

Master Thesis School Psychology
Date: 02-07-2019
Student number: s1137247
Supervisor: Dr. Kiki Zanolie (& Dr. Felienne Hermans, LIACS)
Second reader: Michelle Achterberg

Show and tell?
The influence of instruction types on

developing programming skills and self-
efficacy levels in elementary school

Charlotte Thepass

 2

Abstract

Research suggests the effectiveness of direct instruction over minimal instruction, even

though many programming classes for elementary school use minimal instruction. We have

examined the effect of instruction type on comprehension and skills, and self-efficacy in

school classes, hypothesizing the effectiveness of direct instruction over minimal instruction.

Two classes participated in the experiment (total N = 34, 17 girls, M age = 10.21; SD=0.60),

attending six programming classes differing in instruction type, and making an exam. Self-

efficacy was measured with the NPV-J-2. The group receiving minimal instruction performed

significantly better on the exam, and reported significant higher levels of self-efficacy,

suggesting the effectiveness of minimal instruction rather than direct instruction in skills and

comprehension, and self-efficacy.

 3

Index

1. Introduction ………………………………………………………. Page 4

2. Method ………………………………………………………. Page 9

 2.1 Participants ………………………………………………………. Page 9

 2.2 Measure ………………………………………………………. Page 10

 2.3 Design ………………………………………………………. Page 12

 2.4 Procedure ………………………………………………………. Page 12

 2.5 Statistical analysis ………………………………………………………. Page 13

3. Results ………………………………………………………. Page 13

 3.1 Demographics ………………………………………………………. Page 13

 3.2 Knowledge and skills ………………………………………………………. Page 14

 3.3 Self-efficacy ………………………………………………………. Page 14

4. Discussion ………………………………………………………. Page 15

 References ………………………………………………………. Page 17

 Appendices ………………………………………………………. Page 22

 Appendix A. ………………………………………………………. Page 22

 Appendix B. ………………………………………………………. Page 22

 Appendix C. ………………………………………………………. Page 26

 Appendix D. ………………………………………………………. Page 27

 4

1. Introduction

In 2014, the Dutch parliament accepted a proposal that urged state secretary of education

Sander Dekker to research what adjustments should be made for the curriculum of Dutch

primary education. It was emphasized that skills on the curriculum should fit with the 21st

century mindset. An important and new part of those skills are learning to program and the

development of ‘digital literacy’. Digital literacy is about awareness of reliability of source

material, and the effects of the digital world on real life events (Dekker, 2014). Computer

programming or programming is the process of writing a script or algorithm (tutorial) that can

be read and executed by a machine, robot or tool (Jeuring, Corbalan, van Es & Leeuwestein,

2016). Now, five years later, a new curriculum for Dutch education will be presented to the

parliament, including a section about programming education (Ontwikkelteam Digitale

Geletterdheid, 2018). However, little substantial research has been conducted on computer

programming education in primary schools (Waite, 2017). With this thesis, we want to add to

existing literature about programming education. Our research focuses on instructional

methods in programming education and its effect on comprehension of basic computer

programming concepts, and computer programming skills in Scratch. We will compare a type

of direct instruction, more specifically explicit direct instruction, with a type of minimal

instruction, more specifically the Exploratory Learning Model.

Through the years, several direct instruction models have been developed (e.g., Bereiter &

Engelmann, 1966; Good & Grouws, 1979; Hunter, 1982). However, there are six overlapping

components which nearly all DI-models share: (1) material must be broken down into small

steps and put in a logical order, (2) objectives are learner or performance focused, (3)

reactivating what students already know and connecting it with their new knowledge is

emphasized, (4) students practice every step or combination of steps, (5) the promotion of

additional practice opportunities, and (6) feedback moments throughout the lesson (Magliaro,

Lockee & Burton, 2005). These components can also be found in explicit direct instruction, a

group of research-supported instructional behaviours that are used to support successful

learning through clarity of language and purpose, and reduction of cognitive load. Active

student engagement is promoted by requiring response followed by affirmative and corrective

feedback (Hughes, Morris, Therrien & Benson, 2017). Explicit instruction has similarities

with Engelmann’s (Bereiter & Engelmann, 1966) well known Direct Instruction model, and is

based on five pillars: (1) segment complex skills, to make them more ‘manageable’, (2)

 5

providing clear, and consistent descriptions of how the skill or strategy is formed, (3)

promoting successful engagement by giving fading support/prompts, (4) providing

opportunities for students to respond and receive feedback, and (5) creating purposeful

practice opportunities. Research has shown the effectiveness of direct instruction, especially

when teaching novel learners (van Merriënboer & Kirschner, 2007; Lister, 2016). Since

programming education in elementary schools is a relatively new subject, it can be assumed

that children have little to no prior experience. When a novel learner has to discover the

concept by themselves, misconceptions can easily be made, which may interfere with later

learning (Kikas, 2004; Clark, Kirschner & Sweller, 2012). Additionally, direct instruction

benefits weak learners, because it reduces cognitive load (Brown & Campione, 1994; Smith,

Sáez & Doabler, 2016; Hughes et al., 2017). According to the cognitive load theory,

instructional information is processed in the working memory (Sweller, Ayres & Kalyuga,

2011). Since working memory is limited in the information it can process in a certain amount

of time (Cowan, 2001) and exploration of complex and novel environments may generate

heavy working memory load, thus negatively affecting learning in students (Kirschner,

Sweller & Clark, 2006). Furthermore, in literary reviews, direct instruction is found to be

more effective than minimal instruction (Mayer, 2004; Hattie, 2009, Jeuring et al., 2016).

Therefore, teaching computer programming with direct instruction is a research-supported

approach and we believe that it should be the default when teaching programming classes.

Instead, the opposite is true: in computer programming education, constructivism is a popular

way of teaching. According to this theory, students must construct their own mental

representations of the world through active cognitive processing (Clark, et al., 2012), this way

of teaching uses explorative learning minimal explanations or guidance from the teacher.

Constructivism in computer programming education was popularized in the 80’s by Seymour

Papert. As Lister said in his paper ‘Toward a Developmental Epistemology of Computer

Programming’ (2016, p. 6): ‘We are all constructivists now.’ In this study, we will use the

definition for exploratory learning as a counterpart for direct instruction. Exploratory learning

is defined as learning through exploring real or virtual environments combined with peer or

tutorial support (de Freitas, 2006) and is based on the idea of constructivism. The exploratory

learning model (ELM; de Freitas & Neumann, 2009) is based on Kolb’s learning cycle for

explorative learning (1984). An important step of Kolb’s learning cycle is the concrete (real-

life) experiences. However, in the current educational landscape, digital learning contexts

cannot be ignored. The ELM acknowledges abstract, real life (lived), and virtual experiences

 6

as definitive experiences (de Freitas & Neumann, 2009). In the ELM, reflection (3) is added

after exploration (see Fig 1). In the current model, establishing learning transfer between the

different types of experience is very important. Adding a step of Reflection, allows the

student to consider what they have learned and supports the forming of abstract concepts and

testing in different situations (de Freitas & Neumann, 2009).

A benefit of explorative learning is the positive influence on motivation, which plays an

important part in acquiring programming skills (Bergin & Reilly, 2017). Students tend to

choose explorative learning over direct instruction, even though it may increase the difficulty

of the assignment (Clark, et al., 2012). Also, explorative learning mimics the tasks of a

programmer, which often requires thinking outside of the box, and explorative and testing

(Boyer, Langvin & Gaspar, 2008). However, explorative learning does increase the

development of misconceptions, which has a negative effect on academic success (Ben-Ari,

2001). Even though explorative learning may have small, positive effects on developing

skills, direct instruction has larger effects (Klahr & Nigam, 2004), and, it is important for

students to receive guidance and feedback from teachers (Mayer, 2004; Tobias & Duffy,

2009; Alfieri, Brooks, Aldrich & Tenenbaum, 2011; Hsiao, Lin & Kang, 2011). Therefore, we

believe that pure exploratory learning is an ineffective method to teach computer

programming.

While many studies explored the effects of instruction type on academic performance in

computer programming (Ramalingam, Labelle, & Wiedenbeck, 2004; Boyer, et al., 2008;

Ismail, Ngah & Umar, 2010), research on the effects of instruction type in children (under 18)

is lacking. Waite (2017) showed in a review that there is limited empirical evidence to support

 7

advice on programming education in schools. Also, the research that has been conducted with

primary and high school students, was often small scaled, in out of school settings, and had

short time frames. Thus, so far, most studies have found in adults a positive effect of direct

instruction on programming skills, however, only limited empirical evidence is found for

children (under 18). Also, very few studies have been conducted in the Netherlands, even

though there are many Dutch programming courses taught in primary and high schools.

Dutch programming courses for children have been developed in the last three decades.

However, most courses have been made in the last five years (Strijker, 2018). There are

roughly four different categories within these programming courses: visual, textual,

‘unplugged’, and physical programming (see Table 1.).

However, the programs that are offered often use explorative learning as instructional method

(see Table 2.), even though research has shown that this type of instruction is an ineffective

way to teach programming (Mayer, 2004; Kirschner, et al., 2006; Clark, et al., 2012). As

such, it is of great importance to investigate the effects of instruction type on programming

skills in a younger sample.

Table 1.

Programming categories, definitions (Jeuring, et al., 2016)

Category Description Programming language

Textual Code is written text, underlying grammar is

important.

e.g. Java, C, Python

Visual Code is built by moving blocks on screen, blocks are

often represented as puzzle pieces.

e.g. Scratch, code.org

Unplugged Code is warren without any electronics

(‘unplugged’)

e.g. csunplugged.org

Physical Code is made using physical blocks, this makes it

easier for students to visualize different steps and

variables in a script. Often used in kindergarten.

e.g. Lego Mindstorms,

Dash & Dot

 8

Table 2.

Distribution of programming courses for elementary school by programming category (Thepass, C., 2019)

Category N Most common grade (n) Most common instructional method (n)

Textual 13 6, 7, 8 (12) Explorative (9)

Visual 17 7 (12) Explorative (16)

Unplugged 6 6, 7 (6) Explorative (5)

Physical 3 2 (3) Explorative (3)

Mix 10 6, 7, 8 (9) Explorative (7)

Another important factor that influences the development of computer programming skills is

the self-efficacy of students. Self-efficacy, first described by Bandura (1993), is the belief that

one has the abilities to achieve one’s goals and complete tasks. This belief in abilities

originates from verbal persuasion from an authority, previous successes within a certain

domain, observing success in a peer with (perceived) similar capabilities, and the

physiological response to the task (Hushman & Marley, 2015). Several factors influence self-

efficacy with regard to computer skills, such as: parental support (Vekiri & Chronaki, 2008),

previous experience (Aivaloglou & Hermans, 2019), and following programming classes

(Ramalingam, et al., 2004). Self-efficacy has a positive effect on academic achievement

(Britner & Pajares, 2006), because of its self-regulating function. Students with high self-

efficacy levels are better at regulating their impulses when they fail at a task, because they

have the belief that they are able to finish the task, even if there is a setback during the task

(Komarraju & Nadler, 2013). Again, most research regarding self-efficacy in computer

programming skills focused on adults using a self-efficacy questionnaire (Cassidy & Euchus,

2002). However, it is not yet understood what the effect of instructional method might be on

computer self-efficacy in children. Even though the implications and evidence are used for

children’s education. As such the current study will focus on the effect of instruction type on

the self-efficacy with regards to computer programming skills in children.

This study researches instructional methods for computer programming courses in schools for

children aged 8-11. There are two research questions guiding this study. First, do children

who receive direct instruction in a programming class acquire better skills and have a better

comprehension of computer programming than children who receive minimal instruction?

Research suggests the effectiveness of direct instruction over minimal instruction (Mayer,

 9

2004; Kirschner, et al., 2006, Hattie, 2009; Clark, et al., 2012). Therefore, it is hypothesized

that children who receive direct instruction in computer programming class, acquire better

computer programming skills and have a better comprehension of computer programming

than children who receive minimal instruction. Children with no prior knowledge of the

subject perform better if they receive direct instruction, because the guidance directs their

attention to the important aspects of programming and enables them to think in the most

efficient way (Jeuring, et al., 2016; Lister, 2016).

The second question guiding this thesis is: Do children who receive direct instruction during a

programming class have a higher self-efficacy after the course is over than children who

receive minimal instruction? Research suggests the positive influence of guided instruction on

science self-efficacy and receiving persuasion from an authority is an important factor for

self-efficacy (Hushman & Marley, 2015). Therefore, it is hypothesized that children who

receive direct instruction in a programming course, have a higher self-efficacy at the end of

the course than children receiving minimal instruction.

2. Method

2.1 Participants

Participants were 35 students (17 girls, M age = 10,21; SD=0,60) currently in 5th grade (groep

6) or 6th grade (groep 7), from two different schools. One group of students (5th grade, n=15,

seven girls, M age = 9180; SD=0,41) attended an elementary school in the Hague. The other

group of students (6th grade, n=20, 11 girls, M age = 10,50; SD=0,51) attended an elementary

school in Rijnsburg, near Leiden. Both schools had participated in computer programming

education research before and were contacted again for this research. 33% of the 5th graders,

and 80% of the 6th graders had prior programming experience. Three students from the Hague

had used Scratch before, none of the students from Rijnsburg had used Scratch before. The

group of students from Rijnsburg had participated in a Lego Mindstorms project, the week

before the experiment started. However, since that was a singular day project, some students

did feel they had no prior experience. Therefore, we assume that participants had little to no

prior computer programming experience. Participants were divided over two experimental

conditions, based on which school they attended. Schools were randomly assigned a type of

instruction by entering both names into an online list randomizing generator. Five children

(four boys, one girl) from the DI group did not take the final test, because they left the

experiment (DI group, N=10). The subjects of this study were under the age of 16, therefore

 10

one or more caregivers gave informed consent. The research was approved by the local ethics

committee at Leiden University. Participants did not receive compensation for this study.

2.2 Measures

Demographics and prior knowledge

Students filled in a demographic questionnaire, including questions about their age and

gender. To measure pre-existing knowledge of computer programming, students answered

questions about their experience with computer programming. They were also asked to

describe what a programmer does. The amount of correct answers were added together to

produce a pre-test score, including an extra point for prior experience. In total, four points

could be obtained.

Comprehension and skills

To measure the comprehension and knowledge of the computer programming concepts,

students made a test which was created by the researcher of this study, because no

standardized computer skills questionnaire for children exists. The test is based on materials

by Hermans & Swidan (2019). No Crohnbach’s Alpha is available, but experts in the

educational and computer programming field have reviewed the test questions. Students

answered ten multiple choice questions, with four answer options each. The test measured

five different concepts: algorithms, variables, for-loops, conditional statements, and

debugging. For every concept, one question was about the definition of the concept, the other

question was about applying the concept in Scratch (see Appendix A for the distribution of

the questions). The amount of correct answers were added together to produce a total test

score, with a range from zero to ten points. Also, participants could score 2 points per

concept, and a skill score and comprehension score could be calculated, with a total score

between zero to five points each.

Self-efficacy

Pre-test

To measure the base level of self-efficacy, three (sub)scales of the Dutch version of the

Motivational Strategies for Learning Questionnaire (MSLQ) were used: task value

(Crohnbach’s Alpha: .,90), self-efficacy (Crohnbach’s Alpha: ,93) , and help seeking

(Crohnbach’s Alpha: ,52). One of the items is ‘I believe that I will achieve high grades for this

programming course’. The MSLQ is a self-report instrument that measures motivational

 11

orientations and use of different learning strategies for a course (Pintrich, Smith, Garcia &

McKeachie, 1991). The Dutch version has been published by Severiens (1999). This

instrument has 44 items divided over five scales: Intrinsic value, Self-efficacy, Test anxiety,

Strategy use, and Self-regulation on a 7-point Likert-scale. For every scale, the mean of the

items that make up the scale is calculated. Some items are reversed. No norm scores exist, the

questionnaire is in reference to the specific group that is taking the questionnaire.

Post-test

To measure self-efficacy, two subscales of the Nederlandse PersoonlijkheidsVragenlijst-

Junior-2 (NPV-J-2) were used: Inadequacy (Crohnbach’s Alfa: .92;), and Tenacity

(Crohnbach’s Alpha: ,84). The scale Inadequacy measures if a child thinks negatively about

themselves. One of the items is: ‘I feel fine most of the time’. The scale Tenacity measures if

a child thinks it’s tenacious. One of the items is: ‘I prefer to work orderly’. The NPV-J-2 is

the revised, adapted version of the PersoonlijkheidsVragenlijst (2011). The NPVJ-2 has 100

items, divided equally over five scales: Inadequacy, Tenacity, Social inadequacy,

Stubbornness, and Dominance. Participants self-report to what extend they identify with the

statement. They can chose from three different answers: Yes (2 points), ? (1 point) and No (0

points). For every scale, all relevant item scores were added together to produce a raw score.

This score can be interpreted as being extremely low to extremely high. The total raw score

per scale is between 20 and 40 points (Barelds, Luteijn & van Dijk, 2011).

Scratch

Students were taught programming skills in the online program Scratch. Scratch is a block-

based programming language, developed by the Lifelong Kindergarten Group from MIT

Media Lab and specifically designed for children from age 8-16 (Resnick, et al., 2009). In

Scratch, sprites which are displayed on a stage can be controlled via scripts. Scripts are

created by dragging and dropping blocks in the assigned programming space. Blocks are

colour coded and represent different program components, such as variables and conditions.

Blocks need to be connected like puzzle pieces to create a script, and a sprite can follow

several scripts at once. (Meerbaun-Salant, Armoni & Ben-Ari, 2013).

 12

2.3 Design

This study examines the relation between ‘instructional method’ and improving the

knowledge and comprehension of computer programming, and ‘method of instruction’ and

self-efficacy. To do this, direct instruction and exploratory learning were compared within the

context of learning how to program. A quasi-experimental method was used for this research.

2.4 Procedure

Students attended six programming classes, that were about an hour long. In the first five

weeks, they learned one new programming concept per week. The pre-test, a demographic

questionnaire and the Dutch version of the MSLQ, was filled in by students during the first

class. The post-test, the test that we created and based on a test by Swidan & Hermans (2019),

and the NPV-J-2, were filled in during the sixth and final programming class. The classes

were experimenter created, based on online materials (Hermans, F., n.d.). The students

learned programming via Scratch. Both groups differed in instruction method, the first group

received Direct Instruction (DI group) and the second group received minimal instruction (MI

group). Each lesson had four parts: introduction of the topic, unplugged assignment,

assignment in Scratch, ending. The DI group received instruction based on the Direct

Instruction model: during the introduction, knowledge was reactivated and the topic of the

week was explained. Students were taught which strategies they should use during the

assignments. The unplugged and Scratch assignment were led by guided practice. Students

were encouraged to try the program and feedback was given after every part of the class. The

MI group followed the exploratory model, they had to work in groups during the unplugged

assignment and were only given the blocks, but not the useful strategies for the Scratch

assignment. The teacher of the MI group asked questions, to enhance (meta-)reflection in

students, but did not give feedback on the assignments until the end of the class. The direct

instruction classes were given by the researcher, the minimal instruction classes were led by

the ICT employee of their school. Instructional booklets and additional information was given

to the ICT employee beforehand. Both groups made the Scratch assignments in the assigned

computer rooms of their school. The DI group worked on desktops and Chromebooks. Most

students preferred the desktop, since the Chromebooks had smaller screens and a slower

internet connection. Only seven desktops were available, therefore, about half of the students

had to work on the Chromebooks. In the MI group, the unplugged assignment took place in

their own classroom. The computer room had a working desktop computer for each student.

 13

2.5 Statistical Analysis

Categorical variables were reported in number and percentages, and analyzed with chi-square

tests. Continuous variables were reported in terms of mean and standard deviations, and

analyzed with independent t-test or Mann-Whitney tests, when statistical assumptions were

violated. Given the way the hypotheses were set up, a significance level of p <.025 (1-tailed),

was established. Since a high score on the scale Inadequacy indicates a low self-esteem, this

variable was reverse coded, to make sure a high score on the scale indicated a high self-

esteem. The effect size and power were calculated, using an alpha level of 0,05. A Pearson R

was used to calculate the relationship between the MSLQ and the NPV-J-2.

3. Results

3.1 Demographics and internal consistencies

To test whether there were more boys or girls in the Direct Instruction (DI group) compared

to the Minimal Instruction (MI) group, we performed a CHI-squared test (see Table 3.), which

indicates no between-group differences in gender, χ
2 = .038, p = .794. To test whether there

was an age difference between the DI group (µ = 9.8) and the MI group (µ = 10.5), we

performed an independent t-test, which indicates a between-group difference in age, t = -

3.980, p = .001. To test whether there was a difference in self-efficacy levels on the MSLQ,

we performed an independent t-test, which indicates no between-group difference in self-

efficacy, t = -1.881, p = .071. However, the variable ‘Prior experience’, t = -4.050, p = .000

showed a between-group difference in prior experience, such that the MI group had more

experience than the DI group. Since the groups differed significantly in age and prior

experience, the hypotheses were tested with nonparametric tests. The Pearson correlation

between the NPVJ-scales, and MSLQ scales was .257, this is a weak positive relationship,

indicating that a high score on the MSLQ-scales equals a high score on the NPVJ scales.

Effect size was calculated with Hedges’ g = 1.52639 for total test score, indicating an invalid

effect size. The effect size for the total MSLQ score was g = 0.989625, indicating a large

effect size.

 14

3.2 Knowledge and skills

To test the hypothesis that children who received direct instruction in a programming class

would acquire better programming skills and a better comprehension of computer

programming compared to children who received minimal instruction in a programming class,

we performed a series of Mann-Whitney U tests. Contrary to our expectations, we found that

the MI group (µ = 6.4) achieved a higher score than the DI group (µ = 3.7), U = 26.500, p

=.001. Furthermore, the MI group performed significantly better on the variables skills (MI

group: µ = 2.8, DI group: µ = 1.4, U = 41.500, p = .003) and comprehension (MI group: µ =

3.625, DI group: µ = 2.3, U = 44.000, p = .006), disproving our hypothesis even more.

3.3 Self-efficacy

To test the hypothesis that children receiving direct instruction in programming classes would

have higher scores on the NPV-J-2 scales than children receiving minimal instruction, we

performed a series of Mann-Whitney U tests. Contrary to our expectations, we found that the

MI group (µ = 3.35) reported higher levels of self-efficacy than the DI group (µ = 1.9), U =

42.000, p = .004. Furthermore, there was no difference on the scale Tenacity between the DI

group (µ = 3.20) and the MI group (µ = 3.60), U = 83.500, p = .23).

Table 3.

Characteristics participants

 DI group

N = 10

MI group

N=20

χ
2

(df=1)

p

 Frequency Percent Frequency Percent

Gender .068 .794

 Boy 4 40 9 45

 Girl 6 60 11 55

 T p

 µ SD µ SD

Age 9.80 .422 10.50 .513 -3.980 .001

Prior experience .44 .726 1.89 1.15 -4.050 .000

Missing 1 1

MSLQ 4.8086 1.22 5.50 .733 -1.881 .071

 15

4. Discussion

The present study predicted that explicit direct instruction in elementary school computer

programming classes would be a more effective instructional method than the exploratory

learning model, comparing the variables computer programming comprehension, computer

programming skills, and self-efficacy. However, no evidence was found to support these

hypotheses. Although, the type of instruction did seem to affect the comprehension and skills,

and self-efficacy levels, after a 6-week training in computer programming skills, such that

students receiving minimal instruction showed a higher level of comprehension and skills, and

self-efficacy. These findings imply that not direct instruction, but minimal instruction is an

improving factor of computer programming comprehension and skills, and computer self-

efficacy.

These findings are surprising, because earlier research suggests that novel programmers

should receive direct instruction (Lister, 2016), and the effectiveness of direct instruction over

minimal instruction (Mayer, 2004; Kirschner, et al., 2006). However, we did not use a pure

exploratory way of teaching the MI group, the teacher provided feedback and asked questions

to help the student understand the programs, which has been found to be an effective method

of teaching (Tobias & Duffy, 2009; Hsiao, et al., 2011). Yet, this was not reflected in the

results of the DI group, where students also received a lot of feedback. An explanation for this

difference can be found in the used materials: the MI group had access to working PC’s with

large screens, while half of the DI group used chromebooks with small screens and slow

working internet. This did not only lead to frustration among the students, but also made it

more difficult to finish the assignments. Furthermore, this increased the cognitive load of the

students who had to regulate their emotions and learn in a new environment. According to

Kirschner, et al. (2006) this has a negative effect on learning in students.

Our findings on self-efficacy also show a significant difference between both groups, in

favour of the MI group. One explanation for this finding is the difference in prior experience

between both groups. The MI group had participated in a Lego Mindstorms lesson, the week

before the experiment. Even though this is different from Scratch, the students had already

practiced with working in a computer programming environment and experienced the

different mindset that is needed for programming. Also, when answering the question: ‘What

does a programmer do?’, the MI group were able to fill in more correct answers than the DI

group.

 16

Even though following a programming class has an impact on self-efficacy (Ramalingam, et

al., 2004), succeeding in a task and observing success in classmates is also important

(Hushman & Marley, 2015). The badly working materials in the DI group resulted in poorly

executed assignments, thus, students did not succeed in the tasks and did not see their

classmates succeed, which may have decreased their self-efficacy levels. Moreover, both

groups reported similar levels of tenacity, thus, both groups felt like they worked really hard.

The MI group saw that their hard work paid off, the DI group did not, which may have also

decreased self-efficacy levels. Furthermore, using materials that do not work, also affect self-

efficacy (Hsu & Huang, 2006).

Perhaps, both comprehension and knowledge (focus of the first hypothesis) and self-efficacy

(focus of the second hypothesis) influenced each other. As noted above, succeeding in tasks

influences self-efficacy (Hushman & Marley, 2015), but self-efficacy has also been found to

influence student performances (Parajes & Graham, 1999). Our results show a similar effect:

the group that performed better (MI group), also had higher self-efficacy levels.

Limitations

However, we cannot say that these differences in results relied strictly on instructional types

or other explanations. Other factors may also have resulted in different findings. Since one of

the classes was taught by the researcher, who has limited teaching experience, the lessons

evolved along the way. In week 3-5 the Scratch assignment was to build games. Even though

the children did enjoy these classes over the earlier classes, it also meant less focus on the

concept of the week. Additionally, this study used a relatively small sample size (total N =

35), which reduced the power of the research. Thus, lowering the probability of finding true

effects, and positive predictive value, and increasing the effect of errors (Button, et al., 2013).

Furthermore, the lack of standardized testing and teaching materials results in researcher

created materials, which lessens the overall validity and especially the construct validity of

the research. It is however a common phenomenon in computer education research to create

and use researcher designed materials in own studies (e.g. Feaster, Ali, Zhai & Hallstrom,

2014; Benotti, Martínez & Schapachnik, 2014), maybe, because it is a relatively new research

field and standardized protocols do not yet exist (as they do in psychology research).

 17

Future recommendations

To our knowledge, this research is among the first studies examining the effect of instruction

type on self-efficacy in children in Dutch elementary school computer programming classes.

Thus, further work is required in order to gain a more complete understanding of the influence

of instructional methods on programming skills, especially with the implementation of

computer programming in the official Dutch curriculum. A topic that is suitable for further

research is examining the effects of motivation on learning ability in computer programming

context. We noticed in our groups a difference in motivation: a female student from the MI

group talked about how much she loved the programming class, whilst in the DI group,

children talked about quitting the experiment after the second class. Since intrinsic motivation

plays an important part in learning to program (Bergin & Reilly, 2017), this may have

influenced both groups in their performance. As noted before, many researchers create their

own materials, which decreases the validity of the research. Therefore, the next step in

research should be creating standardized test materials and protocols for computer educational

research. In line with Waite (2017), this field of research needs more longitudinal research

with large sample sizes on the pedagogy behind programming education.

In summary, the evidence from this study indicates that minimal instruction is more effective

than direct instruction in computer programming classes for elementary schools. However,

taking the small sample size of the study into account, the current results should be interpreted

with caution. Additional experimental research is needed to examine the effectiveness of

instruction types on computer programming skills and self-efficacy in children. If a child

needs to learn how to read, it would not be handed a book and told to learn reading by

himself. It should be the same for programming education.

References

Aivaloglou, E. & Hermans, F. (2019). Early Programming Education and Career

 Orientation: the Effects of Gender, Self-efficacy, Motivation and Stereotypes.

 Proceedings of the 50th ACM Technical Symposium on Computer Science

 Education, New York, United States.

Alfieri, L., Brooks, P., Aldrich, N. & Tenenbaum, H. (2011). Does Discovery-Based

 Instruction Enhance Learning? Journal of Educational Psychology, 103(1), 1-18.

Bandura, A. (1993) Perceived Self-Efficacy in Cognitive Development and Functioning.

 Educational Psychologists, 28(2), 117-148.

 18

Barelds, D., Luteijn, F. & van Dijk, H. (2011) NPVJ-2. Junior Nederlandse Persoonlijkheids

 Vragenlijst. Amsterdam: Pearson Assessment.

Ben-Ari, M. (2001). Constructivism in Computer Science Education. Journal of Computers in

 Mathematics and Science Teaching, 20(1), 45-73.

Benotti, L., Martínez M. & Schapachnik, F. (2014). Engaging high school students using

 chatbots. Proceedings of the 2014 conference on Innovation & technology in

 Computer Science Education, Uppsala, Sweden.

Bereiter, C. & Engelmann, S. (1966). Teaching disadvantaged children in the preschool.

 Upper Saddle River, NJ: Prentice Hall.

Bergin, S. & Reilly, R. (2017). The Influence of motivation and comfort-level on

 learning to program. In: P. Romera, J. Good, E. Acosta Chaparro & S. Bryant

 (Eds). Proc. PPIG 17.

Boyer, N. Langevin, S. & Gaspar, A. (2008). Self-Direction & Constructivism in

 Programming Education. SIGITE 2008, October 16-18, Cincinnati, OH, USA.

Britner S. & Pajares F. (2006) Sources of science self-efficacy beliefs of middle school

 students. Journal of Research in Science Teaching, 43(5), 485-499.

Brown, A. & Campione, J. (1994) Guided Discovery in a Community of Learners. In: K.

 McGilly (Ed.), Classroom Lessons: Integrating Cognitive Theory and Classroom

 Practice (pp. 229-270), Cambridge, MA: MIT Press.

Button, K. Ioannidis, J., Mokrysz, C., Nosek, B., Flint, J., Robinson, E. & Munafò, M. (2013)

 Power failure: why small sample size undermines the reliability of neuroscience.

 Nature Reviews Neuroscience, 14, 365-376.

Cassidy, S. & Euchus, P. (2002). Developing the Computer User Self-efficacy (Cuse)

 Scale: Investigating the Relationship between Computer Self-efficacy, Gender and

 Experience with Computers. Journal of Educational Computing Research, 26(2),

 133-153.

Clark, R., Kirschner, P. & Sweller, J. (2012) Putting students on the Path to Learning: The

 Case for Fully Guided Instruction. American Educator, 36(1), 6-11.

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration

 of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114.

Dekker, S. (2014-11-27). Toekomstgericht funderend onderwijs. Tweede Kamer der

 Staten-Generaal.

 19

Feaster, Y., Ali, F., Zhai, J. & Hallstrom, J. (2014) Serious Toys: three years of teaching

computer science concepts in K-12 classrooms. Proceedings of the 2014 conference on

Innovation & technology in Computer Science Education, Uppsala, Sweden.

Freitas, S. de (2006). Using games and simulations for supporting learning. In C.

 Martin & L. Murray (Eds.), Learning, media and technology special issue on

 gaming. 31(4), 343-358.

Freitas, S. de & Neumann, T. (2009) The use of ‘exploratory learning’ for supporting

 immersive learning in virtual environments. Computers & Education, 52, 343-352.

Good, T. L. & Grouws, D. A. (1979). The Missouri mathematics effectiveness project.

 Journal of Educational Psychology, 71(3), 355-362.

Hattie, J. (2009). Visible learning: A synthesis of 800+ meta-analyses on achievement. New

York: Routledge.

Hermans, F. (n.d.) Scratchlessen. Via: www.scratchles.nl

Hermans, F. & Swidan, A. (2019) The Effect of Reading Code Aloud on Comprehension: An

 Empirical Study. ACM Global Computing Education Conference CompEd 2019,

 Chengdu, China.

Hsiao, S., Lin, J. & Kang, J. (2011) Learning to program in kpl through guided

 collaboration. US-China Education Review, 8(1), 89-97.

Hsu, W. & Huang, S. (2006). Determinants of computer self-efficacy – an examination of

 learning motivations and learning environments. J. Educational Computing Research,

 35(3), 245-265.

Hughes, A., Morris, J., Therrien, W. & Benson, S. (2017). Explicit Instruction: Historical

 and Contemporary Contexts. Learning Disabilities Research & Practice, 32(3), 140-

 148.

Hunter, M. (1982). Mastery teaching. El Segundo, CA: Theory Into Practice.

Hushman, C. & Marley, S. (2015). Guided Instruction Improves Elementary Student

 Learning and Self-Efficacy in Science. The Journal of Educational Research, 108(5),

 371-381.

Ismail, M., Ngah, N. & Umar, I. (2010). Instructional Strategy in the Teaching of Computer

 Programming: A need Assessment Analyses. TOJET: The Turkish Online Journal of

 Educational Technology, 2010, 9(2), 125-131.

Jeuring, J., Corbalan, G., van Es, N. & Leeuwenstein, H. (2016). Leren programmeren in het

 PO – een literatuurreview.

 20

 Via https://www.nro.nl/kennisrotondevragenopeenrij/effecten-

 programmeeronderwijs-op-programmeervaardigheden/

Kikas, E. (2004) Teachers’ Conceptions and Misconceptions Concerning Three Natural

 Phenomena, Journal of Research in Science Teaching 41(5) 432–448.

Kirschner, P., Sweller J. & Clark, R. (2006). Why Minimal Guidance During Instruction Does

 Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based,

 Experiential, and Inquiry-Based Teaching. Educational Psychologist, 42(2), 75-86.

Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science

 instruction: effects of direct instruction and discovery learning. Psychological

 Science, 15, 661–667.

Kolb, D. A. (1984). Experiential learning. Englewood Cliffs, NJ: Pearson Ft Press.

Komarraju, M. & Nadler, D. (2013). Self-efficacy and academic achievement: Why do

 implicit beliefs, goals, and effort regulation matter? Learning and Individual

 Differences, 25, 67-62.

Lister, R. (2016). Toward a Developmental Epistemology of Computer Programming.

 Proceedings of the 11th Workshop in Primary and Secondary Computing Education,

 5-16, Germany, Münster.

Magliaro, S., Lockee, B. & Burton, J. (2005). Direct instruction revisited: A key model for

 instructional technology. Educational Technology Research and Development, 2005,

 53(4), 41-55.

Mayer, R. (2004) Should There be a Three-Strikes Rule Against Pure Discovery Learning?

 American Psychologist, 59(1), 14-19.

Meerbaun-Salant, O., Armoni, M. & Ben-Ari, M. (2013). Learning computer science

 concepts with Scratch. Computer Science Education, 23(3), 239-264.

Merriënboer, J. van, & Kirschner, P. (2007) Ten Steps to Complex Learning. Mahwah, NJ:

 Lawrence Erlbaum Associates.

Digitale Geletterdheid (2018) Ontwikkelteam Digitale Geletterdheid.

 Via https://curriculum.nu/ontwikkelteam/digitale-geletterdheid

Parajes, F. & Graham, L. (1999). Self-Efficacy, Motivation Constructs, and Mathematics

 Performance of Entering Middle School Students. Contemporary Educational

 Psychology, 24, 124-139.

Pintrich, P., Smith, D., Garcia, T. & McKeachie, W. (1991) A manual for the Use of the

 Motivated Strategies for Learning Questionnaire (MSLQ). Ann Arbor, Michigan:

 University of Michigan.

 21

Ramalingam, V., Labelle, D. & Wiedenbeck, S. (2004). Self-efficacy and mental

 models in learning to program. ACM SIGCSE Bulletin, 36(3), 171-175.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,

 Millner, A., Rosenbaum, E., Silver, J., Silverman, B. & Kafai, Y. (2009) Scratch:

 Programming for All. Communications of the ACM, 52(11), 60-67.

Severiens, S. (1999). Vragenlijst Motivatie, Leerproces en Leerstrategieën. Amsterdam:

 Universiteit van Amsterdam.

Smith, J. L. M., Sáez, L., & Doabler, C. T. (2016). Using explicit and systematic

 instruction to support working memory. TEACHING Exceptional Children,

 48(6), 275–281.

Strijker, A. (2018). Voorbeeldmaterialen computational thinking [blog].

 Via: http://curriculumvandetoekomst.slo.nl/21e-eeuwse-vaardigheden/digitale-

 geletterdheid/computational- thinking/voorbeeldmaterialen

Sweller, J., Ayres, P. & Kalyuga, S. (2011). Cognitive Load Theory. New York, NY:

 Springer.

Tobias, S., & Duffy, T. M. (Eds.). (2009). Constructivist theory applied to instruction:

 Success or failure? New York, NY: Taylor & Francis.

Vekiri, I. & Chronaki, A. (2008) Gender issues in Technology use: Perceived social

 support, computer self-efficacy and value beliefs, and computer use beyond

 school. Computers & Education, 51,1392-1404.

Waite, J. (2017) Pedagogy in teaching computer science in schools: a literature review.

 Queen Mary University of London, London.

 22

Appendices

Appendix A

Distribution of concepts in the final test

Q 1. Algorithm – comprehension

Q 2. If-statements – comprehension

Q 3. For-loop – comprehension

Q 4. Variables – comprehension

Q 5. Algorithm – skill

Q 6. If-statement – skill

Q 7. Debugging – comprehension

Q 8. Variable – skill

Q 9. Debugging

Q 10. For-loop - skill

Appendix B

Test questions

1. Wat is een algoritme?

A. Een regel waar de computer zich aan moet houden.

B. Een stappenplan voor de computer.

C. Een doosje waar de computer informatie in bewaart.

D. Een stuk code dat herhaald wordt.

2. Tijdens de lessen heb je voorwaardes in Scratch gezet.

Zet een cirkel om de zin of zinnen die waar zijn.

1. Een voorwaarde schrijf je met de woorden ‘als’ en ‘dan’.

2. Een voorwaarde wordt altijd herhaald.

3. Wat is een herhaling bij programmeren?

A. Een stappenplan voor de computer.

B. Een stuk code dat meerdere keren gedaan wordt.

C. Het oplossen van fouten in een code.

D. Tien keer dezelfde blokjes in het algoritme zetten

 23

4. Tijdens de lessen heb je variabelen gebruikt in Scratch.

Zet een cirkel om de zin of zinnen die waar zijn.

1. Variabele gebruik je om een kortere code te kunnen schrijven.

2. Een variabele is een doosje waar de computer informatie in bewaard.

5. Elke keer dat je op de spatiebalk drukt moet het poppetje lopen en een getal in de

tafel van 5 zeggen. Wat is de juiste volgorde?

A. 1-2-3-4

B. 3-4-1-2

C. 1-4-2-3

D. 3-2-4-1

6. Wat is de voorwaarde in dit stappenplan? (zet een cirkel om de juiste letter)

 24

7. Wat is debuggen?

A. Tien keer dezelfde blokjes in het algoritme zetten.

B. Een stuk code dat herhaald wordt.

C. Het oplossen van fouten in een code.

D. Een kever uit de computer halen.

8. Je wilt dat de score met 5 omhoog gaat. Welk blokje moet je gebruiken op de plek

van het vraagteken??

9. Je wilt dat de kikker tien keer verdwijnt en verschijnt als je op de spatiebalk drukt.

Er is alleen een fout gemaakt. Wat is er verkeerd geprogrammeerd?

A. Verander uiterlijk naar ‘Daar is de

kikker’ moet de 2e keer ‘Kikker is weg’

zijn.

B. De volgorde van de blokjes is verkeerd

C. Er zit geen fout in

D. Verander uiterlijk naar ‘Daar is de

kikker’ moet de 1e keer ‘Kikker is weg’

zijn.

 25

10. Wat gebeurt er als je op de spatiebalk drukt?

A.
- Je neemt tien stappen.
- Je gaat naar een willekeurige positie .
– Je zegt hallo 2 seconden lang.
- Je neemt tien stappen.
- Je gaat naar een willekeurige positie .
– Je zegt hallo 2 seconden lang.
- Je neemt tien stappen.
- Je gaat naar een willekeurige positie .
– Je zegt hallo 2 seconden lang.
- De score verandert met 1.

B.
- Je neemt tien stappen.
- Je gaat naar een willekeurige positie .
– Je zegt hallo 2 seconden lang.
- De score verandert met 1.
- Je neemt tien stappen.
- Je gaat naar een willekeurige positie .
– Je zegt hallo 2 seconden lang.
- De score verandert met 1.
- Je neemt tien stappen.
- Je gaat naar een willekeurige positie .
– Je zegt hallo 2 seconden lang.
- De score verandert met 1.

C.
- Je neemt tien stappen.
- Je gaat naar een willekeurige
positie .
– Je zegt hallo 2 seconden lang.
- De score verandert met 1.

D.
- Je neemt tien stappen.
- Je gaat naar een willekeurige positie .
– Je zegt hallo 2 seconden lang.
- De score verandert met 1.
- Je neemt tien stappen.
- Je gaat naar een willekeurige positie .
– Je zegt hallo 2 seconden lang.
- Je neemt tien stappen.
- Je gaat naar een willekeurige positie .
– Je zegt hallo 2 seconden lang.
- De score verandert met 1.

 26

Appendix C.

Questionnaire meeting 1 (MSLQ and demographic questionnaire)

Voornaam: …………………………………..

Leeftijd: …………………………………..

Geslacht: � jongen � meisje � anders

(1= helemaal niet waar voor mij tot 7 = helemaal waar voor mij)

Ik denk dat de les leuk zal zijn 1 2 3 4 5 6 7

Ik ben geïnteresseerd in programmeren 1 2 3 4 5 6 7

Ik vind programmeren leuk 1 2 3 4 5 6 7

Ik wil later programmeur worden 1 2 3 4 5 6 7

Ik denk dat ik goede cijfers ga halen voor de programmeerles 1 2 3 4 5 6 7

Als ik de stof niet begrijp vraag ik aan mijn klasgenoten of leraar of ze het willen

uitleggen

1 2 3 4 5 6 7

Ik weet dat ik mijn opdrachten en toetsen heel goed ga maken 1 2 3 4 5 6 7

Ik vind de opdrachten die ik voor dit vak moet doen leuk 1 2 3 4 5 6 7

Ik geloof dat ik de informatie uit de opdrachten kan begrijpen 1 2 3 4 5 6 7

Ik maak alle opdrachten van dit vak omdat ik graag goed wil leren programmeren 1 2 3 4 5 6 7

Ik weet zeker dat ik alles ga begrijpen 1 2 3 4 5 6 7

Wanneer ik iets niet snap, ga ik op zoek naar hulp 1 2 3 4 5 6 7

Ik denk dat ik voor dit vak wel een voldoende haal 1 2 3 4 5 6 7

Ik wil heel graag begrijpen waar dit vak allemaal over gaat en de opdrachten helpen

me daarbij.

1 2 3 4 5 6 7

Als ik kijk naar wat ik moet doen, naar de leraar en naar wat ik al kan en weet, dan

weet ik zeker dat ik het kan

1 2 3 4 5 6 7

Ik vertrouw erop dat ik alles snap, ook als het wat moeilijker wordt. 1 2 3 4 5 6 7

Ook door de opdrachten en het huiswerk, ben ik heel geïnteresseerd in waar dit vak

over gaat.

1 2 3 4 5 6 7

Als ik woorden niet begrijp, vraag ik aan de leraar die nog eens uit te leggen 1 2 3 4 5 6 7

Ik weet zeker dat ik de vaardigheden die je bij dit vak leert, goed ga kunnen 1 2 3 4 5 6 7

Door het maken van het huiswerk en de opdrachten leer ik niets extra's over dit vak. 1 2 3 4 5 6 7

 27

Heb je eerder geprogrammeerd? � Ja � Nee

Zo ja, Met welke programmeertaal?

� Javascript � Python � Scratch � HTML/CSS � Lego Mindstorms � Anders, vertel ons:

Wat doet een programmeur. Geef drie voorbeelden:

..

..

..

Appendix D.

NPV-J-2 scales Inadequacy (grey) and Tenacity (white) (Dutch)

1. Ik voel me meestal goed Ja ? Nee

2. Ik werk het liefst heel netjes Ja ? Nee

6. Er zijn maar weinig mensen die mij begrijpen Ja ? Nee

7. Ik werk meestal hard Ja ? Nee

11. Ik ben meestal zeker van mezelf Ja ? Nee

12. Ik werk vaak slordig Ja ? Nee

16. Ik ben vaak boos zonder dat ik weet waarom Ja ? Nee

17. Als ik ergens aan begin dan maak ik het ook af Ja ? Nee

21. Ik ben vaak erg verdrietig Ja ? Nee

22. Ik ben altijd op de afgesproken tijd thuis Ja ? Nee

26. Ik ben vaak moe Ja ? Nee

27. Ik ben een doorzetter Ja ? Nee

31. Ik ben vaak zenuwachtig Ja ? Nee

32. Ik ben meestal snel afgeleid Ja ? Nee

36. Ik denk vaak dat ik niets goed kan doen Ja ? Nee

37. Ik ga graag naar school Ja ? Nee

41. Ik denk vaak dat ik niks waard ben Ja ? Nee

42. Ik gebruik mijn tijd goed Ja ? Nee

46. Ik denk vaak dat niemand van me houdt Ja ? Nee

47. Ik geef nooit op Ja ? Nee

51. Ik droom vaak over vervelende dingen Ja ? Nee

 28

52. Ik doe meestal wat mij gevraagd wordt Ja ? Nee

56. Ik heb vaak een hekel aan mezelf Ja ? Nee

57. Ik doe wat mensen van mij verwachten Ja ? Nee

61. Ik heb vaak een slechte bui zonder dat ik weet waarom Ja ? Nee

62. Ik doe altijd goed mijn best Ja ? Nee

66. Ik ben vaak bang dat ik fouten ga maken Ja ? Nee

67. Ik doe altijd wat ik heb afgesproken Ja ? Nee

71. Ik heb vaak het gevoel dat alles me mislukt Ja ? Nee

72. Ik kan lang achter elkaar doorwerken Ja ? Nee

76. Ik maak me vaak zorgen over wat anderen van mij vinden Ja ? Nee

77. Ik vind dat je altijd je ouders moet gehoorzamen Ja ? Nee

81. Ik maak me vaak zorgen Ja ? Nee

82. Ik let goed op als er iets wordt uitgelegd in de klas Ja ? Nee

86. Ik voel me vaak eenzaam Ja ? Nee

87. Ik luister altijd goed naar volwassenen Ja ? Nee

91. Ik voel me vaak onzeker Ja ? Nee

92. Ik hou mijn spullen graag netjes in orde Ja ? Nee

96. Soms voel ik me zo slecht dat niemand iets goed kan doen Ja ? Nee

97. Ik doe de meeste dingen met plezier Ja ? Nee

