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Abstract

We first introduce the concept of partner potentials in non-relativistic quantum
mechanics, i.e. a pair of potentials with the same spectrum, possibly except for a

zero-energy ground state. We use this to define a family of partner potentials, giving
us a technique to calculate the entire spectrum of a potential. The mechanism of

partner potentials is then used for a quantum mechanical model of supersymmetry. It
turns out that a special class of potentials exists where the spectrum can be

determined very quickly using the techniques developed. We explore some of these
potentials, called shape invariant potentials or SIPs and discover some simple

properties of them. Finally, we take a quick look at a Hamiltonian with a p4 term in it,
discovering that for a small class of potentials, we can make a supersymmetric

quantum mechanical model out of it.
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Chapter 1
Introduction

Symmetries of systems are studied in all parts of physics. They give insight in the
structure of a problem, such as in the study of crystals. Equations also become easier
with them, for example those that describe the more-dimensional oscillator. Noether’s
theorem makes explicit that continuous symmetries in a system give rise to conserved
quantities, such as conservation of energy from the translational symmetry in time
and conservation of angular momentum from rotational symmetry along an axis. In
quantum mechanics symmetries give rise to degenerate eigenvalues, as is seen in the
treatment of the quantum mechanical hydrogen atom. Symmetries are thus an inte-
gral part of physics.
The first subject of this thesis is one particular symmetry, namely supersymmetry, and
a model of it in quantum mechanics. The prefix super is from the fact that this sym-
metry behaves different than other symmetries we encounter. Normally, when sym-
metries are studied, they are studied in the context of Lie algebras, i.e. vector spaces
equipped with a multiplication operator, the Lie bracket, which is the commutator
of two elements1. For supersymmetries, we generalise this so we may use the anti-
commutator. For example, there are no longer only commutating generators of the Lie
algebra, i.e. [A, B] = −[B, A], with A and B commutating generators and [·, ·] a bilin-
ear and alternating multiplication. Anti-commutating generators are now allowed as
well, i.e. [C, D] = [D, C], with C and D anti-commutating generators and [·, ·] the same
bilinear bracket, but no longer alternating for every two generators2. Furthermore,
where commutating generators commutate with themselves, [A, A] = −[A, A] = 0,
anti-commutating generators anti-commutate with themselves, [C, C] = [C, C] = 0.
This is the concept behind supersymmetry.

The reason we use supersymmetries is because of one important group of continuous
symmetries, the Poincaré group, and its connection to discrete symmetries, also called
internal symmetries. The Poincaré group is the Lie group of continuous symmetries
of Minkowski spacetime [28], i.e. the three boosts and three rotations along the space
axes and the four translations along all the axes. The Hamiltonian and momentum

1Other choices are possible, but normally the commutator is chosen.
2Details are found in Appendix A.1.
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operators are for example part of a representation of this group3. Discrete symmetries
are for example time reversal, the laws of nature are the same if you go forward in
time or backward, or charge symmetry, changing the electric charges in the hydrogen
atom for example should not alter the behaviour of system. Internal symmetries may
depend on the coordinates, but they only change the physical system, not the space
the system lives in [29].
One question one could ask is if there is a connection between these symmetries, i.e.
if one can generate the total group of symmetries by only using the discrete one, or
only using the Poincaré group. This was tried, but in 1967 it was proven by Coleman
and Mandula that, under some mild assumptions, a symmetry group containing both
the Poincaré group and other symmetries will be a direct product of both parts [5]. So,
there does not exist an interesting connection between these types of symmetries.
In 1975 by Haag, Lopuszanski and Sohnius a loophole was discovered [18]. Instead of
only using commutating symmetries, they allowed anti-commutating symmetries as
well. This made it possible to have a group of anti-commutating discrete symmetries
to generate a group of symmetries including the Poincaré group. One application of
this discovery is a description of a quantum gravity by Freedman, Ferrara and Van
Nieuwenhuizen [30].

Physically, anti-commutating symmetries can be seen as symmetries between bosons
and fermions. The idea is as follows. An anti-cummating symmetry anti-commutates
with itself, as we already saw, so for a symmetry C we have CC + CC = 0. If we
look at a representation of this Lie algebra, so we look at the operators on states that
correspond to these symmetries, we thus have an operator Q corresponding with C,
such that QQ + QQ = 0. However, multiplication in the linear maps is given, it is just
the composition. This means we have Q2 = 0.
For example, imagine a system with two non-interacting bosons in the same state. If
we change one boson into a fermion, while preserving all the other properties of the
particle, we expect the total energy to be the same. This is because in both cases we
have two almost equal particles that behave the same in the system. However, if we let
this symmetry act again on the system, we get an invalid system, because we end up
with two fermions in the same state. It is therefore only possible to let the symmetry
act on the system once.

The second subject of this thesis are partner Hamiltonians. In the model of quantum
mechanical supersymmetry, a two-dimensional non-relativistic Hamiltonian is gener-
ated by a pair of real operators as H = (Q + Q∗)2, making the ground state energy of
the Hamiltonian non-negative. Looking at the one-dimensional sub-Hamiltonians, H0
and H1, we see that they are given by the linking operators A and its adjoint, A∗, by
the relations H0 = A∗A and H1 = AA∗. These relations makes it possible to reduce
the differential equation for the zero-energy ground state from a second order equa-
tion (calculating the kernel of H0) to a first order equation (calculating the kernel of
A).
With these operators it is also possible to calculate the eigenstates of H0 from the eigen-
states of H1, hence the name partner Hamiltonians. As we can easily calculate the part-

3A representation of a group is a map from this group to the linear maps on a vector space.
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ner of the partner of a Hamiltonian, we get a sequence of Hamiltonians, each with the
same spectrum of the previous Hamiltonian, but with one state less. This sequence can
then be applied to calculate the complete spectrum of the first Hamiltonian. Chapter
2 is dedicated to this model and the main concepts of partner Hamiltonians.

The last subject of this text is shape invariance. It turns out that the technique of part-
ner Hamiltonians is especially useful for a special, and luckily large and interesting,
class of potentials that have the shape invariance property. In short, shape invariance
means that the partner potential of a given potential is just a parameter change of the
original potential. Since we already calculated the partner Hamiltonian for every pa-
rameter, the partner of the partner of this first Hamiltonian is already known in terms
of the first Hamiltonian, only with a parameter change. This allows us to easily cal-
culate the entire sequence of Hamiltonians and therefore to calculated the complete
spectrum of the first Hamiltonian. The details are found in Chapter 3.
There are a couple of interesting potentials that are shape invariant. The Morse po-
tential for example, which is used to model the binding force between two atoms [10].
This potential is also given as an example in Subsection 3.1.2. Other interesting shape
invariant potentials are the Pöschl-Teller potential, used to study non-linear behaviour
such as second and third harmonic generation [24], or the Scarf potential, for example
used to describe photonic crystals [27].

This thesis is for a large part based on the review of supersymmetric quantum me-
chanics written by F. Cooper, A. Khare and U. Sukhatme [8].
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Chapter 2
Supersymmetry

In this chapter we will examine the basic mechanics of the supersymmetric model we
will use. We start with the definition of partner potentials, which are potentials with
(almost) the same spectrum as their partner. These partner potentials and Hamiltoni-
ans are the main topic of Chapter 3 and in a lesser degree of Chapter 4, because they
can be used to easily solve the Schrödinger equation for the given potential. At the
end of the chapter, we show the supersymmetric model that can be build with these
partner potentials and linking operators, thus explaining why this method is called
supersymmetric quantum mechanics.
Normally, Lie algebras are used to describe systems of a Hamiltonian and its sym-
metries, but our symmetries do not fit into this description. To accommodate these
anti-commuting operators, we use instead super Lie algebras. In Appendix A.1 a brief
introduction into this topic is given. For a rigorous treatment of this subject, which
also goes into the mathematics of supergravity, we recommend Varadarajan’s Super-
symmetry for mathematicians: an introduction [31].
We strive for mathematically rigorous proofs, but for some it is simply not possible
to do this in the scope of thesis. Therefore, sometimes we give a more intuitive proof,
leaving the details to the references. In these cases we point out were the main problem
lies and directions to solve them.

2.1 Simple supersymmetry

2.1.1 Partner potentials in quantum mechanical systems

In quantum mechanics the space of all possible states consists of all square integrable
functions on the space the particles are in. Then, through the Schrödinger equation
the Hamiltonian of the system, the operator related to the total energy, determines
how the system evolves in time. The definitions of these objects we will use are as
follows.
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Definition 2.1.1 (State Space). Let H := L2(R) be the square integrable, complex-valued
functions on R with inner product

〈 f |g〉 :=
∫

R
f (x)g(x)dx.

Then we callH the one-dimensional, one-particle state space.

Definition 2.1.2 (Time-independent Hamiltonian). Let H : dom(H)→ H, with dom(H) ⊂
H a linear subspace, be an operator given by

H := − h̄2

2m
d2

dx2 + V(x),

where V : R → R, called the potential, is an everywhere defined smooth function, h̄ is the
reduced Planck constant and m is the mass of the particle.1

Note that the domain is not as rigorously defined as should be, because we are differ-
entiating in a space where the derivative is normally not well defined. To solve this,
one can use Sobolev-space to construct a weaker definition of differentiation, based
distribution rather than functions, to rigorously define the domain of the Hamiltoni-
ans and all other operators we use in quantum mechanics. However, altough inter-
esting, this process is highly technical and beyond the scope of the text. We refer to
Fackler’s text [13] Mathematical Foundations of Quantum Mechanics for further detail.

In this text, we will focus on time-independent Hamiltonians and ignore the much
larger class of time-dependent Hamiltonians. The solutions of the time-independent
Hamiltonian will therefore be time-indepedent as well. These solutions can be di-
vided into two categories, bound states and scattered states. Bound state solutions are
the square integrable solutions of the Schrödinger equation. These solutions can be un-
derstood as being the probability density functions of the position2. Scattered states
are unbound states and generally describe quantum waves being scattered by the po-
tential. Most of this thesis is only concerned with bound states, Section 4.2 being the
exception.

For one-dimensional quantum mechanical systems, there is a nice and simple result
that the eigenvalues of the Hamiltonian are non-degenerate3. This result will be used
in subsequent results, so we state it here.

Lemma 2.1.1. Let H be a one-dimensional Hamiltonian. Then the eigenvalues of the normal-
isable eigenfunctions are non-degenerate.

1Note that we use the notation V(x) both as the function V : x 7→ V(x) and as the linear operator
V : φ(x) 7→ V(x)φ(x).

2It is entirely possible to use the momentum instead of the position, thus using as the basic wave
function the momentum wave function. We however only use the position wave functions.

3This only holds as long as we only look at the Schrödinger equation itself. If we take for example
symmetries on spins or electrical charges into account, then it is possible to have degeneracy in the
one-dimensional case.

12
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Proof. Let E be a eigenvalue of H and φ and ψ be two eigenfunctions of H with eigenvalue E.
Using the Schrödinger equations for both eigenfunctions

Eφ = − h̄2

2m
d2φ

dx2 + V(x)φ, Eψ = − h̄2

2m
d2ψ

dx2 + V(x)ψ,

we multiply the left equation with ψ, the right equation with φ and equate both Eφψ terms to
get

− h̄2

2m
d2ψ

dx2 φ + V(x)ψφ = − h̄2

2m
d2φ

dx2 ψ + V(x)φψ.

Subtracting the potential parts, dividing out the factors and using the product rule we get

−E
h̄2

2m
d2ψ

dx2 φ = −E
h̄2

2m
d2φ

dx2 ψ⇒ d
dx

(
φ

dψ

dx

)
− dψ

dx
· dφ

dx
=

d
dx

(
dφ

dx
ψ

)
− dφ

dx
· dψ

dx
.

Subtracting again the common terms ( dφ
dx ·

dψ
dx ) and integrating both sides gives

φ
dψ

dx
= ψ

dφ

dx
+ c,

with c ∈ C a constant. Now use the fact that solutions of the Schrödinger equation go to zero
for x → ∞ to show that c = 0. This gives us

1
φ

dφ

dx
=

1
ψ

dψ

dx
.

From this we conclude that both eigenfunctions are multiples of each other, therefore proving
the eigenvalue is non-degenerate. �

A more rigorous prove can be given by using the observation that the time-independent
Schrödinger equation is in fact a Sturm-Liouville equation. If the space the functions
are defined on is a compact interval, it can even be proven that every excited state
has one more zero then its previous state (the state with the next lower eigenvalue)
[3]. To show this result for non-compact intervals, we have to look at singular Sturm-
Liouville problems, which are generally harder to solve. A reference is Krall’s book on
analysis, Applied Analysis, chapter 12 [19].
In this proof we also used a second simplification, namely the assumption that bounded
solutions of the Schrödinger equation go to zero in both the limits x → ±∞. Physi-
cally, this is clear, because a bound state represents a trapped particle in some region,
so it should not be able to escape to infinity that easily [17]. If it would escape with
a large probability, the particle would have more energy than possible to be trapped
in the first place. This assumption can be proven for large classes of potentials and
holds for almost every potential that we normally encounter. For further information
see Agmon’s paper on exponential bounds [1].

It is now time to define the main tools we will use to calculate the spectrum of H0. The
idea is to define for every Hamiltonian H0 a partner Hamiltonian H1 with the same
spectrum, except the ground state energy of H0, such that every excited eigenstate of
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H0 can be calculated from an eigenstate of H1 using the adjoint of the linking operator
A. If one then knows the spectrum of H1, the excited spectrum of H0 can be easily
calculated. It turns out that the best way of defining the operator A and the partner
Hamiltonian H1 is by H0 =: A∗A and H1 := AA∗. The relation between the spectra of
the two can then be easily proved, as we will do in Theorem 2.1.1. The next definition
makes the linking operators, as we will call A and A∗ from now on, precise.

Definition 2.1.3 (Linking Operators and Superpotential). Let H be a state space and H :
dom(H)→ H a Hamiltonian, with V(x) its potential. Then we define the linking operators

A : dom(H)→ H; ψ 7→ h̄√
2m

dψ

dx
+ W(x)ψ,

A∗ : dom(H)→ H; ψ 7→ − h̄√
2m

dψ

dx
+ W(x)ψ,

with V(x) = W2(x)− h̄√
2m

W ′(x). The real function W(x) is called the superpotential4.

This is the main definition of the linking operators. However, we often like our Hamil-
tonian to have a ground state at zero energy, especially when we are going to calculate
the partner of the partner of a Hamiltonian. Therefore, for a given Hamiltonian H with
potential V(x) and ground state energy E0 we often write

H =
h̄2

2m
d

dx2 + V0(x) + E0 = A∗A + E0,

with V(x) = V0(x) + E0 and V0(x) = W2(x)−W ′(x). This essentially is shifting the
potential down to a ground state energy of zero. This also ensures that the ground
state, although not of energy zero, is in the kernel of A.
Before we take a look at the superpotential, we first have to show the linking operators
are well defined and are actually each other’s adjoint. This is done in the following
lemma.

Lemma 2.1.2. The linking operators are each other adjoints.

Proof. We use the following definition of adjoint: 〈A f |g〉 = 〈 f |A∗g〉. Let f , g, bounded
solutions of H, be arbitrary given. Then we have

〈A f |g〉 =
∫

R
A f (x)g(x)dx

=
∫

R

(
h̄√
2m

d f
dx

(x) + W(x) f (x)

)
g(x)dx

=
∫

R

h̄√
2m

d f
dx

(x)g(x) + W(x) f (x)g(x)dx

4Although we speak of the superpotential of V(x), it can be shown their are many possible super-
potentials for a given potential. For further detail see section 2.3. The solution we will use will be the
one without nodes, i.e. the one that is derived from the ground state. We will explain this issue later in
more detail.

14
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and

〈 f |A∗g〉 =
∫

R
f (x)A∗g(x)dx

=
∫

R
f (x)

(
− h̄√

2m
dg
dx

(x) + W(x)g(x)
)

dx

=
∫

R
− h̄√

2m
f (x)

dg
dx

(x) + f (x)W(x)g(x)dx.

Note that W(x) = W(x) (W(x) is real), thus if we subtract the second inner product from the
first, we will lose the term with the superpotential. This means we get

〈A f |g〉 − 〈 f |A∗g〉 = h̄√
2m

∫
R

d f
dx

(x)g(x) + f (x)
dg
dx

(x)dx.

Using the product rule we get

〈A f |g〉 − 〈 f |A∗g〉 = h̄√
2m

[
f (x)g(x)

]∞

−∞
.

Now note that both limits go to zero5, because both functions are solutions of the Hamiltonian.
This proves that A and A∗ are each others adjoint. �

The mathematical problem with this proof is in the definition of adjoints. Formally,
the adjoint of a bounded linear operator T : X → Y, with X and Y normed spaces is a
bounded operator T∗ : Y∗ → X∗, with X∗ and Y∗ the dual spaces of X and Y, which
satisfies for every x ∈ X and y∗ ∈ Y∗ the equality y∗(Tx) = (T∗y∗)(x) [23]. The form
of A∗ is thus dependent on the domain of A. In our case however, these operators
are each others adjoint when the domain is well defined using Sobolev-space. This
also solves another problem, because we did not clarify if im(A∗) ⊂ dom(A) and
im(A) ⊂ dom(A∗).

Now this is settled, we can look at the other object defined, the superpotential. First
look at the equation to get the superpotential: this equation comes from the chain
rule when we calculate the product of A with A∗. This is shown in the following
calculation:

A∗Aψ =

(
− h̄√

2m
d
dx

+ W(x)
)(

h̄√
2m

d
dx

+ W(x)
)

ψ

= − h̄2

2m
d2ψ

dx2 + W(x)
h̄√
2m

dψ

dx
−W(x)

h̄√
2m

dψ

dx
− h̄√

2m
dW(x)

dx
ψ + W2(x)ψ

= − h̄2

2m
d2ψ

dx2 +

(
W2(x)− h̄√

2m
dW(x)

dx

)
ψ

Equating this to H means V(x) = W2(x)− h̄√
2m

W ′(x), which therefore gives the rela-
tion in Definition 2.1.3.

5See our assumption after Lemma 2.1.1.
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The partner Hamiltonian we were talking about is now easily calculated by reversing
the order of A and A∗, which is

AA∗ψ = − h̄2

2m
d2ψ

dx2 +

(
W2(x) +

h̄√
2m

dW(x)
dx

)
ψ.

As potential of this new Hamiltonian we take
(

W2(x) + h̄√
2m

dW(x)
dx

)
. This potential is

creatively called the partner potential.

Definition 2.1.4 (Partner potential). Let H be a state space and let H0 = A∗A + E0 be a
Hamiltonian, with E0 its ground state energy6, written as a product of linking operators. Then
we call the operator H1 = AA∗ + E0 its partner Hamiltonian and the potential

V1(x) = W2(x) +
h̄√
2m

W ′(x),

with W(x) the superpotential taken from V0(x), the partner potential of V0(x).

It should be noted that often we do not factorise the Hamiltonian H directly, but first
subtract its ground state energy from the potential, as in H0 = A∗A + E0, and thus
V(x) = V0(x) + E0. The most important use of this is that the ground state is in
the kernel of A, because for adjoint we have that ker(A) = im(A∗)⊥ and ker(A∗) =
im(A)⊥.

A very intersting mathematically corollary is that if we know the exact ground state
wave function of a potential we know the potential and its superpotential as well.

Lemma 2.1.3 (Potentials and ground states). LetH be a state space with H0 = A∗A+ E(0)
0

and H1 = AA∗ + E(0)
0 partner Hamiltonians. Then the potentials and superpotentials can be

written, with n ∈ {0, 1}, in the form

Vn(x) =
h̄2

2m
1

ψ
(n)
0

d2ψ
(n)
0

dx2 , respectively Wn(x) = − h̄√
2m

d
dx

ln
(

ψ
(n)
0

)
.

Proof. We prove this for n = 0. The other case follows straight forward from this one. For the
potential we use the Schrödinger equation of the ground state ψ

(0)
0

E(n)
0 ψ

(0)
0 = − h̄2

2m
d2ψ

(0)
0

dx2 + V0(x)ψ(0)
0 + E(0)

0 ψ
(0)
0 ⇒ V0(x) =

h̄2

2m
1

ψ
(0)
0

d2ψ
(0)
0

dx2 .

For the superpotential we note that

E(0)
0 ψ

(0)
0 = H0ψ

(0)
0 = A∗Aψ

(0)
0 + E(0)

0 ψ
(0)
0 ,

6As with the potential, we use the notation E(n)
m both as the energy of the m-th bound state of Vn(x)

and as the operator E(0)
m : φ 7→ E(0)

m φ.
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thus A∗Aψ
(0)
0 = 0 and thus Aψ

(0)
0 = 0, because A and A∗ are adjoints7. From Definition

2.1.3 we find

Wn(x) = − h̄√
2m

1

ψ
(n)
0

dψ
(n)
0

dx
= − h̄√

2m
d
dx

ln
(

ψ
(n)
0

)
.

This gives the result. �

Note that if we know the superpotential of a system, we can directly calculate the
ground state of it by using the proof of Lemma 2.1.3. This is because the ground state
is in the kernel of A, which gives us the first-order linear differential equation

0 =
h̄√
2m

dψ

dx
+ W(x)ψ.

The solution is simply

ψ0(x) = N0e−
√

2m
h̄ WI(x), (2.1)

where W ′I(x) = W(x) and where N0 is a normalisation constant, if the solution is nor-
malisable. If it is not normalisable, H0 does not have a zero-energy ground state. What
this physically means is described in Section 2.2. Mathematically, it means that every
eigenstate of H0 can be calculated from the eigenstates of H1, even the ground state.
The above equation also gives the reason why the superpotential is often used in con-
trast to the normal potential: when we know the superpotential, we do not only know
the potential but also its ground state. These two results are interesting, because it
shows that the existence of a bound ground state is equivalent with the existence of a
superpotential. This can also be shown in a different way. The equation of the super-
potential is a Riccati equation and by a careful change of coordinates it can be shown
this equation is equivalent to the time-independent Schrödinger equation. Now we
have learned enough about the linking operators and the superpotential, we can fi-
nally show why we want these partner Hamiltonians. It turns out that if φ is an eigen-
function of H0 with eigenvalue E 6= 0, then Aφ is an eigenfunction of H1 with the
same eigenvalue, E. Noting that H1 has no ground state at energy E(0)

0 , it follows from
that that the ground state of H1 corresponds with the first excited state of H0, the first
excited state of H1 corresponds with the second excited state of H0, etc. In this way,
every state of H1 corresponds to an excited state of H0, with the same energy. In Fig-
ure 2.1 you can see a graphical representation of this degeneracy. The degeneracy is
proven in Theorem 2.1.1.

Theorem 2.1.1. Let H be a state space and let H0 and H1 be partner Hamiltonians. Then
their normalised, nonzero-energy eigenfunctions for ψ

(0)
n+1 and ψ

(1)
n , n ∈N0, are related by

ψ
(1)
n =

(
E(0)

n+1 − E(0)
0

)− 1
2 Aψ

(0)
n+1,

ψ
(0)
n+1 =

(
E(1)

n − E(0)
0

)− 1
2 A∗ψ(1)

n ,

7Remember: Im(A) = Ker(A∗)⊥.
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Figure 2.1: Left we have the potential V0(x), with right its partner potential V1(x). A partner
potential has the same energy levels as its partner, except a possible zero energy ground state.
In this figure, we thus have E(0)

0 = 0. The linking operators A and A∗ are also seen, where A
transforms an eigenstate of V0(x) into an eigenstate of V1(x) and A∗ transforms an eigenstate
of V1(x) into an eigenstate of V0(x). This figure is based on a figure from [8].
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where ψ
(0)
n+1 and ψ

(1)
n have the same eigenvalue.

Proof. This proof follows Coopers explanation [7]. Let ψ
(0)
0 be the ground state. First, let

ψ
(0)
n+1, n ∈ N0, with E(0)

n+1 > 0 be an arbitrary given eigenfunction of H0. Then Aψ
(0)
n+1 is an

eigenfunction of H1, as we have

H1

(
Aψ

(0)
n+1

)
= AA∗Aψ

(0)
n+1 + E(0)

0 Aψ
(0)
n+1

= A
(

H0 − E(0)
0

)
ψ
(0)
n+1 + E(0)

0 Aψ
(0)
n+1

= A
(

E(0)
n+1 − E(0)

0

)
ψ
(0)
n+1 + E(0)

0 Aψ
(0)
n+1

= E(0)
n+1

(
Aψ

(0)
n+1

)
.

The proof for A∗ψ(1)
n goes the same.

To show ψ
(0)
n+1 ∝ A∗ψ(1)

n and ψ
(1)
n ∝ Aψ

(0)
n+1, note that the proof above also states that every

eigenfunction of H1 corresponds to an excited eigenfunction of H0 with the same energy and
that every excited eigenfunction of H0 corresponds to an eigenfunction of H1, also with the
same energy. From Lemma 2.1.1 we know that the energies of both Hamiltonians are non-
degenerate and from the proof of Lemma 2.1.3 we know that the kernel of A is the ground state
of H0 and the kernel of A∗ is empty (we only work with bounded solutions), so A is a one-
to-one function from the excited eigenfunctions of H0 to the eigenfunctions of H1 and A∗ is a
one-to-one function from the eigenfunctions of H1 to the excited eigenfunctions of H0. Both A
and A∗ preserve the energy, so using the fact that the energies are increasing in n, we find that
ψ
(0)
n+1 ∝ A∗ψ(1)

n and ψ
(1)
n ∝ Aψ

(0)
n+1.

For the normalisation constant we exploit the fact that A and A∗ are each others adjoint, as
stated in Lemma 2.1.2. Using the inner product we have

〈Aψ
(0)
n |Aψ

(0)
n 〉 = 〈ψ

(0)
n |A∗Aψ

(0)
n 〉

= 〈ψ(0)
n |
(

H0 − E(0)
0

)
ψ
(0)
n 〉

= 〈ψ(0)
n |
(

E(0)
n − E(0)

0

)
ψ
(0)
n 〉

=
(

E(0)
n − E(0)

0

)
〈ψ(0)

n |ψ
(0)
n 〉 = E(0)

n − E(0)
0 .

For E(0)
n 6= 0. Taking the square root of this energy gives the factor by which Aψ

(0)
n has to be

divided to be normalised again. �

Theorem 2.1.1 holds for every state, except the ground state of H0. To understand this,
remember that the ground state of H0 is given by the superpotential of equation 2.1,
which was derived from the fact that the ground state is in the kernel of A. The simple
answer is thus that by multiplying with A, the ground state goes to zero, which is not
normalisable.

A better explanation is the following. The eigenstate of H1 with the same energy as the
ground state of H0 should be in the kernel of A∗, because we have H1 = AA∗ + E(0)

0
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and im(A∗) = ker(A)⊥. This means that this state, we call it φ, is of the form

φ = Ne
√

2m
h̄ WI(x). (2.2)

We also know that the ground state of H0 goes to zero for x → ±∞ (remember the
assumption). This means that WI(x)→ ∞ for x → ±∞, if we want the ground state of
H0, given by Equation 2.1 to be normalisable. Forcing Equation 2.1 to be normalisable
thus forces that φ→ ∞ for x → ±∞. This means φ is not normalisable and not a valid
bound solution.

In this subsection we have shown the basics of the mechanics we will use in this text,
especially how one can construct a partner potential with almost the same spectrum
of its predecessor. In the next subsection, we will give an example of a factorisation of
a Hamiltonian and the partner potential you get by this process.

2.1.2 Example: infinite square well

In this example we will work out a simple system, namely the infinite square well. The
state space of this system is H0 = L2([0, L]), L ∈ R>0, with the potential V(x) = 0.
The particle is thus contained in a small, compact ’container’ or well. This quantum
mechanical system is often the first potential encountered in the study of quantum
mechanics, thus we can safely quote the eigenstates and energies of this system [17]:

En =
h̄2π2

2mL2 (n + 1)2, ψn(x) =

√
2
L

sin
(π

L
(n + 1)x

)
, n ∈N0.

Separating the ground state energy out from V(x) and renumbering we get V0(x) =

V(x)− E(0)
0 = −E(0)

0 = − h̄2π2

2mL2 , thus our Hamiltonian becomes

H0 = − h̄2

2m
d2

dx2 + V0(x) + E(0)
0 .

Now V0(x) has a zero-energy ground state. Using Lemma 2.1.3 on the ground state of
V0(x), which is the same as the ground state of V(x), we get the superpotential

W(x) = − h̄√
2m

π

L
cos(π

L x)
sin(π

L x)
= −

√
E(0)

0
cos(π

L x)
sin(π

L x)
.

The linking operators therefore become

A =
h̄√
2m

d
dx
−
√

E(0)
0

cos(π
L x)

sin(π
L x)

, A∗ = − h̄√
2m

d
dx
−
√

E(0)
0

cos(π
L x)

sin(π
L x)

,
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and the partnerpotentials (using Definitions 2.1.3 and 2.1.4):

V0(x) = W2(x)− h̄√
2m

W ′(x)

= E(0)
0

cos2(π
L x)

sin2(π
L x)
− E(0)

0
1

sin2(π
L x)

= −E(0)
0 ,

V1(x) = W2(x) +
h̄√
2m

W ′(x)

= E(0)
0

cos2(π
L x)

sin2(π
L x)

+ E(0)
0

1
sin2(π

L x)
= E(0)

0
1 + cos2(π

L x)
sin2(π

L x)
.

We now have two Hamiltonians on [0, L],

H0 = A∗A + E(0)
0 =

h̄2

2m
d

dx2 + V0(x) + E(0)
0

and H1 = AA∗ + E(0)
0 =

h̄2

2m
d

dx2 + V1(x) + E(0)
0 ,

that have, apart from the ground state of H0, the same energies. Their eigenstates are
also related to each other, because multiplying the excited eigenstates of H0 gives the
eigenstates of H1. By Theorem 2.1.1 for n ∈N0 we have:

ψ
(1)
n =

(
E(0)

n+1 − E(0)
0

)− 1
2 Aψ

(0)
n+1

=

(
h̄2π2

2mL2 (n + 1)(n + 3)

)− 1
2 ( h̄√

2m
d
dx
−
√

E(0)
0

cos(π
L x)

sin(π
L x)

)√
2
L

sin
(π

L
(n + 2)x

)
=

√
2

(n + 1)(n + 3)L

(
(n + 2) cos

(π

L
(n + 2)x

)
− cos

(π

L
x
) sin

(
π
L (n + 2)x

)
sin
(

π
L x
) )

.

This example shows that the spectrum of one of the partner Hamiltonians can be used
to calculate the spectrum of the other quite easily. However, you have to be lucky to
have a partner you know everything about. To really benefit from this technique, we
like to factorise H1 again, so we have another pair of linking operators, A1 and A∗1 ,

such that H1 = A∗1 A1 + E(1)
0 . In this way we can solve more easily for the ground state

of H1 using the kernel of A1, and then calculate the first excited state of H0. How we
then go on to calculate the other excited states of H0 is the topic of Subsection 2.1.3.

2.1.3 Families of partner potentials

In Subsection 2.1.1, we saw how we can define partner potentials for a given Hamil-
tonian, such that the partner Hamiltonians have the same eigenvalues and the eigen-
states are related by linking operators. In this section we will take this idea one step
further. Instead of just one partner Hamiltonian we define a family of them having,
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excluding some initial states, the same eigenvalues and related eigenstates.
The idea is the same as in Subsection 2.1.1, we only go further and calculate a sequence
of partner Hamiltonians Hn, where every two adjacent Hamiltonians are each other’s
partner. So if Hn = A∗n An + E(n)

0 , then Hn+1 = An A∗n + E(n)
0 = A∗n+1An+1 + E(n+1)

0 ,
with An and A∗n the linking operators between Hn and Hn+1.
For example, if we use A2 to calculate the ground state of H2, i.e. ψ

(2)
0 (remember

Equation 2.1), we can go on and calculate the first excited state of Hn by multiplying
with A∗n, as is given by Theorem 2.1.1:

ψ
(1)
1 =

(
E(2)

0 − E(1)
0

)− 1
2 A∗1ψ

(2)
0 .

If we now use the linking operator between H0 and H1, namely A∗0 , on ψ
(1)
1 then The-

orem 2.1.1 gives us the second excited state of H0:

ψ
(0)
2 =

(
E(1)

1 − E(0)
0

)− 1
2 A∗0ψ

(1)
1

=
(

E(1)
1 − E(0)

0

)− 1
2 A∗0

(
E(2)

0 − E(1)
0

)− 1
2 A∗1ψ

(2)
0

=
(

E(0)
2 − E(0)

0

)− 1
2
(

E(0)
2 − E(0)

1

)− 1
2 A∗0 A∗1ψ

(2)
0 .

Of course, we could go on, starting with H3, H4 etc, but the main idea is clear from
this calculation. In this subsection, we explore the details of this method and prove
this idea works, but the above calculation basically shows what is going on. In Figure
2.2 the eigenstates and energies of a family of partner potentials is drawn.

Definition 2.1.5 (Family of partner Hamiltonians). LetH be a state space and H0 a Hamil-
tonian on this space. Then the nth partner Hamiltonian Hn, n ∈ N, of H0 is, if the ground
state of Hn−1 is normalizable, recursively defined by Hn := An−1A∗n−1 + E(n−1)

0 , where

Hn−1 = A∗n−1An−1 + E(n−1)
0 is the previous partner Hamiltonian with E(n−1)

0 its ground
state energy. Otherwise Hn is not defined.

If the Hamiltonian has a finite number of normalised states, then the family of partner
Hamiltonians consists of only a finite number of Hamiltonians. Note that the partner
Hamiltonian Hn misses its first n eigenstates with respect to H0. From this we get a
useful lemma, where we see that the potential and superpotential can be written in
terms of their ground state.

The following result can be useful for calculations.

Corollary 2.1.1 (Family of Partner Potentials). Let H be a state space and Hn, n ∈ N0, a
family of partner potentials, possibly finite. Then the potentials satisfy the relations

Vn+1(x) = Vn(x)− 2
h̄√
2m

d2

dx2 ln
(

ψ
(n)
0

)
,

with n ∈N0 and ψ
(n)
0 the ground state of Hn.
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Figure 2.2: We see here the family of the potential V0(x). The linking operators are drawn be-
tween the eigenstates. Note that every partner has one bound eigenstate less then the previous
one. The last partner (not drawn), V4(x) would have no bound states left. This figure is based
on a figure from [8].

Proof. Let n ∈ N0 be arbitrarily given. Let Wn(x) be the superpotential with Vn(x) =

W2
n(x)− h̄√

2m
W ′n(x) + E(n)

0 and Vn+1(x) = W2
n(x) + h̄√

2m
W ′n(x) + E(n)

0 . Then we have

Vn+1(x) = W2
n(x) +

h̄√
2m

W ′n(x) + E(n)
0

= W2
n(x)− h̄√

2m
W ′n(x) + E(n)

0 + 2
h̄√
2m

W ′n(x)

= Vn(x) + 2
h̄√
2m

W ′n(x)

= Vn(x)− 2
h̄√
2m

d2

dx2 ln
(

ψ
(n)
0

)
.

Where we used Lemma 2.1.3 in the last equation. �

The relations between eigenvalues and eigenstates are equivalent with those of a single
partnership, as the following theorem states.

Theorem 2.1.2 (Degeneracy of a Family). LetH be a state space and Hn, n ∈N0, a family
of partner Hamiltonians, possibly finite. Then the eigenvalues satisfy the relations

E(n+l)
m = E(n)

m+l, n, m, l ∈N0,
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and the eigenstates the relations

ψ
(n+l)
m =

l

∏
i=1

((
E(n+l−i)

m+i − E(n+l−i)
0

)− 1
2 An+l−i

)
ψ
(n)
m+l,

ψ
(n)
m+l =

l

∏
i=1

((
E(n+i)

m+l−i − E(n+i)
0

)− 1
2 A∗n+i−1

)
ψ
(n+l)
m ,

with n, m ∈N0 and l ∈N, for all defined Hamiltonians.

Proof. Let n, m ∈ N0 be arbitrarily given. Note that if this formula holds for l = 1, it also
holds for l > 1, because l > 1 is just using multiple times the case l = 1 with every time
different values for n and m. We thus have to prove that E(n+1)

m = E(n)
m+1 and

ψ
(n+1)
m =

(
E(n)

m+1 − E(n)
0

)− 1
2 Anψ

(n)
m+1,

ψ
(n)
m+1 =

(
E(n+1)

m − E(n+1)
0

)− 1
2 A∗nψ

(n+1)
m .

However, this follows directly from Theorem 2.1.1. �

Theorem 2.1.2 tells us that if we know the ground states of every Hamiltonian in the
family, we know all the (bounded) eigenstates of every Hamiltonian in the family. The
ground states can be calculated from the linking operators, because the ground states
of the Hamiltonians in the family are in the kernels of the operators An. This is a good
result, because one does not have to solve a second order differential equation with
this technique.
The downside of this method is that you have to solve a non-linear first order differen-
tial equation to get the linking operators, as Definition 2.1.3 requires a superpotential
for the linking operators. In most cases, this slows down the calculation, so we would
like to have a shortcut, to not have to calculate the superpotential or potential again
every time we add another partner to the family. A possible shortcut would be to write
the partner potential of a given potential in terms of the given potential, such that we
only have to solve for the superpotential ones. This idea is explored in Chapter 3.

2.2 Supersymmetric model

For some background information on super linear algebra and super Lie algebras, we
refer to Appendix A.1.

We are now at a point where we can introduce a supersymmetric quantum mechanical
model. Normally, a symmetry group is described by a Lie group, a manifold that also
has a group structure. However, because there is a close correspondence between Lie
groups and Lie algebras (the latter can mathematically be seen as the tangent space
of the identity element or physically as the logarithm around the identity element),
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we can also say that this Lie group generates the Lie algebra. In the general case, this
algebra contains both the Poincaré group of Minkowski symmetries and a group of
internal symmetries. The question asked by Coleman and Mandula was if there were
internal symmetries that could generate the Lie algebra containing the Poincaré group.
Their answer was no, because they only used commutating symmetries. However,
when using the loophole, i.e. allowing anti-commutating symmetries, discovered by
Haag, Lopuszanski and Sohnius, it is possible to have some internal symmetries gen-
erating the total Lie algebra, or now better called the total super Lie algebra.
In our quantum mechanical case, we only use time translation in our Poincaré group of
symmetries, so the representation of our symmetry group will only contain the Hamil-
tonian, not the momenta or other continuous symmetries. As anti-commutating sym-
metries, we will use two supersymmetries, which will be represented by an operator
and its adjoint. Our super Lie algebra will therefore contain only three base vectors,
which represent the Hamiltonian and the two supersymmetries. The supersymme-
tries will be the odd vectors, named B and C, and the Hamiltonian the even vector, A.
The commutation and anti-commutation relations are therefore given by

[A, B] = [A, C] = 0, [B, C] = A, [A, A] = [B, B] = [C, C] = 0.

Note that, because B and C are odd, we have [B, C] = [C, B], in contrary to A, where
we have [A, B] = −[B, A] and [A, C] = −[C, A]. As the commutation relations show,
our super Lie algebra is generated by only the anti-commutating symmetries, B and
C, because we have [B, C] = A. This is the super Lie algebra we will use.
The only task we have to do know is to define a representation of this super Lie al-
gebra in terms of quantum operators, which is done in Definition 2.2.1, and to show
this actually is a representation of our super Lie algebra. As operators we will use
a two-dimensional Hamiltonian composed of a one-dimensional Hamiltonian and its
partner, and two charges, composed of a matrix multiplied with one of the two linking
operators. It turns out that this choice is a perfect representation of our little super Lie
algebra and is therefore a nice model for supersymmetric quantum mechanics.

Definition 2.2.1 (Charge operators). Let H0 be a state space and let H0, H1 be partner
Hamiltonians given by linking operators H0 = A∗A and H1 = AA∗. Define a new state
spaceH := H0⊕H0 with Hamiltonian H := H0⊕ H1. Then the charge operators Q and Q∗

and the Hamiltonian H are given by

Q :=
(

0 0
A 0

)
, Q∗ :=

(
0 A∗

0 0

)
and H :=

(
A∗A 0

0 AA∗

)
.

First notice that these charges are each others adjoint. Second, notice that Q∗Q +
QQ∗ = H and Q2 = (Q∗)2 = 0. These two relations are in line with the anti-
commutating relations, because QQ + QQ = 2Q2 = 0, Q∗Q∗ + Q∗Q∗ = 2(Q∗)2 = 0
and Q∗Q + QQ∗ = H hold. We have to use the anti-commutator, because B and C are
odd, and thus Q and Q∗ should also be odd. The commutators of these charges with
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the Hamiltonian are given by

HQ−QH = Q∗QQ + QQ∗Q−QQ∗Q−QQQ∗

= Q∗QQ−QQQ∗ = 0− 0 = 0,
HQ∗ −Q∗H = Q∗QQ∗ + QQ∗Q∗ −Q∗Q∗Q−Q∗QQ∗

= QQ∗Q∗ −Q∗Q∗Q = 0− 0 = 0.

The operators comply with the relations of the super Lie algebra, if we use the stan-
dard commutator and anti-commutator as super Lie bracket. Note that we have used
commutating relations and super Lie bracket almost as the same concept. They are
however not. Commutating relations are only defined when there is a normal multi-
plication. The super Lie bracket is not a commutation relation, it is actually the multi-
plication in the super Lie algebra. Luckily for us, the commutation/anti-commutation
relations can be proven to comply with the axioms for a super Lie bracket. We will
come back to this later in Theorem 2.2.1.
Going back to our operators, we see that our Hamiltonian is two-dimensional, but we
would rather describe it as having a bosonic and a fermionic part. The nth excited
state can be interpreted as the n-particle state, where the degeneracy determines if one
of the particles is a boson or fermion. The Q-charge alters a boson into a fermion and
Q∗ alters a fermion into a boson. For the energy this change does not matter, so there is
a symmetry between bosons and fermions. As the commutation relations between Q,
Q∗ and H already showed, Q and Q∗ commutate with H and are therefore symmetries
of H. The exact degeneracy is showed in Lemma 2.2.1.

Lemma 2.2.1 (Degeneracy). Let H, H, Q and Q∗ as in Definition 2.2.1. Then every non-
zero eigenvalue of H is two-fold degenerate. The zero-eigenvalue, if it exists, is nondegenerate.

Proof. First, let E 6= 0 and ψ ∈ dom(H)8 with Hψ = Eψ be arbitrarily given. Then we have
for its components that:(

Eψ(0)

Eψ(1)

)
= Eψ = Hψ =

(
H0 0
0 H1

)(
ψ(0)

ψ(1)

)
=

(
H0ψ(0)

H1ψ(1)

)
,

thus H0ψ(0) = Eψ(0) and H1ψ(1) = Eψ(1). Looking at the first equality, this only exists if
E = E(0)

n+1, n ∈ N0, thus ψ(0) = c1ψ
(0)
n+1, c1 ∈ C. Then using Theorem 2.1.1 we get that

ψ(1) = c2ψ
(1)
n , c2 ∈ C. This shows that

ψ = c1

(
ψ
(0)
n+1
0

)
+ c2

(
0

ψ
(1)
n

)
,

thus it lies in the span of

(
ψ
(0)
n+1
0

)
and

(
0

ψ
(1)
n

)
. This completes the first part.

For the second part, notice that if ψ is in the kernel, H0ψ(0) = 0 andH1ψ(1) = 0. We already

8See the assumption in subsection 2.1.1.
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saw that if a non-zero ψ
(0)
0 exists, that the kernal of H1 is empty. Thus the only way for a

non-zero ψ to be in the kernel of H is to be of the form

ψ = c1

(
ψ
(0)
0
0

)
.

This makes the kernel one-dimensional and thus is the eigenvalue 0 non-degenerate. �

To complete our model, we only have to prove our system is a super Lie algebra and
therefore a true representation of a supersymmetric system.

Theorem 2.2.1. Let H0 be a state space with partner potentials H0 and H1. Let H := H0 ⊕
H0 and H = H0⊕ H1. ThenH is a super vector space and the super Lie algebra generated by
the charges contains H.

Proof. The fact thatH is a super vector space is trivial, because of its definition.
The space spanned by Q, Q∗ and H is a super vector space V, with V0 := span(H) and
V1 := span(Q, Q∗). Note that from Q2 = (Q∗)2 = 0 and Q∗Q + QQ∗ + H we see Q and
Q∗ are odd, because the composition of two odd function should, and is, even. H is obviously
even.
We thus only have to show that this space is a super Lie algebra generated by the charges.
We define the bracket of the super Lie algebra by [A, B] = AB− (−1)p(A)p(B)BA, where the
multiplication is the composition of maps. This definition clearly is bilinear. The charges are
odd, meaning the bracket of the charges equals [Q∗, Q] = Q∗Q + QQ∗ = H. H is thus
generated by the charges. Note that the super vector space is closed under the bracket, because
the bracket of a charge with the Hamiltonian is equal to the commutator of the two and therefore
equal to zero.
We only have to show our commutator/anti-commutator is a super Lie bracket. For the super
anti-linearity we have (A, B ∈ V):

[A, B] = AB− (−1)p(A)p(B)BA

= −(−1)p(A)p(B)(BA− (−1)p(A)p(B)AB)

= −(−1)p(A)p(B)[B, A].

For the last property, notice that we only have three generators, so we may just calculate the
identity with these three:

[H, [Q, Q∗]] + (−1)p(H)p(Q)+p(H)p(Q∗)[Q, [Q∗, H]] + (−1)p(H)p(Q∗)+p(Q)p(Q∗)[Q∗, [H, Q]]

= [H, H] + [Q, 0]− [Q∗, 0] = 0.

The other permutations are similar, because every inner bracket is either the zero bracket or H.
This means that the outer bracket is given by [H, H], [Q∗, H] or [Q, H] (the elements in the
brackets can be switched). All these brackets are zero, so the identity always holds. This means
V is a super Lie algebra. �
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We therefore have a super Lie algebra of a Hamiltonian and charges, generated by the
charges, that is constructed from the linking potentials and partner Hamiltonians of
Subsection 2.1.1. This is the reason why the method described in that section is called
supersymmetric.

Now we have the supersymmetric quantum mechanical model, there is only one issue
to address: what is the difference between having a zero-energy ground state and
not having such state? The answer lies in the difference between broken and unbroken
supersymmetry. As with every other symmetry, you would want to know if there
are any states that are invariant under the symmetry. For example, the even states
(ground state, second excited state etc.) of the infinite square well are invariant under
the symmetry x 7→ L − x, the symmetry of mirroring the potential around x = 1

2 L.
For supersymmetry, there only is one candidate, the zero-energy state. This would
directly be the ground state, because we can write

H = Q∗Q + QQ∗ = (Q + Q∗)2 ,

thus every eigenvalues is non-negative9. This means that the vacuum state, the phys-
ical interpretation of the ground state, is invariant under this supersymmetry, if it has
zero energy. This is callled unbroken supersymmetry. If the ground state has non-zero
energy, then it is not invariant under supersymmetry, so we call this case broken super-
symmetry. The physical significance lies in the fact that in the first case, bosons and
fermions have the same mass [32]. If the vacuum energy is not invariant under this
symmetry, it can be proven a massless fermion exists, the so-called Goldstone fermion
[25]. Thus, having a zero-energy ground state is physically significant.

2.3 Singular potentials

Until now, we used that V(x) is regular, i.e. it has no singular points. This allowed
us to build up a theory where we can proof a degeneracy theorem, Theorem 2.1.1. It
would be interesting to see if this theorem would hold even if V(x) has one or more
singularities. This question turns out to be related to another topic, namely the defini-
tion of the linking operators in Definition 2.1.4. Here we took the linking operators A
and A∗ such that H0 = A∗A+ E0, with E0 the ground state energy. This meant that the
ground state of this Hamiltonian is part of the kernel of A. We could however chose
another term, in stead of E0. This choice determines the behaviour of our system and
gives rise to singular potentials10.
The main idea is to look for solutions of the Schrödinger equation without caring for
normalisability. With ε the parameter we use to modify our choices and φ a possible
solution, the Schrödinger equation becomes

−d2φ

dx2 + V(x)φ = εφ.

9This is also the case in quantum field theory [14].
10For more information on singular potentials in general, we recommend the review written by Frank,

Land and Spector [15].
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Here we have taken h̄ = 2m = 1 for clearity. For ε = E0 we get our ground state
solution back. Writing V0(x) = V(x)− E0 then gives the situation of Definition 2.1.4.
This case is called unbroken supersymmetry, as was discussed in the last section. This is
also the assumed case for this text (except this section).
The case ε < E0 is called broken supersymmetry. Note that in this case V0(x) has a
ground state energy larger then zero, because it is just an increased V(x). Although a
simple translation, this displacement has large consequences. This was also discussed
in the previous section.
The case ε > E0 is the case where singular potentials come into play. If we write φε for
the solution with energy ε, then we have

V(x)− ε =
1
φε

d2φε

dx2 =
1

φ2
ε

(
d2φε

dx2 φε −
(

dφε

dx

)2

+

(
dφε

dx

)2
)

=

(
− 1

φε

dφε

dx

)2

− d
dx

(
− 1

φε

dφε

dx

)
= W2

ε (x)−W ′ε(x),

where the first step is directly seen from the Schrödinger equation. This shows us that
Wε(x) = − 1

φε

dφε

dx is a superpotential that gives V(x)− ε. Note that the ground state
does not have zeros [4], but solutions after this state do. Therefore, Wε(x) has at least
one singularity, and consequently the partner potential V1(x) has at least one too.
The question remains if Theorem 2.1.1 holds. This is not the case. The problem is that
the superpotential is part of the linking operator, making the linking operator singular
at particular values of x. To have meaningful wave functions, every wave function
should be zero at that particular point, so not to have singular wave functions. In gen-
eral, this is not possible, as the example of the infinite square well shows.
However, partial degeneracy can be possible, if the potentials are symmetric around
their singularity [9]. This can be done if we use the first excited state of V0(x), be-
cause it only has one zero11. In this case some wave functions arise that are symmetric
around the singularity and have a zero there. These wave functions can nullify the
singularity in the linking operator, making it possible to have a meaningful partner
function. An example is the infinite square well from Example 2.1.2. If we take L = π
the first excited state of the infinite square well becomes

ψ
(0)
1 (x) =

√
2
π

sin(2x).

The superpotential is then

W(x) = − 1

ψ
(0)
1

dψ
(0)
1

dx
= −2 cos(2x)

sin(2x)
.

The partner potentials are

V0(x) = W2(x)−W ′(x) = −4, V1(x) = W2(x) + W ′(x) = 4
cos2(2x) + 1

sin2(2x)
.

11For solutions with ε > E1, this will not be possible, because they have at least two singularities,
making this argument a lot harder.
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The second potential definitely has a strong singularity at x = 1
2 π. Now note that

V1(x) is just twice the standard partner potential of V0(x), one at [0, 1
2 π) and one at

(1
2 π, π]. At x = 1

2 π it forces the wave functions to zero, as the ’doubled’ potential
shows. Now look how the eigenfunctions of V0(x) are transformed to ’eigenfunctions’
of V1(x) with the help of the linking operators:

Aψ
(0)
n+1(x) ∝

(
d
dx

+
2 cos(2x)
sin(2x)

)
sin((n + 1)x)

= (n + 1) cos((n + 1)x)− 2 cos(2x)
sin(2x)

sin((n + 1)x) ∝ ”ψ
(1)
n (x)”.

Remember that n = 1 is the ground state of the infinite square well (convention), and
we basically subtracted the first excited energy of the potential, so the energy of the
first excited state should be zero. This means the first excited state should be nullified
by the linking operator A, as is the case. Evaluating Aψ

(0)
n (x) at x = 1

2 π gives the limit

lim
x→ 1

2 π
n cos(nx)− 2 cos(2x)

sin(nx)
sin(2x)

.

For n odd we have the first cosine zero, the second equal to 1, but the fractal becomes
±∞, depending on n, thus the singularity of the linking operators does not vanish.
However, for n even, this limit does go to zero. In this case, the infinite square well
can just be described as two infinite square wells combined, just as the partner poten-
tial is described. There are some sign problems, but that can be fixed by the right factor
for A. This means there is a partial degeneration. However, as we already stated, this
is an exception, because in general, degeneracy is broken.
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Chapter 3
Shape Invariant Potentials

In this chapter we will look at a class of potentials that can be solved easily with alge-
braïc methods, called shape invariant potentials. First we describe the basic case of this
class, how it is defined and how it is used. Then we give an example to illustrate a way
of using them by calculating the excited states of a slightly modified Morse potential.
Using a generalisation of shape invariance, called multiple-step shape invariance, we
open up a huge class of potentials, only limited by the fact that those potentials can
be rather exotic. We end the chapter with a short introduction of ways to find shape
invariant potentials and with a remark on how some shape invariant potentials are
related to each other by coordinate changes.

3.1 Easily solvable potentials

3.1.1 Concept of shape invariant potentials

In Chapter 2 we saw the definition of partner potentials and how they can be used to
solve for the spectrum of a Hamiltonian. It became clear that this method, although
useful, has its drawbacks, because we would still have to solve for the superpotential
every time we add a new partner to the sequence. This chapter is about a class of
potentials where this problem does not occur. These potentials, called shape invariant
potentials (SIPs), have the property that their partner are of the same form. This means
that when you have to solve for the superpotential to add a new state, the equation
becomes a lot easier, because you already solved it for a similar potential. Before we
go into details, we start with an example.

Shape invariant potentials, take V0(x, a), are dependent on one or more parameters,
a ∈ Rn, such that their partner has the same form as V0(x, a), but only with a different
parameter: V1(x, a) = V0(x, f (a)) + R(a)1. Here is f : Rn → Rn a parameter change
and R : Rn → R a vertical shift. This parameter change is why this class is called

1Here we use R(a) both as a function R : a 7→ R(a) and as an operator R : φ 7→ R(a)φ.
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shape invariant, because we only change the settings of the potential, not the overal
shape. We allow the partner potential to be vertically translated, because it turns out
that we can calculate the eigenvalues using R(a).
Note that we do not have to stop here, the entire family of this potential can easily be
calculated. This is because we can just separate the ground state out of the potential:
if we start with a Hamiltonian of the form2

H0 = − h̄2

2m
d

dx2 + V0(x, a) + E(0)
0 (a) = A∗0(x, a)A0(x, a) + E(0)

0 ,

the next two Hamiltonians in the family of H0 become

H1 = A0(x, a)A∗0(x, a) + E(0)
0 (a)

= − h̄2

2m
d

dx2 + V1(x, a) + E(0)
0 (a)

= − h̄2

2m
d

dx2 + V0(x, f (a)) + R(a) + E(0)
0 (a)

= A∗0(x, f (a))A0(x, f (a)) + R(a) + E(0)
0 (a);

H2 = A0(x, f (a))A∗0(x, f (a)) + R(a) + E(0)
0 (a)

= − h̄2

2m
d

dx2 + V1(x, f (a)) + R(a) + E(0)
0 (a)

= − h̄2

2m
d

dx2 + V0(x, f 2(a)) + R( f (a)) + R(a) + E(0)
0 (a)

= A∗0(x, f 2(a))A0(x, f 2(a)) + R( f (a)) + R(a) + E(0)
0 (a)

Hn = − h̄2

2m
d

dx2 + V0(x, f n(a)) +
n

∑
i=1

R( f i−1(a)) + E(0)
0 (a)

= − h̄2

2m
d

dx2 + V0(x, f n(a)) + E(n)
0 (a).

The last step will be proven in Corollary 3.1.1.
As an example, take the Hamiltonian3

H0 = − d
dx2 + V0(x, a) = − d

dx2 +
a(a− 1)
cos2(x)

− a2,

with a ≥ 0, defined on [−1
2 π, 1

2 π]. This is a special case of the trigonometric Scarf 1
potential [9] and has zero ground state energy. The superpotential of this potential is
W(x, a) = a tan(x). The linking operators of Definition 2.1.3 are given by

A(x, a) =
d
dx

+ a tan(x), A∗(x, a) = − d
dx

+ a tan(x).

2As with R(a), E(n)
m (a) is a function as well as an operator, giving the m-th energy level of the n+ 1-th

potential in the family, because we started with V0(x, a).
3We set h̄ = 2m = 1 for clearity.
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The partner Hamiltonians become

H0 = A∗(x, a)A(x, a)

= − d
dx2 + W2(x, a)−W ′(x, a)

= − d
dx2 +

a2 sin(x)2

cos(x)2 −
a

cos(x)2

= − d
dx2 +

a(a− 1)
cos2(x)

− a2;

H1 = A(x, a)A∗(x, a)

= − d
dx2 + W2(x, a) + W ′(x, a)

= − d
dx2 +

a2 sin(x)2

cos(x)2 +
a

cos(x)2

= − d
dx2 +

a(a + 1)
cos2(x)

− a2,

so we have

V1(x, a) =
a(a + 1)
cos2(x)

− a2.

These two definitely look like each other. In fact, we can write V1(x, a) as

V1(x, a) =
a(a + 1)
cos2(x)

− a2

=
a(a + 1)
cos2(x)

− (a + 1)2 + (2a + 1)

= V0(x, a + 1) + R(a).

Here we took R(a) = 2a + 1. Now we separate out the ground state energy, such that

H1 = − (d)
dx2 + V0(x, a + 1) + R(a) = A∗(x, a + 1)A(x, a + 1) + R(a).

The next Hamiltonian in the family now becomes

H2 = A(x, a + 1)A∗(x, a + 1) + R(a)

= − d
dx2 + W2(x, a + 1) + W ′(x, a + 1) + R(a)

= − d
dx2 +

(a + 1)2 sin(x)2

cos(x)2 +
a + 1

cos(x)2 + 2a + 1

= − d
dx2 +

(a + 1)(a + 2)
cos2(x)

− a2.
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Again, this potential is just a parameter shift (or two) away from V0(x, a):

V2(x, a) =
(a + 1)(a + 2)

cos2(x)
− a2

=
(a + 1)(a + 2)

cos2(x)
− a2 − 2a− 1 + 2a + 1

=
(a + 1)(a + 2)

cos2(x)
− (a + 1)2 + 2a + 1

= V1(x, a + 1) + R(a)

=
(a + 1)(a + 2)

cos2(x)
− (a + 1)2 − 2a− 3 + 2a + 3 + 2a + 1

=
(a + 1)(a + 2)

cos2(x)
− (a + 2)2 + 2a + 3 + 2a + 1

= V0(x, a + 2) + R(a + 1) + R(a).

As we can see in this example, the family of a SIP is very easily calculated. In Definition
3.1.1 and Lemma 3.1.1 we will make this idea precise.

Definition 3.1.1 (Shape Invariant Potential). Let H be a state space, H0 = A∗A + E(0)
0

and H1 = AA∗ + E(0)
0 partner Hamiltonians and V0(x, a) and V1(x, b) their potentials with

parameters a, b ∈ Rn. Then V0(x, a) is shape invariant if it satisfies the relation

V1(x, a) = V0(x, f (a)) + R(a),

where f : Rn → Rn and R : Rn → R are continuous functions.

Note that we assume V0(x, a) has a zero-energy ground state, because we split the
Hamiltonian into a factorisation term and a ground state energy term. We will there-
fore often use E(0)

0 (a) = 0. Later in Subsection 3.1.3 this will be used again, but more
explicitly. In Section 2.3 we have gone deeper into this topic, studying potentials with
non-zero ground state energy.
If we use this shape invariant condition multiple times, we get a family of partner po-
tentials that all have the same form. This is the topic of Lemma 3.1.1.

Lemma 3.1.1 (Family of SIPs). LetH be a state space and V0(x, a), a ∈ Rn, a shape invariant
potential with zero ground state energy for all a ∈ Rn, thus E(0)

0 (a) = 0. Then the family of
Hamiltonians Hn, n ∈N0, given by

Hn = − h̄2

2m
d2

dx2 + V0(x, f n(a)) +
n

∑
i=1

R( f i−1(a)), n ∈N

and H0 = − h̄2

2m
d2

dx2 + V0(x, a) is a family of partner Hamiltonians.

34

Version of July 13, 2018– Created July 13, 2018 - 16:44



Proof. The case n = 0 is obvious. So let n ∈N be arbitrarily given and assume the statement
holds for every 0 ≤ m ≤ n− 1. First, write the Hamiltonians Hn and Hn+1 as

Hn = − h̄2

2m
d2

dx2 + V0(x, f n(a)) +
n

∑
i=1

R( f i−1(a))

=: − h̄2

2m
d2

dx2 + Ṽn(x, a) +
n

∑
i=1

R( f i−1(a)),

Hn+1 = − h̄2

2m
d2

dx2 +
(

V0(x, f n+1(a)) + R( f n(a))
)
+

n

∑
i=1

R( f i−1(a))

=: − h̄2

2m
d2

dx2 + Ṽn+1(x, a) +
n

∑
i=1

R( f i−1(a)).

We have to prove Hn and Hn+1 are partner Hamiltonians, thus Ṽn(x, a) and Ṽn+1(x, a) are
partner potentials. Note that for V0(x, f n(a)) we have E(0)

0 ( f n(a)) = 0, thus the ground state
energy of Hn equals E(n)

0 (a) = ∑n
i=1 R( f i−1(a)). This means we can write Hn as

Hn = − h̄2

2m
d2

dx2 + Ṽn(x, a) + E(n)
0 (a) = A∗n(a)An(a) + E(n)

0 (a).

Using the shape invariant condition on V0(x, f n(a)) we get

H′n+1 = An(a)A∗n(a) + E(n)
0 (a)

= − h̄2

2m
d2

dx2 + V0(x, f n+1(a)) + R( f n(a)) + E(n)
0 (a)

= − h̄2

2m
d2

dx2 + Ṽn+1(x, a) + E(n)
0 (a) = Hn+1.

This means Hn and Hn+1 are partner Hamiltonians. �

Corollary 3.1.1 (Energies of a SIP family). The eigenvalues of a family of SIP-partner
Hamiltonians are given by

E(n)
m =

n+m

∑
i=1

R( f i−1(a)), n, m ∈N0, n + m ≥ 1,

and E(0)
0 = 0.

Proof. This follows directly from the proof of Lemma 3.1.1. �

From the previous discussion it is clear that we can very easily generate the family
of partner Hamiltonians of a SIP. The reason why the spectrum of a SIP is very eas-
ily calculated becomes clear when we note that if one solves for the ground state of
V0(x, a), for every a, one directly gets the ground state of every other potential in the
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family: if ψ
(0)
0 (x, a) is the ground state of V0(x, a), then ψ

(0)
0 (x, f (a)) is the ground state

of V0(x, f (a)). Shifting the potential up with a constant does not change the behaviour
of the eigenstates, so ψ

(0)
0 (x, f (a)) also is the ground state of V0(x, f (a)) + R(a), only

with a different energy. Using the shape invariant condition we therefore see that
ψ
(0)
0 (x, f (a)) is the ground state of V1(x, a).

Now we have the ground state of every Hamiltonian in the family of partner Hamil-
tonians, getting the complete spectrum of H0 is easy. The linking operators are all
clear because of the shape invariance condition on the superpotentials. So taking the
ground state of a Hamiltonian, say H2, and multiplying it with the appropriate linking
operators, here A∗(x, a)A∗(x, f (a))ψ(0)

0 (x, f (a)), we can get every excited state of H0,
here the second excited state. Theorem 3.1.1 makes this idea precise.

Theorem 3.1.1 (Degeneracy of a SIP-family). Let H be a state space and Hn, n ∈ N0, a
family of SIP-partner Hamiltonians, possibly finite. Then the eigenvalues satisfy the relations

E(n+l)
m = E(n)

m+l =
n+m+l

∑
i=1

R( f i−1(a)), n, m, l ∈N0, n + m + l ≥ 1,

E(0)
0 (a) = 0 and the eigenstates the relations

ψ
(n)
m (x, a) =

m

∏
i=1

( n+m

∑
j=n+i

R
(

f j−1(a)
))− 1

2

A∗
(

x, f n+i−1(a)
)ψ0

(
x, f n+m(a)

)
,

with n ∈N0 and m ∈N, for all defined Hamiltonians.

Proof. Clear from Theorem 2.1.2, Corollary 3.1.1 and the observation that ψ
(n)
0 (x, a) = ψ

(0)
0 (x, f n(a)).

�

Although the condition on this class is strong, some rich families of potentials have
been found in this class. Simple examples are the radial Coulomb potential and the
harmonic oscillator. It is not known if all families of SIPs are found, nor if shape
invariance is necessary for a potential to be analytically solvable. There are results
that may indicate there are analytically solvable potentials that are not shape invariant
[6].

3.1.2 Example: Morse potential

To show the power of SIP’s we will now calculate the bounded eigenstates of an im-
portant potential, namely the Morse potential. This potential, normally given by [10]

V(x) = D
(
1− e−αx)2 , (3.1)
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with D > 0 the depth of the potential, α > 0 an inverse width of the well and x = 0
the equilibrium point of the potential, is used as an approximation of the binding
force between two atoms in a molecule. Here one particle is at −∞, where the other
is in the potential. The behaviour of this particle is as follows: for x < 0, it gives a
repulsive force, because the potential goes to infinity. This models strong repulsive
forces between two atoms coming to close to each other. Going in the other direction,
the potential gradually increases to a constant. This means that for large x > 0 the
Morse potentials describes a decreasing attractive force. The finite limit at x → ∞
ensures there are only a finite number of bounded states4. However, to use our newly
developed techniques on this system we have to slightly modify the potential to make
it shape invariant:

V0(x, a) =
(
a− be−αx)2 − αbe−αx. (3.2)

We still have the qualitative behaviour of the potential, the parameters are only a little
less physically obvious. If we take as superpotential5 W(x, a) = a− be−αx, this change
becomes clear:

V0(x, a) =
(
a− be−αx)2 − αbe−αx

= W2(x, a)−W ′(x, a)

= a2 − 2b(a +
1
2

α)e−αx + b2e−2αx.

We thus used the square in the Morse potential in our advantage to make the potential
shape invariant. Furthermore, we can give physical meaning to the parameters by
using D = a2 = b2, where a, b > 0 to ensure the right physical behaviour. Of course,
it would also be possible to first derive the ground state by another method and then
calculate the superpotential using Lemma 2.1.3. This would however lead to a more
complicated superpotential. We are only interested in the qualitative behaviour of this
model, so we use this way. The partner potential of V0(x, a) can now be calculated:

V1(x, a) = W2(x, a) + W ′(x, a)

= a2 − 2b(a− 1
2

α)e−αx + b2e−2αx

The function f (a) is clear from the factor (a− 1
2 α): f (a) = a− α. This gives us R(a)

using Definition 3.1.1:

R(a) = V1(x, a)−V0(x, f (a)) = a2 − (a− α)2

Now we have R(a) and f (a) it is possible to calculate the energy eigenvalues, without
even using the eigenstates. The eigenvalues are given by Theorem 3.1.1:

E(0)
m =

m

∑
k=1

(a− (k− 1)α)2 − (a− kα)2 = a2 − (a−mα)2 .

4That this is actually the case becomes clear later.
5Again, we use h̄ = 2m = 1 for clearity.
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This equation already gives an indication there are only a finite number of bounded
states, because for

m >
a
α

the energies go down again, which is physically impossible. To calculate the eigen-
states, we need the ground state, because even the spectra of shape invariant potentials
do not come for free. We will quote this function here from [7].

ψ
(0)
0 (x, a) =

(
2b
α

e−αx
) a

α

e−
1
2

2b
α e−αx

= y(x)
a
α e−

1
2 y(x),

where we used y(x) = 2b
α e−αx. The first excited state is then calculated by just multi-

plying ψ
(0)
0 (x, f (a)) with (E(0)

1 − E(0)
0 )−

1
2 A∗(x, a) (we assume a

α > 1):

ψ
(0)
1 (x, a) = (E(0)

1 − E(0)
0 )−

1
2 A∗(x, a)ψ(0)

0 (x, f (a))

= (2aα− α2)−
1
2

(
− d

dx
+ a− be−αx

)
y(x)

a−α
α e−

1
2 y(x)

= (2aα− α2)−
1
2

·
(
(a− α)y(x)

a
α e−

1
2 y(x) − 1

2
αy(x)

a
α+1e−

1
2 y(x) + ay(x)

a
α e−

1
2 y(x) − α

2
y(x)

a
α+1e−

1
2 y(x)

)
= (2aα− α2)−

1
2 y(x)

a
α e−

1
2 y(x) (2a− α− αy(x))

=

(
2a
α
− 1
)− 1

2

y(x)
a
α e−

1
2 y(x)

(
2a
α
− 1− y(x)

)
.

Using Theorem 3.1.1 for ψ
(0)
m , m ∈N we get excited states in the following form:

ψ
(0)
m (x, a) =

m

∏
i=1

( m

∑
j=i

R
(

f j−1(a)
))− 1

2

A∗
(

x, f i−1(a)
) · ψ0 (x, f m(a))

=
m

∏
i=1

((
E(0)

m − E(0)
i−1

)− 1
2
(
− d

dx
+ W

(
x, f i−1(a)

)))
· ψ(0)

0 (x, a− αm) .

With this equation we can get every excited state of the Morse potential by just multi-
plying the appropriate ground state by a number of slightly different operators. This
identity is already calculated into an explicit form, namely [9]

ψ
(0)
m (x, a) = y(x)

a
α−me−

1
2 y(x)L2( a

α−m)
m (y(x)),

with y(x) = 2b
α e−αx and Lα

n(x) the Laguerre polynomials6. With shape invariance, we
have therefore solved the entire spectrum of the Morse potential.

6The Laguerre polynomial Lα
n(x) is defined as the polynomial solution of the equation xy′′ + (α +

1− x)y′ + ny = 0, n ∈N0 [26].
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3.1.3 Shape invariance in multiple steps

In Subsection 3.1.1 we saw the basic definition of shape invariance, namely V1(x, a) =
V0(x, f (a)) + R(a), with a ∈ Rn a parameter and f (a) and R(a) some functions. This
equality, which gives a relation between every two subsequent potentials in a family
of partner potentials, was then used to calculate the ground states of these potentials.
With multiple-step shape invariant potentials we generalise this equality to open up
the possibility of even more solvable potentials. However, this generalisation has its
costs: to know the complete spectrum of a multi-step SIP, only solving for the ground
state of the first potential is not enough anymore, we need more.
So how does this work? As an example of the concept, we begin with a special case
of a N-step SIP, N ∈ N. We start with a family of partner potentials Vn(x, a), n ∈ N0
and a ∈ Rn. The N-step shape invariance condition is now VN(x, a) = V0(x, f (a)) +
RN(a). The partner potentials in between are connected as usual with superpotentials
Wn1(x, a), 0 ≤ n1 ≤ N − 1. To make it a family, we take VN(x, a) and treat it like
V0(x, a). The superpotentials needed for this new N-step are already given, because
of the N-step shape invariance condition. Therefore, we can just go along building up
the family.
In the normal case of shape invariance in multiple steps, we allow for the intermediate
potentials to be vertically translated. This means that W0(x, a) connects V0(x, a) with a
’twin’ potential V+

1 (x, a), which is translated down with a displacement of R1(a), such
that its ’twin’, V−1 (x, a) = V+

1 (x, a)− R1(a), becomes the partner potential of V+
2 (x, a)

with superpotential W1(x, a). The definition of N-step shape invariance is therefore
the following.

Definition 3.1.2 (N-step shape invariance). Let N ∈N≥2 (the case N = 1 is the standard
shape invariance). Let V0(x, a), V±n1

(x, a), 1 ≤ n1 ≤ N − 1, and VN(x, a) be potentials
such that V0(x, a) and V+

1 (x, a), V−n1
and V+

n1+1, with 1,≤ n1 ≤ N − 2, and V−N−1(x, a)
and VN(x, a) are partner potentials with superpotentials Wn1(x, a), 0 ≤ n1 ≤ N − 1, and
V+

n1
(x, a) = V−n1

(x, a) + Rn1(a) hold for every 1 ≤ n1 ≤ N− 1, for some Rn1 : Rn → R. Let
Wn1(x, a) be the superpotential of V−n1

(x, a) if n1 ≥ 1 and of V0(x, a) if n1 = 0. Then V0(x, a)
is called N-step shape invariant if

VN(x, a) = V0(x, f (a)) + RN(a)

for some f : Rn → Rn and R0 : Rn → R.

To simplify the notation a little bit, we often use instead of n the double index n =
NnN + n1. Here nN ∈N0 is the index that gives the number of shape invariant ’steps’
and n1 is the index that for 1 ≤ n1 ≤ N − 1 gives the potentials in between and for
n1 = 0 the shape invariant potentials. The in-between potentials are thus written as
V±NnN+n1

(x, a), where the plus and minus signs denote the upper or lower variants,
1 ≤ n1 ≤ N − 1. The shape invariant potentials do not have plus and minus variants.
Note that the N-step shape invariance condition also connects the intermediate po-
tentials: if V+

N+n1
(x, a) is an intermediate potential after VN(x, a), then it is given by

V+
N+n1

(x, a) = V+
n1
(x, ( f (a)) + RN(a), because the superpotentials between V0(x, f (a))

and V+
n1
(x, f (a)) are the same to those between VN(x, a) and V+

N+n1
(x, a). This is the
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subject of Lemma 3.1.2.

Lemma 3.1.2 (Shape invariance for intermediate potentials). Let V0(x, a) be a N-step
shape invariant potential, with its family as in Definition 3.1.2. Then for every two intermedi-
ate potentials we have

V±NnN+n1
(x, a) = V±n1

(x, f nN(a)) +
nN

∑
i=1

RN( f nN−1(a)),

with nN ∈N and 1 ≤ n1 ≤ N − 1.

Proof. Clear by using the N-step shape invariance condition to recognise that WNnN+n1(x, a) =
Wn1(x, f nN(a)), because the terms involving Rn1(a) are not used in the determination of the
superpotentials, as is in the case of normal SIPs. �

As was the case in the standard shape invariance, we will assume the ground state
energies of V−n1

(x, a) are zero. This assumption is important, because it allows us to
calculate all the excited energies for V0(x, a). For example, the first excited energy of
V0(x, a) is equal to the ground state energy of V+

1 (x, a). From V+
1 (x, a) = V−1 (x, a) +

R1(a) and the assumption that V−1 (x, a) has a zero-energy ground state we thus find

that E(0)
1 = E(1)

0 = R1(a). Going further, for the first N − 1 energies we have

E(0)
n1 (a) =

n1

∑
i=1

Ri(a),

with 1 ≤ n1 ≤ N − 1. Note that we stated that the energies depend on a. In the
normal shape invariance we did not state it, although those energies do depend on a
too. In the multiple-step shape invariance we state it, because we need it to calculate
the energies from N and above. Using the N-step shape invariance condition and the
previous result we get the equation

E(NnN)
n1 (a) = E(0)

n1 ( f nN(a)) +
nN

∑
i=1

RN( f i−1(a))

=
n1

∑
i=1

Ri( f nN(a)) +
nN

∑
i=1

RN( f i−1(a)).

To get to E(0)
NnN+n1

(a), note that

E(NnN−1),+
n1+1 (a) = E(NnN)

n1 (a) + RN−1( f nN−1(a)),

because V−NnN−1(x, a) and VNnN(x, a) are partner potentials. Going further we get

E(NnN−N)
N+n1

(a) = E(NnN)
n1 (a) +

N−1

∑
i=1

Ri( f nN−1(a)).
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Figure 3.1: Figure of a 2-step SIP family of V0(x, a). The figure shows two 2-steps, from V0(x, a)
to V4(x, a). Note that, although the energies between two partner potentials are equal, the
energies between a plus and a minus potential are possibly not equal, so the equality between
the energies of V0(x, a) and V2(x, a) should not be taken for granted. It is shown that the
linking operator from V2(x, a) to V−3 (x, a) is A0(x, f (a)). This is because of the shape invariance
property.

Solving recursively we arrive at the energies of V0(x, a):

E(0)
NnN+n1

(a) = E(NnN)
n1 (a) +

nN

∑
i=1

N−1

∑
j=1

Rj( f i−1(a))

=
n1

∑
i=1

Ri( f nN(a)) +
nN

∑
i=1

RN( f i−1(a)) +
nN

∑
i=1

N−1

∑
j=1

Rj( f i−1(a))

=
n1

∑
i=1

Ri( f nN(a)) +
nN

∑
i=1

N

∑
j=1

Rj( f i−1(a)).

Even with multiple-step shape invariance, we can still calculate all the energies with
only our knowledge about the shape invariance conditions.

Calculating the eigenfunctions of V0(x, a) is similar to the standard SIP case. For
the NnN + n1th excited state we look at the ground state of V+

NnN+n1
(x, a), which is

known, because it is by Lemma 3.1.2 equal to the ground state of V+
n1
(x, f nN(a)). This

ground state is known through the superpotential Wn1(x, a). Using the various linking
operators and noting that an eigenfunction of V−NnN+n1

(x, a) is equal to a correspond-
ing eigenfunction of V+

NnN+n1
(x, a) (only its energy is different), we can calculate every

excited state of V0(x, a). The result of this construction is also shown in Figure 3.1. The
results are given in Theorem 3.1.2.

Theorem 3.1.2 (Degeneracy of a N-SIP family). Let V0(x, a) be a potential and let its family
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given by Definition 3.1.2. Then the eigenvalues are given by

E(0)
n1 (a) =

n1

∑
i=1

Ri(a),

E(0)
NnN

(a) =
nN

∑
i=1

N

∑
j=1

Rj( f i−1(a)),

E(0)
NnN+n1

(a) =
nN

∑
i=1

N

∑
j=1

Rj( f i−1(a)) +
n1

∑
i=1

Ri( f nN(a)),

with 1 ≤ n1 ≤ N − 1 and nN ∈N. The eigenfunctions are given by

ψ
(0)
n1 (x, a) ∝

(
n1

∏
i=1

A∗i−1(a)

)
ψ
(n1)
0 (x, a),

ψ
(0)
NnN

(x, a) ∝

(
nN

∏
i=1

N

∏
j=1

A∗j−1(x, f i−1(a))

)
ψ
(0)
0 (x, f nN(a)),

ψ
(0)
NnN+n1

(x, a) ∝

((
nN

∏
i=1

N

∏
j=1

A∗j−1(x, f i−1(a))

)(
n1

∏
i=1

A∗i−1( f nN(a))

))
ψ
(n1)
0 (x, f nN(a)),

again with 1 ≤ n1 ≤ N − 1 and nN ∈N.

Proof. Clear from the discussion. �

Although artificially looking, there actually is a huge class of N-step SIPs, as is shown
by Barclay et al. [2]. However, the solutions are only given as Taylor expansions of the
superpotentials in the parameter, with the coefficients being functions of x. This sim-
ply means these potentials are not practical to work with. In contrast, for theoretical
purposes these potentials are of use, because they represent a new class of completely
solvable potentials.

3.2 Translational SIPs

Now we know how SIPs work and what we can do with it, a natural question to ask
is: how do we find them7? If SIPs are so useful, we should want to find more of them.
This however is not an easy task, as one has to solve the equation

W2(x, a) + W ′(x, a) = W2(x, f (a))−W ′(x, f (a)) + R(a),

which we get from the shape invariance condition and the formulas for partner poten-
tials. Here, differentiation has been done with with respect to x. There has not been a
general solution for this equation yet, but there are large classes of potentials that are

7Their existence is already proven in Example 3.1.2.
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governed by it. In this section we will show one of such classes.
A method that is used to find such classes is to first assume a parameter change f (a).
Second, one guesses a suitable and general form for the superpotential. Last, this form
is substituted into the equation to get a shape invariant potential. If there is a solution,
it has to be shown that the ground state is normalisable, so that there exists at least one
bound state. This is also the method we will use.
Our assumption for the parameter change will be that it is translational, so f (a) =
a + α for some α ∈ R. In contrast, in the next section we will use as assumption that
f (a) is a multiplication, f (a) = qa, where we have q ∈ (0, 1). As our assumption for
the superpotential we will use

W(x, a) = f (x) + (a + c1)g(x) +
h(x)

a + c2
.

Here f (x), g(x) and h(x) are functions to be determined and c1, c2 ∈ R constants.
Of course, this assumption can be made more general, for example by using more
parameters for the parameter change. For two parameters, this gives two families of
SIPs, but more parameters seem to be too much [9].
The assumed form comes from the observation that the eigenvalues of non-relativistic
potentials seem to follow a certain law for large n [22],

En ∝ n−γ,

with γ ∈ [−2, 2]. For example, the infinite square well of Example 2.1.2 goes like
En ∝ n2, where the Coulomb potential goes like En ∝ n−2. ’Differentiating’ En with
respect to n, because of the energy relation of Theorem 3.1.1, gives R( f n(a)) ∝ nγ−1.
If we restrict γ to integers, the powers of n will correspond to the powers of n (from
f n(a) = a + nα) in the shape invariance equation for superpotentials: if we look at the
shape invariant condition for the potentials, the equation reads

Vn(x, a) = V0(x, f n(a)) +
n−1

∑
k=0

R( f k(a)) = V0(x, f n(a)) + En.

If En ∝ nγ with γ ∈ [−2, 2], then it would be a good guess there are terms in V0(x, f n(a))
that also go like nγ. This then translates to nδ, δ ∈ [−1, 1] for the superpotential, be-
cause of the square in V0(x, a) = W2(x, a)−W ′(x, a).
These are all observations, assumptions and heuristics, but if it helps us to find a large
class of SIPs, it is worth the effort. Substituting our assumption in the equation for
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superpotentials, we get the new equation

f (x)2 + (a + c1)
2g(x)2 +

h(x)2

(a + c2)2 + 2(a + c1) f (x)g(x) + 2
f (x)h(x)

a + c2
+ 2

a + c1

a + c2
g(x)h(x)

+ f ′(x) + (a + c1)g′(x) +
h′(x)
a + c2

= f (x)2 + (a + α + c1)
2g(x)2 +

h(x)2

(a + α + c2)2

+ 2(a + α + c1) f (x)g(x) + 2
f (x)h(x)

a + α + c2
+ 2

a + α + c1

a + α + c2
g(x)h(x)

− f ′(x)− (a + α + c1)g′(x)− h′(x)
a + α + c2

+ R(a).

The best way to tackle this equation is by looking at special solutions, i.e. where one or
more of the functions f (x), g(x) and h(x) are zero. Physically, this would not be a big
problem, because it is practically the same as saying that the energy goes like En ∝ n2

for example and not En ∝ n−2 + n2. For example, take g(x) = h(x) = 0, the simplest
choice, then we get

2 f ′(x) = R(a).

This states that both sides have to be constant, say ω > 0, so that R(a) = ω and
f (x) = 1

2 ωx + c. This also means that W(x, a) = 1
2 ωx + c, so the superpotential is

independent of a. The potential corresponding with this solution is

V0(x, a) =
1
4

ω2x2 + cωx + c2 − 1
2

ω =
1
4

ω2
(

x +
2c
ω

)2

− 1
2

ω,

which is the harmonic oscillator (with zero energy ground state)! Note that in this case
the linking operators do not depend on a, because the superpotential does not either.
This means Theorem 3.1.1 takes a simple form and the linking operators become the
very known raising and lowering operators.
In another case, if we take g(x) = 1 and c1 = 0, in contrast to g(x) = 0, we get the
equation for the Morse potential:

a2 + 2a f (x) + f ′(x) = (a + α)2 + 2(a + α) f (x)− f ′(x) + R(a)

⇒ f ′(x) = α f (x) +
R(a)− a2

2
.

If we want that f (x) does not depend on a, we have to set8 R(a) = a2 − 2cα, so we get

f (x) = c± beαx.

The superpotential is therefore W(x, a) = f (x) + ag(x) = a + c± beαx. We can drop c,
because it is just a translation of a. This already looks like the Morse superpotential, as

8The form of the term −2cα is for convencience and without loss of generality. We could have taken
every other term independent of a.
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it should be To make the identification easier, we mirror the x-axis and only use α > 0.
This gives us

W(x, a) = a± be−αx, α > 0.

To get the sign right we look at the ground state, given by equation 2.1:

ψ
(0)
0 (x, a) ∝ e−ax± 1

α e−αx
.

For x → ∞ the ground state goes in both cases to zero. For x → −∞, this does not
happen for the plus sign. This causes both terms in the exponent of e to go to ∞,
making the ground state unnormalisable. For the minus sign we do not have this
problem, because the limit of the exponent always goes to −∞. This means we need
the minus sign, as the Morse potential has already shown9.

The method we used is already extensively studied, and probably all possible poten-
tials from this equation are solved by [12, 20].
There is however something interesting about these potentials: the harmonic oscilla-
tor, Coulomb potential and the Morse potential can be transformed into each other by
a suitable coordinate change. This is also true for the other potentials. However, pairs
of potentials between these two classes, i.e. a Morse potential and a Scarf potential,
can not be transformed into each other with a simple coordinate change. They can be
transformed, but this needs some more generalised transformation [16].
These connections turn out to be caused by the fact that the Schrödinger equation
can often be reduced to two general equations, the hypergeometric and the confluent
hypergeometric equations [11]. This simply means that, apart from a (exotic) coordi-
nate change, the Schrödinger equations for these potentials are the same. This is not
something special of translational SIPs, as some other potentials get their Schrödinger
equation reduced to the hypergeometric equation as well. These potentials are called
Natanzon potentials [6]. It just happens that the translational SIPs are special cases of
the Natanzon potential.
The connections between all the potentials are nicely illustrated in Figure 3.2, which is
taken from Gangopadhyaya, Panigrahi and Sukhatme [16].

3.3 Multiplication SIPs

In Section 3.2 we saw a method to find translational SIPs by guessing the shape of the
superpotentials using assumptions on the energies. This method worked fine for the
type of SIPs it was looking for: translational SIPs. However, there are more classes
of SIPs. Multiplicational SIPs for example, where the parameter change is given by
f (a) = qa, q ∈ (0, 1). The superpotentials for these are harder to find with the trans-
lational method, therefore we need something else. In this section, we will show an-
other method of finding SIPs, specially made for multiplicational SIPs, but also useful

9Physically, this choice is obvious, because the plus sign corresponds to a non-increasing potential.
This means that it is energetically always better for a particle to go to x = ∞. This behaviour can not
correspond to a bound state, were the particle has a finite, non-zero probability to be in a compact space.
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Figure 3.2: The different translational SIPs are depicted in this figure, as well as the coordinate
transformations between them. For example, if we take the Coulomb potential and substitute
x = e−αz, we get a (mirrored) Morse potential. The bold arrows give the point-canonical
transformations, the dashed ones the transformations with limiting procedure. The figure is
taken from Gangopadhyaya, Panigrahi and Sukhatme [16].
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for other parameter changes like f (a) = qap, q ∈ (0, 1) and p ∈ N. Some interesting
properties of these SIPs are shown.
The idea is to use a Taylor expansion of the superpotential W(x, a) around a = 0, with
the coefficients functions of x, such that W(x, a) is given by

W(x, a) =
∞

∑
n=0

Wn(x)an.

The first question is if this sum converges at all, and if yes, what its radius of conver-
gence is. Furthermore, it is also necessary that the ground state, given by Equation 2.1,
is normalisable, if we want bound states to happen. We will not go into detail to solve
these problems, the goal of the section is to show how we can find multiplicational
SIPs.
Using this equation (and the relation between partner potentials and their superpo-
tential) in the shape invariance condition for superpotentials gives us

W2(x, a) + W ′(x, a) = W2(x, f (a))−W ′(x, f (a)) + R(a),

where the differentiation is done with respect to x. This gives the following equation
in terms of the power series:

∞

∑
n=0

n

∑
k=0

Wk(x)Wn−k(x)an +
∞

∑
n=0

W ′n(x)an

=
∞

∑
n=0

n

∑
k=0

Wk(x)Wn−k(x)(qa)n −
∞

∑
n=0

W ′n(x)(qa)n +
∞

∑
n=0

Rnan.

To solve this equation, we note that the coefficients of equal powers of a have to be the
same, so we can write the following equations

n

∑
k=0

Wk(x)Wn−k(x) + W ′n(x) =
n

∑
k=0

Wk(x)Wn−k(x)qn −W ′n(x)qn + Rn

⇒W ′n(x) =
Rn

1 + qn −
1− qn

1 + qn

n

∑
k=0

Wk(x)Wn−k(x).

This equation can be solved recursively, by first solving for W0(x):

W ′0(x) =
R0

2
⇒ W0(x) =

R0

2
x + c0.

After this, the equations for W ′n(x) just become first order linear differential equations,
although difficult to solve, because of their non-homogeneous part. If we take for
example W0(x) = 0, we get a direct formula for Wn(x),

Wn(x) =
∫ Rn

1 + qn −
1− qn

1 + qn

n−1

∑
k=1

Wk(x)Wn−k(x)dx,

because the Wn(x) terms are multiplied by the zero of W0(x).
Basically, if one defines {Rn}n∈N0 , we can calculate the complete superpotential, test it
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for convergence and normalisability of the ground state. Physically, defining {Rn}n∈N0
means defining the energy values of the potential, because of Theorem 3.1.1. In this
way, one can find shape invariant potentials with normalisable ground states, such
as done by Barclay et al. [2]. In this paper, they also used this method to construct
multiple-step SIPs, showing the diversity of this method’s uses.
Using this method gives SIPs with interesting behaviour, depending on W0(x). Look
for example at V0(x, 0), which is given by10

V0(x, 0) =
∞

∑
n=0

n

∑
k=0

Wk(x)Wn−k(x)0n −
∞

∑
n=0

W ′n(x)0n = W2
0 (x)−W ′0(x).

We use q ∈ (0, 1), so limn→∞ f n(a) = 0. This means that, if the potentials are continu-
ous, we get the following limit from the shape invariance condition

lim
n→∞

Vn(x, a) = lim
n→∞

V0(x, f n(a)) +
n−1

∑
k=0

R( f k(a)) = V0(x, 0) +
∞

∑
k=0

R( f k(a)),

by using the shape invariance condition multiple times. If we substitute W0(x) instead
of V0(x, 0) and use Theorem 3.1.1 for the energies we get

lim
n→∞

Vn(x, a) = W2
0 (x)−W ′0(x) + lim

n→∞
En(a)

=
R2

0
4

x2 + R0c0x + c2
0 + lim

n→∞
En(a).

There are now two cases. If E∞ < ∞, then R0 = 0 and the limiting potential is equal
to empty space. If E∞ = ∞, the limiting potential goes to the harmonic oscillator, but
elevated to infinity. This result was to be expected, because taking the limit n → ∞ is
qualitatively the same as q → 0. If q = 0, there is no parameter change, and the only
solution of no parameter change is, as we saw in Section 3.2, the harmonic oscillator.
Free space is just a limiting case of the harmonic oscillator, with R0 = 0. In Sectiob 4.2
it is also shown that multiplicational SIPs are reflectionless.

10We use the convention 00 = 1.
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Chapter 4
Further Topics

4.1 Non-linear oscillators

Until know, we used a classical Hamiltonian, a Hamiltonian with the classical kinetic
energy. A question that arises is does this method also work for other Hamiltonians.
The technique of using linking operators does not depend on the form of the Hamil-
tonian, so one would expect that it also works for non-classical examples. This is the
case, as the proofs could be easily modified to suit non-classical Hamiltonians, but it
becomes quite an effort to use it, and it will not even always work, as the following
example will show.

In this example, we use the following Hamiltonian:

H0 = V(0)
2

d
dx4 −V(0)

1
d

dx2 + V(0)
0 (x).

We have V(0)
1 , V(0)

2 ∈ R>0, V0(x) : R → R a potential and h̄ = 2m = 1. The linking
operators we will use are of the form

A = a2(x)
d

dx2 + a1(x)
d
dx

+ a0(x), B = b2(x)
d

dx2 + b1(x)
d
dx

+ b0(x),

with a2(x), a1(x), a0(x), b2(x), b1(x), b0(x) : R → R functions to be determined. Note
that this is a quite general assumption. We do not assume from the start that A = B∗,
as we will see later that this would limit us dearly. If we want these three operators to
be part of the construction of a representation of the super Lie algebra of operators of
Section 2.2, we need to have H0 = AB and for the partner Hamiltonian H1 = BA. This
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gives us the following equations:

H0 = AB =

(
a2(x)

d
dx2 + a1(x)

d
dx

+ a0(x)
)
·
(

b2(x)
d

dx2 + b1(x)
d
dx

+ b0(x)
)

= a2(x)b2(x)
d

dx4

+
(
a2(x)b1(x) + a1(x)b2(x) + 2a2(x)b′2(x)

) d
dx3

+
(
a0(x)b2(x) + a2(x)b0(x) + a1(x)b1(x) + a1(x)b′2(x) + 2a2(x)b′1(x) + a2(x)b′′2 (x)

) d
dx2

+
(
a0(x)b1(x) + a1(x)b0(x) + a1(x)b′1(x) + 2a2(x)b′0(x) + a2(x)b′′1 (x)

) d
dx

+ a0(x)b0(x) + a1(x)b′0(x) + a2(x)b′′0 (x);

H1 = BA =

(
b2(x)

d
dx2 + b1(x)

d
dx

+ b0(x)
)
·
(

a2(x)
d

dx2 + a1(x)
d
dx

+ a0(x)
)

= b2(x)a2(x)
d

dx4

+
(
b2(x)a1(x) + b1(x)a2(x) + 2b2(x)a′2(x)

) d
dx3

+
(
b0(x)a2(x) + b2(x)a0(x) + b1(x)a1(x) + b1(x)a′2(x) + 2b2(x)a′1(x) + b2(x)a′′2 (x)

) d
dx2

+
(
b0(x)a1(x) + b1(x)a0(x) + b1(x)a′1(x) + 2b2(x)a′0(x) + b2(x)a′′1 (x)

) d
dx

+ b0(x)a0(x) + b1(x)a′0(x) + b2(x)a′′0 (x).

Note that solving this system of equations for a given Hamiltonian is possible, but not
very practical. We will therefore look at some special cases of this system.
Furthermore, note that it is already clear why we did not use just a2(x) = −a1(x) =
b2(x) = b1(x) = 1, a0(x) = b0(x), as we would expect from the linking operators from
Definition 2.1.3: the Hamiltonian H0 would become

H0 =
d

dx4 + (2a0(x)− 1)
d

dx2 +
(
2a′0(x)

) d
dx

+ a2
0(x)− a′0(x) + a′′0 (x).

However, we do not want odd powers of the differential operator (it would be the
momentum operator with a factor i in front of it), because this would mean the Hamil-
tonian does not obey time parity. Disobeying time parity makes the energy dependent
on the direction of the velocity, which we do not want. Therefore we require that the co-
efficients in front of the odd powers of the differential operators of the Hamiltonian to
become zero. In this particular case it would mean the Hamiltonian is the Hamiltonian
of empty space. The eigenstates for the eigenvalue E are

ψ±1,±2
E (x) = Ae

±1i
√

1
2

(
1±2
√

1−4(a2−E)
)

x
, A ∈ R.

If configuration space is R, we do not have bound solutions. This is the reason we
have introduced the coefficients in front of the differential operators.
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If we would force A = B∗, we get three equations, one for each coefficient in front
of the differential operator (here we use the rule (CD)∗ = D∗C∗ on the differential
operator and the coefficients):

A∗ = a2(x)
d

dx2 + (2a2(x)− a1(x))
d
dx

+
(
a′′2 (x)− a′1(x) + a0(x)

)
.

It turns out that, if we also want time parity for H0, V2 and V1 have to be constant, so
our example is the only Hamiltonian, i.e. H = V2(x)p4 + V1(x)p2 + V0(x), where it is
possible to have A = B∗. The full solution is

V(0)
2 (x) = V2, V(0)

1 (x) = V1,

V(0)
0 (x) =

V2
1

4V2
+

V1√
V2

a′1(x) +
V1

2V2
a2

1(x) +
7
4
(
a′1(x)

)2
+

2√
V2

a2
1(x)a′1(x) +

1
4V2

a4
1(x),

+
3
2

a1(x)a′′1 (x) +
√

V2

2
a′′′1 (x),

V(1)
2 (x) = V2, V(1)

1 (x) = V1 + 4
√

V2a′1(x), Ṽ(x) = 2
√

V2a′′1 (x)

V(1)
0 (x) =

V2
1

4V2
+

V1√
V2

a′1(x) +
V1

2V2
a2

1(x) +
7
4
(
a′1(x)

)2
+

1
4V2

a4
1(x),

− 1
2

a1(x)a′′1 (x) +
3
√

V2

2
a′′′1 (x),

b2(x) = a2(x) =
√

V2, b1(x) = −a1(x), b0(x) =
V1

2
√

V2
+

1
2

a′1(x) +
1

2
√

V2
a2

1(x),

a0(x) =
V1

2
√

V2
+

3
2

a′1(x) +
1

2
√

V2
a2

1(x).

Here we used

H1 = V(1)
2 (x)

d
dx4 + V(1)

1 (x)
d

dx2 + Ṽ(x)
d
dx

+ V(1)
0 (x),

with Ṽ(x) the ’potential’ for the odd differential term. The cubed differential term
always is zero. First note that it is practically impossible to solve for a1(x), so using this
equation will mainly involve choosing a function for a1(x). Secondly, if a1(x) = ax+ b,
i.e. if a1(x) is linear, the partner Hamiltonian will both have time parity and a constant
V(1)

1 , thus enabling us to calculate its partner while retaining the adjoint condition on
A!
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Plugging a1(x) = ax + b into the equations gives us

V(0)
2 (x) = V2, V(0)

1 (x) = V1,

V(0)
0 (x) =

V1

4
√

V2
+

V1a√
V2

+
7
4

a2 +

(
V1

2V2
+

2a√
V2

)
b2 +

b4

4V2

+

((
V1

2V2
+

2a√
V2

)
2ab +

ab3

V2

)
x

+

((
V1

2V2
+

2a√
V2

)
a2 +

5a2b2

4V2

)
x2

+

(
a3b
V2

)
x3 +

(
a4

4V2

)
x4,

V(1)
2 (x) = V2, V(1)

1 (x) = V1 + 4
√

V2a,

V(1)
0 (x) =

V1

4
√

V2
+

V1a√
V2

+
7
4

a2 +
V1

2V2
b2 +

b4

4V2

+

(
V1

2V2
2ab +

ab3

V2

)
x

+

(
V1

2V2
a2 +

5a2b2

4V2

)
x2

+

(
a3b
V2

)
x3 +

(
a4

4V2

)
x4.

However, there does not exist a (a1(x), V1, V2) triple which gives the second Hamilto-
nian when using the linking operators, because a1(x) and V2 have to be the same in
both cases, but 4

√
V2a has to be both added and subtracted from V1 to give the poten-

tial. This means that, although we did succeed in defining a supersymmetric system
with a non-classical Hamiltonian, we did not succeed in defining a family of partner
potentials.

4.2 Reflection and transmission

Until now we only looked at bounded states, i.e. solutions that can be normalised to
represent real physical solutions. However, scattering solutions are also of interest.
These solutions do not represent real physical particles (not in quantum mechanics),
but wave solutions. In these solutions, we let a wave of the form eikx, with k the wave
number, travel from x = −∞ to x = ∞. Due to the presence of a potentials, which can
simulate a particle, a electromagnetic field of some kind or something else, a part of
this wave reflects back and a part deforms and is transmitted. The main question in
this system is which probability the initial wave has to reflect and go back to x = −∞
and which probability it has to go through to x = ∞.
The coefficients that answer this question are called the reflection R(k) and transmis-
sion T(k) coefficients. As with the state functions we require |R(k)|2 + |T(k)|2 = 1,
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because the wave has to go somewhere. To calculate them, we assume that the wave
function (a solution of the Schrödinger equation) has the following limits:

lim
x→−∞

ψwave(x) ∝ eikx + R(k)e−ikx,

lim
x→∞

ψwave(x) ∝ T(k)eik′x,

with k′ the wave number of the transmitted wave. This wave function is a solution of
the Schrödinger equation, with a particular energy E. Therefore, k can be calculated as
a function of E.
So why are partner potentials and shape invariance interesting with respect to waves?
The linking operators are not defined on the space of unbound functions, nor is the
Hamiltonian. We still want to say something about these solutions, so we regard them
as generalised solutions1. In this way, we can use the ideas of Theorem 2.1.1 for these
solutions, because if ψ

(0)
E is an eigenfunction with eigenvalue E for the Hamiltonian

H0 = A∗A + E0, then Aψ
(0)
E is an eigenfunction with eigenvalue E for its partner

Hamiltonian H1 = AA∗ + E0. The same is true for Lemma 2.1.1, the proof did not use
boundedness. Therefore, it is plausible to use these generalised solutions.
Now we go to supersymmetry. If ψ

(0)
E (x) is a solution of energy E of the Hamiltonian

H0 = A∗A + E0, with A∗ and A the linking operators, then Aψ
(0)
E (x) is a solution of

H1 = AA∗ + E0. Therefore, we need, using Lemma 2.1.1, that ψ
(0)
E (x) = NA∗ψ(1)

E (x),
with N a constant. This means, when we take limits to x = ±∞, we get [9]

eikx + R0(k)e−ikx = N
(
(−ik + W(x))eikx + (ik + W(x))R1(k)e−ikx

)
,

T0(k)eik′x = N
(
(−ik′ + W(x))T1(k)eik′x

)
Using2 W± := limx→±∞ W(x), we get from the first equation that N = 1

W−−ik , because
the terms with eikx have to be equal. From the term e−ikx we therefore get

R0(k) =
W− + ik
W− − ik

R1(k). (4.1)

Using the second equation we also get

T0(k) =
W+ − ik′

W− − ik
T1(k). (4.2)

This means the amplitudes of the reflection and transmission coefficients are equal for
partner potentials! Note that there is a problem: what if the limits of the superpotential
are infinite? Notice that we have that V0(x) = W2(x)−W ′(x). If W± = ±∞, then also

1Another way of saying this is that we use a different space of functions as solution space. We thus
have a trade-off where we gain extra solutions at the expense of boundedness.

2Requiring that the limits of the superpotential exist means we rule out for example a W(x) ∝
sin(x), x → ∞. This is not a great loss, because you can see those cases as an infinite number reflection
and transmission cases. We choose to only solve one of them.
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limx→±∞ V0(x) = ∞. The mathematics is rescued by physics. Scattering is physically
nonsensical if the wave comes from a side where V0 is infinite, because that wave
would have infinite energy. Therefore, only superpotentials are chosen where at most
one of these limits would be infinite. If one is infinite, we would directly know on
which side it is: at the x → ∞ side! In that case we need T2(k) to be zero, thus |R1(k)| =
1. Therefore |R2(k)| = 1 and thus T1(k) = 0. In case of an infinite mountain, we
therefore always have full reflection.
Also note that if one potential in a given family is reflectionless, every potential in that
family will be reflectionless as well. For example, look at a special case of the Scarf 2
potential [8]:

V0(x, a) = a2 − a(a− α)sech2(αx),
with f (a) = a− α. This is a translational SIP with a finite number of bounded states.
If A is a multiple of α, at some point a potential in the family of partner potentials
will become a shifted empty space. Empty space has a reflection of zero, thus every
potential in this family has reflection zero too. This is thus a simple way of defining
reflectionless potentials.
We get the wave numbers by noticing that this wave equation is an eigenfunction of
the Hamiltonian, giving us the equations

E
(

eikx + R0(k)e−ikx
)
= k2eikx + k2R0(k)e−ikx + V0(x)

(
eikx + R0(k)e−ikx

)
,

ET1(k)eik′x = −(k′)2T1(k)eik′x + V0(x)T1(k)eik′x

The first equation only holds if E = limx→−∞ V0(x) + k2. Noting our remark on the

limits of these potentials we can write k =
√

E−W2
− and k′ =

√
E−W2

+.
For a shape invariant potential, V0(x, a), we notice that the reflection and transmission
coefficients depend on a, thus we have R0(k, a) and T0(k, a). Its partner potential is
simply given by V1(x, a) = V0(x, f (a)) + R(a). Reflections and transmissions do not
depend on a possible vertical translation of a potential, they only depend on the shape
of a potential. Therefore we have R1(x, a) = R0(x, f (a)) and T1(x, a) = T0(x, f (a)).
This means we get

R0(k, a) =
W− + ik
W− − ik

R0(k, f (a)),

T0(k, a) =
W+ − ik′

W− − ik
T0(k, f (a)).

This result is interesting when use it with multiplicational SIPs. If we assume R0(k, a)
is continuous in a, a fairly general assumption, we have

lim
a→0

R0(k, a) = lim
n→∞

R0(k, f n(a)) = R0(k, 0),

for all k ∈ R. However, for multiplicational SIPs we have that V0(x, 0) is free space
or the harmonic oscillator. In the first case its reflection coefficient is zero, in the sec-
ond scattering is impossible, thus the reflection coefficient is definitely zero. From the
fact that |R0(k, a)| = |R0(k, f n(a))| for all n ∈ N and the limit above we thus find
R0(k, f n(a)) = 0. Therefore Rn(x, a) = 0 for all n ∈ N. If the reflection coefficient is
continuous around a = 0 and q ∈ (0, 1), we thus have that multiplicational SIPs are
reflectionless.
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4.3 Omitted topics

A lot is written about supersymmetic quantum mechanics and its applications, such
as the family of partner Hamiltonians. It is therefore impossible to give a thorough
review of the whole subject, it is simply to much. We therefore tried to show the basics
of supersymmetric quantum mechanics, while sometimes adding an application. In
this section we therefore point to some topics that, although omitted from this thesis,
are too interesting to not have a mention here.

First, the techniques of partner potentials can be used in the theory of inverse spectral
problems, i.e. to find for a given potential a potential with the same eigenvalues. This
problem can be tackled in at least two ways with the use of partner potentials. One
method of doing this is from [21]. In this method the partner of V0(x), the potential we
were given, the superpotential is calculated to get its partner, V1(x). Then, we solve
the equation

V1(x) = (W(x) + φ(x))2 + W ′(x) + φ′(x),

i.e. we search for the most general superpotential which gives V1(x). Using this gen-
eral superpotential we can then calculate a family of potentials, all a partner of V1(x),
such that every potential in this family has the same spectrum. Of course, this method
can be generalised by using a potential further in the family of partner potentials to
get a larger family of isospectral potentials.
Isospectral also connects to topics in pure mathematics. There are some non-linear
partial differential equations, like the KdV-equation, that have as solutions families
of isospectral potentials. The variable defining different potentials in the family can
then be taken as a function of a variable from the equation, such that the family of
iso-spectral potentials can be seen as an evolution of one potential, while retaining its
spectrum [9].

Second, the concepts of supersymmetric quantum mechanics can be generalised as
well. In our case, we used as symmetries anti-commutating symmetries, such that
the operators followed Q2 = (Q∗)2 = 0. In this way we could define a supersym-
metric system with a symmetry between bosons and fermions, because if we would
try to change two bosons into the same fermionic state, the symmetries would pro-
hibit it. Generalising this concept, we can look at operators that a higher degree, i.e.
Qn = (Q∗)n = 0. In this case, we do not talk about fermions anymore, but about
parafermions [9]. These parafermions have the property that at most p − 1 of them
can be in the same state at once and are therefore studied for there statistical proper-
ties, as they are different from the standard bosonic and fermionic statistics.

Lasty, we look at a more mathematical topic of interest, looking more at the super
linear algebra. Normally, a smooth differentiable manifold is defined to be locally
diffeomorphic to Euclidean space. However, this can be taken further by allowing
the manifold to be locally diffeomorphic to a super vector space [31]. The concept of
supermanifolds is for example used in some theories for quantum gravity [30].
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Appendix A
Mathematics

A.1 Super linear algebra

This section is based on Chapter 3.1 of V. Varadarajan’s book on supersymmetry [31].

Our model of supersymmetry is based on some concepts from super linear algebra. In
super linear algebra elements of vector spaces and algebras are divided into even and
odd elements. We start with the definition of a super vector space.

Definition A.1.1 (Super vector space). Let V0 en V1 be (possibly infinite dimensional) vector
spaces. Then the space V, defined by

V := V0 ⊕V1,

is called a super vector space. The elements of V0 are called the even vectors with parity 0 and
the elements of V1 are the odd vectors with parity 1. If V is finite dimensional, we denote it by
instead Vp|q, with p the dimension of the even subspace and q of the odd subspace.

This means a super vector space is just another vector space, only with the notion of
even and uneven vectors. The parity of a vector v ∈ V will be denoted as p(v). Note
that the parity of a vector of the form v = v0 + v1, v0 ∈ V0, v1 ∈ V1, is in general not
properly defined. The parity of the zero map can be seen as both even and odd, so we
define it as even.
The homomorphisms between the super vector spaces are the linear maps between
these two vector spaces. The vector space of linear maps is again a super vector space,
because we can divide it in parity preserving homomorphisms, the even ones, and
the parity reversing homomorphisms, the odd ones. The next Lemma will prove this
statement.

Lemma A.1.1 (Hom(V, W) is a super vector space). Let V and W be super vector spaces
and Hom(V, W) be the vector space of all linear maps between V and W. Then Hom(V, W) is
a super vector space.
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Proof. Let V0 and W0 be the even subspaces and V1 and W1 be the odd ones of V and W. Notice
that for a linear map f ∈ Hom(V, W) we can write it as a matrix

f =

(
A B
C D

)
,

where A : V0 → W0, B : V1 → W0, C : V0 → W1 and D : V1 → W1 are linear maps. This
can be done, because we have V = V0 ⊕V1 and W = W0 ⊕W1. If B = 0 and C = 0 we thus
have an even map and if A = 0 and D = 0 we have an odd map. It is thus clear we can write
Hom(V, W) as

Hom(V, W) = (Hom(V0, W0)⊕Hom(V1, W1))
⊕

(Hom(V0, W1)⊕Hom(V1, W0))

=: Hom(V, W)0 ⊕Hom(V, W)1,

where Hom(V, W)0 are the even functions and Hom(V, W)1 are the odd ones. �

It is clear why we choose the used parities, because the product of two linear endomor-
phisms on a super vector space is even both when both maps are even and when both
maps are odd. Defining a parity preserving multiplication on a super vector space
gives a superalgebra.

Definition A.1.2 (Superalgebra). Let A be a super vector space, then we call A a superalge-
bra if it has an associative multiplication preserving parity, i.e. for two a, b ∈ A we have

p(ab) = p(a) + p(b) mod (2),

if p(a) and p(b) are both defined.

As we already expected, the maps between two super vector spaces constitute a su-
peralgebra.

Corollary A.1.1. Hom(V) is a superalgebra under composition.

Proof. From Lemma A.1.1 we already know that Hom(V) is a super vector space. From linear
algebra we already know the composition of linear maps is associative, so we only have to show
parity preservation. Using the matrix from the proof of Lemma A.1.1, we see for example that
for f , g ∈ Hom(V), with f even and g odd, that:

f · g =

(
A 0
0 D

)
·
(

0 B
C 0

)
=

(
0 AB

DC 0

)
,

which is odd. The cases even · even, odd · even and odd · odd are similar. From this we con-
clude that composition is parity preserving, thus Hom(V) is a superalgebra. �

The last concept we need is that of a super Lie algebra, because the operators in our
supersymmetric model will be a super Lie algebra.
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Definition A.1.3 (Super Lie Algebra). Let a be a super vector space. It is called a super Lie
algebra if it has a bilinear bracket operation [·, ·] : a⊗ a → a which satisfies the following
properties for a, b, c ∈ a:

• [a, b] = −(−1)p(a)p(b)[b, a];

• [a, [b, c]] + (−1)p(a)p(b)+p(a)p(c)[b, [c, a]] + (−1)p(a)p(c)+p(b)p(c)[c, [a, b]] = 0.

With this last definition, we have enough super linear algebra for our purposes.
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