Psychologie
Faculteit der Sociale Wetenschappen

Universiteit Leiden

Show and tell?
The influence of instruction types on
developing programming skills and self-
efficacy levels in elementary school

Charlotte Thepass

Master Thesis School Psychology

Date: 02-07-2019

Student number: s1137247

Supervisor: Dr. Kiki Zanolie (& Dr. Felienne Hermans, LIACS)
Second reader: Michelle Achterberg




Abstract

Research suggests the effectiveness of directicigin over minimal instruction, even
though many programming classes for elementaryadals® minimal instruction. We have
examined the effect of instruction type on compnsien and skills, and self-efficacy in
school classes, hypothesizing the effectiveneskrett instruction over minimal instruction.
Two classes participated in the experiment (total 3, 17 girls, M age = 10.21; SD=0.60),
attending six programming classes differing innnstion type, and making an exam. Self-
efficacy was measured with the NPV-J-2. The grageiving minimal instruction performed
significantly better on the exam, and reported ificant higher levels of self-efficacy,
suggesting the effectiveness of minimal instructather than direct instruction in skills and
comprehension, and self-efficacy.



Index

1. Introduction
2. Method
2.1 Participants
2.2 Measure
2.3 Design
2.4 Procedure
2.5 Statistical analysis
3. Results
3.1 Demographics
3.2 Knowledge and skills
3.3 Self-efficacy
4. Discussion
References
Appendices
Appendix A.
Appendix B.
Appendix C.
Appendix D.



1. Introduction

In 2014, the Dutch parliament accepted a proptselurged state secretary of education
Sander Dekker to research what adjustments sheutdaae for the curriculum of Dutch
primary education. It was emphasized that skillsh@ncurriculum should fit with the 21st
century mindset. An important and new part of thelglls are learning to program and the
development of ‘digital literacy’. Digital literadg about awareness of reliability of source
material, and the effects of the digital world ealrlife events (Dekker, 2014). Computer
programming or programming is the process of wgitiscript or algorithm (tutorial) that can
be read and executed by a machine, robot or teati@y, Corbalan, van Es & Leeuwestein,
2016). Now, five years later, a new curriculum Bartch education will be presented to the
parliament, including a section about programmidigcation (Ontwikkelteam Digitale
Geletterdheid, 2018). However, little substanteaarch has been conducted on computer
programming education in primary schools (Waitel, 20 With this thesis, we want to add to
existing literature about programming educationt @gearch focuses on instructional
methods in programming education and its effeata@mprehension of basic computer
programming concepts, and computer programmingsskilScratch. We will compare a type
of direct instruction, more specifically explicitrelct instruction, with a type of minimal
instruction, more specifically the Exploratory Leirg Model.

Through the years, several direct instruction moteale been developed (e.g., Bereiter &
Engelmann, 1966; Good & Grouws, 1979; Hunter, 198B®wever, there are six overlapping
components which nearly all DI-models share: (1)emal must be broken down into small
steps and put in a logical order, (2) objectiveslaarner or performance focused, (3)
reactivating what students already know and commgdtwith their new knowledge is
emphasized, (4) students practice every step obic@tion of steps, (5) the promotion of
additional practice opportunities, and (6) feedbacments throughout the lesson (Magliaro,
Lockee & Burton, 2005). These components can asimibnd in explicit direct instruction, a
group of research-supported instructional behasithat are used to support successful
learning through clarity of language and purposé, r@duction of cognitive load. Active
student engagement is promoted by requiring respfmi®wed by affirmative and corrective
feedback (Hughes, Morris, Therrien & Benson, 20EXplicit instruction has similarities
with Engelmann’s (Bereiter & Engelmann, 1966) velbwn Direct Instruction model, and is

based on five pillars: (1) segment complex skilsmake them more ‘manageable’, (2)



providing clear, and consistent descriptions of tloevskill or strategy is formed, (3)
promoting successful engagement by giving fadimpset/prompts, (4) providing
opportunities for students to respond and recezedlback, and (5) creating purposeful
practice opportunities. Research has shown thetafémess of direct instruction, especially
when teaching novel learners (van Merriénboer &étiner, 2007; Lister, 2016). Since
programming education in elementary schools idadively new subject, it can be assumed
that children have little to no prior experienceh&d a novel learner has to discover the
concept by themselves, misconceptions can easiyduke, which may interfere with later
learning (Kikas, 2004, Clark, Kirschner & Swell@012). Additionally, direct instruction
benefits weak learners, because it reduces cogndad (Brown & Campione, 1994; Smith,
Saez & Doabler, 2016; Hughes et al., 2017). Aceaydd the cognitive load theory,
instructional information is processed in the wagkmemory (Sweller, Ayres & Kalyuga,
2011). Since working memory is limited in the infation it can process in a certain amount
of time (Cowan, 2001) and exploration of compled aovel environments may generate
heavy working memory load, thus negatively affegiearning in students (Kirschner,
Sweller & Clark, 2006). Furthermore, in literarywi®ws, direct instruction is found to be
more effective than minimal instruction (Mayer, 208attie, 2009, Jeuring et al., 2016).
Therefore, teaching computer programming with dinestruction is a research-supported
approach and we believe that it should be the dtefdien teaching programming classes.

Instead, the opposite is true: in computer progrargraducation, constructivism is a popular
way of teaching. According to this theory, studentsst construct their own mental
representations of the world through active cogeiprocessing (Clark, et al., 2012), this way
of teaching uses explorative learning minimal emptaons or guidance from the teacher.
Constructivism in computer programming educatios wapularized in the 80’s by Seymour
Papert. As Lister said in his paper ‘Toward a Depglental Epistemology of Computer
Programming’ (2016, p. 6): ‘We are all constructginow.” In this study, we will use the
definition for exploratory learning as a countetgar direct instruction. Exploratory learning
is defined as learning through exploring real otual environments combined with peer or
tutorial support (de Freitas, 2006) and is basethendea of constructivism. The exploratory
learning model (ELM; de Freitas & Neumann, 2009)ased on Kolb’s learning cycle for
explorative learning (1984). An important step afiXs learning cycle is the concrete (real-
life) experiences. However, in the current educatidandscape, digital learning contexts

cannot be ignored. The ELM acknowledges abstraat life (lived), and virtual experiences



as definitive experiences (de Freitas & Neumanf920n the ELM, reflection (3) is added
after exploration (see Fig 1). In the current mpdstablishing learning transfer between the
different types of experience is very importantdid) a step of Reflection, allows the
student to consider what they have learned andostgpihe forming of abstract concepts and

testing in different situations (de Freitas & Neuma2009).

Concrete

experience [1]
il N

Testing in different
Testing in new Observation and situations (abstract, lived,

situations [4] reflection [2] L) TFteractions)

\\ Forming abstract /

concepts [3]

Forming abstract concepts Reflection (meta-reflection)

Fig 1. Kolb's experiental learning cycle (Kolb, 1984) versus the Exploratory Learning Model (de Freitas & Neumann, 2009)

A benefit of explorative learning is the positivéluence on motivation, which plays an
important part in acquiring programming skills (Ber & Reilly, 2017). Students tend to
choose explorative learning over direct instructewen though it may increase the difficulty
of the assignment (Clark, et al., 2012). Also, ergiive learning mimics the tasks of a
programmer, which often requires thinking outsifiehe box, and explorative and testing
(Boyer, Langvin & Gaspar, 2008). However, explaratiearning does increase the
development of misconceptions, which has a negaffeet on academic success (Ben-Ari,
2001). Even though explorative learning may havalkmositive effects on developing
skills, direct instruction has larger effects (Ki&Nigam, 2004), and, it is important for
students to receive guidance and feedback fronmnéesa¢Mayer, 2004; Tobias & Duffy,
2009; Alfieri, Brooks, Aldrich & Tenenbaum, 2011sido, Lin & Kang, 2011). Therefore, we
believe that pure exploratory learning is an ingtffee method to teach computer

programming.

While many studies explored the effects of instarctype on academic performance in
computer programminfRamalingam, Labelle, & Wiedenbeck, 2004; Boyerlet2008;
Ismail, Ngah & Umar, 2010), research on the effetisstruction type in children (under 18)
is lacking. Waite (2017) showed in a review tharéhis limited empirical evidence to support



advice on programming education in schools. Alse,research that has been conducted with
primary and high school students, was often snealkesl, in out of school settings, and had
short time frames. Thus, so far, most studies fawed in adults a positive effect of direct
instruction on programming skills, however, oniypiied empirical evidence is found for
children (under 18). Also, very few studies haverbeonducted in the Netherlands, even

though there are many Dutch programming coursegtan primary and high schools.

Dutch programming courses for children have beerldped in the last three decades.
However, most courses have been made in the \&sydiars (Strijker, 2018). There are

roughly four different categories within these prargming courses: visual, textual,

Table 1.
Programming categories, definitions (Jeuring, et 2016)

Category Description Programming language
Textual Code is written text, underlying grammar is e.g. Java, C, Python
important.
Visual Code is built by moving blocks on screemchk are e.g. Scratch, code.org

often represented as puzzle pieces.

Unplugged Code is warren without any electronics e.g. csunplugged.org
(‘'unplugged’)
Physical Code is made using physical blocks, tlaken it e.g. Lego Mindstorms,

easier for students to visualize different stegs anDash & Dot
variables in a script. Often used in kindergarten.

‘unplugged’, and physical programming (see Tab)e 1.

However, the programs that are offered often updoeative learning as instructional method
(see Table 2.), even though research has showththaype of instruction is an ineffective
way to teach programming (Mayer, 2004; Kirschneglg 2006; Clark, et al., 2012). As
such, it is of great importance to investigatedffects of instruction type on programming

skills in a younger sample.



Table 2.

Distribution of programming courses for elementachool by programming category (Thepass, C., 2019)

Category N Most common grade (n) Most commstructional method (n)
Textual 13 6,7,8(12) Explorative (9)
Visual 17 7 (12) Explorative (16)
Unplugged 6 6, 7 (6) Explorative (5)
Physical 3 2 (3) Explorative (3)
Mix 10 6,7,8(9 Explorative (7)

Another important factor that influences the depetent of computer programming skills is
the self-efficacy of students. Self-efficacy, fidgscribed by Bandura (1993), is the belief that
one has the abilities to achieve one’s goals antptete tasks. This belief in abilities
originates from verbal persuasion from an authppgtgvious successes within a certain
domain, observing success in a peer with (percgsiedlar capabilities, and the
physiological response to the task (Hushman & Ma2€15). Several factors influence self-
efficacy with regard to computer skills, such amgmtal support (Vekiri & Chronaki, 2008),
previous experience (Aivaloglou & Hermans, 2018y #&llowing programming classes
(Ramalingam, et al., 2004). Self-efficacy has atpaseffect on academic achievement
(Britner & Pajares, 2006), because of its self-fatjjug function. Students with high self-
efficacy levels are better at regulating their itspg when they fail at a task, because they
have the belief that they are able to finish tls& taven if there is a setback during the task
(Komarraju & Nadler, 2013). Again, most researdlareling self-efficacy in computer
programming skills focused on adults using a ski¢acy questionnaire (Cassidy & Euchus,
2002). However, it is not yet understood what thect of instructional method might be on
computer self-efficacy in children. Even though imglications and evidence are used for
children’s education. As such the current study fedus on the effect of instruction type on

the self-efficacy with regards to computer prograngrskills in children.

This study researches instructional methods forprdaer programming courses in schools for
children aged 8-11. There are two research quesgoring this study. First, do children
who receive direct instruction in a programmingsslacquire better skills and have a better
comprehension of computer programming than childviea receive minimal instruction?

Research suggests the effectiveness of directizigin over minimal instruction (Mayer,



2004; Kirschner, et al., 2006, Hattie, 2009; Clatkal., 2012). Therefore, it is hypothesized
that children who receive direct instruction in garter programming class, acquire better
computer programming skills and have a better cehmarsion of computer programming
than children who receive minimal instruction. @nén with no prior knowledge of the
subject perform better if they receive direct instion, because the guidance directs their
attention to the important aspects of programmimmdjenables them to think in the most
efficient way (Jeuring, et al., 2016; Lister, 2016)

The second question guiding this thesis is: Dadeéil who receive direct instruction during a
programming class have a higher self-efficacy dftercourse is over than children who
receive minimal instruction? Research suggestpadiséive influence of guided instruction on
science self-efficacy and receiving persuasion fasnauthority is an important factor for
self-efficacy (Hushman & Marley, 2015). Therefatas hypothesized that children who
receive direct instruction in a programming coulrse/e a higher self-efficacy at the end of

the course than children receiving minimal instirct

2. Method

2.1 Participants

Participants were 35 students (17 girls, M age 21;08D=0,60) currently in"bgrade (groep
6) or 68" grade (groep 7), from two different schools. Orzug of students {5grade, n=15,
seven girls, M age = 9180; SD=0,41) attended ameary school in the Hague. The other
group of students (bgrade, n=20, 11 girls, M age = 10,50; SD=0,58rated an elementary
school in Rijnsburg, near Leiden. Both schools paudicipated in computer programming
education research before and were contacted &ayatnis research. 33% of th& §raders,
and 80% of the'Bgraders had prior programming experience. Thrggesits from the Hague
had used Scratch before, none of the studentsRigmburg had used Scratch before. The
group of students from Rijnsburg had participated Lego Mindstorms project, the week
before the experiment started. However, sincewvilagta singular day project, some students
did feel they had no prior experience. Therefore assume that participants had little to no
prior computer programming experience. Participamee divided over two experimental
conditions, based on which school they attendekdo&@s were randomly assigned a type of
instruction by entering both names into an onliserendomizing generator. Five children
(four boys, one girl) from the DI group did not ¢éathe final test, because they left the
experiment (DI group, N=10). The subjects of thiglg were under the age of 16, therefore



one or more caregivers gave informed consent. &earch was approved by the local ethics

committee at Leiden University. Participants did rezeive compensation for this study.

2.2 Measures

Demographics and prior knowledge

Students filled in a demographic questionnairduiiag questions about their age and
gender. To measure pre-existing knowledge of coergarbgramming, students answered
guestions about their experience with computer garmogning. They were also asked to
describe what a programmer does. The amount cécoanswers were added together to
produce a pre-test score, including an extra gomprior experience. In total, four points
could be obtained.

Comprehension and skills

To measure the comprehension and knowledge ofaimpater programming concepts,
students made a test which was created by therobseaf this study, because no
standardized computer skills questionnaire fordrkih exists. The test is based on materials
by Hermans & Swidan (2019). No Crohnbach’s Alphavailable, but experts in the
educational and computer programming field haveeresd the test questions. Students
answered ten multiple choice questions, with fowavaer options each. The test measured
five different concepts: algorithms, variablesfoops, conditional statements, and
debugging. For every concept, one question wastdbeulefinition of the concept, the other
guestion was about applying the concept in Scrged Appendix A for the distribution of
the questions). The amount of correct answers agded together to produce a total test
score, with a range from zero to ten points. Apsoticipants could score 2 points per
concept, and a skill score and comprehension smarde be calculated, with a total score

between zero to five points each.

Self-efficacy

Pre-test

To measure the base level of self-efficacy, thsed)scales of the Dutch version of the
Motivational Strategies for Learning QuestionndWiSLQ) were used: task value
(Crohnbach’s Alpha: .,90), self-efficacy (Crohnbachlpha: ,93) , and help seeking
(Crohnbach’s Alpha: ,52). One of the items is ‘liéee that | will achieve high grades for this
programming course’. The MSLQ is a self-reportrmstent that measures motivational

10



orientations and use of different learning straedor a course (Pintrich, Smith, Garcia &
McKeachie, 1991). The Dutch version has been pudbtidy Severiens (1999). This
instrument has 44 items divided over five scalegifsic value, Self-efficacy, Test anxiety,
Strategy use, and Self-regulation on a 7-point itikeale. For every scale, the mean of the
items that make up the scale is calculated. Soenesitare reversed. No norm scores exist, the

guestionnaire is in reference to the specific grigp is taking the questionnaire.

Post-test

To measure self-efficacy, two subscales of the Neddse PersoonlijkheidsVragenlijst-
Junior-2 (NPV-J-2) were used: Inadequacy (Crohnlsagha: .92;), and Tenacity
(Crohnbach’s Alpha: ,84). The scale Inadequacy oreasf a child thinks negatively about
themselves. One of the items is: ‘| feel fine mafsthe time’. The scale Tenacity measures if
a child thinks it's tenacious. One of the itemsligrefer to work orderly’. The NPV-J-2 is

the revised, adapted version of the Persoonlijid\gidgenlijst (2011). The NPVJ-2 has 100
items, divided equally over five scales: Inadequd®nacity, Social inadequacy,
Stubbornness, and Dominance. Participants selfirépavhat extend they identify with the
statement. They can chose from three different arswes (2 points), ? (1 point) and No (0
points). For every scale, all relevant item scovese added together to produce a raw score.
This score can be interpreted as being extremahtdoextremely high. The total raw score
per scale is between 20 and 40 points (Bareldgijouf van Dijk, 2011).

Scratch

Students were taught programming skills in therenprogram Scratch. Scratch is a block-
based programming language, developed by the hifekindergarten Group from MIT
Media Lab and specifically designed for childremnfrage 8-16 (Resnick, et al., 2009). In
Scratch, sprites which are displayed on a stagédeaontrolled via scripts. Scripts are
created by dragging and dropping blocks in thegagsl programming space. Blocks are
colour coded and represent different program coraptsy such as variables and conditions.
Blocks need to be connected like puzzle piecesdate a script, and a sprite can follow

several scripts at once. (Meerbaun-Salant, ArmoBief-Ari, 2013).

11



2.3 Design

This study examines the relation between ‘instamnal method’ and improving the
knowledge and comprehension of computer programnaingd ‘method of instruction’ and
self-efficacy. To do this, direct instruction andpboratory learning were compared within the

context of learning how to program. A quasi-expemtal method was used for this research.

2.4 Procedure

Students attended six programming classes, tha al@yut an hour long. In the first five
weeks, they learned one new programming concepi@ek. The pre-test, a demographic
guestionnaire and the Dutch version of the MSLQs fitked in by students during the first
class. The post-test, the test that we createdaseld on a test by Swidan & Hermans (2019),
and the NPV-J-2, were filled in during the sixttddmal programming class. The classes
were experimenter created, based on online madkarmans, F., n.d.). The students
learned programming via Scratch. Both groups déffan instruction method, the first group
received Direct Instruction (DI group) and the setgroup received minimal instruction (Ml
group). Each lesson had four parts: introductiotheftopic, unplugged assignment,
assignment in Scratch, ending. The DI group reckinstruction based on the Direct
Instruction model: during the introduction, knowdgedwas reactivated and the topic of the
week was explained. Students were taught whiclesfies they should use during the
assignments. The unplugged and Scratch assignnezatled by guided practice. Students
were encouraged to try the program and feedbaclgwas after every part of the class. The
M1 group followed the exploratory model, they hadatork in groups during the unplugged
assignment and were only given the blocks, buthmuseful strategies for the Scratch
assignment. The teacher of the MI group asked munsstto enhance (meta-)reflection in
students, but did not give feedback on the assigisnetil the end of the clasBhe direct
instruction classes were given by the researchenninimal instruction classes were led by
the ICT employee of their school. Instructional kiets and additional information was given
to the ICT employee beforehand. Both groups maeétratch assignments in the assigned
computer rooms of their school. The DI group workeddesktops and Chromebooks. Most
students preferred the desktop, since the Chronksliwad smaller screens and a slower
internet connection. Only seven desktops were alvi@] therefore, about half of the students
had to work on the Chromebooks. In the MI group, uhplugged assignment took place in

their own classroom. The computer room had a wgrkiesktop computer for each student.

12



2.5 Statistical Analysis

Categorical variables were reported in number a&rdgmtages, and analyzed with chi-square
tests. Continuous variables were reported in terihmsean and standard deviations, and
analyzed with independent t-test or Mann-Whitneysewhen statistical assumptions were
violated. Given the way the hypotheses were sea gynificance level of p <.025 (1-tailed),
was established. Since a high score on the scatetuacy indicates a low self-esteem, this
variable was reverse coded, to make sure a higle seothe scale indicated a high self-
esteem. The effect size and power were calculatdg an alpha level of 0,05. A Pearson R

was used to calculate the relationship betweeMiBEQ and the NPV-J-2.

3. Results

3.1 Demographics and internal consistencies

To test whether there were more boys or girls @éDirect Instruction (DI group) compared
to the Minimal Instruction (MI) group, we performadCHI-squared test (see Table 3.), which
indicates no between-group differences in gendes,.038,p = .794 To test whether there
was an age difference between the DI group (1 x&h8 the MI group (1 = 10.5), we
performed an independent t-test, which indicatestaveen-group difference in age, t = -
3.980,p = .001.To test whether there was a difference in selaffy levels on the MSLQ,
we performed an independent t-test, which indicatebetween-group difference in self-
efficacy, t = -1.881p = .071 However, the variable ‘Prior experience’, t =080, p = .000
showed a between-group difference in prior expegesuch that the MI group had more
experience than the DI group. Since the groupsgditf significantly in age and prior
experience, the hypotheses were tested with nomediria tests. The Pearson correlation
between the NPVJ-scales, and MSLQ scales was tl257s a weak positive relationship,
indicating that a high score on the MSLQ-scalesabxja high score on the NPVJ scales.
Effect size was calculated with Hedges’ g = 1.52889otal test score, indicating an invalid
effect size. The effect size for the total MSLQrecovas g = 0.989625, indicating a large

effect size.

13



Table 3.

Characteristics participants

2

DI group MI group X p
N =10 N=20 (df=1)
Frequency Percent Frequency Percent
Gender .068 794
Boy 4 40 9 45
Girl 6 60 11 55
T p
M SD VI SD
Age 9.80 422 10.50 513 -3.980 .001
Prior experience 44 726 1.89 1.15 -4.050 .000
Missing 1 1
MSLQ 4.8086 1.22 5.50 733 -1.881 .071

3.2 Knowledge and skills

To test the hypothesis that children who receivegctinstruction in a programming class
would acquire better programming skills and a bettenprehension of computer
programming compared to children who received matimstruction in a programming class,
we performed a series of Mann-Whitney U tests. 2onto our expectations, we found that
the MI group (1 = 6.4) achieved a higher score tharDI group (1 = 3.7)) = 26.500p
=.001. Furthermore, the MI group performed significariiBtter on the variables skills (Ml
group: 4 = 2.8, DI group: p = 1.b,=41.500, p = .003) and comprehension (Ml group:
3.625, DI group: p = 2.3) = 44.000, p =.006), disproving our hypothesisnevmre.

3.3 Self-efficacy

To test the hypothesis that children receivingainestruction in programming classes would
have higher scores on the NPV-J-2 scales thanrehillcéceiving minimal instruction, we
performed a series of Mann-Whitney U tests. Coptraour expectations, we found that the
MI group (u = 3.35) reported higher levels of sefficacy than the DI group (M =1.9),=
42.000,p = .004.Furthermore, there was no difference on the sbatecity between the DI
group (1 = 3.20) and the Ml group (u = 3.80)+ 83.500,p = .23.

14



4. Discussion

The present study predicted that explicit direstrunction in elementary school computer
programming classes would be a more effectiveuntttnal method than the exploratory
learning model, comparing the variables computeg@mming comprehension, computer
programming skills, and self-efficacy. However,exadence was found to support these
hypotheses. Although, the type of instruction didra to affect the comprehension and skills,
and self-efficacy levels, after a 6-week trainingomputer programming skills, such that
students receiving minimal instruction showed ahidevel of comprehension and skills, and
self-efficacy. These findings imply that not dir@xstruction, but minimal instruction is an
improving factor of computer programming comprehemsnd skills, and computer self-

efficacy.

These findings are surprising, because earliearelesuggests that novel programmers
should receive direct instruction (Lister, 2016)ddhe effectiveness of direct instruction over
minimal instruction (Mayer, 2004; Kirschner, et, @006). However, we did not use a pure
exploratory way of teaching the MI group, the tesxgbrovided feedback and asked questions
to help the student understand the programs, wiashbeen found to be an effective method
of teaching (Tobias & Duffy, 2009; Hsiao, et al012).Yet, this was not reflected in the
results of the DI group, where students also reckavlot of feedback. An explanation for this
difference can be found in the used materialsMhgroup had access to working PC’s with
large screens, while half of the DI group used otebooks with small screens and slow
working internet. This did not only lead to frusiom among the students, but also made it
more difficult to finish the assignments. Furthermdhis increased the cognitive load of the
students who had to regulate their emotions and i@eaa new environment. According to
Kirschner, et al. (2006) this has a negative effectearning in students.

Our findings on self-efficacy also show a significdifference between both groups, in
favour of the MI group. One explanation for thisding is the difference in prior experience
between both groups. The MI group had participatealLego Mindstorms lesson, the week
before the experiment. Even though this is diffefesm Scratch, the students had already
practiced with working in a computer programmingieznment and experienced the
different mindset that is needed for programminigoAwhen answering the question: ‘What

does a programmer do?’, the MI group were abldltmfmore correct answers than the DI

group.

15



Even though following a programming class has gpeich on self-efficacy (Ramalingam, et
al., 2004), succeeding in a task and observingesscn classmates is also important
(Hushman & Marley, 2015). The badly working matksria the DI group resulted in poorly
executed assignments, thus, students did not sdigeélee tasks and did not see their
classmates succeed, which may have decreasedé¢kfeafficacy levels. Moreover, both
groups reported similar levels of tenacity, thugthigroups felt like they worked really hard.
The MI group saw that their hard work paid off, hlegroup did not, which may have also
decreased self-efficacy levels. Furthermore, usiagerials that do not work, also affect self-
efficacy (Hsu & Huang, 2006).

Perhaps, both comprehension and knowledge (foctigedirst hypothesis) and self-efficacy
(focus of the second hypothesis) influenced ealsroAs noted above, succeeding in tasks
influences self-efficacy (Hushman & Marley, 20180} self-efficacy has also been found to
influence student performances (Parajes & Grah&®9)1 Our results show a similar effect:

the group that performed better (MI group), alsd haher self-efficacy levels.

Limitations

However, we cannot say that these differencessulterelied strictly on instructional types
or other explanations. Other factors may also lmaselted in different findings. Since one of
the classes was taught by the researcher, whaonhi¢ed teaching experience, the lessons
evolved along the way. In week 3-5 the Scratchgassent was to build games. Even though
the children did enjoy these classes over theezarlasses, it also meant less focus on the
concept of the week. Additionally, this study useetlatively small sample size (total N =
35), which reduced the power of the research. Tlougering the probability of finding true
effects, and positive predictive value, and indregaghe effect of errors (Button, et al., 2013).
Furthermore, the lack of standardized testing aadting materials results in researcher
created materials, which lessens the overall wglahd especially the construct validity of
the research. It is however a common phenomenoonputer education research to create
and use researcher designed materials in own st(elig Feaster, Ali, Zhai & Hallstrom,
2014; Benotti, Martinez & Schapachnik, 2014), mayszause it is a relatively new research

field and standardized protocols do not yet exstthiey do in psychology research).

16



Future recommendations

To our knowledge, this research is among the sitiatlies examining the effect of instruction
type on self-efficacy in children in Dutch elemegtachool computer programming classes.
Thus, further work is required in order to gain arencomplete understanding of the influence
of instructional methods on programming skills,exsally with the implementation of
computer programming in the official Dutch currigod. A topic that is suitable for further
research is examining the effects of motivationeamning ability in computer programming
context. We noticed in our groups a difference otiwation: a female student from the Ml
group talked about how much she loved the programgrdiass, whilst in the DI group,
children talked about quitting the experiment after second class. Since intrinsic motivation
plays an important part in learning to program (Be& Reilly, 2017), this may have
influenced both groups in their performance. Addiefore, many researchers create their
own materials, which decreases the validity ofréeearch. Therefore, the next step in
research should be creating standardized testialatand protocols for computer educational
research. In line with Waite (2017), this fieldrebearch needs more longitudinal research

with large sample sizes on the pedagogy behindranaging education.

In summary, the evidence from this study indicaéib@s minimal instruction is more effective
than direct instruction in computer programmingssks for elementary schools. However,
taking the small sample size of the study into aotathe current results should be interpreted
with caution. Additional experimental researcheeded to examine the effectiveness of
instruction types on computer programming skilld aalf-efficacy in children. If a child

needs to learn how to read, it would not be haradiedok and told to learn reading by

himself. It should be the same for programming atioo.

References

Aivaloglou, E. & Hermans, F. (2019). Early ProgramgiEducation and Career
Orientation: the Effects of Gender, Self-efficabigtivation and Stereotypes.
Proceedings of the 50ACM Technical Symposium on Computer Science
Education, New York, United States.

Alfieri, L., Brooks, P., Aldrich, N. & Tenenbaum,.KP011). Does Discovery-Based
Instruction Enhance Learning®@urnal of Educational Psychology, @3 1-18.

Bandura, A. (1993) Perceived Self-Efficacy in Cdigei Development and Functioning.
Educational Psychologists, @8, 117-148.

17



Barelds, D., Luteijn, F. & van Dijk, H. (201NPVJ-2. Junior Nederlandse Persoonlijkheids
Vragenlijst. Amsterdam: Pearson Assessment.

Ben-Ari, M. (2001). Constructivism in Computer Sae EducationJournal of Computers in
Mathematics and Science Teaching,12045-73.

Benotti, L., Martinez M. & Schapachnik, F. (201Bhgaging high school students using
chatbots. Proceedings of the 2014 conferencemovation & technology in
Computer Science Education, Uppsala, Sweden.

Bereiter, C. & Engelmann, S. (1966kaching disadvantaged children in the preschool.
Upper Saddle River, NJ: Prentice Hall.

Bergin, S. & Reilly, R. (2017). The Influence of timation and comfort-level on
learning to program. In: P. Romera, J. Good, Ebsté& Chaparro & S. Bryant
(Eds). Proc. PPIG 17.

Boyer, N. Langevin, S. & Gaspar, A. (2008). Selfdation & Constructivism in
Programming Educatio&sIGITE 20080ctober 16-18, Cincinnati, OH, USA.

Britner S. & Pajares F. ( 2006) Sources of sciesstkefficacy beliefs of middle school
studentsJournal of Research in Science Teachindb33485-499.

Brown, A. & Campione, J. (1994) Guided Discovergi@ommunity of Learners. In: K.
McGilly (Ed.), Classroom Lessons: Integrating Cognitive Theory @hassroom
Practice (pp. 229-270), Cambridge, MA: MIT Press.

Button, K. loannidis, J., Mokrysz, C., Nosek, Bing J., Robinson, E. & Munafo, M. (2013)
Power failure: why small sample size underminesréiability of neuroscience.
Nature Reviews Neuroscience, 385-376.

Cassidy, S. & Euchus, P. (2002). Developing the Quter User Self-efficacy (Cuse)
Scale: Investigating the Relationship between QaenSelf-efficacy, Gender and
Experience with Computerdournal of Educational Computing Research(26
133-153.

Clark, R., Kirschner, P. & Sweller, J. (2012) Pugtstudents on the Path to Learning: The
Case for Fully Guided InstructioAmerican Educator, 3@), 6-11.

Cowan, N. (2001). The magical number 4 in shomteremory: A reconsideration
of mental storage capacitgehavioral and Brain Science®4, 87-114.

Dekker, S. (2014-11-27). Toekomstgericht funderemderwijs. Tweede Kamer der
Staten-Generaal.

18



Feaster, Y., Ali, F., Zhai, J. & Hallstrom, J. (20XSerious Toys: three years of teaching

computer science concepts in K-12 classrooms. Bdiegs of the 2014 conference on

Innovation & technology in Computer Science EdwratiUppsala, Sweden.

Freitas, S. de (2006). Using games and simulafmmsupporting learning. In C.
Martin & L. Murray (Eds.)Learning, media and technology special issue on
gaming 31(4), 343-358.

Freitas, S. de & Neumann, T. (2009) The use ofl@gbory learning’ for supporting
immersive learning in virtual environmen@omputers & Education, 5343-352.

Good, T. L. & Grouws, D. A. (1979). The Missouri thematics effectiveness project.
Journal of Educational Psychology, (8), 355-362.

Hattie, J. (2009)Visible learning: A synthesis of 86Mneta-analyses oachievementNew
York: Routledge.

Hermans, F. (n.d.) Scratchlessen. Waw.scratchles.nl

Hermans, F. & Swidan, A. (2019) The Effect of ReadCode Aloud on Comprehension: An
Empirical StudyACM Global Computing Education Conference CompEB20
Chengdu, China.

Hsiao, S., Lin, J. & Kang, J. (2011) Learning togmam in kpl through guided
collaborationUS-China Education Review(1§, 89-97.

Hsu, W. & Huang, S. (2006). Determinants of compsaé&df-efficacy — an examination of

learning motivations and learning environmedt€ducational Computing Research,
35(3), 245-265.

Hughes, A., Morris, J., Therrien, W. & Benson, ZX7). Explicit Instruction: Historical
and Contemporary Contextsarning Disabilities Research & Practice, (32, 140-
148.

Hunter, M. (1982)Mastery teachingkl Segundo, CA: Theory Into Practice.

Hushman, C. & Marley, S. (2015). Guided Instructioproves Elementary Student
Learning and Self-Efficacy in Sciencehe Journal of Educational Reseaydl0g5),
371-381.

Ismail, M., Ngah, N. & Umar, I. (2010). InstructianStrategy in the Teaching of Computer
Programming: A need Assessment AnalyS€JET: The Turkish Online Journal of
Educational Technology, 20102, 125-131

Jeuring, J., Corbalan, G., van Es, N. & Leeuwenstéi (2016). Leren programmeren in het

PO — een literatuurreview.

19



Via https://www.nro.nl/kennisrotondevragenopeenrij/etfém-

programmeeronderwijs-op-programmeervaardigheden/

Kikas, E. (2004) Teachers’ Conceptions and Miscpticas Concerning Three Natural
Phenomenalournal of Research in Science Teachin(p}#32—-448.

Kirschner, P., Sweller J. & Clark, R. (2006). Whynthal Guidance During Instruction Does
Not Work: An Analysis of the Failure of Construasit, Discovery, Problem-Based,
Experiential, and Inquiry-Based Teachiiglucational Psychologist, 42), 75-86.

Klahr, D., & Nigam, M. (2004). The equivalence e&fning paths in early science
instruction: effects of direct instruction andatigery learningPsychological
Sciencel5, 661-667.

Kolb, D. A. (1984). Experiential learning. Engleweb@liffs, NJ: Pearson Ft Press.

Komarraju, M. & Nadler, D. (2013). Self-efficacycaacademic achievement: Why do
implicit beliefs, goals, and effort regulation neaPLearning and Individual
Differences, 2567-62.

Lister, R. (2016). Toward a Developmental Epistesgglof Computer Programming.
Proceedings of the TMWorkshop in Primary and Secondary Computing Etioica
5-16, Germany, Munster.

Magliaro, S., Lockee, B. & Burton, J. (2005). Dir@tstruction revisited: A key model for
instructional technologyeducational Technology Research and Developme§,20
53(4), 41-55.

Mayer, R. (2004) Should There be a Three-Strikde Rgainst Pure Discovery Learning?
American Psychologist, §9), 14-19.

Meerbaun-Salant, O., Armoni, M. & Ben-Ari, M. (2018earning computer science
concepts with Scratciomputer Science Educatia23(3), 239-264.

Merriénboer, J. van, & Kirschner, P. (2007) TenpSte Complex Learning. Mahwah, NJ:
Lawrence Erlbaum Associates.

Digitale Geletterdheid (2018) Ontwikkelteam Digg#beletterdheid.

Via https://curriculum.nu/ontwikkelteam/digitalelgtterdheid

Parajes, F. & Graham, L. (1999). Self-Efficacy, Mation Constructs, and Mathematics
Performance of Entering Middle School Stude@ntemporary Educational
Psychology, 24124-139.

Pintrich, P., Smith, D., Garcia, T. & McKeachie, Y¥991) A manual for the Use of the
Motivated Strategies for Learning Questionnairé&S(I). Ann Arbor, Michigan:

University of Michigan.

20



Ramalingam, V., Labelle, D. & Wiedenbeck, S. (20@BIf-efficacy and mental
models in learning to progralACM SIGCSE Bulletir86(3), 171-175.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rus., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., SilvermBn & Kafai, Y. (2009) Scratch:
Programming for AllCommunications of the ACM, 82),60-67.

Severiens, S. (199%ragenlijst Motivatie, Leerproces en Leerstrategiedmsterdam:
Universiteit van Amsterdam.

Smith, J. L. M., Saez, L., & Doabler, C. T. (2016%ing explicit and systematic
instruction to support working memorfEACHING Exceptional Children
48(6), 275-281.

Strijker, A. (2018). Voorbeeldmaterialen computatibthinking [blog].

Via: http://curriculumvandetoekomst.slo.nl/21e-wsa-vaardigheden/digitale-
geletterdheid/computational- thinking/voorbeeldenizien

Sweller, J., Ayres, P. & Kalyuga, S. (201Cpgnitive Load TheoryNew York, NY:
Springer.

Tobias, S., & Duffy, T. M. (Eds.). (2009). Consttiutst theory applied to instruction:
Success or failure? New York, NY: Taylor & Francis

Vekiri, I. & Chronaki, A. (2008) Gender issues iachnology use: Perceived social
support, computer self-efficacy and value beliafgj computer use beyond
school.Computers & Education, 51392-1404.

Waite, J. (2017) Pedagogy in teaching computenseié schools: a literature review.

Queen Mary University of London, London.



Appendices

Appendix A

Distribution of concepts in the final test
Q 1. Algorithm — comprehension

Q 2. If-statements — comprehension
Q 3. For-loop — comprehension

Q 4. Variables — comprehension

Q 5. Algorithm — skill

Q 6. If-statement — skill

Q 7. Debugging — comprehension
Q 8. Variable — skill

Q 9. Debugging

Q 10. For-loop - skill

Appendix B
Test questions

1. Wat iseen algoritme?

A. Een regel waar de computer zich aan moet houden.

B. Een stappenplan voor de computer.
C. Een doosje waar de computer informatie in betwvaar

D. Een stuk code dat herhaald wordt.

2. Tijdens de lessen heb je voorwaardes in Scratch gezet.

Zet een cirkel om de zin of zinnen diewaar zijn.
1. Een voorwaarde schrijf je met de woorden ‘afs'dan’.

2. Een voorwaarde wordttijd herhaald.

3. Wat iseen herhaling bij programmeren?

A. Een stappenplan voor de computer.

B. Een stuk code dat meerdere keren gedaan wordt.
C. Het oplossen van fouten in een code.

D. Tien keer dezelfde blokjes in het algoritme exett

22



4. Tijdensdelessen heb jevariabelen gebruikt in Scratch.
Zet een cirkel om de zin of zinnen diewaar zijn.

1. Variabele gebruik je om een kortere code te karsthrijven.

2. Een variabele is een doosje waar de computemmatie in bewaard

5. Elkekeer dat je op de spatiebalk drukt moet het poppetjelopen en een getal in de

tafel van 5 zeggen. Wat isdejuiste volgorde?

B. 3-4-1-2
C.1-4-2-3
D. 3-2-4-1

1.

- 0.

. (R
g~ o-

6. Wat isde voorwaardein dit stappenplan? (zet een cirkel om dejuiste letter)

als raakk Keyv ? dan -2




7. Wat is debuggen?

A. Tien keer dezelfde blokjes in het algoritme eett

B. Een stuk code dat herhaald wordt.
C. Het oplossen van fouten in een code.
D. Een kever uit de computer halen.

8. Jewilt dat de score met 5 omhoog gaat. Welk blokje moet je gebruiken op de plek

van het vraagteken??

ganaar Ruimteschip v

herhaal tot raakik Muurv ? of raakk rande ?

VWl mazk score -

B verander score -
L 3

(@3l toon vanabele score v

|l verberg variabele  score -

9. Jewilt dat dekikker tien keer verdwijnt en verschijnt alsje op de spatiebalk drukt.

Er isalleen een fout gemaakt. Wat iser verkeerd geprogrammeerd?

ganaar willekeurige positie »

verander uiterlijk naar Daar is de kikker »

A. Verander uiterlijk naar ‘Daar is de
kikker moet de 2e keer ‘Kikker is weg’
zijn.

B. De volgorde van de blokjes is verkeerd
C. Er zit geen fout in

D. Verander uiterlijk naar ‘Daar is de
kikker moet de 1le keer ‘Kikker is weg’

zijn.

N
H



10. Wat gebeurt er alsje op de spatiebalk drukt?

w

ganaar willekeurige positie v

- CD @ =

A.
- Je neemt tien stappen.

- Je gaat naar een willekeurige positie .

— Je zegt hallo 2 seconden lang.
- Je neemt tien stappen.

- Je gaat naar een willekeurige positie .

— Je zegt hallo 2 seconden lang.
- Je neemt tien stappen.

- Je gaat naar een willekeurige positie .

— Je zegt hallo 2 seconden lang.
- De score verandert met 1.

C.

- Je neemt tien stappen.

- Je gaat naar een willekeurige
positie .

— Je zegt hallo 2 seconden lang.

- De score verandert met 1.

B.

- Je neemt tien stappen.

- Je gaat naar een willekeurige positi
— Je zegt hallo 2 seconden lang.

- De score verandert met 1.

- Je neemt tien stappen.

- Je gaat naar een willekeurige positi
— Je zegt hallo 2 seconden lang.

- De score verandert met 1.

- Je neemt tien stappen.

- Je gaat naar een willekeurige positi
— Je zegt hallo 2 seconden lang.

- De score verandert met 1.

4%

4%

D

D.

- Je neemt tien stappen.

- Je gaat naar een willekeurige positie
— Je zegt hallo 2 seconden lang.

- De score verandert met 1.

- Je neemt tien stappen.

- Je gaat naar een willekeurige positie
— Je zegt hallo 2 seconden lang.

- Je neemt tien stappen.

- Je gaat naar een willekeurige positie
— Je zegt hallo 2 seconden lang.

- De score verandert met 1.

25



Appendix C.
Questionnaire meeting 1 (MSLQ and demographic ¢urasire)

VOOIrNAaAM: ..o e

Leeftijd: oo

Gedacht: jongen meisje anders

(1= helemaal niet waar voor mij tot 7 = helemaal waar voor mij)

Ik denk dat de les leuk zal zijn 1 2 3 45 67
Ik ben geinteresseerd in programmeren 1 2 3 4 5 67
Ik vind programmeren leuk 1 2 3 4567
Ik wil later programmeur worden 1 2 3 4 5 67
Ik denk dat ik goede cijfers ga halen voor de paogneerles 1 2 3 45 67
Als ik de stof niet begrijp vraag ik aan mijn klasgten of leraar of ze hetwillen 1 2 3 4 5 67
uitleggen
Ik weet dat ik mijn opdrachten en toetsen heel gggethaken 1 2 3 45 67
Ik vind de opdrachten die ik voor dit vak moet déeurk 1 2 3 4 5 67
Ik geloof dat ik de informatie uit de opdrachtem keegrijpen 1 2 3 45 67
Ik maak alle opdrachten van dit vak omdat ik grgagd wil leren programmeren 1 2 3 4 576
Ik weet zeker dat ik alles ga begrijpen 1 2 3 45 67
Wanneer ik iets niet snap, ga ik op zoek naar hulp 1 2 3 4 5 67
Ik denk dat ik voor dit vak wel een voldoende haal 1 2 3 4567
Ik wil heel graag begrijpen waar dit vak allemaatiogaat en de opdrachten helped 2 3 4 5 67

me daarbij.

Als ik kijk naar wat ik moet doen, naar de leraamaar wat ik al kanenweet,dar 1 2 3 4 5 6 7
weet ik zeker dat ik het kan

Ik vertrouw erop dat ik alles snap, ook als het matilijker wordt. 1 2 3 4 5 6/
Ook door de opdrachten en het huiswerk, ben ik hefgiteresseerd in waarditval 1 2 3 4 5 6 7

over gaat.
Als ik woorden niet begrijp, vraag ik aan de lerdi@ nog eens uit te leggen 1 2 3 4 576
Ik weet zeker dat ik de vaardigheden die je bivdk leert, goed ga kunnen 1 2 3 4567

Door het maken van het huiswerk en de opdracht&rkeniets extra's overditvak. 1 2 3 4 5 76

26



Heb je eerder geprogrammeerd? Ja Nee

Zo ja, Met welke programmeertaal?

Javascript Python Scratch HTML/CSS Lego Mindstorms Anders, vertelons: ...........c..........

Wat doet een programmeur. Geef drie voor beelden:

Appendix D.

NPV-J-2 scales Inadequacy (grey) and Tenacity @yliDutch)

1. Ik voel me meestal goed

2. Ik werk het liefst heel netjes

6. Er zijn maar weinig mensen die mij begrijpen

7. Ik werk meestal hard

11.
12.
16.
17.
21.
22.
26.
27.
31.
32.
36.
37.
41.
42.
46.
47.
51.

Ik ben meestal zeker van mezelf

Ik werk vaak slordig

Ik ben vaak boos zonder dat ik weet waarom

Als ik ergens aan begin dan maak ik het ook af

Ik ben vaak erg verdrietig

Ik ben altijd op de afgesproken tijd thuis
Ik ben vaak moe

Ik ben een doorzetter

Ik ben vaak zenuwachtig

Ik ben meestal snel afgeleid

Ik denk vaak dat ik niets goed kan doen
Ik ga graag naar school

Ik denk vaak dat ik niks waard ben

Ik gebruik mijn tijd goed

Ik denk vaak dat niemand van me houdt
Ik geef nooit op

Ik droom vaak over vervelende dingen

Ja ?
Ja ?
Ja ?
Ja ?
Ja ?
Ja ?
Ja ?
Ja ?
Ja ?
Ja
Ja ?
Ja ?
Ja ?
Ja ?
Ja ?
Ja ?
Ja ?
Ja ?
Ja ?
Ja ?
Ja ?

Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee

27



52.
56.
57.
61.
62.
66.
67.
71.
72.
76.
77.
81.
82.
86.
87.
91.
92.
96.
97.

Ik doe meestal wat mij gevraagd wordt

Ik heb vaak een hekel aan mezelf

Ik doe wat mensen van mij verwachten

Ik heb vaak een slechte bui zonder dat ik wegirom

Ik doe altijd goed mijn best

Ik ben vaak bang dat ik fouten ga maken

Ik doe altijd wat ik heb afgesproken

Ik heb vaak het gevoel dat alles me mislukt

Ik kan lang achter elkaar doorwerken

Ik maak me vaak zorgen over wat anderen varinden
Ik vind dat je altijd je ouders moet gehoorzame

Ik maak me vaak zorgen

Ik let goed op als er iets wordt uitgelegd énkths

Ik voel me vaak eenzaam

Ik luister altijd goed naar volwassenen

Ik voel me vaak onzeker

Ik hou mijn spullen graag netjes in orde

Soms voel ik me zo slecht dat niemand iets gaaddoen
Ik doe de meeste dingen met plezier

Ja
Ja

Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja

Ja
Ja

Ja

N

Nee

Nee

?  Nee

Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
Nee
?eeN
Nee
Nee

28



