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Abstract

The research collaboration KM3NeT is currently constructing neutrino
telescopes at two sites in the Mediterranean Sea. The pointing accuracy of

these two telescopes is of high importance to be able to trace detected
neutrinos back to their cosmic sources. Pointing can be cross checked
with the cosmic ray shadow of the moon respectively the sun. In this

research first the effects of mispointing of the KM3NeT/ORCA detector
on the 2D map of the moon were evaluated. It is shown how various

mispointing does in fact distort the 2D-map of a celestial object. Secondly
the first six months of data with 4 lines of the KM3NeT/ORCA detector
were used to investigate the cosmic ray shadow from both the sun and

the moon. Extrapolated simulations for a year show that the statistics are
currently not sufficient for a significant deficit of particles in the

neighbourhood of the moon and the sun. In the analysis of the ORCA4
data the background of the moon and sun signal was evaluated using

fake sources, following the path of the moon and with a given time delay.
The background showed significant differences between different fake

sources and also could be shown to behave differently for the moon and
the sun. Further research is needed to investigate the discovered features

and be able to recover the signal from the moon and sun shadows.
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Chapter 1
Introduction

The initial aim of this research is to determine whether it is possible to
detect a significant cosmic ray shadow of the moon. This cosmic shadow
ray is caused by the moon blocking cosmic particles. This project also aims
to lay an initial foundation for future investigation of research on cosmic
ray shadow detection.

1.1 KM3NeT

The research is conducted in collaboration with the KM3NeT group at
Nikhef in Amsterdam. KM3NeT is a research collaboration which is cur-
rently building next a generation neutrino telescope at the bottom of the
Mediterranean Sea. Once finished, the detectors have a volume of several
cubic kilometers, hence the abbreviation KM3NeT: km3 Neutrino Telescope.

The neutrino telescope will consist of several building blocks, which
are 3D arrays of highly sensitive optical detectors. Currently there are two
of these detectors under construction: ARCA (Astroparticle Research with
Cosmics in the Abyss) and ORCA (Oscillation Research with Cosmics in
the Abyss), located respectively off the Italian and French coast[1].

The two building blocks are not used for the same scientific goals. The
ORCA detector is used to study the mass hierarchy of neutrinos. The ob-
jective for ARCA is the detection of high energy neutrinos coming from the
cosmos[2]. For example the high-energy neutrino production in quasars[3].
A quasar is visible in the electromagnetic spectrum because it emits light.
But neutrinos tell something about the weak interactions in this object. In
this research I will evaluate the data from ORCA. But the methods de-
scribed in this thesis are reusable for other detectors like ARCA.
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2 Introduction

1.2 Detection method

Detecting neutrinos is a difficult task and can’t be done with normal tele-
scopes. Besides the fact that neutrinos are chargeless, they are also nearly
massless. A neutrino is also a lepton. Having these attributes cause a neu-
trino to only interact with the weak force∗[4]. This is why neutrinos do
not interact a lot with other matter. Cosmic neutrinos can reach the Earth,
while other cosmic particles may not. These traits are also the reason why
neutrinos are difficult to detect. Hence we rely on the few neutrinos that
do interact with other matter.

The weak interaction of neutrinos with nucleons creating charged par-
ticles are useful for the detection. When a charged particle is created, it
can get a boost from the initial momentum of the neutrino. The neutrino
could boost the charged particle close to the speed of light. As this charged
particle enters a medium, its velocity could be larger than the speed of
light in that medium: v > c/n, where n is the refractive index of water in
this case. If this happens, the charged particle will polarise the medium
and induce so-called Cherenkov radiation. This electromagnetic radiation
will traverse as a cone. Where the angle of the cone with respect of the
movement of the particle is given as cos θ = c

nv . This Cherenkov radia-
tion can be detected the sensitive photo detectors in the ORCA and ARCA
detectors[2].

Atmospheric muons are also measured by the ORCA and ARCA de-
tectors. These muons are created in the atmosphere by an interaction
of cosmic rays, consisting mainly of protons, with the air in the atmo-
sphere. They collide mostly with oxygen and nitrogen. With these col-
lisions they create pions and kaons which in turn decay to muons and
neutrinos. Muons and neutrinos are the only particles that are able to pen-
etrate to the depths of the detector[5].

Once completed, a building block consists of 115 strings, or Detector
Units (DUs). Every string contains 18 evenly spaced out glass spheres, or
Digital Optical Modules (DOMs). These DOMs house 31 ”cameras” called
PhotoMultiplier Tubes (PMT). These PMTs can detect single photons. And
thus these PMTs are the ones that detect the Cherenkov radiation. All the
DOMs inside a DU are connected with a power input and a data output.
In the ORCA detector the DOMs have a spacing of about 9 meters. The
DUs have a horizontal displacement of about 20 meters to their nearest
neighbour. Anchored to the ocean floor, they are connected with a network

∗Neutrinos also interact with the gravitational force, but the small mass causes it to be
negligible.

2
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1.3 The Moon and Sun cosmic ray shadows 3

of cables to shore[2].
A detector is measuring all the time for Cherenkov radiation. Periods

of measurements are called runs. These runs do not have fixed length
since different runs have different purposes, for example physics runs or
calibration runs. Not all radiation gets registered. Once a signal on a PMT
hits a threshold of 0.3 photo-electrons, it will be registered as a hit. A
hit has two variables, the time when the threshold was met and the total
time the signal was above the threshold. The latter is also called the Time-
Over-Threshold (ToT). The threshold can be seen as a zero-level filter on
the data. Therefore we call this L0 hits. These L0 hits are all send to shore,
where the data processing proceeds.

With different algorithms the first onshore data filter gives L1 hits. This
filter checks if another PMT on the same DOM also registered a L0 hit in a
certain time interval. The higher the multiplicity of L0 hits on a DOM, the
likelier the original light source originates from a physical particle. [2].
With different L1 hits from different DOMs we can reconstruct where a
particle is coming from. Such a reconstruction is often called an event. In
this thesis we are concerned about the runs when ORCA had 4 strings.

1.3 The Moon and Sun cosmic ray shadows

Once finished, these detectors can be used to discover a lot about the uni-
verse. While ORCA will mostly be used to find the properties of neutrinos
themselves, ARCA is going to look at high-energy objects in the universe.
For this neutrinos are useful to observe because the possibility of contain-
ing a lot of information about these objects.

The problem is that there is no known neutrino source to cross check
the pointing. Because of its depth in the sea there is also no cosmic light
reaching the detector. The detector is installed with high accuracy but
mistakes can be made at depths of nearly 3000 meters. A cross check is
necessary to calibrate the detectors. The lack of calibration could cause
artifacts. These are studied in this research, see section 2.2.
The detectors do not only detect neutrinos but are also able to detect muons
from cosmic ray interactions and by that detect cosmic rays. These will be
blocked by the moon. Just as the moon casts a shadow during a solar
eclipse, it also casts a shadow in terms of cosmic particles[6].

Here we determine whether the cosmic ray shadow that is cast by the
moon and sun is significantly enough to be detected in the currently avail-
able data by ORCA detector. The moon and sun have the biggest angular
size in the sky as seen from Earth so they make a good calibration point.

Version of June 22, 2020– Created June 22, 2020 - 15:07
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4 Introduction

1.4 Goal of this study

In this thesis the matter is often addressed as detecting the moon. But it
is important to recognize that the detector only detects particles. The sig-
nal addressed in this study is actually a deficit of particles. That would
indicate that something blocked the particle in its path to Earth. So al-
though it is technically incorrect, the phrase ”detecting the moon” is used
for measuring a deficit.

This research is based a lot on research that has been done for other
detectors. A few kilometers next to the ORCA detector there is another
neutrino detector called ANTARES. It was designed to determine the di-
rectional neutrino flux and the search for point-like neutrino sources. In
the ANTARES analysis of this topic [6] a similar way of detecting the moon
is used as in this research. Another research on this topic was conducted
by the IceCube collaboration [7]. The IceCube detector is a large detector
that is located in the ice of Antarctica. These larger detectors have been
used to detect a deficit of 3σ-10σ significance.

These significant values are not expected in this research because the
ORCA-detector is not finished yet. However the goal is to lay a foundation
for whenever ORCA is finished. The method described in this thesis for
the ORCA-detector is reusable and extendable to other detectors.

This thesis is structured in the following way: In Chapter 2 the theoret-
ical background of this research is explained. After this, in Chapter 3, an
analysis on a simulation is done, which is purely based on little empirical
results from the ORCA-detector. This part will act as a prediction for the
next part, Chapter 4, where we actually look at data from the ORCA detec-
tor. In these two chapters first the methods are explained after which the
results and discussion come. At the start of the simulation chapter there is
also a motivation of why the calibration is important.

4
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Chapter 2
Theory

In this chapter a theoretical basis is laid for the rest of the research. Firstly
the used astronomical coordinate systems are discussed together with their
implications for this research (section 2.1). After this the theory of mis-
pointing is described (section 2.2). Then the reconstruction of event tracks
is explained. This is an integral part of the KM3Net research. However in
this research only the basis is explained (section 2.3). Finally the statistical
model for counting experiments is described and how it is applied to the
obtained data (section 2.4).

2.1 Astronomical coordinates and areas

Looking at the ever-moving universe it is useful to have a well-defined
coordinate system. The use of a local Cartesian coordinate system is nuga-
tory; one place on earth has a completely different coordinate system than
somewhere else. Not only translated but also rotated. Also the rotation
and movement of the Earth needs to be taken into account. In short, a lot
of movement to compute. This is why astronomers use astronomical coor-
dinates, or celestial coordinates. These are coordinate systems that are not
absolute coordinate systems but have physical reference point.

Every astronomical coordinate system is defined by a primary great cir-
cle and a primary point. There are a few combinations that work well [8].
This section explores the two that are used in this research: The horizontal
coordinate system and the UTM system.

Version of June 22, 2020– Created June 22, 2020 - 15:07
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6 Theory

2.1.1 Horizontal Coordinate System

The horizontal coordinate system (HCS) is the system that is used most
in this research. For the HCS the great circle is the observer’s horizon.
Imagine drawing two linear independent tangent lines to the observer’s
location on the sphere (or Earth). The span of these two lines make up the
horizontal plane. The line that goes directly upward, or more formally,
the line that goes radially outward from the centre of the sphere, is called
the zenith. The opposite of the zenith, meaning a vector going directly
downward, is called the nadir.

The angle an object or event makes with the horizontal plane is called
the altitude or elevation. When we speak about an object with an elevation
of 90◦ it is exactly located on the zenith. When the elevation is −90◦ it is
located on the nadir. In this research I mostly use zenith angle, which is
the angle from the zenith. In terms of elevation it is 90◦ − δ, where δ is the
elevation (see figure 2.1).

Figure 2.1: A sketch of the horizontal coordinate system. The elevation is denoted
by δ. The north point is shown by N

The primary point in the HCS is the North Point. This is a point on the
horizontal plane that gets constructed by drawing a line from the observer
to the North Pole parallel to the horizontal plane. The angle the object or
event makes with the North Point line is called the azimuth. It increases
clockwise, so the east is at an angle of 90◦. All locations on the sphere can

6
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2.1 Astronomical coordinates and areas 7

be described with a zenith and azimuth angle. One degree of freedom is
dropped due to the fact that we neglect distance from the observer.

The detector measures signals from which a direction of the particles
is reconstructed on the unit sphere in Cartesian coordinates. A spherical
coordinate transformation is used to transform from a Cartesian system
to the HCS. Assuming the x coordinate corresponds with the North Point,
and the z coordinate with the Zenith. The resulting transformations are:

δ = arccos z
α = 2 arctan −y√

x2+y2+x

Here, δ is the zenith angle and α is the azimuth angle. There are two ex-
ceptions: When x < 0 and y = 0 then α = 180◦. And when both x and y
are zero the azimuth is undefined. The −y has as result that the azimuth
will be clockwise increasing. If earlier assumptions of the rotation of x, y
and z coordinates is correct this transforms them to the right coordinates.
However the detector coordinates do not follow this assumption.

2.1.2 UTM System

The coordinate system of the description of position of the moon and the
sun is not the same as the coordinate system of the reconstructed events.
After transformation to spherical coordinates the reconstructed events are
in the Universal Transverse Mercator System, or UTM system. What is
important is that the position of events can be described in similar fashion
as the in Horizontal Coordinates System. However the primary points are
different, and the direction of rotation is counter-clockwise.

The UTM system is primarily used to determine positions on Earth. It
has three (or four) parameters: North, East, Zone (and Hemisphere). The
Hemisphere variable is optional since it could be included in the North
variable. The UTM System projects Earth onto flat map. Although it is
topologically impossible to make a flat map from a sphere, the UTM sys-
tem has a solution. It makes a series of 60 seperate maps, all having a
width of 6◦ longitude[9]. The mentioned Zone parameter defines the map
to use.

As can be seen in figure 2.2a, these different maps have parallel longi-
tude lines. But when we would flatten a sphere all longitude lines should
converge to one point, for example in the Mollweide Projection (figure
2.2b).

What is important for this research is the transformation from the UTM
system to the local HCS. The latter is used to calculate the position of the

Version of June 22, 2020– Created June 22, 2020 - 15:07
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8 Theory

(a) The Mercator Projection of the
Earth [10] (b) The Mollweide Projection of the Earth [11]

Figure 2.2: Two projections different projections of the Earth

moon and sun. The transformation is given as:

δHCS = δUTM
αHCS = π

2 − αUTM + θMCA

Here δHCS and αHCS are the zenith angle and azimuth angle in the system
where the position of the moon and sun are calculated. The first equation
is equivalent but the second equation is different. The first term comes
from the fact that the x-axis - that was assumed to correspond with the
North - corresponds with the East in the UTM system. So a translation
of quarter of a circle is appropriate. The second term is the azimuth in
the UTM system. The final term, θMCA, is called the Median Convergence
Angle. This angle needs to be implemented due to the fact that in the UTM
system the longitudal lines are straight. It is dependent on the Zone and
location of the detector. After transformation the positional information of
all objects in this analysis are in the same coordinate system.

2.1.3 Area Normalization

For this research the calculation of areas on a sphere is of importance.
These areas are used to obtain the number of events per square degree for
maps that describe the event density as function of the angular distance
to the moon. The division in azimuth in degrees does only at the equator
reflect a real degree on the sky, but is much less at higher elevations.

Spherical caps are used to determine the an area, see figure 2.3. The

8
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2.2 Mispointing 9

area of a spherical cap is given as:

2πr2(1− cos θ)

Where θ is the angle from the center of the spherical cap. When subtracting
one spherical cap from another we get a ring. This ring is taken to be in
steradians and has area:

A = 2π(1− cos θ2 − (1− cos θ1))

Where θ2 is greater then θ1. From this follows that the area of one of those
rings is equal to 2π(cos θ1− cos θ2) So taking constant steps in cos θ we get
surfaces of equal area, and hence the event density is properly normalized
.

Figure 2.3: Example of a spherical cap [12]. In this figure θ shows the zenith
angle.

2.2 Mispointing

Perfect pointing is of crucial importance for the study of KM3NeT. That is
why the detector should be properly calibrated to have the same coordi-
nate system as it is expected to have. To elaborate, when getting data from
the detector certain coordinates are assigned to any reconstructed event.
However if the detector is mispointed, the obtained data will not be in the
same coordinate system as the algorithms used to analyse the events.

In this research we describe mispointing in the horizontal coordinate
system. With the mentioned transformations (section 2.1) the events are
converted to the HCS.

The three parameters that describe the mispointing of the detector are:

Version of June 22, 2020– Created June 22, 2020 - 15:07
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10 Theory

1. An offset in magnitude from the detector zenith (DZ) from the true
zenith (TZ).

2. An offset in direction from the DZ from the TZ with respect to the
true north (TN).

3. An offset in direction from the detector north (DN) from the TN.

These parameters are visualized together in figure 2.4a. To elaborate on
the three parameters:

1. The magnitude of offset from the DZ from the TZ
When this parameter is zero, the zenith-vector of the detector is on the
span of the zenith-vector of the true zenith. If this parameter is non-zero
the DZ will be slightly tilted from the TZ and this will lead to detection
artifacts. In figure 2.4b θ1 corresponds to the first parameter. It is the angle
between the true north and the detector north.

2. An offset in direction from the DZ with respect to the TN
When this parameter is zero, the projection of the DZ on the horizontal
plane will lay on the span of the TN. When this parameter is increased the
DZ will turn clock-wise around the TZ. In figure 2.4c θ2 corresponds with
the second parameter. It is the angle between the projection of the detector
zenith on the horizontal plane and the true north. If the first parameter is 0
this parameter has no resulting artifacts. The second parameter describes
the rotation of the DZ around the TZ. When the DZ is on the span of the
TZ it can not rotate around it.

3. An offset in direction from the DN from the TN
When this parameter is zero, the projection of the DN on the horizontal
plane, will lay on the span of the TN. In figure 2.4d θ3 corresponds with
the third parameter. The third parameter is the rotation of the horizontal
plane of the detector frame. The angle between the TN and the DN tells
the rotation around the DZ-axis.

All parameters have their own resulting features in the final result of a
measurement. The motivation for this part of the research is to show the
influence of mispointing on the result of measuring a celestial object over
time.

10
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2.2 Mispointing 11

(a) All three parameters (b) First parameter θ1

(c) Second parameter θ2, TZ points
out of the paper

(d) Third parameter θ3, DZ points
out of the paper

Figure 2.4: All three parameters described in 2D figures, TZ is the True Zenith,
DZ is the Detector Zenith, TN is the True North and DN is the Detector North

Version of June 22, 2020– Created June 22, 2020 - 15:07
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12 Theory

2.3 Event Reconstruction

Since the PMTs only measure the time of passing the threshold and the
ToT, it is difficult for the detector to determine where an event actually
comes from. Although the information of multiple PMTs and DOMs tells
the difference in arrival time of the Cherenkov radiation, it does not really
tell the direction of the moving particle. That is why event reconstruction
is a big part of the research for KM3Net. The algorithms used to recon-
struct events are beyond the scope of this research. Nonetheless will this
section cover the basics because some jargon gets used in later analysis.

2.3.1 The Problem

With the same time offsets between hits, different directions can be de-
ducted. A graphical illustration is given in figure 2.5. This figure will
be used for the derivation of the difference in arrival time between two
DOMs, shown with the blue circles. The Cherenkov radiation is denoted
by the blue arrows.

Figure 2.5: Visualization of same time difference for different directions due to
different velocities of the particles

12
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2.3 Event Reconstruction 13

Time of the vertically moving particle

To only calculate the difference in arrival time of the radiation between the
two detectors, t = 0 is taken when the particle is in point E. The time for
the radiation to hit the first DOM is:

t1 =
R1

c
=

D1

c · cos θ

Where R1 is the distance traveled by the light from the the point of radia-
tion. The time for the radiation to arrive at the second DOM is:

t2 =
R2

c
+

A
v
=

D2

c · cos θ
+

A
v

But D1 = D2 so the difference in arrival time will be:

∆t = t2 − t1 =
A
v

Time of the diagonally moving particle

For the diagonal line some parameters need to be specified first. These pa-
rameters cancel or become 1 in the latter derivation but not in the general
case:

Parameter α is the angle that the track of the particle makes with D1′

and D2′. In the vertical case this was equal to 90◦. This is determined with
the velocity of the particle, which is a scaled and rotated version of the
vertical line:

tan α =
av
bv

=
a
b

Note that a, b could be more than one combination. The difference in time
is calculated in a similar way as before. First R′1 is determined, which is
again the distance traveled by the light from the point of radiation. This is
done with the law of sines:

R′1
sin α

=
D′1

sin π − θ′ − α
→ R′1 =

D′1 · sin α

sin π − θ′ − α

t′1 =
D′1 · sin α

c · sin π − θ′ − α

Note that the vertically moving particle also follows this formula when
α = π

2 . For the second time we first need to find a relation between D′1 and
D′2. Since the lines are parallel, the following equation is true:

D′2 = D′1 −
A

tan α

Version of June 22, 2020– Created June 22, 2020 - 15:07
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14 Theory

A similar expression is found for the radiation part of t′2:

t′2 =
(D′1 −

A
tan α ) · sin α

c · sin π − θ′ − α

This way the time difference is not dependent on either D′1 or D′2 because
for the difference in the time the radiation takes is now:

∆t′ = t′2 − t′1 = − A · cos α

c · sin π − θ′ − α

Note that this is the difference in travel time of the radiation not the actual
time difference. Again this collapses to the vertical case when α = π

2 , then
it becomes 0. Now the only addition has to do with velocity, which the
detector does not know a-priori. Hence the difference in arrival time for
both scenario’s could be the same because

A
v
=

A′

|v′| −
A · cos α

c · sin π − θ′ − α

depends on v′. This velocity depends on a and b. The ratio between a and
b determines α, but the magnitude of these variables are free to choose.
So there are multiple values that satisfy this equation. This motivates the
point that it is difficult to determine where events are coming from.

2.3.2 The solution

Luckily there is a solution. This is done by a clever algorithm that are
fabricated by KM3Net[13]. The algorithm initially hypothesises N direc-
tions where the event could come from. This leaves some parameters to
be fitted, these are the position and the time at which the event crosses
some reference plane that is perpendicular to the direction. These param-
eters are fitted in an iterative way. Every iteration tries to minimise the χ2

which is based on the time difference between the actual time and the ex-
pected time for the photons arrival. The directions with the lowest value
for χ2 have the highest probability of being the ’correct’ parameter. These
are send to next stage.

In this stage the algorithms takes the likeliest directions and scans around
them to find even better solutions. In the end the algorithm should find a
global minimum and takes this as most likely direction the particle could
come from.

How good or likely the fits are, is given by the likelihood parameter
Q. This variable is used a lot in this research because it makes it possible

14
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2.4 Counting statistics 15

to make quality cuts. High likelihoods indicate the level of consistency of
the track hypothesis with the detected signals. Since the likelihood scales
with the amount of hits on PMTs, the hits are also saved and are used to
divide the likelihood later on.

2.4 Counting statistics

To make a useful conclusion for this research, counting statistics is needed
to tell if a deficit of events is really significant. Although this theory is
straightforward, it is a fundamental part of this research.

m experiments have results: N1, N2 . . . Nm. In counting statistics, if the
measurements are big, Ni >> 10, the measurements will approximately
follow a Gaussian distribution:

P(N) =
1√
2πσ

exp− (N − µ)2

2σ2

The average can be estimated by the sample average:

µ ≈ N =
1
m

m

∑
i=1

Ni

All individual measurements are from a binomial distribution, an event or
not an event. For small p the expressions for the average and the variance
are given:

N = pN
var(N) = pN(1− p) ≈ pN = N

So the distribution for the counting experiment is:

P(N) =
1√

2πN
exp− (N − N)2

2N

In this study only smaller amounts of events from the moon and sun
are expected. To determine a certain p-value to this measurement N the
definition of the p-value is needed: P(n ≤ N) = α0, which roughly trans-
lates to: what is the probability of finding the same or lower value for a
certain measurement N.

To make the statistics a bit simpler we will introduce a variable trans-
formation: N → N−N√

N
. This transformed variable is normally distributed

with µ = 0 and σ = 1. The transformation also tells the significance in
terms of σ.

Version of June 22, 2020– Created June 22, 2020 - 15:07
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16 Theory

The p-value is calculated with the Cummulative Distribution Function
(CDF). This function is often non-analytic and values are found numeri-
cally. In this paper the CDF of the Gaussian distribution is used which is
often denoted with capital letter Φ. The CDF assumes that the input value
is distributed normally with µ = 0 and σ = 1, hence:

p = Φ(
N − N√

N
)

In this research an average is calculated from so called ’off-target’ mea-
surements∗. With this average the probability of a certain deviation can be
determined.

∗This terminology is explained later on. For this section it is not important

16
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Chapter 3
Simulation

This chapter starts with the motivation for this research by looking at the
artifacts that arise from mispointing. After this a section is dedicated to
simulation of the position of the moon and the sun. With the created in-
formation a plot is created. This is done with a realistic assumption of the
angular resolution and measured event densities on these positions. This
will serve the purpose of quantifying the expectation for the signal in the
current ORCA data. This chapter also contains discussion of the method
and results. Future research on some topics is also suggested.

3.1 Mispointing

The positions of the moon in a given time were calculated using a program
by Clancy James based on SlaLib[14] routines [15]. It was used as a tool
to visualize what happens when mispointing a detector. The program cal-
culates the expected location of the moon with as input the 3 parameters
from section 2.2. This expected location is compared to the real location of
the moon.The pseudo-code can be found in the Appendix (6.1).

As output it gives three 2-dimensional maps all focused on the moon∗.
The three maps show the moon in three different ways. The first is show-
ing the position of the centre of the moon relative to the expected centre
of the moon. The second one shows the amount of events blocked by
the moon and the last shows how the detector would reconstruct these
blocked events. The latter is useful for researching the effect of the angu-
lar resolution.
∗The sun can also be implemented in this code, but originally it was written for the

moon

Version of June 22, 2020– Created June 22, 2020 - 15:07

17



18 Simulation

The intention of this analysis is to perform a qualitative evaluation of
the artifacts arising from mispointing.

3.1.1 Method and results

The effect of the three parameters described in section 2.2 are separately
evaluated. For every parameter several simulations are done for a day (01-
01-2008) using constant time steps. Different values for this parameter are
evaluated.

Null measurement

Figure 3.1 shows the resulting map of the event deficit. A circle on the
spot the moon is visible. Rays from random positions are send ’towards
the detector’ so not every coordinate will count the same amount events.

Figure 3.1: This figure shows
the number of events blocked as
function of the distance in az-
imuth and zenith direction (val-
ues in z-axis) for perfect point-
ing.

Figure 3.2: Elevation of the moon over the
course of 1 January 2008

Figure 3.2 shows the elevation of the moon during the day. This has no
influence when there is no case of mispointing. When there is a mispoint-
ing in the detector the elevation of the moon is of importance.

18
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3.1 Mispointing 19

First parameter: Magnitude of offset from the zenith

Figure 3.3: The time (denoted in the z-
axis) the center of the moon spends on a
certain location relative to the expected
moon’s center when the first parameter
of mispointing is 1◦

Figure 3.3 visualizes the effect
of the first parameter. In the figure
the center of the moon is shown.
Showing the centre makes it clear
how the moon moves due to mis-
pointing. The z-axis indicate the
time the moon is at that particular
point relative to the expected loca-
tion of the moon. The curve is not
closed because for an observer on
the Earth the moon does not rotate
a perfect 360◦ within a solar day.

In the figure it is visible that the
first parameter acts on the appar-
ent movement of the moon. The
reason that the top part is wider
than the bottom part is because of
the elevation of the moon. A mis-
pointing in azimuth of a constant
value has a different impact at different elevations as explained in section
2.1.3. When the curve is in the origin in figure 3.3 the elevation of the moon
is 0 in figure 3.2. When the parameter is given different values, see figure
3.5 and figure 3.4, it does not change its shape. It just gets magnified or
mirrored. The behaviour stays the same.
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20 Simulation

Figure 3.4: The time (denoted in
the z-axis) the center of the moon
spends on a relative location of the
expected moon when the first pa-
rameter of mispointing is -1◦

Figure 3.5: The time (denoted in
the z-axis) the center of the moon
spends on a relative location of the
expected moon when the first pa-
rameter of mispointing is 2◦

Second parameter: Direction of offset

As stated in section 2.2, the second parameter needs the first parameter to
have an impact. In these results the first parameter is 1 for this reason.

Figure 3.6 shows the results for the direction of offset being 180◦. The
z-axis shows the time the moon is at that location. It is the same result as
in Figure 3.4. This is expected because a rotation of 180 degrees is the same
as mirroring in the True Zenith.

Different artifacts arise when the second parameter is changed to 45◦

(3.7), 90◦ (3.8) and 135◦ (3.9). Now the curve that traces the centre of the
moon takes a different shape. 90◦ (figure 3.8) is the symmetry value. An
offset parameter of 90◦ + α is the mirrored version of 90◦ − α. It is a curve
consisting of two parabolas. The ’size’ of the parabolas is determined by
the suprema of the elevation. The bigger parabola corresponding to the
highest elevation in figure 3.2 and the smaller one with to lowest elevation.

20
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3.1 Mispointing 21

Figure 3.6: The time (denoted in
the z-axis) the center of the moon
spends on a relative location of the
expected moon when the second pa-
rameter of mispointing is 180◦

Figure 3.7: The time (denoted in
the z-axis) the center of the moon
spends on a relative location of the
expected moon when the second pa-
rameter of mispointing is 45◦

Figure 3.8: The time (denoted in
the z-axis) the center of the moon
spends on a relative location of the
expected moon when the second pa-
rameter of mispointing is 90◦

Figure 3.9: The time (denoted in
the z-axis) the center of the moon
spends on a relative location of the
expected moon when the second pa-
rameter of mispointing is 135◦
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22 Simulation

Third parameter: Offset of the detector north

The final parameter is visualized in figures 3.10a, 3.10b and 3.10c. In these
figures the number of blocked events is shown on the z-axis. In the figures
the location of the moon changes during the day. The distance from the
origin is dependent on the elevation (figure 3.2). Although it is not much,
it is visible that this effects reduces when the moon has a bigger eleva-
tion. The moon is closer to the origin in figure 3.10c and 3.10b where the
absolute value of the elevation is bigger than for figure 3.10a.

3.1.2 Conclusion

This part of the research was meant for qualifying the behaviour of the
results when mispointing the detector. I can conclude that the results mo-
tivate the importance of calibrating the detector to have the exact same
coordinate system as it is expected to have. Because it is not only a matter
of locating an event at a different spot, the result also smears out. There
is no fixed location of where events came from over time. When multiple
particles come from the same source at a different time, the detector would
not measure them consistently in the right spot. The analysis also demon-
strates that for the identification of mispointing it is necessary to evaluate
the moon signal separately for different elevations.

In the results section the artifacts that arise when the first and third pa-
rameter are combined are lacking. This would have been a good indication
if the parameters are independent of each other.

These observations can be used in future studies. The ARCA detector
will look at high-energy objects in the universe. A perfect calibration is
necessary for this research. A study that could be done is that the three
parameters are fitted to a certain observation by iterative changing on a
expectation value of the three parameters. This way the offset of any de-
tector can be found.

22
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3.1 Mispointing 23

(a) This is taken on 01-01-2008 at 0:00 (b) This is taken on 01-01-2008 at 5:00

(c) This is taken on 01-01-2008 at 18:00

Figure 3.10: These figure shows the number of events blocked at the relative po-
sition of the expected location of the moon (values in z-axis) when the third pa-
rameter of mispointing is 1◦ taken at different times. The elevations of the moon
at the mentioned times are shown in figure 3.2
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3.2 Simulation of ORCA

Now that mispointing is qualitatively analysed it is time to look at what
to expect for the study of real data. It is useful to make a prediction for the
data that is analysed later. In this part the detector is perfectly pointed so
there are no mispointing artifacts.

The begin of this section will be about the event density that is mea-
sured with the ORCA detector. With this event density plots of the neigh-
bourhood of the moon for an entire year are created. This shows a total
amount of expected events from and around the moon. Assuming that
all events are blocked that came from behind the moon, a statistical pre-
diction is made of what would happen for the real data. This assumption
gives realistically the highest significance. In the study of the actual data
a lower significance is expected. Besides this an analysis of the impact of
the angular resolution of the detector has on the final statistics is made.

3.2.1 Event density

Figure 3.11: The number of events as function of cos zen measured by the ORCA-
detector. The events are from runs between 23 July 2019 and 25 January 2020.

First a background is created with the number of events in the neigh-
bourhood of the moon for a year. The script from section 3.1 calculates the
position moon is at a certain time. Only the implementation of the event

24
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3.2 Simulation of ORCA 25

density at that zenith is needed. This event density is close to constant for
every azimuth† but it is not for different zeniths.

Figure 3.11 shows how much the event density changes with zenith.
For bins of equal area the events are shown as function of cos zen, whereby
cos zen = 1 corresponds to the events straight from above. The different
lines correspond with different quality cuts (section 2.3). For this analysis
the quality cut is 2 so the green line in the figure is used.

First a linear regression model for the measured event density is cre-
ated. The motivation for this is that the script only takes analytical values
to speed up the process. The following model is used:

log y =
6

∑
n=0

an · xn

Where y is the number of events on a certain zenith cos(zen). an is the
linear fit parameter and x is equal to cos zen. The logarithm is there be-
cause the y-axis in 3.11 is in a logarithmic scale. The following formula
determines the fit parameters[16]:

β̂ = (XTX)−1XTY

β̂ =


a0
a1
...

a6

Y =


Y(x0)
Y(x1)

...
Y(xbins

 X =


1 x0 x2

0 . . . x6
0

1 x1 x2
1 . . . x6

1
...

...
... . . . ...

1 xbins x2
bins . . . x6

bins

 (3.1)

n an
0 3.057
1 2.269
2 -6.889
3 -3.654
4 3.692
5 -1.188
6 3.799

Table 3.1: Fit parameters of
linear regression of the num-
ber of events as function of
zenith from figure 3.11

Using the data from figure 3.11, the val-
ues in 3.1 are found. Plotting the polyno-
mial with these parameters and the initial
data gives figure 3.12. Fitting well enough
for this analysis purposes. Note that the x-
axis is flipped in figure 3.12. So in this case
cos zen = −1 corresponds to events coming
from above.

With this analytical event density the
mentioned program can determine the amount
of events for every zenith in the script. All

†This is not the case for the ORCA detector yet as with only 4 strings the efficiency has
an azimuthal dependence, but for simulation purposes we assume that the event density
is constant in azimuth.
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events whose origin is below the horizon are
ignored. In the analysis on the real data this will also be the case.

The script calculates the zenith of the moon for every minute of a year.
At this calculated zenith a 2-dimensional plot of 10◦ by 10◦ is created. For
every zenith in the plot the amount of events for a minute are calculated
with figure 3.11. After this the program sums everything over the course
of a year.

Figure 3.12: Linear regression model for the event distribution of figure 3.11 by
using the parameters in table 3.1

3.2.2 Results

Figure 3.13: Number of events in the
neighbourhood of the moon simulation
of a year. 300 bins in the azimuth direc-
tion and 300 bins in the zenith direction

Figure 3.13 shows the map of
events in the neighbourhood of the
moon for an entire year. A gradi-
ent result arises from the different
zeniths in the map. The smaller
zeniths have a bigger event den-
sity. A lower zenith angle means
it will be more towards the zenith,
so it is higher in the sky.

The average amount of events
in a year is around 1440 per square
degree (1.6ev/bin in the binning of
3.13). Suppose the moon blocks all
the events that originate from be-
hind the moon. And the moon has
an angular radius of about 0.25◦

26
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3.2 Simulation of ORCA 27

meaning its angular area is about 0.19 square degree. Then the moon will
block about 294 events.

With the counting statistics of section 2.4 a significance of 294√
144000

=

0.77σ is found. The p-value of this measurement is:

pmoon = Φ(
−275√
144000

) = 0.22

This is result is not significant enough to state that something is blocking
events. Only when the significance is 5σ it can be stated that this would be
the case. With more time the lack of events gets more significant. The sig-
nificance also depends on the patch size. The influence of this is analysed
later in this chapter.

It is not taken into account that the moon changes in angular size with
this method. Although the significance will not improve a lot if this would
have been implemented, it would be a proper addition to this simula-
tion. This can be done in follow-up research on this simulation. This
will make the simulation more true to what happens in reality. For this
research it was left out because only a rough prediction of the significance
was enough.

Furthermore is it expected that for the real analysis the significance is
lower because we assumed a consistent background. Besides the assump-
tion that the moon blocks all events is made while in reality this not neces-
sarily true. With all assumptions this is the highest significance obtainable
while still being partly true to reality. In future research the impact of these
assumptions can be determined.

3.2.3 The Sun

When also looking at the sun, twice the statistics could be obtained in the
same time. The sun has a similar angular size as the moon as seen from
Earth. Using the same method, we can also derive the amount of events
blocked by the sun. Calculating the location of the sun for an entire year
we evaluate a similar map with the events around the sun.

The plot for the sun can be found in figure 3.14. Now the average is
1575 events per square degree. The total amount of events comes out to be
157500. Assuming that also the sun blocks all events we obtain an amount
of 157500− 332. The corresponding significance for this lack of events is
0.83σ and the p value is equal to 0.20. This is a very similar result as for
the moon. This is expected since the they have the same angular size and
similar elevations.
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When combining the results of the two the significance increases it is
assumed that the moon and the sun plots do not share events. This would
happen in reality when the moon and sun are close together, for example
when there is a solar eclipse.

Figure 3.14: Number of events in the
neighbourhood of the sun by a simula-
tion of a year. 300 bins in the azimuth
direction and 300 bins in the zenith di-
rection

Now the significance is 1.14σ
and the p-value is:

p = Φ(
−626√
301500

) = 0.13

With this method the errors of
the fit parameters of the linear re-
gression of the background data
are not taken into account. Do-
ing this would give a upper- and
lower-bound to the significance.
The reason for leaving it out, is that
this part of the research is meant
for giving a rough prediction.

3.2.4 Angular Resolution

For every device of measuring light or particles the angular resolution is of
importance. First of all it is important that a clear image is created of what
we want to measure. But higher resolution also improves the significance
of the measurement as well.

In the previous section it is mentioned that the significance depends on
the size of the map. This can be done if it is assumed that deficit of events
by blocking forms a cylindrical hole. As a result of angular resolution this
is not the case. Here we want to show the expected shape of the deficit in
the maps.

Starting with the program of Clancy James[15] where we measured the
event density. As assumed in the previous section, the moon and sun will
both block all events that originate behind it. But now we do not assume
that the lack of events due to the moon and sun form a well. They are
normally distributed.

Method and results

The program takes the same event density as in figure 3.11. The position
of amount of missing events are distributed with a Gaussian distribution.

28
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3.2 Simulation of ORCA 29

For the variance some empirical results are necessary. Figure 3.15 showing
the expected angular resolution as determined in simulation. There are a
few things to note, the first is that the cos(θ) corresponds to the direction
of movement of the event. For this analysis the x-axis is multiplied by −1
to find the origin of the event. Secondly, the median is to be the standard
deviation for my Gaussian distributions. This means that the actual reso-
lution is better than in this simulation because 39% of all events are within
1 sigma of a 2D Gaussian.

Figure 3.15: The angular resolution of the ORCA detector as function of cos zen
[17]

Figure 3.16: Linear regression of the median
from figure 3.15

To implement this angu-
lar resolution in the analy-
sis a linear regression of fig-
ure 3.15 is made. This is
shown in figure 3.16. Af-
ter this, an angular reso-
lution map that, for every
time step, created a Gaus-
sian surface with a stan-
dard deviation correspond-
ing to the proper zenith
angle was computed. All
the surfaces are added and
scaled so that the volume
below this surface is the
same as the amount of ex-
pected missing events.
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This method results in the event density that can be seen in figure 3.17.
This plot is similar to figure 3.11. When creating a 3D plot of the event
density and look from the side (figure 3.18) a small dent in the surface is
visible. This dent will get deeper and narrower when the angular resolu-
tion gets smaller.

Figure 3.17: Number of events in the
neighbourhood of the moon simulated
for a year. 300 bins in the azimuth direc-
tion and 300 bins in the zenith direction

If the angular resolution were
lower the moon analysis could fo-
cus on a smaller patch and the
same amount of missing events
would lead to a more signif-
icant detection. For example
using a patch with side length
would result in an average amount
events of 23040. But we would
still miss 294 events.

This gives a significance of
1.9σ. When making the plot even
smaller, this significance would
even increase more. However
there is a limit, because the plot
should not be smaller than the
moon or sun itself.

Figure 3.18: Figure 3.17 viewed from the
side to show the deficit of events in the
middle

This chapter is mainly intended
to give predictions and to show the
importance of mispointing. A lot
can be improved on these simula-
tions. This is already mentioned
in the chapter. A followup re-
search would be to look at the
moon and sun on certain zeniths.
The moon and sun cover some ele-
vations more than others, looking
at specific elevations will give in-
sight on how this coverage affects
the measurements. Furthermore,
this entire simulation is determin-
istic. If we would like to imitate ac-
tual results there should be some randomness in the plots. This could be
implemented by taking the events at random from a distribution that is
determined from the emperical event density, figure 3.11.

30
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Chapter 4
Real Data

This chapter focuses on the analysis of the data that is provided by the
ORCA4 detector. ORCA4 means the ORCA detector when it only had 4
strings installed. The time over which the data was taken is from 23 July
2019 to 25 January 2020. And the total amount of events measured during
that time is 83.5 million.

First the general distributions in local azimuth and zenith coordinates
of the detector are evaluated. These distributions contain the informa-
tion of the origin of the events and positions of the moon and sun. With
time offsets for of the moon and sun so-called ’fake moons’ are created.
These ’fake’ sources follow the same path in the sky as the moon and the
sun in terms of azimuth and zenith. But they are time shifted. They thus
do not contain any signal but should contain similar systematics as the
real source. With an analysis of these offsets a general average amount of
events is computed. Comparing the on-target measurement to this aver-
age gives the significance of the deviation of the amount of events.

4.1 General Distributions

The first part of this chapter is focused on the event distribution and the
location of the moon and sun in the entire coordinate space of the detector.
This gives a expectation for the event distribution in the neighbourhood
of the moon and sun. The expectation is that the amount of events coming
from above is bigger than the amount of events coming from below. When
particles traverse the earth they have a chance to get blocked. This chance
is small for neutrinos compared to other particles because neutrinos do not
interact a lot. But these measurements of the detector contain all events
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and where they come from. This suggests that most particles come from
above.

In figure 4.1 the event distribution for all zenith and azimuth angles is
shown. These coordinates are in the HCS of the ORCA detector. This is
the same system as the locations of the moon and sun are calculated in.
The z-axis shows the number of events in each bin. As expected, lower
zenith angles have more events than higher angles. This means that the
coordinate system described in 2.1 is well defined.

Figure 4.1: The event distribution for the zenith and azimuth angles for the spec-
ified time, quality cut : 0.0. The binning is 360 by 180

The amount of events near the zenith is decreasing in this coordinate
system. This is not due to the fact there are less events∗, but this is due the
binning in equal azimuth distances, which results in having a smaller real
area covered in the bins of high elevations(section 2.1.3) .

Furthermore the event density is not constant in the azimuth direction.
This means that the detector is an-isotropic. So for evaluating background
sky patches that are equivalent to the patch around the moon it is not
possible to take an offset of a certain amount of degrees in the azimuth
direction. For the azimuth the event density changes. So in this research
time offsets are used rather than a position offsets to determine an average
number events in a sky patch.

Quality cuts have an influence on the number events that are analyzed.
In figures 6.1, 6.2 and 6.3 (These can be found in Appendix 6.2.1) the other

∗We expect most events coming from straight above

32
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4.1 General Distributions 33

quality cuts are shown. The range of the z-axis show that the total number
of events decreases. But the shape of the distribution stays the same as for
the 0.0 quality cut (figure 4.1). The distribution of the events is similar as
in the the one for 4.1. This suggests that the algorithm described in section
2.3 treats the events the same for different zenith angles.

(a) The moon

(b) The sun

Figure 4.2: The amount of time for which
the moon and the sun are visible within the
specified time period shown as function of
azimuth and zenith at the ORCA site

Furthermore the zenith and
azimuth angles the moon and
the sun cover during the the
measuring time is analyzed.
Due to the location of the
ORCA detector it is expected
the moon does not rise above
and set below certain eleva-
tions. The same reasoning ap-
plies to sun as well. From fig-
ure 4.2a and 4.2b we can see the
expected zenith and azimuth
angles of the moon and sun.
The cause of the holes in the
moon plot are unknown but
are suspected to be due to bin-
ning. The reason for the differ-
ent range on the z-axis, which
represents the time in 10 sec-
onds, is caused by the moon
having more positions that it
covers for a long time.

With these qualitative re-
sults we progress to the actual
event densities around the sun
and the moon. And start mea-
suring whether there are signif-
icantly less events around these celestial objects.
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4.2 1-Dimensional Analysis

This section is dedicated to one dimensional analysis. In this analysis only
the number of events as function of the angular distance to the moon and
sun matter. This section will be split in a method section and two sec-
tions for the results of the moon and the sun. In the latter the results are
discussed and suggestions for further improvement are provided.

4.2.1 Methods

There are several things that are established before the actual analysis is
done. First of all a way to determine where the moon and the sun are at
every moment in time is necessary. This is done by using a lookup-table.
This table contains the location of the moon and sun relative to the ORCA-
detector at every tenth second. Since the events start at 23 July 2019, this is
chosen to be the epoch. Meaning that at time 00:00 we start measuring the
position of the sun and moon until a day after the last event has occurred
in timesteps of 10 seconds. I took a margin of a day because later on in
the analysis we would like to determine ’off-target’ measurements. This is
done by taking a time offset of two hours. Moreover on this later.

With SlaLib[14] routines the location of the moon and the sun in the
sky in terms of azimuth and zenith is determined. This table (4.1) is then
stored in a document that is accessed by the analysis program.

TimeIndex Moon Azimuth Moon Zenith Sun Azimuth Sun Zenith
0 (0,360) (0,180) (0,360) (0,180)

1
...

...
...

...

2
...

...
...

...
...

...
...

...
...

1632959
...

...
...

...
Table 4.1: Layout of the lookup table for the moon and the sun

The ranges of the variables are indicated by the values in the paren-
theses. Note that the TimeIndex column means: TimeIndex · 10s since the
epoch (23-07-2019 00:00:00). This means that the entire table covers a time
of 16329600 seconds, which is 189 days. The way this table can be accessed
is by taking the time of the event relative to the epoch. This relative time
is used to determine the coordinates from the moon and sun.

34
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4.2 1-Dimensional Analysis 35

Next is determining where the events come from. This is done with the
coordinate transformation from section 2.1. After these transformations
they are in the same coordinate system as the lookup-table entries.

As well as the origin of the event the likelihood is also stored. Which
is determined by the total quality of the event divided by the number of
PMTs that are hit by the event (see 2.3). Hence the table has the form of
table 4.2. With these two tables (4.1 and 4.2) all useful information for this

Time Azimuth Zenith Quality Hits
(Unix Timestamp) (0,360) (0,180) (0,→) (0,→)

...
...

...
...

...
...

...
...

...
...

Table 4.2: Layout of the table the contains all the events, one row for every event

research is stored.
The first analysis is of the ’off-target’ measurements determining whether

they form a significantly constant background. We can then compare the
’on-target’ measurement with this constant background. These ’off-target’
measurements are created by offsetting the event time by a certain amount
of time. In this research the time offset increments with two hours be-
cause the moon is moving with about 360◦in 24 hours, which corresponds
with 15◦in an hour. This means that two neighbouring hours share events,
which will make them correlated.

Event density around the sources

For every offset we will iterate over all events and determine the angular
distance of each event to the moon and the sun. The angular distance is
determined with the formula:

D = arccos revent · rMoon

Here rx corresponds to unit vector of the event and the moon or sun. If the
likelihood is bigger than the quality cut the event is counted as an entry
with distance D. For this research 4 quality cuts are used: 0.0, 1.5, 2.0 and
2.5. The total amount of histograms obtained is: 12(o f f sets) · 4(qualities) ·
2(moon/sun) = 96 histograms. Typical and selected ones with striking
features will be shown in this thesis. All off-target plots can be found in
the Appendix.

Before we get on to the results, one more thing needs considering. Since
the time interval between the events are not constant and I will use the
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times the fake sources are above the horizon, zen < 90, not every offset
gets the same ’chance’ to get the same amount of events. This requires
scaling of the off-target measurements.

The scaling will work in the following way. First we iterate over all off-
sets and check for every event the zenith angle of the source. It is stored in
a histogram that has a domain of [0, 90]. Thus obtaining 12 histograms that
contain the number of times the source was on certain zenith during the
times of the events. These histograms are multiplied with the normalized
event distribution as function of zenith angle.

Figure 4.3: The normalized event distri-
bution for each zenith smaller than 90◦,
quality: 0.0

In figure 4.3 this normalized
event distribution is shown (qual-
ity 0.0). The others can be found
in the Appendix (figures 6.4, 6.5
and 6.6). Then, for every offset,
multiply the number of times the
moon spends at a certain zenith an-
gle with the normalized amount of
events at that zenith. The sum of
all these products gives a so-called
’chance’ variable. The ratio be-
tween the chance variable and the
average is a scaling factor for the
number of entries in an offset. This
gives all offsets the same ’chance’
to get the same amount of entries
for its plot, hence we can analyse
the statistics more accurate. Of
course, this scaling process also applies to evaluation of the sun. In the
next section I will show the results of this process.

36
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4.2.2 Results

This results section will be split in to two parts. The first part will concern
the moon and the second part will concern the sun. Combining the results
could result in a more significant result, see section 3.2.4. For both I will
start with analyzing the scaling of the amount of events. After this I look
at the number of events as function of the distance to the source. First will
be the analysis of the offset measurements. This determines if there is a
constant background. Using this background knowledge we look at the
actual moon and sun and determine if it is statistically visible.

The Moon

First the scaling of the amount of events in the histograms is demon-
strated. In figure 4.4 the amount of entries before checking if all the offsets
had the same ’chance’ variable is shown. Together with the calculated
number of entries for each offset. A deviation between the offsets is visi-
ble.

Figure 4.4: The amount of entries per
offset when it does not normalize it

The calculated number of en-
tries and the actual data have the
same behaviour. The ratio between
the blue line and the average of the
blue line used will be determined
to scale the real amount of entries.
In figure 4.5 the number of entries
for the scaled offsets are shown. In
figure 4.5 a oscillating pattern is
visible. In a further study it could
be determined where this oscilla-
tion comes from. It oscillates twice
when increasing to an offset of a
day.

The average of the number of
entries for this particular quality
cut (0.0) is equal to 485629 events.
Applying the counting statistics
from section 2.4 gives a standard deviation of

√
485629 ≈ 697. The 2σ

interval is between the values 487023 and 484235. Statistically 95% off the
measurements for this data should be inside this interval if the measure-
ments are taken from the same distribution.

The offsets are deviating with the highest value in figure 4.5 is 489088
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Figure 4.5: The amount of entries for every neighbourhood of the fake moons
when the correction factor is taken into account. Quality: 0.0

and the lowest value is 481880. These values correspond with a signifi-
cance of 4.96σ and 5.38σ respectively. These outliers may indicate some
remaining systematic flaw in the correction.

The number of events per square degree as function of the distance
to the moon are evaluated. For this we divide the area around the moon
into different rings. This area is calculated with spherical caps (section
2.1.3). Using the small angle approximation for the cosine and a constant
bin width the following formula for the area is found.

A(θ, δ) = 2π(cos(θ − δ)− cos(θ))

≈ 2π(1− (θ − δ)2

2
− 1− θ2

2
)

= π(2θδ− δ2) = π(2 · i · δ2 − δ2)

A(i, δ) = δ2π(2i− 1)

Where i is the number of the bin, δ is the width of a ring.
A typical distribution after area normalization can be seen in figure 4.6.

The red line corresponds with the average and the two dotted red lines
indicate the 1σ interval. The first value has the largest standard deviation
and fluctuates a lot for different offsets. This is a consequence from this
bin having the smallest area and with this the lowest amount of events.

38
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Figure 4.6: Number of events per square degree as function of the distance of the
moon for all events and no quality cuts are applied, offset: 1

The consistency of the data with a model of flat background is now
quantified via an evaluation of the corresponding χ2:

χ2 =
bins

∑
i

(xi − average)2

(stdi)2

Here xi corresponds to the value of bin i and stdi corresponds to the stan-
dard deviation of this bin. If we do this sum for the plot above we find
χ2 = 40.8. The number of degrees of freedom corresponds to the number
of bins. The probability of having this or a higher χ2 value corresponds
then to 0.004. We now repeat this method of finding the χ2 values for all
the offsets and qualities.

Fit parameter 1555.4
χ2 16.7

p(X > χ2
19) 0.61

Table 4.3: The fit pa-
rameter, χ2 statistic and
the probability of that
statistic for the data of
figure 4.6 compared to
a fitted flat line.

For every quality cut a plot is made with the
probability that the data is consistent with the av-
erage background for the four qualities (0.0, 1.5,
2.0, 2.5). These can be seen in figure 4.7, 6.7, 6.8 and
6.9 respectively as the blue points. The latter three
can be found in the Appendix. These χ2 proba-
bilities with respect to a constant background av-
erage are to low to state that there is a consistent
background in the time offsets of the moon back-
ground.

Now we will determine whether the data for a
source is consistent with any flat line fit on the data of this source. This
flat line is used to compute the χ2 statistic. For figure 4.6 the relevant
information of this analysis is shown in table 4.3.
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Figure 4.7: The χ2 probabilities of the data for all the offsets of the moon com-
pared to the average background and to the fitted background, quality 0.0

Repeating this method for all offsets and no quality cuts applied gives
the red crosses in figure 4.7. This same method but with quality cuts ap-
plied gives the red crosses in figures 6.7, 6.8 and 6.9 in the Appendix.

The probabilities of the data with respect to a fitted line are generally
higher comparing with the same offset source data compared to a con-
stant background average. But the data of some off target sources is still
not consistent with a flat line. If the hypothesis of the background being
consistently flat is true then with more statistics all the probabilities should
increase because the number of events per square degree should converge
to an average. However in this analysis this has not been found.

As mentioned, the average background computed by the off-target
measurements is not a good estimate for the background of the moon. This
means we can not compute an average to determine whether the number
of missing events around the moon is significant.

Quality Fit parameter χ2 p(X > χ2
19)

0.0 1553.8 28.5 0.07
1.5 1281.3 24.9 0.17
2.0 861.8 24.7 0.17
2.5 250.5 18.6 0.48

Table 4.4: The fit parameter, chi2 statistic and the probability of this statistic for
the data of all the quality cuts of the on-target measurements of the moon

However it is still instructive to look at the on-target measurement of

40
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the moon. In figure 4.8 the number of events per square degree as function
of the distance to the moon is shown. Quality cuts on this data are shown
in figures 6.10, 6.11 and 6.12.

Figure 4.8: The number of events per square degree as function of the distance
to the moon. No quality cuts are applied. The red line indicates the average
background of off-source measurements. The dotted lines is 1σ interval.

The information about the flat line fit to the different quality cuts can
be found in table 4.4.

We can compare the results of the on-target measurements to the pre-
dictions made in section 3.2.4. In the Simulation section the average num-
ber of events per square degree for a quality cut of 2.0 was equal to 1440
events per year. With the actual data we find this value to be equal to be
861.8 events in 189 days. Scaled to a year this ends up to be 1664 events
per squared degree. This difference might be caused by several factors.
Some of these factors are discussed in section 3.2.4.

The Sun

For the sun I perform the same analysis as for the moon. Starting with the
amount of events around the off target sources of the sun.

The normalized entries can be seen in figure 4.9. This is in contrast
with what is expected based on the results in the simulation section (3.2.4),
where the number of events around the sun was bigger than for the moon.

The average amount of events per offset is equal to 348532. This im-
plies that the standard deviation is 590. The the upper and lower bound of
the 2σ interval are 349713 and 347351 respectively. The highest and lowest
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Figure 4.9: The amount of entries for every neighbourhood of the fake suns when
the correction factor is taken into account. Quality: 0.0

total number of entries of are 351586 and 344391. These values correspond
with a significance of 5.17σ and 7.01σ.

Figure 4.10: Number of events per
square degree as function of the dis-
tance of the moon for all events and no
quality cuts are applied, offset: 1

Figure 4.11: The χ2 probabilities of the
data for all the offsets of the sun com-
pared to the average background, qual-
ity: 0.0

In figure 4.10 the plot of the data for the off-target source that is offset-
ted by 1 hour is shown. The information about the consistency of the data
with respect to a background average is shown in table 4.5.

The probabilities of the data for all off-target sources with respect to a
background average is shown in figures 4.11, 6.13, 6.14 and 6.15 (the latter
three can be found in the Appendix) with the blue points. These figures
show that the data for the background of the sun is not consistent.

42
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Average background 1109
χ2 49.5

p(X > χ2
20) 0.0002

Fit parameter 1115.8
χ2 47.8

p(X > χ2
19) 0.0002

Table 4.5: The fit pa-
rameter, χ2 statistic and
the probability of that
statistic for the data of
figure 4.10 compared to
an average background
and a fitted flat line.

The data for each off-target measurement is fit-
ted to a flat line. The information of the consis-
tency of the data of 4.10 compared to a fitted line
is also shown in 4.5. For all off-target sources the
probabilities are computed. For no quality cuts
these probabilities are shown as red crosses in fig-
ure 4.11. The probabilities for all off target sources
compared to a flat line fit for the different quality
cuts are shown in figures 6.13, 6.14 and 6.15 with
the red crosses.

Although it is not possible to analyze the deficit
of events in the on-target measurement of the sun
compared to a constant background because of the
systematic errors, it is still instructive to show the
figures and statistics. In figure 4.12 the number of events per square de-
gree as function of the distance to the sun is shown when no quality cuts
are applied. The figures for the other quality cuts can be found in the

Figure 4.12: The number of events per square degree as function of the distance
to the sun. No quality cuts are applied. The red line indicates the average back-
ground of off-source measurements. The dotted lines is 1σ interval.

Appendix (figure 6.16, 6.17 and 6.18). The consistency of the data with a
constant average background are found in 4.6. Also the consistency of the
data with a flat line fit are found in this table.

This analysis shows that the data of the sun is not consistent with a flat
line. With the comparison to a constant average background and a flat line
fit the χ2 statistic is high and the probabilities are low.
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Quality 0.0 1.5 2.0 2.5
χ2 with constant average 39.1 45.0 45.6 27.7

p(X > χ2
20) 0.006 0.001 0.001 0.12

χ2 with flat line fit 48.4 53.3 55.7 28.6
p(X > χ2

19) 0.0002 4.2e-5 1.6e-5 0.07

Table 4.6: chi2 statistic and the probability of this statistic for the data of all the
quality cuts of the on-target measurements of the moon compared to a constant
average background and a flat line fit.

As mentioned in section 3.2.4 the combined statistics result in a better
significance. But first a consistent value for the average should be estab-
lished. In follow-up research the systematic error in the correction could
be discovered. This should allow to measure a consistent background.
When this is established the significance of the deficit of particles in the
neighbourhood of the moon and sun can be determined.
Another research could be to consider more offsets. This analysis could
give information about the systematic error in the correction factor. If the
is determined the correct way then the statistics should be increased. This
is done by waiting for the detector to measure more events. The influence
of time can be studied by taking a subset of the current data.

44
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4.3 Linear event density

Figure 4.13: Event density as function
of the distance of the sun, offset: 7 &
quality: 1.5

Figure 4.14: Event density as function
of the distance of the sun, offset: 11 &
quality: 2.0

In figures 4.10, 4.13 and 4.14 a slope is visible. The latter two are cho-
sen to show that this is not due to quality cuts or offsets but all off-target
measurements are in the Appendix. In the previous section we found that
the data for the off-target measurements is not consistent with a fitted flat
line. However it might follow a linear background.

The approach will be fairly similar to the constant background that was
used in the previous sections. Now a linear regression is done over all the
data points of the off target sources for either the moon or the sun. This
will create a linear model of the average number of events as function of
the distance to the sun. After this we can again calculate the χ2 probabili-
ties for every off-target measurement.
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4.3.1 The Sun

First a linear regression is done over all data of the off-target sources. The
result is plotted in figure 4.15. The parameters of the linear regression

Figure 4.15: Linear regression over the data of all off-target measurements of the
sun, quality: 0.0

are a = 2.77 and b = 1092.56, corresponding to the slope and intercept
respectively. The χ2 statistic is now calculated with:

χ2 =
bins

∑
i

(xi − (ax + b))2

(stdi)2

Where xi and stdi correspond to the value and the standard deviation of a
bin. xi is the location of the center of bin i. The χ2 statistics for the three
figures mentioned at the start of this section are shown in table 4.7. The

Figure χ2 average background χ2 linear background
4.10 49.5 29.4
4.13 43.2 27.0
4.14 33.1 19.7

Table 4.7: χ2 statistic when the data of figure 4.10, 4.13 and 4.14 are compared
against an average background and a linear background.

probabilities increase accordingly as can be seen in figure 4.16. Here the
probability of the linear background is shown with the red crosses. As
comparison, the background average is shown with the blue points. The

46
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Figure 4.16: χ2 probabilities of the off-target data of the sun when compared to an
average background and a linear average with slope 2.77 and intercept 1092.56,
quality: 0.0

same kind of analysis is done for all the other qualities. In table 4.8 all the
calculated fit parameters can be seen.

Quality a b
0.0 2.77 ± 0.6 1092.56 ± 3.7
1.5 2.20 ± 0.5 888.47 ± 2.9
2.0 1.38 ± 0.3 586.33 ± 1.9
2.5 0.65 ± 0.2 165.23 ± 0.9

Table 4.8: Fit parameters of the linear regression of all the data of off-target
sources of the sun

All the corresponding χ2 plots can be found in the Appendix (figure
6.19, 6.20 and 6.21). It is visible that for all the analyzed quality cuts the
consistency of the data with respect to a linear average increases.
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Figure 4.17: χ2 probabilities of the off-target data of the moon when compared to
an average background and a linear average with slope 0.87 and intercept 1538,
quality: 0.0

4.3.2 The moon

It is instructive to make the same analysis for the moon. Table 4.9 shows
the fit parameters of the linear regression.

Quality a b
0.0 0.81 ± 0.6 1537.35 ± 3.4
1.5 0.32 ± 0.5 1269.45 ± 2.8
2.0 -0.07 ± 0.4 856.81 ± 2.1
2.5 -0.06 ± 0.2 250.12 ± 1.0

Table 4.9: Fit parameters of
the linear regression of all the
data of off-target sources of
the moon

The slope parameters is smaller than it is for
the sun, especially for the latter two qualities.
Applying the same method for calculating
the χ2 statistics and comparing them to a χ2

18
distribution the probabilities are computed.
In figure 4.17 the χ2 probabilities are plot-
ted with the red crosses. The other qualities
can be found in the Appendix (6.22, 6.23 and
6.24 The linear fit did not increase the prob-
abilities in the linear regression model 4.17
comparing to 4.7. The difference between the
constant and linear background is not that significant.

4.3.3 Difference moon and sun

The linear behaviour arises from the zenith angle coverage for the moon
and the sun. In figure 4.18 zenith coverage by the sun and moon during the
time of the runs is plotted. The sun has a sharper and higher peak around
65◦, while the moon spent more time at lower zenith angles than the sun.

48
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Figure 4.18: The time the moon and sun spend at a certain angle

This directly affects the number of events as function of distance to these
objects. Figure 4.3 shows the normalized event distribution as function of
the zenith angle. These two figures together (4.18 and 4.3) explain why the
sun has a bigger slope in the number of events per squared degree.

When the sun is at an 65◦zenith angle, the detector measures events
in the range from 55◦to 75◦. If the event distribution would be linear lo-
cally there, it would give flat event density. Meaning E(55◦)− E(65◦) =
E(65◦) − E(75◦), where E(zen) is the event distribution as function of
zenith (figure 4.3).

In figure 4.3 it is visible that the event density is non-linear in certain
zeniths. This can result in either a increasing or decreasing slope in the
event density as function of the distance. The three possible scenario’s for
a certain zenith angle are:

E(α− 10◦)− E(α) = E(α)− E(α + 10◦)
E(α− 10◦)− E(α) > E(α)− E(α + 10◦)
E(α− 10◦)− E(α) < E(α)− E(α + 10◦)

These (in)equality’s correspond with a constant, sloping upward and slop-
ing downward event density for that zenith angle (α) respectively.

To determine whether the final event density as a function of the dis-
tance to the moon or sun has a slope, the slope for every bin of figure 4.3
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is determined with equation: †

(E(α− 10◦)− E(α))− (E(α)− E(α + 10◦)) (4.1)

These values are multiplied per zenith with the corresponding value from
figure 4.18. Using this method figure 4.19 is found. Summing for all

Figure 4.19: The negative slope for for every zenith determined by equation 4.1,
multiplied bin by bin with figure 4.18. Quality: 0.0

zeniths we obtain the values 344 and 1541 for the moon and sun respec-
tively. The value for the sun is a lot higher resulting in bigger slope for
the number of events per square degree as function of the distance to the
sun/moon. For other qualities the results are noted in table 4.10.

Quality Moon Sun
0.0 344 1540
1.5 324 1609
2.0 265 1656
2.5 103 1545

Table 4.10: The sum of
the bins of 4.19, for ev-
ery quality

Although the values do not directly translate in
the slope of the corresponding event density, the
method shows that there is some correlation. Since
the slope of the moons event density is consistently
lower than the suns.
Figure 4.19 shows that the sum first will decrease,
becoming negative. After this it will increase and
become positive at some point. It is obvious that
there is some zenith angle where the sum will be zero. If this happens the

†Note that when α < 10◦ this will cause problems. This is solved by then assuming
α− 10 = 0. The same applies for when α > 80◦
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event density will theoretically be a constant function. For the moon this
zenith angle corresponds with about 83◦. For the sun this zenith angle is
70◦. In this research the effect of implementing a cut-off at these zeniths
is not studied. In a follow-up study it could be determined whether this
impacts the event densities.
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Chapter 5
Conclusion

In this study there are several topics that have been researched. The first
topic is the influence of mispointing on a telescope. With mispointing an
observed object will not only show up somewhere else than expected, the
measurement itself will be distorted and blurred. The three parameters
that characterize the mispointing (section 2.2) all have a different effect on
a final measurement, see section 3.1.1.

The second topic is the analysis for the background signal for the moon
as detected by the ORCA4 detector. This analysis shows that the ORCA4
can not determine a significantly constant average number of events in
the background of the moon. In off-target measurements of the total num-
ber of entries in the neighbourhood of the source a deviation of the 5.38σ
when no quality cuts were applied was found, figure 4.5. This is expected
to be caused by systematic errors in the correction error for the event den-
sities. This causes that the deficit of events around the moon could not
be determined. It is shown that the data of the off-target measurements
for the moon is more consistent with any flat line fit than its is with an
average background (figure 4.7). A possible follow-up research is to find
the systematic error in the correction factor. If this is found the methods of
this research allow the evaluation of the background event density (section
4.2.2).

The same methods are used for the analysis of the background signal
of the sun is carried out. In this analysis it is also found that the ORCA4
can not determine a significantly constant average number of events in
the background of the sun. Here a deviance of 7.01σ is found in the total
number of events around the off-target source, figure 4.9 (section 4.2.2).

The last topic of this study is concerning the increasing number of
events per square degree as function of the distance to the sun. For the
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sun it is found that the data of the off-target measurements of the sun is
more consistent with a linearly increasing background than with an aver-
age background (figure 4.16). With a linear fit on the data of the off-target
measurements of the sun an increase on the number of events per square
degree of 2.77± 0.6 per degree is found. For the moon a similar analysis
on the increase of the number of events per square degree finds 0.81 events
per square degree per degree (section 4.3). This linearity is caused by the
zenith angle coverage by the sun and moon. A future study is suggested
where zenith angle cuts on the data are used to decrease this effect (section
4.3.3).
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Chapter 6
Appendix

6.1 Code for simulation of mispointing

Below is the pseudo-code for simulating the mispointing. I left out the
specifics for the customary functions. The reason for this is to keep it sim-
ple and understandable.

Specify certain time period and time steps
for Every time step do

Calculate the real position of the moon
Calculate the expected position of the moon (mispointed)
Fill a grid with the difference of these positions

end
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6.2 Plots

In this section you can find plots that are referenced in the thesis but were
to redundant to plot in the actual text. This is mostly different quality cuts.

6.2.1 General Plots

Figure 6.1: The event distribution for
the zenith and azimuth for the speci-
fied time, quality cut : 1.5. The binning
is 360 by 180

Figure 6.2: The event distribution for
the zenith and azimuth for the speci-
fied time, quality cut : 2.0. The binning
is 360 by 180

Figure 6.3: The event distribution for
the zenith and azimuth for the speci-
fied time, quality cut : 2.5. The binning
is 360 by 180
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6.2.2 1D-Plots

Plots for the normalized event distributions.

Figure 6.4: The event normalized
event distribution for each zenith
smaller than 90◦, quality: 1.5

Figure 6.5: The event normalized
event distribution for each zenith
smaller than 90◦, quality: 2.0

Figure 6.6: The event normalized
event distribution for each zenith
smaller than 90◦, quality: 2.5
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Plots for the chi2 probabilities of the moon.

Figure 6.7: The χ2 probabilities of the
data for all the offsets of the moon com-
pared to the average background and
to the fitted background, quality: 1.5

Figure 6.8: The χ2 probabilities of the
data for all the offsets of the moon com-
pared to the average background and
to the fitted background, quality: 2.0

Figure 6.9: The χ2 probabilities of the
data for all the offsets of the moon com-
pared to the average background and
to the fitted background, quality: 2.5
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Plots for the different quality cuts when looking at the moon

Figure 6.10: The number of events per
square degree as function of the dis-
tance to the moon. A quality cut of 1.5
is applied. The red line indicates the
average background of off-source mea-
surements. The dotted lines is 1σ inter-
val.

Figure 6.11: The number of events per
square degree as function of the dis-
tance to the moon. A quality cut of 2.0
is applied. The red line indicates the
average background of off-source mea-
surements. The dotted lines is 1σ inter-
val.

Figure 6.12: The number of events per
square degree as function of the dis-
tance to the moon. A quality cut of 2.5
is applied. The red line indicates the
average background of off-source mea-
surements. The dotted lines is 1σ inter-
val.
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Plots for the chi2 probabilities of the sun.

Figure 6.13: The χ2 probabilities of the
data for all the offsets of the sun com-
pared to the average background and
to the fitted background, quality: 1.5

Figure 6.14: The χ2 probabilities of the
data for all the offsets of the sun com-
pared to the average background and
to the fitted background, quality: 2.0

Figure 6.15: The χ2 probabilities of the
data for all the offsets of the sun com-
pared to the average background and
to the fitted background, quality: 2.5
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Plots for the different quality cuts when looking at the sun

Figure 6.16: The number of events per
square degree as function of the dis-
tance to the sun. A quality cut of 1.5
is applied. The red line indicates the
average background of off-source mea-
surements. The dotted lines is 1σ inter-
val.

Figure 6.17: The number of events per
square degree as function of the dis-
tance to the sun. A quality cut of 2.0
is applied. The red line indicates the
average background of off-source mea-
surements. The dotted lines is 1σ inter-
val.

Figure 6.18: The number of events per
square degree as function of the dis-
tance to the sun. A quality cut of 2.5
is applied. The red line indicates the
average background of off-source mea-
surements. The dotted lines is 1σ inter-
val.
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Plots for the chi2 probabilities of the sun when using a linear regression
model.

Figure 6.19: χ2 probabilities of the off-
target data of the sun when compared
to an average background and a linear
average with slope 2.20 and intercept
888.47, quality: 1.5

Figure 6.20: χ2 probabilities of the off-
target data of the sun when compared
to an average background and a linear
average with slope 1.38 and intercept
586.33, quality: 2.0

Figure 6.21: χ2 probabilities of the off-
target data of the sun when compared
to an average background and a linear
average with slope 0.65 and intercept
165.23, quality: 2.5
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Plots for the chi2 probabilities of the moon when using a linear regres-
sion model.

Figure 6.22: χ2 probabilities of the off-
target data of the moon when com-
pared to an average background and a
linear average with slope 0.32 and in-
tercept 1269.45, quality: 1.5

Figure 6.23: χ2 probabilities of the off-
target data of the moon when com-
pared to an average background and a
linear average with slope -0.07 and in-
tercept 856.81, quality: 2.0

Figure 6.24: χ2 probabilities of the off-
target data of the moon when com-
pared to an average background and a
linear average with slope -0.06 and in-
tercept 250.12, quality: 2.5
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Figure 6.25: Plots for the off-target sources of the moon, Quality: 0.0
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Figure 6.26: Plots for the off-target sources of the moon, Quality: 1.5
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Figure 6.27: Plots for the off-target sources of the moon, Quality: 2.0
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Figure 6.28: Plots for the off-target sources of the moon, Quality: 2.5
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Figure 6.29: Plots for the off-target sources of the sun, Quality: 0.0
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Figure 6.30: Plots for the off-target sources of the sun, Quality: 1.5
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Figure 6.31: Plots for the off-target sources of the sun, Quality: 2.0
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Figure 6.32: Plots for the off-target sources of the sun, Quality: 2.5
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