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Abstract

Complex cellular processes can be characterised using single
particle tracking techniques (SPT). ‘Labels’ such as metal

nanoparticles are introduced into cells and tracked to reveal
molecular trajectories. Many current techniques are based on
fluorescence microscopy, and have nanometre-resolution. To

accurately probe cellular processes, a technique must also have
long-term 3D in-vivo observing capability with a minimal toxic

effect. Gold nanorods (GNRs) in two-photon microscopy is a
promising technique. GNRs are non-toxic, easily functionalisable,

and exhibit a bright two-photon fluorescence. However, the
theoretical positional accuracy for this technique is not yet known.

Furthermore, the detailed trajectory data present statistical
challenges. We have addressed these issues here numerically,

using simulated image data. We found the accuracy to be between
5.2 nm and 8.9 nm for stationary GNRS, dependent on the

separation between slices. We also found that diffusive movement
of a nanorod lowers the accuracy, at worst case to 31.8 nm. We
have also investigated optimising the extraction of behaviour

properties from MSD plots, and have used Welsh’s test to detect
transitions. GNRs in two-photon microscopy has been shown to

be a very accurate technique, and its trajectory data can yield
accurate behavioural information. The fit of the PSF may be
improved, but the techniques already compares well against

others.
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Chapter 1
Introduction

Complex cellular processes can be characterised by tracking individual
molecular dynamics using single particle tracking techniques. Many cur-
rent techniques are based on fluorescence microscopy, and are able to by-
pass diffraction-limited positional accuracy, in some cases under 10 nm,
and often in 3D [1]. They involve tracking ’label’ particles that attach to
target molecules and emit optical signals upon excitation. Widely used
and studied labels include fluorophores (fluorescent proteins/dyes), quan-
tum dots and metal nanoparticles. The positions of labels smaller than the
diffraction limit (. 250 nm) are ’super-resolved’ by fitting the diffraction-
limited spots in images with theoretical models, and extracting their cen-
tres. In order to precisely study long-term cellular processes the require-
ment are: high positional accuracy, high temporal accuracy, label stability
(how long it lasts before bleaching/blinking), and label inertness (the lack
of a steric or toxic effect on its environment). A common limitation is the
inability to track long-term due to photobleaching and blinking. Another
common limitation is time-resolution, restricting observation to slow mov-
ing particles. Tracking in 3D can also present challenges and limitations,
for example in the technique reported by Levi et al, which involved track-
ing fluorescent polystyrene beads with two-photon microscopy [2]. They
reported a positional accuracy of 20 nm, but were limited to particle veloc-
ity below 3 m µs−1 in the z-direction.

Two-photon scanning microscopy with gold nanorods (GNRs) as la-
bels is a promising technique that enables in vivo long-term 3D nanome-
tre resolution tracking. Van der Broek et al [3] found that isolated GNRs
can be localized with a resolution of 4 nm in the xy-plane and 8 nm in the
z-direction. Comparable accuracy of 20 nm has been achieved with fluo-
rophores [4], and 10 nm with quantum dots [5]. However, both these labels
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8 Introduction

are subject to photobleaching, which prevents trajectories lasting longer
than a few minutes, whilst individual GNRs have been tracked in cells in
3D for over 30 minutes [3]. Quantum dots are also subject to blinking, and
both fluorophores and quantum dots present toxicity and fuctionalisation
challenges - whilst GNRs are easily functionalised and are non-toxic.

The advantages of this technique, however, do come with challenges.
For example the accuracy and limitations of the 3D ’super-resolution’ fit-
ting technique are not fully understood. Additionally, we must make
sense of multiple long trajectories in a single FOV in which particles may
change behaviour. In this thesis, we work toward a better understanding
of these challenges and limitations by studying simulations.

First, we address the positional accuracy. Whilst a theoretical estimate
of the positional accuracy in the case of 2D super-resolution single-particle
tracking is known [6], we are not aware of any for the 3D case. Our hy-
pothesis is that the xy-plane positional accuracy will be higher in the 3D
case, due to the larger number of photons collected (see 1.3 for the full ar-
gument). In simulations we found that indeed the accuracy is higher in
the 3D case.

Next, we addressed trajectory analysis. MSD analysis of GNR trajec-
tories have revealed four types of motion: immobile, ballistic (e.g. ac-
tive transport by motor proteins), confined diffusion (e.g within vesicles),
and free diffusion (e.g in the cytoplasm) [3]. To differentiate and quantify
these behaviours, trajectories are typically analysed using mean-square-
displacement (MSD) plots: the shape of the plots are distinctively different
for each behaviour, and desired properties can be extracted by fitting the
plots: the diffusion coefficient D, the velocity v and the positional accuracy
σp. The accuracy with which the MSD plots can be used to calculate these
properties depends upon several factors including the number of posi-
tional measurements, the positional accuracy and the number of points in
the MSD plots itself, as outlined in [7] and [8]. This thesis works to estab-
lish how the accuracy is affected by controllable factors in measurement
and analysis.

Finally, we addressed the effect of diffusive movement on positional
accuracy. In the scanning microscope, 3D images (stacks) are created by
sequentially acquiring 2D images (slices) over a range in the z-direction.
It is not known to what degree the positional accuracy is affected by the
movement of the particle between the acquisition of the slices in a stack.
In simulations we found that diffusive movement lowered the positional
accuracy considerably, shown in section 2.5.

8
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1.1 Two-photon fluorescence scanning microscopy 9

1.1 Two-photon fluorescence scanning microscopy

In our two-photon scanning microscope, a near-infrared femtosecond-pulsed
laser is split by a diffractive optical element (DOE) into a 10x10 array of
beams. The array scans across the entire sample plane (x,y), exciting the
fluorophores. The subsequent luminescence from the sample is captured
by a CCD camera positioned back along the optical track, and a 3D im-
age is built by scanning multiple slices in the z-direction. A detailed de-
scription of the set-up has been given in [3]. In one-photon fluorescence
microscopy, the photons used to excite the label particles interact with
and damage the biological samples, and produce an out-of focus back-
scattering that strongly impacts on the signal/noise ratio [9]. Two-photon
techniques mitigate these problems by using lower energy near-infrared
photons. As they interact only weakly with the biological matter, they
produce only weak back-scattering, improving the signal/noise ratio, and
damaging the sample less.

Two-photon fluorescence microscopy typically involves using label par-
ticles with an excitation energy approximately double the energy of the
laser photons. Only when a high flux is provided, there is a (low) possi-
bility that the label particles in the FOV will absorb two photons simulta-
neously. The excitation of small metal particles such as GNRs is different
however: in both one-photon and two-photon cases, the incoming energy
of the photon must be close to the energy of the plasmon resonance, as
described in the next section. The advantage of two-photon fluorescence,
is that the probability of the (simultaneous) absorption, depends not lin-
early, but quadratically on the excitation intensity [9]. The intensity of the
emitted signal corresponds to the amount of absorption, so this too de-
pends quadratically on the excitation intensity. Thus, by focusing a very
short pulsed laser on the sample, the chance of simultaneous absorption
can be maximised without using a high power that would damage the
sample. The quadratic dependence on the intensity and tight focusing of
the laser result in the luminescence being confined to the focal spot. This,
together with the lower wavelength of light used, results in a much higher
signal/noise ratio and decreased level of damage to the sample compared
with single-photon microscopy.

1.2 Gold nanorods

Gold nanorods exhibit a strong plasmon-enhanced two-photon lumines-
cence, can be easily functionalized, and have been shown to be nontoxic,
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10 Introduction

making them a good label for in vivo two-photon fluorescence microscopy
[3]. Plasmons are quasiparticles: they are the quantum associated with col-
lective oscillations of the free electron gas with respect to the fixed ion lat-
tice in the metal. Due to their elongated shape, gold nanorods exhibit two
surface-confined plasmons, in the longitudinal and latitudinal directions.
The two-photon luminescence is due to the plasmon excitation and relax-
ation. It is strongly enhanced if the wavelength of the incident photons is
such that they couple with the longitudinal surface plasmon. [10].

Figure 1.1: Surface Plasmon. In this image the electron density in the particle is
polarized to one surface and then the other: a surface plasmon is formed which
oscillates in resonance with the incoming light. The incident photons on gold
nanorods couple to the same plasmon, boosting the luminescence significantly.
Image from Eustis and El-Sayed [11].

Since the aspect ratio of the gold nanorods determines the wavelength
of the surface plasmons, their size can be chosen so that the wavelength
suits one’s requirements. In our case, this means we are able to use near
infra-red excitation photons - which are minimally absorbed by water and
biological samples [10]. Using gold nano rods in the two-photon scan-
ning microscope allows not only 3D positioning, but also a vast increase
in signal strength compared with other labels, for example 58 times that of
Rhodamine [12].

1.3 Positional accuracy

The positional accuracy of an imaging system is the minimal distance at
which separate structural details can be distinguished. The theoretical
best accuracy for any conventional optical microscope, also known as the
diffraction limit, was first approximated by Abbe [13]. He approximated
the minimal distance possible d to be about half of the wavelength λ of

10
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1.3 Positional accuracy 11

the light used, but dependent also on the numerical aperture of the micro-
scope, NA = n sin θ, which is a measure of the range of angles θ it accepts,
and the refractive index n of the medium through which the light travels.

d =
λ

2NA
(1.1)

As light passes through the specimen, it diffracts and spreads out radi-
ally. This, together with the interfering nature of waves results in a pattern
in the focal plane due to a point source called the Airy disk: a central spot
surrounded by concentric diffraction rings. The accuracy of a microscope
then relies on distinguishing between separate Airy disks, which is lim-
ited by their size - which is precisely d given above. Typical microscopes
with NA ∼ 1 and λ ∼ 500 nm are then limited in accuracy to σp ∼ 250 nm.
However there are now many ’super-resolution’ techniques which are able
to bypass the diffraction limit.

The position of an object smaller than the diffraction limit can be found
in super-resolution imaging: the centre of the diffraction-limited spot it
produces in the image is extracted by fitting its distribution with a known
theoretical model [14]. In our set-up, the two-photon florescence spot of a
single GNR is approximately Gaussian shaped [14]. We are therefore able
to super-resolve its position by fitting a 3-dimensional Gaussian intensity
profile to the spot observed in the fluorescence image:

I(x, y, z, t) = A0 + A exp

[
− (x(t)− xc)2

2σ2
x

− (y(t)− yc)2

2σ2
y

− (z(t)− zc)2

2σ2
z

]
(1.2)

An initial guess taken directly from the image is given for the param-
eters: the amplitude of the peak A, the offset (average background value)
A0, the width of the peak in each direction σx, σy, σz, and the centre xc, yc
and zc. The fit is performed by the method of least-squares fit.

Each photon collected gives a measure of the particle’s position, with
an error given by the width of the PSF of the microscope. With no other
information, the best estimate of the position of the GNR would be simply
the mean of these locations. The theoretical positional accuracy of this
fitting method is not known. However, an estimate has been derived by
Thompson et al. [6] for the similar case of fitting a 2D Gaussian, also by
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12 Introduction

the method of least squares:

σp =

√
σ2

xy

Np
+

a2

12Np
+

8πσ4
xyb2

a2N2
p

(1.3)

σxy is the standard deviation of the point spread function (PSF), Np is
the total amount of collected photons in each captured image, a is the pixel
size and b is the standard deviation of the background noise (in photons).
The first term in equation 1.3 corresponds to the inherent statistical error
due to this averaging. The second term corresponds to pixelation: smaller
pixels enable more precise locations to be given for where the photons
hit the detector. The third term corresponds to background noise and de-
pends on the signal-to-noise ratio. Our hypothesis is that the the positional
accuracy in the xy-plane in 3D should be better than in the case of a sin-
gle 2D image, as each additional slice in the 3D stack increases the total
number of collected photons. If all the slices in a stack were projected into
one image, that image could be fit as if it were 2D, and though blurred, it
would offer an increase in the number of photons compared with a single
2D slice. This will be addressed in section 2.3.

The positional accuracy relies on the 3D Gaussian being a good ap-
proximation to the PSF. It has been shown that the dipole PSF is actu-
ally a better description for GNRs, however the Gaussian profile is robust,
computationally inexpensive and has been shown to provide an accuracy
better than 5 nm [14]. However, fitting a 3D Gaussian presents a novel
problem: due to the finite time between slice acquisitions, the PSF will be
deformed if the movement of the particle is comparable with the speed of
the slice acquisition. This would cause the best fit of the Gaussian to re-
turn incorrect centre positions. The case of diffusive movement would be
particularly troublesome, as the PSF may not be simply slanted as in the
ballistic case, but totally deformed. As it is not known to what extent the
positional accuracy would be affected, this is addressed in section 2.5.

1.4 Trajectory analysis

Tracked particles typically display one or a combination of the following
behaviours: freely diffusive motion, ballistic motion, or confined diffusive
motion. In cells, for example, these behaviours could correspond to, re-
spectively, free Brownian movement in the cytoplasm; active transport of
a motor protein or cellular organelle; or confinement within an organelle,

12
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1.4 Trajectory analysis 13

for example a vesicle. These different modes of mobility can be quantita-
tively distinguished by the mean square displacement (MSD) of the parti-
cle, as a function of time delay τ.

MSD(τ) ≡ 〈(x(t)− x(t + τ))2〉 (1.4)

For a trajectory of total time length T ≥ τ, the MSD is the mean of
the square displacement over all such periods of duration τ within the
trajectory, When we calculate the MSD over a range of time delays and plot
MSD(τ) against τ, the different modes of mobility result in distinctively
different plots.

Figure 1.2: Illustration of mean-square-displacement calculation and plot. Left:
A trajectory of points separated each by 1 s on which the MSD is to be calculated
for three values of τ, from 1 s to 3 s. MSD(τ) is the average of the square length of
the distance between points separated in time by τ. Right: A plot with a line of
best fit and error bars. The larger τ, the fewer values averaged and so the more
uncertainty.

A theoretical derivation of the MSD for a purely diffusing particle has
been long known [15], in terms of the diffusion coefficient D, a measure of
how fast a species of particle diffuses into a given environment. In purely
free diffusion, a particle explores its environment as a ’random walk’ -
steps are taken of variable lengths in random directions, which results in
the displacement from the origin to grow in proportion to the square-root
of the number of steps, so the MSD grows linearly. When a particle is
undergoing ballistic motion - that is, its velocity is constant - its displace-
ment from a given location grows linearly with time, and so the MSD will
grow quadratically. In measured trajectories, the positional accuracy of the
measurement also affects the MSD plot by introducing an offset equal to
its square. This can be understood by considering a plot of measurements
of a fixed particle. Though the particle is fixed, the measurements of its lo-
cation will form a Gaussian of width σp, indistinguishable from diffusive
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14 Introduction

motion confined within a small region of size σp. These three factors can
be expressed in a single polynomial equation [7]:

MSD(τ) = 2dσ2
p + 2dDτ+ v2τ2 (1.5)

The MSD is given in terms of the dimensions in the system d, the diffu-
sion coefficient D, the ballistic velocity v, the positional accuracy of mea-
surement σp, and the length of time delays τ over which it is calculated. By
fitting this equation to an MSD plot for a given trajectory, we can acquire
the value of these parameters of motion, and so quantitatively distinguish
the the mode of mobility. If one of the parameters is already known, then
that parameter can be fixed with the aim to improve the accuracy of the
fit of the other parameters. The effect of fixing parameters is explored in
section 2.4.2.

The number of points used in an MSD plot strongly affects the accuracy
of the fit. Each point in an MSD plot is itself a statistical measure on a
sample, so its accuracy is dependent on the size of that sample. Qian et al
[7] have derived an estimated upper bound to the expected relative error
in D (defined as δD = (DDetected − DActual)/DDetected), as a function of the
total number of positional measurements N, and the number of points in
the MSD plot n:

δDmax = ±
√

2
3

√
n

N − n
(1.6)

With typical values of N = 150 and n = 15 and an extracted value
of D = 0.5 µm2 s−1, the formula predicts ≈ 27% relative error, and so
our measurement is given as D = 0.5± 0.1 µm2 s−1. Clearly, for a given
value of N, this measure is minimised by taking the smallest value of n -
suggesting that our MSD plots would give the most reliable estimates of D
when using only 2 points. However, this estimate is purely statistical, and
is based on the assumption of perfect positional accuracy. It may be a good
estimate in cases of high positional accuracy, or with very large values of
D, or a combination of both, but we must be sure first that we are in that
region to make the assumption. We address this in section 2.4.1.

Michalet has extended the work of Qian et al, by taking into considera-
tion the presence of positional accuracy in measurement, and has derived
a theoretical expression for an optimal number of points to use in an MSD
plot to improve the fit [8]. When τ increases, the stochasticity of the MSD
dominates, preventing accurate calculation of the MSD and thus fitting -

14
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1.4 Trajectory analysis 15

on the other hand, the variation of the first few points on the MSD plot is
dominated by the positional accuracy. Mitchalet defines the reduced locali-
sation error x as the critical parameter to assess to determine the optimum
number of MSD points to use:

x =
σ2

p

D∆t
(1.7)

It is given in terms of the positional accuracy σp, the diffusion coeffi-
cient D and ∆t, the time between position measurements. He has assessed
the relative error resulting in fitting the MSD curves over a range of val-
ues of x. For experimental conditions considered here, ∆t = 1, σp < 10 nm
and 0.01 ≤ D ≤ 1 µm2 s−1, so 0.0001 ≤ x ≤ 0.1. Mitchalet’s theory then
predicts that using n = 2 MSD points gives the most accurate extracted
diffusion coefficient in all cases.

Figure 1.3: Relative error in fitting MSD plots. Plots from Mitchalet’s paper [8]
showing the numerically determined relative error in fitting MSD plots of purely
diffusive 2D trajectories, for a range of values of the reduced localisation error x.
The parameters used by Mitchalet are a = 4σ2

p and b = 4D (a) The relative error
in fitting the intercept a, corresponding to the positional accuracy. (b) The relative
error in fitting the slope b, corresponding to the diffusion coefficient. It is shown
that the slope is far more sensitive, so choosing the optimal number of points is
more important for it accurately extracting the diffusion coefficient

When x << 1, for example corresponding to high positional accuracy
and/or fast diffusive movement, then the best estimates come from us-
ing only the first two points of the MSD curve (excluding the (0,0) point).
When x >> 1, for example with low positional accuracy and/or slow dif-
fusive movement, the standard deviation of the first few MSD points are
large, so higher numbers of MSD points must be used for reliable extracted
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16 Introduction

parameters [8]. In general, an optimal number of points noptimal can be
found that balances the two effects at each extreme. Mitchalet found nu-
merically an approximate fit for the optimal number of points, valid over
trajectories of length 10 to 1000 steps [16]∗:

noptimal = 2 + 2.3x0.52 (1.8)

As our experimental conditions and set-up may be different to those of
Mitchalet et al., the predictions for noptimal have been tested in section 2.3.

The accuracy of a point scales with the square root of the number of
squared displacements that contribute to the point. This means that MSD
points calculated at large τ should be weighted less. To do this, we would
need to weight each point by the inverse of its variation. However, as there
is not a theoretical expression for the variance, it should be estimated from
data. Or the weighting could be approximated simply by

√
N, where N

is the size of the sample over which the point is calculated. However,
Mitchalet et al found that there is an optimum number of MSD points to
use, in which case weighted and unweighted fits give similar accuracy [8].

Finally, in tracking particles, we are not only interested in the accuracy
of estimating behavioural parameters - but also in how those parameters
change in time, indicating changes in behaviour. For example, a particle
freely diffusing in a cell, that attaches to a protein and is transported to
a vesicle will display clear periods of differing behaviour. The behaviour
change could also indicate a transient event, e.g. the particle picked up
by the motor protein is immediately dropped again. In order to detect
such behaviour changes we can plot the parameters we extract from the
MSD plots calculated over rolling windows each of length Nw - the choice
of which affects the accuracy of parameter measurement by determining
both the maximum time period τ and N, the number of position measure-
ments. We can then use statistical methods to quantitatively assess if and
when behaviour changes have occurred. In section 2.4, we report on the
success of using Welsh’s test to do this.

∗This is the revised version of the formula published in an erratum.

16
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Chapter 2
Results

2.1 Simulating GNRs

3D stacked images characterising the 2-photon luminescence of single GNRs
were captured using our microscope. Two samples were imaged: GNRs
immobilized on glass slides, and GNRs injected into live HeLa cells. Fig-
ure 2.1a shows a typical example of a stacked image of the 2-photon lumi-
nescence intensity of a single GNR on a glass slide, and figure 2.2a shows
a plot of a line segment of the intensity profile through the central slice.

(a)

(b)

Figure 2.1: Real and simulated GNRs Shown here are examples of 5.25 µm x
5.25 µm stacks with separation between slices of 0.4 µm. (a) shows a typical GNR
immobilised on a glass slide. (b) shows a GNR simulated with average proper-
ties. The same contrast has been used in each case for direct comparison.
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Figure 2.2: Profiles of typical and simulated GNRs Plots of line segments
through the central slices of the 2-photon luminescence intensity images of GNRs
shown in figure 2.1. (a) is from the real GNR, and (b) is from the simulated GNR.

Real images was analysed using LabView to establish ranges and aver-
ages of the properties required for simulation. The point spread functions
(PSF) were fitted with Gaussian distribution profiles:

I(x, y, z) = I0 + A exp

[
− (x− xc)2

2σ2
x
− (y− yc)2

2σ2
y
− (z− zc)2

2σ2
z

]
(2.1)

A is the peak amplitude, I0 is the average background intensity; σx, σy
and σz are the widths of the profile in each dimension; and the distribution
is centred on xc, yc and zc. The average background intensity I0 is just an
offset, and does not effect the accuracy of the fit. However, the noise on
the background alters the signal-to-noise ratio and does affect the fit. We
assumed the background noise to have a Gaussian distribution centred on
I0, with a width of b.

p(Ib) =
1√

2πb2
exp

[
− (Ib − I0)

2

2b2

]
(2.2)

For each image, we removed the bright peaks and found the standard
deviation b of the intensity values of the remaining pixels.

Histograms presenting the properties (PSF widths, number of photons
and background widths) resulting from fitting a sample of 40 GNRs are
shown in figure 2.3. The PSFs were of approximately equal width in the

18
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2.1 Simulating GNRs 19

x and y direction, and the combined average was 0.251 µm. The aver-
age Z width σz was larger at 0.679 µm. The mean number of total pho-
tons collected from a peak Np was 3600 (note that this depends on the z-
separation, which is here 0.4 µm), and the average background noise was
0.5 photons.

(a) (b)

(c)
(d)

Figure 2.3: Properties of GNR point spread functions. A sample of 40 GNRs
from 10 videos (both in cell, and fixed on glass) were analysed to determine typ-
ical PSF properties. (a) shows the x-y width. (b) shows the z-width. (c) shows
the total number of photons per GNR in a stack (this stack is made of 5 2D slices
separated in the z-direction by 0.4 µm. (d) shows the background noise: b is the
width of the Gaussian distribution fitted to the background.
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20 Results

Simulations of 2-photon luminescence images of single GNRS were
built in LabView in four steps, the last three of which are shown in fig-
ure 2.4

1. Position time-series x(t), y(t), z(t) were created according to speci-
fied values of D and v. In the case of free diffusion, in each dimen-
sion and in each time step t the movement made was sampled from
a Gaussian of standard deviation 2Dt.

2. The number of photons collected by each pixel in the 3D field of view
was set according to a 3D Gaussian as in equation 2.1. (See fig. 2.4a).
I0 was set to an arbitrary value, as it is only a offset and so does not
impact the fitting process.

3. To account for photon shot-noise, the value of each pixel was then
reset to I(x, y, z, t) → Poisson[I(x, y, z, t)], a value drawn at random
from a Poisson distribution centred on I(x, y, z, t). (See fig. 2.4b)

4. Finally a background noise of standard deviation b was added to the
entire field of view. (See fig. 2.4c)

(a) (b) (c)

Figure 2.4: GNR 2-photon intensity (2D) image simulated in three steps. (2.4a)
a Gaussian intensity distribution was first created with width s = 0.250 µm, am-
plitude A = 80 photons, and a resultant total Nphotons = 1118 (This is a single 2D
slice). (2.4b) Shot noise was implemented. (2.4c) Lastly a background noise was
added of a typical width b = 0.5 photons. The contrast is set here to make the
background addition clear. See figure 2.1 for a side-by-side comparison of a real
and simulated stack (note the contrast and scale is not the same as here).

20
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2.2 Image analysis 21

2.2 Image analysis

The simulated images were analysed with the same method as real im-
ages, by fitting a Gaussian profile to the intensity distribution due to the
photons on the field of view (FOV). In each 3D stack of images, the bright-
est pixel was identified, and a 3-dimensional section (the ”region of in-
terest” ROI) around it was selected. This small section should contain a
single GNR. The selection was then fitted with a Gaussian profile whose
3-dimensional centre determined the position of the GNR in the stack. If
there was more than one GNR in the FOV, the algorithm then returns to
the stack data and locates the next brightest spot - however the simula-
tions here were restricted to the simplest case of just one GNR per FOV, in
order to prevent incorrect assignment of a peak to a different trace. To then
assess the positional accuracy of the measurements, the difference was cal-
culated between the original co-ordinates used to generate the simulated
GNR images and the co-ordinates determined by the fitting procedure.
This was done for a large set of images, and the positional accuracy was
taken as the standard deviation of the errors.

Numerical accuracy

First, we checked that the numerical accuracy was sufficiently high and
could be neglected. We simulated 1000 3D stacks of images (each stack
made of 10 2D slices) each containing a single randomly placed GNR,
without background noise, nor shot noise (as in figure 2.4a). The co-
ordinates set and calculated via the fitting procedure were compared: the
mean X and Y root mean square error was 30 pm; and the mean RMS Z
error was 0.798 pm. These errors are negligible compared with the shot-
noise limited positional accuracy.

2.3 Positional accuracy

As shown in section 1.3, Thompson et al [6] derived a theoretical estimate
for the positional accuracy in 2-dimensional single particle imaging in
terms of PSF width σxy, total number of photons in peak Np, background
b and pixel size a. In order to compare our results with the 2D prediction,
simulations were restricted to just 1 slice, and so 2D images were gener-
ated. Many simulations were made over a range of values for background
noise b and number of photons collected Np, and the results were com-
pared with the predictions by Thompson (see figure 2.5). The positional
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accuracy was found to range from 4.5 ± 0.2nm for a bright peak with a
high signal-to-noise (SNR) of 500, to 18.5± 0.6nm for a dimmer peak with
a low SNR of 10. Conditions typical is our set-up are Np ∼ 1000 in a sin-
gle slice and a background of b ∼ 0.5. This corresponds to single slice 2D
positional accuracy of 11.0± 0.7nm.

Figure 2.5: 2-dimensional positional accuracy. The theoretical predictions (solid
lines) according to equation 1.3 are compared with measurements on simulated
images (points), for three values of the total number of photons Np. Each mea-
surement point is the average positional accuracy from 10 separate sets of 200
images - and the error bars are the standard deviation on those 10 values (in to-
tal, 2000 images per point). The measured values are consistently higher than the
theoretical estimates, as in Thomson et al [6]

Compared to the theoretical predictions, the measured positional accu-
racy was between 25% and 30% higher. This offset is in agreement with the
findings of Thompson et al: they reported that in the ranges they investi-
gated their measured values for the positional accuracy of both real and
simulated images were consistently around 30% higher than their theoret-
ical estimates. An offset to the formula was also found experimentally by
van der Broek et al [3], and was suggested to be due either to diffusion of
the GNR between acquisition of slices, or due to the point spread function
perhaps not being Gaussian. However, the results from simulation, both
in this study, and in the work of Thompson, suggest this is not the case;
in the simulation we do not have movement between acquisitions, and
the point spread function generated is indeed Gaussian - yet the offset re-
mains. Thompson suggested the offset was due to their fitting procedures
not taking into account shot noise - which could be the case here too.

22
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2.3 Positional accuracy 23

A theoretical estimate for the positional accuracy in 3-dimensional sin-
gle particle imaging was not found in literature, or been made yet, to our
knowledge. As outlined in the introduction, our hypothesis is that as there
are more photons collected in the 3D image, the positional accuracy will
be better. 2-dimensional and 3-dimensional images were compared, as
shown in figure 2.6. The 3D images were created by adding 4 extra slices
with spacing of 1.5 µm (2 below and 2 above the single slice simulations),
keeping all other settings unchanged. This resulted in about 10% more
collected photons, and the positional accuracy improved by on average
25%. The accuracy depends strongly on the number of photons received,
which itself in 3D microscopy depends strongly on the separation between
the 2D slices. Closer separations result in more photons and so higher ac-
curacy. For example, typical experimental slice separations of 0.5 µm and
1.5 µm, corresponding to number of photons Np ∼ 3000 and ∼ 1000 re-
ceived respectively, result in accuracies of 5.2 ± 0.3nm and 8.9 ± 0.6nm.

Figure 2.6: 2D and 3D positional accuracy. The graph compares results from
simulations in 2D and 3D, and the 2D theoretical estimate from Thompson [6].
3D images involve more collected or simulated slices through the PSF, which in-
crease the number of photons collected and increases the positional accuracy. The
2D images are based on Np collected photons in a single slice. The 3D (5-slice) im-
ages are based on Np photons in the central slice, with the other slices adding to
the total number of photons, and so to the accuracy. In all simulations, Poisson-
distributed photon noise is simulated, so the number of photons per simulation
is not fixed. The same background noise is used in both cases: b = 1.
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2.4 Characterising particle behaviour

Next we investigated the uncertainty in extracting movement information
from trajectories, using MSD plots (as outlined in section 1.4). As MSD
plots only require a set of co-ordinates, it is not required to generate and
analyse images. As a significant amount of the time required for simu-
lations was due to these steps, there was a motivation to bypass them.
Using equation 1.3, and the results of the previous sections, we could de-
termine the positional accuracy of the microscope given a measurement of
the background b and total number of photons per image Np. Given a sim-
ulated diffusive trajectory, we added Gaussian noise with the width equal
to the positional accuracy. This bypassing step is outlined in the following
schematic:

Figure 2.7: Scheme for steps involved in full simulation, and for simulations
bypassing images generation. Simulation so far have been made in the follow-
ing way: trajectory co-ordinates were generated, images of those trajectories were
created, and then the positions were extracted by fitting the GNRs in those im-
ages. The extracted co-ordinates do not match the original co-ordinates due to
the finite positional accuracy of the fitting procedure. Now that we know the po-
sitional accuracy, we can skip the image generation step by adding uncertainty
directly to the trajectory co-ordinates.

To validate the approach, the 2D positional accuracy results given in
figure 2.5 were reproduced using the new method: a good agreement was
found, as shown in figure 2.8.

24
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2.4 Characterising particle behaviour 25

Figure 2.8: Validation of simulating without creating images. The method of
directly adding uncertainty into generated co-ordinates is tested: circles corre-
spond to results from simulations using images (from figure 2.5) and diamonds
correspond to results from simulations bypassing image generation. Each point is
the average accuracy from 10 sets of 200 simulations, error bars are the standard
deviation on those 10 sets. Three cases of total photon number Np were tested.
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2.4.1 Statistical uncertainty extracting behaviour properties
from MSD plots

As outlined in section 1.4, there is an inherent statistical uncertainty in ex-
tracting parameters of motion from an MSD plot, resulting in an expected
relative error δD:

δD =
(DDetected − DActual)

DDetected
(2.3)

Qian et al [7] derived a theoretical upper estimate of this error, depen-
dant on the length of trajectory N, and number of fitting points n used in
the MSD plot, stated again here:

δDmax = ±
√

2
3

√
n

N − n
(2.4)

Their derivation is purely statistical, assuming perfect positional accu-
racy, but is a good approximation at high positional accuracy. The formula
states that using n = 2 points in an MSD plot minimises the maximum rela-
tive error - however it is unclear if this minimises the average relative error.
We tested it at two values of diffusion coefficient relevant to our exper-
imental set-up. Purely diffusive trajectories of fixed diffusion coefficient
DActual were simulated, and the relative error was assessed over a range
of n for two values of positional accuracy σp, as shown in figure 2.9. Both
at σp = 10 nm and σp = 200 nm, the bounds were seen to be a good fit and
n = 2 was confirmed to give the lowest relative error, though there was a
bias to underestimate the diffusion coefficient.

Figure 2.9: (Next page) Relative error in extracting D, as a function of number
of fitting points n. These graph show that the upper estimate [red dashed line] of
expected relative error when extracting D from MSD plots (See equation 2.4, from
Qian et al [7]) is a good bound for the range of positional accuracy expected for
our microscope. For each graph, 100 purely diffusive (D = 0.5 µm2 s−1) trajecto-
ries of length N = 200 were generated, and D was extracted by fitting MSD plots
made over a range of fitting points n. The results are shown using box-diagrams:
the centre of the box is the median, the edges are each a standard deviation, the
whiskers are the 10th and 90th percentiles, and points outside those bounds are
crosses. Both plots show a bias for underestimating the diffusion coefficient.

26
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2.4.2 Optimising the accuracy of extracting behaviour prop-
erties from MSD plots

According to Michalet [8], who extended the work of Qian, and considered
the effect of a positional accuracy, there is a best number of fitting points
n in an MSD plot, that optimises the accuracy of extracted parameters.
This is dependent on the positional accuracy, frequency of measurement,
length of trace and parameters being extracted (either velocity, diffusion
coefficient, or positional accuracy). Mitchalet numerically determined the
optimal value for a range of x (reduced localization error, dimensionless,
see section 1.4) from 0.01− 1000 (this includes our entire range of expected
experimental conditions) for extracting either the positional accuracy, or
the diffusion constant. He found that the difference in noptimal in the two
cases was negligible, and could be approximated by the relation:

noptimal = 2 + 2.3x0.52 (2.5)

Due to the high positional accuracy of our microscope, we would ex-
pect x << 1 for most experimental conditions over the range of D and
N expected. This was verified numerically, shown in figure 2.10: all MSD
plots were fitted with equation 1.5 with v set to zero, assuming purely dif-
fusive motion, in line with the work from Michalet. The values of noptimal
given by equation 2.5 were found to be accurate, particularly at high posi-
tional accuracy, indicated by dashed lines in figure 2.10. As shown in fig-
ure 2.10a, at σp = 10 nm, for all values of D, noptimal = 2 was predicted and
measured. As shown in figure 2.10b, for σp = 200 nm the predicted values
were, rounded to the nearest integer, 7, 3, 2 and the measured values were
7, 2, 2 for diffusion coefficients D of 0.01, 0.5 and 1 µm2 s−1 respectively.
Finally, as shown in 2.10c, for σp = 2000 nm the predicted values were
7, 9, 54 and the measured values were 6, 7, 48 over the same range of D.

28
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2.4 Characterising particle behaviour 29

(a) σp = 10 nm

(b) σp = 200 nm

(c) σp = 2000 nm

Figure 2.10: Optimal number of fitting points to reduce expected error. Purely
diffusive trajectories were simulated for three values of σp, each for three diffu-
sion coefficient D values (0.01, 0.5 and 1 µm2 s−1). D was extracted from MSD
plots made from a varying number of fitting points n, and the average relative er-
ror of its calculation over 100 simulations for each combination of parameters was
plotted. The predicted noptimal for each curve [16] is marked by vertical dashed
lines. The predictions were found to be accurate, particularly at high positional
accuracy.
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As outlined in section 1.4, movement parameters are extracted from
fitting MSD plots with the equation:

MSD(τ) = 2dDτ+ v2τ2 + 2dσ2
p (2.6)

In this formula, τ is the delay and d is the number of dimensions of the sys-
tem. If any one of the variables, diffusion coefficient D, velocity v or posi-
tional accuracy σp is already known, by fixing it the fit will be improved,
and the relative error in extracting other parameters should be reduced.
As the positional accuracy can be calculated from the Gaussian peak in-
tensity and PSF width, we tested using simulations to verify that fixing
it did reduce the relative error. The results shown in figure 2.11 indicate
an average reduction of relative error δD for short trajectories (N = 20) of
6.84%, medium-length trajectories (N = 200), 1.81%, and for long trajecto-
ries (N = 2000), 0.64%.

Figure 2.11: Fixing the positional accuracy σp reduces the relative error δD in
extracting the diffusion coefficient. The solid lines represent the case where both
σp and D are fitted, and only v = 0 m s−1 is fixed. The dashed lines show the case
where only D is fitted and and both the other parameters are fixed: v = 0 m s−1

and σp = 10 nm. 100 purely diffusive trajectories with D = 1 µm2 s−1 and σp =
10 nm were simulated and analysed, for each length in a range between N = 5
and N = 2000. The resulting MSD plots were fit with equation 2.6 using a range
of fitting points n. noptimal is not affected by which parameters are fixed. (The test
was repeated for D = 0.5 µm2 s−1 and D = 0.1 µm2 s−1, shown in the appendix
in figure 4.1)

30
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Next we investigated the relative error expected when extracting the
velocity of a purely ballistic particle from MSD plots, defined as δv =
(vDetected − vActual)/vDetected. We would expect that extraction from longer
trajectories should be more accurate, as there is simply more data to fit.
Secondly, assuming that the direction of movement is constant, as this is
not a stochastic process, we expect a minimal uncertainty, due to the fi-
nite positional accuracy. Simulated trajectories were analysed of varying
lengths and varying GNR velocities, shown on the next page in figures
2.12 and 2.13 and also in the appendix in figure 4.2.

As expected, it was found that the accuracy scales with trajectory length
( compare figures 2.12 and 4.2, in which the only variable changed is the
trajectory length). It was also found that as number of fitting points n was
increased, a minimal plateau was reached at around n = 0.4N. noptimal
was about 0.7N, and after about n = 0.8N, the accuracy began to decrease
again. For a high velocity GNR, as shown in figure 2.13, the choice of n is
not really important; for v ≥ 0.5 µm s−1, all tested trajectory lengths N (20,
200, 2000) and any choice n returns the set v with on average under 0.1%
relative error. If accuracy in extracting low velocities is required, then the
choice of n does have an effect - particularly for shorter trajectories - and
setting n inside the range indicated above can improve accuracy signifi-
cantly, see figure 2.12. This is because at low velocity, the movement is
comparable to the positional uncertainty.

The MSD plots were fitted with equation 1.5, which is a function of
σp, D, and v. The effect on the accuracy of fitting the other parameters
was investigated and is also shown in figures 2.12 and 2.13 and 4.2. Fix-
ing D alone gives the largest improvement (from green to red line) - al-
though this is not possible in real measurements. Surprisingly fitting just
v is slightly less accurate than fitting σp and v - this indicates that perhaps
the fitting procedure could be improved.
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Figure 2.12: Optimal number of fitting points noptimal for slow ballistic particles
(v = 0.01 µm s−1). The graph shows that for low velocity particles, regardless of
which parameters are fixed and which fitted, that relative error reaches a plateau
around 5% after about 6 points - if fewer points are used, the relative error in-
creases sharply. Each point on each curve is the average relative error from 100
simulated trajectories of length N = 20, with positional accuracy σp = 10 nm.
Each curve corresponds to fitting the parameters labelled, and fixing the others
to their set values.

Figure 2.13: Optimal number of fitting points noptimal for fast ballistic particles
(v = 0.5 µm s−1). The graph shows that for high velocity particles, the accuracy of
v is always very high. Each point on each curve is the average relative error from
100 simulated trajectories of length N = 20, with positional accuracy σp = 10 nm.
Each curve corresponds to fitting the parameters labelled, and fixing the others
to their set values.
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2.4 Characterising particle behaviour 33

2.4.3 Detecting behaviour transitions

In real experiments it is quite common that a particle undergoes a change
in behaviour, for example from free diffusion to ballistic motion. In this
section we investigate detecting this quantitatively using a statistical method
to identify the point in a trajectory that such changes occur. Student’s t-
test compares two populations and evaluates how well they can be de-
scribed by the same distribution, using sample mean and sample vari-
ances; it gives a likeliness value between 0 ≥ p ≥ 1 that two samples are
from the same distribution. Here we use a variant of Student’s t-test for
populations of unequal variances, known as Welsh’s test [17]. This test is
known to be more accurate when samples are of unequal variances, which
is the case here since the variances of the velocity and diffusion coefficients
distributions vary. The Welsh test involves calculating the t-statistic and
approximating the pooled degrees of freedom ν as the following:

t =
X1 − X2√
σ2

1
Ns

+
σ2

2
Ns

(2.7)

ν ≈
(
σ2

1 + σ2
2
)2

(σ4
1 + σ4

2 )/(Ns − 1)
(2.8)

t and ν are calculated using the sample means X1 and X2, sample stan-
dard deviations σ1 and σ2, and sample size Ns. The likelihood of the
samples being described by the same distribution is then calculated us-
ing these values in the t-distribution probability density function [17], in
our case we used Excel’s built-in function for this.

p(t, ν) =
Γ( ν+1

2 )√
νπ Γ( ν

2 )

(
1 +

t2

ν

)− ν+1
2

(2.9)

To use the likeliness value to indicate a transition at a time t, two sam-
ples of size Ns are taken at each side of t from data characterising the mode
of action. p is then interpreted as the likelihood that the two samples are
of the same mode of action; a low value indicates transition.

Two trajectories were simulated and analysed using Welsh’s test: each
starts with a period of diffusion followed by a period of ballistic motion,
followed by a final period of diffusion. Typical experimental conditions
were used: D = 0.5 µm2 s−1, v = 0.5 µm s−1 and the positional accuracy
was σp = 10 nm. The first, ’clear’ trajectory has a ballistic period of 50s,
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and the second ’less clear’, a period of 25s. The simulated trajectories were
analysed with MSD plots to extract the values of D and v as in typical ex-
perimental procedure. To get time-series values for v and D, the trajectory
of length N was analysed in windows of length Nw (Note that the win-
dow length Nw and sample length Ns need not be the same). To maximise
the accuracy of the extracted values (as outlined in section 2.4.2), D was
extracted from MSD plots made from n = 2 fitting points, and v was ex-
tracted from MSD plots made from n = 0.7× Nw fitting points.

For each trajectory, the test was carried out for three different values
of the window length Nw: 5, 15 and 30 seconds. Longer windows pro-
vide more data for MSD plots, and so more accurate values for D and v.
However, this must be balanced with the fact that longer windows will be
more likely to include multiple modes of action, and so blur the bound-
aries in the diffusion and velocity time-series. We carried out Welsh’s test
on time-series of the diffusion coefficient D and the velocity v:

Figure 2.14: Comparison of window sizes and data source for Welsh’s test. Left
to right: window sizes Nw of 5, 15 and 30. Top to bottom: time series of velocity,
P-value calculated using that, diffusion coefficient, and P-value calculated using
that. The trajectory analysed is the ’clear’ transition described in text, with transi-
tions at 100s and 150s. The minima in the P-value should indicate transitions. The
sample size in all cases is Ns = 15. Note that the P-value plots are logarithmic.

34
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Figure 2.4.3 shows the p-value time-series calculated using diffusion
coefficient data is more useful than the series calculated using velocity
data. For the velocity-calculated p-values, the minima do not coincide
with transition points. The extracted velocity varies widely, particularly
for small window size Nw. This is because when there are few points in
an MSD plot, linear and quadratic curves fit similarly well, so the line of
best fit does not consistently set the quadratic term to zero: the Welsh test
is not at fault. Nevertheless, from here on we shall calculate p-values us-
ing the diffusion data. Figure 2.4.3 shows that p-value time-series created
using smaller window lengths indicates transitions more clearly. The tran-
sitions are clearest when the corresponding minima in the plots are many
magnitudes of order lower than other ’false’ minima. In the series created
with windows of size Nw = 30, the true and ’false’ minima are not easily
distinguished.

Next, we tested three different values for the sample size Ns: 5, 15 and
30. Larger samples provide more data, so we would expect the test to
return higher and lower p-values, and so identify transitions better. How-
ever, if a period of motion is shorter than the sample size, the sample will
unavoidably include multiple modes of action, and the transition points
will be less distinct. To detect short transient modes of action then, smaller
samples are better. We must make a compromise: we want the smallest
sample size possible that still distinctly indicates transitions. We found,
as expected the larger samples did result in much lower p-values for the
transitions, and so much clearer indications:

Figure 2.15: Effect of Welsh’s test sample size on transition p-value. The graphs
show the p-value time series resulting from Welsh’s test performed on the ’clear’
trajectory described in the text, with transitions at 100s and 150s, using different
sample sizes. Left-to-right, the sample size Ns are: 5,15 and 30. All the tests
were carried out on diffusion coefficient data extracted from MSD plots, using
windows of size Nw = 15. Note that the P-value plots are logarithmic.

In summary, the p-values should be calculated using the diffusion data,
the window length Nw should be small, and the sample size Ns should be
large. Figures 2.16 and 2.17 show the two trajectories studied, and the
combinations of Nw and Ns giving clearest indications of transitions.
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(a) 3D trajectory plot

(b) Nw = 5, Ns = 30

(c) Nw = 15, Ns = 15 (d) Nw = 15, Ns = 30

Figure 2.16: Analysis of a mixed trajectory with ”clear” transitions. (a) A plot of
the trajectory: two 100 s periods of diffusive motion (D = 0.5 µm2 s−1), separated
by a 50 s period of ballistic motion (v = 0.5 µm s−1). (b), (c) and (d) show for
different combinations of window length Nw and sample size Ns, time-series of
D and v extracted from MSD plots, and of the P-value resulting from Welsh’s test.
In all cases the P-values are calculated using the diffusion coefficient time-series.
Note that the P-value plot is logarithmic.

36

Version of March 22, 2016– Created March 22, 2016 - 11:05



2.4 Characterising particle behaviour 37

(a) 3D trajectory plot

(b) Nw = 5, Ns = 15

(c) Nw = 5, Ns = 30 (d) Nw = 15, Ns = 30

Figure 2.17: Analysis of a mixed trajectory with ”less clear” transitions. (a) A
plot of the trajectory: two 100 s periods of diffusive motion (D = 0.5 µm2 s−1),
separated by a 25 s period of ballistic motion (v = 0.5 µm s−1). (b), (c) and (d)
show for different combinations of window length Nw and sample size Ns, time-
series of D and v extracted from MSD plots, and of the P-value resulting from
Welsh’s test. In all cases the P-values are calculated using the diffusion coefficient
time-series. Note that the P-value plot is logarithmic.
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2.5 Movement between slices

Experimentally, in a 3D stack there is a lag of 0.1 s between slices due to
the finite time required by the camera to collect photons. In simulations
created so far in this work, movement has been considered to occur en-
tirely between stacks, instead of between the slices within those stacks.
However, we would expect the movement between slices to distort the
Gaussian shape of the PSF, as illustrated in figure 2.18, potentially making
the fit and position inferred less precise.

Figure 2.18: Movement between slices. The three stacks on the left show the
actual point spread function of a particle across three slices, at three successive
points in time. The particle is centred on the middle slices and is moving in the XY
plane. The darkened slices are those actually acquired up by the microscope, due
to its lag. The subsequent distorted Gaussian can be seen in the stack produced
on the right.

To determine the impact of this effect on the results, diffusive move-
ment was simulated between slices, and the effect on the positional ac-
curacy was found to be substantial, especially at high rates of diffusion.
Previous results, shown in figure 2.6, determined the 3D x-y positional
accuracy in typical experimental conditions to be about 8.9 ± 0.6nm (z-
separation of 1.5 µm). As shown in figure 2.19, for the same experimen-
tal conditions, the x-y positional accuracy for slow diffusive GNRs (D =
0.01 µm2 s−1) was 9.5± 0.6nm, and for the fastest diffusive GNRs tested
(D = 0.5 µm2 s−1), it was an order of magnitude worse at 143.0± 8.4nm.
In the z-plane, the accuracy was lower at 22.1± 1.2nm and 243.1± 34.3nm
respectively. Simulations were made with and without noise, and it was
found that the effect of noise on positional accuracy is small compared
with the effect due to movement between slices.

38
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Figure 2.19: Effect of diffusive movement between slices on the positional ac-
curacy. This graph shows the resulting average positional accuracy on simulated
GNRs, whose diffusive movement occurs between each 2D slice (The full 3D im-
ages are stacks of 2D images). The main panel shows the experimentally relevant
range of diffusion coefficients, and the inset extends this. Each point represents
the average of 1000 simulated trajectories. Trajectories were created with and
without background noise - which is Gaussian with width b = 0.5 photons. The
separation between slices is 1.5 µm, and the total number of photons per GNR is
about 1150, but varies due to the implementation of photon-noise. Lines of best
fit have been imposed to illustrate the linear relationship.

As reported previously by van den Broek et al [3], the fastest diffusive
movement for GNRs in cells was found to be D = 0.1 µm2 s−1. At this
rate of diffusion, our results are an x-y positional accuracy of 31.8± 2.5nm
and z positional accuracy of 65.3± 3.5nm. This is an order of magnitude
higher than for stationary GNRs, and is

Figure 2.19 indicates a linear relation between the positional accuracy
and the diffusion coefficient. However, before concluding the relation is
strictly linear, further work should be done at lower values for the diffu-
sion coefficient. For example, the fit for the x-y accuracy with typical noise
is σp = 6.3 ∼ 275D (same units as for plot). This would indicate that in the
case of no diffusive movement, in typical experimental conditions, with z-
separation of 1.5 µm, the positional accuracy should be 6.3 nm. However,
we already found in section 2.3 that this was 8.9± 0.6nm. This suggests
that the relationship is not linear at low D, that it levels off, similarly to
figure 2.5.
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Chapter 3
Discussion

In this study we characterised the accuracy and limitations of using gold
nanorods (GNRs) in our two-photon scanning microscope, by analysing
the tracking of simulated GNRs. We took real two-photon luminescence
images of GNRs captured by the microscope, and fit the intensity distri-
butions due to the photons as Gaussians, which is known to be a good
approximation [14]. By fitting the distribution, we determined the aver-
age values and ranges of the widths σz, σx, and σy, and total number of
photon Np. We simulated two-photon luminescence images of GNRs with
these properties, which compared well with the real images.

The 3D positions of GNRS in stacked images are determined by fitting
Gaussian profiles to the photon intensity distributions. The positional ac-
curacy of this ’super-resolution’ method is not known. We numerically
determined the positional accuracy by fitting the intensity distributions
due to stationary simulated GNRs, and comparing the set co-ordinates
and fitted co-ordinates. We first tested this on 2D images, and our re-
sults matched the previous work of Thompson et al [6]. The positional
accuracy was dependant on the number of photons received: for example,
in the range relevant to our experimental set-up, with a Gaussian back-
ground noise of width b = 0.5 photons, ∼ 1000 captured photons gives
a 2D positional accuracy of 11.0± 0.7nm. We hypothesised that the posi-
tional accuracy in the xy-plane would be better in 3D due to the increase in
number of photons. We verified this numerically, and found the accuracy
was increased by on average 26%. In typical experimental conditions the
accuracy was numerically determined to range between 5.2± 0.3nm and
8.9± 0.6nm, corresponding to Z-separations of 0.5 µm and 1.5 µm, which
each on average capture∼ 1000 and∼ 3000 total photons respectively. Ex-
perimentally there is a trade-off concerning separation distance between
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slices: short separation increases number of photons and so accuracy, but
decreases the depth of the sample probed. We have shown that for exam-
ple, if an accuracy of 8 nm is sufficient, for positioning stationary particles,
the larger separation can be used.

Next we simulated GNRs with diffusive trajectories and numerically
determined the relative error in extracting the diffusion coefficient from
MSD plots. Our results agreed with the theoretical maximum relative er-
ror predicted by Qian [7]. We found however, that there is a bias to under-
estimating the diffusion coefficient, shown in figure 2.9, which should be
investigated.

The accuracy of extracting values of variables of motion from MSD
plots is dependent on the accuracy of the fit. Mitchalet [8] derived a theo-
retical prediction for the optimal number of points to use. We numerically
tested the prediction, and our results agreed over a range of diffusion co-
efficients, positional accuracies and velocities. We found that at high po-
sitional accuracy (< 10 nm), for diffusive trajectories, using only 2 points
gives the best accuracy for the diffusion coefficient. The relative error ex-
tracting the velocity from fast ballistic trajectories (v = 0.5 µm s−1) was al-
ways low (∼ 0.1%) regardless of choice of n. On the other hand, we found
that for slow ballistic trajectories v = 0.01 µm s−1, that using less than
n = 0.4N points results in large errors, (< 10%), and that n = 0.7N gives
the highest accuracy (see figure 2.12). The high relative error at low veloc-
ity is due to the the ballistic movement being less distinguishable from the
apparent movement due to the limited positional accuracy. In summary
the number of points to use in an MSD plot depends on the which variable
is to be extracted, and what value is expected for it: if only the diffusive
motion is of interest, use only 2 points; if interested in slow ballistic move-
ment, use a high number n > 0.4N; if interested in fast ballistic movement,
the choice of n does not matter.

The positional accuracy can be calculated from the Gaussian fit on the
3D PSF, so we can fix that parameter when fitting MSD plots. We numeri-
cally determined that this does improve the fit and the accuracy of extract-
ing the diffusion coefficient of diffusive trajectories, and the velocity from
ballistic trajectories. The shorter the trajectory the greater the improve-
ment: the average on long N = 2000 trajectories was 0.6%, on N = 200
it was 1.7% and for short trajectories N = 20 it was 6.5%. The improve-
ment in accuracy on the short trajectories is significant, so for these the
positional accuracy should be determined and fit.

We investigated using Welsh’s test to detect transitions in particle be-
haviour. The test compares two samples of data and determines the likeli-
ness (p-value) that they are from the same distribution. By performing the
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test on diffusion coefficient or velocity time-series for a particle trajectory,
we can identify the transitions as the minima of the p-value. However, we
found that only the diffusion coefficient data reliably indicated transitions.
To get time-series for the diffusion coefficient and velocity throughout a
trajectory, we fit MSD plots on windows of length Nw across the trajectory.
We tested three lengths of window (5, 15 and 30 s), and found that using
the shorter windows (5 and 15 s) resulted in Welsh’s test more clearly in-
dicating transitions: the smaller the window, the more prominent the min-
ima corresponding to the transitions. Welsh’s test compares two samples
each of size Ns taken either side of time t in a trajectory. We tested three
sample sizes (5, 15 and 30 s), and found that the larger sample size (15 and
30 s) results in clearer indications of transitions. The larger the sample size,
the smoother the p-value changes, making the minima corresponding to
the transitions clearer. In summary, Welsh’s test should be carried out on
diffusion coefficient data, extracted from MSD plots calculated on small
windows Nw, using large sample sizes Ns. Next, the conclusion drawn
here for Ns and Nw should be tested on a range of different trajectories
and transitions, with a range of values for the diffusion coefficient and
velocity.

Finally, we found that the diffusive movement of a particle has a large
negative impact on the accuracy of Gaussian fit of the PSF. The 3D image
of the GNR is made of a stack of 2D slices collected by the microscope
with a delay between slices of 0.1 s. This means that the observed PSF
will be distorted, more so for faster or more diffusive movement. We al-
tered our simulation for movement to occur between slices, not only be-
tween stacks, and numerically determined the resulting positional accu-
racy over a range of diffusion coefficients. The fastest diffusion rate for
GNRs observed in cells with our set-up was D = 0.1 µm2 s−1 [3]. With a
z-separation between slices of 1.5 µm we would then expect x-y positional
accuracy of 31.8± 2.5nm. Movement between slices therefore dominates
our positional accuracy at higher diffusive rates: the technique only has
< 10 nm for the slowest particles, which is a severe limitation compared
with other techniques. To improve the positional accuracy, we could try
to improve the fit of the particle PSFs, for example by using non-Gaussian
distributions: Titus et al have shown that a dipole PSF is a better fit for
GNRs [14]. However, any fit that does not take into account movement
must be distorted.

The effect of movement between slices impacts on other work in this
study, for which it had been assumed the positional accuracy was. 10 nm.
Mitchalet’s prediction that only 2 points should be used for extracting the
diffusion coefficient from MSD plots was valid for reduced localisation
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error x << 1 (See section 1.4). The lowered positional accuracy due to
movement between slices results for slow diffusive movement in a maxi-
mum x = 0.9, which according to Mitchalet’s formula means n = 3 fitting
points should be used in MSD plots to optimise the accuracy of extracting
the diffusion coefficient, which is only a small change from n = 2. How-
ever, the tests concerning optimising the extraction of the velocity may
also be affected, so this work should be repeated with the revised posi-
tional accuracy.
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Chapter 4
Conclusion

The most important result was that movement between slices distorts the
3D intensity distribution of a particle in a fluorescence image, resulting in
inaccurate fitting, and so lower positional accuracy, particularly for fast
diffusing particles. For stationary particles it was found the positional ac-
curacy depended on the separation between the 2D slices in the 3D stack.
A smaller separation results in more slices focussed on the particle, so col-
lecting more photons and increasing the accuracy. In typcial experimental
conditions the accuracy was found to range from 5.2± 0.3nm for station-
ary GNRs to 31.8± 2.5nm for the fastest expected diffusing GNRs.

We verified the prediction of Qian [7] for the relative error in extracting
the diffusion coefficient, though found there was a bias to underestimate
it. We verified Mitchalet’s [8] prediction for the optimal number of fitting
points for accurately extracting parameters of motion, however that work
should be revisited considering effect of movement between slices on the
positional accuracy. We found that fixing the positional accuracy when
fitting MSD plots improves the fit, particularly for short trajectories - on
average 6.5%.

Finally, we found that Welsh’s test can be used to identify transitions
in a trajectory, using diffusion coefficient time-series data extracted from
MSD plots. The MSD plots are created from windows throughout the tra-
jectory of length Nw. The test compares two samples of size Ns either side
of time t in the data, and determines the likeliness they are described by
the same distribution (or of the same mode of action). We found that the
transitions were most clearly identified by using small windows to calcu-
late the MSD with large samples for Welsh’s test - however this work also
relies on the positional accuracy, so this too should be revisited consider-
ing effect of movement between slices.
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Appendix

Figure 4.1: Fixing the positional uncertainty σp reduces the relative error δD in
extracting the diffusion coefficient. The solid lines represent the case where both
σp and D are fitted, and only v = 0 m s−1 is fixed. The dashed lines show the case
where σp = 10 nm is also fitted. 100 purely diffusive trajectories were simulated
and analysed with σp = 10 nm, D = 0.01 µm2 s−1 (top), D = 0.5 µm2 s−1 (bot-
tom), over a range of trajectory lengths N. The resulting MSD plots were fit with
equation 2.6 using a range of fitting points n. See also figure 2.11.
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(a) v = 0.01 µm s−1, N = 200

(b) v = 0.01 µm s−1, N = 2000

Figure 4.2: Velocities extracted from longer trajectories are more accurate. The
graph shows that increasing the length of a trajectory decreases the relative error
as expected. For the same velocity, v = 0.01 µm s−1 and positional accuracy σp =
10 nm, results from different length trajectories show the same shape curves. For
N = 20, see figure 2.12.
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