracy when compared to using whole-brain structural MRI-data. In 

their study, the classification performance only improved when a priori information in the 

form of regions of interest (ROI’s) related to the problem under study (i.e., AD and MCI in 

this case) was used to select the features. The authors stressed that when the sample size of 

the training set is large enough, feature selection without the use of a priori information does 
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not lead to higher classification accuracies compared to when no form of feature selection is 

used. In other words, due to the insensitivity of SVM’s classification accuracy to high-

dimensionality, it appeared not to matter whether whole-brain data was used as input features 

or whether just a small subset of those input features were adopted. Furthermore, Nilsson, 

Pena, Björkegren, & Tegnér (2006) evaluated several feature selection methods regarding 

their ability to improve the classification performance of a SVM using high-dimensional data, 

and found that none of the feature selection methods improved SVM accuracy. These results 

may indicate that the regularization step within the SVM itself is sufficient to obtain a good 

classification performance and that dimension reduction therefore is not essential. 

However, feature selection has some drawbacks when it comes to extracting 

information from high-dimensional data for classification purposes. First of all, feature 

selection techniques are said to be univariate. That is, they do not take the relations between 

features into account when selecting the features. Especially in neuroimaging data, in which 

strong relationships between (neighboring) voxels are known to exist, not taking these 

relations between the input features into account could lead to ignoring aspects of the data 

crucial for classification. Another pitfall of feature selection techniques is that a lot of 

information from the original data is discarded. When a subset of 100 voxels is taken from an 

original set of 200.000 voxels, a lot of (possibly useful) information is lost in the process. 

Because of these drawbacks of feature selection strategies, researchers instead often adopt 

feature extraction techniques to perform dimension reduction. 

 

1.2 Feature extraction 

 

A second, and maybe better, way of reducing dimensionality is to extract new features from 

the original features, which will be referred to as feature extraction from now on. Feature 

extraction techniques use all the input features in order to construct - a smaller, limited, 

number - of new features, often called components. In this way, less information from the 

original features is lost when a subset of those newly extracted components is used for 

classification. Also, feature extraction techniques, in contrast to feature selection techniques, 

are multivariate, which means that they take relationships between the input features into 

account when constructing new features. Furthermore, when constructing new features, some 

feature extraction methods are able to use information about the classification task at hand. As 
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such, new features are extracted that, besides accounting for the multivariate relations 

between the voxels, supposedly have a good (better) predictive ability. 

In light of the above, the goal of this thesis is to examine whether feature extraction can 

improve classification accuracy when compared to using whole-brain data. The aim of the 

classification is to distinguish between two experimental groups (AD vs HC) as accurate as 

possible. For the classification task, an SVM classifier will be adopted and features from 

(f)MRI data will be used. In order to find out whether or not using feature extraction before 

fitting a SVM classifier improves classification, in this study, a number of feature extraction 

techniques will be applied to various types of high-dimensional neuroimaging data. The 

following feature extraction techniques will be used: Principal Component Analysis (PCA), 

Independent Component Analysis (ICA), Partial Least Squares Regression (PLS-R) and 

Principal Covariates Regression (PcovR). 

 

1.2.1 Principal Component Analysis (PCA) 

 

A commonly adopted method for feature extraction is Principal Component Analysis (PCA), 

in which components are constructed that maximally explain the (variance in the) original 

input features. PCA decomposes a given data matrix 𝑿, a 𝑛 (cases) by 𝑝 (variables) matrix, 

as: 

 

 𝑿 = 𝑨𝑩𝑻,         (1.1) 

 

where 𝑨 is a 𝑛 by 𝑧 matrix containing the component scores, 𝑩 is a 𝑝 by 𝑧 matrix containing 

the loadings of the original variables on the components, 𝑩𝑻 (𝑧 by 𝑝) denotes the transpose of 

matrix 𝑩 and 𝑧 indicates the number of components. 𝑨 and 𝑩 can be obtained by means of a 

Singular Value Decomposition (SVD; ten Berge, 1993). 

PCA has already been extensively used as a tool for dimension reduction in 

neuroimaging studies. For example, Koutsoleris et al. (2009) applied PCA to whole-brain 

grey matter data, in order to discriminate patients who were at risk for psychosis from HC’s. 

Using features describing neuroanatomical brain-structures, these authors reached 

classification accuracies around 90%. PCA was also used by Zhu et al. (2008), who proposed 



5 
 

and applied a resting-state fMRI based classifier in order to distinguish ADHD children from 

normal controls. By using PCA in combination with a machine learning classifier, they 

obtained classification accuracies of 85%. 

While PCA is a popular tool for dimension reduction in neuroimaging studies, it comes 

with a couple of drawbacks. First of all, PCA constructs components that follow a Gaussian-

like unimodal distribution. In classification studies, however, predictor variables that follow a 

Gaussian/unimodal distribution might not be optimally suited for distinguishing between two 

different groups. Ideally, a predictor variable that discriminates well between groups should 

follow a multi-modal distribution with distinct peaks, one for each group. Also, there is no 

guarantee that the components that maximally explain the original variables (in terms of 

variance) will also be (maximally) related to the response variable (i.e., in our case, the 

variable indicating the groups). This may happen as PCA is an unsupervised learning method, 

which means that it does not take the response variable into account when constructing the 

components. Even when the PCA components to use for classification are selected by means 

of group information (e.g., taking the PCA components with the largest absolute univariate t-

value when predicting the grouping variable), something that will be done in this study, the 

components itself are still constructed without the use of the response variable and are thus 

unsupervised. 

 

1.2.2 Independent Component Analysis (ICA) 

 

A dimension reduction technique that does not suffer from PCA’s disadvantage of only 

finding approximately normally distributed unimodal components is Independent Component 

Analysis (ICA). The aim of ICA is to retrieve independent and non-Gaussian signals 𝑺 that 

underlie a set of observed mixture signals 𝑿 (i.e., the signals in 𝑿 are linear mixtures of the 

signals in 𝑺). In particular, in ICA, the (columns of the) data matrix 𝑿 (𝑛 by 𝑝) is considered 

to be a linear combination of non-Gaussian (independent) components 𝑺 (𝑛 by 𝑧): 

 

 𝑿 = 𝑺𝑴,         (1.2) 
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where the columns of 𝑺 contain the independent components, 𝑴 (𝑧 by 𝑝) is a linear mixing 

matrix and 𝑧 denotes the number of independent components. The idea of ICA is to un-mix 

the data by estimating an un-mixing matrix 𝑾 (𝑝 by 𝑧) such that: 

 

 𝑺 = 𝑿𝑾.         (1.3) 

 

Various algorithms exists to find the underlying signals in 𝑺 through the estimation of 𝑾. 

These algorithms differ in the way they measure/approximate and maximize the non-

Gaussianity of the source signals 𝑺 (Hyvärinen, Karhunen, & Oja, 2001). A commonly 

adopted algorithm is the FastICA algorithm, which aims at maximizing the non-Gaussianity 

by means of maximizing negentropy (i.e., a normalized version of entropy), which is always 

positive and only equals zero when a random variable is Gaussian (Hyvärinen, 1999). Note 

that negentropy increases when variables become less Gaussian. 

Within the FastICA algorithm, the data are first centered by subtracting the mean of 

each variable (i.e., column) of 𝑿. The centered data 𝑿𝒄𝒆𝒏𝒕 are then ‘whitened’ by projecting 

the data onto its principal component directions: 𝑿𝒘𝒉𝒊𝒕𝒆𝒏𝒆𝒅 = 𝑿𝒄𝒆𝒏𝒕𝑲𝑻, where 𝑲 (𝑧 by 𝑝) is 

the whitening matrix. The FastICA algorithm then estimates an orthogonal rotation matrix 𝑹 

(𝑧 by 𝑧) in such a way that 𝑺 = 𝑿𝒘𝒉𝒊𝒕𝒆𝒏𝒆𝒅𝑹 = 𝑿𝒄𝒆𝒏𝒕𝑲𝑻𝑹 = 𝑿𝒄𝒆𝒏𝒕𝑾 has columns that are as 

independent and as non-Gaussian as possible. To achieve this, the matrix 𝑹 is identified that 

maximizes the negentropy approximation of the independence and non-Gaussianity of the 

columns of 𝑺. Finally, 𝑾 can be obtained as 𝑲𝑻𝑹. 

In contrast to PCA, ICA is able to retrieve multi-modal components, which are possibly 

better suited for classification than the PCA components (scores). Just as PCA, ICA has 

already been widely used in neuroimaging classification studies. To effectively distinguish 

between normal and abnormal brain tissues, Chai et al. (2010), for example, successfully 

coupled the use of ICA with a Support Vector Machine. Douglas et al. (2011) successfully 

combined ICA with several machine learning classifiers, with the aim of distinguishing 

between the brain states ‘’belief’’ and ‘’disbelief’’ using neuroimaging data. Their efforts 

produced classification accuracies as large as 92%. Another very promising study was 

conducted by Yang et al. (2011), whom applied ICA to structural MRI data and used the 

extracted ICA component scores to train a SVM to discriminate between people with 

Alzheimer’s disease (AD), mild cognitive impairment (MCI) and HC’s. They demonstrated 
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that a fully automatic method based on ICA coupled with SVM for MRI data analysis can be 

very useful in discriminating among these three groups of subjects. 

However, as is true for PCA, ICA is an unsupervised feature extraction method that 

does not take the response variable into account when deriving the components. Like for 

PCA, in this study, t-tests will be used in order to select the best ICA components for use in 

classification. Although such a procedure makes ICA somewhat supervised, the construction 

of the components is done in an unsupervised fashion nonetheless. 

 

1.2.3 Partial Least Squares Regression (PLS-R) 

 

In contrast to the unsupervised techniques mentioned thus far, supervised feature extraction 

techniques use both the predictor variables as well as the response (i.e., grouping) variable(s) 

to derive components (Mwangi et al., 2014). In doing so, one hopes that the obtained 

components are more relevant for classification than the components constructed with 

unsupervised methods. Partial Least Squares (PLS) is an often used “supervised” feature 

extraction method. Combining PLS with regression (or classification, which, in this case, 

boils down to performing regression with a categorical grouping variable as the response 

variable) is referred to as PLS-Regression (PLS-R). The main purpose of PLS-R is to build a 

linear model of the form: 

 

              𝒀 = 𝑿𝑩 + 𝑬,        (1.4) 

 

where 𝒀 is a 𝑛 by 𝑚 (response variables) response matrix (note that in our case 𝑚 = 1), 𝑿 is 

an 𝑛 by 𝑝 predictor matrix, 𝑩 is a 𝑝 by 𝑚 regression coefficient matrix, and 𝑬 (𝑛 by 𝑚) is a 

noise matrix for the model which has the same dimensions as 𝒀. To establish the model, PLS-

R estimates a weight matrix 𝑾 (𝑝 by 𝑧) for 𝑿 

 

 𝑻 = 𝑿𝑾,         (1.5) 

 

with the columns of 𝑾 being weight vectors for the columns (i.e., predictor variables) of 𝑿; 

this produces the corresponding score matrix 𝑻 (𝑛 by 𝑧), which contains the scores of the 𝑛 

cases on 𝑧 underlying “components”. Using Ordinary Least Squares (OLS) regression for 
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predicting 𝒀 based on 𝑻 results in the “regression coefficients matrix” 𝑸 (𝑧 by 𝑚), which are 

the loadings in the following decomposition of 𝒀 (with 𝑻 being the scores): 

 

 𝒀 = 𝑻𝑸 + 𝑬.          (1.6) 

 

Defining 𝑩 = 𝑾𝑸 yields: 

 

 𝒀 = 𝑻𝑸 + 𝑬 = 𝑿𝑾𝑸 + 𝑬 = 𝑿𝑩 + 𝑬.     (1.7) 

 

As such, the goal of the PLS-R algorithm is to find the 𝑾 matrix that yields features 𝑻 that 

explain 𝑿 (i.e., components 𝑻 = 𝑿𝑾) and are related to 𝒀 (i.e., 𝒀 = 𝑻𝑸). The PLS-R 

parameters can be estimated with SVD (Beaton, Dunlop, & Abdi, 2016). 

PLS-R is able to model the correlational structure between a large number of strongly 

correlated predictors while simultaneously taking also the relationships between the predictors 

and the response variable(s) into account when deriving the components (Wold, Sjöström, & 

Eriksson, 2001). PLS-R has been used successfully in various domains. For example, Menzies 

et al. (2007) used PLS-R to derive latent MRI markers from structural MRI-data that were 

associated to the performance on an inhibitory outcome task that is often used to diagnose 

obsessive compulsive disorder. Nestor et al. (2002) successfully used PLS-R to link structural 

MRI brain autonomy measures to neuropsychological test scores from people with 

schizophrenia. Although PLS-R has been designed for continuous response variables, 

evidence exists that PLS-R also yields a good classification accuracy when using a binary 

response variable and this especially in the case of high-dimensional data (Nguyen & Rocke, 

2002). 

The predictive aspect of PLS-R makes it a very useful tool to summarize the 

information contained in a large number of variables describing brain activity - as, for 

example, derived from neuroimaging scans - into a limited number of components that are 

optimally related to behavioral or diagnostic variables; as such, illnesses or brain states could 

be predicted from brain activity (Krishnan et al, 2010). Even though the above mentioned 

studies used continuous outcome variables, and thus adopted regression for their predictive 

models, the PLS-R approach can easily be extended to a classification situation. To this end, 

the grouping variables (with 𝐾 categories) should be converted in a set of (𝐾 − 1) dummy 

variables and these dummy variables should be used as criterion variables. For example, 

Lehmann et al. (2006) compared PCA with PLS-R in a classification study, in which the goal 
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was to separate people with Alzheimer from HC’s using EEG data. A comparison between the 

two different methods of dimensionality reduction resulted in a marginal advantage of PLS-R 

over PCA. 

A possible minor drawback of PLS-R is that, while it can reduce bias due to its 

supervised nature, it has the potential to increase variance (due to overfitting). This is because 

PLS-R puts a lot of emphasis (perhaps too many) on constructing components that explain the 

response variable well, and less on explaining the original predictor variables. Some even 

claim that the overall benefit of PLS-R relative to principal component regression (i.e., 

performing regression on the PCA component scores), which is an unsupervised method, 

might turn out to be negligible when used for classification (James et al., 2015). 

 

1.2.4 Principal Covariates Regression (PcovR) 

 

Principal Covariates Regression (PcovR), proposed by De Jong & Kiers (1992), is a 

dimension reduction technique that, similar to PLS-R, transforms a large set of predictor 

variables into a smaller set of components, while taking the relationships between these 

predictors and the response (i.e., grouping) variable(s) into account. When data matrix 𝑿 

contains information for 𝑛 cases on 𝑝 predictors and matrix 𝒀 contains information for the 

same 𝑛 cases on 𝑚 criteria (response variables; 𝑚 = 1 in our case), PcovR transforms the 𝑝 

predictors into 𝑧 new variables, named components, such that: 

 

 𝑿 = 𝑻𝑷𝑿 +  𝑬𝑿 =  𝑿𝑾𝑷𝑿 + 𝑬𝑿,      (1.8) 

 

where 𝑻 is a 𝑛 x 𝑧 component score matrix containing scores of the 𝑛 subjects on 

the 𝑧 components, 𝑧 indicates the number of components, 𝑷𝑿 is the 𝑧 x 𝑝 loading matrix 

which contains the loadings of the original 𝑝  predictor variables on the 𝑧 components, 𝑬𝑿 (𝑛 

x 𝑝) are the residuals of 𝑿 and 𝑾 is a 𝑝 x 𝑧 weight matrix. The response matrix 𝒀 is then 

regressed on the component scores 𝑻 (instead of on the predictors 𝑿): 

 

 𝒀 =  𝑻𝑷𝒀 +  𝑬𝒀 =  𝑿𝑾𝑷𝒀 +  𝑬𝒀,      (1.9) 

 

in which the columns of matrix 𝑷𝒀 (𝑧 x 𝑚) contain the resulting regression weights for each 

of the 𝑚 response variables and matrix 𝑬𝒀 (𝑛 x 𝑚) contains the residuals of 𝒀. The goal of 
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PcovR is to find the matrices 𝑾, 𝑷𝑿 and 𝑷𝒀 such that the following loss function is 

minimized: 

 

 𝑳 = 𝒂
‖𝑿−𝑻𝑷𝑿‖

𝟐

𝟐

‖𝑿‖
𝟐

𝟐 + (𝟏 − 𝒂)
‖𝒀−𝑻𝑷𝒀‖

𝟐

𝟐

‖𝒀‖
𝟐

𝟐  

= 𝒂
‖𝑿−𝑿𝑾𝑷𝑿‖

𝟐

𝟐

‖𝑿‖
𝟐

𝟐 + (𝟏 − 𝒂)
‖𝒀−𝑿𝑾𝑷𝒀‖

𝟐

𝟐

‖𝒀‖
𝟐

𝟐      (1.10) 

 

with ‖𝒁‖2 denoting the Frobenius norm of matrix 𝒁 (i.e., the square root of the sum of the 

squared entries of 𝒁). The PcovR algorithm first estimates 𝑾 by means of SVD. Once 𝑾 is 

determined, 𝑷𝑿 and 𝑷𝒀 can be calculated by means of multivariate multiple linear regression 

(ten Berge, 1993; Smilde, Bro, & Geladi, 2004). 

The components that PcovR extracts from high-dimensional data are linear 

combinations of the predictor variables that are constructed in such a fashion that they explain 

the predictor variables as good as possible (in terms of explained variance), but 

simultaneously allow for an optimal prediction of the response variable (i.e., R squared), a 

concept that is similar to that of PLS-R. In contrast to PLS-R, however, PcovR allows the user 

to choose to what extent both aspects (i.e., good summary of predictors versus optimal 

prediction of response variable) play a role when constructing the components, by specifying 

a weighting parameter 𝛼 (Vervloet et al., 2015). This parameter, which must be a value 

between zero and one, determines the balance between yielding a good summary of the 

predictors versus an optimal prediction of the response variable. An 𝛼-value of zero indicates 

that the focus is solely on prediction, while an 𝛼-value of one results in an optimal summary 

of the predictors (which is basically the same as principal component regression). An optimal 

𝛼-value can be determined through maximum likelihood principles (Vervloet et al., 2015), by 

means of the following formula: 

 

 𝛼𝑀𝐿 =
‖𝑿‖𝟐

𝟐

‖𝑿‖𝟐
𝟐 + ‖𝑿‖𝟐

𝟐
 (

𝜎𝐸𝑋
2

𝜎𝐸𝑌
2 )

.      (1.11) 

To obtain an optimal 𝛼𝑀𝐿-value, the variances 𝜎𝑬𝑿

2  and 𝜎𝑬𝒀

2  should be replaced by an 

appropriate estimate. An estimate for 𝜎𝑬𝑿

2  can be calculated by applying PCA to 𝑿 (the 

predictor variables) and determining the optimal number of components by, for example, 
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inspecting a scree plot, with the estimate for 𝜎𝑬𝑿

2  taken equal to the associated percentage of 

unexplained variance. The estimate for 𝜎𝑬𝒀

2  is obtained by taking the percentage of 

unexplained variance when 𝒀 (the response variable) is regressed onto 𝑿 (for more 

information, see Vervloet et al., 2015). 

Being able to specify 𝛼 makes PcovR a very flexible and therefore interesting approach. 

Moreover, PcovR‘s flexibility forms an advantage over PLS-R, according to Kiers & Smilde 

(2007). They showed that, for five different simulation settings, there always was at least one 

so called weighting-scheme of PcovR that outperformed, or at least performed as good as, 

PLS-R. While the flexibility of PcovR appears to be an advantage when compared to PLS-R, 

it does also come with the downside of having to optimize more parameters (i.e., optimal 

value of 𝛼), in order to get the best results possible for a particular data set. To the best of our 

knowledge, PcovR has not yet been used as a tool for feature extraction in a classification 

context, nor has the method been used in the context of neuroimaging data. 

 

1.3 Research questions and hypotheses 

 

The aim of the current study is to examine whether feature extraction in combination with a 

SVM classifier can improve classification accuracy in a neuroimaging classification study 

when compared to using whole-brain data. Although SVM is expected to yield good 

classification results in the context of high-dimensional data, it is hypothesized that, at least 

for some neuroimaging properties, feature extraction can improve classification accuracy 

since it may reduce the noise in the data without discarding potentially useful information, 

while also taking the multivariate nature of the variables into account. In addition, interest 

also goes to how the feature extraction techniques perform compared to one another. In this 

regard, it is hypothesized that PCA will be outperformed by ICA, because, unlike ICA, PCA 

is not able to extract multi-modal components, which are expected to be more predictive of 

the groups than unimodal (i.e., Gaussian) components. Further, it is hypothesized that PCA 

and ICA will perform better when the components are selected based on their relation with the 

grouping variable (i.e., by using t-tests) compared to when they are selected based on the 

amount of variance they explained in the original variables. Also, it is hypothesized that due 

to their supervised nature of constructing the components, PLS-R and PcovR will outperform 
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the unsupervised techniques PCA and ICA, as well as their semi-supervised t-test 

counterparts. Finally, it is hypothesized that due to its flexibility in weighting the importance 

of explaining the predictors and predicting the response, PcovR is able to outperform PLS-R. 

In the remainder of this thesis, first, the data and procedure that was is described in 

Section 2. The results from the analyses as described in the methods section are presented in 

Section 3. Section 4 summarizes and discusses the results, points to limitations of the study 

and sketches avenues for further research.
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Section 2. Methods 

 

This section describes the data that were analyzed to address the research questions (2.1), the 

procedure adopted (2.2), the SVM classifier used (2.3) and details about the application of the 

various feature extraction approaches (2.4). 

 

2.1 Data 

 

In order to examine whether feature extraction improves classification performance when 

compared to using whole-brain data, data on structural and functional neuroimaging features 

were collected from 250 participants, of which 77 (30.8%) suffered from AD and 173 (69.2%) 

were HC’s. The AD patients were scanned at the Medical University of Graz as part of a 

prospective registry on dementia (PRODEM; see also Seiler et al., 2012). Only the patients 

that were diagnosed with AD according to the NINCDS-ARDRA criteria (McKhann et al., 

1984), and for which MRI and fMRI scans were available, were used in this study. Regarding 

the HC’s, image data from the Austrian Stroke Prevention Family Study was used, which is a 

prospective single-centre community-based follow-up study with the aim of examining the 

frequency of vascular risk factors and their effects on cerebral morphology and function in the 

healthy elderly (Schouten et al., 2016).  

From the collected neuroimaging data, three properties were selected for the current 

study: two functional and one structural neuroimaging property. Regarding the structural 

neuroimaging property, gray matter values were used to distinguish between the two groups. 

These values indicate the percentage of each voxel that consists of grey matter. Since the loss 

of grey matter is strongly associated with AD, structural grey matter images are often used in 

this type of classification studies (Yang et al., 2011; Magnin et al., 2008). The second 

neuroimaging property is the correlation of each voxels’ functional resting state time course 

with the time course of the so called executive center network within the brain, which is 

expected to play a role in brain abnormalities in people with AD, although this has not been 

tested thus far. The third fMRI marker that was used is the amplitude of low-frequency 

fluctuation (ALFF), which is a resting state fMRI neuroimaging property indicating regional 

spontaneous low frequency fluctuations in brain activity measured during rest. This 
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neuroimaging property has proven its use in distinguishing between people with and without 

mild cognitive impairment (MCI), which often precedes AD (Zhao et al., 2014). 

For each of these three neuroimaging properties, data with two voxel sizes were 

extracted: voxels of size 2mm by 2mm by 2mm and voxels of size 4mm by 4mm by 4mm. 

Data with 2mm by 2mm by 2mm voxels contain more specific spatial information regarding 

brain activity, at the cost of also consisting of a lot more variables/voxels, compared to data 

with 4mm by 4mm by 4mm voxels. Both data versions of each property were used for 

classification, in order to explore whether voxel size has an influence on classification 

performance for these three neuroimaging properties. It is expected that the overall 

classification performance increases when smaller voxels are used because of the extra spatial 

information present in the data. In total, as can be seen in Table 1 in which the different data 

sets used are listed, six high-dimensional sets of variables (i.e., 3 properties × 2 voxel sizes) 

were used as predictor variables to distinguish between people with AD and HC’s. 

Additionally, since the focus in this study is on very high-dimensional data and some 

feature extraction methods (i.e., ICA, PLS-R and PcovR) cannot easily deal with such data, a 

preliminary dimension reduction step (by means of PCA) will be conducted before applying 

ICA, PLS-R and PcovR (see further). However, the possibility exists that this (negatively) 

influences the performance of ICA, PLS-R and/or PcovR, since there is no guarantee that 

PCA is the best preliminary dimension reduction technique preceding the use of these 

techniques. Therefore, in order to be able to apply ICA, PLS-R and PcovR to the original 

data, another neuroimaging property with a much smaller number of variables will be 

analyzed using the same techniques as for the other data sets. In particular, data containing the 

partial correlations (PC) between the time series of 70 functional brain areas (Schouten et al., 

2016) will also be analyzed (see Table 1). When extracting features from this additional data 

set by means of ICA, PLS-R and PcovR, no preliminary PCA dimension reduction step will 

be performed; this implies that the feature extraction techniques will be applied to the 

(unstandardized) original predictor variables instead of to the PCA component scores (see 

further). 
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Table 1 

Overview of the seven data sets used in this study 

Keyword Description Voxel size  (in 

mm) 

Number of 

variables 

ALFF2 Amplitude of low-frequency 

fluctuation (ALFF) of each voxel 

2 by 2 by 2 190.891 

ALFF4 Amplitude of low-frequency 

fluctuation (ALFF) of each voxel 

4 by 4 by 4 25.750 

EX2 Correlation of each voxel with 

executive center 

2 by 2 by 2 191.066 

EX4 Correlation of each voxel with 

executive center 

4 by 4 by 4 25.759 

MR2 Percentage of gray matter for each 

voxel 

2 by 2 by 2 432.031 

MR4 Percentage of gray matter of each 

voxel 

4 by 4 by 4 59.049 

PC Partial correlations between time 

series of 70 functional brain areas 

- 2415 

 

2.2 Procedure 

 

There are seven sets of predictor variables, all obtained from the same 250 participants, and 

one binary outcome variable (i.e., AD vs HC). Using each of these seven sets of predictor 

variables separately, the goal is to distinguish people with AD from HC’s as accurate as 

possible by means of an SVM classifier, herewith comparing whole-brain analysis to different 

types of feature extraction. More specifically, on each of the seven sets of predictor variables, 

six types of feature extraction (with whole-brain being a seventh type) were applied before 

training the SVM. The first four feature extraction methods are Principal Components 

Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares Regression 

(PLS-R) and Principal Covariates Regression (PcovR). As PCA and ICA, as opposed to PLS-

R and PcovR, derive components without taking the relationships between the predictors and 

the criterion variable into account, an improved PCA and ICA feature extraction method 

could be obtained by ranking the obtained PCA/ICA components based on their ability to 
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explain the criterion/grouping variable (i.e., based on the absolute t-value obtained when 

regressing each component on the grouping variable). As such, T-PCA and T-ICA constitute a 

fifth and sixth feature extraction approach. For each feature extraction method, the 

classification performance was evaluated for different numbers of extracted features (i.e., 

components). In the case of whole-brain analysis, no feature extraction step took place 

whatsoever, meaning that the original predictor variables were directly fed to the SVM. This 

results in the following seven (feature extraction) approaches preceding the training of the 

SVM:  

1. PCA 

2. T-PCA (PCA components selected using t-tests) 

3. ICA 

4. T-ICA (ICA components selected using t-tests ) 

5. PLS-R 

6. PcovR 

7. Whole-brain analysis (no feature extraction: taking all original predictor variables) 

 

2.2.1 General procedure 

 

The following six-step procedure was executed for each of the feature extraction approaches, 

on each of the seven datasets. Moreover, this procedure was conducted for a range of values 

(see further) of the number of components (S) that was extracted and used for classification.   

- Step 1: Split data into training set (150 subjects) and test set (100 subjects), using the 

same split for each feature extraction method, number of components S and set of 

predictor variables 

- Step 2: Apply feature extraction on the training set and select the first S components 

- Step 3: Use S new variables (scores on the 𝑆 components) from the training set to train 

the SVM 

- Step 4: Derive the component scores of the test data, using exclusively parameters 

from the training set (obtained in step 2) 

- Step 5: Predict class labels for the test set using the  component scores of the test set 

(computed in step 4) and the SVM model from the training set (obtained in step 3) 
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- Step 6: Compare the predicted class labels for the test set (step 5) with the 

actual/observed class labels of the test set to compute a measure of classification 

accuracy. 

The procedure for estimating the predicted class label for the test set in the case of whole-

brain analysis resembles the six-step procedure described above, with the main difference 

being that no feature extraction step takes place (i.e., Step 2 and 4 are omitted): the predictor 

variables are directly used to train the SVM (Step 3), and the SVM model from the training 

set is applied to the original predictor variables of the test set in order to predict the class 

labels of the test set (Step 5). 

 

2.2.2 Validation approach 

 

The procedure described in the previous subsection is called the validation approach (James et 

al., 2015). A disadvantage of the validation approach is that the obtained estimate of 

classification accuracy can be highly variable as this estimate strongly depends on how the 

observations are split randomly into a training and a test set. Therefore, in order to get a 

(more) reliable estimate of classification accuracy, the validation approach is repeated a large 

number of times and the mean of the estimates across these repetitions is taken as the final 

estimate of classification accuracy. In this study, the validation process will be repeated 100 

times (i.e., 100 different random splits of the data in training and test set). This means that for 

each of the seven (feature extraction) approaches (for each 𝑆-value) on each of the seven sets 

of predictor variables, 100 estimates of classification accuracy were obtained. To this end, 

high-performance parallel computing was utilized, in order to deal with the computational 

intensiveness of this task. A final estimate of classification accuracy per data set and feature 

extraction approach is obtained by calculating the mean across the 100 obtained estimates of 

classification accuracy. 

 

2.2.3 Classification accuracy (Step 6) 

 

To compute a measure of classification accuracy (Step 6, see above), Receiving Operating 

Characteristic (ROC) curves were constructed. A ROC curve illustrates the performance of 
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a binary classifier when its discrimination threshold is varied. Such a curve is created by 

plotting the true positive rate (sensitivity) against the false positive rate (specificity) for 

various threshold values (Hanley & McNeil, 1982). Sensitivity measures the proportion of 

positives (e.g., people with AD) that are correctly identified as such, whereas specificity 

measures the proportion of negatives (e.g., HC’s) that are correctly identified as such. The 

area under this ROC curve, referred to as the AUC-value, is equal to the probability that a 

classifier ranks - in terms of the success probability (e.g., having AD) - a randomly chosen 

positive instance (e.g., someone with AD) higher than a randomly chosen negative one (e.g., a 

HC). In other words, the area under the ROC curve represents the probability that a randomly 

chosen diseased subject is correctly marked with greater suspicion - in terms of the 

probability of being ill - than a randomly chosen non-diseased subject. 

In this study, the AUC-value was used as a measure for classification performance, 

because it automatically controls for differences in class/group sizes (i.e., number of diseased 

people and healthy controls). When class sizes are unequal, which is the case in the current 

study, a model that assigns all cases to the majority class will have a percentage agreement 

larger than 50% (i.e., about 70% in the current study). By using AUC as a measure of 

classification accuracy, this unbalanced distribution of the cases across groups is implicitly 

controlled for. AUC-values were obtained by first using the “roc”-function to construct a 

ROC plot, followed by the “auc”-function in order to get an estimate of AUC. Both R 

functions belong to the “AUC”-package (Ballings & van den Poel, 2013). 

 

2.2.4 Number of components S 

 

Mean AUC-values were derived for different values of the number of components 𝑆 used for 

classification, with this value, of course, being irrelevant for the whole-brain analysis. 

Determining the optimal number of components S to be used for classification for each 

feature extraction approach (and data set) separately is a very computationally intensive 

effort. Since cross-validation is used (see further) to determine the optimal SVM model, also 

performing cross-validation to determine the optimal value for S would result in a nested 

cross-validation (i.e., cross-validation within cross-validation), which dramatically increases 

the computational intensity and duration time of the analyses. Also, by varying S, insights 

about the influence of the number of components that are used for classification on the 
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classification performance of each approach are obtained. Therefore, the mean AUC-value for 

each feature extraction approach, on each data set, will be calculated for a range of values of 

S: 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140 and 𝑆𝑚𝑎𝑥. Note that as the 

training set always contains 150 observations, the maximal number of retained components 

𝑆𝑚𝑎𝑥 cannot be larger than 150. For some feature extraction approaches, however, 𝑆𝑚𝑎𝑥 is 

even a little bit lower (i.e., 148, 149; see further). 

 

2.2.5 Computation time 

 

Even though the focus of this study is on classification performance, the computation times of 

all analyses were measured. To this end, the elapsed time as indicated by the “system.time”-

function from the “base”-package (R Core Team, 2015) was used. The average time it took to 

perform feature extraction, the time it took to fit the SVM, as well as their combined total 

time will be presented and compared across methods (see Section 3.3). 

 

2.3 Support Vector Machine (SVM) 

 

The SVM algorithm, proposed by Vapnik (1995), has proven its use in classification studies   

in which neuroimaging data is used as input (Mourao-Miranda et al., 2005; Kloppel et al., 

2008). When confronted with training data on P predictor variables of two groups with 

respective diagnostic labels (AD and HC, for example), the SVM learning process determines 

a so called (P-1)-dimensional hyperplane that optimally separates the training cases into the 

two labelled groups. The training observations with the smallest distance to the separating 

hyperplane determine the width of the so called margin; these training observations are called 

the “support vectors” (James et al., 2015). The aim of the SVM algorithm is to find a maximal 

margin hyperplane, which is the hyperplane that has the largest distance to the nearest training 

observation (i.e., the support vectors), and thus the widest margin. 

As perfect separation of the cases into the given groups is a rather rare occurrence, some 

observations may violate the margin. An observation violates the margin when it is on the 

wrong side of the margin, or even on the wrong side of the hyperplane. The amount of 
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violations to the margin that is tolerated when fitting a SVM can be varied by means of the 

cost parameter (C). The value of the cost parameter C determines the number and severity of 

the violations to the margin and hyperplane that will be tolerated by the model. The value for 

C determines how much cost is attached to such a violation (i.e., a penalty indicating how 

undesirable a violation is). Choosing a small value for C allows for a so called soft margin 

SVM. Embracing a soft margin allows for misclassification errors to be made when fitting the 

model to the training data. In contrast, utilizing a hard margin (i.e., a high C-value) will result 

in fitting a model that allows no classification errors whatsoever. 

 

2.3.1 Training the SVM (Step 3) 

 

In the case of whole-brain analysis, the input data for the SVM is very high-dimensional, and 

the number of variables (dimensions) exceeds the number of cases by a mile. In such a high-

dimensional space, the margin is not easily violated, and the influence of C on the 

classification performance of the SVM is therefore negligible. Therefore, when using whole-

brain data as input, a SVM was fitted with a fixed value of 1 for the cost parameter C (and 

thus no cross-validation was performed to determine an optimal C). When using feature 

extraction, a SVM is fitted to the component scores derived with each of the feature extraction 

approaches instead of to the original predictor variables. In that case, the cost parameter was 

tuned by means of 5-fold cross-validation, using the “tune.svm”-function in R. Hsu et al. 

(2016) found that adopting an exponentially growing sequence of C-values yields a good 

range of parameter values. Often, exponentials of 2 are used (see, for example, Chu et al., 

2012). Therefore, in this study, the optimal value for C was chosen, by means of cross-

validation, out of the following sequence of C-values:  2−17, 2−15, 2−13, 2−11, 2−9, 2−7, 2−5, 

2−3, 2−1, 21, 23. 

As can be seen, these selected values for C are quite small (i.e., most of them are 

smaller than 1). These values were used because choosing a range of small values for C 

allows for a soft-margin SVM. As such, a certain amount of misclassification errors is 

allowed in the training set. This may be useful as allowing misclassifications in the training 

set may result in a model that generalizes better to novel data (James et al., 2015). In other 

words, it can prevent the SVM from overfitting the data and therefore may possibly yield 

more accurate predictions for the test set. In order to make a fair comparison among the 

feature extraction approaches, the process of fitting a SVM was kept identical for all feature 
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extraction approaches across all datasets and values of S. In particular, a linear kernel SVM 

was fitted to the training set. To this end, the “svm”-function in the R package “e1071” 

(Meyer et al., 2015) was used. 

 

2.3.2 Applying the SVM model to the test data (Step 5) 

 

To predict the group labels of the test cases, the SVM model that was trained on the training 

set (Step 3) was adopted. To this end, the “predict.svm”-function from the “e1071”-package 

was used. Regarding the feature extraction methods, the component scores of the test data 

were derived (see further) and the “predict.svm”-function was used in order to predict the 

class labels for the test set based on these component scores of the test data. This procedure 

was identical for all feature extraction methods, data sets and S-values. 

 

2.4 Analysis specification for the feature extraction approaches (Step 2 and Step 4) 

 

2.4.1 PCA 

 

The key assumption when using PCA for classification purposes is that often a small number 

of principal components suffices to explain most of the variability in the predictor data, as 

well as the relationships between the predictors and the response variable. While the second 

part of this assumption is not guaranteed to be true, it often turns out to be a reasonable 

assumption that gives good results in classification studies (Mwangi et al., 2014). In this 

study, PCA was applied to each set of predictor variables using the “prcomp” function 

belonging to the “stats” package (R Core Team, 2015). Variables that had a variance of zero 

in the training set were removed from both the training and the test set, as they cannot help in 

discriminating between groups. For a given neuroimaging property, PCA was performed on 

the predictor variables of the training set (𝑿𝒕𝒓𝒂𝒊𝒏), which were first centered (i.e., a mean of 

zero) and normalized (i.e., a variance of one) based on the variable means and variances in the 

training set (resulting in 𝑿𝒕𝒓𝒂𝒊𝒏
𝒔𝒕𝒂𝒏 ). Regarding the PC data, PCA was performed to 𝑿𝒕𝒓𝒂𝒊𝒏 (not 

standardized). 
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Performing PCA on the pre-processed training data (𝑿𝒕𝒓𝒂𝒊𝒏
𝒔𝒕𝒂𝒏 ) resulted in scores on 150 

components; the scores and loadings of this PCA analysis are indicated by 𝑨𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨  and 𝑩𝒕𝒓𝒂𝒊𝒏

𝑷𝑪𝑨 , 

respectively (i.e., 𝑿𝒕𝒓𝒂𝒊𝒏
𝒔𝒕𝒂𝒏 = 𝑨𝒕𝒓𝒂𝒊𝒏

𝑷𝑪𝑨 (𝑩𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨 )

𝑻
). Note that the maximum number of components 

that can be extracted with PCA cannot exceed the number of training cases, which is always 

150 here, nor the number of variables (>25,000 here). This implies that for PCA, 𝑆𝑚𝑎𝑥= 150. 

Selecting the most useful S components from these 150 components for training the SVM 

classifier was done in two ways: with and without the use of t-tests. For PCA without the use 

of t-tests, the natural order of the components that PCA provides, which is based on the 

amount of explained variance of each component, was used. In particular, the scores 

corresponding to these S components, which can be found in the first S columns of 𝑨𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨 , 

were fed to the SVM. When the PCA components were selected using t-tests (T-PCA), an 

independent samples t-test was conducted for each component in the training set separately 

with group membership as the independent variable. Next, the components were ordered, 

from largest to smallest, based on their absolute t-values, after which the first S components 

from the training set were selected. The scores associated with the S selected components 

(i.e., the first S columns of the ordered 𝑨𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨 ) were used to train the SVM. 

After the SVM was fitted to the training data, the component scores for the test data 

(𝑨𝒕𝒆𝒔𝒕
𝑷𝑪𝑨) were calculated, herewith following the same steps (and parameters) used to compute 

the component scores in the training set. To this end, the original variables in the test set 

(𝑿𝒕𝒆𝒔𝒕) were first centered and normalized, herewith using the means and variances of the 

variables in the training set (resulting in 𝑿𝒕𝒆𝒔𝒕
𝒔𝒕𝒂𝒏). Component scores of the test data (𝑨𝒕𝒆𝒔𝒕

𝑷𝑪𝑨) 

were then derived as: 

 

𝑨𝒕𝒆𝒔𝒕
𝑷𝑪𝑨 = 𝑿𝒕𝒆𝒔𝒕

𝒔𝒕𝒂𝒏𝑩𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨 .        (2.1)  

 

Finally, the first S component scores from 𝑨𝒕𝒆𝒔𝒕
𝑷𝑪𝑨 were used to make predictions for the test set. 

Regarding T-PCA, the component scores of the test set were first ordered, herewith using the 

t-values from the training set; again, the test set labels were predicted based on the first 𝑆 

(ranked) component scores. 
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2.4.2 ICA 

 

In this study, the FastICA algorithm (Hyvärinen, 1999) was adopted to reduce the number of 

features by means of ICA. To this end, the “icafast” function from the “ica” package (Helwig, 

2015) was used. Since ICA is not able to deal with very high-dimensional data, often a 

preliminary dimension reduction step is applied before using ICA. For example, Castro et al. 

(2011), who applied ICA to fMRI data in order to classify schizophrenia patients, used PCA 

to reduce the dimensionality of their data before applying ICA. This approach was also 

embraced in the current study (except for the PC data, in which ICA was directly applied to 

𝑿𝒕𝒓𝒂𝒊𝒏: 𝑿𝒕𝒓𝒂𝒊𝒏 = 𝑺𝒕𝒓𝒂𝒊𝒏
𝑰𝑪𝑨 𝑴𝒕𝒓𝒂𝒊𝒏

𝑰𝑪𝑨 ). This means that ICA was performed on the 150 PCA 

components from the training set (𝑨𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨 ); the source signals and mixing matrix obtained by 

ICA are indicated as 𝑺𝒕𝒓𝒂𝒊𝒏
𝑰𝑪𝑨  and 𝑴𝒕𝒓𝒂𝒊𝒏

𝑰𝑪𝑨 , respectively (i.e., 𝑨𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨 = 𝑺𝒕𝒓𝒂𝒊𝒏

𝑰𝑪𝑨 𝑴𝒕𝒓𝒂𝒊𝒏
𝑰𝑪𝑨 ). The 

importance of each PCA component (i.e., explained variance) is reflected by its variance. 

Therefore, in order to retain information about the importance of each PCA component when 

classifying the training cases, the PCA component scores 𝑨𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨  were not standardized before 

applying ICA to them. Standardizing the data before ICA, which is a common practice, would 

imply that only the eigenvectors, and not the eigenvalues, would be taken into account when 

performing ICA, which may result in the loss of information that may be relevant for the 

classification. 

Similar as to with PCA, the selection of S ICA component scores (𝑺𝒕𝒓𝒂𝒊𝒏
𝑰𝑪𝑨 ) was done 

with (T-ICA) and without (ICA) the use of t-tests. When the first S ICA component scores 

needed to be derived without the use of t-tests, only S ICA components were extracted from 

the PCA component scores (i.e., 𝑨𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨 = 𝑺𝒕𝒓𝒂𝒊𝒏

𝑰𝑪𝑨 𝑴𝒕𝒓𝒂𝒊𝒏
𝑰𝑪𝑨 + 𝑬, with the noise 𝑬 pertaining to 

the non-extracted components and 𝑺𝒕𝒓𝒂𝒊𝒏
𝑰𝑪𝑨  only containing S columns), which were then used 

for classification. In the case of using t-tests, the maximum number of ICA components 

(𝑆𝑚𝑎𝑥) was extracted from the PCA component scores of the training set (i.e., 𝑨𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨 =

𝑺𝒕𝒓𝒂𝒊𝒏
𝑰𝑪𝑨 𝑴𝒕𝒓𝒂𝒊𝒏

𝑰𝑪𝑨 , with 𝑺𝒕𝒓𝒂𝒊𝒏
𝑰𝑪𝑨  now containing 𝑆𝑚𝑎𝑥 columns).

1
 Next, the ICA components were 

sorted based on their absolute t-value obtained with an independent samples t-test with group 

membership as the dependent variable. Finally, the component scores associated with the first 

S (ranked) ICA components (i.e., the first S ranked columns of 𝑺𝒕𝒓𝒂𝒊𝒏
𝑰𝑪𝑨 ) were used to train the 

SVM classifier. 

                                                           
1
 The maximum amount of useful components that ICA could extract from the 150 PCA component scores was 

148, as extracting 149 or 150 components resulted in all ICA components being very similar to each other. 
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The ICA component scores for the test set were derived as: 

 

 𝑺𝒕𝒆𝒔𝒕
𝑰𝑪𝑨 = 𝑨𝒕𝒆𝒔𝒕

𝑷𝑪𝑨𝑾𝒕𝒓𝒂𝒊𝒏
𝑰𝑪𝑨 ,         (2.2) 

 

where 𝑨𝒕𝒆𝒔𝒕
𝑷𝑪𝑨 are the PCA component scores for the test set (see Section 2.4.1), and 𝑾𝒕𝒓𝒂𝒊𝒏

𝑰𝑪𝑨  is 

the estimated ICA un-mixing matrix from the ICA model fitted to the training set.
2
 Note that 

in the case of the PC data, the ICA component scores for the test set 𝑺𝒕𝒆𝒔𝒕
𝑰𝑪𝑨  were obtained by 

multiplying the original test data with 𝑾𝒕𝒓𝒂𝒊𝒏
𝑰𝑪𝑨  (i.e., 𝑺𝒕𝒆𝒔𝒕

𝑰𝑪𝑨 = 𝑿𝒕𝒆𝒔𝒕𝑾𝒕𝒓𝒂𝒊𝒏
𝑰𝑪𝑨 ). The first S ICA 

components scores for the test data (i.e., the first S columns of 𝑺𝒕𝒆𝒔𝒕
𝑰𝑪𝑨 ) were used to predict the 

class labels for the test cases, herewith using the SVM model of the training set. In the case of 

T-ICA, the 𝑆𝑚𝑎𝑥 ICA component scores of the test set were ordered using the t-values derived 

from the training set, after which the first S components were selected (i.e., the first S columns 

of the ordered 𝑺𝒕𝒆𝒔𝒕
𝑰𝑪𝑨 ) for predicting the test labels. 

 

2.4.3 PLS-R 

 

PLS-R aims to find latent variables that capture the information in the predictor variables and 

simultaneously predict the response variable (Krishnan et al., 2010). In this study, PLS-R was 

performed using the “plsr” function from the “pls” package (Mevik, Wehrens, & Liland, 

2013). In order to reduce the computational effort and to keep the results comparable across 

the used feature extraction methods, PLS-R was applied to the PCA components scores from 

the training set (𝑨𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨 ), except for the PC data where the original unstandardized variables 

were used (𝑿𝒕𝒓𝒂𝒊𝒏). In the PLS-R analysis, the grouping variable was used as the response 

variable (𝒚𝒕𝒓𝒂𝒊𝒏).  

As was the case with ICA, the PCA component scores were not standardized before 

extracting the PLS-R components. As PLS-R already constructs the components based on 

their power to predict the class labels in the training set, it is of no use to develop a t-tests-

based PLS-R approach to select the S most useful PLS-R components (𝑻𝒕𝒓𝒂𝒊𝒏
𝑷𝑳𝑺 ). Therefore, 

only S PLS-R components were extracted from 𝑨𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨  (i.e., 𝒚𝒕𝒓𝒂𝒊𝒏 = 𝑨𝒕𝒓𝒂𝒊𝒏

𝑷𝑪𝑨 𝑾𝒕𝒓𝒂𝒊𝒏
𝑷𝑳𝑺 𝑸𝒕𝒓𝒂𝒊𝒏

𝑷𝑳𝑺 +

𝑬), or from the original test data 𝑿𝒕𝒓𝒂𝒊𝒏 (for PC data: 𝒚𝒕𝒓𝒂𝒊𝒏 = 𝑿𝒕𝒓𝒂𝒊𝒏𝑾𝒕𝒓𝒂𝒊𝒏
𝑷𝑳𝑺 𝑸𝒕𝒓𝒂𝒊𝒏

𝑷𝑳𝑺 + 𝑬), 

which were then used as new predictor variables (i.e., 𝑻𝒕𝒓𝒂𝒊𝒏
𝑷𝑳𝑺 = 𝑨𝒕𝒓𝒂𝒊𝒏

𝑷𝑪𝑨 𝑾𝒕𝒓𝒂𝒊𝒏
𝑷𝑳𝑺  or 𝑻𝒕𝒓𝒂𝒊𝒏

𝑷𝑳𝑺 =

                                                           
2
 𝑾𝒕𝒓𝒂𝒊𝒏

𝑰𝑪𝑨  can be computed based on 𝑴𝒕𝒓𝒂𝒊𝒏
𝑰𝑪𝑨  and is given in the output of the “icafast” function. 
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𝑿𝒕𝒓𝒂𝒊𝒏𝑾𝒕𝒓𝒂𝒊𝒏
𝑷𝑳𝑺 ) to train the SVM. Note that PLS-R could only extract 149 components from 

the PCA component scores. 

The PLS-R component scores for the test set (𝑻𝒕𝒆𝒔𝒕
𝑷𝑳𝑺) were obtained by multiplying 𝑨𝒕𝒆𝒔𝒕

𝑷𝑪𝑨 

(or the original test data 𝑿𝒕𝒆𝒔𝒕 in case of the PC data) with the PLS-R coefficients (𝑾𝒕𝒓𝒂𝒊𝒏
𝑷𝑳𝑺 ) 

from the model fitted to the training set. To this end, the “predict”-function was used. Next, 

the PLS-R components scores for the test set (i.e., the columns of 𝑻𝒕𝒆𝒔𝒕
𝑷𝑳𝑺) were used to predict 

the test labels, herewith using the SVM model fitted to the training data. 

 

2.4.4 PcovR 

 

Using the “PcovR” package (Vervloet et al., 2015), PcovR was performed on all seven sets of 

predictor variables with the aim of constructing new features for classification. As with ICA, 

PcovR encountered difficulties when having to handle very high-dimensional data. As a way 

out, similar to the approach taken for (T-)ICA and PLS-R, the (not standardized) PCA 

component scores from the training set (𝑨𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨 ) were used as variables for the PcovR analysis 

(i.e., 𝑨𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨 = 𝑨𝒕𝒓𝒂𝒊𝒏

𝑷𝑪𝑨 𝑾𝒕𝒓𝒂𝒊𝒏
𝑷𝒄𝒐𝒗𝑹𝑷𝑿𝒕𝒓𝒂𝒊𝒏

𝑷𝒄𝒐𝒗𝑹 + 𝑬𝑿𝒕𝒓𝒂𝒊𝒏
 and 𝒚𝒕𝒓𝒂𝒊𝒏 = 𝑨𝒕𝒓𝒂𝒊𝒏

𝑷𝑪𝑨 𝑾𝒕𝒓𝒂𝒊𝒏
𝑷𝒄𝒐𝒗𝑹𝑷𝒀𝒕𝒓𝒂𝒊𝒏

𝑷𝒄𝒐𝒗𝑹 + 𝑬𝒀𝒕𝒓𝒂𝒊𝒏
). 

Note that for the PC data, PcovR (although with some modifications
3
) was applied to the 

original variables from the training set 𝑿𝒕𝒓𝒂𝒊𝒏 (i.e., 𝑿𝒕𝒓𝒂𝒊𝒏 = 𝑿𝒕𝒓𝒂𝒊𝒏𝑾𝒕𝒓𝒂𝒊𝒏
𝑷𝒄𝒐𝒗𝑹𝑷𝑿𝒕𝒓𝒂𝒊𝒏

𝑷𝒄𝒐𝒗𝑹 + 𝑬𝑿𝒕𝒓𝒂𝒊𝒏
 

and 𝒚𝒕𝒓𝒂𝒊𝒏 = 𝑿𝒕𝒓𝒂𝒊𝒏𝑾𝒕𝒓𝒂𝒊𝒏
𝑷𝒄𝒐𝒗𝑹𝑷𝒀𝒕𝒓𝒂𝒊𝒏

𝑷𝒄𝒐𝒗𝑹 + 𝑬𝒀𝒕𝒓𝒂𝒊𝒏
). The class labels for the training cases (𝒚𝒕𝒓𝒂𝒊𝒏) 

were adopted as the dependent variable in the PcovR analysis and the maximum likelihood 

principle (Vervloet et al., 2015) was used to determine the optimal weight parameter 𝛼 (see 

Section 1.2.4).
4
 Since PcovR takes the class labels of the training set into account when 

constructing its components, there is no need for a t-test based approach to select the best S 

                                                           
3
 The PcovR algorithm as implemented in the “PcovR”-function of the “PcovR”-package (Vervloet et al., 2015) 

was not able to analyze the data regarding the partial correlations (i.e., PC data), because the number of variables 

was too large (note that for the other six neuroimaging properties, PcovR was applied to the PCA component 

scores, which already implies a serious dimensionality reduction compared to the original data). Therefore, a 

second (but equivalent) implementation of the PcovR-algorithm was used (see Appendix A for R-code). As this 

second implementation does not contain the maximum likelihood principle to determine the optimal weight 

parameter 𝛼, for the PC data set, 𝛼 was fixed to .25, which is a reasonable, but to some extent arbitrary, value. 

 
4
 Note that only the scores of the first 148 PCA components could be used in the PcovR analysis and that the 

analysis was only able to extract 147 PcovR components (𝑆𝑚𝑎𝑥  = 147 for PcovR). 
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components regarding PcovR. Thus, S components were extracted directly from 𝑨𝒕𝒓𝒂𝒊𝒏
𝑷𝑪𝑨  (or 

𝑿𝒕𝒓𝒂𝒊𝒏). The resulting component scores were calculated as 𝑻𝒕𝒓𝒂𝒊𝒏
𝑷𝒄𝒐𝒗𝑹 = 𝑨𝒕𝒓𝒂𝒊𝒏

𝑷𝑪𝑨 𝑾𝒕𝒓𝒂𝒊𝒏
𝑷𝒄𝒐𝒗𝑹 or 

𝑻𝒕𝒓𝒂𝒊𝒏
𝑷𝒄𝒐𝒗𝑹 = 𝑿𝒕𝒓𝒂𝒊𝒏𝑾𝒕𝒓𝒂𝒊𝒏

𝑷𝒄𝒐𝒗𝑹 (for PC data) and were next utilized to train the SVM classifier. 

The PcovR component scores for the test data (𝑻𝒕𝒆𝒔𝒕
𝑷𝒄𝒐𝒗𝑹) were derived as: 

  

 𝑻𝒕𝒆𝒔𝒕
𝑷𝒄𝒐𝒗𝑹 =  𝑨𝒕𝒆𝒔𝒕

𝑷𝑪𝑨𝑾𝒕𝒓𝒂𝒊𝒏
𝑷𝒄𝒐𝒗𝑹,        (2.3) 

 

The PcovR component scores of the test set from the PC data were derived as 𝑻𝒕𝒆𝒔𝒕
𝑷𝒄𝒐𝒗𝑹 =

 𝑿𝒕𝒆𝒔𝒕𝑾𝒕𝒓𝒂𝒊𝒏
𝑷𝒄𝒐𝒗𝑹. Finally, scores on the S PcovR components of the test data (i.e., the columns of 

𝑻𝒕𝒆𝒔𝒕
𝑷𝒄𝒐𝒗𝑹) were used to predict the class labels for the test cases.  
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Section 3. Results 

 

In this section, the results of the classification analyses are presented. First, the classification 

accuracies for the six neuroimaging data sets and all feature extraction methods are presented 

(Section 3.1). Next, the results from the analysis of the additional neuroimaging property that 

has much less features than the other properties are discussed (Section 3.2). Finally, the 

computation times for the SVM and the feature extraction step are compared (Section 3.3). 

 

3.1 Classification accuracy 

 

In Figure 1, for whole-brain analysis (flat line) and each feature extraction method (i.e., the 

various curves) separately, the mean AUC-value is plotted against the number of components 

𝑆 for the ALFF data with voxels of size 2mm by 2mm by 2mm (denoted by ALLF2). Note 

that the mean AUC-value for whole-brain analysis takes the form of a straight line as it does 

not depend on 𝑆. In general, the classification performance of all feature extraction methods 

increases as 𝑆 increases, except for PLS-R, which remains stable after retaining 𝑆=5 

components. It also becomes apparent that for low values of 𝑆, the classification performance 

of most feature extraction methods is very disappointing (i.e., not much larger than at chance 

level). As this pattern of low mean AUC-values for low values of 𝑆, that is encountered for 

most feature extraction methods across all neuroimaging properties considered, is not very 

relevant for the purpose of this study, in the remainder of this section only the relevant upper 

part of the plots will be shown (full plots are presented in Appendix B). As such, the relevant 

information (i.e., which method is performing best) is emphasized more. 

A similar plot as in Figure 1 is presented for each neuroimaging property and each 

voxel size (2mm by 2mm by 2mm in left panels and 4mm by 4mm by 4mm in right panels) 

separately in Figure 2 (ALLF property), Figure 3 (EX property) and Figure 4 (MR property). 

In Table 2, for each data set separately, the largest mean AUC-value, encountered across all 

considered values of 𝑆, is presented for the various feature extraction methods. The value of S 

that belongs to the largest mean AUC-value varies across feature extraction methods as well 

as data sets. From this table, it can be seen that the difference in maximum classification 

performance (across all S -values) between whole-brain analysis and each feature extraction 

approach is very small. For example, the difference between the best performing technique 

(PLS-R) and whole-brain analysis for the ALFF4 dataset is .018 (i.e., .839 – .821). However, 
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this difference in classification performance between PLS-R (M=.839, SD=.036) and whole-

brain analysis (M=.821, SD=.035) is significant (t(99) = 10.186, p < .0001). 

 

                                                               ALLF2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Mean AUC-values plotted against the number of components 𝑆 for the ALFF2 data 

with voxels of size 2mm by 2mm by 2mm. The various curves represent the results for whole-

brain analysis (flat grey line) and the six feature extraction methods (PCA, T-PCA, ICA, T-

ICA, PLS-R and PcovR). 

 

3.1.1 Voxel size 

 

When comparing, as illustrated in Table 2, the data sets with smaller (2mm by 2mm by 2mm) 

voxels to the data sets with larger (4mm by 4mm by 4mm) voxels, only small differences in 

classification performance are encountered. Regarding the ALFF property, the maximal mean 

AUC-values for data with larger voxels (ALFF4) are somewhat larger than those for data with 

smaller voxels (ALFF2). The opposite is true for the EX data sets, in which the maximal 

mean AUC-values for EX2 are slightly larger than those for EX4 data. For the structural MR 

property, the data for both voxel sizes provide similar maximum mean AUC-values. 
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Table 2 

Largest mean AUC-value for each feature selection approach (rows), encountered across all 

values of 𝑆, for each data set (columns). For the solution with the optimal 𝑆, the standard 

deviations of the AUC-values (across random splits in the validation approach) are presented 

between parentheses 

 ALFF2 ALFF4 EX2 EX4 MR2 MR4 PC 

PCA .830 

(.039) 

.838 

(.037) 

.765 

(.034) 

.758 

(.036) 

.892 

(.027) 

.899 

(.028) 

.775 

(.052) 

T-PCA .830 

(.039) 

.837 

(.036) 

.767 

(.036) 

.765 

(.036) 

.892 

(.029) 

.898 

(.026) 

.750 

(.055) 

ICA .826 

(.042) 

.827 

(.040) 

.757 

(.039) 

.752 

(.037) 

.888 

(.033) 

.889 

(.030) 

.814 

(.037) 

T-ICA .824 

(.043) 

.831 

(.043) 

.756 

(.040) 

.750 

(.036) 

.881 

(.032) 

.880 

(.033) 

.787 

(.038) 

PLS-R .831 

(.038) 

.839 

(.036) 

.764 

(.035) 

.760 

(.036) 

.890 

(.027) 

.898 

(.029) 

.816 

(.035) 

PcovR .829 

(.035) 

.833 

(.043) 

.757 

(.038) 

.758 

(.039) 

.890 

(.033) 

.890 

(.028) 

.802 

(.035) 

WB .819 

(.035) 

.821 

(.035) 

.771 

(.034) 

.766 

(.034) 

.913 

(.022) 

.911 

(.022) 

.816 

(.034) 

Note. Per data set, the mean AUC-value of the best performing approach is indicated in bold.  

WB = Whole-brain. 

 

3.1.2 Whole-brain analysis vs. feature extraction 

 

Regarding the ALFF property (Figure 2), all feature extraction approaches performed better in 

terms of mean AUC than whole-brain analysis, under the condition that 𝑆 is large enough 

(i.e., 𝑆 > 100). For lower values of 𝑆 (i.e., 𝑆 < 50), only PLS-R outperforms whole-brain 
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analysis in terms of classification performance, except for when 𝑆=1. Although all these 

differences are rather modest in size, the maximum mean AUC-value of each feature 

extraction approach is larger than the mean AUC-value of whole-brain analysis. As was 

shown to be the case for the ALFF4 data, the difference in AUC-value between PLS-R 

(M=.831, SD=.038) and whole-brain analysis (M=.819, SD=.035) regarding the ALFF2 data 

is significant (t(99) = 7.025, p < .00001) as well. As a consequence, feature extraction 

apparently can increase classification performance compared to whole-brain analysis in the 

case of the ALFF data. 

                                                      

         ALFF2          ALFF4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Mean AUC-values plotted against the number of components 𝑆 for the ALFF data 

with voxels of size 2mm by 2mm by 2mm (left panel) and 4mm by 4mm by 4mm (right 

panel). The various curves represent the results for whole-brain analysis (flat grey line) and 

six feature extraction methods (PCA, T-PCA, ICA, T-ICA, PLS-R and PcovR). 

 

In contrast, for both EX data sets (see Figure 3), whole-brain analysis slightly performs 

better than each of the feature extraction approaches, of which PLS-R (when 𝑆 is low) and T-

PCA (when 𝑆 is large) come closest to the classification performance of whole-brain analysis. 

Regarding the MR data (see Figure 4), whole-brain analysis outperforms each of the feature 
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extraction approaches in terms of classification performance, with excellent mean AUC-

values of .913 (MR2) and .911 (MR4). Again, PLS-R (for low 𝑆) and (T-)PCA (for large 𝑆) 

approach the classification performance of whole-brain analysis the closest. Yet, also here, the 

difference in classification performance between whole-brain analysis and the best 

performing feature extraction technique(s) appears to be rather small. For example, in the case 

of the MR2 dataset, whole-brain analysis only slightly performs better than T-PCA, which is 

the best performing feature extraction approach (i.e., a mean AUC-value of .913 versus .892). 

However, this difference in classification performance between T-PCA (M=.892, SD=.029) 

and whole-brain analysis (M=.913, SD=.022) is significant (t(99) = 8.452, p < .0001). The 

same can be said about the MR4 data, for which whole-brain analysis (M=.911, SD=.022) 

also significantly outperforms the best performing feature extraction technique, which is PCA 

(M=.899, SD=.028), in terms of classification accuracy (t(99) = 4.144, p < .0001).  Overall, 

for the structural MR data, whole-brain analysis significantly outperforms the feature 

extraction methods. 

           EX2            EX4           

                                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Mean AUC-values plotted against the number of components 𝑆 for the EX data with 

voxels of size 2mm by 2mm by 2mm (left panel) and 4mm by 4mm by 4mm (right panel). 

The various curves represent the results for whole-brain analysis (flat grey line) and six 

feature extraction methods (PCA, T-PCA, ICA, T-ICA, PLS-R and PcovR). 
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In a nutshell, overall, feature extraction significantly improves classification 

performance for both ALFF data sets compared to whole-brain analysis, but fails to do so for 

the EX and MR properties. 

          

           MR2        MR4  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Mean AUC-values plotted against the number of components 𝑆 for the MR data 

with voxels of size 2mm by 2mm by 2mm (left panel) and 4mm by 4mm by 4mm (right 

panel). The various curves represent the results for whole-brain analysis (flat grey line) and 

six feature extraction methods (PCA, T-PCA, ICA, T-ICA, PLS-R and PcovR). 

 

3.1.3 PCA vs. ICA 

 

As can be seen in Figures 3 and 4, for both the EX and MR data sets, (T-)ICA does not 

outperform both PCA and T-PCA in terms of classification accuracy. In particular, for low 

values of 𝑆, their classification performances are approximately equal, but the mean AUC-

value of (T-)PCA exceeds that of (T-)ICA as 𝑆 increases all the way up to 𝑆𝑚𝑎𝑥. Regarding 

the ALFF data sets (Figure 2), ICA does occasionally slightly outperforms PCA (but not T-

PCA) when 𝑆 is between 50 and 100. However, for both ALFF data sets, the maximum AUC-

value of (T-)PCA is larger than the corresponding value for (T-)ICA. Overall, the maximum 
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classification performance of (T-)PCA is higher than that of (T-)ICA for all six data sets (see 

also Table 2). In general, the performance of (T-)PCA keeps increasing as 𝑆 increases, 

sometimes being optimal at 𝑆𝑚𝑎𝑥 only, while the performance of (T-)ICA usually flattens out, 

or even degrades, after a certain value of S (see, for example, the right panel of Figures 3 and 

4). 

 

3.1.4 With vs. without t-tests 

 

With the exception of MR4 (right panel of Figure 4), the T-PCA approach outperforms 

ordinary PCA for most values of 𝑆 for each dataset (Figures 2, 3 and left panel of Figure 4). 

Apparently, using the PCA components most related to the grouping (in the training set) leads 

to better classification performances than using the PCA components that explain the most 

variance of the predictors (in the training set). For example, in Figure 2, one can see that the 

performance of T-PCA (orange line) exceeds the performance of PCA (red line) across the 

whole range of 𝑆-values. At 𝑆𝑚𝑎𝑥, however, the difference in performance between PCA and 

T-PCA disappears, because in that case both approaches make use of the same 150 

components. 

In contrast to PCA, using independent t-tests in a similar fashion to select the most 

useful ICA components does not seem to improve the classification performance of ICA. 

Figures 3 (EX) and 4 (MR) illustrate that, for lower values of 𝑆, the mean AUC-value of T-

ICA is inferior to the mean AUC-value of the other techniques, including ordinary ICA; at 

best, T-ICA catches up with ordinary ICA in terms of classification performance only for the 

highest level(s) of 𝑆. Regarding the ALFF data sets (Figure 2), T-ICA performs somewhat 

similarly to ordinary ICA, although its maximum mean AUC-value is still slightly lower than 

that of ICA. In general, compared to ICA, the usage of t-tests to select the most useful ICA 

components does not seem to yield an increase in classification performance. However, as is 

the case for (T-)PCA, at 𝑆𝑚𝑎𝑥 , ICA and T-ICA perform equally well, since in that situation 

both approaches use the same components as features for the classification. 
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3.1.5 Supervised vs. Unsupervised 

 

As can be seen in Table 2, for both ALFF data sets, the supervised PLS-R technique has the 

best classification performance. Moreover, for the other data sets (Figures 3 and 4), PLS-R 

has the highest mean AUC-values amongst all feature extraction techniques when 𝑆 is small. 

Remarkably, PLS-R is the only technique that reaches its maximum mean AUC-value already 

for small 𝑆 values (i.e., 𝑆=5 or 𝑆=10). Moreover, for each data set, PLS-R reaches its peak in 

terms of mean AUC-value for a low 𝑆 value and flattens out, or even performs somewhat 

worse (Figure 4), after that. 

For each of the six data sets, PLS-R clearly outperforms (T-)ICA. While PcovR does 

reach higher maximum mean AUC-values than (T-)ICA, its maximum mean AUC-value is 

lower than that of PLS-R for each data set (see Table 2). In contrast to (T-)ICA and PcovR, 

the maximum mean AUC-value of (T-)PCA almost equals the maximum mean AUC-value of 

PLS-R when 𝑆 is large enough. In general, it appears that PLS-R and (T-)PCA, although 

peaking at different 𝑆 values, perform somewhat better than (T-)ICA and PcovR. As a 

consequence, it cannot be stated that, in general, supervised techniques (e.g., PLS-R and 

PcovR) necessarily outperform unsupervised techniques (e.g., PCA and ICA). Combining the 

unsupervised techniques with t-test, which makes these techniques “semi-supervised”, 

however, sometimes leads to improved classification performances (e.g., T-PCA often 

outperforming PCA). 

 

3.1.6 PLS-R vs. PcovR 

 

For each data set, PLS-R slightly outperforms PcovR. These differences, however, are 

relatively small, and sometimes almost absent. For example, in the case of ALFF2, the 

maximum mean AUC-value of PLS-R (M=.831, SD=.038) is nearly equal to that of PcovR 

(M=.829, SD=.035), and the difference between them is not significant (t(93) = 1.289, p = 

.201). However, the fact remains that PLS-R needs far less components to reach its maximum 

classification performance than PcovR (and the unsupervised feature extraction techniques). 

Moreover, regarding the MR4 data for example, the difference in AUC between PLS-R 

(M=.898, SD=.029) and PcovR (M=.890, SD=.028) is significant (t(94) = 2.918, p = .004). As 
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such, PLS-R leads to simpler models with less predictor variables, something that speaks in 

advantage of PLS-R, and is able to significantly outperform PcovR in terms of classification 

performance, although not for each data set. Also, there is no value of 𝑆 for any of the data 

sets at which PcovR outperforms PLS-R in terms of the mean AUC-value. 

 

3.2 Classification accuracy for the Partial Correlations (PC) data 

 

In Figure 5, the mean AUC-values for the various feature extraction techniques and 𝑆 values 

are presented for the partial correlations (PC) data, a data set that contains a much smaller 

number of features that the other data sets in this study. From this figure, it can be seen that 

none of the feature extraction approaches performs better than whole-data analysis in terms of 

classification accuracy. However, as can be seen in Table 2, the maximum mean AUC-value 

of PLS-R equals that of whole-data analysis (i.e., both being .816), closely followed by the 

mean AUC-value of ICA (.800) and PcovR (.802). The smallest maximum mean AUC-values 

are obtained for PCA (.775) and T-PCA (.750). 

In contrast to the other (more high-dimensional) data sets, T-PCA does not improve the 

classification performance when compared to PCA. Moreover, when compared to ICA, T-

ICA is also not beneficial here, as was the case for the other data sets. As opposed to the 

larger data sets in this study, for the PC data, ICA (whole 𝑆 -range), T-ICA (for large 𝑆), PLS-

R (for small 𝑆) and PcovR (whole 𝑆 -range) all outperform (T-)PCA. A possible reason for 

this may be that for the PC data, (T-)ICA, PLS-R and PcovR were applied directly to the data 

instead of to the PCA component scores derived from the data. However, even though PLS-R 

and ICA have a similar level of classification performance as whole-data analysis, none of 

these methods is able to exceed the whole-data classification performance. It is remarkable 

that the performance of PLS-R, which is almost at the level of whole-brain analysis for small 

𝑆, becomes dramatic for 𝑆 > 50, whereas the performance of PcovR, which is close to the 

performance of PLS-R (for small 𝑆) and whole-data analysis, is almost constant across 𝑆. 

Finally, as opposed to observed for the other data sets, for most feature extraction techniques 

(except for T-ICA) the classification performance does not increase with 𝑆 (and even seems to 

decrease a little). 
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Figure 5. Mean AUC-values plotted against the number of components 𝑆 for the Partial 

Correlation (PC) data. The various curves represent the results for whole-brain analysis (flat 

grey line) and six feature extraction methods (PCA, T-PCA, ICA, T-ICA, PLS-R and PcovR). 

 

3.3 Computation time 

 

In Table 3, the computation time (in seconds) of each feature extraction approach and whole-

brain analysis is presented for the ALFF4, EX2 and MR2 data sets, which contain about 

25.000, 190.000 and 490.000 features, respectively (see Appendix C for the computation 

times for the other data sets). Since the optimal number 𝑆 for each feature extraction approach 

is not known beforehand, the computation times for 𝑆𝑚𝑎𝑥 are displayed. The computation 

time is presented for the feature extraction and the SVM fitting step separately, as well as for 

both steps together. Note that for the feature extraction approaches, the optimal cost parameter 

𝐶 for the SVM was selected out of a set of eleven 𝐶-values by means of five-fold cross-

validation (i.e., performing the SVM 5 × 11 = 55 times on 4 5⁄ -th of the data); for whole-

brain analysis, 𝐶 was fixed (i.e., performing the SVM only a single time) as the classification 

performance of SVM is insensitive to the choice of 𝐶 when the data are very high-

dimensional (See Section 2.3.1). As a consequence, for the feature extraction approaches, the 
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computation times for running the SVM a single time on the reduced features are about a 

factor of 50 smaller than the computation times presented in Table 3. 

From Table 3 it becomes clear that whole-brain analysis has the shortest total 

computation time for each of the three data sets. The first reason for this is that whole-brain 

analysis does not imply a potentially time-demanding feature extraction step, which may 

especially become time-consuming when the data contain many features (e.g., PCA lasts 

about twenty  times longer when comparing ALFF4, with 25.000 features, to MR2 with 

490.000 features). Note that for most data sets, especially for the larger ones, the PCA 

reduction step alone takes longer than the SVM step for the whole-brain analysis. The second 

reason is that no cross-validation is used when training the SVM for whole-brain data, 

whereas for the feature extraction methods a computational intensive five-fold cross-

validation approach is performed to determine the optimal value for the cost parameter 𝐶 (see 

Section 2.3.1). As can be seen in Table 3, the computation time of the SVM fitting step for 

whole-brain analysis does increase when the number of voxels increases, and clearly exceeds 

the computation of the SVM step for the feature extraction methods on both the (larger) EX2 

and MR2 data sets. However, since whole-brain analysis does not contain a possibly time-

demanding feature extraction step, the total computation time for whole-brain analysis is still 

lower than the computation time for the feature extraction approaches. 

Table 3 gives a somewhat distorted image when one wants to study the differences in 

computation time between the various feature extraction approaches. The reason for this is 

that all feature extraction techniques, except PCA, were applied to the PCA component scores 

instead of to the (much larger) original data. In particular, PCA extracted components from 

thousands of voxels, while the other techniques only extracted 𝑆 components from 150 PCA 

component scores. In Table 3, the computation time of the preliminary PCA-step was added 

to the computation time of each individual feature extraction method. As a consequence, 

comparing computation times between feature extraction methods can give a distorted image. 

Table 3, therefore, mainly illustrates the difference in analysis time between whole-brain 

analysis and the various feature extraction methods as a whole. 
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Table 3 

Computation time (in seconds) of performing feature extraction (first column), fitting the SVM 

(second column) and total time (third column) for the various feature extraction methods 

using 𝑆𝑚𝑎𝑥 (rows) and data sets (blocks of three columns) 

 ALFF4                 

(25.000 features) 

EX2                    

(190.000 features) 

MR2                     

(490.000 features) 

Technique FE SVM
*
 Total FE SVM

*
 Total FE SVM

*
 Total 

PCA 7.1 14.16 21.26 50.94 13.76 64.7 140.26 14.13 154.39 

T-PCA 7.26 14.22 21.48 51.08 13.65 64.73 140.42 13.23 153.65 

ICA 9.24 14.19 23.43 53.16 13.71 66.87 142.41 13.51 155.92 

T-ICA 9.29 14.12 23.41 53.38 13.92 67.3 142.57 13.68 156.25 

PLS-R 7.49 15.04 22.53 51.13 13.95 65.08 140.46 14.29 154.75 

PcovR 12.59 14.04 26.63 54.56 13.46 69.02 144.49 13.42 157.91 

WB - 9.41 9.41 - 45.49 45.49 - 112.52 112.52 

Note. WB = whole brain, FE = feature extraction method, SVM = support vector machine. 

*
SVM is performed with five-fold cross-validation and eleven 𝐶-values for the feature 

extraction methods and without cross-validation/different 𝐶-values for whole-brain analysis. 

 

In Table 4, the computation times for the PC data are presented, where all feature 

extraction techniques were applied directly to the original data (i.e., without preliminary PCA-

feature reduction), enabling a fair comparison between the feature extraction approaches. In 

this table, the computation time for the feature extraction and SVM fitting step are presented 

separately as well as combined and this for three selected values of 𝑆: 1, 10 and 100. 

Regarding the different feature extraction approaches, it can be seen that, across all 

values of 𝑆, PCA (and therefore also T-PCA) and PLS-R are by far faster techniques than (T-

)ICA and PcovR. Moreover, as opposed to (T-)PCA and PLS-R, the computation time for (T-

)ICA and PcovR did not seem to increase that much (if at all) as 𝑆 increased, meaning that 

extracting more ICA or PcovR components from the original variables did not increase 

(much) the computation time. As can be expected, for all techniques, the computation time for 

fitting the SVM model increased as 𝑆 increased. Also, since the PC data are relatively small 

(i.e., only 2415 variables) compared to the other data in this study (i.e., > 25.000), the total 
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computation time of whole-brain analysis is very small (.71 seconds), which makes whole-

brain analysis one of the fastest approaches for the PC data. 

 

Table 4 

Computation time (in seconds) for the PC data of performing feature extraction (first 

column), fitting the SVM (second column) and total time (third column) for the various feature 

extraction methods (rows) and for three levels of S (blocks of three columns) 

 S = 1 S = 10 S = 100 

Technique FE SVM
* 

Total FE SVM
*
 Total FE SVM

*
 Total 

PCA .42 .69 1.08 .42 2.17 2.61 .42 9.06 9.48 

T-PCA .56 .64 1.1 .56 1.86 2.42 .56 9.24 9.8 

ICA 31.15 .58 31.73 31.42 1.5s 32.92 31.56 9.41 41.07 

T-ICA 35.02 .59 35.61 35.02 1.42 36.44 35.02 9.23 44.25 

PLS-R .08 .58 .66 .09 1.37 1.46 1.43 9.89 11.32 

PcovR 37.69 .56 38.24 37.46 1.38 38.84 37.55 9.36 46.91 

WB - .71 .71 - .71 .71 - .71 .71 

Note. WB = whole brain, FE = feature extraction, SVM = support vector machine. 
*
SVM is 

performed with five-fold cross-validation and eleven 𝐶-values for the feature extraction 

methods and without cross-validation/different 𝐶-values for whole-brain analysis.  
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Section 4. Discussion 

 

In this section the results of the study are summarized and discussed. First, the findings 

regarding the main research question, whether feature extraction can increase classification 

accuracy compared to whole-brain analysis, are summarized (Section 4.1). In Section 4.2, the 

most important conclusions about the comparison of the various feature extraction approaches 

are discussed. Next, some limitations of the study are provided (Section 4.3). Finally, 

recommendations for future research within this field are sketched (Section 4.4). 

 

4.1 Can feature extraction increase classification accuracy? 

 

Chu et al. (2012) argued that feature selection (i.e., selecting a subset of the original variables) 

combined with a SVM classifier does not improve classification accuracy compared to using 

whole-brain analysis, unless these features are selected based on a priori information 

regarding the importance of the features. However, as opposed to feature extraction (i.e., 

using linear combinations –weighted sums– of the variables/voxels), feature selection does 

not take the relationships between the features/voxels into account. Therefore, it was 

hypothesized that using feature extraction, as opposed to feature selection, before fitting a 

SVM would improve classification accuracy when the aim is to, for example, distinguish 

between people with AD and HC’s. 

The results showed that feature extraction can increase classification accuracy compared 

to using whole-brain data as input for a SVM classifier. In particular, for the ALFF data, 

feature extraction resulted in better classification performances than whole-brain analysis and 

this especially when adopting PLS-R and (T-)PCA. However, a similar increase in 

classification performance was not observed for the other neuroimaging properties. In 

particular, for the EX and structural MR data, whole-brain analysis performed slightly better 

than all feature extraction approaches; also here, the differences in performance were rather 

small. The overall superior performance of whole-brain analysis in this study may be 

explained by the fact that SVM easily yields excellent performance results when applied to 

(very) high-dimensional data, leaving less room for feature extraction approaches to beat 

whole-brain analysis (see Kloppel et al., 2008; Magnin et al., 2008). 

Regarding computation time, fitting the SVM a single time takes much longer when 

whole-brain data are used as input data compared to when only a subset of variables or 
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extracted components are used. However, in the latter case, the optimal cost parameter for the 

SVM needs to be determined, which is often done by means of a time-consuming procedure, 

like cross-validation. As a consequence, which is also the case in the current study, fitting the 

SVM to whole-brain data is faster than the SVM fitting of the extracted features. Moreover, 

for very high-dimensional data, the feature extraction step itself can also get time-consuming 

and this for two reasons. First, dimension reduction of such data can be computationally 

intensive. Second, the optimal number of features the data is reduced to needs to be 

determined by means of a time-consuming procedure (e.g., cross-validation). In sum, the total 

computation times for the feature extraction methods ended up exceeding those for whole-

brain analysis. 

Besides having the highest classification performance on most data sets and having the 

shortest computation times, whole-brain analysis is also easier to apply than any of the feature 

extraction approaches, for which a lot of non-trivial choices have to be made. Example are: 

whether or not to standardize the input variables before feature extraction, determining the 

optimal number of components to extract, whether or not to use t-tests to rank the retrieved 

components in terms of importance and selecting the right value for the weight parameter in 

the case of PcovR. In other words, with a lot of choices that needs to be made, a lot can go 

wrong when first using feature extraction before training a SVM, compared to when directly 

using whole-brain data as input data. In that regard, feature extraction can be considered a 

learning step, along with comes the risk that the training data is overfit.   

 

4.2 Comparison among the feature extraction methods 

 

When the number of extracted components was chosen large enough, performing ICA on the 

PCA component scores (with or without the use of t-tests) did not improve the classification 

performance when compared to using the PCA components itself as extracted features for the 

SVM. Apparently, ICA is not able to extract components that contain more classification-

related information than the original PCA components. However, ICA outperformed PCA 

when it was applied directly to the less high-dimensional PC data set. This suggests that 

applying ICA to the original variables may result in components with better predictive 

qualities than the PCA components. Regarding computation time, however, PCA is way faster 

than ICA. 
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Using independent t-tests to select the best components in terms of predictive ability is 

shown to be beneficial for PCA (as was hypothesized), but not for ICA (as opposed to what 

was hypothesized). For PCA this implies that selecting a subset of components based on their 

relationship with the response variable is a better method in terms of classification 

performances than selecting the PCA components that explain the most amount of variance in 

the original predictor variables. For most neuroimaging properties, however, PCA reached its 

maximum classification performance when all of its components were used for classification, 

making the selection of components using t-tests superfluous. For ICA, in contrast to for 

PCA, the classification performance did not increase when the best ICA components were 

selected with t-tests from a larger set of extracted ICA components compared to directly 

extracting the required number of ICA components. It appears that ICA spreads out the 

classification information across all of its extracted components, implying that the predictive 

quality of each ICA component becomes better when less components are extracted. 

Regarding the supervised feature extraction techniques, for all neuroimaging properties, 

PLS-R was amongst the best performing techniques, both in terms of classification 

performance as well as in speed. Further, although PLS-R performed at the level of PCA 

and/or whole-brain analysis, PLS-R is the only method that performs well when only a limited 

number of components are extracted. This clearly contrasts with PCA, which often needs all 

of its components to obtain optimal performance, and with whole-brain analysis, which uses 

all original variables by definition. As using fewer components to train a SVM speeds up the 

testing process, and the principle of Occam’s razor states that, under equal conditions, 

predictive models with less variables should be preferred over models using more variables, 

PLS-R can be considered as the most effective and efficient feature extraction method in this 

study. 

Although PLS-R is a supervised method, the hypothesis that supervised techniques (i.e., 

PLS-R and PcovR) would outperform unsupervised techniques (i.e., PCA and ICA) does not 

seem to hold entirely, since (T-)PCA was the second best performing technique, herewith 

outperforming the supervised PcovR technique. However, both supervised techniques did 

perform better than their unsupervised counterparts when only a small amount of components 

was used for classification. As opposed to our expectations, the more flexible PcovrR did not 

outperform PLS-R both in terms of classification accuracy as in computation speed. One 

reason for this may be that the classification performance of PcovR is not optimal in this 

study due to suboptimal decisions made regarding the implementation of PcovR (e.g., 
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applying it to PCA component scores instead of original variables, selecting a non-optimal 𝛼-

value, not standardizing the variables prior to analysis). 

 

4.3 Limitations of the current study 

 

Several choices made regarding the analysis of the data may have had some unknown effect 

on the obtained results, and may, therefore, point at some limitations of the current study. 

A first limitation pertains to the fact that (T-)ICA, PLS-R and PcovR were all applied on 

the PCA component scores instead of on the original variables. This may have affected the 

results as there is no guarantee that PCA is an optimal pre-processing approach for the use of 

ICA, PLS-R and PcovR. Although PCA has been proven to be an effective method for 

dimension reduction before applying ICA (Sui, Adali, Yu, Chen, & Calhoun, 2011; Castro et 

al., 2011), little is known about the value of using PCA as a preliminary dimension reduction 

step before applying PLS-R and PcovR. Better classification performances may be obtained 

when PLS-R and PcovR would have been performed to the original variables directly. It is, 

however, not yet clear whether and how PLS-R and PcovR are able to analyze very high-

dimensional data and whether this is possible within a reasonable amount of time. Using 

sparse versions of PLS-R and PcovR, in which it is assumed that only a small number of 

variables contribute to each linear combination, may be an option here. 

Regarding a second limitation, it should be noted that the full potential of PcovR in 

terms of classification performance might not have been revealed by this study, for which two 

main reasons may exist. First of all, whereas choosing the optimal 𝛼-value by means of 

maximum likelihood principles is a fast approach (and therefore embraced in this study), 

determining this parameter through cross-validation, which is computationally more intensive, 

may result in better classification accuracies for PcovR. Secondly, in order to fairly compare 

the results across feature extraction techniques, the input variables (i.e., the PCA component 

scores) were not standardized before applying PcovR. An additional analysis (see results in 

Appendix D), however, indicated that for the EX and MR data sets, the classification 

performance - in terms of percentage agreement - of PcovR is better when its input variables 

are standardized prior to analysis. Another possible limitation regarding PcovR is that 

occasionally, the PcovR model failed to converge. As a result, for some combinations of data 

set and the number of extracted components, PcovR has less than 100 estimates of the AUC-
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value (see Appendix E). Whether there is a relationship between whether or not the PcovR 

model convergences and the predictive abilities of the extracted components is not known.  

Further limitations of this study are related to the classifier used, the type of feature 

selection approaches compared and the fact that only information from a single neuroimaging 

property at a time is used for classification. With respect to the classifier adopted, feature 

extraction may enhance classification performance to a stronger degree when a classifier is 

used for which its classification performance is less insensitive to the high-dimensionality of 

the data, like, for example, lasso logistic regression. Using the same subjects and 

neuroimaging properties, de Vos et al. (submitted) found somewhat lower classification 

accuracies when adopting lasso logistic regression as a classifier. Also the choice of feature 

extraction approaches to include in the study might have been somewhat one-sided. Indeed, 

all the included approaches are linear feature extraction techniques, in which extracted 

features are restricted to linear combinations (i.e., weighted sums) of the original 

variables/voxels. Non-linear feature extraction approaches (e.g., kernel versions of PCA, ICA, 

PLS-R and PcovR) may be more flexible in retrieving essential classification-related 

information from the original variables/voxels, herewith increasing the classification 

performance of the feature extraction approaches. Finally, only looking at a single 

neuroimaging property at a time may obscure information important for the classification that 

is hidden in the relationships between the properties. Evidence exists that combining 

information from multiple neuroimaging properties, like, for example, information on 

functional and structural brain functioning, may enhance classification performance 

(Schouten et al., 2016). 

 

4.4 Recommendations for further research 

 

Although whole-brain analysis was not outperformed by the feature extraction approaches for 

the majority of neuroimaging data sets, the analysis of the ALFF data showed that feature 

extraction can increase classification performance compared to using whole-brain data as 

input for a SVM. Therefore, the predictive abilities of various feature extraction methods on 

other neuroimaging properties as well as for other classification tasks should be investigated 

in future studies. 

In this study, the classification performance of ICA did not exceed that of PCA when 

ICA was applied to the PCA component scores using the FastICA algorithm. This finding, 
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however, cannot be generalized to all ICA algorithms and possible dimension reduction steps 

preceding ICA. Therefore, the design of the current study could be extended by also 

considering other ICA algorithms, as well as pre-processing steps for ICA. A useful point of 

departure could be the work of Calhoun & Adali (2006), who, in order to un-mix fMRI data 

preceding classification, successfully utilized the Infomax algorithm; Infomax computes ICA 

by means of an Information-Maximization (Infomax) algorithm (Bell & Sejnowski, 1995). 

Their study revealed that the Infomax algorithm provided better results in terms of 

distinguishing between schizophrenic patients and HC’s compared to the FastICA algorithm 

used in the current study. Moreover, the dimensionality problem that ICA encounters was, 

aside from using PCA, also dealt with by applying ICA on several clusters of brain data (by 

grouping neighboring voxels into clusters) instead of on all data features (Calhoun & Adali, 

2006). A future study could evaluate the predictive abilities of the components extracted 

through each combination of an ICA algorithm (i.e., Infomax vs. FastICA) and a pre-

processing step (i.e., PCA vs. a cluster-approach), for example. 

To our knowledge, this is the first study in which PcovR was utilized as a way of 

dimension reduction preceding the training of a SVM on neuroimaging data. Although 

promising classification accuracies were obtained using the components derived with PcovR 

as input features for a SVM classifier, the effectiveness of PcovR might be enhanced even 

further (see also Section 4.3). Therefore, the use of PcovR in neuroimaging classification 

studies should be investigated to a deeper extent, taking the reasons underlying the possible 

underestimation of its classification performance into account. To this end, the alternative 

code for the PcovR algorithm (see Appendix A) could be utilized to apply PcovR on the 

original data (instead of on PCA components), since the original code written by Vervloet et 

al. (2015) cannot handle high-dimensional data. A future study could also focus on optimizing 

the procedure to determine an optimal 𝛼-value (e.g., by using cross-validation). Moreover, the 

influence of several pre-processing steps, like whether or not to standardize the input 

variables, on the classification performance of PcovR could be investigated. Results from a 

pilot study (see Appendix D) suggest that a PcovR analysis of standardized data may yield 

better classification accuracies than applying PcovR to non-standardized data. A reason for 

this observation may be that when the data are non-standardized, the influence of 𝛼 on the 

solution also depends on the (differences in the) scales of the predictors and the criterion, 

which may impede making an optimal choice for 𝛼. When the data are standardized, the 

influence of the 𝛼-weight on the obtained PcovR components is more univocal, herewith 

facilitating the search for an optimal 𝛼. 
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All feature extraction methods that were employed in the current study are linear 

methods, which aim to determine a low-dimensional linear subspace to which the data at hand 

are confined to. However, if the data in reality confines to a non-linear subspace, the feature 

extraction methods in this study might not be able to extract all classification-related 

information from the original variables. In contrast, kernel feature extraction methods are 

non-linear methods that are able to project the original data onto a non-linear subspace, and 

are therefore more flexible in retrieving information hidden in the relationships between 

voxels. This study could be extended by using the kernel-version of each feature extraction 

method to extract components for classification. To this end, the kernel PCA framework, 

which has already proven to be an effective pre-processing step for classification algorithms 

(Mika et al., 1998) of Schölkopf, Smola, & Müller (1997) could be utilized. Regarding a 

kernel-based version of PLS-R, the method proposed by Rosipal & Trejo (2001) could be 

adopted, while as for kernel ICA, the work of Bach & Jordan (2002) could be consulted. No 

kernel based method of PcovR exists as to date, and the forthcoming of such a method could 

be a topic for future research as well. 

In this study, the classification accuracy that resulted from several feature extraction 

techniques (as well as whole-brain analysis), using various neuroimaging data sets, for a 

varying amount of extracted components was evaluated. However, a parameter that remained 

constant across all conditions pertains to the sample size, and therefore the size of the training 

set. Differences in classification performance between the feature extraction methods and 

whole-brain analysis, however, might also be influenced by the size of the sample. In this 

regard, Chu et al. (2012) demonstrated that the difference in classification performance 

between whole-brain analysis and feature selection methods was reduced as the sample size 

increased. As a result, whole-brain analysis was not outperformed by the feature extraction 

methods, provided that the sample size was large enough. For small sample sizes, however, 

feature selection occasionally outperformed whole-brain analysis (Chu et al., 2012). A natural 

question reads whether varying sample sizes would also change the in this study observed 

pattern of difference in performance between feature extraction methods and whole-brain 

analysis. To this end, it would be worthwhile to examine whether feature extraction 

outperforms whole-brain analysis when confronted with small sample sizes, which seems to 

be the case for feature selection. 

Finally, as this study only focused on using each neuroimaging property separately, the 

question whether combining information from various neuroimaging properties could 

possibly enhance classification performance is also worth investigating. In this regard, 
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Schouten et al. (2016) showed that different MRI modalities provide complementary 

information for classifying people with AD and that combining modalities can enhance the 

classification performance compared to using each modality in isolation. A difference 

between their study and the current study is the use of an elastic-net regression (vs. SVM) 

classifier, which can be seen as a feature selection step combined with logistic regression as a 

classifier. A future study could examine whether combining information from several 

neuroimaging properties in combination with some form of feature extraction can improve 

classification performance in the context of a SVM classifier. A challenging question 

herewith pertains to which feature extraction method is optimal in terms of selecting the best 

features from multiple modalities to be used for classification. A possibility here consists of 

using Simultaneous Component Analysis (Smilde et al, 2005) or (Generalized) Canonical 

Correlation Analysis (Tenenhaus & Tenenhaus, 2011) to extract important features from 

multiple modalities. 

In a nutshell, it is important to continue to explore the potential of feature extraction 

techniques in classification studies using (combinations of) various types of high-dimensional 

neuroimaging data, with the aim of obtaining higher classification accuracies compared to 

when whole-brain data is used as input for a SVM classifier.  
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Appendix A. Alternative R-code to perform PcovR-analysis 

 

Code for alternative implementation of the PcovR function (without built-in method to 

optimize 𝛼). This code was used in order to directly apply PcovR to the PC data, at the cost of 

not having a built in method of optimizing alpha. 

 

The main function PcovR_Alternative calls two auxiliary functions: ssq and ed. 

 
ssq <- function( X ) 

{ 

  out = sum( X^2 ) 

  return( out ) 

} 

 

 

ed <- function( X , tol=1e-9 ) 

{ 

  #Computes sorted eigenvalues and eigenvectors 

  #  X: a square data matrix (preferably symmetric) 

  #  tol: a tolerance value (default: 1e-9) 

   

  # returns Out 

  #   values: sorted eigenvalues (in a vector) 

  #   vectors: associated eigenvectors (in the columns of a matrix) 

   

  temp = eigen( X , only.values = FALSE, EISPACK = FALSE ) 

   

  #sort( temp$values , decreasing = TRUE ) #sorted eigenvalue 

  OptOrder = order( temp$values , decreasing = TRUE ) #order of the eigenvalues 

  tempvalues = temp$values[ OptOrder ] 

  tempvectors = temp$vectors[ , OptOrder ] 

   

  #select eigenvalues and associated eigenvectors larger than a given tolerance value 

  SelectedValues = abs(tempvalues) > tol 

  values = tempvalues[ SelectedValues ] 

  vectors = tempvectors[ , SelectedValues ] 

  vectors = vectors %*% diag( sqrt( colSums( vectors ^ 2 ) ) ^ -1 ) 

   

  #standardize the vectors 

  Out = list() 

  Out$values = values 

  Out$vectors = vectors 

  return( Out ) 

} 
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This is the alternative function for PcovR. 
 

PcovR_Alternative <- function( X , y , nComp , Alfa ) 

{ 

  # X (nRow x xnCol): predictor matrix (with predictors as columns) 

  # y (nRow x 1): criterion vector 

  # nComp: number of components (1, 2, ..., min(nRow,nCol) ) 

  # Alfa(0-1): alfa weight (a number between 0 and 1, but not being 0 or 1) 

   

   

  require( MASS ) 

   

  checkinput = 1 

   

  Xdim = dim( X ) 

  Ydim = dim( y ) 

  if( Ydim[2] > 1 ) 

  { 

    cat( " " , fill=TRUE ) 

    cat( "y should be a vector containing the scores on a single criterion variable" , fill=TRUE ) 

    cat( " " , fill=TRUE ) 

    checkinput=0 

  } 

   

  if( Xdim[1] != Ydim[1] ) 

  { 

    cat( " " , fill=TRUE ) 

    cat( "the number of rows in X should match the number of elements in y" , fill=TRUE ) 

    cat( " " , fill=TRUE ) 

    checkinput=0 

  } 

  else 

  { 

    nElem = Xdim[1] 

    nPred = Xdim[2] 

    rm( Xdim , Ydim ) 

  } 

   

  if( nComp > min( nElem , nPred ) ) 

  { 

    cat( " " , fill=TRUE ) 

    cat( "nComp should be an integer between 1 and " , min(nElem,nPred) , fill=TRUE ) 

    cat( " " , fill=TRUE ) 

    checkinput=0 

  } 

   

  if ( (Alfa < 0) || (Alfa >= 1) ) 

  { 

    cat( " " , fill=TRUE ) 

    cat( "Alfa should be between 0 and 1 (but not 0 or 1)" , fill=TRUE ) 

    cat( " " , fill=TRUE ) 

    checkinput=0 

  } 

   

  Out = list() 
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  if( checkinput == 1 ) 

  { 

    # compute projector on X 

    S = t(X) %*% X 

     

    if( det(S) < 1e-12 ) #near-singular 

    { 

      tempsol = ed( S ) 

      selval = tempsol$values > (1e-8 * max(tempsol$values)) 

      tempval = tempsol$values[selval] ^ -1 

      Sh = tempsol$vectors[ , selval ] %*% diag( tempval ) %*% t( tempsol$vectors[ , selval ] ) 

      Hx = X %*% Sh %*% t(X) 

    } 

    else 

    { 

      Hx = X %*% solve(S) %*% t(X) 

    } 

     

    # Compute PCovR solution: see de Jong & Kiers (1992) 

    G = ( Alfa / ssq( X ) ) * X %*% t(X) + ( ( 1 - Alfa ) / ssq(y) ) * Hx %*% y %*% t(y) %*% Hx 

    sol = ed( G ) 

    #try( if(nComp > length(sol$values)) stop("not possible to extract the specified number of components 

(nComp)") ) 

    T = sol$vectors[ , 1:nComp ]  # Note: T = K[,1:r] = XW 

    W = ginv(X) %*% T             # T = XW = K so use Moore Penrose inverse of X 

    Px = t(T) %*% X 

    Py = t(T) %*% y 

    Rx2 = ssq(T %*% Px) / ssq(X) 

    Ry2 = ssq(T %*% Py) / ssq(y) 

    B = W %*% Py 

     

    Out$W = W 

    Out$B = B 

    Out$Rx2 = Rx2 

    Out$Ry2 = Ry2 

  } 

   

  return( Out ) 

} 
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Appendix B. Full plot figures regarding classification performance 
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Figure 1. Mean AUC-values plotted against the number of components 𝑆 for the ALFF4 data. 

The various curves represent the results for whole-brain analysis (flat grey line) and the six 

feature extraction methods (PCA, T-PCA, ICA, T-ICA, PLS-R and PcovR). 
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Figure 2. Mean AUC-values plotted against the number of components 𝑆 for the EX2 data. 

The various curves represent the results for whole-brain analysis (flat grey line) and the six 

feature extraction methods (PCA, T-PCA, ICA, T-ICA, PLS-R and PcovR). 
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Figure 3. Mean AUC-values plotted against the number of components 𝑆 for the EX4 data. 

The various curves represent the results for whole-brain analysis (flat grey line) and the six 

feature extraction methods (PCA, T-PCA, ICA, T-ICA, PLS-R and PcovR). 
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Figure 4. Mean AUC-values plotted against the number of components 𝑆 for the MR2 data. 

The various curves represent the results for whole-brain analysis (flat grey line) and the six 

feature extraction methods (PCA, T-PCA, ICA, T-ICA, PLS-R and PcovR). 



59 
 

          MR4 

 

 

 

 

 

 

                   

 

 

 

 

Figure 5. Mean AUC-values plotted against the number of components 𝑆 for the MR4 data. 

The various curves represent the results for whole-brain analysis (flat grey line) and the six 

feature extraction methods (PCA, T-PCA, ICA, T-ICA, PLS-R and PcovR). 
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Figure 6. Mean AUC-values plotted against the number of components 𝑆 for the PC data  

with. The various curves represent the results for whole-brain analysis (flat grey line) and the 

six feature extraction methods (PCA, T-PCA, ICA, T-ICA, PLS-R and PcovR).  
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Appendix C. Computation times for the ALFF2, EX4 and MR4 data 

 

Table 1 

Computation time (in seconds) of performing feature extraction (first column), fitting the SVM 

(second column) and total time (third column) for the various feature extraction methods 

using 𝑆𝑚𝑎𝑥 (rows) and data sets (blocks of three columns) 

  ALFF2   EX4   MR4  

Technique FE SVM* Total FE SVM* Total FE SVM* Total 

PCA 60.64 13.82 74.46 8.35 14.00 22.35 15.70 13.90 29.60 

T-PCA 60.78 13.65 74.43 8.49 13.94 22.43 15.83 13.94 29.77 

ICA 63.00 13.69 76.69 10.73 13.84 24.57 18.03 13.85 31.88 

T-ICA 63.14 13.70 76.84 10.94 14.03 24.97 18.24 13.89 32.13 

PLS-R 60.84 13.88 74.72 8.59 13.89 22.48 15.94 13.79 29.73 

PcovR 64.89 13.62 78.51 12.12 13.78 25.90 19.64 13.83 33.47 

WB - 55.42 55.42 - 8.41 8.41 - 23.32 23.32 

Note. WB = whole brain, FE = feature extraction method, SVM = support vector machine. 

*
SVM is performed with five-fold cross-validation and eleven 𝐶-values for the feature 

extraction methods and without cross-validation/different 𝐶-values for whole-brain analysis.  
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Appendix D. Influence of pre-processing on classification results for PcovR 

 

Table 1 

Classification accuracy in terms of percentage agreement for a set of values of the number of 

components 𝑆 (rows) for several data sets (columns), both when the input data was centered 

(Cent) and standardized (Stand) before the PcovR analysis 

 EX2 EX4 MR2 MR4 

NC Cent Stand Cent Stand Cent Stand Cent Stand 

1 .599 .690 .595 .699 .783 .815 .794 .824 

5 .685 .695 .711 .702 .796 .817 .819 .825 

10 .695 .695 .702 .707 .822 .841 .833 .835 

20 .704 .716 .723 .719 .838 .847 .834 .849 

40 .707 .719 .717 .719 .829 .843 .833 .852 

60 .716 .717 .720 .726 .832 .845 .839 .849 

80 .715 .719 .721 .720 .829 .847 .842 .853 

100 .714 .717 .722 .718 .831 .852 .835 .854 

125 .711 .715 .719 .721 .833 .851 .828 .854 

145 .713 .717 .717 .718 .843 .845 .850 .852 

Note: Cent = centered. Stand = standardized. NC = number of components. 
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Appendix E. Number of AUC estimates of each PcovR analysis 

 

Table 1  

Number of successful PcovR analyses, and therefore estimates of AUC, for every combination 

of number of components NC (rows) and data set (columns)   

NC ALFF2 ALFF4 EX2 EX4 MR2 MR4 PC 

1 100 100 100 100 100 100 100 

5 100 100 100 100 100 100 100 

10 100 100 100 100 100 100 100 

20 100 100 100 100 100 100 100 

30 100 97 96 99 99 100 100 

40 100 100 97 100 97 100 100 

50 100 99 100 100 100 100 100 

60 98 95 99 96 92 95 100 

70 97 94 97 99 88 95 100 

80 99 97 99 99 96 94 100 

90 99 99 97 96 96 98 100 

100 98 98 99 97 96 99 100 

110 95 90 90 86 89 88 100 

120 93 91 94 90 87 86 100 

130 94 80 90 90 92 91 100 

140 94 93 96 94 95 89 100 

150 96 91 96 92 92 95 100 

Note: NC = number of components. 

 


