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Abstract  

This thesis uses a difference-in-difference analysis to find out what the impact of two 

treatments was on New York City housing prices. The first treatment is hurricane Sandy that 

hit the city in October 2012. This treatment measures the effect of direct flood experience on 

housing prices. The second treatment is the introduction of an official new flood risk map by 

the Federal Emergency Management Agency (FEMA). This second treatment measures the 

effect of indirectly experiencing higher flood risk. Both these treatments where hypothesized 

to have a negative effect on housing prices. Sandy through direct damage in the short run and 

increased risk perception in the long run. The new flood risk map only through increased risk 

perception.            

 This thesis uses changes housing prices as an operationalization of damage done and 

increased risk perception. For this thesis an entirely new geospatial dataset was constructed by 

merging three existing datasets, the old flood risk map, the new flood risk map and 600 

thousands coordinates that represent different real estate sales in New York City between 

2003 and 2015. The treatment groups of this thesis are based on whether or not a sold 

property was situated in an area that changed in flood risk with the new flood risk map of 

2015. The treatment areas are the areas where the old and the new flood risk map overlap. 

These are the areas in which flood risk officially changed in 2015. To determine which houses 

where sold in these areas (treatment groups) and which were not (control group), a Point-in-

Polygon (PIP) analyses was conducted using Geographical Information System (GIS) 

software. This analysis determines if a point (sold property) was in a polygon (changing flood 

risk zone). 117 such PIP analyses were conducted to determine the treatment or control group 

for each observation.           

 After analysing this newly constructed dataset I find significant negative effects of 

hurricane Sandy on New York City housing prices. This effect is found to be robust. In some 

boroughs and treatment groups this effect only showed in the short run, while in others also in 

the long run. The short term effect is most likely caused by direct damage, while the long term 

effect is most likely caused by increased risk perception. The second treatment, the flood risk 

map update, does not show a significant negative effect on housing prices.  
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1. Introduction 

Although climate change is still a vague concept to some, it is becoming a real problem for 

the citizens of coastal cities all around the world. For example, the amount of flood days has 

more than doubled since 1980 in the United States (Climate Central, 2016). Furthermore, it is 

projected that by 2100 the homes of between 4.2 and 13.1 million Americans will be at risk of 

flooding because of the rising sea levels (Hauer, Evans and Mishra, 2016). This risk is very 

hard or even impossible to insure, as floods can be seen as a ‘common shock’ that hits 

everyone at the same time, while the idea of insurance is based on the idea that risk is 

randomly distributed and independent of someone else’s risk (Barr, 2012: 88). Furthermore, 

these common shocks will occur more often as sea levels are rising with 3.4 mm per year 

according to NASA (2016). As a result, by 2050 between $66 billion and $160 billion worth 

of American real estate will be under sea level (Bloomberg et al, 2014: 4). By 2100 this 

amount will be between $238 billion and $507 billion. To put this in perspective, the 2007-

2008 subprime mortgage crisis happened when a $600 billion real estate bubble burst 

(Bernanke, 2008).         

 Although rising sea levels have been studied extensively in the past, this was mostly 

done because of the interest in the natural phenomenon itself. Since rising sea levels start to 

have a more socio-economic impact, science should look into these socio-economic effects of 

rising sea levels. It is known that, due to rising sea levels, coastal floods are going to occur 

more frequently. It is however still quite unclear if and how how rising flood risk impacts risk 

perception, housing markets and the way governments can best circumvent the negative 

effects of increased flood risk. Therefore it is of big economic and societal importance that 

science gets insight into the causal mechanisms at play in the interaction between flood risk, 

risk perception, housing markets and the role that government communication plays in this 

interaction.           

 In this thesis we use an experimental design to determine the effects of directly and 

indirectly experiencing flood risk on housing prices. New York City (NYC) experienced two 

events that are used to measure these direct and indirect experiences. First, on October 29
th

 

2012 the city was hit by Hurricane Sandy, causing 48 deaths and between $30 billion and $50 

billion in damages (CNN, 2012). Sandy also caused major flooding (Ortega and Taspinar, 

2016: 28). This event is therefore used to measure the effect of direct flood experience. I 

argue that Sandy negatively impacts housing prices through direct damages and increased risk 

perception. The second event is more indirect in nature. In 1983 the Federal Emergency 
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Management Agency (FEMA) introduced its first flood risk map for New York City. This 

map showed exactly in which flood risk zone a property was. Rising sea levels, erosion, 

physical flood defence structures and better information on flooding mechanisms influenced 

the actual flood risk over time. Therefore, on January 31
st
 2015 FEMA introduced an update 

of the flood risk map, called the Preliminary Flood Insurance Rate Map (FIRM). On this new 

map big parts of New York City had their flood risk changed (typically the flood risk 

increased). On March 27
th

 2015 every NYC property owner that was in or close to a new 

flood risk zone received a letter, informing them about this new flood risk map
1
. The new 

flood risk map is preliminary, meaning that it does communicate the updated flood risk, but it 

is not yet used for calculating flood risk insurance premiums. This map update thus captures 

the information of increased flood risk, while filtering out the direct effect of increased 

premiums. Of course there might still be an anticipation effect. It is hypothesized that this new 

information will increase flood risk perception and thus reduce housing prices of the 

properties situated in the new flood risk zones. Both Sandy and the flood risk map update are 

thus treatments that are hypothesized to impact flood risk perception.  

Research question  

By exploiting Hurricane Sandy and a FEMA flood risk map update in a experimental design, 

this study will provide insight into the effects of natural flood hazards and publicly provided 

flood risk information on housing prices. The research question of this thesis therefore is: 

“To what extent did Hurricane Sandy and the introduction of FEMA’s Preliminary 

Flood Insurance Rate Map (FIRM) impact New York City’s housing prices?”  

The logic here is that both Hurricane Sandy and the flood risk map update provide the NYC 

housing market with new information on flood risk. This new information is then 

hypothesized to increase the risk perception of buyers and sellers in this market. Increased 

risk perception will eventually cause housing prices to decrease. As mentioned before, a 

second option is that Sandy influenced housing prices through direct damages. These two 

mechanisms thus happen at the same time. I argue however, that the damage only affects 

housing prices in the short run, while increased risk perception would also influence housing 

prices in the long run.  

Methodology and data 

                                                           
1
  The Property Owner Notification Letter of FEMA can be found in Appendix 1. 
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Increased risk perception reduces housing prices (Oates, 1969). In this thesis I use NYC 

housing prices to operationalize and measure flood risk perception. This “hedonic” approach 

is based on the notion that the value of a house is defined by a bundle of its characteristics 

(Rosen, 1974). These separate characteristics, such as flood risk, can thus be seen as having 

implicit costs and benefits where people are (not) willing to pay for. If one of the 

characteristics changes, its effect can thus be measured as a change in housing prices. In this 

thesis the dependent variable are the housing prices of sold real estate, while the explanatory 

variables will be events that are hypothesized to increase risk perception, Hurricane Sandy 

and FEMA’s flood risk map update, along with a number of control variables like the type of 

housing and area fixed effects.         

 For this study I created an entirely new dataset by merging the old flood risk map, the 

new flood risk map and geospatial real estate transaction data of New York City. This data 

includes all real estate sold in New York City between January 2003 and December 2015. 

Merging these three datasets resulted in a new dataset that consists of more than 600 thousand 

observations. A natural experiment needs treatment groups and control groups. By doing 

Point-in-Polygon analyses in the Geographic Information System (GIS) software QGIS I was 

able to determine whether a sold property was in a changing flood risk zone or not. This was a 

very time consuming exercise which took multiple weeks to complete. This data constructing 

process is discussed at large in the data section. The first treatment group consists of houses 

sold in an area where the risk of flooding increased from 0% yearly flood risk to 1% yearly 

flood risk. The second treatment group consists of houses sold in an area where the risk of 

flooding was 1% before the map update and also 1% after the map update. The control group 

is defined as houses sold in an area where the flood risk was 0% before the map update and 

remained 0% after the map update and at the same time is within 500 meter of a treatment 

area. We study the effect on the transaction prices of the houses sold in the treatment groups 

using differences-in-differences (Angrist and Pischke, 2009: 221-246). We consider two 

different treatments: i) Hurricane Sandy and ii) the FIRM update.  We first test whether 

hurricane Sandy negatively affected the housing prices of the treatment groups. Next, we test 

whether the map update significantly affected housing prices in the treatment groups. Here we 

expect a different effect for the two treatment groups, with a bigger effect for the area in 

which the risk increased from 0$ to 1%. The effect is expected to be bigger for this treatment 

group, because according to the flood risk map of that moment they were in a 0% flood risk 

zone. From, risk perception theory (Wachinger et al., 2012) it follows that direct experience 

has a bigger impact on risk perception than indirect experience . Hence, we expect that Sandy 
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has a bigger impact on both treatment groups than the flood risk map update. Finally, it is 

hypothesized that the impact of the flood risk map is bigger for the city districts (boroughs) 

that were hit harder by Hurricane Sandy. We also consider a number of robustness checks.  

Results 

I find that Hurricane Sandy did significantly impact housing prices in New York City. For 

some boroughs this effect was temporary and thus most likely caused by direct damages. For 

Brooklyn and Queens the effects of Sandy were still found for the year 2015 by using 

quarterly interaction effects. Since direct damages did not take that long to repair, I argue that 

this effect is due to increased risk perception. The quarterly interaction effects also provided 

evidence for the effect being causal. The quarterly interactions were not statistically 

significant before Sandy and highly significant (and negative) after Sandy. Contrary to the 

hypotheses I do not find a negative effect of the introduction of the new flood risk map on 

housing prices. In a few specifications I do find a statistically significant effect, which 

however is not robust to changes in the specification. This might be due to the fact that the 

risk perception of homeowners was already corrected by hurricane Sandy and thus was not be 

furtherly adjusted with the flood risk map. I discuss this interpretation and some other 

possibilities in the conclusion section.  

Societal relevance 

This thesis is of societal relevance, because it gives insight into how and when governments 

should provide flood risk information and what the impact of this information is on risk 

perception and housing prices. A flood risk map update is a policy tool that provides citizens 

with better flood risk information. It is important to evaluate whether such a policy indeed 

increases flood risk perception, like it is supposed to do. Secondly, as stated above, to prevent 

another housing bubble it is necessary to understand the causal mechanisms behind risk 

perception, flood risk and its interactions with the housing market. Thirdly, due to climate 

change coastal floods are something governments will increasingly have to deal with both in 

terms of prevention and crisis management. From theory we learn that where natural hazards 

in the past were mostly seen as uncontrollable, people now increasingly perceive natural 

hazards such as floods as induced by humans and thus controllable (Wachinger et al, 2012: 

1062). If flood risk is perceived as controllable, an actual flood might make people think that 

government did not do enough to prevent the flood. This places government in an increasingly 

awkward position in which citizens start blaming government for not preventing floods, while 
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(Western) governments at the same time are “rolling back” in size and thus are less capable of 

dealing with these kinds of natural hazard risks (Wachinger et al, 2012: 1059). A better 

understanding of how risk perception works in relation to publicly provided flood risk 

information and natural hazards could help solving this potential problem. 

Relation to the literature  

Previous studies have found that providing new flood risk information to the market 

significantly increases risk perception and decreases real estate prices (Pope, 2008; Votsis and 

Perrel, 2016) and that floods caused by hurricanes have an even bigger impact (Ortega and 

Taspinar, 2016; Bin and Laundry, 2013). In this thesis I will look at both hurricane Sandy and 

the flood risk map update at once while controlling for each effect. To my knowledge, this 

design has not been used before in researching flood risk perception. If after a big storm a 

new flood risk map does no longer impact housing prices, where it normally did, there is 

probably a different mechanism at play. It could be that the storm already updated the risk 

perception and therefore the map update no longer shows an effect. Of course it is of scientific 

relevance to uncover this causal mechanism. Finally, this thesis is innovative as it merges 

three geospatial datasets to produce the dataset the analysis of this thesis is based upon. 

Outline of the thesis 

The outline of the thesis is as follows. Section 2 starts off with a literature review. This 

section starts off with the theory of risk perception in relation to natural hazard risk, and 

continues with the empirical findings of related studies. Next, Section 3 discusses the 

construction of the data set for the empirical analysis. Section 4 discusses the empirical 

methodology. Section 5 then provides graphical evidence along with regression results, and a 

number of robustness checks. In Section 6 we consider some limitations of the analysis and 

conclude.  
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2. Literature review 

This section consists of two parts. First, I discuss the theory of risk perception , with a focus 

on the relation of risk perception in the context of natural hazards. Second, I discuss the main 

empirical findings from related studies on flood risk.  

Theoretical Framework 

Almost all of the studies we discuss are based on the theoretical notion of “hedonic pricing” 

and it’s methodological equivalent “hedonic regressions”. In his classic article, Rosen (1974) 

proposes the idea of hedonic prices and implicit markets. Rosen states that goods can be seen 

as a package of multiple characteristics. Prices reflect these different characteristics. In 

practice this means there is an implicit market for flood risk. For instance, when the flood risk 

increases by 1% this will be seen as an implicit cost to homeowners. This implicit cost will 

then reduce the price of the house. The idea is that a decrease in value is then the price of 

living in an area in which the risk increased by 1%. The prices of flood risk can thus be 

calculated using a hedonic regression model in which the dependent variable is housing prices 

and (changing) flood risk is one of the explanatory variables. The hedonic regression 

empirically measures the willingness to pay for a certain characteristic of a house. As 

mentioned earlier, it is important to realize that risk perception is not the only way in which 

the housing prices get influenced. Damage by hurricane Sandy probably also negatively 

impacted housing prices in the short run (Ortega and Taspinar, 2016). A hedonic regression 

just tells us whether or not the housing prices decreased, not per se what exactly caused it. I 

argue that the effects of direct damage and increased risk perception can be partly 

disentangled though. Damage most likely only impacts property in the short run, while risk 

perception also impacts housing prices in the long run (Ortega and Taspinar, 2016; Bin and 

Polasky, 2004). What is also important to understand is that the framework of hedonic pricing 

is based on the idea of rational decision makers that have full information. Since this is an 

implausible assumption, the interpretation of hedonic regression outcomes can be ambiguous. 

A significant effect of new flood risk information can only be interpreted as the marginal 

value of extra flood risk if the rationality assumption holds (Pope, 2008: 570). As already 

said, the hedonic regression measures an effect, not necessarily what exactly caused this 

effect. Therefore, theory on risk perception and information processing will now be explained, 

before discussing actual empirical findings on increased flood risk.  
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The availability heuristic 

Theory on judgement under uncertainty, biased perceived risk, heuristics and bounded 

rationality find their origin in cognitive psychology (Tversky and Kahneman, 

1973;1974;1981; Kahneman, 2003). Most of the studies mentioned below use the  theory of 

`the availability heuristic’ of Tversky and Kahneman (1973) as their theoretical framework. 

They argue that individuals are not completely rational when making decisions. They can be 

in theory, but in practice humans are guided by heuristics or cognitive rules-of-thumb when 

facing difficult decisions under uncertainty. The availability heuristic is such a short cut that 

the brain uses when making difficult decisions. Kahneman and Tversky (1973; 1981; 1982) 

did research on individuals that had to make complex decisions under uncertainty and found 

that a significant amount of these individuals based their decision on the ease with which the 

brain could produce an answer to a question. For example, people decided that there are more 

words in the English language that start with a “K” than of which the third letter is a “K” 

(Tversky and Kahneman, 1973: 211). In fact however, there are more words with a “K” as a 

third letter than as a first letter. It is however easier to think of words that start with a “K”, 

these words are more “available” to the brain. This in short is the availability heuristic. As can 

be seen in the example above this heuristic can easily lead to irrational decision making, 

called biases in cognitive psychology. For research on risk perception in combination with 

natural hazards the availability heuristic is used (not always explicitly mentioned) to explain 

why sometimes risk perception is high and sometimes low. If a flood is still “fresh in 

memory” and thus more available to the human brain, the risk perception is higher and thus 

effects choices. If time goes by and the flood is slowly forgotten, this memory is less available 

to the brain and thus the impact of risk and thus housing prices decreases. This is relevant for 

this thesis, as hurricane Sandy hit New York City in 2012, while the introduction of the 

updated flood risk map was in 2015. During this time the flood risk might have become less 

“available” to the brain, which might to a reduction in Sandy’s effect over time.  

 The availability heuristic is one of the reasons that the market is not constantly fully 

informed on flood risk. The perception of flood risk is higher after a flood, but this 

information “leaks away” over time because of the availability heuristics. Just “forgetting” 

about the flood does not seem to be enough to explain the complex mechanisms that underlie 



 
 11 

risk perception in relation to natural hazards. That is why, on top of using the availability 

heuristic in the theoretical framework of this thesis, it will be supplemented with theory on 

risk perception  in combination with natural hazards, especially in relation with government 

and government communication.        

Risk perception in relation to natural hazard risk 

Wachiger et al. (2012) review 35 empirical studies on natural hazard risk perception and try to 

come up with a more general framework. They find four categories to be present in almost all 

reviewed empirical studies, namely: “risk factors”, “informational factors”, “personal factors” 

and “contextual factors”. Also they provide a useful definition of risk perception: “the process 

of collecting, selecting, and interpreting signals about uncertain impacts of events, activities 

or technologies”. The four categories will now be discussed.    

 Risk factors can be seen as the “scientific” definition of risk, such as calculatable 

probability and frequency, thus not “Knightian” unknowable uncertainty (Knight, 1921). 

According to Wachiger et al (2012: 1051) perceived likelihood, perceived frequency and 

perceived magnitude do not impact risk perception significantly in the case of natural hazards 

such as flooding. This has interesting implications for evaluating the impact of the treatments, 

as homeowners receive a letter at home that their flood risk increased or decreased by 0.2%, 

0.8% or 1%. With a risk of 0.2% a flood happens once in 500 years. Based on Wachiger et al 

(2012: 1051) it can be argued that this kind of small probabilities of hazardous events are not 

tangible for individuals and might therefore not have an effect. This case is even further 

strengthened by the fact that FEMA’s 0.2% flood risk zone has not mandatory flood 

insurance.  These notions will be used later on in the thesis to create “condensed” treatment 

groups were the 0.2% flood risk is seen as 0% flood risk to create two treatment groups 

instead of six.          

 Informational factors can be seen as information sources and the perceived quality of 

information. According to Wachiger et al (2012: 1051) these factors are only important for 

risk perception if the particular individual did not directly experience such a risky event in the 

past. Trust also plays an important role when receiving information. If the organization or 

individual providing the information is considered trustworthy, the impact on the risk 

perception is higher. In a growingly more complex world, trusting experts on their 

information can be seen as a “shortcut” to a decision, preferred to making a rational decision 

(Wachinger et al, 2012: 1053).        

 Personal factors that influence risk perception are characteristics, “such as age, 
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gender, educational level, profession, personal knowledge, personal disaster experience, trust 

in authorities, trust in experts, confidence in different risk reduction measures, involvement in 

cleaning up after a disaster, feelings associated with previously experienced floods, world 

views, degree of control, and religiousness” (Wachiger et al, 2012: 1051-1052). Most of these 

personal factors are deemed to have an ambiguous impact on risk perception. Direct 

experience of disasters, trust in authorities and confidence in protective measures however 

were found to significantly impact risk perception in multiple studies (Wachiger et al, 2012: 

1051-1052). It is important to realize that this thesis uses transactional data from the NYC 

housing market to assess risk perception. The dataset used for this thesis does not include 

information on the buyer or seller of NYC property. Therefore, it is impossible to control for 

individual characteristics that might have an influence on risk perception. Although this thesis 

cannot control for personal characteristics, it does control for time-invariant effects of 

different neighbourhood levels. Since neighbourhoods can reflect certain personal factors at 

an aggregate level, such as income and unemployment rates, it can be argued that this thesis 

takes some of the personal factors into account (at an aggregate level) by using 

neighbourhood fixed effects.         

 Contextual factors are influences from the environment that an individual is in, such as 

“economic factors, vulnerability indices, home ownership, family status, country, area of 

living, closeness to the waterfront, size of community and age of the youngest child” 

(Wachinger et al, 2012: 1052). Contextual factors mainly impact risk perception in 

combination with other personal factors. Ruin et al (2007) found that experience with 

flooding in the past tends to lead to overestimating danger, while for not having experienced 

floods makes people underestimate flood risk. Other studies find that this causal effect only 

exists if property was damaged (Wachinger et al, 2012: 1052). Again, it should be noted that 

these contextual factors mainly influence personal perception of risk. And as this thesis looks 

at differences in housing transactions only, these factors cannot be controlled for. What is 

possible however, is to look at the different boroughs separately, as they have their own socio-

economic and cultural factors at play. This will be done in the analysis of this thesis. 

Important for this thesis is also the fact that proximity to a disaster was found to have a 

stronger effect on risk perception than the probability of a similar disaster (Wachinger et al, 

2012: 1052-1053). This is one of the reasons why the control group for this thesis is defined 

as the real estate transactions that happened in a 500 meter buffer around the treatment 

groups.            

 Other than direct experience, indirect experience has an impact on risk perception as 
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well (Wachinger et al, 2012: 1052-1053). Indirect experience are ways in which an individual 

can gain information on the risk at hand, such as via education, the media, hazard witnesses 

and government communication. The flood risk map update, can thus be seen as indirect 

experience, while Sandy’s “treatment” is direct experience. From the literature on risk 

perception we know that indirect experience has an ambiguous effect on risk perception, 

depending on contextual and personal factors. It is however clear that indirect experience has 

a smaller effect (if any) than direct experience. It is therefore hypothesized that the map 

update has a smaller impact than the direct experience of hurricane Sandy.  

 Wachinger et al (2012) state that indirect experience such as government 

communication, if any, has a relatively weak effect on risk perception and thus housing 

prices. Therefore in their discussion they recommend governments to make people envision 

“the negative emotional consequences of natural disasters” and to use “communication 

methods close to personal experience” (Wachinger et al, 2012: 1059-1060). This 

recommendation can be used to assess the effectiveness of the FEMA letter, of which a part 

has been quoted below: 

“Flooding is the most frequent and costly disaster in the United States. The risk for flooding 

changes over time due to erosion, land use, weather events and other factors. The likelihood 

of inland, riverine and coastal flooding has changed along with these factors. The risk for 

flooding can vary within the same neighbourhood and even property to property, but exists 

throughout New York City. Knowing your flood risk is the first step to flood protection. The 

Federal Emergency Management Agency (FEMA) is in the process of developing updated 

flood maps for New York City. The new maps -- also known as Preliminary Flood Insurance 

Rate Maps (FIRMs) -- reflect current flood risks, replacing maps that are up to 30 years old. 

This letter is to inform you that your property is mapped in or near a Special Flood Hazard 

Area.” (FEMA, 2016). 

Although Hurricane Sandy is not mentioned in the FEMA letter, by using words such as 

“flooding” and “costly disaster”, individuals might have been reminded about Sandy. This in 

combination with the sentence stating that their property is mapped in or near a “Special 

Flood Hazard Area”, might increase risk perception. Therefore it is interesting to estimate 

whether or not people that do receive the letter, but already live in the 1% flood risk zone, get 

impacted by the map update. This will be checked with the “1% stays 1% risk” treatment 

group (treatment group 2).        
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Empirical findings of related studies 

There are two ways of implementing a hedonic regression. First there is cross-sectional 

research, which looks at if there is a significant price difference between living in a FEMA 

flood risk zone and living in a none risk zone. Zhang (2016) uses a spatial quantile regression 

model on real estate transaction data in Fargo-Moorhead (North Dakota) and finds that 

buildings that are situated in a river flood risk zone have a significantly lower value. This 

difference between being inside or outside a flood risk zone ranges between 4% and 12% 

depending on the value of the property (Zhang, 2016: 12). Such a cross-sectional research 

design has its limitations however, as the difference in price can also be explained by 

heterogeneity between the two groups instead of by a causal effect of flood risk. For instance, 

property that is not in a flood zone might have more value because it is situated on a hill with 

a nice view or because it is close to a good school. A more credible research design for 

retrieving the causal effect is that of natural experiments. These studies rely on exogenous 

variation in treatment. The studies discussed below exploit such situations by measuring 

whether or not there is a difference between the housing prices before and after a treatment 

for the treatment group relative to a control group. The control group is the group of 

observations that did not receive a treatment. Studies looking at natural experiments typically 

use differences-in-differences (DID). Three types of these natural experiments and their 

outcomes will now be discussed: the effect of floods on housing prices, the effect of providing 

flood risk information on housing prices and specifically the effect of updating flood risk 

maps.            

 Bin and Landy (2013) find that Hurricane Floyd “reminds” the market that certain 

properties are in a FEMA flood risk zone, resulting in significant effects ranging between -6% 

and -20.2%. Even when a hurricane misses a flood risk zone, it has this “reminding” effect. 

Allstrom and Smith (2005) find that even though Hurricane Andrew did not hit Lee County 

(Florida), it did significantly affect real estate prices in high flood risk zones by -19%. The 

devastation in neighbouring towns served as a reminder that their properties were in the flood 

risk zone. It can thus be concluded that even though a property does not have its flood risk 

changed, flood risk information can serve as a reminder or signal to the housing market that 

the particular property is in risk of flooding. This insight is important for this thesis as the first 

treatment group learns that its flood risk officially increased, while the second treatment 

group is only reminded by the flood risk map update that it already was in a flood risk zone. A 

second insight that this study and other studies provide is that the effect of a flood is 
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discounted over time (Bin and Landry, 2013; Atreya, Ferreira and Kriesel, 2013). Bin and 

Landry (2013) for instance find that effects induced by storm-related floods disappeared after 

six year.           

 Pope (2008) studies the effect of a flood risk information disclosure law in North 

Carolina. North Carolina is an American state on the East Coast that has seen an increase in 

coastal flooding, both in magnitude and in frequency. In 1995 it introduced the Residential 

Property Disclosure Act (Pope, 2008: 559). This law stated that homeowners are obliged to 

fill  in a form with 20 questions in which they disclose information of interest about the 

building and its surroundings to potential buyers. The last question was formulated as 

following: “Do you know of any FLOOD HAZARD or that the property is in a FEDERALLY-

DESIGNATED FLOOD PLAIN?”. The 1% flood risk zone did not significantly differ in price 

with the control group before the mandatory disclosure, significant cross section differences 

where thus not found before the treatment. After the treatment however, the housing prices in 

the flood zone decreased by between 3.8% and 4.5%, which is between $5400 and $6400 in 

real value (Pope, 2008: 569). The information about the flood risk zones are always publicly 

available. The most striking finding in Pope’s (2008: 570) study is therefore that simply 

providing the same information through mandatory disclosure has a statistically and 

economically significant effect on housing prices. It is therefore important to understand to 

which extent buyers and sellers on the real estate market have full information on flood risk 

before the regression results can be interpreted.       

 Based on a survey of buyers’ knowledge on flood risk and insurance premiums 

Chivers and Flores (2002) found that 60% of the individuals found out about the flood risk 

after the bidding on the house already closed, 4% after moving into the new house and 6% 

even later when their property actually flooded. 70% of the buyers on the researched housing 

market were thus not fully informed about the flood risk their potential property was in. This 

information asymmetry can be used to explain significant negative effects of risk information 

on housing prices. To explain why there is no hypothesized significant negative effect by 

using information theory requires the assumption of full information and full rationality to 

hold. Unfortunately for the interpretation of the DID-regression results of this thesis there is 

no empirical study on on the knowledge of flood risk of (potential) property buyers in New 

York City.           

 In a meta-analysis of 19 US studies Daniel et al (2009) find that an increase in flood 

risk probability by 1% a year is associated with a decrease of 0.6% in transaction prices. In 

these different studies different events were studied that provided the housing market with 
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new information, namely floods, change in flood risk insurance premiums, new flood risk 

disclosure rules or increased media coverage (Daniel et al, 2009: 359). It is important to 

realize that all these studies check whether some form of flood risk information provision 

changes the prices of property that is already in a risk zone. These new batches of information 

thus can be seen as a “reminder” of this risk, rather than a provision of completely new 

knowledge.           

 Votsis and Perrels (2016) study whether the introduction of completely new flood risk 

maps in Finland impacts housing prices for property that was close to the coast of river 

beddings. Based on geospatial real estate transaction data and the new flood risk map they 

found a significant negative effect on housing prices for property that was designated as 

“flood risk area” by the new flood risk map. These effects ranged from -0.105% and -1.067% 

differing from 0.20 yearly flood probability and 0.001 yearly flood probability. These effects 

are somewhat smaller than that of the American studies as discussed above. It is important to 

note that this could be because of two reasons. Firstly, because of differing housing market 

mechanisms. Secondly, because the “reminding” effects on houses that are already in 

designated zones are inherently different from the “completely new information” effect of 

introducing maps where there first were none. The 0% to 1% flood risk treatment group in 

this thesis do not see the “reminder effect” and thus it would be interesting to see if they 

experience the “completely new information” effect.     

 Ortega and Taspinar (2016) use an experimental design to study whether New York 

City adjusted its real estate prices to the risk of living close to the waterfront after hurricane 

Sandy hit on October 29
th

 2012. They find a relatively large negative and statistically 

significant effect of Sandy on housing prices. Interesting here is that they find this effect to be 

significant for both damaged and undamaged houses.. This study is interesting for two 

reasons. Firstly, because it looks at the same city as this thesis, which creates a great deal of 

new insights
2
. Secondly it is interesting, because it uses other treatment and control groups 

than the research mentioned above. It compares prices of damaged houses with non-damaged 

houses and that of flooded houses with non-flooded houses (Ortega and Taspinar, 2016: 2). 

To define whether property was damaged or flooded or not, geospatial damage assessment 

data of FEMA was used. It is important to realize that areas that were flooded by Sandy (the 

treatment group) are not per se the same areas that FEMA designated as flood risk areas. 

Therefore the treatment areas of this thesis and Ortega’s and Taspinar’s research do not 

                                                           
2
 I only found this article when I was done constructing the dataset. Otherwise, I could have used their way of 

also controlling for Sandy’s direct damage done.  
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necessarily overlap. If they did exactly overlap, the treatment effect of Sandy in this thesis 

should be of the same magnitude as the effect as found by Ortega and Taspinar (2016) which 

found a long term effect ranging from -0.06 and -0.26 logistic points, depending on the 

specification. To check whether these effects are causal, they check whether quarterly 

interaction effects are significant before and after Sandy (Ortega and Taspinar, 2016: 23). 

They deem that Sandy’s effect is causal, because the treatment-year interaction term is 

positive but not significant before Sandy and negative and highly significant after Sandy. 

Sandy’s effect will arguably not be exactly the same in this thesis, as this thesis controls for 

FEMA’s flood risk map update in 2015, while Ortega and Taspinar (2016) do not. It might 

therefore be possible that they overestimated the effect of Sandy.    

 Ortega and Taspinar (2016) use the same transaction data of real estate for their DID-

regression as this thesis does. Next to doing a DID fixed effects regression on repeated cross-

sections, also a smaller dataset was devised of buildings that were sold both before and after 

Sandy. This also allowed them to also estimate property fixed effects of Sandy in a panel data 

analysis, which gave approximately the same results (Ortega and Taspinar, 2016: 14;30). It is 

important to realize that the strategy of using individual property fixed effects is not used in 

this thesis, which only uses a repeated cross-sections design to estimate the treatment effects 

by running different DID-regression models. The downside of the repeated cross-sections 

approach is however, that it introduces a new assumption that has to hold before a found 

significant effect can be deemed “causal”, namely that there is homogeneity between the cross 

sectional observations before and after the treatments. After the map update or after Sandy the 

characteristics of sold houses may thus not differ from the sold houses before these 

treatments.           

  

 

 

 

 

 

 



 
 18 

Hypotheses 

From the literature we deduce three hypotheses that we test in the empirical analysis. Firstly, 

rational choice theory states that by providing the housing market with more and better 

information on flood risk the prices will be adjusted accordingly. According to the empirical 

findings of other studies there seems to be a difference between that property is in a flood risk 

zone and increasing the actual flood risk level. The effects for the two different treatment 

groups thus seem to be based on different causal mechanisms. Although the magnitude may 

thus differ between the two treatment groups, the direction is hypothesized to be the same for 

both the “Hurricane Sandy treatment” and the “flood risk map update treatment”. This leads 

to the first two hypotheses:  

Hypothesis 1: Hurricane Sandy negatively affected the housing prices of both the treatment 

groups in New York City.  

Hypothesis 2: The introduction of the new Preliminary Flood Insurance Rate Map (FIRM) in 

New York City in 2015 negatively affected the housing prices of both treatment groups. 

Irrational behaviour such as heuristics and emotional memories of directly experiencing 

floods influence housing prices through higher risk perception (Wachinger et al, 2012). The 

notion that direct experience is a significant factor in risk perception is of theoretical value for 

this thesis. In the price movement per borough we namely see that certain areas were hit 

harder than others in the past by Hurricane Sandy. Therefore it is hypothesized that these 

areas should see a higher increase in housing prices once the flood risk map is updated. For 

individuals that did not experience any floods, the mechanism works the other way around. 

Ortega and Pensinar (2016: 28) find that 0.68% of New York City was experienced major 

flooding during Hurricane Sandy. The Bronx saw 0.01% of its borough flooded, Manhattan 

0.23%, Queens 0.45%, Brooklyn 0.65% and Staten Island 3%. It is therefore hypothesized 

that because direct experience of past flooding has a significant effect on risk perception, the 

boroughs that got the highest percentage of flooding will see a higher impact on housing 

prices after the map update. Also, since direct experience seems to have a bigger effect than 

indirect experience it is hypothesized that Hurricane Sandy has a bigger treatment effect than 

the flood risk map update.  

Hypothesis 3: The NYC boroughs that had more major flooding because of Hurricane Sandy 

will have a higher impact of the new FIRM on housing prices  
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To test these hypotheses a difference-in-difference regression with the two different 

treatments will be run simultaneously. This will be explained in the methodology section. 

However we first discuss the construction of the data set. 

3. Data 

New York City experienced two events that this thesis exploits in a natural experiment setup: 

Hurricane Sandy than came ashore on October 26
th

 2012 and the introduction of a new flood 

risk map on January 31
st
 2015. This section discusses how information on these two events 

were distracted from multiple sources and then combined so that the hypotheses of this thesis 

could be tested.           

 The first source of data for this thesis is the National Flood Hazard Layer (NFHL), the 

map that FEMA uses to calculate flood insurance premiums. This is the old flood risk map. 

This map was updated in 2015 significantly for the first time since 1983. This updating 

produced the second source, the new flood risk map (the Preliminary FIRM of 2015). These 

two maps were used in the QGIS open source software for Geographical Information Systems 

(GIS) to determine different treatment and control areas. In these areas the risk of flooding 

increased, decreased or stayed the same. The actual observations that will be used in a 

differences-in-differences regression are real-estate sales from January 2003 up to and 

including December 2015. These sales are made public by the NYC Financial Department 

and have been converted to geospatial data by New York University. These geospatial data 

can be thought of as coordinate points on a map that contain rows of usable information, 

namely: year, borough, neighbourhood, zip code, lot, block, building category, total square 

feet, year in which the building was built, the sale date, price of the transaction, longitude, 

latitude and Borough-Block-Lot unit (BBL). This BBL number is the unique identifier for 

property in the dataset.          

 By doing a “Point-in-Polygon” (PIP) Analysis in QGIS® of each transaction it can be 

determined whether it’s in the area in which the flood risk was officially updated in January 
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Figure 2. Google Base Map of New York City 

2015. This PIP analysis is thus used to determine in which group the property is. There are six 

possible “treatments” for the transactions: the risk went up from 0% to 1%, from 0% to 0.2%, 

from 0.2% to 1%, the risk stayed 1%, the risk stayed 0.2% and the risk went down from 0.2% 

to 0%. Also the control groups were made using this PIP method. The statistical programming 

language R was then used to turn the geospatial shape files into analysable data frames. 

Below the methods of finding out which area and thus which treatment group a real estate 

transaction was in is explained. 
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Figure 3. New York City with pre- and post-2015 flood risk layers. Produced in QGIS® 

Figure 2 and 3 both show Google base maps of the New York City area. On top of figure 3 

there are coloured layers. These layers were extracted from the old flood risk map (pre-2015 

NFHL) and the new flood risk map (Preliminary FIRM of 2015). Both are publicly available 

FEMA flood risk maps. These layers were used to determine all treatment areas. Figure 3 

shows only one of the possible risk changes. The blue layer is the 0% per year chance of flood 

layer of the pre-2015 NFHL. The yellow layer is the 1% per year chance of flood layer of the 

2015 Preliminary FIRM. This whole thesis is based on the idea that where these areas overlap, 

the risk changed. The two layers overlap in the areas that had a 0% chance of floods in the 

pre-2015 map and a 1% chance of floods in the 2015 map. The overlapping area is thus one of 

the treatment areas is it depicts the area where the official flood risk level changed in 2015. 
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By using QGIS to determine the intersection between the two layers the red layer was created. 

The red layer is thus the area in which all property got the “treatment” of getting their flood 

risk officially updated from 0% to 1%. This red area (0% to 1% flood risk) is only one of 7 

possibilities. The table below shows all the nine possible risk changes. It also shows however 

that not all of these changes were found in the dataset. Only a few small areas go down in risk 

and only from 0.2% to 0%. This is mostly likely due to physical coastal flood protection such 

as dams. Big flood risk decreases (1% to 0% or 1% to 0.2%) do not exist in New York City. 

Since these risk decreases are not available in the dataset, unfortunately it cannot be tested 

whether flood risk decrease has the opposite effect and magnitude as flood risk increase. The 

intersect method used to determine the 1% flood risk increase treatment area was then used to 

determine the other five treatment areas. The result can be seen below in Figure 4. 



 
 23 

 

Figure 4. NYC, Parts of Manhattan, Brooklyn and Queens with all treatment areas. Produced in QGIS® 
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The red, yellow and orange areas are the areas that increased in flood risk in the FEMA 

update of January 2015 by 1%, 0.2% and 0.8% respectively. The pink and blue areas did not 

have their flood risk changed, they stayed at 1% and 0.2% flood risk respectively. The light-

green areas are the areas in which the flood risk went down from 0.2% to 0%. From figure 4 

we can conclude that the area in which the flood risk went up (red, yellow and orange) is 

relatively large as it covers big parts of southern Brooklyn and half of the Rockaway 

peninsula. Also the area in which the risk of floods that year remained 1% (pink) is relatively 

large. The blue and light-green areas are rather small however. These six areas were used to 

construct two treatment groups. To go down from six to two treatment groups, all the 0.2% 

areas were labelled as 0% risk zones. This is discussed in more detail later one.  

 The method to determine treatment areas has been discussed above. But how do we go 

from treatment areas to different treatment groups? This will be done by combining NYU’s 

geospatial real estate transaction data and the treatment areas in a Point-in-Polygon (PIP) 

Analysis. In a Point-in-Polygon Analysis an algorithm is asked to determine whether or not a 

transaction (point) falls within a certain area (polygon). These areas are the different treatment 

areas. The points used are the spatial points of the NYC Geocoded Real Estate Sales 

Geodatabase
3
. These points are thus not just points on a geographical map, but represent the 

sale of actual real estate within the years 2009-2015.     

 For understanding the point-in-polygon analysis it is important to understand the 

concept of polygons. Polygons are objects that are made up from ordered coordinates that are 

connected with lines. The polygons as used in thesis are two dimensional, as they represent 

flat flood risk maps, but polygons can be 3D objects or 1D objects (one point of coordinates) 

as well. The FEMA flood risk maps are made up from hundreds of different polygons and 

                                                           
3
 NYU Spatial Data Repository (2016),’ 2016 NYC Geocoded Real Estate Sales Geodatabase, Open Source 

Version’,  on: https://geo.nyu.edu/catalog/nyu_2451_34679 (visited on 11-01-2017) 

https://geo.nyu.edu/catalog/nyu_2451_34679
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Figure 5. NYC South Brooklyn Area with the real estate sales of 2015 

each polygon has information attached to it, such as which flood zone it represents. As 

already discussed in the data segment, treatment zones (changing flood risk) are created by 

calculating the overlap betweenthe old and the new flood risk maps.    

 The GIS Lab of the Newman Library (2016) of the New York University used the 

address of every real estate sale as provided yearly by the NYC Financial Department and 

used an algorithm to turn these addresses into a geospatial point (a coordinate). By then 

asking the QGIS software program to calculate whether a this spatial point was in a changing 

flood zone polygon (point-in-polygon analysis) the treatment group was established.  

 By using a Point-in-Polygon algorithm in QGIS it can be determined in which 

treatment area a certain real estate sale was. And thus it can be determined in which treatment 

group a real estate sale is. Once this has been determined, its shapefile is labelled with the 

treatment and a dummy is then added as the shapefile is loaded into R. Figure 5 shows the 

data points of real estate sales in 2015. 
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Figure 6. NYC South Brooklyn Area with the different treatment areas and their sales 

There are six treatment zones and three control zones (as will be discussed later). The real 

estate transaction data consists of thirteen years and 600.000+ observations. For each year 

nine PIP analyses had to be conducted to determine the treatment and control groups. 

Therefore in total at least 117 PIP analyses were conducted to create the dataset for this thesis. 

Each PIP analysis took between 40 minutes and six hours to complete. It can thus be stated 

that creating the data used was relatively labour intensive and time consuming.   

 In figure 5 all the real estate sales in 2015 can be seen before the Point-in-Polygon 

analysis. In figure 6 the very same spatial data points can be seen after the Point-in-Polygon 

analysis. They are no longer all blue. The other colours depict the different changes in flood 

risk. This is thus the way to create treatment groups from combining information of the real 

estate transaction data spatial points and the newly defined treatment areas as based on the 

pre-2015 and post-2015 FEMA flood risk maps. Below the six different treatment area and 

groups can be seen as defined by their different colours. 
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Figure 7. New York City with all different flood risk change transactions 

The dark blue points in figure 6 are outside the treatment areas. These observations will later 

be used to create the control groups.  Finally, in figure 7 the six different treatment groups can 

be seen covering all parts of the New York City coastline. It is important to notice that the 

treatment groups exists in all five boroughs; Manhattan, The Bronx, Queens, Brooklyn and 

Staten Island. Manhattan as can be seen on the map as the borough in the north. In the east, 

Manhattan is connected to The Bronx. South of The Bronx and across the East River the 

borough Queens is situated. In the west Queens is connected to Brooklyn. Finally, Staten 

Island is the island in the southwest only connected to Brooklyn by the Verrazano-Narrows 

Bridge. Brooklyn, Queens and Staten Island on first sight seem to have the most treatment 

observations. This could be a deception however, as Manhattan has a lot of high buildings, 

which “stacks” observations on top of each other.      

 The main reason of doing the Point-in-Polygon analysis is determining in which 

treatment group a certain real estate sale observation is. Once this became clear, then this sale 
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will get the TREAT dummy variable for this particular treatment group. Since the transaction 

data also gives a date of sale, also the post treatment dummies could be constructed. 

 Since the DID-regression compares treatment groups with control groups, it is 

important to define the control groups carefully (Angrist and Pischke, 2009: 241). Some 

studies on flood risk that used GIS data defined the control group just as the accumulation of 

all the observations that are not in the treatment group (Ortega and Taspinar, 2016). Votsis 

and Perris (2016) and Pope (2008) have a more precise approach that in which control groups 

are (geographically) more similar to the treatment groups. They argue that the control group 

should be geographically close to the treatment group to make it more credible that the 

observations actually only differ in receiving the treatment while all the other determinants of 

housing prices are approximately the same. They do so by defining the control group as the 

group of real estate transactions that did not receive the treatment of a flood risk map update, 

but are within a 300 meter distance from the treatment area. I argue that while this approach 

might seem favourable above just including all non-treated observations, there are some 

caveats to this approach. Firstly, while these control observations did not get their flood risk 

map updated, they did receive new information on their flood risk, namely that they are just 

outside of the new flood risk zone. This ‘relieve’ effect could have a positive effect on the 

housing prices of the control group because of two reasons. The relieve will be positively 

capitalized by the relieved homeowners. Also homes that are just outside of the updated zone 

will increase in demand, as they have the same positive attributes as their treated counterparts 

apart from the fact that they have a lower flood risk. 
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Figure 8. Different treatment groups in southern Brooklyn and the broadly defined control group.   

          

 

Figure 1. Southern Brooklyn. The different risk changes and the idea of a buffer zone to define the control group. 
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Figure 10. The different flood risk changes and the control groups defined by two different buffer sizes. 
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As said earlier, in this thesis a different approach is followed to make it more credible that the 

homogeneity assumption holds. Namely, the control group still has 0% flood risk before and 

after the map update, but now they fall in a 0 to 500  meter buffer from the treatment group 

transactions. These buffers were created in QGIS. All treatment observations were merged 

into one group that thus contained all different treatment groups of all different years. Then 

the two different buffers were drawn around all these treatment group observations. Since this 

buffer overlapped with several treatment areas, QGIS was asked to generate the overlap of 

these two buffers with the 0% stays 0% risk area. This created the final buffers, which are 

thus defined as being at least 0 meters from a treatment observation and being in the 0% stays 

0% control area. The final 500m buffer can be seen in figure 9. After the buffers is defined as 

a separate polygon, the 500m control group was created through the same Point-in-Polygon 

analysis that was used to define the treatment groups. All different treatment groups and the 

buffer control group can be seen in figure 10.      

 By using this approach of using buffer zone to define control groups, a lot of 

observations that are too far away from the shore lines are left out from the dataset used in the 

first regression. If the control groups were “broadly defined” as Ortega and Taspinar (2016) 

even observations up to 3 km from the shoreline would be taken into account. For this thesis 

this approach makes less sense, because when studying flood risk the buffer control groups 

can be assumed to be more relevant as they lie closer to the coast and also have roughly the 

same characteristics as the treatment group. This makes the homogeneity assumption between 

the control and treatment group more plausible.       

 It is important to note that in the first DID-analysis that follows there are only two 

treatment groups considered. Since the DID-regressions are run per borough there were not 

enough observations per borough for each of the six flood risk changes. Therefore all 

observations that had 0.2% yearly flood risk before or after 2015 were considered to belong to 

the 0% group. This made it possible to create two “condensed” treatments and one condensed 

control group. The condensed treatment of 0% to 1% flood risk is thus created from of the 

original 0% to 1% flood risk group and the 0.2% to 1% flood risk group. The 1% stays 1% 

flood risk group remains the same. The 500 meter control group is the original 500 meter 

buffer control group plus the 0% to 0.2% flood risk group, the 0.2% stays 0.2% flood risk 

group and the 0.2% to 0% flood risk group.  
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4. Empirical Methodology 

 We use differences-in-differences to estimate the treatment effect of hurricane Sandy and the 

map update. The DID analysis is based on the philosophy of the counterfactual definition of 

causality (Angrist and Pischke, 2009: 221-246). This counterfactual way of thinking is 

depicted in Figure 12. The transparent red line is the assumed counterfactual. The assumption 

is that that this transparent line would have been the outcome for the treatment group if they 

would not have received the treatment in the shape of hurricane Sandy and the updated flood 

risk map. In this case, that would be the group that goes down in risk, as the price goes up. 

The difference between the counterfactual point and the observed point is the Average 

Treatment Effect (ATE). This method is called a Differences-in-Differences analysis, because 

it takes the differences between the two groups after the treatment and subtracts the difference 

between the two groups before the treatment to get the Average Treatment Effect. 

 The example in figure 12 only uses two different groups over two different moments 

in time. Also in a simple DD with only four points it is impossible to check whether the ATE 

is significant or just an effect caused by chance. To be able to say something the about 

statistical significance of the treatment effect, the method of DD-regression is most commonly 

used (Angrist and Pischke, 2009: 233). In its simplest form a DD-regression model looks like 

this: 

𝑌𝑑𝑡 =  𝛼 +  𝛽𝑇𝑅𝐸𝐴𝑇𝑑 +  ɣ𝑃𝑂𝑆𝑇𝑡 +  𝛿𝑟𝐷𝐷(𝑇𝑅𝐸𝐴𝑇𝑑 ∗ 𝑃𝑂𝑆𝑇𝑡) + 𝑒𝑑𝑡 

Where 𝑌𝑑𝑡 is the dependent variable, 𝛼 is the intercept, 𝑇𝑅𝐸𝐴𝑇𝑑 is a dummy variable which 

has a value of 1 if a specific observation is inside the treatment area, 𝑃𝑂𝑆𝑇𝑡 is a dummy 

variable which has a value of 1 if the specific observation happened after the treatment, 

(𝑇𝑅𝐸𝐴𝑇𝑑 ∗ 𝑃𝑂𝑆𝑇𝑡) is an interaction variable which coefficient measures the Average 

Treatment Effect, finally 𝑒𝑑𝑡 is the error term. The (𝑇𝑅𝐸𝐴𝑇𝑑 ∗ 𝑃𝑂𝑆𝑇𝑡) interaction variable is 

the most important variable in this regression model. As both 𝑇𝑅𝐸𝐴𝑇𝑑 
and 𝑃𝑂𝑆𝑇𝑡 are dummy 

variables the interaction is quite intuitive. If they both have a value of 1, the interaction 

dummy is also 1 as 1 * 1 = 1. If one of the dummies is 0 the interaction dummy is also 0. This 

means that an observation is in the treatment area and was observed after the treatment. The 

coefficient of this interaction  𝛿𝑟𝐷𝐷  thus measures the average treatment effect. 
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Figure 12. Visualization of the differences-in-differences example 

The most important assumption that has to hold in order to infer a causal effect is that the time 

effects of the treatment and control group are the same in absence of the treatment (Angrist 

and Pischke, 2009: 221-246). The logic then is that when this is the case, a divergence from 

this trend must be caused by the treatment. When this assumption holds it is thus possible to 

talk of a causal effect rather than just a correlation. Although that is the most important 

assumption that has to hold, there are three others (Toskhov, 2016: 233-234). Firstly, the 

assumption that must hold is that there is no factor that affected the outcome of the treatment 

group and the control group differently. Secondly, the assumption is that the control group 

and the treatment group would both react in the same way if they both got the treatment. This 

is called the assumption of homogeneity. To make the homogeneity assumption more likely to 

hold, the control group is not simply defined as “all the real estate transactions that are not in 

the treatment group”. Rather, for the first DID-analysis the control group is defined as 

transactions that fall within a 500 meter buffer from the treatment group, to make it more 

likely that the groups are comparable. The final assumption is that of non-interference. This 

assumption holds when the treatment on the treatment group does not influence the control 

group. This assumption might be harder to hold, because it might be possible that there is a 

“relieve effect” in the 500 meter buffer control group. These homeowners might have 

expected to see their risk go up and are relieved to see that this is not the case. This might in 

turn increase their housing prices.         
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 Since the DD-regression model is relatively easy to expand, in this study we also 

control for area fixed effects. Central in the idea of fixed effects models is that every 

individual or group inherently has certain unobserved and fixed characteristics that do 

influence the dependent variable (Angrist and Pischke, 2009: 222). This effect is called fixed 

as it does not vary over time. Since it does not vary over time this fixed effect can be thought 

of as a different intercept and slope for every single group or cluster in the model. The 

coefficients of these dummies will therefore represent the unobserved individual or group 

effects and the time effects, quarters in this thesis.       

 A difference-in-differences approach in a way already captures unobserved fixed 

group-level variables, because it already captures the unobserved fixed effects of the 

treatment and control group (Angrist and Pischke, 2009: 227). However, since both the 

control and treatment groups are present in most parts of New York City, the model used will 

control for fixed effects by including dummy variables for all different neighbourhood levels 

included in the dataset. Furthermore, we will also control for neighbourhood-specific trends 

(Angrist and Pischke, 2009: 238). Ortega and Taspinar (2016: 13) in their research on the 

price effects on Hurricane Sandy use different group-levels fixed effects in their DID-

regression: borough, neighbourhood, zip code and building block. They prefer to control for 

fixed effects on city block level and cluster the standard error at the same level. Since their 

analysis also uses the transactions data set from the Finance Department, this research will 

follow their example and control for the same fixed effects levels.    

 In the DID-regression standard errors need to be clustered, because observations in the 

same cluster are not independent from each other (Angrist and Pischke, 2009: 293-325). By 

clustering the standard error on the city block level the estimated effects are adjusted for the 

fact that observations within a city block are not independent from each other, as they are 

influenced by the same characteristics of the geographical area
4
. For this approach it is 

important that there are enough different clusters. With too few clusters, the serial correlation 

or intraclass correlation is underestimated (Angrist and Pischke, 2009: 319). Angrist and 

Pischke (2009: 319) as a rule of thumb state that standard errors can only be effectively 

adjusted for clustering if there are at least 42 clusters in the analysis. Therefore in the DID-

regression only controls for fixed effects for the level that has at least 42 clusters. 

 The data used in this thesis is “repeated cross sections” data. This means that a house 

sold in 2003 is typically not sold again in 2004, 2005, etc. Most of the real estate sold in 

                                                           
4
 This was done automatically by using the “cluster” command in STATA. 
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between 2003 and 2015 only appears once in the dataset. This characteristic of the transaction 

data makes that it is not fit for panel data analysis, such as Panel OLS with a “within” fixed 

effects or random effects estimators (Field, 2012: 855-909). Since controlling for time-

invariant fixed effects of different geographical areas in which the transactions took place, the 

Least Squares Dummy Variables (LSDV) method is used. This means that the cluster above 

the transaction, the neighbourhood for example, is added as a dummy variable in a normal 

OLS regression to control for its time-invariant fixed effects. The same goes for the time fixed 

effects as for each of the fifty-two different quarters a dummy variable is added. The number 

of groups in a level determines the amount of dummy variables. While adding more 

observations (rows) to a regression causes no problems, adding too many dummy variables 

(columns) does. For this reason not all fixed effects could be taken into consideration. 

However, since the data was split up per borough it was possible to control for fixed effects 

on the city block level. Fixed effects for zip codes were excluded from the regression, as the 

number of zip code areas within each borough is lower than 42. In the analysis therefore the 

regression is run four times for every borough. Once with neighbourhood fixed effects, once 

with lot fixed effects, once with block fixed effects and finally once with block fixed effects 

while also controlling for the year in which the building was built and the building category. 

Some boroughs have more zip code areas than neighbourhoods. In this case the zip codes are 

used as a clusters, as this will increase the amount of clusters to above 42. 

 Ortega and Taspinar (2016) find that Hurricane Sandy had a significant negative effect 

on real estate prices in New York city. This hurricane happened in 2012, but still had a time-

varying coefficient that was significant for 2015. We also know that the effect of Hurricane 

Floyd on housing prices diminished over 5 or 6 years (Bin and Landry, 2013). Since there are 

only just over 2 years between Hurricane Sandy hit New York City and the flood risk map 

update, the effect of Hurricane Sandy needs to be controlled for in the DID-analysis. This is 

done by not only including the interaction effect of (POST * TREAT) for the treatment 

groups and the time after the map update, but also for the treatment group and the time after 

Hurricane Sandy. This will hopefully disentangle the effects of Sandy and the flood risk map 

update. If the effect of the flood risk map update is significant when controlled for Sandy, the 

effect can be seen as causal. This brings us to the following base specification of the 

difference-in-differences model as used in the first analysis: 
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Log(price) =  α + β1(Treatment_0_to_1) + β2(Treatment_1_stays_1) + β3(Post Sandy) + 

  β4(Post Map Update) + β5(Treatment_0_to_1 * Post Sandy) +   

  β6(Treatment_1_stays_1 * Post Sandy) + β7(Treatment_0_to_1 * Post Map 

  Update) + β8(Treatment_1_stays_1 * Post Map Update) + β9(Quarter Time 

  Dummies) + β10(geographical fixed effects) 

The dependent variable in this DID-analysis is the natural log of the inflation corrected 

transaction price. Treatment_0_1 is a dummy variable that is “1” for the observations which 

flood risk goes up from 0% to 1% in 2015. Treatment_1_stays_1 is a dummy variable that is 

“1” for the observations which flood risk remains 1% after 2015. “Post Map Update” is a 

dummy variable that is “1” after the introduction of the preliminary FIRM on January 31
st
 

2015. “Post Sandy” is a dummy variable that is “1” for all the transactions after Hurricane 

Sandy hit New York City on October 29
th

 2012. β5 and β6 are coefficients of the interaction 

effect between being in a treatment group and being a transaction after the flood risk map 

update. These dummy variables are thus “1” if a transaction is in the specific treatment group 

and after the flood risk map update. These two coefficients are the treatment effects of the 

flood risk map update. β7 and β8 are the coefficients of the interaction effects between being 

in a specific treatment group and being a transaction after Hurricane Sandy. These two 

coefficients are the treatment effects of being in a treatment zone after Sandy. These dummy 

variables are thus “1”if a transaction in the specific treatment group was made after Hurricane 

Sandy. These two coefficients are in the model to control for Sandy’s effect on housing 

prices. Finally β9 and β10 are the coefficients of the variables that are included to control for 

quarterly time effects and fixed geographical effects.      
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5. Results 

In this section we discuss the results separately per borough. The order of discussed borough 

results is based on the extent to which Hurricane Sandy flooded each borough
5
. This is done, 

because it is hypothesized that the borough that got hit hardest by Sandy will also show the 

biggest effects. The borough that got the biggest part of its area flooded (Staten Island) is 

discussed first, while the borough that go hit the least (Manhattan), will be discussed last
6
. 

The amount of flooding caused by Sandy is not the only reason to analyse the NYC boroughs 

separately. Each of these boroughs namely also differs in culture, socio-economic 

composition, city planning, demand on the housing market and in type of buildings. First the 

descriptive statistics of each borough will be discussed. This is important, as the DID-analysis 

requires that both treatment groups are comparable with the control group (Angrist and 

Pischke, 2009: 241-243).  Secondly, the price movements per treatment group are analysed 

graphically per borough. This is important because the causal inference of the difference-in-

difference analysis is based on the common trend assumption (Angrist and Pischke, 2009: 

227-233). This assumption is thus tested graphically. Thirdly, this section will discuss the 

DID-regression results per borough. Finally, to check whether these findings are robust, in the 

last part of this section several robustness checks are implemented and their results discussed. 

 In table 1 the descriptive statistics of the real estate sold on Staten Island is shown. It 

covers three periods in time, before Hurricane Sandy, between Sandy and the flood risk map 

update and after this map update. For each of these periods it shows the descriptive statistics 

for the control group and both the treatment groups. The first thing that can be seen in this 

table is that the mean of transaction prices is very similar for the three groups in all three 

periods. In the middle period the standard deviation of the first and second treatment group 

are large compared to that of the control group. This could be due to price shocks after 

Hurricane Sandy. For all three groups the years in which the sold property was built is very 

similar over the years. Finally, if we look at the composition of building types, we can 

conclude that the composition is relatively similar, although treatment group 2 has less condos 

and more coops than the other two groups
7
.   

                                                           
5
 The Bronx saw 0.01% of its borough flooded, Manhattan 0.23%, Queens 0.45%, Brooklyn 0.65% and Staten 

Island 3% (Ortega and Taspinar, 2016: 28) 
6
 The borough of The Bronx was not analysed in thesis due to multiple long periods of missing data for the 

treatment groups. On top of that it saw only 0.01% of its area flooded by Hurricane Sandy. 
7
 A condo or “condominium” is a type of building that consists of multiple units that can be owned 

separately, while a part of the property is shared with other owners. Condos are mostly seen in high-rise 
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Descriptive statistics Staten Island 

 

Table 1. Descriptive statistics Staten Island 

 

Average price movements per treatment and control group for Staten Island 

 

Figure 13. Price movements Staten Island, 2003-2015 

 

 

 

                                                                                                                                                                                     
buildings. Coops is not a distinct building type per se. Its name originates from the fact that multiple people 

are member of a co-operative association that is the owner of the property that the members live in. 

Although coops are not a distinct building type, it is seen more often in high-rise buildings as well.  
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Figure 13 shows the average price movements per quarter for the control group and the two 

treatment groups on Staten Island. There are two vertical red lines shown in the graph. The 

first one  depicts the date that Hurricane Sandy hit New York City (26-10-2012). The second 

vertical line depicts the introduction of  FEMA’s new preliminary FIRM (31-01-2015). 

According to Ortega and Taspinar (2016: 28) Staten Island saw the highest percentage of 

floods due to Hurricane Sandy as compared to the other boroughs. The graph seems in line 

with this statement as it shows a large drop in housing prices for both treatment groups after 

Sandy. This price drop is deeper and wider when compared to the price drop in other 

boroughs. Apart from an upward spike for treatment group 1 in 2010 and the effects of Sandy, 

the price movements of the three groups are relatively similar. This is important in the light of 

the common trend assumption on which the DID-regression is based. Before the map update 

both treatment groups see their housing prices rise, while the control group stays stable. After 

the map update however, the prices drop for both the treatment groups. This partly recovers 

after two or three quarters. The price of the control group goes up after the flood risk map 

update            

 Table 2 shows the DID-regression results for Staten Island. Before looking at the table 

it is important to understand how a significant effect should be interpreted. The first set of 

regressions include five types of variables, three of which are included in the regression 

tables. The first is the treatment group dummy variable. This variable shows whether or not 

there is a significant time-invariant difference between the treatment group and the control 

group. Then the post Sandy and post map update variables show whether or not there is a 

significant difference between all observations before the treatment and all observations after 

the treatment. The third type of variable is the interaction effect variable, which measures the 

effect of being both in a treatment group and in the time period after the treatment. This effect 

is thus as compared to the control group. If the control group remains stable, but the treatment 

group decreases in price, the interaction effect is most likely negative. The two variables that 

are included in the DID-model, but not in the regression table are the quarter time dummies 

and the geographical fixed effect levels. This is due to the fact that it does not fit on one page 

and also these variables are mainly included to control for (time) fixed effects rather than 

having an intrinsic value of their own for this thesis. 
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Difference-in-differences regression results Staten Island 

 

Table 2. Difference-in-differences regression results for Staten Island. Each model (column) runs the same base 

specification, but differs in the fixed effect level and the level at which the standard error is clustered. One asterisk (*) 

depicts a p-value of < 0.1, two asterisks (**) a p-value of < 0.05 and three asterisks (***) a p-value of < 0.01. In the last 

column (model 5) the same base specification is run, but on a subset of only family houses.   
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Table 2 shows the DID-regression results for Staten Island. Each of the five columns depicts a 

different model that was run. These models differ on the level of fixed effects and the level at 

which the standard error is clustered. The first model has highest level of fixed effects and 

clustering at a neighbourhood level, while the models after that have smaller clusters, namely 

the lot and block levels. The table will be discussed per model.     

 In the model (1) we see that both the treatment group fixed effects are not significant, 

meaning that the time-invariant effects of the treatment groups in comparison with the control 

group are not significant. The same goes for the “Post Sandy” and the “Post Map” variables. 

In general there is thus no significant difference between the time before Sandy and the time 

after Sandy and between the time before the map update and after the map update. Being in 

the first treatment group (0% to 1% flood risk) and in the post Sandy period has no significant 

effect as compared to being in the control group. For the first treatment group Hurricane 

Sandy thus does not induce a significant treatment effect. The interaction effect between 

treatment group 2 (1% stays 1%) and the Post Sandy variable is negative and significant 

however. The treatment effect is -16.8 logistic points, which is roughly an effect of -16.8%. 

This significant effect says nothing without interpretation. The housing prices could be 

affected because of directed damage caused by hurricane Sandy. Another possibility is the 

“reminding” effect.  Hurricane Sandy as a bringer of information might have reminded the 

market that those houses were in a flood risk zone, leading to lower housing prices. If we look 

at the effect of the introduction of the updated flood risk map on the treatment groups we see 

two things. First, the map has no significant effect on treatment group 1, even though this was 

hypothesized. The interaction effect between the flood risk map and treatment group 2 is 

statistically significant and positive. This is strange, as I hypothesized that increased flood risk 

information would decrease the housing prices. This significant effect might therefore be due 

to other reasons. For instance, the control group might have dropped in value more than the 

treatment group after the map update. The price movements in figure 1 do not show this 

however. Another possibility is that property with waterfront view increased highly in 

demand in 2015. This is also implausible however, because treatment group 1 does not show 

such an effect. Another interpretation could therefore be that the effect of Sandy faded out in 

the year 2015. Other studies found that the effects of storms only fade out after five or six 

years, so this interpretation is rather speculative (Bin and Polasky, 2004).   

 The other models show very similar results when being controlled for more precise 

geographical fixed effects. Sandy’s treatment effect on treatment group 2 remains negative 

and significant for all models. Its magnitude does decrease however when controlling for lot 
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fixed effects and building block fixed effects. Also the effect of the post map period on 

treatment group 2 remains positive and significant for the other models. This effect also 

decreases when more precise fixed effects are controlled for. Interesting to notice is that when 

the same specification is run on a subset of family houses (model 5) while controlling for age 

and building type, these effects still do not change. 

Results Brooklyn 

In table 3 the descriptive statistics of the real estate sold in Brooklyn is shown. The first 

interesting thing it shows is that for the first and second period the average prices of sold real 

estate is relatively similar. For the period after the flood risk map update however, the control 

group sees a sharp increase in the mean price. Also the standard deviation of the price sees a 

relatively large increase. The composition of housing types is relatively balanced, with the 

remark that treatment group 2 has less 2-family houses and treatment group 1 has less condos. 

Overall it can be concluded that the treatment and control groups for Brooklyn are quite 

similar in their characteristics.        

 Figure 14 shows the average price movements per quarter for the control group and 

the two treatment groups for Brooklyn between 2003 and 2015. Brooklyn shows different 

price movements than Staten Island. First, the price averages are more apart from each other. 

The average price movements of treatment group 1 (0% to 1% flood risk) are relatively 

similar to that of the control group, even though the control group overall shows a higher 

average price. The similar trend assumption thus seems to hold for these two groups. The 

second treatment group (1% stays 1%) shows a price movement that is not so similar to the 

other two groups however. Whether the similar trend assumption holds for this treatment 

group is therefore more obscure. What can furthermore be seen in figure 14 is that treatment 

group 2 shows a large price drop after Hurricane Sandy. For treatment group 1 only a minor 

price drop is shown. Both the treatment groups show a drop in housing prices after the flood 

risk map update, while the average price of the control group keeps increasing. The drop that 

the treatment groups show only seems to be for one quarter. From the graph it can therefore 

not be concluded that whether this price drop is significant and causal. These topics will be 

discussed below.  
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Descriptive statistics Brooklyn 

 

Tabel 3. Descriptive statistics Brooklyn 

 

Average price movements per treatment and control group for Brooklyn 

 

Figure 14. Price movements Brooklyn, 2003-2015 
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Difference-in-differences regression results Brooklyn 

 

Table 4. Difference-in-differences regression results for Brooklyn. Each model (column) runs the same base specification, but 

differs in the fixed effect level and the level at which the standard error is clustered. One asterisk (*) depicts a p-value of < 

0.1, two asterisks (**) a p-value of < 0.05 and three asterisks (***) a p-value of < 0.01. In the last column (model 5) the 

same base specification is run, but on a subset of only family houses.   
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After Staten Island the borough of Brooklyn was had the highest percentage of floods due to 

Hurricane Sandy in 2012. The DID-regression results of this borough are shown in table 4. 

Again the models represent the same DID base specification, while each model controls for 

fixed effects at another level.  Model 1 shows highly significant effects for three of the four 

treatment effects. First, hurricane Sandy’s effect is -15.3 logistic points on treatment group 1 

and -13.0 logistic point on treatment group 2. Both these effects are in the hypothesized 

direction. What is also interesting about the first model is that the introduction of the new 

flood risk map seems to have a negative effect of -9.3 logistic points on treatment group 1. 

This effect was also hypothesized. This map update effect does not show for treatment group 

2 however. When we look at model 2, it can be seen that the effect of the flood risk map 

update disappears when controlling for the fixed effects of more clusters, namely blocks. The 

effect of Sandy on both treatment groups remains highly significant and negative however. 

Also the post map period becomes significant and negative in this model. The post Sandy 

dummy and the treatment fixed effects do not show significant correlations. In model 3, 

controlling for fixed effects at the lot level, a significant effect of treatment group 1 can be 

seen. Compared to the control group this treatment group thus has lower housing prices 

independent of time in this model. Also the treatment effect of Hurricane Sandy is significant 

and negative again for both treatment groups. The flood risk map update is significant for 

treatment group 1 and almost significant (p < 0.1) for treatment group 2. When model 4 also 

controls for building type and age the effect of the map update becomes insignificant again for 

both treatment groups. The effect of Hurricane Sandy remains negative and highly significant 

however. This remains unchanged when running the same model on a subset of family houses 

in model 5. 

Results Queens 

In table 3 the descriptive statistics of the real estate sold in Queens is shown. The means of the 

prices are very similar. The standard error of the control group in the first period is, with 

almost six times the mean, is relatively large though compared with the treatment groups. 

Both the age and building types of Queens seems to be relatively balanced, with the footnote 

that the control groups has more coops and treatment group 1 has more 1-family houses. 

Overall can be concluded that the Queens data is relatively balanced. 
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Descriptive statistics Queens 

 

Table 5. Descriptive statistics Queens 

 

Average price movements per treatment and control group for Staten Island 

 

Figure 15. Price movements Queens, 2003-2015 
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Figure 15 shows the average price movements per quarter for the control group and the two 

treatment groups for Queens between 2003 and 2015. Of all the boroughs analysed Queens 

shows the most similar price movements between the three groups. The similar trend 

assumption thus seems to hold for this borough. After Hurricane Sandy all three groups see 

their average housing prices fall. Treatment group 2 sees the biggest price drop, followed by 

treatment group 1 and then by the control group. Since the control group also drops in price 

after Sandy, this could mean that the effect of Sandy on the treatment groups is 

underestimated in the DID-regressions. This is the case because the DID-regression results are 

the results as compared to the control group. If this same control group is also affected by a 

treatment, the estimated treatment effect is thus underestimated. After the  flood risk map 

update treatment group 2 and the control group initially drop in price, to recover after in the 

next quarters. For treatment group 1 this is the other way around, its average price first rises 

before it drops in the following quarters. These graphical effects might be due to chance or 

quarterly trends. Therefore now the DID-regressions will be discussed.    

 Table 6 shows the DID-regression results for Queens. The first model, with zip code 

fixed effects, shows no significance for any of the eight variables. In the second model, that 

controls for lot fixed effects, two significant correlations show. First, there seems to be a 

significant negative effect for being in treatment group 2 as compared to the control group. 

Also there is a significant effect of -7.6 logistic points of Hurricane Sandy on treatment group 

1. The flood risk map is almost significant for treatment group 2. In model 3, that controls for 

building block fixed effects, Hurricane Sandy has a significant negative effect on the housing 

prices of both treatment groups of -13.9 and -13.8 logistic points. Also the post map and post 

sandy dummies are negative and significant for this model. There is no sign of a treatment 

effect of the flood risk map update however. When also controlling for age and housing type 

in model 4 there is still no visible effect of the flood risk map update. The effect of Sandy 

remains negative and significant however. Also the period after the introduction of the flood 

risk map has a negative and significant effect on housing prices in general. In the last model, 

that uses the same specification on a subset of family houses, this effect of the post map 

disappears. The effect of Hurricane Sandy on both treatment groups remain negative and 

significant. This effect even seems to increase in magnitude. The map update still does not 

show a significant effect on the housing prices of either treatment group.   
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Difference-in-differences regression results Queens 

 

Table 6. Difference-in-differences regression results for Queens. Each model (column) runs the same base specification, but 

differs in the fixed effect level and the level at which the standard error is clustered. One asterisk (*) depicts a p-value of < 

0.1, two asterisks (**) a p-value of < 0.05 and three asterisks (***) a p-value of < 0.01. In the last column (model 5) the 

same base specification is run, but on a subset of only family houses.   
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Results Manhattan 

In table 4 the descriptive statistics of the real estate sold in Manhattan are shown. This table 

shows that Manhattan is very different from the other boroughs for multiple reasons. Firstly, it 

has very few family houses. Most of Manhattan consists of condos and coops. This big 

amount of high-rise buildings is also the reason that the control group is very large in 

comparison to the treatment groups. The treatment groups do have a higher price mean, which 

could be due to the proximity to the waterfront and the view that comes with it. Furthermore, 

the standard deviation of these prices is relatively large as well. This shows that within 

Manhattan there is a big difference in housing prices. Finally the buildings in the control 

group are older relative to the treatment groups in the first two periods. Overall it can be 

concluded that Manhattan with big differences within its borough has less balanced data. 

Overall it can be concluded that Manhattan has big differences within its borough and 

between treatment groups. This makes it a rather problematic case for a DID analysis. 

 Figure 16 shows the average price movements per quarter for the control group and 

the two treatment groups for Manhattan between 2003 and 2015. The first thing that stands 

out is that the housing market of Manhattan is more volatile compared to the other boroughs, 

as can be seen at the extreme ups and downs of especially the second treatment group. What 

is also interesting, is that while in the other boroughs the control group seems to have a higher 

average price than the treatment groups, this is not the case for Manhattan. The two treatment 

groups, that are closer to the water, have a higher average price for almost every quarter 

between 2003 and 2015. Since Manhattan has mostly high-rise buildings, that probably has to 

do with the fact that buildings close to the waterfront have a view that is in high demand. If 

we look at the period following Hurricane Sandy we see that only treatment group 1 

experiences a drop in average housing prices. Treatment group 2, contrary to the hypotheses, 

shows an average price increase after Sandy. The average price of the control group seems to 

remain relatively stable after Sandy. After the flood risk map update all three groups see their 

average prices decrease. Over the following quarters, however, the average prices move back 

up for all three groups as well.   
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Descriptive statistics Manhattan 

 

Table 7. Descriptive statistics Manhattan 

 

Average price movements per treatment and control group for Staten Island 

 

Figure 16. Price movements Manhattan, 2003-2015 
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Difference-in-differences regression results Manhattan 

 

Table 8. Difference-in-differences regression results for Staten Island. Each model (column) runs the same base 

specification, but differs in the fixed effect level and the level at which the standard error is clustered. One asterisk (*) 

depicts a p-value of < 0.1, two asterisks (**) a p-value of < 0.05 and three asterisks (***) a p-value of < 0.01.   
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In the descriptive statistics table and the price movement graph we saw that Manhattan’s 

housing market as a case in a DID analysis is rather problematic. Table 8 shows the DID-

regression results with different fixed effect level models for this borough. Since the case of 

Manhattan is deemed problematic and shows no consistent outcomes, this table will only be 

discussed briefly. The main thing that should be understood from reading this table is that 

both the Sandy treatment and the flood risk map update treatment show no consistent negative 

significant effects. Also the treatment group dummies and the post dummies show 

inconsistent outcomes. To strengthen the impression that Manhattan’s housing market is too 

volatile and therefore a problematic case for DID analysis, see model 6. When running the 

base specification on a subset of Manhattan family houses the post map interaction with 

treatment group 2 becomes extremely large and positive with 100.8 logistic points. Also 

Sandy has an incredibly large negative effect on treatment group 1, which did not show an 

effect in the previous models. Of course this extreme outcome is also due to the fact that it 

only uses 847 observations over thirteen years while including 198 fixed effects clusters and 

52 time fixed effects, depriving the degrees of freedom for this model.  

Robustness checks 

Above the results of the first DID-regression results were discussed. To check whether these 

results are robust, now different robustness checks will be implemented and their outcomes 

discussed. The tables of these robustness checks are included in the appendix. In all these 

tables the preferred model without robustness checks is shown first as a point of reference. In 

the first DID analysis we already found that Manhattan showed no consistent treatment or 

dummy effects. This does not change in the robustness check models. Therefore these 

outcomes will not be discussed.        

 The transaction data used for this thesis spans from 2003 up to and including 2015. 

Hurricane Sandy did not hit only far into the year 2012. Between the beginning of the dataset 

in 2003 and the moment Sandy hits there are multiple other events that heavily influenced the 

New York City housing market. The most relevant of these events are the subprime mortgage 

crisis and financial crisis of 2007-2008. In most of the price movement graphs there is an 

upward trend visible before these crises and a downward trend afterwards, approximately 

until 2009. The first robustness check consists of using the same kind of DID-regression, but 

for the years 2009-2015 instead of the full thirteen years. This does not really influence the 

outcomes for Staten Island, Brooklyn and Queens. On average the treatment effects that were 

significant, remain significant when adding this test. The most apparent effect is that it 
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decreases the magnitude of Sandy’s effect. Also for Brooklyn the effect of Sandy on treatment 

group 2 seems to disappear.         

 FEMA’s flood risk map update was introduced on January 31
st
 2015. Homeowners 

received their letter however on March 27
th

 2015. In the basic regressions above the post-

dummy was based on  the date of the map update. The second robustness check will check 

whether using the moment of receiving the letter for defining the post-dummy will change the 

outcomes. Changing this post-dummy does not affect the treatment effects for Brooklyn and 

Queens. Also for Staten Island the effects stay significant, but do decrease in magnitude. 

 As could be seen in the price movement graphs, the NYC housing market is rather 

volatile. Although some price outliers have already been deleted from the dataset, it would be 

interesting to see whether the treatment effects of Sandy still persist if only looking at core 

values. To create such a core group the extreme price observations at the higher and lower end 

of the distribution have been deleted. I choose to cut out 30% of the observations for this 

robustness check. To do this the first five percentiles of the dataset were deleted, as well were 

the upper 25 percentiles. This robustness check seems to have more effect than the ones testes 

before. For Staten Island all significant treatment effects disappear. It could be that the effect 

was stronger or only existing for more expensive houses. Or it was caused because the more 

extreme values introduced more noise into the data. This interpretation is strengthened by the 

fact that for Brooklyn the effect of Sandy on treatment group 2 completely disappears, while 

the effect on treatment group 1 decreases in magnitude. Also the effects in Queens see their 

treatment effects greatly decreasing in magnitude, although still remaining significant.  

 The fourth robustness check looks whether using the broadly defined control group 

instead of the 500 meter buffer control group changes the outcomes. This bigger control group 

uses all observations that remain in the 0% flood risk zone, instead of only using the 

observations in the 500 meter buffer. This model needs a remark though. It uses 

neighbourhood fixed effects, because the city block fixed effect could not be included in this 

model, because of its high demand on working memory. Since a lot of variance can be 

explained by the city block fixed effects, using this model is a robustness check is therefore 

not ideal. It does not change the outcomes for Staten Island. For Brooklyn all treatment effects 

become significant, where first they were not. Finally, the effect of Sandy on treatment group 

2 loses its significance.         

 Although DID-regressions are widely used in scientific research, its outcomes cannot 

always be interpreted as causal effects straight away. There may be unobservable events that 

cause an effect other than the treatment effect. A placebo effect can be added to the model in 
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the year before the treatment to check if there was already a significant trend then. Since the 

flood risk map update was found to be significant, the placebo interaction is done for the 

entire year before Hurricane Sandy. If this interaction with the treatment groups is not 

significant and the interaction between Sandy and the treatment groups still is, Sandy’s effect 

can be interpreted as causal. The second robustness check thus involves such a placebo 

interaction. The placebo effect is not significant for Staten Island. Brooklyn does show a 

significant placebo effect, but this effect disappears when also controlling for group specific 

trends in model 8. Unfortunately Queens does show a significant placebo effect the year 

before Sandy. This effect disappears only in one of the two models when controlling for 

group specific trends.          

 The treatment groups and the control group follow trends disregarding a possible 

treatment. Therefore it is important to control for such trends, because maybe the treatment 

effect is caused, weakened or enhanced by such a trend (Angrist and Pischke, 2009: 238-241). 

The sixth robustness check thus controls for the trends of the control group and the two 

treatment groups. The general trend is 1 for the first quarter of 2003 and 53 for the last quarter 

of 2015. By multiplying this trend with the dummy variables of the control and treatment 

groups, group specific trends are created. For example, the group specific trend dummy for 

the control group in December 2004 is “8” while for the treatment groups in this same month 

the value of the control specific trend is “0”. A group specific trend can thus be thought of as 

the effect of going up one quarter for a specific group. After adding these group specific 

trends for Staten Island and Brooklyn their treatment effects remain significant. For Queens 

the treatment effects seem to disappear.        

 Overall for Staten Island it can be concluded that the effects found earlier are robust. 

For Brooklyn the effect of Sandy on treatment group 1 is robust and in the hypothesized 

direction. Its effect on treatment group 2 is more ambiguous as it is not significant in four of 

the nine models. For Queens the effects are relatively robust, while controlling for group 

specific trends does seem to render some treatment effects insignificant. For all the boroughs 

no significant treatment effect is found for the flood risk map update.  
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Quarterly interaction effects         

Since from theory it is known that risk perception discounts over time, it is important to look 

at the treatment effects per quarter (Bin and Polasky, 2004). This is done by estimating the 

interaction effects of the two treatment groups with every quarter time dummy, while still 

controlling for city block fixed effects and time fixed effects. These estimations have two 

purposes. Firstly, if these quarterly effects are not significant before Sandy, but they are 

afterwards, it makes it more likely that Sandy did indeed have a causal effect on housing 

prices. Secondly, quarterly interaction effects create insight on whether the effect is temporary 

and whether the magnitude of the effect changes over time. The coefficients of these quarterly 

interaction effects and its confidence intervals are depicted in the graphs below. The red line 

shows the quarterly interaction effect on treatment group 1, the blue line on treatment group 2. 

The first vertical dotted line is the moment Hurricane Sandy hit New York city, the second 

one the moment the new flood risk map was introduced. If the coefficient is significant (at a p 

< 0.05 level) an asterisk (*) is included for that coefficient. 
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Coefficients interaction effects per quarter for Staten Island, 2011-Q1: 2015-Q4 

 

Figure 17. Quarterly interaction effects for both treatment groups on Staten Island, 2011-2015. The coefficients that are 

marked with an asterisk (*) are significant at a p < 0.05 level. 

 

 

Coefficients interaction effects per quarter for Brooklyn, 2011-Q1: 2015-Q4 

 

Figure 18. Quarterly interaction effects for both treatment groups in Brooklyn, 2011-2015. The coefficients that are marked 

with an asterisk (*) are significant at a p < 0.05 level. 
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Coefficients interaction effects per quarter for Queens, 2011-Q1: 2015-Q4 

 

Figure 19. Quarterly interaction effects for both treatment groups in Queens, 2011-2015. The coefficients that are marked 

with an asterisk (*) are significant at a p < 0.05 level. 

 

 

Coefficients interaction effects per quarter for Manhattan, 2011-Q1: 2015-Q4 

 

Figure 20. Quarterly interaction effects for both treatment groups in Manhattan, 2011-2015. None of the coefficients were 

found to be significant, therefore none are marked with an asterisk (*). 
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Figure 17 shows the quarterly interaction effects for Staten Island. First, we see that none of the 

quarterly interaction effects is negative and significant before Sandy for any of the treatment groups. 

After Sandy however, the coefficients go down from positive to negative for treatment group 2 for 

three quarters. These effects are significant. After this the coefficients become positive and 

insignificant again. This might show that Sandy only had a temporary effect on housing prices. I argue 

that temporary effects are more likely to be caused by direct damage than by increased risk perception. 

Treatment group 1 shows two quarters to have a significant negative effect after Sandy, but not 

directly after Sandy.           

 Brooklyn shows the most clear cut effect of Sandy in figure 18. Before the hurricane there are 

no significant effects, while afterwards for treatment group 1 eleven out of twelve coefficients show 

significant negative effects. This graph thus shows that the effect of Sandy on treatment group 1 in 

Brooklyn is very likely to be causal. Treatment group 2 does show a dip after Sandy, but this effect is 

not significant. Also over the following quarters only two out of twelve coefficients show significant 

negative effects.           

 Figure 19 shows the quarterly interaction effects for Queens. Again it shows no significant 

effects before Sandy. After Sandy however, the interaction effects with treatment group 1 are negative 

and significant seven out of twelve times. Also here it does not just show a short term effect. This 

makes it more likely to next to an effect of direct damage, there also is an effect of increased risk 

perception which does not fade out. Treatment group 2 shows only a short term effect.   

 Figure 20 depicts the quarterly interaction effects for Manhattan. Almost every quarter shows 

a positive coefficient for both treatment groups. This is most likely because of the high demand for 

Manhattan real estate. Treatment group 1 however shows a negative coefficient for the quarter after 

Hurricane Sandy however. This negative effect disappears in the quarter after that however. Also there 

is no apparent coefficient change after the flood risk map update. Manhattan shows not significant 

quarterly interaction effects for any quarter for any of the treatment groups.  

Sale frequencies 

The DID-regression results for both the initial models as well for the robustness check models 

found a significant effect of Sandy on housing prices, but not for the flood risk map update. It 

could be argued that although there were no price effects, there were effects in composition of 

sales after the map update. To check for such an effect, graphs of the used control variables 

over time will be analysed.          

  

 

 

 



 
 59 

Average age of sold real estate per quarter 

 

Figure 21. Average age of sold real estate per quarter. 

 

Figure 22. Amount of sales per housing type per quarter 
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Sales per quarter per group 

 

Figure 23. Amount of sales per quarter 

Figure 21 shows the average age of the building on the moment of transaction. Hurricane 

Sandy and the flood risk map update both do not seem to have an effect on this control 

variable. In figure 22 the amount of sales per housing type is depicted. They seem to move in 

similar trends, especially after 2009. What is striking is the fact that there seems to be an 

effect on the moment of the map update (second red vertical line). All housing types fall in 

the amount of sales, except for the 3-family houses. Below this downward spike will be 

further analysed, this time to check if the amount of sales per control and treatment group 

changes at the same point.          

 In figure 23 it can be seen that Sandy does not affect the amount of sales in any of the 

groups. There does seem to be a decrease in the amount of real estate sold in the quarter of the 

introduction of the flood risk map. Uncertainty on the housing market because of the new 

flood risk map might have caused this effect. 

 

 

 

 

 

 

 



 
 61 

6. Discussion and conclusion 

The research question of this thesis was the following:  

“To what extent did Hurricane Sandy and the introduction of FEMA’s Preliminary Flood 

Insurance Rate Map (FIRM) impact New York City’s housing prices?” 

Based on studies on flood risk and literature on risk perception it was hypothesized that 

providing more information on flood risk to the market (by means of Sandy and the FIRM) 

would increase its risk perception, which would in turn decrease the average housing prices 

(Daniel et al. 2008; Pope, 2008; Votsis and Perrel, 2016; Ortega and Taspinar, 2016). Also, 

from risk perception theory we learned that past experience of flood hazard increases risk 

perception in the future (Wachinger et al. 2012). Since the different boroughs were hit to a 

different extent by Sandy, it was therefore hypothesized that boroughs that were hit harder by 

Sandy would also see a higher price decrease after the release of the updated risk map. The 

results of this thesis were used to test these hypotheses and answer the research question. 

Effects hurricane Sandy 

By doing a difference-in-differences analysis we were able to estimate the effect of Sandy on 

the two different treatment groups. The dependent variable in this analysis was the natural log 

of housing prices. The first group was defined as all the real estate transactions of property 

that was in a 0% flood risk zone before the map update of 2015 and in a 1% risk zone 

afterwards. The second treatment group had 1% before this map update and 1% after this map 

update. Through defining the treatment groups in this way, the effects of Sandy and the 

effects of the flood risk map update could be controlled for each other. This thesis finds that 

treatment group 1 was significantly affected by hurricane Sandy in two of the four analysed 

boroughs.  This effect was found for Brooklyn and Queens and ranged between -6.5 and -17.2 

logistic points. In these two boroughs Sandy’s effect was also found to be robust. 

 For treatment group 2 the effect of hurricane Sandy was found to be significant and 

robust for Staten Island and Queens, with effects ranging from -8.7 and -16.8 logistic points. 

Brooklyn also showed significant effects between -9.7 and -13.8 logistic points, but these 

effects only continued to be significant in four of the eight robustness check models. 

 Interesting to note is that there is almost no difference in Sandy’s average effects 
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between the two treatment groups
8
. We would have suspected a difference between the two 

groups if the total price decrease was caused by increased risk perception alone. Treatment 

group 2 already knew it was officially in a flood risk zone before Hurricane Sandy hit New 

York City. Treatment group 1 was still officially in a 0% flood risk zone when Sandy hit. I 

claim that it would therefore be logical that the risk perception in treatment group 1 increased 

to a bigger extent than that of treatment group 2 due to a surprise effect. Since there does not 

seem to be a difference between the effect of hurricane Sandy on treatment group 1 and 2, this 

strengthens the idea that the price decrease was largely due to the damage done not through an 

increase in risk perception. If we look at the quarterly interaction effects of Staten Island this 

idea seems to be confirmed, as the significant effect only lasts a few quarters after Sandy. 

However, if we look at Brooklyn and Queens Sandy also affects housing prices in the 

treatment zones in the long run. Therefore the effect of Sandy is most likely a mix of direct 

damage (short term) and increased risk perception (long term).    

    

Effects new flood risk map 

It was hypothesized that the introduction of a new flood risk map would provide the housing 

market with more information, which would then lead to lower housing prices for property 

that was not officially in a flood risk zone before (treatment group 1). Secondly, the map 

update might have had a reminding effect on treatment group 2. No significant treatment 

effects were found for the flood risk map update in any of the boroughs however. The DID-

regression results at first showed a significant effect for the map update on treatment group 1 

in Brooklyn. This effect disappeared however when city block fixed effects were controlled 

for. Also the robustness checks showed no significant effect for the flood risk map update.

 Both Hurricane Sandy and the flood risk map update are argued to affect housing 

prices via the same mechanism, namely by providing the housing market with better flood 

risk information. Why is it then that the flood risk map does not show this hypothesized 

effect? This could be due to multiple reasons. The most plausible reason is that Hurricane 

Sandy already “updated” everyone’s risk perception in 2012. Therefore, when the flood risk 

map was updated in 2015, nobody was surprised by it and it thus did not provide the market 

with new flood risk information or influence housing prices. A second possibility is that the 

flood risk map had no effect, because it did not increase flood risk insurance premiums yet. 

                                                           
8
 Sandy’s average effect on treatment group 1 is -12.87 logistic points (-308.8 / 24). And Sandy’s average effect 

on treatment group 2 is -12.53 logistic points (-363.3 / 29).  
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We could expect an anticipation effect for these higher premiums, but the results from the 

DID analysis do not support this expectation as no negative significant effect is found. A third 

possibility is based on the notion of information asymmetry, the situation in which the seller 

of the property has more information on flood risk than the buyer. Since the letter about the 

flood risk map update was only sent to the homeowners and these same owners are not 

obliged to inform potential buyers about this new information, it can be argued that the 

homeowners had more and better information on the flood risk of their property. The housing 

prices thus did not go down after the flood risk map update, because its information was not 

provided well enough to potential buyers on the housing market. Such an interpretation would 

be in line with the findings of Chiver and Flores (2002), who found that only 8% of potential 

homeowners were aware of the flood risk in the area before buying property. 

The question of causality 

This thesis found a significant statistical effect of hurricane Sandy on both the treatment 

groups. Statistical significance is however based on rather arbitrary significance levels. The 

question of causality is more a question of research design than of statistics. This thesis 

implemented two methods to check for causality, on top of the DID analysis. First, we 

checked whether the effect might have been caused by something else that started before 

hurricane Sandy hit New York City. We did so by testing whether the year before Sandy 

already had a significant negative effect. If this was the case, than the effect on housing prices 

was most likely not (only) caused by the hurricane. For Staten Island this placebo effect was 

not significant. For Brooklyn the placebo effect was significant, but disappeared when 

controlling for group specific trends. Also for Queens the placebo effect was significant, but 

disappeared in one of the two models when controlling for group specific trends. This 

evidence seems to support that Sandy’s treatment effect did not start before Sandy. The 

remaining question is then, whether or not the effect started after Sandy. To check this we ran 

a DID-regression with variables that measured the interaction between the treatment groups 

and the quarter dummies. We found that before hurricane Sandy none of these interaction 

effects were significant for any of the boroughs. After Sandy however, the interaction effects 

became significant for Queens, Staten Island and Brooklyn. For treatment group 1 this 

quarterly interaction effect is significant and negative eleven out of twelve quarters for 

Brooklyn, seven out of twelve quarters for Queens and two out of twelve for Staten Island. 

For treatment group 2 we found two out of twelve interactions to be significant for Brooklyn 

and Queens and three out of twelve for Staten Island. Although the evidence for the treatment 
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group 2 is not very convincing, that of treatment group 1 definitely is.   

 Earlier we saw that the price movements in the New York City housing market are 

rather volatile. Because of this the common trend assumption did not seem to hold for all 

groups of all boroughs. Since we controlled for thousands of city block fixed effects and other 

control variables, this assumption can be partly relaxed. This combined with the fact that no 

significant placebo effects were found and the fact that quarterly interaction effects were only 

negative and significant after Sandy make it very plausible that Sandy’s effect is indeed 

causal.  

Policy recommendations 

Based on the findings of this thesis I have two policy recommendations. They both are related 

to the food risk map update as a policy tool. One of the reasons why the map update shows no 

significant effect, is information asymmetry. When governments publish such a new flood 

risk map, I would therefore recommend to actively communicate it towards buyers as well. 

For instance, it could be made mandatory to inform buyers on the new flood risk zone, 

because this was found to be an effective strategy in earlier studies (Pope, 2008). The second 

recommendation regards the timing of releasing a new map. The map does not seem to have 

an impact, because it was released just after a hurricane. If possible, governments should 

therefore try to publish such maps before or long after a flood event. Of course this is not 

possible most of the times, therefore the words used in the government communication should 

remind people of the just passed flood. Other studies found that this increased the risk 

perception (Wachinger et al., 2012).  

Limitations and future research 

This thesis looked at the effect of a flood risk map update in January 2015. The real-estate 

transaction data was only available until December of that same year. Since the NYC housing 

market is very volatile and the effect might take some time to show, future research should 

include the years after 2015 in their analysis
9
.       

 The outcomes of this thesis might be biased because of omitted variables. Although a 

lot of time-invariant effects have been controlled for by adding city block fixed effects, this 

approach is not waterproof. One of the factors that most likely influences flood risk 

perception is the proximity to water. Also, being close to the water comes with the benefit of a 

                                                           
9
 Unfortunately, the real estate sales data of 2016 has not been turned into geospatial data yet. Therefore I could 

not use it for this thesis. 
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better view, which also influences housing prices. It could be argued that proximity to water is 

a time-invariant effect. This would of course be true for a perfect panel data set, since water 

and houses stay in the same place. In this thesis we use repeated cross-sections however. For 

this reason the average proximity to water fluctuates a bit over the years. Also, by design the 

control group for this thesis is further away from the water than the treatment group. I argue 

that the outcomes of this thesis would have been more precise if the proximity to the 

waterfront would have been controlled for. Therefore future research should include 

proximity to big water bodies in meters as a control variable.     

 Next to proximity to water, there are other variables that should ideally be controlled 

for in hedonic regressions, such as number of rooms in a sold building, total space in square 

meters and the proximity to schools, malls and parks. Including these control variables would 

have made the estimated treatment effects in this thesis more precise. Future research should 

therefore also take these control variables into consideration.     

 From theory we learned that the mechanisms behind risk perception are highly 

subjective (Wachinger et al. 2012). This thesis could not control for individual characteristics 

however, because it did not have information on the buyers and sellers of property. To be able 

to further uncover the causal mechanisms behind risk perception, future research should 

therefore control for individual characteristics of buyers and sellers of property situated in or 

close to flood risk zones.          

 In the robustness checks of this thesis, using a subset of core observations greatly 

influenced the treatment. This could be a sign that the causal mechanisms at play work 

differently for the different layers in the housing market. For future research it would 

therefore be beneficial to also include quantile regressions. Quantile regressions are 

regressions that check whether effects differ for different parts of the distribution (Angrist and 

Pischke, 2009: 281).           

 The most important limitation of this thesis however is the fact that it does not control 

for damage done by Sandy. Ortega and Taspinar (2016) found that Sandy also decreased 

prices for undamaged property. This thesis did not control for damage done by Sandy 

however. Therefore is it unable to give a clear cut answer on what part of the price decrease 

by Sandy was caused by increased risk perception and what was caused by direct damage. 

Future research should therefore include the extent to which a sold building was damaged by 

Sandy
10

.  

                                                           
10

 FEMA made GIS data on damage assessments available on: 
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Data cleaning process 

As discussed earlier, for this research different kinds of geospatial datasets are merged with 

two different digital flood risk maps. In this section the data cleaning process will be 

elaborated. Firstly the two different maps and the NYC real estate geospatial data points had 

to be converted to the same Coordinate Reference Systems (CRS). This was done in R-studio, 

the Integrated Development Environment (IDE) of the statistical programming language R
11

. 

As the different data points did not use the same CRS they did not overlap, which made it 

impossible to do the required data preparation, since the Point-in-Polygon analysis to 

determine treatment groups is based on the concept of overlap. To solve this problem, all 

datasets were converted in R-studio to the NAD83 Coordinate Reference System. 

Transforming the CRS of the different datasets to NAD83 was done with the “rgeos”, “rgdal” 

and “sp
12

” packages. These packages are widely used for importing, exporting, cleaning, 

transforming, analysing and plotting geospatial data in R. After this procedure the data did 

overlap and could thus be analysed in QGIS, an open source software package for geospatial 

data. When the University of New York created the geospatial dataset from the “normal” real 

estate transaction dataset of the NYC Department of Finance, they labelled each usable 

observation with the letter “Y” and unusable observations with the letter “N”. Most of the 

unusable observations were deemed unusable because their selling price was 0 or extremely 

close to zero. For this research all the observations labelled as unusable were deleted from the 

dataset. For dealing with (price) outliers Ortega and Pensinar (2016) used the rather arbitrary 

cut-off points of $10.000 at the lower end and $15.000.000 and the higher end. For deleting 

outliers in this dataset the $10.000 lower cut-off point is also used, but the higher end cut-off 

point is replaced by the more commonly used “Z-score > 3” approach. The Z-score is a value 

that measures the deviation of an observed value from its expected value. It is measured as the 

observed value minus the expected value (the mean) divided by the standard deviation of that 

variable: 

 

                                                           
11

 RStudio Team (2015),’RStudio: Integrated Development for R’, Boston, MA: RStudio, on: 

http://www.rstudio.com/ 
12

 Pebesma, E.J. and R.S. Bivand (2005),’Classes and methods for spatial data in R’, R News 5 (2), on: 
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The z-score is a standardised measure, which means that a z-score always has the same 

meaning, disregarding the type of data. A Z-score of ±3 means that that observation lies at 

least three standard deviations from the mean. Depending on the distribution of the data, such 

an observation is rare. If the distribution is normal, the chance of finding such an observation 

is 0.135% (Field, Miles and Field, 2012: 934). Knowing this, the z-score can be used to find 

rare observations or “outliers”. Therefore for every observation’s selling price the z-score was 

calculated. Then all the observations which price had a z-score of 3 or above where deleted. 

This approach is more sensible, because it uses the idea of a standard distribution to get rid of 

outliers, rather than relying on an arbitrary cut-off point. With this approach the higher cut-off 

point was established at approximately at a real estate price higher than $6 million instead of 

the $15 million as used by Ortega and Pensinar (2016). When using their approach just over 

1100 observations would have been deleted. While when the z-score approach was used it 

deleted almost 5900 outliers. Using no observations with a price lower than $10.000 drops 

another 4732 observations.          

 When the data was visually assessed a mistake in the real estate transaction dataset 

was found. Sales in the first couple of weeks of 2015 had the label “2015”, but their sale date 

labelled as if the transaction had happened in 2016. Since the data of 2016 is not published 

until June or July, it was assumed that the creators of the dataset made a typing mistaking 

when constructing this dataset. Therefore 365 days where subtracted from those corrupted 

sale dates to make them fall back in line. The visualization of the displaced 2015 sales can be 
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Figure 11. Displaced transaction data 

seen in the scatterplot below. After adjusting for this error in the data the observations 

coloured blue in the scatterplot fell exactly in the gap showing at the beginning of 2015. 

 In line with hedonic flood risk studies in the past (Ortega and Taspinar, 2016: 5; 

Votsis and Perris, 2016) all commercial buildings have been deleted from the dataset. Mainly, 

because of the enormous price differences and the fact that commercial buildings have 

different price trends and different flood insurance regulation. This research thus only uses 

family dwellings (one, two, or three-family) and apartments (coops or condos). Since all these 

observations are assumed to have roughly the same trends and fall under the same mandatory 

flood insurance rules, using only these observations in the analysis will make them more 

comparable. Before deleting the commercial units the dataset consisted of 865,368 unique 

observations. After dropping the commercial real estate from the dataset 740,022 observations 

remained.            

 Since the dependent variable in the DID regression is the (natural log of the) price for 

which real estate is sold, it is important to take price inflation into consideration. The real 

estate data ranges from 2003 to 2015. A 2015 dollar theoretically was worth $1.29 in 2003. 

This is a big difference and to be able to compare sale prices the prices of different years were 

corrected for inflation, so that the price would be in 2015 dollars. The multiplier used for this 
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inflation correct was provided in the code book of the NYC real estate transaction dataset 

from the New York University.        

 Since the data handling for this thesis was relatively labour intensive and humans 

make mistakes, the data and code were checked again manually to look for any errors. Firstly, 

after all the point-in-polygon analyses it was checked visually whether all the data was 

located in the right zone, whether it had the correct time label and finally if treatment areas 

did not overlap. 

 

 

Table 1. Multipliers used for inflation corrections 
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Tables robustness checks all boroughs 

 

Table 9. Robustness checks Staten Island, first models. Model 1, 2, 3, 4, 5. More robustness check models follow in table 10. 

Model 1 is the preferred model, without robustness check. Model 2 is a subset for the years 2009-2015. Model 3 uses the 

date of the letter for the post dummy instead of the introduction of the new preliminary FIRM. Model 4 uses only the 70% 

core observations of the dataset. Model 5 uses a larger control group than just the 500 meter buffer. All observations of this 

bigger control group are in a 0% flood risk zone on the old flood risk map as well as on the new flood risk map.  
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Table 10. Robustness checks Staten Island. Models 6, 7, 8 and 9. Model 6 includes a placebo effect for the year before Sandy. 

Model 7 includes group specific trends. Model 8 includes both the placebo effect and group specific trends. Model 9 includes 

both the placebo effect and group specific trends, while also controlling for age and building type. 
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Table 11. Robustness checks Brooklyn, first models. Model 1, 2, 3, 4, 5. More robustness check models follow in table 11. 

Model 1 is the preferred model, without robustness check. Model 2 is a subset for the years 2009-2015. Model 3 uses the 

date of the letter for the post dummy instead of the introduction of the new preliminary FIRM. Model 4 uses only the 70% 

core observations of the dataset. Model 5 uses a larger control group than just the 500 meter buffer. All observations of this 

bigger control group are in a 0% flood risk zone on the old flood risk map as well as on the new flood risk map. 
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Table 12. Robustness checks Brooklyn. Models 6, 7, 8 and 9. Model 6 includes a placebo effect for the year before Sandy. 

Model 7 includes group specific trends. Model 8 includes both the placebo effect and group specific trends. Model 9 includes 

both the placebo effect and group specific trends, while also controlling for age and building type. 
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Table 13. Robustness checks Queens, first models. Model 1, 2, 3, 4, 5. More robustness check models follow in table 14. 
Model 1 is the preferred model, without robustness check. Model 2 is a subset for the years 2009-2015. Model 3 uses the 
date of the letter for the post dummy instead of the introduction of the new preliminary FIRM. Model 4 uses only the 70% 
core observations of the dataset. Model 5 uses a larger control group than just the 500 meter buffer. All observations of this 
bigger control group are in a 0% flood risk zone on the old flood risk map as well as on the new flood risk map. 
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Table 14. Robustness checks Queens. Models 6, 7, 8 and 9. Model 6 includes a placebo effect for the year before Sandy. 

Model 7 includes group specific trends. Model 8 includes both the placebo effect and group specific trends. Model 9 includes 

both the placebo effect and group specific trends, while also controlling for age and building type. 
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Table 15. Robustness checks Manhattan, first models. Model 1, 2, 3, 4, 5. More robustness check models follow in table 16. 

Model 1 is the preferred model, without robustness check. Model 2 is a subset for the years 2009-2015. Model 3 uses the 

date of the letter for the post dummy instead of the introduction of the new preliminary FIRM. Model 4 uses only the 70% 

core observations of the dataset. Model 5 uses a larger control group than just the 500 meter buffer. All observations of this 

bigger control group are in a 0% flood risk zone on the old flood risk map as well as on the new flood risk map. 
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Table 16. Robustness checks Manhattan. Models 6, 7, 8 and 9. Model 6 includes a placebo effect for the year before Sandy. 

Model 7 includes group specific trends. Model 8 includes both the placebo effect and group specific trends. Model 9 includes 

both the placebo effect and group specific trends, while also controlling for age and building type. 

 


