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Abstract

Spontaneous parametric down-conversion is a non-linear optical process
mediated by a crystal where an incident photon is converted into two or

more outgoing photons. The theory describing parametric
down-conversion is studied; multi-photon correlations in a spatial basis

and orbital angular momentum basis are studied theoretically and
experimentally. For high intensity pump fields multiple photon pairs can
be created. This is investigated experimentally and by simulation. Theory
is developed to describe orbital angular momentum for multiple photon

pairs and is applied to double photon pairs. Progress is made to
differentiate between spontaneous and stimulated double photon pair

emissions.
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Chapter 1
Introduction

Quantum entanglement is an often misunderstood subject in popular sci-
ence. This seemingly paradoxical phenomenon has been called ‘spooky
action at a distance’ [1] and nowadays is misused to justify pseudo-science
as ‘quantum woo’. As we understand it today, quantum entanglement
arises naturally from certain phenomena. One particle can affect another
at a distance, but it is not considered spooky anymore. Entangled sys-
tems are commonplace in modern physics laboratory, our experiment is
no different. Quantum entanglement of more than two photons has pos-
sible applications in multi-party quantum secret sharing [2–6], optically
propagating neural networks at the speed of light, high bandwidth opti-
cal data transfer [7] using existing infrastructure and more fundamentally,
verification of the quantization of the electromagnetic field [8] and insight
into different kinds of pair production in spontaneous parametric down-
conversion [9, 10].

Four photon entangled states have been observed [11]. Entangled pho-
tons produced by parametric down conversion (PDC) are readily shown to
obey conservation of angular momentum [12] which has been experimen-
tally shown [13–15]. These high dimensional states have been observed
to be entangled experimentally for four photons [16, 17]. Recent publica-
tions raise questions about the conversion efficiency in spontaneous ver-
sus stimulated emission of photon pairs [8–10].

This thesis investigates the ratio between spontaneous and stimulated
PDC pair production, the difference between these two modes is illus-
trated in Fig. 1.1. To investigate this ratio, a theoretical basis is estab-
lished. Using the theory previous results are confirmed and expanded
upon. Measurements of the dependence of the PDC field intensity on the
pump laser power show single pair production in a non-linear crystal.
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2 Introduction

| ,− ⟩
| ,− ⟩

(a) Two different photon pairs are created by spontaneous emission. These pairs are in a
different state and originate from a different place in the crystal.

|2 ,−2 ⟩

(b) Two identical photon pairs are created by stimulated emission. These pairs are in the
same state.

Figure 1.1: In both figures two photon pairs are created. The violet, pulsed laser
enters a non-linear crystal. The down-conversion process produces two photon
pairs. The green line signifies entanglement of the enclosed photons.

2
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Chapter 2
Gaussian Beams

When delving into wave optics, the starting point is at Gaussian beams.
These beams describe the way light looks in the paraxial regime. What
follows is a summary of relevant results found studying Gaussian beams.

2.1 Paraxial Wave Equation

In the paraxial approximation the assumption is valid that the electric field
envelope varies slowly in the direction of propagation compared to the
other components. This situation is also called the slowly varying enve-
lope approximation. To arrive at the paraxial wave equation for light start
with Maxwell’s equations in free space,

∇ · E = 0, ∇ · B = 0,

∇× E = −∂B
∂t

, ∇× B = µ0ε0
∂E
∂t

.

Using c = 1√
µ0ε0

and the vector identity ∇× (∇× F) = ∇(∇ · F)−∇2F
where F is any vector function, the electromagnetic wave equation reveals
itself

1
c2

∂2E
∂t2 −∇

2E = 0. (2.1)

Make the ansatz that the solution is of the form E = U(r)e−iωtn̂ where U
is a yet to be determined function depending on the position, and n̂ is the
direction of propagation. Then Eq. 2.1 can be written as

ω2

c2 +
1
U
∇2U = 0. (2.2)
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4 Gaussian Beams

Using the dispersion relation |k| = ω/c this leads to

∇2U + k2U = 0, (2.3)

which is the Helmholtz equation.
It is useful to write U = ueikz where z is picked to lie along the direction

of propagation, implying k = kẑ. The paraxial approximation assumes
θ � 1, the beam diverges little while propagating along the z-direction.
Let ∇⊥ denote the nabla operator working the components transverse to
the direction of propagation. Using these definitions in Eq. 2.3 leads to

∇2
⊥u +

∂2u
∂z2 + 2ik

∂u
∂z
− k2u + k2u = 0. (2.4)

Assuming the slowly varying envelope approximation the rate of change
of the z-component is much smaller than the rate of change in the trans-
verse components; | ∂2u

∂z2 | � |k ∂u
∂z | and ∂2u

∂z2 can be dropped. Thus, Eq 2.4
reduces to

∇2
⊥u + 2ik

∂u
∂z

= 0. (2.5)

A family of solutions to this equation are the Gaussian solutions*.

2.2 Gaussian Solutions

There exist excellent derivations of this solution [18–21], it is not necessary
to repeat those here. The Gaussian solution for the electric field is given
by

E(ρ, z, t) = E0
w0

w(z)
e−ρ2/w2(z)︸ ︷︷ ︸

amplitude

eik(ρ2)/(2R(z))e−i arctan
(

z
zR

)
ei(kz−ωt)︸ ︷︷ ︸

phase

. (2.6)

In this equation, new parameters arise. ρ =
√

x2 + y2 is the radius in
cylindrical coordinates. The z-coordinate is the distance to the focus. The

function R(z) = z
(

1 +
( zR

z
)2
)

is the radius of curvature of the wavefront.

w(z) = w0

√
1 +

( z
zR

)
= FWHM(z)√

2 ln 2
is the beam size, with the beam waist

w0 = w(0).

*Although plane waves are often used as a simplified way to think about light, plane
waves are not a solution of the paraxial wave equation.

4
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2.3 Hermite-Gauss and Laguerre-Gauss modes 5

2.3 Hermite-Gauss and Laguerre-Gauss modes

There also exist higher order modes as solutions to the paraxial beam
equation. Examples of these are the Hermite-Gauss, Laguerre-Gauss and
Ince-Gauss modes. Again, the derivation of these solutions have already
been written down in an excellent manner [18, 21]. Below, two of these
families of solutions are presented and explained. Both solutions are split
up in a part describing the amplitude and a part describing the phase.

2.3.1 Hermite-Gauss

The Hermite-Gauss family of solutions is given by

E(x, y, z, t) =E0
w0

w(z)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
e(x2+y2)/w2(z)

× eik(x2+y2)/(2R(z))e−i(m+n+1) arctan
(

z
zR

)
ei(kz−ωt).

(2.7)

In this expression, Hj(x) are Hermite polynomials of order j ∈ N. The
indices m, n ∈ N signify the order of the mode in the x and y directions.
These modes show strong symmetry in the cartesian coordinate axes. This
is why it is useful to express the solution in terms of cartesian coordinates
instead of cylindrical coordinates.

2.3.2 Laguerre-Gauss

This family of rotationally symmetric solutions is given in cylindrical co-
ordinates by

E(ρ, φ, z, t) =E0
w0

w(z)

√
2p!

π(p + |`|)!)

(
ρ
√
(2)

w(z)

)|`|
L|`|p

(
2ρ2

w2(z)

)
e−ρ2/w2(z)

× eik(x2+y2)/(2R(z))e−i`φe−i(|`|+2p+1) arctan
(

z
zR

)
ei(kz−ωt).

(2.8)

The expression contains generalized Laguerre polynomials L|`|p (x) for ` ∈
Z and p ∈ N. These indices again give rise to different modes which can
be seen in Fig. 2.1. Crucially, in these modes the term ei`φ describing the
phase is dependent on the angle coordinate φ and an integer `. This ` gives
rise to orbital angular momentum.
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6 Gaussian Beams

(a) LG-modes plotted using a linear inten-
sity scale.

(b) LG-modes plotted using a logarithmic
intensity scale.

Figure 2.1: Laguerre-Gauss modes. The color shows the phase, the opacity shows
the intensity of the field.

2.4 Orbital Angular Momentum

Orbital angular momentum (OAM) may be interpreted as a helix-shaped
wavefront. As can be seen in Eq. 2.8, ` influences the phase of the beam
in the direction of φ. Another way to think about this is as a zeroth or-
der (gaussian) wave which is retarded in a spiral fashion. The resulting
wavefront has the shape of a helix. The Poynting vector, perpendicular to
the wavefront, must then gyrate around the direction of propagation and
consequently it imparts angular momentum [22].

6
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Chapter 3
Non-Linear Interactions in a
Crystal

In this experiment, photons are entangled in a periodically polled potas-
sium titanyl phosphate (PPKTP) crystal using a process called sponta-
neous parametric down conversion (SPDC). This process arises from non-
linearities in the field susceptibility of the crystal. An incident photon of
wavelength λp may result in two photons of wavelength λi and λs such
that energy is conserved: 1/λp = 1/λi + 1/λs. The subscript p denotes
the pump beam while the subscripts s, i denote the signal and idler field,
respectively. They are called signal and idler fields by historical conven-
tion, there is no fundamental difference between the two fields. Therefore
they will be denoted using the numbers 1 and 2, this will make notation
for four photons easier in Ch. 5.

The inverse process where two photons add up to one is is called sum
frequency generation (SFG). When the two inbound photons have the same
wavelength it is called second harmonic generation. SFG is used for vari-
ous applications in industry, a prime example being cheap laser pointers.

In this chapter the groundwork is laid out to build upon when starting
to understand SPDC.

3.1 Linear effects

A discussion of linear effects is a stepping stone to higher order effects.
The non-linear interactions in anisotropic crystals are the fundamental
concepts that will carry over to the description of SFG and SPDC.

Knowledge of the propagation of electric fields in isotropic media is

Version of July 10, 2020– Created July 10, 2020 - 15:19
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8 Non-Linear Interactions in a Crystal

assumed. The propagation in anisotropic media is discussed further.

3.1.1 Permittivity Tensor

For regular materials, the dielectric displacement is related to the elec-
tric field by the dielectric constant. In an anisotropic crystal this constant
changes depending on the axis through the material considered. Using
Einstein summation convention, the electric field E and dielectric displace-
ment D are now related by a tensor [23, 24]

Dk = εklEl (3.1)

called the permitivitty tensor. This tensor ¯̄ε is symmetric. To show this,
consider the stored electric energy density we of the electric field given by

we =
1
2

E · D (3.2)

=
1
2

EkεklEl. (3.3)

Here, equation 3.1 is used to write the electric displacement in terms of E.
The time derivative of this energy density is

ẇe =
εkl
2
(
ĖkEl + EkĖl

)
. (3.4)

Poynting’s theorem relates the net electromagnetic power flow into a unit
volume, u̇, to E, D, the magnetic field B and the magnetizing field H by

u̇ = E · Ḋ + H · Ḃ. (3.5)

Combining above with Eq 3.1 produces

u̇ = Ekεkl Ėl + H · Ḃ. (3.6)

The first term on the right side of the equation corresponds to ẇe by its
definition (the electric energy density) and must be the same as found in
Eq. 3.4 [23, 24]. This may be rewritten to

ẇe =
εkl
2
(
EkĖl + EkĖl

)
(3.7)

Combining Eq. 3.4 and 3.7, the conclusion must be that εjk = εkj. There-
fore ¯̄ε is a symmetric tensor. In three dimensions this leaves six free com-
ponents.

8
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3.1 Linear effects 9

3.1.2 Index Ellipsoid

Explicitly writing out Eq. 3.1 results in

2we = εxxE2
x + εyyE2

y + εzzE2
z + 2εxyExEy + 2εxzExEz + 2εyzEyEz. (3.8)

Undergoing a coordinate transformation to diagonalize the electric per-
mittivity tensor this equation becomes

2we = εxxE2
x + εyyE2

y + εzzE2
z (3.9)

where from now on x, y, z refer to the new coordinate axes, called the prin-
cipal dielectric axes. All future occurrences of x, y and z will be to the
principle dielectric axes. Physically, these axes correspond to axes along
which D and E are parallel.

Since the permittivity tensor is now diagonal the double index loses its
meaning and, Eq. 3.9 can be written as

2we =
D2

x
εx

+
D2

y

εy
+

D2
z

εz
, (3.10)

as a result the constant energy surface is an ellipsoid in the space Dx, Dy, Dz.
By replacing D/

√
2weε0 with r* and defining the square of the refractive

index as n2
k ≡ εk/ε0, this equation becomes the index ellipsoid:

x2

n2
x
+

y2

n2
y
+

z2

n2
z
= 1. (3.11)

This index ellipsoid may be used to find the refractive indices correspond-
ing to directions of D in the crystal. These indices may be found by finding
the normal plane to the direction of propagation and finding the extreme
values of the intersection of this plane with the index ellipsoid [24].

3.1.3 Linear Electro-Optic Effect

The linear electro-optic (Pockels) effect is a change of the refractive index
due to an applied electric field. Suppose a crystal possessing inversion
symmetry could harbor the electro-optic effect. Then a change in refrac-
tive index ∆n would be observed when an electric field is applied, such
that ∆n = sE for s some constant characterizing the effect. Reversing the
direction of the field, the change in index must be ∆n = s(−E). However,

*This is done to relate to the real space axes in the crystal.
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10 Non-Linear Interactions in a Crystal

since this crystal has inversion symmetry this should not make a differ-
ence for ∆n. Thus sE = s(−E) and either s = −s, which is not allowed
by the symmetry of the crystal, or s = 0. Only in crystals possessing no
inversion symmetry the linear electro-optic effect can exist.

The change in each term of the index ellipsoid can be described by
some linear coefficient in each direction of the principal dielectric axes.
Letting k, l, m ∈

{
x, y, z

}
, this change may be written in Einstein notation

as

∆
(

1
n2

)
kl
= rklmEm. (3.12)

The tensor ¯̄r is the electro-optic tensor. By applying an electric field the in-
dex ellipsoid deforms, changing the way electric fields propagate through
the material. The change of the refractive index when light passes through
gives rise to non-linear behavior.

3.2 First Order Non-Linear Effects

The description of SFG and SPDC is impossible with linear effects. To
tighten the scope of this thesis, the discussion is limited to non-linearities
in the context of either SFG or SPDC. From now on, only SPDC or para-
metric oscillation will be mentioned since SFG is the inverse process. The
description is general enough to apply to SFG [19, 20, 23–27].

Let light of frequency ω3 enter the crystal. This wave affects the po-
larization in the crystal. This does not necessarily happen in a linear fash-
ion, higher order and orthogonal polarization to the inbound electric field
may exist. After this non-linear interaction light of frequency ω1 and ω2
emerges from the other side as a result of this polarization. From energy
considerations it can be stated that the frequencies of the emerging light
obey the relation ω3 = ω1 + ω2 [19, 20, 23–32].

3.2.1 Non-Linear Optical Susceptibility Tensor

The electro-optic tensor from Eq. 3.12 may be related to the polarization
of the emerging polarization density field Pω3 , defining the nonlinear sus-
ceptibility tensor ¯̄d by

Pω3
k = dklmEω1

l Eω2
m , (3.13)

where the tensor ¯̄d is related to the electro-optic effect by

dklm = −εkεl
2ε0

rklm. (3.14)

10
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3.2 First Order Non-Linear Effects 11

This is easily derived from the definition of the polarization and Eq. 3.10,
3.11 and 3.12. By relation to ¯̄r and due to similar arguments for the elec-
tric field as presented in Sec. 3.1.3, the nonlinear susceptibility tensor is
symmetric in its second and third component. To reflect the restriction on
the indices of ¯̄d, the subscripts lm can be replaced by the following single
index*

xx = 1 yy = 2 zz = 3
yz = zy = 4 xz = zx = 5 xy = yx = 6.

The polarization density can be written as a function of the electric
field. Assume the crystal to be very transparent in the frequency range
of interest: above the ionic resonance and below electronic absorption.
Then the anharmonicity in the restoring force, the second order electric
moments and the inelastic photon-lattice scattering interactions are all to
be taken negligible compared to non-linear high frequency processes in
the crystal [33]. Under these assumptions, the polarization can be consid-
ered only a function of the electric field [24].

3.2.2 Work

Using the assumptions described above, the contour integral along the
edge of an arbitrary region of space is∮

∂C
d
(
P · E

)
= 0 (3.15)

since the electric field is conservative. As a result,

−
∮

∂C
P · dE =

∮
∂C

E · dP. (3.16)

The term on the right is the work done on the polarization by the electric
field. Because of our assumption of a ‘very transparant’ crystal this is zero.
Thus, also ∮

∂C
P · dE = 0. (3.17)

Applying Stokes’ theorem results in an integral over the electric field through
a surface bounded by the contour∮

∂C
P · dE =

∫∫
C

(
∇E × P

)
· ndSE. (3.18)

*These indices are not useful to the present discussion, it is mentioned for complete-
ness and to emphasize that the two indices can be reduced to one index, which is used
later.
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11



12 Non-Linear Interactions in a Crystal

Because the contour integral is zero for an arbitrary surface, applying
Stokes’ theorem leads to

∇E × P = 0 (3.19)

where ∇E is the nabla operator applied with respect to the components
of the electric field. Eq. 3.19 implies the existence of an ‘energy’ function
U(E) in such a way that

P = −∇EU(E). (3.20)

This ‘energy’ function is assumed to be at least twice differentiable and
thus can be written as a Taylor expansion to at least second order which
results in

U(E) = −ε0χkl
2

EkEl −
dklm

6
EkElEm, (3.21)

such that

Pk = −
∂U(E)

∂Ek
= ε0χklEl + dklmElEm. (3.22)

Note that there is no physical significance attatched to the order of k, l and
m. Therefore all components of ¯̄d related by a permutation of subscripts
are equal to each other, this is called Kleinman’s conjecture [24, 33].

The last equation, Eq. 3.22, is made up of two terms. The first term
defines ¯̄χ, the electric susceptibility. The second term is important to the
non-linear effects and is described by the second order electric suscepti-
bility tensor from Sec. 3.2.1. Together they describe the non-linear be-
havior of the polarization density inside the crystal. Higher order terms
are neglected because the given terms describe SPDC without introducing
unnecessary complexity.

The way in which non-linear interactions arise in materials has been
derived. In the next chapter this theory is explored further to see how it
impacts light passing through a non-linear material. It will turn out that
non-linearity is the mechanism that causes parametric down-conversion.

12
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Chapter 4
Spontaneous Parametric
Down-Conversion

Spontaneous parametric down-conversion is a process which converts one
pump photon into two frequency down-converted photons. The quan-
tum state of the crystal is left intact, the down converted photons are
only dependent on the pump field. This defines a parametric optical pro-
cess. Gathering an understanding of SPDC is quite difficult: there is a lot
of literature with a qualitative description [19, 20] and a lot of literature
with a quantitative description assuming a lot of prerequisite knowledge
[9, 13, 34]. In this chapter an attempt will be made to bridge the gap.

This chapter starts with the classical formulation of the nonlinear in-
teraction, this shines some light on fundamental behavior of these inter-
actions. In the first half of this chapter the description is kept as general
as possible. A quantum mechanical formulation is introduced. After de-
riving a general Hamiltonian for SPDC the scope is narrowed down to the
paraxial regime.

4.1 Classical Formulation

Starting with two of Maxwell’s equations in such a way that the polariza-
tion P is explicit,

∇× H = J +
∂D
∂t

= J +
∂

∂t
(
ε0E + P

)
(4.1)

∇× E = − ∂

∂t
(
µ0H

)
. (4.2)

Version of July 10, 2020– Created July 10, 2020 - 15:19
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14 Spontaneous Parametric Down-Conversion

The polarization can be written as a linear and non-linear term according
to Sec. 3.2.1,

P = ε0χLE + PNL. (4.3)

The second order term in the equation relating the electric field to the po-
larization density (Eq. 3.22) is the non-linear term (PNL)k = dklmElEm. Eq.
4.1 can be written as

∇× H = ¯̄σE +
∂

∂t
εE +

∂PNL

∂t
(4.4)

using Ohm’s law and Eq. 4.3. As is convention, ¯̄σ is the conductivity and
ε = ε0

(
1 + χL

)
.

4.1.1 Equations for three fields

Taking the curl of both sides of Eq. 4.2 and substituting Eq. 4.4 in the
resulting equation, one finds

∇×∇× E = −µ0
∂

∂t
(
σE +

∂

∂t
εE +

∂PNL

∂t
)
. (4.5)

Since the crystal is neutrally charged on a macroscopic level, ∇ · E = 0.
Using the vector identity ∇×∇× F = ∇∇ · F −∇2F,

∇2E = µ0σ
∂E
∂t

+ µ0ε
∂2E
∂t2 + µ0

∂2

∂t2 PNL. (4.6)

To keep the problem manageable, the problem is limited to one dimen-
sion. Set the derivatives in the x and y direction to zero and denote the
direction of propagation with the z coordinate. We consider three plane
wave fields with frequencies ω1, ω2, ωp being the idler, signal and pump
field, respectively. Each plane wave is of the form

Eωi
k =

1
2
(
Eik(z)ei(ωit−kiz) + c.c

)
, (4.7)

where the index k ∈ {x, y, z} refers to the coordinates and the label i ∈
{1, 2, p} selects the wave. The term c.c indicates the complex conjugate of
the preceding term. Writing this in components and upon adhering to the
previously posed assumptions and restrictions this becomes

∇2Eωi(z, t) =
∂2

∂z2 Eωi
k (z, t) =

1
2

∂2

∂z2

[
Eik(z)ei(ωit−kiz) + c.c

]
. (4.8)

14
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4.1 Classical Formulation 15

Assuming that the slow varying envelope approximation is valid and after
differentiating appropriately

∇2Eωi(z, t) = −1
2

[
k2

i Eik(z) + 2iki
dEik(z)

dz

]
ei(ωit−kiz) + c.c. (4.9)

Finally this may be equated to the right hand side of Eq. 4.6. Moving to
frequency space, ∂

∂t → iωi:[1
2

k2
i Eik + iki

dEik
dz

]
ei(ωit−kiz) + c.c

=
[
− iωiµ0σEik + ω2

i µ0ε
][Eik

2
ei(ωit−kiz) + c.c

]
+ µ0

∂2

∂t2

[
Pωi

NL(z, t)
]

k.

(4.10)

Note that if PNL = 0 the solution to Eq. 4.6 is given by Eq. 4.7. Oth-
erwise the components of PNL are dependent on the other fields. Namely,
consider ω1 = ωp − ω2. Since the real and imaginary parts of this plane
wave phasor are of the same magnitude,

Ep,lE2,m + E∗p,lE
∗
2,m = 2 Re

{
Ep,l
}

Re{E2,m} − 2 Im
{

Ep,l
}

Im{E2,m} = 0.
(4.11)

Then the non-linear part of the polarization is given by[
Pω1

NL(z, t)
]

k =
dklm

2
Ep,l(z)E∗2,m(z)e

i[(ωp−ω2)t−(kp−k2)z] + c.c (4.12)

where dklm is ¯̄d from Sec. 3.2.1 transformed from the crystal coordinate
axes to the axes describing the problem at hand [24].

Combining Eq. 4.10 and 4.12, together with the fact that ω2
i µ0ε = k2

i
leads to

iki
∂E1,k

∂z
e−ik1z = − iω1σµ0

2
E1,ke−ik1z +

µ0ω2
1

2
d′klmEp,kE∗2le

−i(kp−k2)z, (4.13)

without the loss of generality. Allowing σ to be dependent on ωi, divide
by ik1e−ik1z to find

∂E1,k

∂z
= −σ1

2

√
µ0

ε1
E1,k −

iω1

2

√
µ0

ε1
d′klmEp,lE∗2,me−i(kp−k2−k1)z. (4.14)

In the same fashion:
∂E∗2,k

∂z
= −σ2

2

√
µ0

ε2
E∗2,k −

iω2

2

√
µ0

ε2
d′klmE1,lE∗p,me−i(k1−kp+k2)z, (4.15)

∂Ep,k

∂z
= −

σp

2

√
µ0

εp
Ep,k −

iωp

2

√
µ0

εp
d′klmE1,lE2,mei(kp−k2−k1)z. (4.16)

Version of July 10, 2020– Created July 10, 2020 - 15:19

15



16 Spontaneous Parametric Down-Conversion

These equations describe SPDC classically. The result above follows Yariv
[24] and agrees with Couteau [35]. The exponential term leads to an im-
portant condition called phase matching which will be discussed in Sec.
4.3. Solving these equations shows energy flowing from the pump field
into the signal and idler fields and back; a trick called periodic poling is
used to stop energy from flowing back. Periodically poled crystals switch
the sign of the non-linear interaction strength. The change of sign is en-
gineered to happen at a depth in the crystal when the direction of energy
flow reverses. This is different for every wavelength. Small corrections
can be made by changing the temperature of the crystal to slightly change
the poling length.

Before moving on to phase matching and periodic poling, it will be
useful to consider the quantum mechanical description of SPDC. To derive
the quantum Hamiltonian, the classical energy density will be derived first
to later quantize in the usual way.

4.1.2 Energy density

The work done by the electric field in the crystal per unit time is

dU
dt

= −
∫

J · Ed3r, (4.17)

where the integral is over the volume of the crystal. This is Poynting’s
theorem in a region of space without field sources or drains*. Using Eq.
4.1, the current density can be rewritten to J = ∇× H − ∂D

∂t . Eq 4.2 is then
used to write (

∇× H
)
· E = H ·

(
∇× E

)
= −H · ∂B

∂t
. (4.18)

Making use of this allows Eq. 4.17 to be expressed in terms of fields:

dU
dt

=
∫ (

H · ∂B
∂t

+ E · ∂D
∂t

)
d3r. (4.19)

Again, the assumption is that the material is very transparent in the fre-
quency range of interest and that the material is non-magnetic such that

µ0H = B. Let ε0χ
(2)
klm

2 = dklm, the equation above can be rewritten to

dU
dt

=
∫

∂

∂t

(
H · B + (ε0 + χ)E · E

)
d3r +

∂

∂t
1
2

ε0

∫
χ
(2)
klmEkElEmd3r. (4.20)

*The divergence of Poynting’s vector is zero; ∇ · S = 0. Since the discussion is about
propagating fields, this is valid. A down-conversion event respects conservation of en-
ergy.

16

Version of July 10, 2020– Created July 10, 2020 - 15:19



4.2 Quantum Hamiltonian 17

This expression is split into two parts, one describing the usual fields and
one describing non-linear interactions. After integrating with respect to
time an expression for the energy density is found considering up to sec-
ond order non-linearity in the polarization. Note that the equation de-
scribes a sum over all k, l, m indices [9, 34].

Since the nonlinear susceptibility is dependent on the frequency of the
three fields which is dictated by their respective wave number, the depen-
dence is written explicitly as a sum over its frequency components [34]:

HNL =
ε0

2(
√

2π)3

∫
d3r ∑

k1,k2,kp

[
χ
(2)
klm(ω(k1), ω(k2), ω(kp))×

Ek(ω(k1))El(ω(k2))Em(ω(kp))
]
.

(4.21)

The factor 1√
2π

arises from the implicit Fourier transform. This result
marks the edge of the classical description and is the stepping stone to
a quantum mechanical description of SPDC.

4.2 Quantum Hamiltonian

Eq. 4.21 can be quantized to a quantum Hamiltonian consisting of two
parts, Ĥ = ĤL + ĤNL, where the non-linear part is of interest. The linear
part is the standard harmonic oscillator hamiltonian for electromagnetic
fields [36]. In the non-linear part, replace the electric field by the electric
field observable

Ê(r, t) = Ê+(r, t)Ê−(r, t), (4.22)

where Ê− is the hermitian conjugate of Ê+ and [34, 36]

Ê+(r, t) =
1

V
1
2

∑
k,s

i

√
h̄ω(k)

2ε0
âk,s(t)êk,seik·r. (4.23)

In this equation s is an index over polarization components, V is the quan-
tization volume (it goes to infinity in free space), âk,s(t) is the photon anni-
hilation operator at time t and êk,s is a unit polarization vector. The quan-
tum Hamiltonian takes the form

ĤNL =
1
2

ε0

∫
d3rχ

(2)
klmÊk(r, t)Êl(r, t)Êm(r, t). (4.24)

Since the field operator is a sum of two contributions this Hamiltonian
contains eight terms, each term corresponding to a non-linear process. If
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18 Spontaneous Parametric Down-Conversion

the pump beam is sufficiently bright to justify classical treatment and it
does not diminish significantly in strength in the crystal, we treat the prob-
lem in a regime called the undepleted pump approximation. By consid-
ering a single input field and demanding energy conservation under the
assumption that this is a parametric process [19, 20, 24–27, 34–38], only
two terms are significant:

ĤNL =
1
2

ε0

∫
d3r
(

χ
(2)
klm(r)Ek(r, t)Ê−l (r, t)Ê−m(r, t) + h.c

)
. (4.25)

The term h.c denotes the Hermitian conjugate of the preceding term, ana-
logue to c.c.

Expanding in modes of the three fields,

ĤNL =
1
2

ε0

∫
d3r
(−1

V ∑
k1,s1

∑
k2,s2

χ
(2)
klm(r; ω(k1), ω(k2), ω(kp))

×

√
h̄2ω(k1)ω(k2)

4ε2
0

e−i(k1+k2)·rEk(r, t)

×â†
k1,s1

(t)â†
k2,s2

(t)
(
êk1,s1

)
l

(
êk2,s2

)
m + h.c

)
(4.26)

is obtained. Under the assumption that the pump is narrowband, the time
dependent part may be separated to good approximation. Further, the
pump field is assumed to be well-collimated in order to separate out the
longitudinal dependence which is a good approximation. The transverse
momenta q1, q2, qp are the transverse components to the optical axis, and
k1,z, k2,z, kp,z are the parallel components to the optical axis. These vectors
are visualized in Fig. 4.1. The polarization vector is defined such that
Ek(qp, t) = Ẽ(qp, t)(êkp)k. Using these new definitions the pump field
may be separated and represented as an integral over plane waves using
a Fourier transform:

Ek(r, t) =
1

2π

∫
d2qpẼ(qp, t)ei(qp·r)ei(kz,3z−ωpt)(êkp)k. (4.27)

Having separated the field like this the Hamiltonian takes the form

ĤNL =
1

4π
ε0

∫
d3rd2qp

(−1
V ∑

k1,s1

∑
k2,s2

χ
(2)
klm(r; ω(k1), ω(k2), ω(kp))

×(êk1)l(êk2)m(êkp)k

√
h̄2ω(k1)ω(k2)

4ε2
0

×e−i(∆q)·re−i∆kzre−iωptẼk(r, t)â†
k1,s1

(t)â†
k2,s2

(t) + h.c
)

(4.28)

18
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4.2 Quantum Hamiltonian 19

Figure 4.1: Schematic drawing of the momentum components of a field coming
out of the crystal.

Here, ∆q = q1 + k2 − kp and ∆kz = k1,z + k2,z − kp,z [34].
Now the spatial integral is carried out over the volume of the crystal.

In the experiment the anti-reflection coated crystal is approximately rect-
angular with dimensions (LX, Ly, Lz). Setting bounds from −L/2 to L/2
in each direction, integrating over Cartesian coordinates gives [34, 39]

ĤNL =
1

4π
ε0

∫
d2qp

[
−LxLyLz

V ∑
k1,s1

∑
k2,s2

[
χ
(2)
klm(r; ω(k1), ω(k2), ω(kp))

×(êk1)l(êk2)m(êkp)k
]√ h̄2ω(k1)ω(k2)

4ε2
0

× sinc

(
∆qxLx

2

)
sinc

(
∆qyLy

2

)
sinc

(
∆qzLz

2

)

×Ẽ(qp, t)e−iωptâ†
k1,s1

(t)â†
k2,s2

(t) + h.c

]
.

(4.29)

Typically, the non-linear part is much weaker than the linear term, this
is also true for this experiment. The pump field has a power of about
150 mW and produces not even a µW of SPDC light. This allows the use
of a Taylor expansion to investigate the produced state, resulting in a bi-
photon wave-function. This is explored in Sec. 4.4.3.

The expression above is a general expression for a SPDC process. The
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20 Spontaneous Parametric Down-Conversion

derivation follows Schneeloch and Howell [34] and agrees with Hong and
Mandel [39] who derive the Hamiltonian in a similar manner. For the
purposes in this thesis approximations and simplifications will be made
in Sec. 4.4. Before assuming specific properties it is useful to first consider
phase matching and narrow down the discussion along the way.

4.3 Phase Matching

The photon pairs that are created in the non-linear crystal are governed by
energy and momentum conservation. Because momentum is a vector it is
allowed to point anywhere. Momentum conservation limits the momenta
of the down-converted photons to a small component in the transverse
direction. Even if all vectors are parallel, which is the collinear case, there
can be a difference in momentum due to refractive index dispersion,

∆kcoll = k(2ω, T)− 2k(ω, T) (4.30)

=
2ω

c
(
n(2ω, T)− n(ω, T)

)
. (4.31)

For this reason ∆kcoll 6= 0 unless the system is carefully engineered [40]. In
this equation and the following discussion the case where ω ≡ ω1 = ω2 =
1
2 ωp is considered. It is desired to achieve ∆kcoll ∼ 0 to maximize the out-
put of non-linear processes, this condition is called phase matching. One
way to achieve phase matching exploits the birefringence of the crystal,
appropriately called birefringent phase matching [41]. Another possibil-
ity is quasi-phase matching, realized by periodic poling [42, 43]. This is
discussed below in detail as it is used in the experiment.

4.3.1 Periodic Poling

From a classical viewpoint, the equations describing the main result in Sec.
4.1 can be solved for the equivalent case of SFG with equal wavelength of
the incident photons: second harmonic generation (SHG). This process can
be seen as the inverse process of SPDC. We take Eq. 4.16 and assume the
degenerate case, ωp = 2ω, in the undepleted pump approximation. Since
the degenerate case is considered, the signal and idler fields (E1 and E2)
are treated the same. The outgoing field (what would be the pump field in
SPDC, therefor labeled with the index ‘p’) is

dEp,l

dz
= −iω

√
µ0

ε3
d′klmE1,kE1,mei∆kz (4.32)

20
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4.4 Structure of SPDC Light 21

which, upon integrating over a crystal length L and with ∆k as in Eq. 4.30
leads to

E3,l(L) = −iω
√

µ0

ε3
d′klmE1,kE1,m

ei∆kz − 1
i∆k

. (4.33)

The power of the produced photons is proportional to

E3,lE∗3,l =
µ0

ε3
ω2(d′klm)

2E2
1,kE2

1,mL2 sinc2 (∆kL/2). (4.34)

In the derivation of the quantum Hamiltonian the sinc term arises form the
Fourier transform over the rectangular crystal, in the classical case (above)
it comes form the integral over the crystal length. In Sec 4.4.3 it is shown
that the sinc function is also present in the biphoton wavefunction [24, 44].

Equation 4.34 reveals that the efficiency of this process is limited by the
term sinc2 (∆kL/2). The distance between two adjacent peaks defines the
coherence length lc [24]. It is a measure for the maximum crystal length
after which the power output becomes zero again. The reason that this
happens is that the output wave can get out of phase with the pump wave,
power can flow back into back into it [38]. As in the classical analysis, by
inverting the non-linear electrical susceptibility after this length the power
can keep on increasing. Doing this over and over is called periodic poling
[43, 45].

The switching of the non-linear susceptibility can be shown mathemat-
ically to contribute a vector k to the phase matching parameter * [38, 46].
By tuning this reciprocal lattice vector phase matching may be achieved.
The contributing reciprocal lattice vector is k = 2π

Λ where the poling pe-
riod Λ is twice the coherence length, Λ = 2lc [40]. With this addition,

∆k =
2ω

c
(
n(2ω, T)− n(ω, T)

)
− 2π

Λ
, (4.35)

which can be tuned to ∆k ∼ 0.

4.4 Structure of SPDC Light

Light emitted from the SPDC process is divergent. This is due to the fact
that the wave vectors are, in general, not collinear. As made clear in Fig.

*The approach is to switch the sign of the electric susceptibility by modeling it as a
square wave, then take the Fourier transform. Substituting the modulated electric sus-
ceptibility in Eq. 4.14 – 4.16 produces an extra term k, leading to ∆k as defined in Eq. 4.35.
This approach is worked out in [38, Ch. 2.4].
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22 Spontaneous Parametric Down-Conversion

Figure 4.2: Vector sum of ∆k in the non-collinear case. k1 and k2 add up to kp− k
as in Eq. 4.35. Phase matching is achieved in this situation. Both k1 and k2 make
an angle θ with the optical axis.

4.2, the vector sum as described in Eq. 4.35 has transverse components
and thus the signal and idler photons come out of the crystal at an angle
θ to the optical axis (chosen parallel with the pump beam). Geometrically
this angle can thus be linked to the phase matching condition allowing
an expression for the half-angle divergence of the degenerate SPDC light.
Note that this angle is typically small.

4.4.1 Half-angle divergence of degenerate SPDC light

Letting ∆kz be the phase mismatch in the z-component while not taking
periodic poling into account. The relation

kp = (k1 + k2) cos(θ)− ∆kz (4.36)

is found from conservation of momentum in the z-direction as is evident
from Fig. 4.2. Since the degenerate case is considered, k1 = k2 = 1

2 kp.
Using the small angle approximation

∆k = −1
2

θ2kp. (4.37)

In Eq. 4.34 the sinc term is dependent on ∆k, this can be used to find the
half-angle divergence of the SPDC light by finding the distance to the first
minimum of the sinc function. This minimum is located at sinc2(±π) = 0.
Thus

θ =

√
2λp

Lz
, (4.38)

where the relation λp = 2π
kp

is used.

22
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4.4 Structure of SPDC Light 23

4.4.2 Klyshko Picture

The Advanced Wave Picture (AWP) was pioneered by Klyshko [47] as a
way to describe non-classical interference effects. This method has been
applied to SPDC often with good results [48, 49]. The idea is to pretend
that one detector emits a wave towards the crystal, which reflects from the
pump beam’s wave-fronts* towards the other detector. In this way infor-
mation can be gained about the system. This method also proved useful
for simulating correlations in OAM of down converted photons [50].

4.4.3 Degenerate Collinear Bi-photon Wave Function

The bi-photon wave function can be used as an expression for the angular
distribution of the down converted field. Again, we assume the degen-
erate case in the undepleted pump approximation and type-I down con-
version; the polarization of the signal and idler photons are the same and
orthogonal to the pump photons.

In the interaction picture, the bi-photon wave function can be approx-
imated as it evolves through the crystal as the first order correction ob-
tained from time-dependent perturbation theory:

|ψ(t)〉 = − i
h̄

∫ t

0
dt′ĤNL(t′) |ψ(0)〉 . (4.39)

Because we are considering type-I down-conversion the sum over the po-
larization states in Eq. 4.29 may be neglected. The terms concerning
SHG are also dropped. Then the non-linear susceptibility is a single value
which is expressed as χ

(2)
eff . Further assuming that the crystal is much

longer than the wavelength of both the pump and the down converted
fields, the sum over the wave vectors can be replaced by an integral:

lim
V→∞

1
V ∑

ki

−→ 1(
2π
)3

∫
d3ki. (4.40)

Then the non-linear Hamiltonian can be written as

ĤNL ≈ CNLχ
(2)
eff

∫ ∫
d3k1d3k2

√
ω(k1)ω(k2)

×
∫

d2qp

[
∏

m∈{x,y,z}
sinc

(∆kmLm

2

)]
Ẽ(qp, t)ei∆ωtâ†(k1)â†(k2).

(4.41)

*In effect, the crystal can be replaced by a curved mirror matching the pump beam
wave fronts.
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24 Spontaneous Parametric Down-Conversion

CNL is a constant absorbing some terms from Eq. 4.29 and ∆ω ≡ ω1 +
ω2 −ωp. To condense the notation let ∆qx(y) = ∆kx(y) [34].

Since we are considering the undepleted pump approximation, the
pump field can be written as a constant times a Gaussian times eiωpt. This
time dependence is already contained in the term with ∆ω. Then the in-
tegral resulting in the first order contribution can be evaluated, resulting
in ∣∣∣ψ(1)

SPDC

〉
= C1χ

(2)
eff

√
IpT2

∫ ∫
d3k1d3k2Φ(k1, k2)

×
√

ω(k1)ω(k2)e
i∆ωt

2 sinc
(∆kmLm

2

)
â†(k1)â†(k2) |01, 02〉 .

(4.42)

In the equation above, T is the time it takes for the light to propagate
through the crystal, Ip is the intensity of the pump beam and the Hamilto-
nian is applied to the vacuum state of the idler and signal photons: |01, 02〉.
Finally, the bi-photon wave function * reveals itself:

Φ(k1, k2) =
∫

d2qp

[
∏

m∈{x,y,z}
sinc

(∆kmLm

2

)]
ν(qp), (4.43)

with ν(qp) the normalized pump amplitude spectrum. This expression
is however not normalized. Still, Eq. 4.42 indicates how the first order
contributions scale in the photon count rate [51],

RSPDC ∝ χ2
effPpL2

z (4.44)

The pump laser used in the experiment has sech2-shaped pulses in the
frequency domain. This sech2-shaped frequency distribution [52] is ap-
proximated by a Gaussian pulse [53] such that†

ν(qp) =

(2σ2
p

π

) 1
4

e−σ2
p |qp|2 . (4.45)

The momentum of the pump is the sum of the momenta of the signal and
idler beams, qp = q1 + q2. Because ∆ky(z) ∼ 0, the sinc functions in the
y and the z component of Eq. 4.43 will effectively act like delta functions

*Note that Φ(k1, k2) does not evolve according to the Schrödinger equation; it says
something about the field coming out of the crystal. The whole of |ψSPDC〉 = C0 |01, 02〉+∣∣∣ψ(1)

SPDC

〉
does evolve appropriately.

†This approximation is pretty good. The sech shaped pulse has broader wings, how-
ever with a smaller time-bandwidth product.

24
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4.4 Structure of SPDC Light 25

[34]. With normalization constant C the bi-photon wave function is ob-
tained:

Φ(k1, k2) = C sinc
(∆kzLz

2

)
e−σ2

p |q1+q2|2 . (4.46)

An expression for ∆kz needs to be derived in order for this expression to
be useful.

Coordinate transformation

Using Eq. 4.36 and momentum conservation in the transverse direction:

|q1 − q2|
2

= k1 sin(θ), (4.47)

an expression can be found for ∆k in terms of the transverse components.
Making use of the small angle approximation and the degeneracy, mean-
ing k1 = k2 = 1

2 kp, we obtain

kp ≈
(
k1k2

)(
1− 1

2
θ2)− ∆k (4.48)

θ ≈ |q1 − q2|
kp

. (4.49)

Substituting one of these intermediate results in the other results in [34]

∆k ≈ −|q1 − q2|2
2kp

. (4.50)

This can be inserted in Eq. 4.46. The bi-photon wave function becomes
[54]

Φ(q1, q2) =
σp

π2

√
Lzλp sinc

( Lzλp

8πnp
|q1 − q2|

2
)

e−σ2
p |q1+q2|2 , (4.51)

where the constant C is calculated by normalizing the function.
Now a coordinate transformation can be made:

q+ =
q1 + q2√

2
, q− =

q1 − q2√
2

.

In this coordinate system,

Φ(q+, q−) =
σp

π2

√
Lzλp sinc

( Lzλp

8πnp
|q−|

2
)

e−σ2
p |q+|2 . (4.52)

Writing the expression in this coordinate system separates the terms.
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26 Spontaneous Parametric Down-Conversion

Near Field

The near field is given by Φ∗Φ in k-space, as that results in a probability
distribution of the down-converted field. Thus,

|Φ(q1, q2)|
2 =

σ2
p

π4 Lzλp sinc2
( Lzλp

8πnp
|q1 − q2|

2
)

e−2σ2
p |q1+q2|2 . (4.53)

This result makes sense, the biphoton wave function can be interpreted as
the photon quasi-probability distribution [34]. In that sense, the field must
be the square of the quasi-probability distribution.

Far Field

Since measurements are done in the far field and the LG-modes are de-
scribed in spatial coordinates, it is useful to write the biphoton wave func-
tion in a spatial basis. Later this will prove useful when decomposing the
wave function to LG-modes.

The far field is related to the near field by a Fourier transform. This is
best done in the rotated coordinate system, however the Fourier transform
of sinc(ax2) is tricky. Therefore it is approximated by a Gaussian.

The procedure is to calculate the first and second moment of the expec-
tation value of the probability density for q− and to fit that to a Gaussian.
This is easily Fourier transformed. To read up on the details of this ap-
proximation please refer to Chapter IV of [34]. The result is consequently
shaped as a Gaussian.

In a paper by Walborn a more precise solution is given [54]. In the
paraxial approximation and ignoring detuning from the target frequency*

the field operator is proportional to

Ê(ρ, z, t) ∝ ei(kz)
∫

dΩdqe
i
(

q·ρ− q2z
2k

)
â(q, Ω). (4.54)

For two photons the spatial wave function can be calculated by using the
electric field operators at positions r1 and r2 and applying the resulting

*The PPKTP crystal performs best at a set wavelength. The detuning refers to the
difference in frequency of the fields from this wavelength, it takes into account the finite
bandwidth of the fields.
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4.5 Conservation of Orbital Angular Momentum 27

state to the vacuum state bra* [54]

ΘI I(ρ1, ρ2) = 〈vac| Ê1(r1)Ê2(r2) |q1, q2〉

=
∫

R4
dq1dq2e

i
(

q1·ρ1+q2·ρ2−
(q2

1+q2
2)z

2k

)
× φ(q1, q2).

(4.55)

The result of the procedure can be seen as a Fourier transform multi-
plied by a phase factor accounting for propagation. This factor takes non-
collinear phase matching into account in the paraxial regime. By writing
Eq. 4.55 in the rotated coordinate basis the integral can be split up into
a part describing the pump beam and a part describing the phase match-
ing function. The result is the spatial description of the pump beam, to
broaden the discussion a general LG-mode is chosen. The transformed
biphoton wave function is [54]†

ΘI I(ρ1, ρ2) = LG`p
pp(

ρ1 + ρ2
2

)

√
Lzkp

2πz
sinc

(Lzkp

8z2
|ρ1 − ρ2|2

2

)
. (4.56)

For simplicity, it is assumed that z1 = z2 = z. As the field propagates, the
sinc function spreads out. This is simply the broadening of the field on
propagation and is a manifestation of the uncertainty principle.

In this section we have derived the our main result: the bi-photon wave
function. This is a real, symmetric function of two coordinates. It describes
the behavior of two photons in the PDC process. It is not actually a wave
function (it does not evolve correctly under the Shrödinger equation on
its own), it describes the state of the two photons. The bi-photon wave
function is a wave function in the sense that the absolute square of this
function returns a probability distribution.

4.5 Conservation of Orbital Angular Momentum

The bi-photon wave function (Eq. 4.43) can be written by Schmidt decom-
position in terms of OAM modes [55]. This is a beautiful result where
mathematics and physics come together.

*The resulting expression is obtained through the same method outlined in Appx. A.
The method relies on using the commutation relation to place the creation and annihila-
tion operators in normal order. To apply the method here, it is important to realize that
|q1, q2〉 = φ(q1, q2)â

†(q1)â
†(q2) |vac〉.

†Because it is more useful for the upcoming analysis the equation is written in terms
of k = 2πn

λ , notice the dependence of k on the refractive index.
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28 Spontaneous Parametric Down-Conversion

4.5.1 Schmidt Decomposition and Schmidt Number

The Schmidt decomposition theorem can be stated as: [36]

Theorem 1 Let H1,H2 be Hilbert spaces of dimensions n and m respectively
where it is assumed that n ≥ m. For any w ∈ H1⊗H2 there exists orthonormal
bases u1, ..., um ∈ H1, v1, ..., vm ∈ H2 such that

w =
m

∑
i=1

√
λiui ⊗ vi (4.57)

where the scalar coefficients λi are uniquely determined by w and are larger or
equal to zero.

The Schmidt number is defined in Law and Eberly as K ≡ 1/ ∑n λ2
n [55].

This ‘average’ is a measure for the ‘amount of entanglement’; if there is
one term in the decomposition w can be written as a product, then the
state is not entangled. If the state can not be written as a product the state
is entangled. For higher w it is more difficult to write the function as a
Schmidt decomposition: more terms are needed. This can be interpreted
as ‘more entangled’.

4.5.2 Decomposition of the Biphoton Wavefunction

The Schmidt decomposition can be applied to Eq. 4.51. Using the gaussian-
sinc approximation this can be calculated analytically [56], in an influential
paper by Law and Eberly [55] it was first explained to be possible in the
general case.

We start by writing the transverse momentum in polar coordinates,

q1(2) = (q1(2) cos
(

θ1(2)

)
, q1(2) sin

(
θ1(2)

)
). (4.58)

There will exist a decomposition such that [55]

φ(q1, q2) =
∞

∑
n=0

eim(θ1−θ2)
√

PmFm(q1, q2)/(2π). (4.59)

This can once again be written as a Schmidt decomposition resulting in
[55]

φ(q1, q2) =
∞

∑
m=−∞

∞

∑
n=−∞

√
λn,mun,m(q1)un,−m(q2), (4.60)

28
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4.5 Conservation of Orbital Angular Momentum 29

where

un,m(q1(2)) ≡
eimθ1(2)√
2πq1(2)

ψn,m(q1(2)). (4.61)

The function ψn,m should be chosen in a clever way. Because OAM is of
interest, let eimθψn,m equal the generalized Laguerre polynomial in mode
n, m to define ψn,m. Using this, the coefficient λn,m can be calculated nu-
merically [57].

The emerging term eim(θ1−θ2) is the cause of the sign of m in un,m and
un,−m. Due to the way the bases are chosen m can be interpreted as OAM.
As a result OAM is a conserved quantity; the spiral modes need to add up
in such a way that Eq. 4.60 holds. Walborn et al. [54] have proven that this
can not be explained classically; the correlations found in the coefficients
are a quantum effect.

4.5.3 Calculating the Coefficients

Using a similar procedure as in the previous section the spatial wave func-
tion (Eq. 4.56) can be decomposed. This is an easier path to results because
the LG-modes are described spatially. The decomposition is

|Ψ(ρ1, ρ2)〉 = ∑
`1,`2,p1,p2

Cp1,p2
`1,`2

LG`1
p1(ρ1)LG`2

p2(ρ2). (4.62)

The Schmidt coefficients for two photons can be calculated using

Cp1,p2
`1,`2

=
∫

R4
dρ1dρ2LG∗`1

p1 (ρ1)LG∗`2
p2 (ρ2)Θ

I I(ρ1, ρ2). (4.63)

In the thin-crystal limit the phase matching function can be approximated
to one. Even for large combinations of |`| and p the approximation is ac-
curate to 1% [54]. The coefficients are then calculated by evaluating the
integrals

Cp1,p2
`1,`2

=
∫

R4
dρ1dρ2LG∗`1

p1 (ρ1)LG∗`2
p2 (ρ2)LG

`p
pp(

ρ1 + ρ2√
2

). (4.64)

The spatial coordinates for the pump beam arise from the fact that up to a
phase factor and normalization constant [54]

E(ρ; λ0, w0) = E(
√

2ρ; 2λ0,
√

2w0) = LG(
√

2ρ). (4.65)

This equality makes use the down-converted fields possessing half the fre-
quency as the pump field (thus λ1 = λ2 ≡ λ) and consequently using the
similarity of the LG-modes. The coefficients are now expressed as an inte-
gral over orthogonal modes.
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30 Spontaneous Parametric Down-Conversion

4.5.4 Explicitly Showing Conservation of OAM

While it is not directly obvious from the form of Eq. 4.64, OAM is con-
served. This can be made explicit by using a coordinate transformation
as in Sec. 4.4.3 and a Fourier transform, as Walborn showed [54]. Let
FLG`

p(q) be the Fourier transform of a Laguerre-Gauss mode. With these
changes, Eq. 4.64 can be written as

Cp1,p2
`1,`2

∝
∫

dρ+dqdq′FLG∗`1
p1 (q)FLG∗`2

p2 (q)FLG
`p
pp(2q′)× eiρ+(q

′−q) (4.66)

∝
∫

dqFLG∗`1
p1 (q)FLG∗`2

p2 (q)FLG
`p
pp(2q). (4.67)

To separate out the spiral term, let Flg`
p(q)e

i`φ = FLG`
p(q). Then, the equa-

tion above can be written as

Cp1,p2
`1,`2

∝
∫∫

qdqdφFlg∗`1
p1

(q)Flg∗`2
p2

(q)Flg
`p
pp(2q)ei(`p−`1−`2)φ (4.68)

∝ δ`p,`1+`2

∫
qdqFlg∗`1

p1
(q)Flg∗`2

p2
(q)Flg

`p
pp(2q). (4.69)

The term δ`p,`1+`2 explicitly shows conservation of orbital angular momen-
tum.

In this chapter, SPDC was presented using both a classical and quan-
tum description. This is important for understanding what goes on in the
crystal and what processes happen. Important results are the bi-photon
wave function (Eq. 4.43), the spatial bi-photon wave function (Eq. 4.56)
and the conservation of OAM for single photon pairs (Eq. 4.69). In the
next chapter these results will be used in the discussion of double photon
pairs.

30
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Chapter 5
Four Photon Type-I PDC

In Ch. 4 the theory of SPDC is explained. The Hamiltonian derived will
be applied to the case of high pump laser power.

At high pump laser powers stimulated emission can occur, much like
the principle upon which lasers rest. A passing photon pair can stimulate
the emission of an identical pair. This is contrary to a spontaneous pair
which is created without influence of radiation in the same mode*. This is
why we now refer to the down-converted field as the PDC field, it is not
necessarily spontaneous.

This section rests on assumptions and simplifications. One is the unde-
pleted pump approximation; the pump field is taken to be much stronger
than the signal and idler fields. If this is true, the pump field can be re-
garded as a classical field that does not diminish in intensity as it passes
through the crystal. Further, in the experiment type-I SPDC is used†. The
signal and idler beams have the same polarization, therefore the polariza-
tion does not matter for the PDC process and is ignored in the Hamilto-
nian. Another important approximation is that the non-linear Hamilto-
nian is small relative to the EM-field Hamiltonian (the second term in Eq.
4.20 is much smaller compared to the first term). The system is engineered
to consider collinear phase-matching tuned to a point where the PDC field
is shaped like a Gaussian and not like a ring [25, 26]. This is true in the

*It is possible to stimulate these emissions by using a second incident laser in the
desired mode.

†There are three types of SPDC. In Type-0 SPDC the pump and down-converted pho-
tons share the same polarization. In Type-1 SPDC the pump and down-converted pho-
tons have orthogonal polarizations, the outgoing photons share the same polarization. In
Type-II SPDC the two outgoing photons have orhtogonal polarizations. In this experi-
ment the crystal only allows Type-I PDC.
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32 Four Photon Type-I PDC

paraxial regime, which is another assumption. Finally, a thin crystal is
assumed without taking the thin crystal limit.

5.1 Spontaneous or Stimulated Emission?

For high pump laser intensities, the PDC process can happen multiple
times in a single laser pulse. One possibility is that a photon pair is created,
independent from the previously created pair. This is called spontaneous
emission. Stimulated emission is also possible; a second pair is created
having the exact same properties of the first photon pair. In this case, the
two pairs are entangled. These states are of interest. It is therefore impor-
tant to be able to distinguish them and to optimize the stimulated emission
process.

The probability of creating two independent pairs is P4 ≈ P2
2 /2, half of

the square of the probability of creating two photons [58]. The probabil-
ity of creating two entangled pairs is P4 = P2

2 , the emission of the second
pair is due to the existence of the first pair. The system will behave some-
where between these two extremes. It is useful to characterize it with the
visibility, χ ∈ [0, 1]*

P4 =
P2

2
2
(
1 + χ

)
. (5.1)

This parameter is a measure for the extra contribution of the stimulated
emission [59]. It is dependent on the coherence length of the PDC light
and the pulse length of the pump.

5.2 Approximation of the PDC State

The Hamiltonian derived in Sec 4.2 is Ĥ = ĤL + ĤNL, the last term is
given by equation 4.29. The non-linear part dictates the interaction during
the propagation through the crystal. This interaction produces the wave
function describing the down-converted field: the PDC state. In this ex-
periment the PDC state is in the collinear regime, the system is engineered
in this way. The temperature of the crystal slightly changes the periodic
polling length. The length is adjusted to guarantee a PDC field with small
transverse momenta.

*Though sharing the same symbol, it is not to be confused with the electric suscepti-
bility.

32
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5.2 Approximation of the PDC State 33

5.2.1 Momentum Basis

In the Schrödinger picture, the time evolution of a quantum state is gov-
erned by

|ψ(t)〉 = e
Ĥt
ih̄ |ψ(0)〉 , (5.2)

which may be expressed as a Taylor expansion up to second order in terms
of Ĥt

ih̄ as

|ψ(t)〉 ≈
(

1− i
h̄

Ĥt− 1
2

1
h̄2 Ĥ2t2

)
|ψ(0)〉 . (5.3)

In the experiment this approximation is justified by the small power of
the SPDC light. The pair production probability is around 10−9 [34], the
non-linear Hamiltonian is truly very small.

Written in a more explicit way

|ψ〉 = A |vac〉+ B
∣∣∣ψ(1)

〉
+ C

∣∣∣ψ(2)
〉

(5.4)

where ∣∣∣ψ(1)
〉
=
∫∫

dq1q2φ(q1, q2)â
†(q1)â

†(q2) |vac〉 , (5.5)∣∣∣ψ(2)
〉
=
∫

dq1q2dq3dq4φ(q1, q2)φ(q3, q4)â
†(q1)â

†(q2)â
†(q3)â

†(q4) |vac〉 .

(5.6)

In the equation above φ(q1, q2) is the biphoton wavefuntion. The coeffi-
cients A, B and C depend on each other*: C = B2/2 and A = 1− B2Γ−
12C2Γ2. The constant Γ =

∫∫
dq1q2|φ(q1, q2)|2 accounts for the normal-

ization of φ and can be assumed to be one. B is proportional to the non-
linear Hamiltonian and can be calculated using Eq. 5.3 and the non-linear
Hamiltonian.

5.2.2 Orbital Angular Momentum Basis

The non-linear term can be written in the Schrödinger picture in terms of
OAM modes as [17, 59]

ĤNL =
1
2

iκh̄ ∑
`

â†
` â†

¯̀ − â`â ¯̀ (5.7)

*The letters to represent the variables are chosen to match the choices of Sabharwal
[40].
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34 Four Photon Type-I PDC

where ` runs over all possible positive OAM states, we define ¯̀ ≡ −`
and all constants are absorbed into κ. This expression is obtained by a
basis transformation from the Hamiltonian in terms of linear momentum
modes (Eq. 4.29).

Note that the Laguerre-Gauss modes do not form a complete basis
when p is neglected. Thus this Hamiltonian cannot exactly describe the
Hamiltonian in the momentum basis. From the decomposition of the PDC
state it is evident that Eq. 5.7 is at least ‘well enough’: the PDC field can
be described in `-modes thus the process generating the PDC field can be
described in `-modes.

Four Photon PDC State

By using this Hamiltonian in the expansion of Eq. 5.3, the first order term
are all single photon states. This result was explored in in detail in Sec.
4.4.3 in the momentum basis. In the OAM basis the single pair state can
be written as:

|ψ2〉 = ∑
`

γ` |1`; 1 ¯̀〉 . (5.8)

This expression is the bi-photon wave function as a sum over modes of `
where γ` is a constant determined by the decomposition. The numbers in
the ket are the number of photons in the state with subscript `.

The second order term produces the four-photon wave-function. The
Hamiltonian is applied twice, as a result four photons will exist in the
down-converted field. Expressed in a similar way [59],

|ψ4〉 = ∑
`

α` |2`; 2 ¯̀〉+
1
2 ∑

`1

∑
`2,`1 6=`2

β`1`2

∣∣∣1`1 , 1`2 ; 1 ¯̀1
, 1 ¯̀2

〉
. (5.9)

In the equation above the first term denotes the photon pairs emitted by
stimulated emission. These pairs are in the same state. The second term
are all other states, spontaneous double pairs [58]. These states are not
mutually correlated [20].

Stimulated Emission Contributions

These mutually correlated four photon states are of interest. The follow-
ing argument is a lot more difficult for the general space. In a down-
conversion event only the state `, ¯̀ and 0 are relevant because there are

34
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5.2 Approximation of the PDC State 35

only two allowed states for the down-converted photons: ` and ¯̀ (assum-
ing `p = 0 for the pump). Thus limiting the discussion to a 3 mode sub-
space, the PDC state is governed by

|ψ〉 = exp
(

iĤt
h̄

)
|ψ0〉 , (5.10)

where the Hamiltonian in the 3 mode subspace is

Ĥ = iκh̄(â†
` â†

¯̀ − â`â ¯̀) +
1
2

iκh̄(â†
0â†

0 − â0â0). (5.11)

The extra factor of two is because the mode in ` has two contributions
since the sum is from negative infinity to positive infinity. In a sense, it
can be considered looking at 2 modes because of the double contribution
at `. Making use of the disentangling theorem [60, Eq. 5.26]

eθ(â†
1 â†

2−â1â2) = eΓâ†
1 â†

2 e−g(â†
1â1+â†

2â2+1)e−Γâ1â2 (5.12)

where Γ = tanh θ and g = ln(cosh θ). Using the Cauchy product rule,
standard properties of the creation and annihilation operators and the se-
ries definition of the exponential, the down-converted state can be written
as

|ψ〉 = |ψ0〉+ |ψ`〉 ; (5.13)

|ψ0〉 = ∑
n

tanhn(κt)√
cosh(κt)

√
(2n)!
n!

(1
2

)n
|2n`=0〉 , (5.14)

|ψ`〉 = ∑
n

tanhn(κt)√
cosh(κt)

|n`; n ¯̀〉 . (5.15)

As argued before, κt is extremely small. Taking the lowest non-zero order
Taylor expansion of this expression for κt near zero and truncating the sum
after n = 2*:

|ψ0〉 ≈
(

1− (κt)2

4

)
|0〉+ κt√

2
|10; 10〉+

√
3
8
(κt)2 |20; 20〉 (5.16)

|ψ`〉 ≈
(

1− (κt)2

2

)
|0〉+ κt |1`; 1 ¯̀〉+ (κt)2 |2`; 2 ¯̀〉 . (5.17)

This equation explains why the down-converted state after the beamsplit-
ters is a Dicke state [17].

*It is easily shown by the ratio test that this series is convergent.
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There are issues with this expression. The last term only accounts for
the four-photon state due to stimulated emission. Furthermore, because
we assumed ` to be any OAM mode the state in the whole space would be
the sum over all ` > 0 plus the ` = 0 state:

|ψ〉 = |ψ0〉+ ∑
`>0
|ψ`〉 . (5.18)

Obviously this cannot be the case, the coefficients are not dependent on `
and do not decrease as ` increases. This would lead to an infinitely large
PDC state that can not be normalized. In the decomposition of the PDC
state it is observed that the coefficients decrease as |`| increases. To find
this decomposition it is needed to find the spatial correlations first; this
expression is decomposed into `-modes.

5.3 Spatial PDC Field

To find an expression for the PDC field of two photon pairs, correlation
functions are calculated. The auto-correlation gives the intensity of the
field. It can be calculated by

〈ψ| Ê†Ê |ψ〉 (5.19)

where |ψ〉 is the PDC state found earlier (Eq. 5.4).
The electric field operator in the paraxial approximation can be written

as [40]

Ê(ρ, z) =
1

2π
eikz

∫
dqe

i
(

q·ρ− q2z
2k

)
â(q). (5.20)

Eq. 5.19 with the PDC state up to second order (Eq. 5.4) can be expanded
to nine terms of which only two are non-zero:〈

ψ(1)
∣∣∣ Ê†Ê

∣∣∣ψ(1)
〉

(5.21)〈
ψ(2)

∣∣∣ Ê†Ê
∣∣∣ψ(2)

〉
(5.22)

To calculate these terms the creation and annihilation operators must be
manipulated to place them in normal order*, this is done by using the

*Normal ordering of creation and annihilation operators is placing the annihilation
operators to the rightmost. When applying the operator train to the vacuum state, any
annihilation operators on the right reduce the vacuums state to zero before the state can
be applied to a creation operator. This simplifies the resulting expression.

36
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5.3 Spatial PDC Field 37

commutation relation

[â(q), â†(q′)] = δ(q− q′). (5.23)

Note that â(q), â†(q) are in the space of all wave vectors in mode q, this
means that â(q) and â(q′) work on the same space, just at a different fre-
quency.

One Photon Pair

For Eq. 5.21, the electric field operator applied to the state must first be
calculated:

E
∣∣∣ψ(1)

〉
=

1
2π

eikz
∫

dqe
i
(

q·ρ− q2z
2k

)
â(q)

∫∫
dq1dq2φ(q1, q2)â

†(q1)â
†(q2) |vac〉 .

(5.24)
This means putting â(q)â†(q1)â

†(q2) in normal order. Using the commu-
tation relation this becomes

â(q)â†(q1)â
†(q2) = â†(q1)â†(q2)â(q) + â†(q1)δ(q− q2) + â†(q2)δ(q− q1).

(5.25)
Applying this to the vacuum state results in an expression for E

∣∣∣ψ(1)
〉

:

1
2π

eikz
∫

dqe
i
(

q·ρ− q2z
2k

)[ ∫
dq1φ(q1, q)â†(q1) +

∫
dq2φ(q, q2)â

†(q2)
]
|vac〉 .

(5.26)
Because photons are bosons, φ(q1, q2) = φ(q2, q1). The integrals result in
the same outcome, therefore we multiply by two and obtain

E
∣∣∣ψ(1)

〉
=

1
π

eikz
∫∫

dqdq1e
i
(

q·ρ− q2z
2k

)
φ(q1, q)â†(q1) |vac〉 . (5.27)

To keep the expression readable, we define

ΘI(ρ, z, q1) =
∫

dqe
i
(

q·ρ− q2z
2k

)
φ(q1, q). (5.28)

Using the expression for E
∣∣∣ψ(1)

〉
, Eq. 5.21 can be evaluated. The conjugate

of E
∣∣∣ψ(1)

〉
results in an annihilation operator, the operators again need to

be put in normal ordering using the commutation realtion. This results in
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an expression for the auto-correlation of the first order non-linear contri-
bution:〈

ψ(1)
∣∣∣Ê†Ê

∣∣∣ψ(1)
〉

(5.29)

= 〈vac| 1
π2

∫∫
dq1dq2

(
ΘI)∗(ρ, z, q1)Θ

I(ρ, z, q2)â(q1)â†(q2) |vac〉
(5.30)

= 〈vac| 1
π2

∫∫
dq1dq2

(
ΘI)∗(ρ, z, q1)Θ

2D(ρ, z, q2)

×
[
â†(q2)â(q1) + δ(q2 − q1)

]
|vac〉 (5.31)

=
1

π2

∫
dq1|Θ

I(ρ, z, q1)|
2. (5.32)

This is what is intuitively expected. The expression above is the square
of the modulus of the Fourier transform of the biphoton wavefunction,
where one coordinate is integrated over. This traces out one quasi-probability
distribution and leaves the probability to find a photon at a point, essen-
tially the integral over all momenta for the other photon. For two photon
pairs this becomes significantly more complex.

Two Photon Pairs

For two photon pairs the procedure is applied to the second order term of
the PDC state. The normal ordering gets a lot more tedious but applying
the commutation relation is still straightforward. A method for working
out the expression is by using Wick’s theorem, presented in Appx. A.1.
The result is〈

ψ(2)
∣∣∣ Ê†Ê

∣∣∣ψ(2)
〉
=

8
π2

[
Γ
∫

dq3|Θ
I(q3)|

2

+2
∫

dq1

∫
dq3
(
ΘI(q3)

)∗
φ(q1, q3)

∫
dq2ΘI(q2)φ

∗(q1, q2)
]
.

(5.33)

The first term is responsible for independent photon pairs while the sec-
ond term describes the entangled pairs. The integral is over both bi-photon
wave functions, it is not separable. By definition it is entangled.

The equation above agrees exactly with the results in Sabharwal’s the-
sis [40, Ch 2.7] if the beamsplitter is ignored. The equation for a single
photon pair (Eq. 5.32) is off by a factor of two when compared to Sabhar-
wal’s result.

38
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Chapter 6
Experimental Setup

The optical setup, as drawn in Fig. 6.1 and described in Sec 6.1, is con-
trolled via a computer using spatial light modulators (SLMs). The light
is collected by fibers which are coupled to single photon counters. These
counters are connected to a time-tagging card and coincidences are counted
using software; these counts are key to demonstrating entanglement.

6.1 Optics

The pump beam is generated by a mode-locked Ti:Sapphire laser which
sends out pulses of roughly 2 ps length at a power of 2 W. This light is
up-converted in a sum frequency generation (SFG) module resulting in
a power of 150 mW at 413 nm on the table. The beam passes through a
waveplate to match the polarization to that of the PPKTP crystal. A 250
mm focusing lens is used to focus the beam in the crystal after which a
413 nm filter blocks any fluorescence from previous optical components
along with any residual 826 nm light. The beam is focused into the peri-
odically polled non-linear crystal, held at a constant temperature of 62◦C,
along its optical axis. Upon exiting the crystal a gallium phosiphide plate
is placed to attenuate the pump beam severely*. The beam is collimated
again by a 40 mm lens after which it passes through a narrow-band filter
centered around 826 nm with a width of 10 nm. This filter removes non-
phase matched photons from the spectrum of SPDC light to strengthen the
relative intensity of entangled photons and thus reduce error. A polarizer
is used to remove unwanted modes of light. A 750 mm lens makes an im-

*The needed attenuation is at least 10−10, this number is calculated from the ratio of
incident light on the crystal and down-converted light emitted.
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f = 750 mm

f = 250 mm

f = 40 mm

λ/2 waveplate

Polarizer

413 nm

GaP

826 nm

A

B

C
D

PPKTP

SLM

SLM

SFG
150 mW

826 nm
2ps, 2 W

Figure 6.1: Schematic drawing of the experimental set-up. A Ti:Sapphire laser
emits 2 W of laser light at a wavelength λ = 826 nm with a pulse length of 2 ps.
This passes trough a sum-frequency generation crystal which outputs 150 mW at
half the wavelength. The bundle encounters a λ/2 waveplate, a focussing lens
and a filter that blocks the infrared light before passing through a PPKTP crys-
tal. Behind this crystal is a galium phosphide plate acting as a filter that blocks
the light at 413 nm. The bundle is collimated by a lens and encounters a 10 nm
narrowband filter at 826 nm. After some mirrors, a polarizer lets only the desired
H-polarized PDC photons through. A lens makes an image onto the SLMs, which
the bundle hits after being split into four by three beamsplitters. Each beam, A,
B, C and D, are coupled to a fiber ending at a single photon detector. The signals
from the single photon detectors are processed further digitally to count coinci-
dences.
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6.2 SLMs 41

age onto the SLMs, between those two components the beam is split into
four. This is done by two successive beamsplitters resulting in beams A,
B, C and D. Beams A and D encounter a retro-reflector before hitting the
SLM; beams B and C a mirror. The retro-reflectors allow adjusting the path
length by simply translating them along the direction of the beam. Upon
reflection by the SLM each beam is coupled to a single-mode fiber heading
into a single photon detector.

6.2 SLMs

Spatial light modulators are used to post-select the OAM mode of the
beams coming out of the crystal. They are driven by a computer display-
ing holographic images on them. These holograms are designed to change
the OAM and other properties of the beam by creating fork holograms and
applying Zernike polynomials to them. In reality this does not post-select
for Laguerre-Gauss modes but for Kummer beams [61]. The difference is
not very large and the theory developed for Laguerre-Gauss modes is a
good approximation.

6.3 Coincidence counts

If two photons hit the detector within a predetermined time, they are de-
termined to be temporally correlated and it is most likely that they origi-
nate from the same laser pulse. These two photons are probably a pair, or
part of two photon pairs. The coincidence counts are determined by time-
tagging all incoming photons and grouping photons that arrive within a
certain time.

6.4 Anti-Correlation of Orbital Angular Momen-
tum

The angular momentum is measured by taking two beams, say A and B,
and varying the images on the SLMs in such a way that a Laguerre-Gauss
mode in (`A, pA) = (i, 0) and (`A, pB) = (j, 0) is shifted to the (0, 0) mode.
The resulting beam is captured by the fiber; a projection of only the desired
mode. This projection is the post selection of the OAM mode. The counter
i ∈ [−`max, `max] is going through all its values for every value of j ∈
[−`max, `max]. For all pairs i, j the coincidence counts are measured. These
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are then plotted with the OAM of a detector on an axis; an anti-diagonal
line is expected if the photons are indeed entangled.

42
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Chapter 7
Results

Measurements were made using the set-up as described in Ch. 6. First,
experimental evidence for the conservation of OAM is presented. After
establishing the conservation of OAM, the measurements of power de-
pendent counts are presented.

7.1 Conservation of Orbital Angular Momentum

The OAM was measured using the procedure outlined in Sec. 6.4; the PDC
light was split using a beamsplitter and OAM mode ` was projected onto
a single mode fiber by an SLM. Measured counts for combinations of `-
modes are shown in Fig. 7.1a. The same experiment was done numerically
by calculating the coefficients in Eq. 4.63, the results of which are shown in
Fig. 7.1b. The experimental data shows that the detection of photon pairs
in an OAM mode is anti-correlated; the detection probability is highest
when `A = −`B.

Results from the simulation agree well with the experiment, making
an argument that the measurement can be explained by the theory in Sec.
4.5.4. As argued in Sec. 4.5.4, OAM is a conserved quantity. The measured
data supports this result.

7.2 Power Dependent Counts

The single photon counts were measured at two detectors as a function of
pump beam power. The difference in counts between the two detectors
was not very large as can be seen in Fig. 7.2. This figure also implies that
one detector is more efficient near ` = 0, for higher |`| the other detector
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(a) Experimental results. (b) Simulated results.

Figure 7.1: Decomposition of the down-converted field created by a Gaussian
(` = 0) pump beam. Both figures use a logarithmic scale. The left figure (Fig.
7.1a) shows experimental results, the right figure (Fig. 7.1b) shows simulated
results of the same experiment. On the horizontal axis is the `-mode detected
by one detector, on the vertical axis is the `-mode detected by the other detector.
Both figures show anti-correlations in their `-modes by a distinct trace along the
anti-diagonal.

performs better. To declutter the data, the mean counts of the two detec-
tors is taken. This mean is what is meant when referred to ‘single counts’
and what is plotted for different `-modes in Fig. 7.3a. In Fig. 7.3b the
coincidence counts are plotted, these are the photon pairs arriving at both
detectors within a small time interval.

In the obtained data there appears to be a linear relation in the single
counts and a second order polynomial can be used to describe the coin-
cidence counts. This relation is probably due to the fact that there is a
chance to detect a photon Pdetect for each detector. The assumption is that
all light minus the dark counts which hit the detector is PDC light, every
count is a photon which depends linearly on the pump power. The coinci-
dence counts are these photons, however they are temporally correlated.
Both photons need to detect a photon within a time interval, therefore the
correlation counts should go with the square of the detection probability.

7.2.1 Single Counts

The single counts arriving at the detector correspond directly to the in-
tensity of the PDC field. Part of this will be the higher order interactions,
these contributions are negligible compared to the single counts. From
the dependence of the non-linear Hamiltonian on the pump power as in
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Figure 7.2: The relative error in detection rate between the two detectors used.
On the horizontal axis is the OAM mode ` from -3 to 3. The vertical axis displays
the relative error between the single counts of the detectors in percentages. The
calculation was performed with the data corrected for dark counts. The shape of
the figure implies that one detector detects modes near the fundamental better
compared to the other; the error is in one detector’s favor near ` = 0 and at high
|`| the other detector performs better.

Eq. 4.44, it is expected that the single counts scale linearly with the pump
power. The obtained single counts are plotted in Fig. 7.3a. The data is
corrected for dark counts and a power offset. The corrected data is fitted
to a linear relation for each measured `-mode.

Using the slope of the fit as a measure for interaction strength in an
`-mode, the contributions of the measured modes can be plotted relative
to each other. A bar graph of the contributions for the various modes is
plotted in Fig. 7.4a.

The linear relation in the single photon counts (Fig. 7.3a) are suspected
to be due to the single photon pairs. The theory predicts that single pair
intensity goes linearly with the pump power, the experiment confirms that
relation. In Fig. 7.4a the coefficient of the linear dependence is shown. This
is interpreted to be the OAM spectrum of the PDC light. Comparing this
to Fig. 7.1 the behavior looks the same, there is a maximum at ` = 0 and
the intensity decreases as |`| grows.

7.2.2 Coincidence Counts

Fig. 7.3b shows the coincidence counts as function of the pump power.
It is expected that these counts contain mostly two photon contributions.
The data corrected for systematic errors was fitted to

NCC = ax2 + bx. (7.1)
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(a) Mean of the single counts as measured
by the detectors. The data is fitted to a lin-
ear relation.
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(b) Coincidence counts between the detec-
tors. The data is fitted to a quadratic rela-
tion.

Figure 7.3: In the left figure (Fig. 7.3a) the relationship between the detector
counts corrected for the dark counts is plotted against the pump laser power. It
shows a linear relation. The right figure (Fig. 7.3b) shows the same relation for
the coincidence counts; photons hitting the two detectors at the same time (within
a small time delay). The coincidence counts appear to go quadratic with the laser
power.

Fig. 7.4b shows the slope of this fit for each `-mode. The fit parameter
for the quadratic part decreases as |`| increases. The linear fit parameter is
large for ` = 0 and nearly zero for other `.

In Fig. 7.3b there is not a linear relation in the experimental data. It
is suspected that a second degree polynomial will make a satisfying fit.
In both polynomials the constant coefficient is set to zero as the data is
already corrected for dark counts. The quadratic term is due to the proba-
bility of detecting two photons from the same pair being the square of the
single detection probability.

Fig. 7.4b shows the relative strength of the coefficients in the polyno-
mial. The ` = 0 mode contains a definite linear dependence. This linear
dependence can be caused by non phase-matched fluorescence; these pho-
tons are from the same pulse and will thus register as a coincidence count.

7.3 Numerical Experiments

In order to calculate the decomposition of the PDC field the correlation
function must be calculated first. A partial expression was derived for the
four photon correlation function in Appx. A. To explore if the four photon
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(a) A bar graph of the slope of the single
counts as a function of the pump laser
power for each `-mode. At ` = 0 there is
a distinct peak and the other modes fall
off.

(b) The upper figure is a bar graph of the
quadratic contributions to the coincidence
counts as a function of the pump laser power
for each `-mode. The lower figure shows the
linear contributions in the same fashion.

Figure 7.4: All sub-figures show the dependence of a fit parameter depending on
the OAM mode of the light. The left figure (Fig. 7.4a) shows the strength of the
linear dependence from the fits in Fig. 7.3a. In the figure on the right (Fig. 7.4b)
the strength of the dependence on the quadratic and linear term are shown.

correlation function behaves like is expected numerical experiments were
run, this turned out not to account for all pairs.

The spatial correlation function for two photons as derived and calcu-
lated in Sabharwal’s thesis was reproduced [40]. This results in Fig. 7.5.
From the comparison it was discovered that the derived expression is in-
complete, for this reason it is left in the appendix.

7.3.1 Spatial Correlations

A direct approach is described by Sabharwal, the two detector correlation
function from [40] was repeated by simulation (Fig. 7.5). Fig. 7.5a shows
independent counts in the simulation. This is the product of the field at
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each detector,

G(ind)(x1, x2, z) = 〈ψ| Ê†(x1)Ê(x1) |ψ〉 〈ψ| Ê†(x2)Ê(x2) |ψ〉 . (7.2)

These counts are needed as a correction to determine the entangled double
pair correlations.

In Fig. 7.5b there are lines visible along the diagonal and anti-diagonal.
There is also a plus shape centered around (0, 0).

By subtracting the independent counts from the correlations the de-
pendent counts are obtained. These ‘true’ correlations are the single and
double entangled photon pairs.

In Fig. 7.5b, there are strong anti-diagonal correlations are visible.
These correlations imply a single photon pair. This pair can either be on
its own or part of a double pair. The off-diagonal shows some fringes, this
is a result of the sinc-shaped phase matching function.

On the diagonal there are weaker correlations, these imply four entan-
gled photons. This can be from spontaneous double pairs or two inde-
pendent pairs which happen to be in the same state, in either case the line
along the diagonal implies two entangled pairs.

There is a plus shape visible centered at (0, 0). This is due to the way
the field is structured, the intensity is high near zero. Finding a photon
at a position x 6= 0 while the other detector is near zero does not say a
lot about correlations because there are lots of photons there; the detectors
will click simultaneously ‘by accident’.

These results agree with Sabahrwal’s results. These simulations used
different parameters; the images do not look identical to the one in Sabahrwal’s
thesis. Qualitatively the simulation agrees and contains all main results:
spatial correlations and evidence of stimulated pairs.

48
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(a) Independent counts in the spatial cor-
relations. This is the overlap of the field
at both detectors. The figure shows a plus
along the main axes.

(b) Spatial correlations between two detec-
tors at x1 and x2 at different output ports
of a beamsplitter. A strong anti-correlation
can be seen along the anti-diagonal. Weaker
correlations can be seen along the diagonal.
There are also correlations when either co-
ordinate is zero, resulting in a plus shape.

Figure 7.5: Independent and correlated photon counts from a simulation. Both
figures make use of a logarithmic scale for the intensity.
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Chapter 8
Discussion

The results as presented in Ch. 7 can be interpreted as evidence for the
conservation of OAM and further confirmation for the SPDC theory as
outlined in Ch. 4. In this chapter, potential sources of errors will be con-
sidered as well as future avenues to explore.

8.1 Conservation of Orbital Angular Momentum

Figures like Fig. 7.1a have been obtained for all pairs of detectors in the ex-
perimental setup. Due to problems with equipment and time constraints
four-photon correlations were not measured successfully. It would be of
value to make such a measurement and compare it to the theory from Sec.
A.2.

The results from Sec. 7.3.1 involve the PDC far field. This is however
not useful to the experiment as the crystal is imaged onto the SLMs; in
principle no Fourier transform is needed. However, this does not matter
since zero modes are propagation invariant (the Fourier transform of a
Gaussian is again a Gaussian), in this setup the numerical aperture is low
and finally after the SLM the field is propagated to fibers in the far field.

8.2 Power Dependent Counts

The setup most likely contains double photon pairs. Double pairs could
be detected: when detecting two photons in the same mode, these would
be two photons from the entangled pairs. In the gathered data the counts
are too little to detect double pairs. With more careful alignment and a
longer integration time this is perhaps possible.
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8.3 Four Photon Correlation Function

In Appx. A steps are set towards a four photon correlation function. This
is a work in progress. There is discussion about the best route towards
describing these higher order interactions. One point to consider is that
the derivation of the PDC process arbitrarily truncates the Taylor expan-
sion of the electric susceptibility at the second order; processes such as
three wave mixing are completely ignored. Another concern is that the
approximation of the down-converted state is also truncated and has to be
normalized again for every extra term taken into account.

8.4 Reflecting on the Experiment

In the setup as outlined in Ch. 6, there have been some problems with the
equipment used which should be addressed.

The set-up contains various optical elements in which fluorescence can
be an issue. Examples are the lenses, beamsplitters, filters and retro-reflectors.
Although the optical elements are chosen in such a way to minimize flu-
orescence and a narrowband filter is placed in the down-converted beam,
it is not guaranteed that there is absolutely no fluorescence.

During the experiment there have been instability issues with the Spectra-
Physics Tsunami laser. After a while the laser stopped pulsing, thereby
making the beam on the optical table continuous wave and greatly reduc-
ing the intensity of the beam. It turned out that this was due to a broken
cooler. Over short periods of time the laser appears stable, this issue has
not impacted the measurements presented in Ch. 7.

The 826 nm narrow band filter in Fig. 6.1 was deteriorated to a barely
usable point. By rotating the filter a spot could be found that produced
acceptable counts. To reduce effects of the broken filter it was placed in
the near field to minimize its effects on the far field profile of the beam.
This filter should be replaced by a new one.

One SLM was showing signs of deterioration. The lens that focused
the beam in the crystal was later replaced by a stronger lens in an attempt
to increase the power density inside the crystal. This is supposed to lead
to more PDC pair production.

Still, the optical setup is an extremely accurate device delivering im-
pressive capabilities. There is much more to explore with it such as suc-
cessfully measuring four photon OAM coefficients and comparing it to the
theory, confirming entanglement by measuring in different bases, taking
another look at the second pair production at different laser powers and
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determining the ratio between the first and second pair production rate or
determining the ratio of spontaneous and stimulated pair production.
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Appendix A
Towards the Derivation of a Fourth
Order Correlation Function

A lot of effort has been directed towards calculating the four detector cor-
relation function. After a failed attempt where terms were missing another
attempt was made that violates energy conservation. This last attempt
rests on Wick’s theorem, explained below.

A.1 Wick’s Theorem

We define : Ô : as the normal ordering of the Ô operator. Let the contrac-
tion be defined as

Â•B̂• ≡ ÂB̂− : ÂB̂ : . (A.1)

Note that for the commutation relation
[
â(qi), â†(qj)

]
= δ(qi − qj) the

following relations are trivially seen to be (for simplicity of notation let
âi ≡ â(qi)):

âi
•âj
• = 0 (A.2)

â†
i
•â†

j
• = 0 (A.3)

â†
i
•âj
• = 0 (A.4)

âi
•â†

j
• = δij (A.5)

These contraction relations simplify the application of Wick’s theorem.
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Wick’s theorem can be stated as

ÂB̂ĈD̂Ê . . . =: ÂB̂ĈD̂Ê . . . :

+ ∑
singles

: Â•B̂•ĈD̂Ê . . . :

+ ∑
doubles

: Â•B̂••Ĉ••D̂•Ê . . . :

+ . . . . (A.6)

Repeated bullets differentiate between different contractions. Wick’s the-
orem enjoys multiple applications in QFT, we will be using it to calculate
the correlation function. Since we will be applying this to a vacuum state
all terms containing normal ordered operators reduce to zero. The only
surviving terms will be those where all operators are contracted. In prac-
tice, this means that the operators are reduced to a sum of delta functions
containing all permutations of the indices. Armed with Wick’s theorem an
attempt at four detector correlations is made.

A.2 Four Detector Correlations

How is it possible to determine entanglement of four photons? To start,
they should be temporally and spatially correlated. Below an attempt is
made to derive the four detectors spatial correlation function for the PDC
field. The results derived below are in no way complete and should be
looked at critically. This fourth order correlation function shows spatial
correlations between photons which can then be used to decompose the
field into OAM modes by the procedure as shown for two photons in Sec.
4.5.3.

The fourth order correlation function is

G(4)(r1r2r3r4) = 〈ψ| Ê(r1)Ê(r2)Ê(r3)ÊÊ†(r4)Ê†(r3)Ê†(r2)Ê†(r1)(r4) |ψ〉 .
(A.7)

The notation r signifies the dependence on ρ, z in cylindrical coordinates
while condensing the notation.

The real space biphoton wavefunction is ΘI I , which can be written as

ΘI I(ρ1, ρ2) = 〈vac| Ê(ρ1)Ê(ρ2)
∣∣∣ψ(1)

〉
. (A.8)

Since an analytic expression is known (Eq. 4.56), the four photon field
can be computed without numerically evaluating integrals, significantly
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speeding up computation time when compared to lower order correlation
functions where integration is necessary.

The electric field operator* in the paraxial regime is given by Eq. 5.20
and can be used to define ζ to be

Ê(ρ, z) =
∫

dqζ(q, r)â(q). (A.9)

We define the function

Θ2D(r, q1) =
∫

dqζ(q, r)φ(q1, q). (A.10)

We are looking for

〈Ψ| Ê†(r1)Ê†(r2)Ê†(r3)Ê†(r4)Ê(r4)Ê(r3)Ê(r2)Ê(r1) |Ψ〉 (A.11)

which can be broken down to the sum of the terms〈
ψ(1)

∣∣∣ Ê†(r1)Ê†(r2)Ê†(r3)Ê†(r4)Ê(r4)Ê(r3)Ê(r2)Ê(r1)
∣∣∣ψ(1)

〉
(A.12)〈

ψ(2)
∣∣∣ Ê†(r1)Ê†(r2)Ê†(r3)Ê†(r4)Ê(r4)Ê(r3)Ê(r2)Ê(r1)

∣∣∣ψ(1)
〉

(A.13)〈
ψ(2)

∣∣∣ Ê†(r1)Ê†(r2)Ê†(r3)Ê†(r4)Ê(r4)Ê(r3)Ê(r2)Ê(r1)
∣∣∣ψ(2)

〉
(A.14)

where ∣∣∣ψ(1)
〉
=
∫∫

dq1q2φ(q1, q2)â
†(q1)â

†(q2) |vac〉 , (A.15)∣∣∣ψ(2)
〉
=
∫

dq1q2dq3dq4φ(q1, q2)φ(q3, q4)â
†(q1)â

†(q2)â
†(q3)â

†(q4) |vac〉 .

(A.16)

It is also useful to show that ∫
dqζ(q, r)ζ∗(q, r′) (A.17)

=
∫

dq
1

2π
eikze

i
(

q·ρ− q2z
2k

)
1

2π
eikz′e

i
(

q·ρ′− q2z′
2k

)
(A.18)

=
1

4π2 eik(z−z′)
∫

dqe

(
q2(z−z′)

2k

)
ei(q·(ρ−ρ′)) (A.19)

*It is possible to account for dispersion when calculating the spatial correlation func-
tion, dispersion adds a term to the electric field operator making it time dependent. The
method is the same, the result contains an extra time dependent exponential factor in the
definition of the spatial bi-photon wave function [40].
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which is used to define

∆(r) ≡ 1
4π2 eikz

∫
dqe

(
q2z
2k

)
ei(q·ρ) (A.20)

such that ∫
dqζ(q, r)ζ∗(q, r′) = ∆(r− r′). (A.21)

Eq. A.13 is zero since the operators in the state can be seen as the same
of A.12 with two extra annihilation operators in front. The resulting terms
will always leave an annihilation operator after applying Wick’s theorem,
therefore the state will always be zero. We only need to work out Eqs.
A.12 and A.14.

A.2.1 Single Pair Contributions

Equation A.12 can be written as an integral:〈
ψ(1)

∣∣∣ Ê†(r1)Ê†(r2)Ê†(r3)Ê†(r4)Ê(r4)Ê(r3)Ê(r2)Ê(r1)
∣∣∣ψ(1)

〉
(A.22)

= 〈vac|
∫

dq1q2φ∗(q1, q2)â(q1)â(q2)

×
∫

dq′1dq′2dq′3dq′4ζ∗(q′1, r1)ζ
∗(q′2, r2)ζ

∗(q′3, r3)ζ
∗(q′4, r4)â†(q′1)â

†(q′2)â
†(q′3)â

†(q′4)

×
∫

dq3dq4dq5dq6ζ(q3, r1)ζ(q4, r2)ζ(q5, r3)ζ(q6, r4)â(q3)â(q4)â(q5)â(q6)

×
∫

dq′5q′6φ(q′5, q′6)â
†(q′5)â

†(q′6) |vac〉 . (A.23)

The order of integration may change, the order of the operators needs to
be put into normal ordering. This sequence of operators is

Ô ≡ â(q1)â(q2)â
†(q′1)â

†(q′2)â
†(q′3)â

†(q′4)â(q
′′
1 )â(q

′′
2 )â(q

′′
3 )â(q

′′
4 )â

†(q′′′1)â
†(q′′′2).

(A.24)
Since there are as much creation as annihilation operators, Wick’s theorem
can be applied. We are looking at every permutation of one set of momenta
while keeping the other set of momenta constant. Thus, In the last sum
there will be 6! terms since one index is chosen, then there are five options
for the next index, four options for the next index and so forth.

δ(q1 − q′1)δ(q2 − q′2)δ(q
′′
1 − q′3)δ(q

′′
2 − q′4)δ(q

′′
3 − q′′′1 )δ(q′′4 − q′′′2 ) (A.25)
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To clean up the notation, this is re-indexed to*

δ(q1 − q′1)δ(q2 − q′2)δ(q3 − q′3)δ(q4 − q′4)δ(q5 − q′5)δ(q6 − q′6) (A.26)

We get the sum of terms of all permutations σi of the index of the primed
coordinate:

Ô =
6!

∑
i=1

6

∏
j=1

δ(qj − q′σi(j)) + terms with operators. (A.27)

This operator is placed in the integral

= 〈vac|
∫

dq1dq2φ∗(q1, q2)

×
∫

dq′1dq′2dq′3dq′4ζ∗(q′1, r1)ζ
∗(q′2, r2)ζ

∗(q′3, r3)ζ
∗(q′4, r4)

×
∫

dq3dq4dq5dq6ζ(q3, r1)ζ(q4, r2)ζ(q5, r3)ζ(q6, r4)

×
∫

dq′5q′6φ(q′5, q′6)Ô |vac〉 (A.28)

=
∫

dq1dq2dq3dq4dq5dq6

∫
dq′1dq′2dq′3dq′4dq′5dq′6

× ζ∗(q′1, r1)ζ
∗(q′2, r2)ζ

∗(q′3, r3)ζ
∗(q′4, r4)ζ(q3, r1)ζ(q4, r2)ζ(q5, r3)ζ(q6, r4)

× φ∗(q1, q2)φ(q
′
5, q′6)

6!

∑
i=1

6

∏
j=1

δ(qj − q′σi(j)) (A.29)

=
6!

∑
i=1

∫
dq′1dq′2dq′3dq′4dq′5dq′6

× ζ∗(q′1, r1)ζ
∗(q′2, r2)ζ

∗(q′3, r3)ζ
∗(q′4, r4)

× ζ(q′σi(3)
, r1)ζ(q′σi(4)

, r2)ζ(q′σi(5)
, r3)ζ(q′σi(6)

, r4)

× φ∗(q′σi(1)
, q′σi(2)

)φ(q′5, q′6). (A.30)

For ease of writing we now drop the primes.

=
6!

∑
i=1

∫
dq1dq2dq3dq4dq5dq6

× ζ∗(q1, r1)ζ
∗(q2, r2)ζ

∗(q3, r3)ζ
∗(q4, r4)φ(q5, q6)

× φ∗(qσi(1)
, qσi(2)

)ζ(qσi(3)
, r1)ζ(qσi(4)

, r2)ζ(qσi(5)
, r3)ζ(qσi(6)

, r4) (A.31)

*The initial indexing could have been done in a more concise way.
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60 Towards the Derivation of a Fourth Order Correlation Function

The number of possible permutations is extremely large (there are 720).
These permutations can be identified as a representation of the symmetric
group S6. Since the bi-photon wave function is symmetric, this divides out
all permutations where its indices are swapped since they are equivalent.

We will work out all of these cases.

Case I: Identity

When the index belonging to the bi-photon wave function stays with its
conjugate, for example where 1 and 2 get sent to 1 or 2 such that ζ is still
the complex conjugate while 5 and 6 get sent to 5 or 6 to not pick up the
complex conjugation. If this is the case,

∫
dq1dq2dq3dq4dq5dq6

× ζ∗(q1, r1)ζ
∗(q2, r2)ζ

∗(q3, r3)ζ
∗(q4, r4)φ(q5, q6)

× φ∗(q1, q2)ζ(q3, r1)ζ(q4, r2)ζ(q5, r3)ζ(q6, r4) (A.32)

=
∫

dq1dq2dq3dq4dq5dq6

× ζ∗(q1, r1)ζ
∗(q2, r2)φ

∗(q1, q2)

× ζ∗(q3, r3)ζ(q3, r1)ζ
∗(q4, r4)ζ(q4, r2)

× ζ(q5, r3)ζ(q6, r4)φ(q5, q6). (A.33)

= ΘI I∗(r1, r2)ΘI I(r3, r4)
∫

dq3dq4ζ∗(q3, r3)ζ(q3, r1)ζ
∗(q4, r4)ζ(q4, r2)

(A.34)

= |ΘI I(r1, r2)|2∆(r1 − r3)∆(r2 − r4). (A.35)

This makes sense; the single pairs can be detected in both detectors.

Case II: Both Swapped

In this case we look at the cases where both indices are swapped: 1, 2 −→
5, 6 and 5, 6 −→ 1, 2. An example of this is worked out below where it is

60
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A.2 Four Detector Correlations 61

used that the bi-photon wave function is real (φ∗ = φ).∫
dq1dq2dq3dq4dq5dq6

× ζ∗(q1, r1)ζ
∗(q2, r2)ζ

∗(q3, r3)ζ
∗(q4, r4)φ(q5, q6)

× φ∗(q5, q6)ζ(q3, r1)ζ(q4, r2)ζ(q1, r3)ζ(q2, r4) (A.36)

=
∫

dq1dq2dq3dq4dq5dq6

× ζ∗(q1, r1)ζ(q1, r3)ζ
∗(q2, r2)ζ(q2, r4)ζ

∗(q3, r3)ζ(q3, r1)ζ
∗(q4, r4)ζ(q4, r2)

× φ(q5, q6)φ
∗(q5, q6) (A.37)

= Γ∆(r1 − r3)
2∆(r2 − r4)

2 (A.38)

Cases III: Single Swap

Another possibility is that one index is swapped to the ‘other side’, this
means that 1, 5 −→ 1, 2 and 2, 6 −→ 5, 6. For the permutation (1 5):

=
∫

dq1dq2dq3dq4dq5dq6

× ζ∗(q1, r1)ζ
∗(q2, r2)ζ

∗(q3, r3)ζ
∗(q4, r4)φ(q5, q6)

× φ∗(q5, q2)ζ(q3, r1)ζ(q4, r2)ζ(q1, r3)ζ(q6, r4) (A.39)

=
∫

dq1dq2dq3dq4dq5dq6

× ζ∗(q1, r1)ζ(q1, r3)ζ
∗(q3, r3)ζ(q3, r1)ζ

∗(q4, r4)ζ(q4, r2)

× ζ(q6, r4)φ(q5, q6)

× ζ∗(q2, r2)φ
∗(q5, q2) (A.40)

=
∫

dq5Θ2D(r4, q5)Θ
2D∗(r2, q5)∆(r1 − r3)

2∆(r2 − r4) (A.41)

Discussion

Cases I, II and III show what happens when Eq. A.30 is worked out for
different cases. The cases are non-zero, energy conservation is violated.

Permutations change the detector positions, the function should be
symmetrical under these permutations because each order of detectors
contributes just once. There are 720 possible permutations, all terms are
one of the three cases above. To obtain the relative strength in intensity
the contributions need to be counted. Perhaps group theory can help, the
permutations are a representation of the symmetric group of size 6, S6.
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62 Towards the Derivation of a Fourth Order Correlation Function

A.2.2 Double Pair Wave Function

〈
ψ(2)

∣∣∣ Ê†(r1)Ê†(r2)Ê†(r3)Ê†(r4)Ê(r4)Ê(r3)Ê(r2)Ê(r1)
∣∣∣ψ(2)

〉
(A.42)

= 〈vac|
∫

dq1dq2dq3dq4φ∗(q1, q2)φ
∗(q3, q4)â(q1)â(q2)â(q3)â(q4)

×
∫

dq′1dq′2dq′3dq′4ζ∗(q′1, r1)ζ
∗(q′2, r2)ζ

∗(q′3, r3)ζ
∗(q′4, r4)â†(q′1)â

†(q′2)â
†(q′3)â

†(q′4)

×
∫

dq5dq6dq7dq8ζ(q5, r1)ζ(q6, r2)ζ(q7, r3)ζ(q8, r4)â(q5)â(q6)â(q7)â(q8)

×
∫

dq′5dq′6dq′7dq′8φ(q′5, q′6)φ(q
′
7, q′8)â

†(q′5)â
†(q′6)â

†(q′7)â
†(q′8) |vac〉

(A.43)

The operators can be written as

Ô = â(q1)â(q2)â(q3)â(q4)â
†(q′1)â

†(q′2)â
†(q′3)â

†(q′4)

× â(q5)â(q6)â(q7)â(q8)â†(q′5)â
†(q′6)â

†(q′7)â
†(q′8) (A.44)

using Wick’s theorem this can be written as

Ô =
8!

∑
i=1

8

∏
j=1

δ(qj − q′σi(j)) + terms with operators. (A.45)

Inserting this operator in the expression for the double photon wave func-
tion correlations yields

8!

∑
i=1

∫
dq1dq2dq3dq4dq5dq6dq7dq8

× φ∗(q1, q2)φ
∗(q3, q4)ζ

∗(qσi(1)
, r1)ζ

∗(qσi(2)
, r2)ζ

∗(qσi(3)
, r3)ζ

∗(qσi(4)
, r4)

× φ(qσi(5)
, qσi(6)

)φ(qσi(7)
, qσi(8)

)ζ(q5, r1)ζ(q6, r2)ζ(q7, r3)ζ(q8, r4). (A.46)

Again, three cases can be considered: 1. Identity, 2. Both Swapped, 3.
Single Swap. The results gotten from the previous calculation are derived
again for each case, along with magical other terms.

Case I: Identity

In this case the permutation sends indices belonging to a bi-photon wave
function to the same (any other or the original) wave function. An example

62
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is worked out:∫
dq1dq2dq3dq4dq5dq6dq7dq8

× φ∗(q1, q2)φ
∗(q3, q4)ζ

∗(q1, r1)ζ
∗(q2, r2)ζ

∗(q3, r3)ζ
∗(q4, r4)

× φ(q5, q6)φ(q7, q8)ζ(q5, r1)ζ(q6, r2)ζ(q7, r3)ζ(q8, r4) (A.47)

=
∣∣∣ΘI I(r1, r2)

∣∣∣2∣∣∣ΘI I(r3, r4)
∣∣∣2. (A.48)

The equality is obvious from the definition of ΘI I compared to the defini-
tion of ζ.

Case II: Both Swapped

This swaps around the first four indices with the last four indices.∫
dq1dq2dq3dq4dq5dq6dq7dq8

× φ∗(q1, q2)φ
∗(q3, q4)ζ

∗(q5, r1)ζ
∗(q6, r2)ζ

∗(q7, r3)ζ
∗(q8, r4)

× φ(q1, q2)φ(q3, q4)ζ(q5, r1)ζ(q6, r2)ζ(q7, r3)ζ(q8, r4) (A.49)

= Γ2∆(r1 − r1)∆(r2 − r2)∆(r3 − r3)∆(r4 − r4). (A.50)

Other permutations of the first four indices give different combinations in
the ∆ function. ∆(0) = 1

4π2 . This result raises some questions, since in this
case a constant is added to the correlation function. This constant should
be investigated.

Case III: Single Swap

One wave function swapped∫
dq1dq2dq3dq4dq5dq6dq7dq8

× φ∗(q1, q2)φ
∗(q3, q4)ζ

∗(q5, r1)ζ
∗(q6, r2)ζ

∗(q3, r3)ζ
∗(q4, r4)

× φ(q1, q2)φ(q7, q8)ζ(q5, r1)ζ(q6, r2)ζ(q7, r3)ζ(q8, r4) (A.51)

=
∫

dq1dq2dq3dq4dq5dq6dq7dq8

× φ∗(q1, q2)φ(q1, q2)

× φ∗(q3, q4)φ(q7, q8)ζ
∗(q3, r3)ζ

∗(q4, r4)ζ(q7, r3)ζ(q8, r4)

× ζ(q5, r1)ζ
∗(q5, r1)ζ(q6, r2)ζ

∗(q6, r2) (A.52)

= Γ
∣∣∣ΘI I(r3, r4)

∣∣∣2∆(r1 − r1)∆(r2 − r2). (A.53)

Of course again with permutations of the positions.
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64 Towards the Derivation of a Fourth Order Correlation Function

Case IV: Odd Swaps

A single swap in a wave function∫
dq1dq2dq3dq4dq5dq6dq7dq8

× φ∗(q1, q2)φ
∗(q3, q4)ζ

∗(q5, r1)ζ
∗(q2, r2)ζ

∗(q3, r3)ζ
∗(q4, r4)

× φ(q1, q6)φ(q7, q8)ζ(q5, r1)ζ(q6, r2)ζ(q7, r3)ζ(q8, r4) (A.54)∫
dq1dq2dq3dq4dq5dq6dq7dq8

× φ∗(q1, q2)φ(q1, q6)ζ
∗(q2, r2)ζ(q6, r2)

× φ(q7, q8)ζ(q7, r3)ζ(q8, r4)

× φ∗(q3, q4)ζ
∗(q3, r3)ζ

∗(q4, r4)

× ζ(q5, r1)ζ
∗(q5, r1) (A.55)

=
∣∣∣ΘI I(r3, r4)

∣∣∣2∆(r1 − r1)
∫

dq1

∣∣∣Θ2D(q1, r2)
∣∣∣2. (A.56)

Case V: Even Swaps

A single swap in two wave functions∫
dq1dq2dq3dq4dq5dq6dq7dq8

× φ∗(q1, q2)φ
∗(q3, q4)ζ

∗(q5, r1)ζ
∗(q2, r2)ζ

∗(q7, r3)ζ
∗(q4, r4)

× φ(q1, q6)φ(q3, q8)ζ(q5, r1)ζ(q6, r2)ζ(q7, r3)ζ(q8, r4) (A.57)

=
∫

dq1dq2dq3dq4dq5dq6dq7dq8

× φ∗(q1, q2)ζ
∗(q2, r2)φ

∗(q3, q4)ζ
∗(q4, r4)

× ζ∗(q5, r1)ζ(q5, r1)ζ
∗(q7, r3)ζ(q7, r3)

× φ(q1, q6)ζ(q6, r2)φ(q3, q8)ζ(q8, r4) (A.58)

=
∫

dq1dq3Θ2D∗(q1, r2)Θ2D∗(q3, r4)Θ2D(q1, r2)Θ2D(q3, r4)

× ∆(r1 − r1)∆(r3 − r3) (A.59)

= ∆(r1 − r1)∆(r3 − r3)
∫

dq1dq3

∣∣∣Θ2D(q1, r2)
∣∣∣2∣∣∣Θ2D(q3, r4)

∣∣∣2. (A.60)

Discussion

It is difficult to know if these five cases contain all different classes of
terms. How strong is each contribution? We need to count how much
they contribute in some way, just as with the single pair terms.
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Appendix B
Simulation

The equations to compute contain lots of integrals. This makes it compu-
tationally expensive to compute. Walborn’s approximation for the spatial
bi-photon wave function was used (Eq. 4.56) to reduce the computation
time. The calculation was multi-threaded per pixel. The code will eventu-
ally be made available on GitHub*.

The parameters for the simulation are listed in Table B.1, the settings
for the simulation are listed in Table B.2.

*https://github.com/MioPoortvliet/four-photon-correlations
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66 Simulation

Parameter Value description
width 2e4 Width of the peak of the bi photon wave

function, the integrals are performed
with a width of this number around the
negative of the other momentum coordi-
nate.

T 0.5 Transmittance of beamsplitter
R 0.5 Reflectivity of beamsplitter
B 1e-4 Interaction strength of PDC state, see

Sabharwal’s thesis for precise meaning
pump_wavelength 326e-9 Wavelength of pump beam
beam_waist 300e-6 Beam waist of pump beam (assuming fo-

cus in crystal)
beam_waist_slm 900e-6 Beam waist of the projected onto modes

(in this case the SLMs)
n_p 1.7468 Refractive index at pump wavelength
n_s 1.8103 Refractive index at down-converted

wavelength
poling_period 3.875e-6 Poling period of crystal
crystal_length 5e-2 Length of crystal in the direction of beam

travel
lp 0 `p, OAM of pump beam
pp 0 pp, p of pump beam

Table B.1: Parameters used throughout all calculations.
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Setting Used Value Description
L_transverse [1.1e− 3, 1.1e− 3] Dimensions of plane to plot
z 250e− 3 z-distance the calculation is

done at
resolution 50 Width and height of the plane in

pixels
threads 12 Threads to use during the calcu-

lation
debug 1 Debug verbosity, higher is more

verbose
epsrel 1.5e-2 Relative error allowed

by integration package
(scipy.integrate.nquad)

only_diagonals false Only calculate points on diago-
nals?

export_path Path to export plots to
calc_what "all" Calculates both G2 and Gind
thin_crystal_limit false Use thin crystal limit?

(φ(q1, q2) = 1)
Table B.2: Settings used to calculate the simulation of G2.
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