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1. Introduction 
Nowadays, highly accurate remotely sensed data can be acquired rapidly and in 

large amounts due to many technical advances in the field. The ever growing 

complexity of digital remote sensing data has led to a wide range of computational 

tools being developed in the fields of geodesy, cartography and earth observation 

(Lambers 2018, 115). However, the interpretation of this data in archaeology is still 

largely a manual undertaking that is not in proportion with the quantity and 

complexity of multi and even hyperspectral images (Lambers 2018, 115). 

Unfortunately, existing tools for object detection from fields other than archaeology 

usually fail when targeting the faint, elusive archaeological traces (Lambers 2018, 

115). For this reason, semi-automatic or even fully automatic solutions for the 

interpretation of archaeological remotely sensed data need to be developed and it is 

important that these solutions are uncomplicated but effective in order to ensure 

their large-scale adoption.  

1.1. Research context  
This thesis focuses primarily on the methodological aspects of developing a semi-

automatic image analysis workflow and its application to a study area. Because the 

choice of semi-automatic image analysis technique depended largely on the study 

area that it is to be applied to, the research context must be split into two parts. First 

the methodological background as well as the choice of methods will be explained 

and subsequently, the archaeological background and study area will be introduced. 

1.1.1. Methodological background  
In the last few years, the number of remotely sensed, highly accurate datasets has 

increased exponentially (Bennett et al. 2014, Opitz and Herrmann 2018, 19). 

Airborne Laser Scanning (ALS) and the generation of detailed Digital Terrain 

Models (DTMs) is particularly well suited to detect subtle features in the 

topography that would go unnoticed in a traditional landscape survey (Sevara et al. 

2016, 485). Especially in forested areas, laser scanning enables archaeological 

observations that would be difficult using traditional survey methods and 

practically impossible using aerial photographs. However, interpreting this remote 

sensing data is very time consuming and at the present day, it is possible to produce 

such large quantities of high-resolution data, that it is becoming increasingly 
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difficult to interpret it all manually (Lambers et al. 2019, 794; Sevara et al. 2016, 

485).  

A solution for coping with the large amount of remotely sensed data is the (semi)-

automation of image analysis (Magnini and Bettineschi 2009, 10; Meyer et al. 2019, 

108, Opitz and Herrmann 2018, 30). An added benefit of (semi)-automatic image 

analysis is the improved rate and consistency of feature detection over large areas 

(Opitz and Herrmann 2018, 30), as well as better reproducibility and accessibility 

of the interpretation of said imagery (Magnini and Bettineschi 2019, 10). Semi-

automatic image analysis methods can be roughly divided into two groups: pixel-

based and object-based approaches. Pixel-based approaches utilise the properties of 

each pixel in order to detect features (Sevara et al. 2016, 487), while object-based 

approaches segment the entire image into groups of pixels that all express similar 

properties (Sevara et al. 2016, 487; Chen and Han 2016, 16).  

In their 2016 study, Sevara et al. have applied both pixel-based and object-based 

image analysis methods to two study areas. The first was a homogeneous landscape 

containing burial mounds (Sevara et al. 2016, 489), the second was a heterogeneous 

landscape containing various linear archaeological objects belonging to a hillfort 

(Sevara et al. 2016, 489). The researchers came to the conclusion that in both cases, 

but especially in the case of heterogeneous and linear objects, object-based image 

analysis is much more precise than pixel-based image analysis (Sevara et al. 2016, 

496). Because the archaeological objects under study are linear and located in a 

very heterogeneous landscape, this thesis will focus on Geographic Object-Based 

Image Analysis (GeOBIA).  

There are a number of studies that have applied GeOBIA and many researchers 

make use of the commercial software Trimble eCognition (see for example: Meyer 

et al. 2019; Sevara et al. 2016; Kramer 2015). Trimble eCognition is very costly 

and some institutions will not have the budget to purchase this software. In addition, 

the source code is proprietary, which hinders reproducibility and adaptability of the 

developed methods.  

There is still scepticism about GeOBIA and the (semi-) automation of image 

analysis in general. Critics argue that only a human image interpreter can cope with 

the diverse and complex shapes, sizes and spectral properties of archaeological 

objects (Traviglia et al. 2016 provide a nice overview of the reservations towards 
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computer based approaches to image analysis). The human brain has the ability to 

identify patterns, although this skill can sometimes mislead (Bennet et al. 2014, 

899) and a manual approach reproduces, rather than overcomes biases (Lambers et 

al. 2019, 794). The interpreter’s expectations about archaeological objects can 

cause the misclassification of an object or cause objects to be overlooked entirely 

because their appearance does not match the interpreter’s expectations (Cowley 

2016, 159). A computer algorithm, although not as flexible in the interpretation of 

images as a human mind, is more unbiased as it solely classifies features that match 

the specified attributes (Bennet et al. 2014, 899). In addition, the algorithm will be 

consistent across large datasets, is replicable (Bennet et al. 2014, 899), and 

computer-based approaches oblige researchers to define more clearly what they are 

looking for, thus highlighting possible inconsistencies of approach (Cowley 2016, 

159). The strengths and weaknesses of semi-automated image analysis, as well as 

the current state of the research will be discussed further in chapter 2. 

1.1.2. Archaeological background  
The terraced landscape of the Lower Engadine, located in the canton of Grisons in 

Switzerland (figure i), is currently under study in the context of an inter-institutional 

research project called TERRA (Terraced Landscapes of the Lower Engadine, 

Switzerland). In a co-operation of the universities of Bamberg, Heidelberg, Leiden 

and Zurich, as well as the Archaeological Services of the Canton of Grisons, the 

landscape of the area has been surveyed extensively over the course of 6 years. The 

research area in the Lower Engadine spans the northern flank of the Inn valley, 

particularly the hillside around the present-day village of Ramosch. 

The following paragraph is based on information that was gathered from the project 

websites of the Universities of Leiden and Zurich, as well as from the official 

project site of the Archaeological Services of the Canton of Grisons.1 It is the aim 

of the project to analyse the earliest anthropogenic influences on the landscape as 

well as to study the role of the terraces in prehistoric resource management of the 

                                                           
1 Leiden: https://www.universiteitleiden.nl/en/research/research-projects/archaeology/terraced-landscapes-

of-the-lower-engadine-switzerland  
Zurich: http://www.archaeologie.uzh.ch/de/prehist/forschung/Projekte/TERRA-(Terrassenlandschaft-

Ramosch-Unterengadin).html#publication  
Archaeological Services of the Canton of Grisons : 
https://www.gr.ch/DE/institutionen/verwaltung/ekud/afk/adg/projekte/Seiten/start.aspx  

[all accessed: 28.01.20] 
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Alps. To this effect methods such as regional 3D-mapping based on remotely 

sensed data, geophysical as well as archaeological survey, soil and sediment 

analysis, stratigraphical excavations and chronometric dating were applied to the 

study area. The studied archaeological objects are the terraces themselves, but also 

irrigation ditches, old paths, abandoned alp settlements as well as the hilltop sites 

Ramosch Motta and Mottata. Ramosch Mottata dates into the Bronze and Iron Age 

(Frei 1958, 36). 

 

Figure i: The Lower Engadine valley (marked with a red ellipse) is located in the far eastern part of the canton 

of Grisons (marked with a red rectangle). The present-day village of Ramosch is marked with a red dot. 

(Bundesamt für Landestopografie, 2019 and https://www.atlasderschweiz.ch/de (Institute of Cartography and 

Geoinformation, ETH Zurich)). Editing: Pierina Roffler. 

Figure ii shows the study area of this thesis as well as the present day villages of 

Ramosch and Vnà, and the prehistoric hilltop settlement of Ramosch Mottata. The 

study area can be split into an upper and a lower part. In the lower part of the study 

area, the agricultural terraces are very well preserved while in the upper part, they 

are more eroded and thus less recognizable in the landscape, making traditional 

landscape survey and archaeological object mapping a difficult task (Chapter 2.3.3). 

This is where the use of Airborne Laser Scanning (ALS) comes into play. It is the 

hope that Digital Terrain Models (DTMs) derived from LiDAR (Light Detection 

And Ranging) data can significantly aid the recognition and classification of further 

archaeological objects in the study area. As mentioned in chapter 1.1.1, the manual 
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interpretation of images such as LiDAR visualisation can be difficult, and a semi-

automatic classification workflow could greatly facilitate the image analysis.  

 

Figure ii: The study area of this thesis, which can be split into an upper and a lower part. (Bundesamt für 

Landestopografie, 2019). Editing: Pierina Roffler.   

1.2. Aims and research questions  
Most archaeologists do not have a background in programming and may have more 

difficulty developing their own algorithms. It is thus important to find common 

ways for publishing rule-set libraries for semi-automatic and automatic image 

analysis (Magnini and Bettineschi 2019, 11), but also to have easily accessible, 

effective and open source software for GeOBIA with a Graphical User Interface 

(GUI) that does not require the user’s knowledge of a programming language. The 

first aim of this thesis is to provide an overview of the existing free and open-source 

(FOSS) GeOBIA applications and to assess the user friendliness and effectiveness 

of each programme. During this process, it is the aim to point out which required 

functions are missing in readily available software solutions. The research question 

that corresponds to this aim is the following:  

Is there an open source solution for GeOBIA available with a Graphical User 

Interface (GUI) that is user friendly, does not require additional coding and will 

prove through systematic testing to be capable of classifying the heterogeneous and 

linear features within the terraced landscape of the Lower Engadine?  

Secondly, it is the aim to create a custom GeOBIA workflow for the heterogeneous 

landscape of the Lower Engadine. This workflow will use only FOSS applications 



 

12 

as this again promotes accessibility, transparency and reproducibility of the 

research. This aim can be summarized by the research question: 

What are the elements that an effective GeOBIA workflow for heterogeneous and 

linear archaeological objects needs to contain?  

Finally yet importantly, it is the aim to find out whether a semi-automatic image 

analysis workflow could be beneficial to the user or whether the LiDAR 

visualisation on its own is still the most intuitive basis for manual classification. 

The research question that corresponds to this aim is: 

Does the developed workflow deliver results that save time and support the human 

interpreter?  

The next section will introduce the data and the methodology that were applied in 

order to answer these three research questions.  

1.3. Data and methodology 

1.3.1. SwissALTI3D 
For testing available GeOBIA solutions as well as for the development of the 

custom workflow, a DTM of the study area was used. The following section bases 

on information obtained from the product information brochure provided by 

swisstopo, the Swiss national topography agency (Bundesamt für Landestopografie 

swisstopo, 2018).  

The so-called SwissALTI3D is a DTM that is updated yearly and provided to the 

user as raster dataset or xyz-file of a regular grid with cells of 2 x 2 meters where 

each cell of the grid contains a height information. The source of the height 

information and the accuracy of the DTM depends on the area that the DTM covers. 

This information is summarised in table i.  

Table i: Summary of SwissALTI3D data sources and accuracies. 

 Below 2000 m a. s. l. Above 2000 m a. s. l. 

Data source LiDAR scans Stereocorrelation2  

Accuracy ±50cm 1σ ±1m – 3m 1σ 

                                                           
2 Generation of height data by comparing two aerial photographs with a high overlap and 

sufficiently differing camera angles 
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The SwissALTI3D is publicly available for download by creating a free login on the 

GeoGR website (https://www.geogr.ch/). The reason for choosing to work with an 

already filtered DTM is that oftentimes, the original, unfiltered Digital Surface 

Models (DSMs) are not available to archaeologists and the workflow developed in 

this thesis should be fully reproducible.  

1.3.2. Other data 
Aerial photos and maps of the area will be used in addition to the DTM for 

orientation purposes. The maps are also free to download with a GeoGR login, 

while the aerial photos are provided by the Swiss national topography agency 

swisstopo and are only available upon request and with a personal download id. In 

order to assess the effectiveness of the GeOBIA workflow, the final results will be 

compared to manual mapping results. Angelika Abderhalden-Raba mapped the 

terraces, roads, drainages and many more features in the context of her dissertation 

in 1996 (Raba 1996), Emily Vella mapped the lower terraces and waterways during 

the course of her Leiden University master’s thesis (Vella 2018), and Philippe Della 

Casa, a TERRA project member from the University of Zurich, mapped the upper 

archaeological objects during the fieldwork campaigns between 2015 and 2019. 

1.3.3. Methodology 
Firstly, different visualisations of the DTM will be generated with the Relief 

Visualisation Toolbox (RVT) version 2.2.1 (Kokalj and Somrak 2019; Zakšek et 

al. 2011). These visualisations are then imported into different FOSS and 

proprietary software. In each of the tested software, a GeOBIA workflow will be 

carried out. This process enables the assessment of the user friendliness, as well as 

the effectiveness and suitability of each software package and highlights the 

necessary, but also the missing steps of the GeOBIA workflow. It also enables a 

comparison between the FOSS and the proprietary software solutions, highlighting 

the benefits and drawbacks of each programme. After this first phase of practical 

thesis research, the first research question will be answered.  

In order to answer the second research question, the next phase comprises of 

developing the GeOBIA workflow for the terraced landscape of the Lower 

Engadine, testing different pre-processing steps and segmentation algorithms in the 



 

14 

progress. Only open source software will be utilised to develop this workflow in 

order to promote accessibility, transparency and reproducibility of the workflow.  

Finally, the effectiveness, as well as the accuracy of the workflow will be assessed 

by comparing the resulting classification with the manual mapping of the area. 

Additionally, a survey will be conducted in order to assess whether or not the 

resulting classification is beneficial to human interpreters, answering the third 

research question in the process.  

1.4. Structure  
In the next chapter, the necessity of (semi-)automatic image analysis solutions will 

be discussed before presenting some of the most common object detection methods. 

Additionally, the next chapter will provide more in-depth information about the 

study area that the final workflow will be applied to, explaining the motivation for 

the choice of methods. The third chapter presents more technical in-depth 

information about GeOBIA before highlighting some of the current issues in the 

field. The fourth chapter is dedicated to the efficiency analysis of different open 

source and proprietary GeOBIA software with a Graphical User Interface (GUI), 

their effectiveness and user friendliness, while the fifth chapter will contain the 

GeOBIA workflow design and implication. These two chapters are followed by the 

presentation and discussion of the user feedbacks as well as the assessment of the 

benefits that can be gained from such a GeOBIA workflow. After each of these 

more practical chapters, the results are discussed and finally, the thesis is rounded 

off with a conclusion as well as an outlook on future research.   
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2. Semi-automatic image analysis – friend or foe?  
This chapter will go into further depth on the subject of approaches to semi-

automatic image analysis of remote sensing data. It will present some of the 

reservations that researchers have towards semi-automatic approaches, but mainly 

highlight the acute need for new technologies and their benefits. Furthermore, it 

will present the archaeological study area and explain why Geographic Object-

Based Image Analysis (GeOBIA) was chosen in this particular case.  

2.1. Automated solutions for ever growing datasets 
Remote sensing data are increasingly becoming available at very high resolutions, 

great frequency of acquisition and low costs, also to archaeologists (Bennet et al. 

2014, 896). Some of this data comes at such a high spectral, spatial or temporal 

resolution that some objects of interest are not visible to the naked human eye 

(Sevara et al. 2016, 485). However, despite all the technological advances in image 

data acquisition, the interpretation of such images is still largely manual (Bennet et 

al. 2014, 867). The manual interpretation of remote sensing data, however, is 

becoming increasingly difficult (Sevara et al. 2016, 485), time consuming and 

requires a lot of resources (Bennet et al. 2014, 867). More importantly, it does not 

do justice to the depth of content that modern air- and space borne spectral systems 

have to offer (Bennet et al. 2014, 898). Speeding up the analysis of large amounts 

of data also has the benefit of contributing to the management and protection of the 

archaeological record (Magnini and Bettineschi 2019, 11). The faster objects are 

detected, the sooner they can be preserved or at least documented before their 

destruction.  

In order to work with this new generation of remotely sensed images, a 

reassessment of established workflows is needed, as well as a clearer understanding 

of the possibilities of using computer-aided methods for object detection (Bennet et 

al. 2014, 896). The automation or semi-automation of image analysis is a possibility 

for speeding up the process and has the added benefit of granting better 

reproducibility for image classifications and interpretations (Magnini and 

Bettineschi 2019, 10). Initially, despite all the aforementioned benefits, computer-

aided classification and interpretation of images was rarely used and viewed with 

suspicion (Bennet et al. 2014, 896).  
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Bennet et al. (2014) note that new remote sensing technologies for archaeological 

prospection have had to rely on data and image processing expertise from other 

fields, and that this has led to poor communication as well as over enthusiastic 

claims of success (Bennet et al. 2014, 898). This is due to the fact that 

archaeologists deal with different features than the environmental and geological 

remote sensing communities, and because archaeologists do not only have to detect 

features or classes, but also need to interpret them across a landscape (Bennet et al. 

2014, 898). As a result, some archaeologists feared that the expertise in 

archaeological interpretation is undervalued in the semi-automatic or automatic 

image analysis (Bennet et al. 2014, 898), and that the archaeological experience 

and knowledge could be left out of the interpretative process entirely. For example, 

Palmer and Cowley state that: 

“It is argued that interpretation of aerial images is a specialist skill, improved by experience 

and that methods of auto extraction, often applied to unsuitable images, are a poor substitute 

for this (Palmer and Cowley 2010, 129).”  

However, as Cowley discusses in one of his later papers, the human vision and 

judgement can sometimes mislead (Cowley 2016, 158). Archaeological 

interpretations are based on the experience, knowledge and observational ability of 

the interpreter and this knowledge can bias what an interpreter sees or does not see 

and how the detected objects are interpreted (Cowley 2016, 158; Bennet et al. 2014, 

899). A computer algorithm on the other hand, while not being as flexible as a 

human interpreter, removes a major source of bias in detection as it is not able to 

filter or rationalise a mass of visual information, but rather searches for set criteria 

(Bennet et al. 2014, 899).  

Although the computer algorithm is very good at strictly detecting a set of criteria, 

it does not provide archaeological interpretations (Bennet et al. 2014, 899). The 

goal should therefore be to find ways to use the computer-aided techniques and 

combine them with expert knowledge about the archaeological record (Sevara et al. 

2016, 485). The archaeologist has an important role in the process of image 

classification and subsequent interpretation, and thus the automation should be seen 

as an aid rather than a substitute of traditional manual interpretation, or, in the words 

of Traviglia et al.: “[…] no one advocates ‘automatic archaeology’ […]” (2016, 

12). Because the human interpreter has an important role in the semi-automatic 
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image analysis workflow, the fear of critics that the expert may be replaced entirely 

by a computer algorithm is unfounded.   

2.2.  Object Detection Methods 
Cheng and Han (2016) define the goal of object detection in remote sensing images 

as follows: 

“[…] to determine if a given aerial or satellite image contains one or more objects 

belonging to the class of interest and locate the position of each predicted object in the 

image (Cheng and Han 2016, 11).”  

There are several different methods for the (semi-)automatic analysis of images. 

Cheng and Han (2016) differentiate between object detection by template matching, 

knowledge-based object detection, object-based image analysis (OBIA) and 

machine learning-based object detection methods (Cheng and Han 2016, 12). 

Lambers et al. (2019) have applied the taxonomy of Cheng and Han (2016) to 

examples of archaeological research (Lambers et al. 2019, 2). Cheng and Han 

(2016) go on to state that these categories are not necessarily independent and that 

sometimes the same method can be placed in different categories (Cheng and Han 

2016, 12).  

Template matching utilises a hand crafted template for each object class that is to 

be detected, which is then placed over each possible position in the image in order 

to find best matches (Cheng and Han 2016, 13). Knowledge-based object detection 

involves developing specific rulesets for the objects based on specific knowledge 

about the geometry or the context of these objects (Cheng and Han 2016, 15). The 

introduction already briefly introduced the concept of GeOBIA, but as a reminder: 

OBIA-based object-detection (for geospatial objects: GeOBIA) involves 

segmenting the entire image into homogeneous areas called segments and 

subsequently classifying the entire image using training data from meaningful 

segments (Cheng and Han 2016, 15). Finally, machine learning-based object 

detection utilises a classifier that is taught variations in object appearances and 

views from a set of training data. This classifier is then fed a set of regions (or object 

proposals) with feature representations and then outputs their corresponding 

predicted object labels (Cheng and Han 2016, 16).  

Davis 2018 and Davis et al. 2019 define different categories; for example, they 

define template-matching as an OBIA approach (Davis et al. 2019a, 27; Davis et 
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al. 2019b, 169) and OBIA as a form of machine-learning (Davis 2018, 1). 

Nevertheless, in this thesis, the author has decided to adopt the definitions of Cheng 

and Han 2016.  

As the title and the introduction of this thesis already show, GeOBIA was selected 

as the semi-automatic object detection method of choice. In order to show the 

motivation for this choice, it is necessary to take a closer look at the particularities 

of the study area.  

2.3. Insert: The terraced landscape of the Lower 

Engadine, Switzerland  

2.3.1. Location, Geology and Morphology 
The main study area of the TERRA project is the area around the village of 

Ramosch which is located in the Lower Engadine Valley. The Lower Engadine is 

a part of the canton of Grisons in Switzerland. It starts at Punt Ota in between S-

Chanf and Zernez and continues in a north-eastern direction along the Inn River 

until the border to Austria and Italy respectively. Flanking the valley are two 

mountain chains that reach heights of 3000 – 3400 meters above sea level.  

The valley was glaciated until 11000 BC and the present-day morphology clearly 

shows the maximum extent of the glacier (Raba 1996, 13). Only the highest peaks 

remained free of the ice masses, the rest of the valley was deformed, a process that 

is still visible in the landscape morphology today (Raba 1996, 13). The region is 

mainly composed of metamorphic rocks that are part of the Eastern Alpine Silvretta 

crystalline (Kothieringer et al. 2015, 179). A particularity of this region is the 

Lower Engadine window, where there are outcrops of sedimentary Penninic rocks 

which are usually covered by the crystalline (Kothieringer et al. 2015, 179). Figure 

iii shows the Lower Engadine window.  
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Figure iii: The Lower Engadine Window with the outcrops of sedimentary Penninic rocks (green) and the 

metamorphic rocks of the Eastern Alpine Silvretta cristaline (brown) (Bundesamt für Landestopografie, 2020).  

Looking upstream the Inn river (western direction), the right valley side is 

comprised of Bündner schist, the left side of the valley is composed of dolomite 

rock (Raba 1996, 13). The different rock types on each side of the valley also mean 

that the glacial deformation processes left different marks; the right side is much 

softer than the rugged, left side of the valley (Raba 1996, 8). The right side was 
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formed to a broad valley floor with rounded landscape features (Kothieringer et al. 

2015, 180) and it receives considerably more sunlight than the left side of the valley 

(Raba 1996, 8). These differences led to different anthropic uses of the valley sides 

with the left, rugged side being mostly forested and the right, soft side being used 

for settlements and agriculture (Raba 1996, 8). Figure iv clearly shows that the right 

side of the valley is softer and contains settlements and agricultural fields, while the 

left hand side is steep and forested. Because the metamorphic rocks such as Bündner 

schist are morphologically less resistant, they have been very susceptible to 

weathering and erosion (Kothieringer et al. 2015, 179), a fact that makes the 

determination of archaeological features a difficult task.  

 

Figure iv: A view upstream the Inn River (western direction) with the village of Ramosch on the right hand 

side. The left side of the valley is composed of dolomite rock and is much more rugged than the right side which 

consists of Bündner schist. The right side also receives considerably more sunlight and is used for settlements 

and agriculture while the left side is largely forested (Jonas Blum).   

2.3.2. Human activity in the landscape through the 

ages 
The palynological evidence shows that the earliest agriculture began during the late 

Neolithic and Early Bronze Age (Zoller et al. 1996, 49). Interestingly, the earliest 

cultivation is proved at high altitudes from the Early Bronze Age onwards while in 

lower situated regions agriculture began distinctly later (Zoller et al. 1996, 49). 

Zoller et al. (1996) note that it seems that the fields in the vicinity of Ramosch-Vnà 
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were gradually established from the higher located parts to the lower ones (Zoller 

et al. 1996, 49).   

Additionally, there is archaeological evidence for the presence of hunters, gatherers 

and travellers in the study area during the Neolithic period (Kothieringer et al. 2015, 

190). This evidence is supported by palaeo-environmental evidence that suggests 

human impact on both vegetation and soils, most likely from forest clearances by 

fire and livestock grazing (Dietre et al. 2020, 364; Dietre et al. 2017, 192; 

Kothieringer et al. 2015, 190). Additionally, the first cereal-type pollen was found 

in the stratigraphy of the Las Gondas bog, where the pollen grains from the Lower 

Engadine were probably deposited by means of long-distance air transport or by 

local deposition of livestock faeces (Kothieringer et al. 2015, 189). 

During the Late Neolithic, both the archaeological and the palaeo-environmental 

record show that the human impact on the landscape increases (Kothieringer et al. 

2015, 190). Field terracing has been recorded since at least 2800 BC and thus the 

economic system of resource exploitation covered different vertical ecozones 

(Kothieringer et al. 2015, 195). From the Bronze Age onwards, both archaeological 

and palaeo-environmental data shows human impact in high-altitude areas 

(Kothieringer et al. 2015. 194; Dietre et al. 2014, 13). This is part of a trend towards 

a general intensification of occupation and use of the inner alpine zone during this 

time (Kothieringer et al. 2015, 194). This trend also led to more and more 

permanent settlements in the area, such as the Bronze and Iron Age settlement 

Ramosch Mottata that is located within the study area of this thesis (Frei 1958, 36).  

The subsistence basis for settlements, such as Ramosch Mottata, was an 

interdependent combination of small scale agriculture and intensive animal 

husbandry that allowed the best possible utilisation of the available resources 

(Reitmaier and Kruse 2018, 268). When Reitmaier et al. (2018) combined new 

radiocarbon dates and high-resolution strontium isotope analysis of bovine tooth 

enamel from the settlement Ramosch-Mottata, they noticed that alpine animal 

management during the late Bronze Age changed from great variability in mobility 

patterns to a much more uniform, seasonal mobility (Reitmaier et al. 2018, 29). 

They explain this change in mobility patterns with a change from exploiting animals 

for their primary products (meat, hide and bone) to the exploitation of their 

secondary products (milk and wool) (Reitmaier et al. 2018, 28). Animals that are 
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used for their primary product are allowed to graze more freely throughout the 

pasture grounds as there is no need to enclose them, while animals that are used for 

their secondary products require pens and seasonal buildings for milk processing 

and storing of dairy products (Reitmaier et al 2018, 28).  

During the Bronze Age, an extension of the cultural landscape in the form of 

terraces towards the village of Vnà can be seen (Raba 1996, 71). This did not change 

during the Iron Age, but evidence from the Roman Period is rather scarce and only 

one Roman charcoal fragment was found in a profile (Raba 1996, 71). The last fire 

traces stem from the Medieval Period with the exception of one trace from the 

Modern Era (Raba 1996, 71). This evidence points to the repeated use of fire for 

clearing the areas that were used for agricultural purposes, although these areas 

would soon have been reforested (Raba 1996, 71). 

2.3.3. Terrace types 
Raba (1996) structures the terraces into 6 types, of which the first three are 

morphologically relevant for the purpose of this thesis, although types one and three 

differ only in their locations, not their morphology. For this reason it was decided 

to differentiate only between the two first types defined by Raba (1996) in this 

thesis. These two types are summarised in table (table i).  

Table ii: Overview of the different terrace types (after Raba 1996, 88-89).  

Terrace 

Type 

Inclination 

of terrace 

flat 

Inclination 

of terrace  

slope 

Location Characteristics Present-day 

usage 

1 More than 

20% 

40-100% Near the 

present-day 

villages. 

Very clear 

slopes. These 

are either 

fortified by 

dry walls or 

overgrown by 

grasses. The 

slopes are not 

regularly 

mown. 

Regularly 

used as 

grassed 

area. 

2 0-15% 20-50% Further 

away from 

the present-

day 

villages, 

often in 

higher 

locations. 

Slopes are 

difficult to 

distinguish 

from the flats. 

Slopes and 

flats are used 

for the same 

purposes. 

Flats and 

slopes are 

used 

regularly as 

grassed 

areas. 
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The following two figures, figures v and vi, show examples of the two main 

morphologically distinct terrace types.  

 

Figure v: Terraces of type one which are still very distinctly visible in today’s landscape. The Bronze and Iron 

Age settlement Ramosch Mottata was located on the prominent hill in the top right of the image 

(https://www.archaeologie.uzh.ch/de/prehist/forschung/Projekte/TERRA-(Terrassenlandschaft-Ramosch-

Unterengadin).html [accessed 18.06.2020]). 

 

Figure vi: Two terraces of type two are being examined by participants of the TERRA project. These terraces 

are much less distinct that the terraces of type one (Jonas Blum).  
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The two types also prevail in different areas, type one being located in the lower 

area near the present-day villages and type two is prevalent in higher locations. It 

was already mentioned in chapter 1.1.2 that the area which this thesis is concerned 

with can be split into an upper and a lower area, the upper area being much more 

eroded than the lower area (figure ii). Technically, the area around Vnà is also a 

part of the TERRA project study area, however, because the terraces around Vnà 

do not differ significantly from those around Ramosch, it was decided to limit the 

study area to the landscape towards the east of Ramosch.  

The summary in table ii shows that the terraces are diverse in their morphology. 

This diversity can be problematic for semi-automatic image analysis as 

characteristics of each type of terrace need to be captured. However, the 

heterogeneity of the terraces is not the only complication. The landscape also 

contains a system of drainage and/or irrigation ditches, paths, roads and cattle trails; 

all linear features that are not easily distinguishable from each other in the field 

(figure vii), let alone on a LiDAR visualisation. It was already stated in the 

introduction that GeOBIA seems to be a favourable approach to dealing with such 

complications and chapter 2.4 will discuss this matter further.   

 

Figure vii: The hillside in the background contains numerous paths and irrigation ditches that are very difficult 

to differentiate (Jonas Blum).  
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2.3.4. Future of the terraces  
Raba (1996) considered different future scenarios and their meaning for the 

landscape around Ramosch. She considered that if there were no more subsidies for 

agriculture and the farmers would be forced to sell their goods on the free market, 

the consequence would be that many people would be forced to give up their 

agricultural activity (Raba 1996, 144). This would in turn lead to the reforestation 

of large parts of the area, with open space remaining only at the foot of the village 

where the flat terrain would allow for the extensive use of the large fields by only 

one or two agricultural establishments (Raba 1996, 144).  

If tourism was encouraged by the canton and the government, the current 

infrastructure of hiking trails and hotels would have to be expanded (Raba 1996, 

145) and for winter tourism, a chairlift would perhaps have to be built. Of course, 

this increased infrastructure would lead to the destruction of many existing 

structures in the landscape. Raba saw the answer to preventing these two destructive 

scenarios in the combination of existing subsidies and future direct payments to 

farmers in order to make the agricultural use of the terraces attractive, so that the 

existing landscape could be maintained instead of conserved, leading to the 

possibility of “soft” tourism as a further source of income for the local population.  

To achieve this goal, it is important to know the rich history of the terraces in order 

to justify their maintenance. In addition, it is important to have an overview of the 

landscape in case of future destruction. As was mentioned in chapter 2.1, the semi-

automation of image analysis can lead to much faster mapping of archaeological 

objects, which is crucial in cases like these where the landscape is at risk of being 

damaged.  

2.4. Pixels versus objects 
The (semi-)automatic image analysis approaches that were presented in chapter 2.2 

can be grouped into pixel-based and object-based approaches. Pixel-based 

approaches rely on the spectral values of each pixel and with a library of known 

values associated with the objects of interest, the image can be divided into a series 

of classes that represent those objects (Davis et al. 2019a, 26). One problem with 

this approach is that in some cases, the pixel values of the objects that are to be 

detected do not differ sufficiently from the pixel values of the image background 
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(Zingman et al. 2016, 4580), the morphology and geometry of the objects being far 

better identifiers (Zingman et al. 2016, 4581; Lambers 2018, 117).  

Geographic object-based image analysis, on the other hand, works by partitioning 

imagery into meaningful segments and assessing their characteristics on a spatial, 

spectral and temporal scale which, in turn, creates new GIS-suitable geographic 

information (Hay and Castilla 2008, 77). The segments are pixel groups or regions 

that are homogeneous and have additional spectral and spatial information 

compared to single pixels (Blaschke 2010, 3). Because GEOBIA allows for the 

incorporation of multiple morphological parameters, it is a well suited method for 

identifying small, spectrally diverse image objects (Davis et al. 2019a, 26) that 

often express distinctive attributes such as shape, size and spatial organisation 

(Davis et al. 2019b, 167). In addition, the segmentation step reduces the spectral 

variability (De Luca et al. 2019, 1) and creates a more homogeneous basis for the 

classification step.  

In addition to the benefit of incorporating multiple characteristics for the object 

detection, object-based image analysis methods fare better as soon as the spatial 

resolution of the image is finer than the typical object of interest (Blaschke et al. 

2014, 180). Especially for heterogeneous land cover and heterogeneous objects, 

object-based methods are better suited than pixel-based techniques (De Laet et al. 

2009, 5663; Sevara et al. 2016, 496). Figure viii shows the comparison between 

manual, pixel-based and object-based detection methods applied to the 

heterogeneous and linear objects of a hillfort carried out by Sevara et al. (2016).  
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Figure viii: Manual classification of a hillfort (top) compared to object-based methods (left) and pixel-based 

methods (right) (Sevara et al. 2016, 49). 

Gu et al. (2017) sum up the benefits of GeOBIA in comparison to pixel-based 

analyses as follows:  

“GEOBIA has the advantages of having a high degree of information utilization, high 

degree of data integration, high classification precision, and less manual editing (Gu et al. 

2017, 1).”  

Because of the above mentioned advantages, but also because the terraced 

landscape of the Lower Engadine is comprised of numerous heterogeneous objects, 

it was decided to develop a GeOBIA workflow.  

2.5. Conclusion 
There is great need for semi-automatic image classification solutions due to the 

rapid increase of more and more complex remote-sensing data. While there are still 

voices of concern about the complete replacement of human interpreters by 

computer algorithms that lack the flexibility and expert knowledge of humans, there 

are many benefits to the semi-automation of the image analysis process such as less 

bias and faster processing speeds. It has to be emphasised that the goal is not to 
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replace, but rather to support human interpreters, so critics need not fear their 

complete replacement by machines.  

There are many different (semi-)automatic object detection methods, but in this 

case, Geographic Object-Based Image Analysis (GeOBIA) was chosen as the 

method of choice because studies such as the one conducted by Sevara et al. (2016) 

show that object-based image analysis methods fare better than pixel-based 

methods when it comes to heterogeneous landscapes containing linear objects. The 

study area to which the developed workflow of this thesis is applied is the terraced 

landscape of the Lower Engadine in the Swiss Alps, and this area contains many 

heterogeneous and linear objects such as agricultural terraces, irrigation/drainage 

ditches and roads. 

The next section will provide a detailed theoretical overview of GeOBIA in order 

to provide the reader with the necessary background before going into the more 

practical parts of the workflow development. 
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3. Introduction to GeOBIA 
This section will take a closer look at Geographic Object-Based Image Analysis 

(GeOBIA) as a method. In addition to this methodological introduction, the history 

and evolution of GeOBIA as well as the aims and the potential of this method will 

be presented, before discussing some current issues of this field. This 

methodological introduction will further illustrate some of the choices that were 

made in the context of this thesis, such as the decision that the developed workflow 

(chapter 5) should only make use of free and open-source software.   

3.1. Terminology, history and evolution of GeOBIA 
Around the year 2000, the first commercial software specifically for image 

segmentation and classification as opposed to the analysis of individual pixels 

appeared (Blaschke et al. 2014, 180). Due to the shift from pixel-based to object-

based image analysis, the authors Hay and Castilla proposed a new name for object-

based image analysis, as they observed the necessity of an ontology with a common 

language and understanding of the new paradigm (Hay and Castilla 2008, 76). The 

two researchers state that:  

“[…] we formally propose Geographic Object-Based Image Analysis (GEOBIA - 

pronounced ge-o-be-uh) as the name of this new paradigm. We further propose that a 

worldwide GEOBIA community needs to be fostered so as to rapidly facilitate the scrutiny 

and dissemination of new and evolving related principles, methods, tools and opportunities. 

(Hay and Castilla 2008, 76).”  

Thus, a new and internationally recognized name for a prospering paradigm was 

created. The Ge(o) pseudo prefix was added to the existing OBIA name in order to 

place an emphasis on the geographic components of object detection (Hay and 

Castilla 2008, 79). Hay and Castilla defined GeOBIA as a sub discipline of GIS, as 

the resulting classified image objects offer new geographic information that comes 

in a GIS-suitable format (Hay and Castilla 2008, 77). The authors note that GeOBIA 

acts as a bridge between GIS and remote sensing data, as the remote sensing images 

come in a raster format, and these are linked to the predominantly vector domain of 

GIS through the classified image object polygons (Hay and Castilla 2008, 77).  

3.2. Methodology 
To summarise once more; GeOBIA requires image segmentation, attribution, 

classification and the possibility to link objects in space and time (Hay and Castilla 

2008, 77). The segmentation step clusters pixels into regions, which are sets of 
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connected pixels from which image objects can be extracted (Derivaux et al. 2010, 

2364; De Luca et al. 2019, 1). Representative segments are then assigned a training 

class, which is in turn used to classify the entire image. Ideally, the segments 

possess an intrinsic size, shape and geographic relationship with the real world 

features that they represent (Blaschke et al. 2014, 185). However, the segments are 

not always meaningful, which means that they do not always correspond to real 

world features straight away (Magnini and Bettineschi 2019, 11). This is why 

further refinement is needed and segmentation and classification are iterative steps 

(Magnini and Bettineschi 2019, 11). Figure ix shows the iterative nature of 

segmentation and classification. The aim of this repeated segmentation and 

classification is to generate segments that correspond to image objects which fulfil 

the major criteria of the intended classes (Blaschke et al. 2014, 187). Image objects 

as defined by Castilla and Hay (2008) are regions within a digital image that are 

internally coherent as well as different from their surroundings and potentially 

represent geo-objects (Castilla and Hay 2008, 108), which in turn, are real-life 

geographical objects on or near the surface of the Earth (Castilla and Hay 2008, 

98). These definitions are not to be confused with the distinction between objects 

and features as defined within the field of computer vision, where properties of an 

image are defined as features and real-world entities are defined as objects 

(Traviglia et al. 2016, 14). Within this thesis, the author has opted for the 

terminology defined by Castilla and Hay (2008).  
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Figure ix: The iterative segmentation and classification steps until the image objects correspond to the desired 

geo objects (Blaschke et al. 2014, 186).   

In the following sub chapters, the different segmentation algorithms, as well as the 

classification approach will be discussed.  

3.2.1. Segmentation  
Segmentation divides an image into regions or segments that are spatially 

continuous, disjoint and homogeneous or, in other words, the internal heterogeneity 

of a segment should be less than the heterogeneity of the segment’s neighbouring 

regions (Blaschke et al. 2014, 186). The heterogeneity criterion can be manually 

adjusted (Magnini and Bettineschi 2019, 11), thus creating smaller or larger 

segments. Ideally, the segmentation should return regions that correspond to the 

image objects in order to allow for an accurate classification (Derivaux et al. 2010, 

1; Hossain and Chen 2019, 116).  

3.2.2. Overview of segmentation algorithms 
Traditional segmentation methods can be grouped into pixel-based, edge-based and 

region-based approaches (Blaschke et al. 2014, 186).  
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Pixel-based segmentation involves searching for homogeneous objects within the 

image by applying global threshold operations to combine pixels that possess 

similar values (Schiewe 2002, 81; Hossain and Chen 2019, 116). Figure x shows a 

schematic drawing of the thresholding process. The resulting components that each 

possess similar values are then grouped to a region (Schiewe 2002, 81; Hossain and 

Chen 2019, 116). This approach is less suitable for the analysis of remotely sensed 

data due to varying values of objects depending on their placement within the real 

word or image (Schiewe 2002, 81; Hossain and Chen 2019, 116). Additionally, 

there is no consideration of the neighbourhood relationships between the resulting 

regions (Schiewe 2002, 81), and it is precisely these relationships that make 

GeOBIA such a powerful tool. This aspect will be discussed further in chapter 3.2.3. 

Pixel-based segmentation is thus unsuitable for GeOBIA (Hossain and Chen 2019, 

116) and will not be further discussed in this thesis.  

 

Figure x: Schematic drawing of a pixel-based segmentation (Pierina Roffler).  

Edge-based approaches identify edges which are then contoured with a contouring 

algorithm. Edges are regarded as boundaries between objects and are located in 

areas where pixel properties change abruptly (Hossain and Chen 2019, 117). After 

the edges are successfully identified, the next step is transforming them into closed 

boundaries, a step which involves connecting the gaps at places where no edge is 

detected, joining those edge parts that make up a single object but also excluding 

those edges that are produced by image noise (Hossain and Chen 2019, 117). The 

most popular edge-based segmentation method is the Watershed Transformation 

(Hossain and Chen 2019, 117), although the researchers comment that the 

Watershed Transformation may also be considered a region growing algorithm. 

This algorithm simulates the flooding of the image and then transforms the image 



 

33 

into a gradient that indicates objects with a topographical surface (Hossain and 

Chen 2019, 117). Figure xi shows a schematic drawing of a watershed 

segmentation. Watershed is only one of many different edge-based segmentation 

methods, and unfortunately all available operators create broken edges or miss 

some essential edges (Hossain and Chen 2019, 117). 

 

Figure xi: Schematic drawing of a watershed segmentation (Pierina Roffler).  

Region-based algorithms start from the inside of an object until meeting the object 

boundaries as opposed to the edge-based methods that define the boundaries first 

and then the object (Hossain and Chen 2019, 117). The size of the region depends 

on the selection of the homogeneity criterion by the user (Hossain and Chen 2019, 
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119). The regions can either be generated with a top-down approach of splitting the 

image into homogeneous regions or with the bottom-up approach of region growing 

(figure xii) which combines pixels into homogeneous regions from a starting point 

or “seed” (Hossain and Chen 2019, 119).  

 

Figure xii: Schematic drawing of a region growing segmentation (Pierina Roffler).  

Hybrid methods first outline initial segments using edge-based methods and then 

merge them using region-based methods (Hossain and Chen 2019, 122). This means 

that both the boundary pixels and the internal pixels of the objects are used, the first 

to create the initial segments and the latter to merge similar segments (Hossain and 

Chen 2019, 122).  

Edge-based segmentation algorithms are less complicated than region-based 

algorithms and work well with images with a high contrast between objects and 

background (Hossain and Chen 2019, 122). As soon as the images have smooth 

transitions, low contrast or too much noise, edge-based algorithms run into 

problems (Hossain and Chen 2019, 123). High-resolution or multi-spectral images 

make edge detection very complicated due to excessive texture or inconsistent 

locations of edges in multiple bands (Hossain and Chen 2019, 123).  
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Region-based methods are less sensitive to noise compared to edge-based 

approaches, generate spatially and spectrally homogeneous segments and can 

produce segments at multiple scales (Hossain and Chen 2019, 123). This method 

also allows the user to incorporate multiple criteria for the segmentation at the same 

time, as well as allowing the selection of seed points and merging criteria 

individually (Hossain and Chen 2019, 123). On the other hand, region-based 

methods are more complicated and time-consuming and finding the right 

parameters is challenging (Hossain and Chen 2019, 124).  

Hybrid methods generate better results than edge- and region-based techniques 

alone, but they are difficult to implement, computationally heavy and there is no 

readily available software on the market yet (Hossain and Chen 2019, 124).  

3.2.3. Semantic, hierarchical classification  
Once the image is segmented in such a way that the segments correspond to the 

image objects, they can be classified either by selecting training areas and feeding 

them to a classifier algorithm or by means of direct evaluation performed by the 

analyst (Magnini and Bettineschi 2019, 11). Direct, manual evaluation generally 

outperforms the method of feeding training areas to a classifier, but the selection is 

subjective and cannot be used for the creation of exportable rule-sets (Magnini and 

Bettineschi 2019, 11). Because the developed workflow should ideally be applied 

to other areas than the specific case study in this thesis, manual evaluation is not an 

option.  

One of the benefits of GeOBIA as compared to pixel-based approaches is that 

multiple scales within one image can be addressed (Blaschke et al. 2014, 187) 

depending on the desired object classes (figure xiii).  
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Figure xiii: The relationships (hierarchical and neighbourhood) of different image objects at different scales 

(Blaschke et al. 2014, 187).  

The hierarchichal and neighbourhood relationships between image objects allow 

GeOBIA to translate the characteristics of image objects to real world features by 

using so called semantics based on descriptive criteria and the expert knowledge of 

the analyst (Blaschke et al. 2014, 188). These semantics are used to describe the 

association between adjacent pixels (De Luca et al. 2019, 8) but also the 

hierarchical networks between image objects (Blaschke et al. 2014, 185). Such 

neighbourhood and hierarchical relationships between segments are a big advantage 

of GeOBIA, which is why pixel-based segmentation methods are unsuitable for 

GeOBIA as they cannot consider such relationships (chapter 3.2.2). Sevara and 

Pregesbauer (2014) illustrate the hierarchical and neighbourhood relationships 

using a hillfort as an example (Figure xiv).  
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Figure xiv: The concept of semantics and hierarchies explained on the basis of a hillfort (Sevara and 

Pregesbauer 2014, 141). 

This example shows that hillforts are a type of earthwork and consist of banks, 

ditches, gates etc. These subclasses possess different geometric, radiometric or 

temporal characteristics and are connected to each other by semantics such as 

“proximity to…”, “contained by…” and others. Semantics of the agricultural 

terraces of the Lower Engadine would be that each terrace is composed of a terrace 

flat, a terrace edge and a terrace slope, the edge being located directly in between a 

flat and a slope. These semantics were very helpful for the development of the final 

workflow, which will be presented in chapter 5.  

3.3. Current Issues 

3.3.1. FOSS 
A large number of GeOBIA research projects have made use of proprietary 

software such as eCognition by Trimble (for example: Csillik 2017; Davis et al. 

2019a; Davis et al. 2019b; Freeland et al. 2016; Gu et al. 2017; Jahjah and Ulivieri 

2010; Meyer et al. 2019; Sevara et al. 2016). However, there is a growing interest 

in open source alternatives as FOSS (Free Open Source Software) applications are 

not only free of charge, but also have the benefit of an open source code (Ducke 

2012, 571), the algorithms of which can be interrogated and adapted to suit the 

needs of the project (Ducke 2012, 572; De Luca et al. 2019, 3). Additionally, newer 

algorithms are often available online before being published for those users who 

are willing to use a development version of the software (De Luca et al. 2019, 3).  

Knoth and Nüst (2017) remark that until recently, the term “reproducible” in 

GeOBIA was used to describe the shift from manual analysis to semi- and automatic 

analysis using clearly defined processing steps and classification criteria (Knoth 
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and Nüst 2017, 2). However, in order to be fully reproducible, access to the data 

and source code, as well as ease of use and the customizability of methods is 

required (Marwick et al. 2017, 17, Knoth and Nüst 2017, 1), and these criteria do 

not apply to proprietary software such as eCognition. In summary, FOSS promotes 

the reuse, improvement and adaptation of a methodology or software (Knoth and 

Nüst 2017, 2).  

An additional functionality of FOSS is that these programmes can be combined 

with each other in a sequential workflow. This means that each individual software 

can contribute to a part of the workflow following the philosophy that each 

programme should provide only the specific feature that it excels at (Knoth and 

Nüst 2017, 2).  

It is for the above mentioned reasons that this thesis will make use only of FOSS 

applications and combine the suitable ones with each other.  

3.3.2. Segmentation parameter selection 
The most criticized step of GeOBIA projects is the segmentation, as this step is 

highly dependent on the personal choices of the analyst (Magnini and Bettineschi 

2019, 12). The segmentation quality also has a direct influence on the image 

classification that bases on it (Cheng and Han 2016, 16). Often, the selection of the 

segmentation scale parameters is reliant on trial-and-error methods, which are 

mainly based on a subjective visual assessment by the analyst (Cheng and Han 

2016, 16; De Luca et al. 2019, 10). These decisions allow flexibility and the 

incorporation of expert knowledge, however, it also means that the decision process 

is not easily reproducible which runs against the argument that GeOBIA is an 

unbiased classification tool (Cheng and Han 2016, 16).  

Because the segmentation step is iterative and often based on trial-and-error, 

frequently an under- or over segmentation occurs (Derivaux et al. 2010, 2364; 

Sevara et al. 2016, 488). Under segmentation occurs when the segment spans over 

multiple object classes, leading to the misclassification of some parts of the 

segment, an error, which cannot be corrected in the classification step (Derivaux et 

al. 2010, 2364). Over segmentation occurs when an object is covered by many 

segments, which leads to the extracted attributes being far less representative of the 

object class and producing a lower quality result (Derivaux et al. 2010, 2364). Over 
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segmentation is usually better than under segmentation and especially in 

archaeology, an apparent over segmentation is often necessary in order to deal with 

the secondary traces within an object class (ie. crop marks within an agricultural 

field; Magnini and Bettineschi 2019, 12). Given the heterogeneous nature of 

archaeological features, choosing appropriate segmentation parameters is very 

challenging (Cheng and Han 2016, 16; Derivaux et al. 2010, 2364).  

Some attempts have been made at developing tools that can detect suitable 

segmentation scale parameters. One such example is the Estimation of Scale 

Parameters (ESP) tool, developed by Drăguţ et al. (2010), that estimates suitable 

scale parameters for a multiresolution segmentation and carries out said 

segmentation automatically (Drăguţ et al. 2010, 861). Unfortunately, this tool is 

implemented in Trimble eCognition and thus does not meet the criterion set by this 

thesis that the proposed GeOBIA workflow should make use only of free and open-

source software.  

3.4. Objectives and Potential 
Hay and Castilla defined the primary objective of GeOBIA as a discipline as 

follows:  

“[…] to develop theory, methods and tools sufficient to replicate (and/or exceed 

experienced) human interpretation of RS images in automated/semi-automated ways. This 

will result in more accurate and repeatable information, less subjectivity, and reduced labor 

and time costs (Hay and Castilla 2008, 80).” 

It is important to note that it was never the objective of these new technologies to 

replace a human interpreter, but rather to be an aid. As Blaschke et al. note, the 

potential of human vision remains to be achieved (Blaschke et al. 2014, 185), and 

the archaeologist remains an essential part of the whole segmentation, classification 

and interpretation workflow (Magnini and Bettineschi 2019, 13). 

The final phase of a GeOBIA workflow should always be the systematic validation 

of the results (Magnini and Bettineschi 2019, 16). Following this validation step, 

the verified rulesets can be exported and applied in different contexts such as a new 

case study (Magnini and Bettineschi 2019, 16). It is also the goal of this thesis to 

come up with a reproducible workflow that can be applied to or modified to fit other 

case studies by other researchers as needed.  
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GeOBIA has been called a new and evolving paradigm (Blaschke et al. 2014, 189) 

that can increase the efficiency of an interpretation significantly (Sevara et al. 2016, 

496). As Hay and Castilla (2008) noted, GeOBIA provides a way to create geo-

intelligence as opposed to simply collecting images (Hay and Castilla 2008, 80).  

3.5. Conclusion  
The term GeOBIA was proposed in the year 2008 when Hay and Castilla observed 

the need of an ontology with a common language and understanding of a new 

paradigm (Hay and Castilla 2008, 76). The Ge(o) prefix was chosen in order to 

place an emphasis on the geographic components of object detection (Hay and 

Castilla 2008, 79). GeOBIA requires image segmentation, attribution and 

classification. There are several different possible segmentation approaches: pixel-

based, edge-based, region-based and even hybrid methods that combine different 

approaches. Each of these methods comes with its own set of benefits and 

drawbacks that were discussed in chapter 3.2.2. The selection of segmentation 

parameters is essential to the success of the classification, and the choice of these 

parameters is determined by the user. A benefit of GeOBIA is that image objects 

not only possess hierarchical, but also neighbourhood relationships with other 

objects, making their classification very intuitive and versatile. GeOBIA has a huge 

potential, especially in the case of heterogeneous and linear objects such as those 

to be classified in the study area of this thesis.  

After this more theoretical chapter, the next chapter takes a look at different FOSS 

applications for GeOBIA that contain a Graphic User Interface (GUI). A GUI is 

necessary in order to promote accessibility and reproducibility of the final workflow 

because many current archaeologists do not have a background in programming 

and it cannot be expected of them to write their own algorithms.  
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4. Testing existing software solutions with a GUI  
As mentioned in chapter 1.2, the first aim of this thesis was to provide an overview 

of existing open source GeOBIA software solutions and to assess the user 

friendliness and effectiveness of each programme. As most archaeologists do not 

have a background in programming and thus may find it difficult to develop their 

own algorithms, it is important to find common ways for publishing rule-set 

libraries (Magnini and Bettineschi 2019, 11), and to have easily accessible, 

effective software with a Graphical User Interface (GUI). In order to promote 

accessibility and reproducibility, the trend should go in the direction of FOSS rather 

than proprietary software.  

The first research question that is to be answered in this subsection is the following: 

Is there an open source solution for GeOBIA available with a Graphical User 

Interface (GUI) that is user friendly, does not require additional coding and will 

prove through systematic testing to be capable of classifying the heterogeneous and 

linear features within the terraced landscape of the Lower Engadine? In order to 

answer this question, a number of FOSS software was tested by the author. For the 

purpose of limiting the number of tested software to a certain extent, the FOSS 

applications that are summarised by Hossain and Chen (2019) in table 4 (Hossain 

and Chen 2019, 124) were used as a reference.   

The added benefit of this software testing phase was that it became apparent which 

visualisations work best for the different areas of the research project, but also 

which elements an effective GeOBIA workflow needs to comprise of. In order to 

understand why the large part of research papers covering GeOBIA today still make 

use of proprietary software rather than FOSS solutions, two popular proprietary 

solutions were also tested.  

4.1. Test criteria and process 
The setup of the testing process was very straightforward. The author downloaded 

the respective programmes and consulted the available training material. From this 

starting point, the author performed a GeOBIA on a LiDAR visualisation and 

reflected on the process. At this stage it was not the aim to achieve the best 

classification results possible, but rather to get to grips with the different options 

and functionalities before deciding which ones to incorporate into the workflow. 

The criteria for these tests were the following: 
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 User friendliness – Is the software well documented and is there training 

material available or an active forum where a user can get help? 

 Suitability – Can the software handle the single band LiDAR visualisations 

used in this thesis? 

 Effectiveness – Is there a possibility for incorporating hierarchical or 

neighbourhood relationships?  

In the following section, the results are summarised first for the proprietary software 

and subsequently for the FOSS solutions.  

4.2. Proprietary software 

4.2.1. Trimble eCognition 
Trimble eCognition offers a free developer trial that is fully functional but does not 

allow any projects to be saved or any rulesets to be exported.3 Nevertheless, this 

trial version was suitable for the purpose of getting a feel for the programme and 

for testing its functionalities. 

The most straightforward GeOBIA workflow uses a segmentation algorithm and 

the subsequent selection of meaningful segments as training data for a classifier. 

For the selection of training segments, eCognition offers a classification sampler 

option rather than editing the values in the segment attribute table. With this option, 

if a class is active, the segments can be selected by double clicking on them and 

their values are stored. Two segmentation algorithms were tested; Watershed and 

Multiresolution segmentation, and the latter was found to produce segments that 

much more closely followed the image objects. Overall, the workflow is effective 

but not very intuitive due to the software interface (figure xv) and functionalities 

being very unique and thus, quite a bit of time needs to be invested into getting to 

know the programme.  

                                                           
3 https://geospatial.trimble.com/ecognition-trial [accessed 13.05.2020] 
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Figure xv: Screenshot of the interface of Trimble eCognition during the selection of training segments. 

It has to be said at this point that eCognition offers a vast amount of additional 

functionalities for GeOBIA, including the option of adding class hierarchies and 

including geosemantics for classification, but testing and understanding them all 

would have gone beyond the scope of this thesis. 

4.2.2. ERDAS IMAGINE 
ERDAS IMAGINE is a proprietary software by Hexagon Geospatial.4 The team 

from IMAGEM, Hexagon’s partner for the Benelux market, kindly provided the 

author with a free one month trial after being informed about this thesis project. 

ERDAS IMAGINE is much more intuitive to use than Trimble eCognition. The 

GUI strongly resembles that of other popular software such as Autodesk’s 

AutoCAD (figure xvi) and thus was very easy to get to grips with. Additionally, 

there is an eTraining library that contains all sorts of tutorials5 as well as an active 

community6.  

                                                           
4 https://www.hexagongeospatial.com/brochure-pages/erdas-imagine-brochure [accessed 

07.05.2020] 
5 https://community.hexagongeospatial.com/t5/IMAGINE-eTraining/tkb-p/eTErdasImagine 

[accessed 07.05.2020] 
6 https://community.hexagongeospatial.com/t5/IMAGINE-Discussions/bd-

p/Discussions_KS_ERDAS_IMAGINE [accessed 07.05.2020] 
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Figure xvi: The GUI of ERDAS IMAGINE that resembles the GUI of Autodesk’s AutoCAD 

(https://gisgeography.com/wp-content/uploads/2016/07/ERDAS-Imagine-Tokyo.png [accessed 17.06.2020]). 

There is the option of a supervised classification with the help of Region Of Interest 

(ROI) polygons created by the user. However, the lack of a segmentation step 

means that these types of workflows are not strictly speaking GeOBIA. ERDAS 

IMAGINE also offers a tool for seeded region growing. With this tool, the user can 

select a pixel which will act as the starting point (or “seed”) for a region growing 

algorithm. The user can define the size of the resulting region with the help of a 

slider, and the region is adjusted automatically. These regions are added to the 

signature editor and once a few regions of a class have been grown, they can be 

combined to one signature. The resulting signature adopts the average of all the 

values of grown region of a class. Finally, these class signatures are used as training 

data for a supervised classification algorithm. Figure xvii shows the ERDAS 

IMAGINE GUI after region growing and merging the class statistics.  

 

Figure xvii: Screenshot of the ERDAS IMAGINE GUI after region growing and merging the class signatures.   
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All in all, ERDAS IMAGINE is an intuitive software and the workflow is easy to 

use and easy to understand, especially for someone who is only at the beginning of 

getting to grips with GeOBIA. There are many places one can turn to for help, but 

then again, this is the type of support that users are paying for.  

4.3. FOSS  

4.3.1. SAGA GIS  
The first FOSS software to be tested was SAGA GIS (Conrad et al. 2015). SAGA 

stands for System for Automated Geoscientific Analyses and is a GIS that has a 

number of image processing algorithms as well as an intuitive GUI to enhance user 

friendliness. It is also FOSS, which in this thesis is the main criterion for the 

selection of existing GeOBIA solutions. It was developed by a team of researchers 

at the department of Physical Geography, University of Göttingen in the early 

2000s. On the SAGA website, it is stated that the main developers were working 

together on several research projects in the late 1990s and were a very 

heterogeneous group of people with regard to their preferred operating systems, 

programming languages, development environments and data formats.7 This 

highlighted the need for a common platform and the idea for SAGA was born. 

SAGA offers a wide range of data analysis tools for raster as well as for vector data 

and terrain analysis is a strength of SAGA (Conrad et al. 2015, 1992).  

SAGA offers a number of tutorials online, both in written form as well as on 

YouTube. Fisher et al. developed the tutorials regarding satellite image and terrain 

analysis and these tutorials can be accessed online 

(https://sagatutorials.wordpress.com/), but can also be found on YouTube (eg: 

“Supervised OBIA SAGA-GIS”8) and in the form of a print publication (Fisher et 

al. 2017). It was precisely because SAGA is documented so well that it was chosen 

as the first FOSS solution to be tested.  

In terms of GeOBIA, SAGA offers a very useful seeded region growing algorithm 

called “Object Based Image Segmentation” as the first segmentation step. A 

number of parameters can be changed but keeping all the default values and 

changing only the bandwidth for seedpoint generation led to useful segmentation 

                                                           
7 http://www.saga-gis.org/en/index.html [accessed 13.05.2020] 
8 https://www.youtube.com/watch?v=584nexgW_z8 [accessed 06.05.2020] 
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results. What is very useful in SAGA is that the results are overwritten straight away 

if the input images stay the same and a variable is changed, meaning that the user 

does not need to reimport and restyle the segments each time new values are tested. 

This leads to quick and easy assessment and adaptation of the segments and a 

meaningful segmentation can be achieved very quickly. The next step is opening 

the attribute table of the segmentation layer and adding a new column for the 

training data. Next, meaningful segments can be selected and their classes added to 

this newly created training data column. The final step is the classification. In 

SAGA, the tool “Supervised Classification for Grids” can be used in order to input 

the image that is to be classified as well as the segments containing the training 

data. Figure xviii shows the SAGA GUI after performing a supervised classification 

for grids on a Sky View Factor visualisation.  As class identifier, the training data 

column must be selected, and finally, one can chose from a number of classifiers. 

 

Figure xviii: Screenshot of the SAGA GUI after performing a supervised classification for grids on a Sky View 

Factor visualisation.  

Each of these steps are easy to work with and their implementation takes only a few 

seconds. This made the iterative nature of segmentation and classification in SAGA 

very easy. Generally it can be said that SAGA is incredibly easy to work with, 

especially compared to some of the other tested FOSS software. It is a GIS that 

anyone who has worked with ArcGIS or QGIS will find intuitive and the detailed 

documentation and range of tutorials make learning the specifics a manageable task.  
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4.3.2. QGIS  
QGIS (QGIS.org, 2020) is a FOSS GIS that was initially designed in 2002 to 

provide a GIS data viewer. Since then the project has grown substantially and today, 

QGIS is used by many for their daily GIS needs (QGIS Development Team 2020, 

3). QGIS supports a number of raster and vector formats and was deemed a 

promising platform for this thesis as it offers the possibility of using different 

plugins and even combining algorithms from different toolboxes. Additionally, it 

was the hope that the graphical workflow modeller would offer the possibility of 

semi automating the developed workflow in order to further promote its ease of use. 

The author used QGIS 3.4 Madeira. Two plugins were selected to be tested in 

QGIS; the Orfeo Toolbox (OTB) and the Semiautomatic Classification Plugin 

(SCP). OTB is among the GeOBIA solutions listed by Hossain and Chen (2019), 

SCP was discovered in the QGIS plugin library during the installation of the OTB 

plugin.  

4.3.2.1. Semi-automatic classification plugin (SCP) 
The semi-automatic classification plugin (SCP) was developed by Luca Congedo 

and is a FOSS plugin for QGIS that allows semi-automatic classification of remote 

sensing images (Congedo 2016, 1). It also provides tools for the download of 

remote sensing imagery that are free of charge, pre-processing, post-processing, as 

well as raster calculation (Congedo 2016, 1). In the most recent documentation, 

Congedo states that: 

“The overall objective of SCP is to provide a set of intertwined tools for raster processing 

in order to make an automatic workflow and ease the land cover classification, which could 

be performed also by people whose main field is not remote sensing (Congedo 2016, 1).”  

The use of the plugin truly is very straightforward and intuitive. The documentation 

contains several tutorials, as well as very detailed information to all options 

(Congedo 2016), and Congedo also has a YouTube channel where he uploads 

tutorials for SCP such as the “Basic tutorial 1: Land Cover Classification of Landsat 

Images”9.  

Once the image is loaded, Regions Of Interest (ROI) can be selected and assigned 

a class and even a subclass. Figure xix shows the SCP Dock in QGIS with the tab 

open for selecting ROI of classes. This makes hierarchical classification very 

                                                           
9 https://www.youtube.com/watch?v=fUZgYxgDjsk&pbjreload=10 [accessed 07.05.2020] 
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straightforward. In the end, the statistics from the ROI are used in order to classify 

the entire image. A very handy feature is that the classification results can be shown 

for the classes as well as the subclasses. Unfortunately, it turns out that the SCP was 

developed for remote sensing images that contain four bands or more (Congedo 

2020, 228), meaning that single band Lidar visualisations are not suitable for this 

plugin. A workaround for this problem is the duplication of the single band 

visualisations (Verschoof-van der Vaart et al. 2020, 12), however, this additional 

step means that this plugin is less straightforward and user friendly than other 

options. Additionally, the lack of a segmentation step means that image 

classification with the SCP is not strictly speaking a GeOBIA workflow.  

 

Figure xix: Screenshot of the SCP dock with the training input tab open, ready to enter Regions Of Interest 

(ROI) for different classes.  

4.3.2.2. Orfeo Toolbox  
Orfeo Toolbox (OTB) is a standalone programme but also a plugin for QGIS. It was 

created by a core development team in the context of the CNES Pleiades mission, 

but has since been maintained and expanded by a very large community (Grizonnet 

et al. 2017).  
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It features an online “cookbook” with information for new users on practical 

matters such as its installation to use as a QGIS plugin, but also some helpful 

tutorials or “recipes” that the users can try out.10 There is also a section in the 

cookbook that contains descriptions of all the applications.11 It was decided to work 

with the OTB plugin, version 7.1.0, within QGIS 3.4 Madeira with the possibility 

of combining different toolboxes in mind. Up until QGIS 3.1, OTB was installed as 

a default plugin, from 3.3 onwards the user needs to link OTB to QGIS manually. 

With the help of the cookbook, this was a fairly uncomplicated matter.  

The QGIS toolbox contains a four step workflow for a Large Scale Meanshift 

Segmentation. Step one is image filtering, step two is the segmentation, step three 

is a region merging process to eliminate segments that are too small and step four 

is the vectorization of the merged segments. The result is a vector file of the 

segments not unlike the one generated by SAGA with the Object Based Image 

Segmentation tool (Chapter 4.3.1). These segments can either be classified directly 

by adding a training field in the attribute table or merged with the attribute table of 

training areas. The statistics of each class can be computed and saved in an xml file 

that can in turn be used to train a Support Vector Machine (SVM) classifier. 

Unfortunately, the training algorithm is unavailable in OTB 7.1.0.   

A drawback of the method with the training polygons is that these polygons can 

span several segments (figure xx). In this case there are two options; either assign 

the same class to all segments that are touched by the training polygons, or only 

assign the class to the first segment that intersects a training polygon. In both cases, 

some training segments are either left out or assigned to two different classes, 

leading to classification errors. It is for this reason that the option of training 

segments directly by adding a training field in the attribute table seems favourable 

to the author. As for the missing training step for the SVM classification, it was 

found that using the SAGA algorithm “Supervised Classification for Grids” via the 

SAGA toolbox in QGIS worked without problems at this point. It was precisely for 

this reason that it became evident that a combination of the OTB and SAGA plugins 

in QGIS could lead to very promising results (see conclusion in Chapter 4).  

                                                           
10 https://www.orfeo-toolbox.org/CookBook/ [accessed 07.05.2020] 
11 For example the  segmentation algorithm: https://www.orfeo-

toolbox.org/CookBook/Applications/app_Segmentation.html [accessed 07.05.2020] 
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Figure xx: Screenshot of training polygons (green) that intersect multiple segments, leading to inaccurate 

classifications.  

OTB was more difficult to work with than SAGA because the documentation is 

written in a very technical way that a first time user may find difficult to understand. 

For instance the author was faced with a recurring error that led to the segmentation 

algorithm crashing and finding a solution took a while. With every attempt to 

segment a LiDAR visualisation without a pre-processing step, the algorithm 

returned an error message regarding the image projection reference, despite the fact 

that the projections of the project and the visualisation always matched each other. 

The posting of a query in the very active user-forum resulted in one reply but no 

solution. However, as soon as the visualisation was cropped or filtered, the 

segmentation algorithm worked without problems. Two possible reasons for this 

came to mind: either the original visualisation is protected by copyright in some 

way, or the image was too large to be handled by OTB. Using too large an image 

proved to be problematic anyway because it causes the processes to crash or to take 

significantly too much time to process, so the error was easily avoided by cropping 

the visualisations to the desired study area as the very first step. Another 

particularity of OrfeoToolbox is that it cannot handle temporary files, so each 

output or input needs to be saved.  
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4.3.3. GRASS GIS 
Geographic Resources Analysis Support System (GRASS) GIS (GRASS 

Development Team, 2018) is a FOSS GIS that can be used for geospatial data 

management and analysis, image processing, graphics and map production, spatial 

modelling and visualisation.12 It was originally developed by the U.S. Army 

Construction Engineering Research Laboratories as a tool for land management and 

environmental planning.13 

GRASS GIS offers a supervised classification tool for manually selecting training 

classes (figure xxi). Within this tool, the user first defines the classes and then 

manually adds training polygons to the respective class. These classes are then fed 

to a maximum likelihood classifier that determines which class each pixel is most 

likely to belong to. Unfortunately, GRASS requires a minimum of two bands for 

this task and again, the LiDAR visualisation comes as a single band. As already 

discussed in the SCP subsection (chapter 4.3.2.1), duplicating the band would be a 

viable workaround but means that this software is less user friendly than others due 

to the requirement of an additional step.  

 

Figure xxi: A screenshot of the supervised classification tool in GRASS GIS after manually adding training 

polygons.  

                                                           
12 https://grass.osgeo.org/ [accessed 12.06.2020] 
13 https://grass.osgeo.org/documentation/general-overview/ [accessed 12.06.2020] 

https://grass.osgeo.org/documentation/general-overview/
https://grass.osgeo.org/
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There is also a region growing as well as a Meanshift segmentation tool. The output 

segments come in raster format and are difficult to convert to vectors, thus making 

the selection of training segments a rather complicated task. It has to be noted that 

within the documentation of the segmentation algorithm, the authors state that in 

future, shape will be implemented as a segmentation condition (Momsen et al. 

2020). This would be a very helpful addition as image objects often possess a 

specific shape characteristic that could help with the accuracy of the segmentation.  

GRASS GIS is a straightforward software to use as the GUI is set up like any other 

GIS. There is extensive training material available both from GRASS GIS14 and 

from private users (eg. Youtube tutorials such as “Supervised Classification in 

GRASS GIS 7.6.1”15). There is also a very detailed documentation of all the 

functionalities available in the online manual (GRASS Development Team, 2018).  

4.3.4. Other software  
Other GeOBIA capable software listed by Hossain and Chen (2019) is being 

summarized here because they either didn’t match the criteria of FOSS or user 

friendliness that were defined in the research aims of this thesis (chapter 1.2), or 

simply because they were unfindable.  

EDISON was unfindable. A Google search did not return any results and the link16 

provided in Hossain and Chen (2019) led to a page that stated “You don’t have 

permission to access this resource” (Hossain and Chen 2019, 124).  GeoSegment 

requires a prior registration17 before the software can be used, but the link for 

registration led to a site that was unavailable.18  

Size-Constrained Region Merging (SCRM) is a stand-alone image segmentation 

tool that was initially developed by Castilla in 2003 (Castilla et al. 2008, 410). This 

application creates ESRI shapefiles as segmentation outputs and thus, the idea 

emerged that perhaps SCRM could be used for the initial segmentation step of the 

workflow before importing the shapefiles into QGIS for the classification step. 

SCRM can be run within the commercial remote sensing software ENVI (in which 

case the full workflow would not meet all FOSS requirements) or as a stand-alone 

                                                           
14 https://grass.osgeo.org/documentation/tutorials/ [accessed 29.06.2020] 
15 https://www.youtube.com/watch?v=k7OQ5BLT8Wo [accessed 29.06.2020] 
16 http://coewww.rutgers.edu/riul/research/code/EDISON/doc/help.html [accessed 07.05.2020] 
17 http://130.15.95.215/lagisa/ [accessed 29.06.2020] 
18 http://localhost/lagisa/lagisa_gui/register_view [accessed 09.06.2020] 
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application in conjunction with the IDL Virtual Machine (Castilla et al. 2008, 413). 

The IDL Virtual Machine is a free part of IDL and the full version must be 

downloaded in order to access the Virtual Machine.19 Even though the use of SCRM 

in the IDL Virtual Machine is free, the source code of the software is proprietary to 

the author G. Castilla (Castilla et al. 2008, 413). This means that SCRM does not 

fulfil the FOSS requirements defined in this thesis. Perhaps if one was to contact 

the author with an interesting project proposal, he would give permission to view 

the source code, but on the other hand, this goes against the condition set by this 

thesis that the workflow should uncomplicated and user friendly. All factors 

combined, SCRM was deemed unsuitable for the final workflow that will be 

presented in chapter 5.  

The Remote Sensing and GIS Software Library (RSGISLib) is an open source 

library containing tools for remote sensing and GIS dataset processing (Bunting et 

al. 2014, 225). These tools can be accessed through an xml or Python script, or as 

a Python function (Bunting et al. 2014, 17). Surely, this library is useful to someone 

with programming skills, but the aim of this thesis was to develop a workflow that 

didn’t require the knowledge of a programming language and thus, the RSGISLib 

is not a suitable option in this context.   

Lastly, SPRING, a stand-alone software for GIS and remote sensing image 

processing system with an object-oriented approach (Câmara et al. 1996) seemed 

very promising, but unfortunately the image projection reference of the study area 

(EPSG:2056 – CH1903+ /LV95) is not supported and thus this software was 

unusable for the purposes of this thesis.  

4.4. Discussion and Conclusion 
Unfortunately, a number of FOSS GeOBIA solutions did not make it into the testing 

round. Some like EDISON were simply unfindable, others like SCRM were only 

seemingly FOSS because although they are free to use, their source-code is 

proprietary. Some, like the RSGISLib, are simply not user friendly for the general 

public due to the required programming skills, and others still, like SPRING, cannot 

cope with all image projection references.  

                                                           
19 https://www.harrisgeospatial.com/Support/Self-Help-Tools/Help-Articles/Help-Articles-

Detail/ArtMID/10220/ArticleID/17309/The-IDL-Virtual-Machine [accessed 07.05.2020] 
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These kinds of problems, of course, do not have to be dealt with when opting for a 

proprietary software solution, since these offer the benefit of extensive training 

material for the user and long term support. Trimble eCognition was clearly 

developed for (semi-)automatic image analysis as the algorithm library hosts a 

number of very handy tools. Additionally, eCognition allows for communication 

between object classes and unleashes the full potential of the neighbourhood and 

hierarchical relationships that Sevara and Pregesbauer discuss (Sevara and 

Pregesbauer 2014, 141). For more information on these relationships please consult 

chapter 3.2.3. eCognition is much less intuitive to use than ERDAS IMAGINE 

because it does not resemble any other software (at least none known to the author). 

ERDAS IMAGINE offers a very intuitive userface that strongly resembles that of 

AutoCAD. Additionally, perhaps because of the simplicity of the region growing 

and classification algorithms, it is very easy to use and understand. Nonetheless, the 

benefits of software such as eCognition and ERDAS IMAGINE are dampened by 

the fact that their source codes are not accessible and thus the workflows and 

rulesets developed within them are never truly reproducible. The loss of 

reproducibility is the main reason why the future of image analysis workflows 

should be FOSS.  

Of all the tested FOSS solutions that did meet the set criteria of this thesis, SAGA 

was the most intuitive and easy to learn. In addition to this, good results can be 

obtained with minimal time and effort, using just two algorithms and the selection 

of training segments. OTB also led to good results but with much more time and 

effort. On the plus side, OTB offers a range of additional preprocessing and 

processing tools that SAGA does not offer. Despite the additional tools offered by 

Orfeo Toolbox, the user friendliness of SAGA cannot be trumped. The semi-

automatic classification plugin was very intuitive and the developer offered detailed 

training material, however, single band images are not supported and while there is 

a workaround (chapter 4.3.2.1), this additional step makes this tool less user 

friendly than others. GRASS GIS, while being a very intuitive, well documented 

software, had the same issue. Unfortunately, there are no FOSS applications that 

offer the consideration of neighbourhood relationships as is the case for Trimble 

eCognition. Perhaps this will be implemented in a future version of one of the FOSS 

applications.  
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The following table (table iii) summarises the benefits and drawbacks of each of 

the programmes that made it into the testing round. 

Table iii: Benefits and drawbacks of the tested software.  

Software Benefits Drawbacks 

eCognition Powerful tools that 

incorporate 

hierarchies/ 

neighbourhood 

relationships 

Takes time to get to grips 

with, proprietary 

ERDAS IMAGINE Very intuitive GUI Proprietary 

System for Automated 

Geoscientific Analyses 

(SAGA) GIS 

Easy to work with, 

good training material 

Less pre-processing 

options than others 

Orfeo Toolbox (OTB) Extensive toolbox, 

many options 

Cannot handle temporary 

files, more difficult to get 

to grips with than others 

Semi-automatic 

classification plugin (SCP) 

Very intuitive, good 

training material  

Single band LiDAR 

visualisations unsuitable 

Geographic Resources 

Analysis Support System 

(GRASS) GIS 

Very good 

documentation, 

intuitive to work with 

Single band LiDAR 

visualisations unsuitable 

 

The second research question asked: Is there an open source solution for GeOBIA 

available with a Graphical User Interface (GUI) that is user friendly, does not 

require additional coding and will prove through systematic testing to be capable of 

classifying the heterogeneous and linear features within the terraced landscape of 

the Lower Engadine? To this question, the answer would have to be yes, SAGA 

GIS is open source, intuitive and very user friendly in the sense that it does exactly 

what is necessary for a GeOBIA workflow, not more and not less. OTB is also a 

very powerful tool that offers a wider variety of tools, but these additional options 

makes it a more complicated tool to get to grips with and to use.  

For the custom workflow however, it was decided to combine SAGA and OTB in 

QGIS precisely because both software offer different benefits. This solution also 

has the added benefit of having the possibility to implement as much of the 

developed workflow into the graphical workflow modeller of QGIS. The resulting 

workflow will be discussed in the following subsection. 
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5. Developing a custom GeOBIA workflow 
The second aim of this thesis was to create a custom GeOBIA workflow for the 

heterogeneous landscape of the Lower Engadine. The two main requirements for 

this workflow are 1) that only open source software solutions should be used as this 

promotes accessibility, transparency and reproducibility of the research and 2) it 

should be easy to use for archaeologists who do not have a background in 

programming. To summarise these aims in a research question: What are the 

elements that an effective FOSS GeOBIA workflow for heterogeneous and linear 

archaeological objects needs to contain? 

As mentioned in chapter 4.4, testing the different FOSS GeOBIA software led to 

the idea of designing the workflow in QGIS due to the possibility of combining the 

SAGA plugin with the OTB plugin. Designing the workflow in QGIS had the added 

benefit that many users already know how to use the programme and thus the 

workflow would be very intuitive. Another reason for choosing to work in the QGIS 

environment was the graphical workflow modeller that would allow further 

simplification of the workflow for the user. For a complete overview of the QGIS 

layer structure that was generated for this thesis, please consult appendix i.  

In chapter 2.3.3, the two main terrace types were introduced. It was decided that the 

final workflow should include a step that shows possible candidates of both terrace 

types. This chapter will present the tests that were carried out in order to evaluate 

the different options and steps that led to the final workflow. Subsequently the final 

workflow will be presented. 

5.1. Testing phase 
As mentioned in chapter 4.3.2.2, the Orfeo Toolbox offers a Large Scale Meanshift 

Classification workflow in QGIS but this workflow has some disadvantages. The 

main disadvantage is that the training areas need to be entered as polygon 

shapefiles, and merging the attribute tables of these training shapefiles and the 

segments leads to errors such as segments being intersected by multiple training 

polygons. It seems that the most elegant solution for GeOBIA is the one presented 

by SAGA: segmenting the image and adding a training data column in the attribute 

table in order to have the necessary statistics for the subsequent supervised image 

classification.  
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During the testing phase, different LiDAR visualisations, smoothing filters, 

segmentation algorithms and training data options were tried out, the results of 

which will be presented in the following subsections.  

5.1.1. LiDAR visualisations  
Because the GeOBIA workflow in SAGA proved to be so easy to work with, it was 

decided to classify a sample image of the lower, clearly defined terraces as well as 

a sample image of the upper, less clearly defined terraces in order to assess which 

visualisation works best for each area.  

The Digital Terrain Model (DTM) was used to create nine different LiDAR 

visualisations using the Relief Visualisation Toolbox (RVT) version 2.2.1 (Kokalj 

and Somrak 2019; Zakšek et al. 2011). These visualisations were analytical 

hillshade, hillshade from multiple directions, simple local relief model, sky view 

factor, local dominance, slope, and finally, positive and negative openness. For an 

explanation of these visualisations, please consult table iv.  The parameters that 

were used to generate these visualisations were obtained from the recommendations 

for steep and complex terrain provided in the manual “Airborne laser scanning 

raster data visualization: A Guide to Good Practice” (Kokalj and Hesse 2017).  

Table iv: Summary of the different LiDAR visualisations that were generated and 

used for testing purposes (after Kokalj and Hesse 2017). 

Name Description 

Analytical hillshade Representation of how the relief surface reflects 

incoming illumination, in this case from the upper left 

corner.   

Analytical hillshade from 

multiple directions 

In this case, the relief is illuminated from multiple 

directions, the result is a multiband image.  

Skyview factor Representation of the portion of sky visible from each 

pixel.  

Positive openness Representation of the mean zenith angles of all 

determined horizons within a given search parameter 

(Not just of the sky as in skyview factor) 

Negative openness Representation of the mean nadir angles of all 

determined horizons within a given search parameter 

(Not just of the sky as in skyview factor) 
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Simple local relief model Removal of large scale morphological elements, thus 

representation of local, small scale elevation differences.  

Slope Representation of the maximum rate of change between 

the elevation of each cell and its neighbours.  

Local dominance Computation of how dominant an observer standing over 

each point would be for the local surrounding area.  

 

The choice of visualisation methods was based on the work of Nyffeler (2018), who 

provides an overview of the benefits and drawbacks of each method (Nyffeler 2018, 

44), except that in this thesis no principal component analysis (PCA) of the 

hillshade from multiple directions was carried out and a simple local relief instead 

of a regular local relief was generated. However, the benefits and drawbacks 

compiled by Nyffeler (2018) still apply as the PCA is a summary of the data 

generated for the hillshade from multiple directions and the simple local relief 

visualisation is merely a simplified process for generating a relief visualisation 

(Kokalj et al. 2019, 5). The benefits and drawbacks listed by Nyffeler (2018) were 

translated and can be found in the following table (table v).  

Table v: Benefits and drawbacks of the Visualisations used by Nyffeler (Nyffeler 

2018, 44). Original in German: translated by Pierina Roffler.  

Visualisationmethod Benefits Drawbacks 

Hillshade  Can be generated as 

dynamic function in 

GIS 

 Easily readable 

 Good overview of 

the topography 

 Structures parallel to 

the lightsource are not 

visible 

 Over- and 

underexposure in areas 

with pronounced relief 

 Artificial relief 

inversion if lighting 

comes from the south 

 

Principal 

Component 

Analysis20 

 

 

 Shows reliefs in great 

detail 

 Good overview of 

the topography 

 Uses a lot of storage 

space 

 Readability is hindered 

by colouration 

 Possible relief 

inversion if 

topography is very 

pronounced 

Slope  Can be generated as 

dynamic function in 

GIS 

 Easily readable 

 Not suitable for even 

terrain 

                                                           
20 In this thesis: “Hillshade from Multiple Directions”. 
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 Suitable for distinct 

structures in hillside 

situations 

Positive Openness  Consistent display of 

small-scale structures 

independent of their 

position within the 

relief 

 Good addition to 

SVF 

 Missing of general 

topography impedes 

interpretation  

 Insufficient display of 

faint structures  

Negative Openness  Consistent display of 

small-scale structures 

independent of their 

position within the 

relief 

 Precise mapping of 

negative, linear 

structures 

 Missing of general 

topography impedes 

interpretation  

 

Sky View Factor  Easily readable 

 General topography 

is visible 

 Visualisation of faint 

structures in hillside 

situation 

 Visualisation of 

negative structures 

 Insufficient display of 

faint structures in even 

terrain 

 Visibility of small-

scale structures is 

dependent on their 

position within the 

relief 

Local Dominance  Visualisation of very 

faint structures 

 Only weak noise 

 Unclear structure 

borders impede precise 

mapping 

 Abstract visualisation 

impedes interpretation 

 Generation is time 

intensive 

Local Relief Model21 

 

 

 Visualisation of very 

faint structures 

 Abstract visualisation 

impedes interpretation 

 Not suitable for terrain 

with a pronounced 

relief 

 Generation is time 

intensive 

 

Because the “supervised classification for grids” algorithm in the SAGA toolbox in 

QGIS does not support multiband images, the analytical hillshades from multiple 

directions were unsuitable for the final workflow.  It was clear from the benefits 

and drawbacks listed by Nyffeler (2018) that some visualisations such as Sky View 

Factor and Slope were going to be more suitable for the study area than others, but 

it was nonetheless decided to test them all. 

                                                           
21 In this thesis: “Simple Local Relief Model”. 
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After their generation, the visualisations were segmented, training data added to the 

segment attribute tables and subsequently classified according to the workflow 

presented in chapter 4.3.1. The final classification for the lower study area featured 

a sample terrace cluster that contained three object classes: terrace flat (light green), 

terrace slope (dark green) and a road (red). This cluster was chosen because it is 

geographically separated from other terraces and thus all terraces could be classified 

completely without cutting others off at the edge of the clipping (figure xxii). The 

results are summarised in table vi. 

Table vi: Classification of different LiDAR visualisations of the same terrace 

cluster. Red: road, light green: terrace flat, dark green; terrace edge.  

 
Analytical Hillshade unclassified22  

 

 
 

 

 

Orthophoto of the terrace cluster23  

 
Analytical hillshade 

 
Positive openness 

                                                           
22 DTM: Bundesamt für Landestopografie, 2019; visualisation created in RVT2.2.1 (Kokalj and 

Somrak 2019) by Pierina Roffler. 
23 Bundesamt für Landestopografie, 2019.  
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Negative openness 

 
Simple local relief model 

 
Slope 

 
Skyview factor 

 

 
Local dominance 

 

 

The process was repeated for the upper study area where the objects are much more 

diffuse. In addition to the regular visualisations, a nonlinear smoothing filter was 
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applied to noisy visualisations in order to assess whether smoothing would improve 

the classification. Different smoothing filters will be discussed in more detail in 

chapter 5.1.4. For testing purposes, a part of the upper study area was chosen that 

the author was familiar with as it was one of the focus areas of the TERRA project 

(figure xxii).  

 

Figure xxii: Location of the lower testing terrace cluster (bottom left) and the upper testing area (above right) 

within an orthophoto (left) and a hillshade visualisation of the DTM (right) (Bundesamt für Landestopografie, 

2019).  

It was soon realised that if anything other than terrace flats and terrace slopes is 

classified, the classification of the terrace object classes is less distinct. This is due 

to the fact that these objects are very similar in their appearance, not only in the 

field but also in the DTM and the visualisation, meaning that their values are also 

largely the same (Chapter 5.1.2). Because of this similarity in values, the selection 

of training data from these segments leads to a more diffuse classification result 

(figure xxiii)24.  

                                                           
24 QGIS Layers “regular watershed classification” and “regular watershed classification no roads”. 
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Figure xxiii: Classification with roads (left) leads to a more diffuse result than if only terrace flats and edges 

are classified (left). Roads: red, terrace flats: light green, terrace slopes: dark green.  

The choice of objects for classification will be discussed in more detail in chapter 

5.1.2. In table vii, the results from the upper study area are summarised. Again, 

terrace flats are shown in light green, terrace slopes in dark green and the road class 

in red. For better orientation, terrace edges are shown in blue and roads are shown 

in white. These overlaid white and blue mapping results were kindly provided by 

Angelika Abderhalden-Raba, and these data will be discussed in more detail in 

chapter 5.4. Here, it is very clear that the classification of roads made little sense 

and only led to a more diffuse classification result for the terrace object classes. 
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Table vii: Classification of different LiDAR visualisations of terraces and roads in 

the upper study area. Red: road, light green: terrace flat, dark green; terrace 

edge. Overlaid in blue are the terrace edges and in white the roads that were 

mapped by Angelika Abderhalden-Raba (Raba 1996). 

 

 
Analytical Hillshade unclassified25  

 

 
 

 

Orthophoto of the area26 

 
Hillshade 

 
Hillshade smoothed 

                                                           
25 DTM: Bundesamt für Landestopografie, 2019; visualisation created in RVT2.2.1 (Kokalj and 

Somrak 2019) by Pierina Roffler. 
26 Bundesamt für Landestopografie, 2019.  
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Negative openness 

 
Negative openness smoothed 

 
Positive openness 

 
Positive openness smoothed 

 
Slope 

 
Slope smoothed 
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Sky View Factor 

 
Sky View Factor smoothed 

 
Local Dominance (no smoothing filter 

applied – initial result was already too 

diffuse) 

 
Simple Local Relief Model (no smoothing 

filter applied – initial result was already 

too diffuse) 

 

While hillshades clearly work quite well for the lower study area, this was not the 

case in the upper study area where the clearest result was achieved with the slope 

visualisation. The issue with the hillshade visualisation is that structures which are 

parallel to the lighting do not show up and depending on the terrain, the lighting 

may not be optimal for all areas in the image (Nyffeler 2018, 44). The terraces in 

the lower study area are all more or less oriented in the same direction and are 

located on the side of a steep hill while those in the upper study area are much more 

irregular and located in less steep terrain. The slope visualisation is not dependant 

on lighting and topography, which is why it generates a very consistent visualisation 

for all parts of the study area, regardless of the general terrain morphology. Local 

Relief Models are unsuitable for terrain with strong relief and the borders of objects 
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in the Local Dominance visualisation are unclear (Nyffeler 2018, 44), making the 

selection of training segments a very difficult task. For this reason, these 

visualisations are entirely unsuited for this particular study area, and the test results 

in table vii confirm this. Positive Openness does not display faint structures 

sufficiently and Negative Openness is mostly suitable for displaying negative 

structures (Nyffeler 2018, 44) so these two visualisations are also unsuitable for the 

study area. Sky View Factor was deemed promising as it was described as being 

suitable for visualising faint structures in hillside situations (Nyffeler 2018, 44), but 

the test results clearly indicate that the terraces and roads are less accurately 

classified than with a hillshade or slope visualisation (table vii).  

In order to achieve the most consistent results possible, it was decided to work 

henceforth with slope visualisations for both the upper and the lower study area. 

This choice also further simplifies the workflow because, in a later step, the slope 

visualisation is needed in order to identify the candidates for the two different 

terrace types (chapter 5.1.5).  

The smoothing filter led to more aesthetically pleasing results but upon closer 

consideration, it became apparent that the unfiltered version, while being slightly 

less aesthetic, delivers the more honest result. Despite this, it was decided to test 

other smoothing filters in QGIS, and the results of these tests will be discussed in 

chapter 5.1.4.  

5.1.2. Objects requiring classification 
In the previous chapter it was already indicated that some objects were difficult to 

be classified. The main problem is that even in the field, roads, paths and irrigation 

or drainage/irrigation systems are difficult, and sometimes even impossible, to tell 

apart (for an example see chapter 2.3.3, figure vii). This is obviously no different 

in the LiDAR visualisation (figure xxiv).27  

                                                           
27 QGIS Layers “slope cropped”, “ra85drainage” and “ra85paths_roads”.   
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Figure xxiv: Slope visualisations containing terraces, drainage/irrigation ditches and roads. As a reference, 

the image on the right shows the mapping results of Raba (1996) with the terrace edges in dark blue, the 

drainages in light blue and the roads shown in red (DTM: Bundesamt für Landestopografie (2019), 

visualisation created in RVT2.2.1 (Kokalj and Somrak 2019) by Pierina Roffler). 

Because these objects are so similar in their appearance, their values in the DTM 

and the visualisation are also largely the same. This means that the selection of 

training data from these segments leads to a very diffuse classification, if any at all. 

Because the visualisation tests in SAGA (Chapter 5.1.1) showed that the 

classification of terrace flats and slopes is less accurate if training data from roads 

are inserted, it was decided to leave the classification of these objects aside and 

focus instead only on the identification of terrace edges by classifying the terrace 

flats and slopes as accurately as possible.  

5.1.3. Training data  
As was already mentioned in chapter 4.3.2.2, the manual creation of Region Of 

Interest (ROI) polygons, followed by merging these with the segment attributes is 

a rather inaccurate method. If a ROI polygon intersects several segments, this can 

lead to one segment being assigned two training classes or, depending on the 

merging method of choice, the wrong training attributes.  

Another method is to create an xml file for the class statistics. This method works 

for the OTB Large Scale Meanshift workflow, because during this workflow, not 

only the segment-ID but also the mean and variance statistics of each band are 

calculated in the attribute table. This method is important for multiband images as 
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the class statistics take into consideration the mean and variance values of each 

band. However, because LiDAR visualisations contain only one band, this step does 

not refine the training classes any further than the more straightforward manual 

training input via attribute table. Additionally, leaving out the generation of the 

XML statistics file means one processing step less, again promoting user 

friendliness for those who are only just getting started with GeOBIA.   

For the above mentioned reasons, it was decided to manually edit the attribute table 

of the segmentation layer in order to add a field for training data, followed by the 

manual selection of meaningful segments as training data for each of the two object 

classes.  

5.1.4. Smoothing filters and segmentation 

algorithms 
Between the SAGA and OTB toolboxes, there were six different smoothing filters 

available for consideration: SAGA offers the options exponential, nonlinear, and 

Gaussian while OTB provides Mean, Large Scale Means Shift (LSMS), Gaussian 

and Anisotropic Diffusion (Anidif) smoothing filters.  

The author found no information on the type of exponential and nonlinear filters 

that are offered by SAGA. OTB on the other hand offers Anisotropic Diffusion as 

a specific type of nonlinear filter and Gaussian smoothing is a type of exponential 

filter. For this reason, it was decided to consider only the smoothing algorithms 

provided by OTB.  

Gaussian and Mean smoothing are filters that blur the images to remove not only 

noise but also detail (Figure xxv).28 By contrast, LSMS smoothing and Anidif are 

smoothing algorithms specifically designed to reduce image noise without 

removing edges, lines or other image details. Because of this quality, these two 

filters were deemed suitable for the study area in the hopes that the terrace edges 

would be left largely unchanged but with a general noise reduction in the areas 

around them.  

                                                           
28 QGIS layers “gaussian smoothing” and “mean smoothing”.  
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Figure xxv: The results of the Mean (left) and Gaussian (right) smoothing algorithms led to very blurred 

visualisations (DTM: Bundesamt für Landestopografie (2019), visualisation created in RVT2.2.1 (Kokalj and 

Somrak 2019) by Pierina Roffler). 

For testing purposes, a regular, unfiltered slope visualisation as well as the LSMS 

and Anidif smoothing filters were applied, followed by segmentation and 

classification. For testing purposes, all three images were segmented both with a 

Watershed and a Meanshift segmentation algorithm.  

Simply put, Watershed segmentation works by simulating the flooding of the 

image, recording local maxima and minima as the water pools at the minima. In 

order to counteract an over segmentation, a depth threshold can be defined which 

establishes the minimum depth of a pool, thus combining local minima together 

until this minimum depth is achieved. By experimentation, it was found that for the 

Watershed segmentation, leaving all parameters to default except for the depth 

threshold, which was changed to 0.05, led to the best segmentation results (figure 

xxvi). “Best” in this case means that some of the segments are merged to larger 

regions without reaching a state of under segmentation. The image is still largely 

over segmented, but an over segmentation is much easier to deal with than an under 

segmentation.  

Meanshift segmentation is a region growing algorithm that replaces each pixel with 

the mean of pixels in a predefined neighbourhood range, and this neighbourhood 

must be within a predefined distance of the pixel. For the Meanshift segmentation, 
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it was found that leaving all values to default except the range radius, which was 

changed to 1, and the spatial or distance radius, which was changed to 50, led to the 

best results (Figure xxvi)29. Again, “best” in this case means the largest segments 

possible without the image being under segmented. While the Meanshift 

segmentation may seem like the clearer choice compared to the Watershed 

segmentation due to the larger size of segments, upon closer consideration it was 

found that some segments of the Meanshift segmentation results span multiple 

objects (Figure xxvi). An example of a segment that spans multiple terrace slopes 

and flats is indicated in yellow. It was thus decided to work with the Watershed 

segmentation in the final workflow.  

 

Figure xxvi: The results of the Watershed (left) and Meanshift (right) segmentation. An apparent over 

segmentation in the Watershed segmentation is needed for exact training segments. One of the meanshift 

segments that spans multiple terrace flats and slopes is highlighted in yellow (DTM: Bundesamt für 

Landestopografie (2019), visualisation created in RVT2.2.1 (Kokalj and Somrak 2019) by Pierina Roffler). 

For both segmentation options as well as the two smoothed and a regular, 

unsmoothed slope visualisation, the training and classification procedure was the 

same. The attribute table of the segmentation layers was opened, the default 

segment-ID column was deleted and a new column for the training data added. 

Then, segments that represented the terrace edge and terrace flats were selected and 

given either class 1 (flat) or class 2 (slope). Next, the SAGA toolbox algorithm 

                                                           
29 QGIS Layers “slope cropped”, “segments regular watershed”, “segments regular meanshift” and 

“ra85terrace”.   
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“Semi automatic classification for grids” was used and the segmentation layer was 

selected as training data. This led to 6 different classifications (table viii).  

It was decided based on these six classification results that the unfiltered 

visualisation along with the Watershed segmentation led to the most accurate 

results. Smoothing filters lead to more homogeneous, less pixelated results but the 

author realised that this comes at the cost of a loss in accuracy. For this reason, the 

final workflow makes use of the Watershed segmentation of an unfiltered 

visualisation input and uses the attribute table to directly input training classes. 

Table viii: Classification of the terraces in the upper study area. In light 

green, potential terrace flats and in dark green potential terrace slopes are 

classified. The terrace edges that were mapped by Angelika Abderhalden-

Raba are overlaid in blue (Raba 1996).  

 

Unfiltered visualisation, based on 

Watershed segmentation30 

 

Unfiltered visualisation, based on 

Meanshift segmentation31 

                                                           
30 QGIS layers “regular watershed classification no roads” and “ra85terrace”. 
31 QGIS layers “regular meanshift classification“ and “ra85terrace”.  
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Visualisation filtered with Anidif 

smoothing algorithm, based on  

Watershed segmentation32 

 

Visualisation filtered with Anidif 

smoothing algorithm, based on  

Meanshift segmentation33 

 

Visualisation filtered with LSMS 

smoothing algorithm, based on  

Watershed segmentation34 

 

Visualisation filtered with LSMS 

smoothing algorithm, based on  

Meanshift segmentation35 

 

5.1.5. Identification of different terrace types 
As presented in chapter 2.3.3, there are two terrace types that differ in their 

morphology; terrace type one has a flat inclination of more than 20% and a slope 

                                                           
32 QGIS layers “anidif watershed classification no roads” and “ra85terrace”.  
33 QGIS layers “anidif meanshift classification no roads” and “ra85terrace”.  
34 QGIS layers “lsms watershed classification no roads” and “ra85terrace”. 
35 QGIS layers “lsms meanshift classification” and “ra85terrace”.  
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inclination of 40-100% while terrace type two has a flat inclination of 0-15% and a 

slope inclination of 20-50%. Type one predominantly appears within the lower 

study area and type two within the upper study area. Because these two types differ 

in their morphology, it is also possible to identify them within the classification. 

For this purpose, the slope visualisation of the entire study area can be filtered to 

highlight certain inclinations and then layered over the classification. This way, not 

only areas that are potential terrace flats and slopes can be identified, but if these 

flats and slopes are also of the terrace type specific inclination, they can be 

addressed as terraces of said type. For example, if inclinations between 0 and 15% 

are shown in yellow and inclinations between 20 and 50% are shown in red, then 

all areas that are displayed in light green and yellow as well as dark green and red 

are potential terraces of terrace type two. Concrete examples can be found in chapter 

5.4.  

It is important to note that the slope visualisation generated by the RVT (Kokalj and 

Somrak 2019; Zakšek et al. 2011) contains elevations that are shown in degrees, 

not in percentages (Kokalj et al. 2019, 5). For this reason it is essential to convert 

the percentages of the terrace flat and slope inclinations summarised in chapter 

2.3.3 to degrees. This means that terrace type one has a flat inclination of more than 

11.31⁰ and a slope inclination of 21.8-45⁰ while terrace type two has a flat 

inclination of 0-8.53⁰ and a slope inclination of 11.31-26.57⁰.  

5.2. Final workflow 
The final workflow comprises of a total of six steps, with an optional seventh step 

that can be added as needed (figure xxvii). 

First of all, the input LiDAR visualisation needs to be cropped to the desired study 

area. Depending on the size of the study area, it is advisable to split it into smaller 

areas. This is due to the fact that especially the Watershed segmentation returns a 

large number of segments and the classification step takes a very long time if all 

these segments need to be taken into consideration simultaneously. A lot of time is 

saved by splitting the study area up into manageable tiles, especially because QGIS 

may even crash after a while during the classification step if too many segments are 

processed at the same time. It is not possible to define an absolute upper limit for 

these tile sizes as this depends on the computational power of the computer. The 

author used a HP Elitebook 820 G3 with an Intel Core i5 CPU and 8GB of RAM 
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and found a tile size of 500x500 pixels to be the upper limit for the classification 

step.  Cropping is best done with the GDAL algorithm “clip raster by extent”, where 

a dynamic area can be selected directly on the image that is to be cropped, or by 

saving the LiDAR visualisation as a VRT (Virtual Raster Tile) dataset and 

specifying the VRT tile size in the process.  Unfortunately, this tiling process results 

in edge-effects, meaning that around the tile edges, misclassifications can occur due 

to image objects being cut off. A workaround for this problem is to split the images 

twice and varying the tile borders slightly in order to ensure that all edges of the 

first batch are sufficiently covered by tiles of the second batch.  

After the study area has been cropped, it is time for the Watershed segmentation. 

This is an OTB algorithm that can be selected in the dropdown menu of the 

“Segmentation” algorithm.  Then, the existing segment-ID field in the attribute 

table is deleted and a new field for the training data added. The user can proceed to 

select meaningful segments that represent the class of either terrace flat or terrace 

edge, whereby it is important not to select segments that span both classes, if any 

are remaining. It is better to have less training data that truly represents the 

characteristics of each class, rather than more training data which blurs the lines 

between the classes. Once the user has finished selecting and entering meaningful 

segments, the attribute table can be saved and is ready for the next step.  

For the SAGA algorithm “supervised classification for grids”, the image that is to 

be classified is entered along with the shape layer containing the training segments. 

The output of this algorithm is a greyscale image containing the classes. Here, the 

layer can be formatted to contain classified colours. The user can chose colours for 

each class that make sense, and in this case, light green was again selected for the 

terrace flats and dark green for the terrace slopes. If this classification is to be 

layered over a different raster, the QGIS tool “Polygonize (Raster to Vector)” can 

be used to convert the classified raster into a shape file.  

The user can map the terrace edges according to the classification results because 

the edge is always located between a terrace flat and a terrace slope. Once these 

edges have been mapped, the slope visualisation can be used in order to determine 

whether the edge belongs to a terrace of type one or type two according to the 

methodology described in chapter 5.1.5.  
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Figure xxvii: Flowchart of the final workflow (Pierina Roffler).  

5.3. Semi-automation in the QGIS graphical workflow 

modeller 
As was already mentioned in chapter 4.3.2.2, Orfeo Toolbox seems to have trouble 

processing temporary files. This poses a problem for the automation of the 

workflow with the QGIS graphical workflow modeller because the modeller ends 

the process chain automatically as soon as an algorithm is prompted to save the 

output. Hence, the workflow had to be automated in three steps.   

The first step asks the user to enter the LiDAR visualisation, upon which it returns 

the Watershed segments. To speed up the processing time, it is advisable for the 

user to crop the LiDAR visualisation input to the desired study area first. The next 

step takes these segments, makes the necessary changes in the attribute table and 

returns a segmentation layer that is ready for the user to select relevant polygons 

and add a training class to them. The third and final step uses the original LiDAR 

visualisation, as well as the segments to which the user has entered training data 

and uses both to deliver the final classification. Figure xxviii shows screenshots of 

the graphical workflow modeller for each of the three steps. 
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Figure xxviii: The three steps of the graphical workflow modeller (Pierina Roffler).  

It has to be said that this particular GeOBIA workflow is quite user heavy, 

especially because the training segments need to be selected and entered manually. 

This makes it impossible to fully automate the workflow in the first place, and the 

addition of the third step was dictated by the inability of the Orfeo Toolbox to 

process temporary files. Even though the user heaviness of the workflow makes a 

completely automatic workflow impossible, it has the benefit of giving the 

interpreter full control over the entered training data. This means that the GeOBIA 

workflow does exactly what it is supposed to do: it supports the user without 

interfering with his or her expert knowledge.  

5.4. Results 
The result is a raster file that highlights potential terrace flats and slopes, and the 

border between the two classes is where the potential terrace edges are located 

Step 1 Step 2 

Step 3 
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(Figure xxix).36 In order to have an idea of the location of these edges in the field, 

mapping results were obtained and used courtesy of Angelika Abderhalden-Raba. 

The terrace edges were identified in aerial photographs, numbered and verified in 

the field (Raba 1996, 87). These mapping results were invaluable as a benchmark 

in order to verify the segmentation and classification results of the workflow.  

 

 

Figure xxix: The final classification result for a clipping of the upper study area. On the left hand side is the 

final classification in the format that an archaeologist would work with. For illustration purposes, the terrace 

edges that were mapped by Angelika Abderhalden-Raba were layered over the right image. 

As can be seen in Figure xxix, the results of the developed GeOBIA workflow hold 

up against the mappings of Abderhalden-Raba that were used as a benchmark, as 

these fall right in between the light green (terrace flat) and the dark green (terrace 

slope) areas of the classification results. For a classification of the entire study area, 

please consult appendix ii.  

The classification can be combined with the slope visualisation that has been 

filtered for the terrace type specific inclinations in order to evaluate whether the 

classified terraces are of type one or two (chapter 5.1.5). Figure xxx37 shows the 

mapping results of Raba (1996) as a benchmark layered over the classification 

results of the lower study area as well as the terrace type specific flat inclinations 

                                                           
36 QGIS layers “regular watershed classification no roads” and “ra85terrace”.  
37 QGIS layers “type 1“, “type 2“, “classification lower study area” and “ra85terrace”.  
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(yellow) and slope inclinations (red) for terrace types one (above) and two (middle). 

It becomes clear that the inclinations of terrace type one match the classification 

results much more accurately. Similarly, figure xxxi38 shows the same situation for 

the upper study area, where it becomes apparent that the inclinations of terrace type 

two much more clearly represent the classification results. For a mapping of the 

terrace type specific inclinations of the entire study area, please consult appendices 

iii and iv.  

 

Figure xxx: The terrace type specific slope inclinations (yellow) and flat inclinations (red) for terrace type one 

(above) and two (middle) as well as the classification results of the lower study area. The mapping results of 

Raba (1996) are layered on top to serve as a benchmark.  

                                                           
38 QGIS layers “type 1“, “type 2“, “regular watershed classification no roads” and “ra85terrace”.  
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Figure xxxi: The terrace type specific slope inclinations (yellow) and flat inclinations (red) for terrace type 

one (above) and two (middle) as well as the classification results of the lower study area. The mapping 

results of Raba (1996) are layered on top to serve as a benchmark. 

5.4.1. Transferability 
Some experiments were carried out in order to find out whether training segments 

from one part of the study area could be used to classify a different part of the study 

area. This only works if there is an overlap between the two study area clippings. If 

there is no overlap, the classification comes out empty because there is no training 

data available to the classifier. By creating a slight overlap with the original study 

area clipping that contains the training data, the classified area can be extended. 

However, if there is no overlap at all, new training data needs to be added.  
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However, the values that were found to work best for the Watershed segmentation 

(all default except the depth threshold that needs to be changed from 0.01 to 0.05) 

work for both the upper and the lower part of the study area, and thus can be used 

for any clipping. Of course, using one set of training segments to classify all 

clippings would save time, but then again, reselecting suitable segments leads to 

better results because one can be sure that the most representative segments for the 

specific visualisation conditions of the clipping have been selected.  

5.5. Discussion and Conclusion  
The second aim of this thesis was to create a custom GeOBIA workflow for the 

heterogeneous landscape of the Lower Engadin that uses only FOSS applications 

and is user friendly for someone without programming skills. The first step of the 

testing phase was to evaluate the effectiveness of different LiDAR visualisations 

for the upper, as well as the lower part of the study area. The visualisations were 

created in the RVT 2.2.1 (Kokalj and Somrak 2019; Zakšek et al. 2011) following 

the recommendations of Kokalj and Hesse 2017. For the lower study area, 

hillshades work best while for the upper, more diffuse study area, slope worked 

best. It was decided to work with the slope visualisations for both areas because this 

visualisation provides the most consistent results for all terrain types and lighting 

conditions within the study area. As discussed in chapter 5.1.1, the reason for this 

is that the terraces in the lower study area are all oriented more or less in the same 

direction while those in the upper study area are more irregular and located in more 

complex terrain. Hillshade visualisations are susceptible to terrain and lighting, 

while the slope visualisation is not. Thus, the slope visualisation is capable of 

producing very consistent results for both parts of the study area, regardless of the 

terrain morphology.   

Different smoothing, segmentation and training parameters or options were tested, 

and finally, it was decided that the best results were obtained by an unfiltered slope 

visualisation, a Watershed segmentation and the manual input of training fields via 

the segment attribute tables.  

The final workflow works with a combination of algorithms from both the OTB 

and SAGA plugins in QGIS. The semi-automation of the workflow with the help 

of the QGIS graphical workflow modeller turned out to be difficult as OTB does 

not handle temporary files and the graphical workflow modeller ends the process 
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chain as soon as an output is saved. Finally, a three step workflow was achieved in 

the graphical workflow modeller.  

Closing the loop to the research question: What are the elements that an effective 

FOSS GeOBIA workflow for heterogeneous and linear archaeological objects 

needs to contain? The answer is: 

 cropping the LiDAR visualisation to the desired area;  

 segmentation using the Watershed segmentation algorithm;  

 modifying the attribute table of the segmentation layer to allow for the …  

 selection of training polygons for the…  

 supervised classification algorithm and finally 

 the comparison between the classification and the terrace type specific 

inclinations to evaluate the type of terraces that have been classified.  

If needed, the resulting raster areas representing possible geo objects can be 

converted into vector polygons for further mapping.  

Unfortunately, it was not possible to consider neighbourhood relationships between 

the image objects as the tested FOSS applications do not offer a solution for these 

(yet). Nonetheless, the designed workflow produced classification results that held 

up against the mappings of terrace edges (Raba 1996) that were used as a 

benchmark.  

In conclusion it can be said that by systematic experimentation and testing of 

modifications within the range of possible approaches, an efficient and user-

friendly FOSS workflow for GeOBIA was created. In order to assess the benefits 

of the resulting classification, as well as the user friendliness, a survey was carried 

out. This survey is the topic of the following chapter. 
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6. The benefits of a semi-automatic image 

analysis workflow 
The third aim of this thesis was to find out whether a semi-automatic classification 

could be beneficial to the user or whether the LiDAR visualisation on its own is 

still the most intuitive basis for manual classification. The third research question 

was the following: Does the developed workflow deliver results that save time and 

support the human interpreter? 

In order to evaluate whether or not the semi-automatic classification workflow 

offers support to the interpreter, feedback about the usefulness of the classification 

was needed. This was accomplished by asking a group of users to map terrace edges 

with the help of a hillshade and a classified image. They were also asked directly 

whether they preferred working with the visualisation or with the classification. 

This feedback was obtained by sending out a survey questionnaire.  

6.1. Survey setup 
The survey questionnaire showed a hillshade visualisation of the LiDAR DTM 

alongside the classification result of the exact same area (Appendix v). Because 

some participants were English speaking and some were German speaking, the 

questionnaire was created in both languages. The survey participants were informed 

that the light green areas within the classification were indicators for terrace flats 

while the dark green areas indicated terrace slopes, before asking them to draw all 

the terrace edges that they saw. The participants were told that it did not matter 

whether they marked the terrace edges on the hillshade or on the classification. 

Next, the participants were asked to answer two questions:  

1) Did the classification help you with your decision on the location and extent 

of the terrace edges?   

2) Did you prefer working with the hillshade, the classification, or with the 

combination of both?   

Two groups participated in the survey; one of which consisted of students who had 

taken part in at least one field campaign of the TERRA project and thus knew the 

landscape and had an idea of what an agricultural terrace looks like, and a second 

group of people who were all laypersons. Initially, only the first group was planned 

but after the first few feedbacks from TERRA participants came in, it was found 
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that members of the specialised group sometimes used their prior knowledge of the 

area and the agricultural terraces, leading them to question some of their decisions 

(for more details see chapter 6.3.1). The idea emerged that perhaps someone with 

absolutely no prior knowledge would perform a more straightforward and unbiased 

analysis, and for this reason the second group was added. 

It was decided that the images should contain as little geographical information as 

possible as the aim of the survey was simply to see whether the classification aided 

in the detection of structures or not. However, it soon became very clear that an 

indication of the scale of the image was indispensable for the user to have a 

reference of the size of the terraces within the images. The TERRA participants 

only received the survey as it could be expected of them to know what an 

agricultural terrace is and looks like, and how a hillshade is to be interpreted.  

The participants of the second group that had no prior knowledge of the subject 

were given a bit of background information. More specifically, they were told what 

an agricultural terrace is and given an example of the well-defined terraces of the 

lower study area as hillshade and classification (figure xxxii). They were also told 

that the example terrace cluster was only for illustration purposes and not to scale 

with the area on the survey questionnaire, and they were informed that the area that 

they were asked to analyse is more eroded and thus the objects are more diffuse.  

 

Figure xxxii: The example terrace cluster that was given to the participant group without prior knowledge as 

hillshade (left) and classification (right). (DTM: Bundesamt für Landestopografie (2019), visualisation 

created in RVT2.2.1 (Kokalj and Somrak 2019) by Pierina Roffler). 

Group one, the TERRA participants consisted of 7 students from both Leiden 

University and the University of Zurich. Group two, the participants that had no 

prior knowledge was formed of 7 individuals who have not studied archaeology. 

In 1993, Nielsen and Landauer researched the ration between benefits and costs of 

using various numbers of software evaluators to identify usability problems and 
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came to the conclusion that after five users this ratio sinks dramatically (Nielsen 

and Landauer 1993, 212). These findings were confirmed by Brandsen et al. 

(submitted) who found that in their user study, not many new issues were identified 

by new users after the fifth user evaluation (Brandsen et al. submitted). The 

researchers go on to state that perhaps, the ideal size of a user group is five users 

per user category (Brandsen et al. submitted).  For this reason, the seven users per 

user group that were questioned in this thesis seem to be adequate in order to 

identify a wide range of issues.  

6.2. Limitations of the survey 
The author of this thesis has learnt a great deal about the way survey questionnaires 

need to be designed during the process of this thesis. A number of mistakes were 

made in the setup of this survey that can be avoided in the future.  

The first oversight was the omission of the scale bar in the first version of the survey 

questionnaire. This led to one candidate having different conditions as compared to 

the rest of the group so that the result was inadmissible and had to be discarded. In 

addition, it turned out that the explanation of the exercise was not clear enough, 

leading to some candidates circling the terrace flats or slopes instead of marking the 

edges as a line. These two lapses are very easy to avoid in future versions of the 

questionnaire.  

This survey was very qualitative, asking participants about their thoughts by using 

questions that left room for very detailed answers. These answers delivered 

valuable information about the way participants felt about the two image options 

and what their insecurities were. However, they are more difficult to quantify 

compared to answer sheets with check boxes.   

Upon comparing the results against the mapping results of Raba (1996), it was soon 

realised that a point system for detected, undetected and wrongly detected terraces 

is problematic. The reason for this was that candidates often marked longer terraces 

that combined several shorter ones of Raba (1996), and other times they only 

marked a part of a terrace edge that was defined by Raba (1996). The only way to 

really quantify these results would be to count the millimetres of edge markings 

done by the candidate that correspond to the mapping results of Raba (1996). This 

problem is, again, the result of the very qualitative nature of the survey. In order to 
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truly quantify the answers, the candidates would have to be given small image 

snippets that either contained or did not contain a terrace edge, asking them to check 

yes or no boxes in the process.  

6.3. Survey results  
The results showed quite a large span of different answers. It was also found that 

there are not all too many differences in the answers given by the members of the 

two groups. In both groups there were individuals who had difficulties with the 

scale of the provided images, leading them to classify terraces that would in reality 

be over 400 meters long. Similarly, both groups contained individuals who circled 

the flats or slopes instead of marking the edges as a line. The conclusion that has to 

be drawn from these findings is that the instructions on the survey should have been 

more specific about the preferred format of the results. 

As was mentioned in chapter 6.2, it is difficult to quantitatively assign points for 

detected, undetected and wrongly detected terraces as the extents of the edges that 

were marked by the participants varied greatly. For this reason, the analysis of the 

mapping results was based on the subjective impression of the author. In the 

following two sections, the results of both specific groups will be presented.  

6.3.1. Group one (TERRA participants) 
Two individuals from this group had difficulties with the scale of the images. It 

must be said that one of these two individuals was the first one to send the results 

back and it was thanks to this individual’s interpretation that it was realised that a 

scale indication is indispensable. This means that all other participants received a 

corrigendum containing a scale bar and thus had different conditions for completing 

the survey. For these reasons, the classification of the first individual cannot be 

counted.  

One individual of this group circled terrace flats instead of marking the edges and 

as was already mentioned in chapter 6.2, the lesson to be learnt here is that in the 

future, concise instructions must be given to test people.   

The following table, table ix, summarises the mapping results compared to those of 

Raba (1996). On the left is the result as returned by the participant, while on the 

right is the same result with an overlay of the edges mapped by Raba (1996). 
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Table ix: The mapping results returned by members of group one (left). 

These results were compared to the edges that were mapped by Raba 1996 

(right). 

This participant mapped a lot of the terraces correctly but at the same time, 

mapped too many terraces overall. 

  

The following three participants placed almost all their terrace edges in the correct 

places, but missed some. 
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This participant missed quite a few terrace edges. 

  

This participant had difficulties with the scale of the objects in the images and 

chose to circle the terrace flat instead of mapping the edges. 

  

 

Of those participants who worked in the correct scale, four managed to map the 

majority of the terrace edges located within the images, although one of the three 

had the tendency to map too many terraces overall. One participant only located a 

small part of the terrace edges.   

In addition to the classification exercise, the participants were asked the two 

questions;  
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1) Did the classification help you with your decision on the location and extent 

of the terrace edges?   

2) Did you prefer working with the hillshade, the classification, or with the 

combination of both? 

For the first question, six out of seven people stated that the classification helped 

with their decision. Some people already mentioned that the combination of both 

the hillshade and the classification was helpful to them. This leads to the answers 

to the second question. Five people stated that they used a combination of both the 

hillshade and the classification, one person stated that they preferred working with 

the classification but went on to say that the combination of both methods seems 

important to them. One person preferred working with the hillshade, stating that 

they were used to working with these kinds of visualisations and that they appeal 

to them more than a colour-code. For the full answer statements in anonymised 

form, please consult appendix vi.  

One person stated that they would be careful defining some of the image objects as 

intentional terrace edges, but rather as the product of geological movement of the 

hillside. This person also noted that they would not address the flats and slopes 

defined by the classification as terraces, but interestingly enough, if the edges 

mapped by this individual are transferred from the hillshade onto the classified 

image, they match the edges that are suggested by the classification (figure xxxiii).  

 

Figure xxxiii: This test person stated that they would not address the flats and slopes in the classification as 

terraces, but once the mapping results are transferred from the hillshade onto the classification, the edges all 

lie on the border between the light green terrace flats and the dark green terrace slopes (DTM: Bundesamt für 

Landestopografie (2019), visualisation created in RVT2.2.1 (Kokalj and Somrak 2019) by Pierina Roffler). 
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Another participant stated that the field surveys showed that terrace flats are not 

perfectly horizontal and planar, but rather flattened terrain, and that the classified 

image more clearly showed the relationships between the objects. Two people 

stated that they found the recognition of terrace edges on the hillshade to be easier, 

but that the classification gave a clearer picture of the extent and shape of the terrace 

edges. Two other individuals noted that the combination of different sources of 

information and techniques always lead to better and more sound decisions.   

Because the majority of this test group stated that the combination of both the 

LiDAR visualisation and the classified image was very helpful, it may be worth 

experimenting with the layering of the classification as a semi-transparent layer 

over the LiDAR visualisation. One individual even suggested layering the 

classification over a three-dimensionally visualised LiDAR in a 3D GIS to further 

aid the object detection.  

6.3.2. Group two (no prior knowledge) 
In this group, one individual had difficulties with the scale of the image objects, 

marking only a few very large terraces in the hillshade. One individual circled the 

terrace slopes instead of marking the edges but this, again, could have been avoided 

with clearer instructions by the author. Just like the results from group one, the 

classifications of the participants were cross checked against the mapping results of 

Raba (1996). The following table, table x, summarises the results of group two. 

Again, the left is the result as returned by the participant, while on the right is the 

same result with an overlay of the edges mapped by Raba (1996). 

Only one participant in this group had difficulties with the scale of the image 

objects. Perhaps the sample images that were given to this group prior to the survey 

were helpful. One participant circled the terrace slopes rather than marking the 

edges as a line, but managed to identify a good portion of the slopes correctly, and 

another person missed quite a few of the terrace edges. Four people managed to 

identify a large portion of the edges, missing only a few, although one of them 

mapped too many edges overall.  
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Table x: The mapping results returned by participants of group two (left). 

These results were compared to the edges that were mapped by Raba 1996 

(right).  

This participant mapped a lot of the terraces correctly but at the same time, 

mapped too many terraces overall. 

  

The following two participants placed almost all of their edges in the correct 

places, but missed some. 
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This participant missed quite a few terrace edges. 
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This participant had difficulties with the scale of the image objects. 

  

This participant chose to circle the terrace slopes instead of mapping the edges. 
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This participant mapped both the hillshade and the classified image. They 

mapped most of the terrace edges correctly, in the hillshade there are some 

missing, in the classification there are a few too many. The reasons for processing 

both the hillshade and the classification will be discussed shortly. 

 

 

 

This group was also asked whether the classification helped with the decision on 

the location and extent of the terrace edges, as well as whether the participants 

preferred working with the hillshade, the classification or with a combination of the 

both.   

To the first question, all seven participants answered that indeed, the classification 

helped with the decision on the location and extent of the terrace edges. Five people 
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stated that they worked with the combination of both the hillshade and the 

classification, while two people stated that they only used the classification.  

Two people stated that the classification helped confirm their initial classification 

in the hillshade, one person noted that they began the exercise by mapping the 

hillshade and using the classification for verification purposes but realised that they 

had switched to using the classification as a starting point after just a few minutes, 

followed by consulting the hillshade for confirmation and a plausibility check 

(figure xxxiv). Two people stated that the classification indicated the presence and 

the extent of a terrace more clearly than the hillshade visualisation. Again, please 

consult appendix vi for the full answer statements.  

 

Figure xxxiv: This participant stated that they had switched from using the classification to verify their results 

within the hillshade to using the hillshade to verify their results in the classification (DTM: Bundesamt für 

Landestopografie (2019), visualisation created in RVT2.2.1 (Kokalj and Somrak 2019) by Pierina Roffler). 

 

6.4. Comparison of the results generated by the two 

user groups 
Interestingly, it seemed that users in group one were more reluctant to trust the 

classification. The best example for this reluctance is the participant that stated they 

would not address the flats and slopes in the classification as terraces but ultimately, 

the edges placed by this individual correspond well to the classification (figure 

xxxiii). Perhaps because users from groups two had no prior knowledge and were 

not used to working with a LiDAR visualisation, they had no other choice but to 
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heavily rely on the classification. In any case, the results of both groups are highly 

comparable. In both groups there were users who had trouble with the scale of the 

image and in both groups some users mapped too many terraces while some users 

missed quite a few terraces. It is interesting to see that apparently, the prior 

knowledge of the study area and of archaeology in general that participants in group 

one possessed did not give them any significant advantage when it came to mapping 

terrace edges.  

This is an interesting result that is in line with a study conducted by Herfort et al 

(2018), where the researchers gave a group of secondary school children as well as 

a group of undergraduate and graduate students of Geography at Heidelberg 

University three different tasks of differing complexity to perform on a LiDAR 

point cloud (Herfort et al. 2018, 78). The results of this study showed that the two 

more straightforward tasks were of the same complexity for any user, regardless of 

their prior knowledge or experience (Herfort et al. 2018, 79). These findings stand 

in a stark contrast to the opinion of Casana (2020), who advocates strongly for 

expert-led remote sensing investigations rather than the use of crowd-sourcing and 

citizen science, stating that most of these efforts to include the general public 

produce data that “have so much noise as to be analytically useless” (Casana 2020, 

98).  

Contradictory to Casana (2020), Verschoof-van der Vaart et al. (2020), who 

compared the results of citizen researchers to a machine learning approach for 

detecting barrows, charcoal kilns and Celtic fields in LiDAR visualisations of the 

Veluwe area in the Netherlands, found that citizen researchers outperform the 

machine learning workflow, especially in terms of precision39 (Verschoof-van der 

Vaart et al. 2020, 16). The researchers state that this may be because the citizen 

researchers were given two different LiDAR visualisations and thus perhaps more 

easily determined possible detections as being objects of confusion (Verschoof-van 

der Vaart et al. 2020, 16).  

The results generated by the user study of this thesis would also contradict the 

opinion of Casana (2020) as the individuals of group two who had no prior 

knowledge produced classification results that were of the same quality as those 

                                                           
39 In precision and recall analyses, precision is the sum of true positives divided by the sum of true 

and false positives or, in other words, the amount of selected items that are relevant.  
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generated by the specialist users in group one. It has to be said that the individuals 

of group two received a more extensive introduction (examples of a clearly defined 

terrace cluster as a hillshade and a classification for referencing purpose). 

Considering the findings of Herfort et al. (2018) that the complexity of the task is 

a more influencing factor on performance than prior knowledge (Herfort et al. 2018, 

79), perhaps this additional information made the task for users in group two a less 

complex endeavour because they had a reference for what they were actually 

looking for.  

6.5. A note on bias and time savings 
As already mentioned in chapter 6.3.1, some participants of group one used their 

prior knowledge of the area and of the agricultural terraces for their mapping 

decisions. It was interesting to see that the individuals of group two generally 

mapped more terraces than the individuals of group one, perhaps precisely because 

they did not have any prior bias about the morphology and the location of 

agricultural terraces. In the future, it could be interesting to conduct a systematic 

survey about the bias of archaeologists and whether or not this bias can be 

eliminated by the addition of a classification.  

13 of the 14 survey participants stated that the classification was helpful to them. It 

takes just about 40 seconds to run the three processing steps in the workflow 

modeller for a smaller study area and a little under 8 minutes for a larger 500x500 

tile. In addition, it takes the interpreter some time to select and enter suitable 

training data, but even so, the full workflow should take no more than 5-10 minutes 

to complete. This shows that with minimum time and effort the interpreter can 

create a classification of the desired study area that aids him or her with the mapping 

process, even if it is just to draw the attention of the interpreter to potential 

archaeological objects within the LiDAR visualisation.   

6.6. Discussion and Conclusion 
The third aim of this thesis was to find out if the result of the semi-automatic 

classification workflow could be beneficial to interpreters, or whether the LiDAR 

visualisation on its own is still the preferred basis for manual classification. The 

question corresponding to this aim was: 
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Does the developed workflow deliver results that save time and support the human 

interpreter? 

In order to evaluate whether the classified image that was achieved with the semi-

automatic classification workflow offers support to the interpreter, a total of 14 

survey participants were asked to perform a manual classification using a hillshade 

visualisation and a classification of the same area, before being asked the following 

two questions:  

1) Did the classification help you with your decision on the location and extent 

of the terrace edges?   

2) Did you prefer working with the hillshade, the classification, or with the 

combination of both? 

The survey participants formed two groups. Group one was composed of seven 

students of the Universities Leiden and Zurich, who had all taken part in at least 

one TERRA campaign and thus knew the area and had an idea about the 

morphology of an agricultural terrace. Group two contained seven laypersons. The 

vast majority of all survey participants preferred to work with a combination of the 

classification and the hillshade visualisation. One person preferred working with 

the LiDAR visualisation and two people worked exclusively with the classification.  

It seemed that the participants in group one who had prior knowledge were more 

distrustful of the classification, even though their mapping results corresponded 

well with the classification results. Overall, the results from both groups are highly 

comparable, neither of the user groups performing better than the other. These 

findings go along well with the findings of Herfort et al. (2018), namely that it is 

the difficulty of the task that is the deciding factor for the performance of the users 

rather than experience or prior knowledge (Herfort et al. 2018, 79).  

13 out of 14 survey participants stated that the classification aided them in 

determining the exact extent and shape of the terrace edges, or that it was easier to 

work with two colours than a greyscale, and some stated quite rightly that the 

combination of different sources of information and techniques always lead to 

better and more sound decisions. One person even switched their methodology after 

a few minutes and instead of using the classification to verify the edges in the 

hillshade, used the hillshade to confirm the edges in the classification.  



 

100 

These results show that the resulting classification from the semi-automatic image 

analysis workflow was very beneficial to the users. Time-wise, the processing 

algorithms of the graphical workflow modeller takes around 40 seconds to complete 

for smaller study areas and just under 8 minutes for an area of 500x500 pixels. Some 

additional time needs to be spent on the selection of training data but even so, the 

workflow should not take longer than 5-10 minutes to complete.  

Overall, the workflow proves to be an uncomplicated and effective way to greatly 

aid the human image interpreter. 
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7. Conclusion and outlook  
The technical advances of the past years in the field of remote sensing have led to 

the creation of large amounts of datasets with a high temporal, spectral or spatial 

resolution. Contrary to the technological advances in the field of remote sensing, 

the interpretation of these datasets in archaeology is still largely a manual 

undertaking. However, the problem is that manually interpreting all this remote 

sensing data is a very time consuming task and in some cases, such as in the case 

of hyperspectral data, the human eyesight is incapable of processing the full range 

of information. The semi-automation of image analysis is one solution to the 

aforementioned issues. Critics of semi-automatic image analysis workflows state 

that a human interpreter has the benefit of experience and flexibility that a computer 

algorithm will never be able to replace. It is important to state here that it is not the 

aim to replace human interpreters, but rather to support them with substantial time 

savings or by computing additional layers of information.  

Several different (semi-) automatic image analysis approaches were presented in 

chapter 2. Studies have shown that object-based image analyses work better for 

heterogeneous and linear objects than pixel-based approaches. Because the results 

of this thesis were applied to the terraced landscape of the Lower Engadine in 

Switzerland, a landscape that contains many heterogeneous and linear objects such 

as agricultural terraces, roads and drainage/irrigation ditches, it was decided to 

focus on Geographic Object-Based Image Analysis (GeOBIA). More specifically, 

it was decided to develop a GeOBIA workflow for LiDAR visualisations of the 

terraced landscape of the Lower Engadin, Switzerland.  

It was the first aim of this thesis to provide an overview of the existing free and 

open-source (FOSS) GeOBIA applications and to assess the user friendliness, 

effectiveness and suitability for the study area of each programme. Because a large 

part of archaeologists presently does not have programming skills, it was important 

that the tested GeOBIA solutions have a Graphical User Interface (GUI). The 

second aim of this thesis was to create a custom GeOBIA workflow for the 

heterogeneous landscape of the Lower Engadine. The workflow made use of only 

FOSS applications in order to promote accessibility, transparency and 

reproducibility of the research. The third aim was to find out whether a semi-

automatic image analysis workflow could be beneficial to the user or whether the 
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LiDAR visualisations on their own are still the most intuitive basis for manual 

classification. These aims correspond to three research questions:  

 Is there an open source solution for GeOBIA available with a Graphical 

User Interface (GUI) that is user friendly, does not require additional coding 

and will prove through systematic testing to be capable of classifying the 

heterogeneous and linear features within the terraced landscape of the 

Lower Engadine? 

 What are the elements that an effective GeOBIA workflow for 

heterogeneous and linear archaeological objects needs to contain? 

 Does the developed workflow deliver results that save time and support the 

human interpreter? 

In order to answer these aims and research questions of this thesis, a number of 

methodological steps were undertaken. In the first step, the Digital Terrain Model 

(DTM) of the study area was visualised in eight different ways using the Relief 

Visualisation Toolbox version 2.2.1 (Kokalj and Somrak 2019; Zakšek et al. 2011). 

These visualisations were then imported into different FOSS applications with a 

GUI such as SAGA GIS or QGIS, as well as into the two popular proprietary 

applications eCognition and ERDAS IMAGINE. In each of the tested software 

solutions, a GeOBIA workflow was carried out in order to assess the user 

friendliness of the programme, but also its effectiveness and suitability. The reason 

for including the two popular proprietary applications was to understand their 

popularity and the reason why so many researchers still prefer them over a FOSS 

solution. During the software testing processes, the necessary steps of the GeOBIA 

workflow became more and more apparent. 

After testing the different GeOBIA applications, the custom GeOBIA workflow for 

the terraced landscape of the Lower Engadine was developed. This step involved 

testing different LiDAR visualisations, pre-processing steps, segmentation 

algorithms and training data input methods, comparing the different classification 

outcomes in order to choose the most suitable combination of algorithms.  

Finally, the effectiveness and accuracy for the resulting workflow was assessed by 

comparing the resulting classification with the manual mapping results of the study 



 

103 

area. Additionally, a survey was conducted in order to gain feedbacks about 

whether or not the classification results are beneficial to human interpreters.  

The fist research question asked if there is an effective, open-source solution with 

a GUI for GeOBIA available that is user friendly, does not require additional coding 

and proved through systematic testing to be capable of classifying the 

heterogeneous and linear features within the terraced landscape of the Lower 

Engadine. This question can be answered positively: SAGA GIS is a FOSS, 

intuitive and user friendly application. It does exactly what is necessary for an 

effective GeOBIA workflow, not more and not less. For the custom GeOBIA 

workflow it was decided not to use the standalone version of SAGA but rather the 

QGIS plugin, as this could be combined with the OrfeoToolbox plugin in order to 

have a broader range of functionalities available. Another benefit of implementing 

the workflow in QGIS is that this programme offers a graphical workflow modeller 

for the automation of the process chain, further promoting user friendliness.  

The second research question asked what the elements are that an effective FOSS 

GeOBIA workflow for heterogeneous and linear archaeological object needs to 

contain. The answer to this question was found by systematic experimentation and 

testing, through which a six step workflow was defined. This workflow contains 1) 

cropping the LiDAR visualisation to the desired area, 2) segmentation using the 

Watershed segmentation algorithm, 3) modifying the attribute table of the 

segmentation layer to allow for 4) the selection of training polygons and, finally, 5) 

a supervised classification algorithm. The classification can then be 6) compared to 

the mapping results of terrace type specific slope inclinations in order to assess 

whether the mapped results in the classification are terraces of type one or two. An 

optional seventh step can be added: 7) converting the classes from the raster file 

into vector polygons. The workflow was implemented in the graphical workflow 

modeller as a three step processing chain.  

Finally, the third research question asked whether the developed workflow delivers 

results that save time and support the human interpreter. The conducted survey 

showed that the vast majority of participants felt that the classification supported 

them in their mapping decisions, stating that the classification specifically aided 

them in determining the exact extent and shape of the objects. Time-wise, the 

processing chain takes around 40 seconds to complete for smaller study areas and 
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just under 8 minutes for an area of 500x500 pixels. Even when taking into 

consideration the time spent on the manual selection of training data, the complete 

workflow should take no longer than 5-10 minutes. That being said, with minimum 

time and effort the interpreter can create a classification of the study area that aids 

with the mapping process, even if it is just to draw the attention of the interpreter to 

potential archaeological objects within the LiDAR visualisation. In addition, the 

workflow still requires substantial user inputs, meaning that the human experience 

and flexibility, which critics fear will be lost in semi-automatic image analysis 

workflows, are absolutely essential for a successful classification result.  

This thesis has demonstrated that GeOBIA needs not be conducted using expensive 

software or implementing complicated code. By combining different plugins in 

QGIS, an uncomplicated and effective GeOBIA workflow for detecting linear 

objects in a heterogeneous landscape was developed and found to be useful by a 

group of interpreters. Using FOSS applications for semi-automatic image analysis 

is essential to ensure transparency, reproducibility and accessibility of the research.  

Currently, none of the FOSS GeOBIA applications have succeeded to be much of 

a competition to the proprietary software solutions on the market. It is the hope of 

the author that future research in the area of GeOBIA and FOSS will increase the 

awareness of the necessity to have alternatives to the proprietary and commercial 

solutions, and that in the very near future archaeologists can contribute to their 

development.    
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Abstract 
Technical advances in the field of remote sensing have made it possible to create a 

large number of datasets with very high spectral, temporal or spatial resolution, 

however, in the field of archaeology, the evaluation of this data is still largely a 

manual undertaking. The issue with manual interpretation is that human interpreters 

are increasingly having difficulty coping with the sheer amount of data while in 

some cases, the human eye is not capable of processing the full range of information 

contained in these datasets. It is for this reason that (semi-)automatic classification 

workflows need to be developed in order to aid human interpreters in their image 

classification tasks.  

This thesis is concerned with the development of a Geographic Object-Based Image 

Analysis Workflow for classifying LiDAR visualisations containing heterogeneous 

and linear objects. The study area that this workflow is applied to is the terraced 

landscape of the Lower Engadine, Switzerland, where the complex and steep terrain 

contains multiple agricultural terraces, irrigation/drainage ditches, roads and more.  

The workflow makes use of only FOSS (Free and Open Source Software) 

applications in order to ensure full transparency, accessibility and reproducibility 

of the classification results. For this purpose, a number of FOSS and proprietary 

software was tested in order to determine the user friendliness, suitability and 

effectiveness of each of the options. Finally, it was decided to combine the SAGA 

GIS as well as the Orfeo Toolbox (OTB) plugins in QGIS.  

In order to develop the final workflow, a number of studies regarding the suitability 

of different LiDAR visualisations as well as training data input options and 

smoothing filters were carried out. The final workflow makes use of an unfiltered 

slope visualisation, consists of six steps with an optional seventh step, and is 

capable of producing classification results that hold up against manual mapping 

results of the terrace edges that were used as a benchmark.  

Finally, in order to assess whether the classification results generated by the 

workflow are useful to a human interpreter, a user study was carried out. 13 out of 

the 14 users stated that the classification results were helpful to them and because 

the workflow takes no longer than 5-10 minutes to carry out, it can be said that this 

workflow is capable of producing a useful classification of the study area with 

minimal time and effort.  
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Appendix v 
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groups of participants in order to evaluate whether the classification that results 

from the developed workflow can be beneficial to a human interpreter.  
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Appendix vi 
Answers to the questions on the survey questionnaire (appendix v). 

3) Did the classification help you with your decision on the location and extent 

of the terrace edges?   

4) Did you prefer working with the hillshade, the classification, or with the 

combination of both? 

Group 1  

In order to ensure complete anonymity, German answers were translated to 

English. The original statements can be requested from the author. 

1) Rather not. Sometimes I was unsure when I consulted the classification, 

because I would not have referred to those areas that are classified as 

terrace flats or terrace slopes as a terrace. This probably has to do with 

my experience (see question 2). 

2) I preferred working with the hillshade. This probably has to do with the 

fact that I am used to these types of visualisations and they appeal to me 

more than a mere colour-code. However, I noticed that in the upper area 

of the image I became a bit unsure… to me these objects look more like 

a landslide. 

1) Partly. The classification has an additional value when there are no clear 

edges visible in the LiDAR because of the composition of the ground. 

These types of diffuse areas are primarily located in the upper left 

corner (northwest?). Because the field survey showed that terraces are 

not horizontal and planar, but rather flattened terrain with slight 

unevenness, the classification conveyed the relationship between the 

objects in a clearer way. 

2) The combination of both methods seems most profitable. The LiDAR is 

especially helpful for the orientation of the objects in the terrain.  

1) The classification helped me a lot because I could see the terrace edges 

well due to the change of colour (from dark green to light green). In this 

way I succeeded in finding terrace edges that were indistinct in the 

hillshade.  

2) I used the hillshade to draw the terrace edges because the greyscale 

image seemed a better background than the colourful classification. 

Then I constantly compared the classification with the hillshade. I was 

under the impression that the classification enabled me to detect the 

starting and ending points of the terrace edges much more precisely. 

1) The classification helped me a little bit in deciding the location of the 

terrace edges, but was mostly used to confirm/substantiate the markings 

made in the hillshade figure. The classification was more useful in 

understanding the exact extent of the edges. The extent was slightly 

better visible in the classification once I knew what/where to look for.    

2) I preferred using the combination of both, because in the hillshade map 

it was easier to recognize each terrace edge, whilst the classification 

map slightly better indicated the exact shape of each terrace edge. Only 

using the hillshade is suitable for identifying edges, but only using the 

classification is much more difficult as the differences between the hilly 

terrain and the terraces are the same color.  
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1) I personally first looked at the classification, since you have mentioned 

in the introduction that the classification shows terrace edges and flats. 

This allowed for inclusion or exclusion of edges in some areas. I then 

used the hillshade for more precise definition of the edges, since it gave 

the impression of offering a higher level of detail/resolution. The 

classification did thus significantly help me in making my decisions.  

2) I preferred working with the combination of both, see the description 

of my methodology from the previous question. The fact that you have 

multiple sources of information, assuming that they are of good quality 

and relevant of course, always allows for the making of better decisions. 

I think that if you would incorporate both maps in a 3D GIS, which 

allows for a placement of the classification map on the three-

dimensionally visualized LiDAR data, my decisions could have even 

been made with greater certainty. 

1) Yes, the classification helps determine possible terraces and their extent. 

On the hillshade variant it is not clear when the terrace turns into a slope. 

In addition, it is also easier to determine from the classification that it is 

a flat area, which is a clearer indication of a terrace.  

2) I preferred to work with the classification for determining possible 

terraces, but I think it is important to work with multiple techniques 

because they will compliment each other, making the determination more 

reliable. Although it is also visible through the classification, the hillshade 

map gives a clear indication of the possible waterways that also played an 

important role.  

1) Yes, the classification helped me. 

2) I worked with a combination.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

130 

Group 2  

In order to ensure complete anonymity, German answers were translated to 

English. The original statements can be requested from the author. 

1) The classification helped if I was unsure about a line. 

2) I think a combination is sensible, the hillshade for primary processing 

and then the classification for verification.  

1) The classification helped me verify my decisions. 

2) With a combination of both  One can envision the terrace slopes 

better. 

1) Yes. It is easier to distinguish between two colours than to analyse 

greyscales. 

2) I only used the classification. 

1) While some terraces are easily discernible on the hillshade visualisation, 

the classification reveals many more details.  

2) I started off with the hillshade visualisation but quickly started to refer 

to the classification for plausibility checks. After only a few minutes I 

reversed the process without even realising it in the beginning. I 

discovered many more “steps” in the classification and compared them 

with the hillshade visualisation. In the process, I realised that in many 

instances, the hillshades are too vague, while the classification clearly 

indicated the prescence of a terrace or step. Overall assessment: the 

classification greatly helped to get a much clearer picture of the 

topography.  

1) The classification helped. 

2) I only used the classification. 

1) The classification helped. 

2) Definitely a combination of both. First I only looked at the hillshade but 

after a while I realised that the classification makes things much clearer. 

The classification confirmed the hillshade. 

1) It made the marking easier. It shows more contrast. 

2) Hillshade has less details and less contrast, one can identify things but in 

combination with the classification, the identification and marking is 

easier. Only the classification has very clear boundaries and details, 

which might make it easier for a layperson to prescind. 

 

 


