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Abstract

In 2018, Achúcarro et al. presented a class of two-field inflationary
models known as ’shift-symmetric orbital inflation’[1]. These models have
multi-field behaviour but their predictions remain very close to those of
single-field inflation. This thesis will first introduce the topic of inflation,
provide background to the field and build the necessary equations and
concepts starting at the foundations of cosmology. Then it shall further
examine these models and their solutions. Stability will be proven for a

small subset of the class. Furthermore, a few sufficient sets of
requirements for stability will be presented. It will be argued, but not

proven, that stability holds in general.
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Chapter 1
Introduction

The field of cosmology is growing rapidly. While the measurements of the
Cosmic Microwave Background (CMB) are becoming more and more pre-
cise, the models composed to describe it are also becoming increasingly
accurate. The latest data from the Planck collaboration[2] have shown the
nature of the primordial perturbations to be very close to Gaussian and
adiabatic. These observations are most often explained using single field
slow roll inflation, which will be explained in chapter three of this thesis.
Although the results of these models compare nicely to the observations,
single field inflation has proven to be difficult to embed into an ultraviolet
(UV) complete theory[3].

This thesis will focus on the article ‘Shift-Symmetric Orbital Inflation: sin-
gle field or multi-field?’ by Achúcarro et al.[1]. In this article, a class of
two-field inflationary models is presented, known as ’shift-symmetric or-
bital inflation’. Although these models behave strongly multi-field, their
predictions remain remarkably close to those of single-field inflation. This
gives a promising new family of models to explore which might possibly
bring solutions to some of the problems arising when trying to embed sin-
gle field inflation into UV complete theories such as string theory.

The aim of this thesis is to further examine the models described above.
The goal is to prove stability of the solutions of the models. In order to
do so, chapter two will give an introduction to the field of cosmology. It
will present some background on the topic, as well as the fundamental
equations in play. Chapter three will continue from there and describe the
origin and basic principles of inflation, both single- and multi-field, and
introduce the slow roll approximation. Then, after these foundations have
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2 Introduction

been set, chapter four will explain the model and the solutions and give
proof of stability for certain specific cases.
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Chapter 2
Cosmology: the basics

This chapter will provide an introduction to the topics in cosmology nec-
essary to comprehend the background of the mathematical computations
provided in the next chapter. To keep the material accessible, it will start
at the very basic principles of cosmology and build from that. Cosmology
is the study of the origin, nature and development of the universe. It is
based upon a few core views and equations, which will be covered briefly
in this chapter. Although General Relativity does play a large part in the
field of cosmology, it falls outside of the scope of this thesis, and there-
fore all topics will be approached from a classical viewpoint. This chapter
roughly follows the same lines as the book ’Introduction to Cosmology‘ by
Andrew Liddle[4] complemented by ’The Primordial Density Perturbation‘
by David Lyth and Andrew Liddle[5].

The field of cosmology is built around one central idea, the cosmological
priciple: the universe looks the same wherever you are. This view is spec-
ified by saying that the universe is homogeneous and isotropic in all points.
Homogenity implies that there are no preferred locations, every point is
the same. An example would be a constant vector field in the x direction:
it has a preferred direction, but every point is indistinguishable from all
the others. A configuration is called isotropic about a point if there are no
preferred directions: an example would be a vector field pointing radially
outwards. It definitely has a preferred location, the centre, but all direc-
tions are equal. Note that a field that is isotropic in all points, has to be
homogeneous as well.

Observations in astronomy show that all far away objects appear to be
moving away from us, with a speed (~v) proportional to the distance (~r)
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4 Cosmology: the basics

between Earth and the object. This was first realised by George Lemaı̂tre,
and later observationally confirmed by the famous cosmologist, Edwin
Hubble, who composed what was later to be known as Hubble’s law:

~v = H0~r, (2.1)

with H0, Hubble’s constant, the constant of proportionality. Although it is
not an exact law, and especially the peculiar velocities (random motions)
of close by galaxies disturb the relationship, it does describe the average
behaviour of galaxies extremely well.

One might think this law contradicts the cosmological principle. Since all
objects around us move away from us, that must mean that we are in fact
in a preferred location in the universe, most likely the centre. However,
this is solved by proposing that it is not all galaxies moving away from
us through space, but space itself is expanding. In this narrative, it’s not
just us, but any given observer at any point in the universe would see
all objects moving away in all directions. Thus, although expanding, the
universe would still be homogeneous and isotropic and the cosmological
principle is not violated. This only holds with a linear relation between
velocity and distance, any other law would not have worked.

A common way to visualise this is imagining a deflated balloon with a
polka-dot pattern. When inflating the balloon, all dots on the surface move
apart. From each dot, it would seem as if all other dots are moving away
from it. This is true for all dots, hence no one dot is special. The same
principle holds for the universe, although more difficult to visualise due
to the extra dimension.

With the universe expanding, an interesting question arises. If we turn
back time, everything would have to have been much closer together. This
is where the Big Bang Theory comes in: if we trace the history back long
enough everything will come together in one singularity. Calculations us-
ing the known laws of physics yield a point of infinite temperature and
density, at a finite time in the past. Current models can hence not extrapo-
late towards this singularity. A model of the universe starting from such a
beginning is called a Big Bang Cosmology.
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2.1 The Friedmann equation 5

2.1 The Friedmann equation

In order to be able to delve into cosmology any further, one of the most
important cosmological equations has to be mentioned, the Friedmann
equation. This equation describes the expansion of the universe. For a
long time, much of the field of cosmology could be reduced to solving the
Friedmann equations under different assumptions on the material content
of the universe.
Although General Relativity is needed to give a rigorous derivation, the
result is exactly the same as when derived using Newtonian mechanics∗.
This would start with the Newtonian relationship for the force (F) exerted
by an object of mass M on an object of mass m at a distance r:

F =
GMm

r2 , (2.2)

with G Newton’s gravitational constant. Integrating this equation gives a
gravitational potential energy V:

V = −GMm
r

. (2.3)

To derive the Friedmann equation, one requires Newton’s Shell Theorem.
This is a direct corollary from Gauss’ law, and states that a particle in a
spherically-symmetric distribution of matter, say at a radius r from the
centre, will feel no force from the material positioned at radii larger than r,
and the material at smaller radii will exert the exact same force as a point-
mass placed at the centre with mass equal to the total integrated mass over
these smaller radii.

As a start to the derivation, note that due to the cosmological principle,
every point of the universe can be considered the centre. Consider a mass
m at a distance r away from the centre. The surrounding medium is ex-
panding uniformly and has mass density ρ. Now, according to the Shell
Theorem, the mass only feels attraction from the material in radii smaller
than r. This matter has a total mass of M = 4πρr3/3. Thus, the force and
potential (using equations (2.2) and (2.3)), are equal to:

∗This is not entirely true as the Newtonian derivation does not account for the exis-
tence of the cosmological constant, an extra term that will be discussed further on in this
thesis.
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6 Cosmology: the basics

F =
GMm

r2 =
4πGρrm

3
, (2.4)

V = −GMm
r

= −4πGρr2m
3

. (2.5)

To derive an equation describing the behaviour of the separation r of the
particle, energy conservation can be used: for a given particle, the sum of
the kinetic energy T and potential energy V remains constant. Defining U
as the total energy, one finds the following differential equation:

U = T + V =
1
2

m .r2 − 4π

3
Gρr2m, (2.6)

where the dot signifies a derivative to time.

The distance coordinate in the above equation, r, poses some problems.
Since the universe is expanding, it will change over time for two given
observers. For this reason, cosmologists often use a different set of coor-
dinates called comoving coordinates (as opposed to the physical coordinates
used above). These coordinates are defined as comoving with the expan-
sion of the universe:

~r = a(t)~x. (2.7)

where a is a function known as the scale factor. The homogeneity of space
ensures that a, is indeed a function of time alone. It measures the univer-
sal expansion rate. If between two times the value of the scale factor has
doubled, this implies the universe has expanded by a factor two, i.e. ev-
erything is twice as far apart. Also note that, by definition of comoving
coordinates, .x = 0, as the distance between the chosen objects is fixed in
comoving coordinates.

Substituting physical coordinates with comoving coordinates in equation
(2.6) gives:

U =
1
2

m .a2x2 − 4π

3
Gρa2x2m. (2.8)

The Friedmann equation in its most common form can be found by multi-
plying each side by 2/ma2x2 and rearranging the terms:( .a

a

)2

=
8πG

3
ρ− kc2

a2 , (2.9)
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2.1 The Friedmann equation 7

where kc2 = −2U/mx2 is a constant independent of position and time.
Here c denotes the speed of light and k is a constant related to the curva-
ture of space. For an expanding universe, the value of k is unique, as will
be discussed further ahead in this chapter.

It is interesting to now look back at equation (2.1), stating that the recession
velocity of far away objects is proportional to their distances. Indeed, since
the velocity of recession is in the same direction as~r, we can write:

~v =
|
.
~r|
|~r|~r =

.a
a
~r, (2.10)

where the last step used ~r = a~x and the fact that these objecta are at a
fixed comoving distance. Thus, comparing this to Hubble’s law (2.1), we
deduce:

H =
.a
a

. (2.11)

The name Hubble’s constant is a bit confusing here, since this is not in fact
a constant value. Often, cosmologists denote the current value of Hubble’s
constant with H0, and call H = H(t) Hubble’s parameter, which indeed
varies over time.

Sometimes the final term in the Friedmann equation (2.9) is also written
as k/a2, omitting the factor c2. This is a common practice in some fields of
physics, such as cosmology and particle physics: to use so-called natural
units in which c = 1. In these units, one can use mass density ρ and energy
density ε interchangably (since mass and energy are related by E = mc2).
Common practice is to omit all factors of c and divide or multiply the
result with the factors of c needed to recover the correct units. In the same
manner, often the constant h̄ will be set to 1. This thesis will uphold these
practices, unless it is insightful to make the c or h̄ dependency explicit, to
follow the article that will be discussed in further chapters. That paper

also chooses to set the reduced Planck mass, Mpl =
√

h̄c
8πG equal to one.

The first few chapters of this thesis will not follow this convention, in an
attempt to prevent confusion in explanations, but in the fourth chapter this
practice will also be upheld. With these points, the Friedmann equation
becomes:

H2 =
M2

pl

3
ρ− k

a2 . (2.12)
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8 Cosmology: the basics

2.2 The fluid equation

Before the value of k in the Friedmann equation is discussed, it is impor-
tant to understand the behaviour of the mass density ρ. The most im-
portant equation describing the evolution of ρ in the universe is the fluid
equation. This equation gives a relationship between the mass density ρ
of a medium and its pressure.

For the derivation of the fluid equation, look at an expanding volume V∗

with unit comoving radius and apply the first law of thermodynamics:

dE + pdV = TdS, (2.13)

where T denotes the temperature and S the entropy. Assuming the expan-
sion is reversible means the entropy will remain constant, dS = 0, thus
simplifying equation (2.13). Since the volume has comoving radius 1, the
physical radius will be equal to a. We can then set the energy E equal to,
using E = mc2:

E =
4π

3
a3ρc2. (2.14)

Then, using the chain rule, the change in energy becomes:

dE
dt

= 4πa2ρc2 da
dt

+
4π

3
a3 dρ

dt
c2, (2.15)

while the change in volume is equal to:

dV
dt

= 4πa2 da
dt

. (2.16)

Plugging these both into equation (2.13) and rearranging terms (using
dS = 0) gives the fluid equation:

.
ρ + 3

.a
a

(
ρ +

p
c2

)
= 0. (2.17)

The fluid equation shows that the change in density is dependent on two
factors. The first factor is the to be expected decrease in density due to the
expansion of the volume: the same amount of mass has to be distributed
over a larger volume, resulting in a lower density. This corresponds with
the first factor in brackets. The second factor changing the density equates

∗Note that the V for Volume is a different V than the one previously used for potential
energy.
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2.3 The acceleration equation 9

the loss of energy created by the loss of pressure due to the expansion of
the universe. This energy is not lost, due to conservation of energy, but
transferred to the gravitational potential energy.

2.3 The acceleration equation

With the Friedmann equation (2.9) and the fluid equation (2.17) a third
equation can be derived, the acceleration equation, which describes the
acceleration of the scale factor. The derivation can be done in three steps.
The first step consists of differentiating the Friedmann equation with re-
spect to time, to obtain:

2
.a
a

a..a− .a2

a2 =
8πG

3
.
ρ + 2

kc2 .a
a3 . (2.18)

Note that a factor 2 .a/a vanishes from both sides. Now, .
ρ can be substi-

tuted using the fluid equation. This gives the following:

..a
a
−
( .a

a

)2

= −4πG
(

ρ +
p
c2

)
+

kc2

a2 . (2.19)

By adding the Friedmann equation, the following result is obtained:
..a
a
= −4πG

3

(
ρ +

3p
c2

)
. (2.20)

This equation shows that if the material has positive pressure, it would
decelerate the expansion.

2.4 Curvature of space

In cosmology, one usually assumes the density and pressure are uniquely
associated to one another: p = p(ρ). This relationship is known as an equa-
tion of state, which is different for different types of matter and radiation.
Once this relationship is known, a cosmologist can solve the Fluid equa-
tion (2.17), and with that the Friedmann equation(2.9), to capture the evo-
lution of the universe. In order to do so, first some assumption about the
constant k must be made. In the Newtonian derivation of the Friedmann
equation (2.9), the final term in the equation (−k/a2) is introduced as a
measure of the energy per particle. General relativity gives a different in-
terpretation for this final term however: it measures the curvature of space.

9



10 Cosmology: the basics

Again, the topic of General Relativity lies beyond the scope and level of
this thesis, but the key concepts of curvature of space will be explained
briefly.

As written above, the constant k measures the curvature of space. Al-
though homogeneity and isometry must apply, there are still three possi-
ble geometries for the universe. k can be either zero, positive or negative,
corresponding with a flat, elliptic or hyperbolic geometry respectively.

For most, the flat or Euclidean geometry is easiest to visualise. It is based
upon a set of five axioms:

1. A straight line may be drawn between any two points.
2. Any finite straight line may be extended indefinitely.
3. A circle may be drawn with any given point as centre and any given radius.
4. All right angles are equal.
5. If two straight lines in a plane are met by another line, and if the sum of the
internal angles on one side is less than two right angles, then the straight lines
will meet if extended sufficiently on the side on which the sum of the angles is less
than two right angles. [6]

Using these five base axioms, one can prove that the angles of a triangle
add up to 180◦ and that the circumference of a circle of radius r adds up to
2πr exactly.
If the geometry of the universe were indeed flat, homogeneity would state
that the universe must be infinite. If not, there would be an edge, which
would contradict the notion that all locations are the same.

For a long time, it was believed that the fifth of Euclid’s axioms could
be proven from the former four. When in the early nineteenth century
people started to accept that this was in fact not the case, the field of
non-Euclidean geometry was born, a field that lays an important foun-
dation for Einstein’s theory of General Relativity, due to the possibilities
of curved space. A common example of non Euclidean geometry is elliptic
geometry. A universe with an elliptic geometry is called a closed universe.
A two dimensional closed universe would be most easy to envision as a
great sphere, for example the surface of the Earth. Visualising a three di-
mensional closed space is nearly impossible.
One can see that homogeneity and isotropy do indeed hold for this type
of universe: all points look the same, so do all directions. Contrary to the
flat universe discussed before, an elliptic universe does not have an edge

10



2.4 Curvature of space 11

and would be finite.
However, a triangle drawn on a sphere does not have angles that add up
to 180◦. It is even possible to draw a triangle with three 90◦ angles. Also,
for a given circle with radius r, the circumference is less than 2πr.
Note that when drawing a triangle or circle much smaller than the sphere,
the Euclidean laws provide a good approximation: the deviation from
these laws becomes very small. Thus, if one draws a triangle on the floor,
the angles would add up to 180◦, even if the surface of the Earth is a
sphere.

The third and final option is that of a hyperbolic geometry, where k is
negative. Although less known than an elliptic geometry, it is normally
represented by a saddle-like surface. Isotropy and homogeneity are less
easy to see for oneself on this type of surface, but can be proven to hold.
A universe with this type of geometry is often called an open universe. It is
in many ways the opposite of a closed one: The angles of a triangle sum
up to less than 180◦ and the circumference of a circle is larger than 2πr. In
contrast to to the closed universe, parallel lines never meet. This implies
that, just like with the flat universe, the open universe has to be infinite in
extent, because any edge would violate homogeneity.

Curvature Geometry Angles of
triangle

Circumference
of circle

Type of
universe

k > 0 Elliptic > 180◦ c < 2πr Closed

k = 0 Euclidean = 180◦ c = 2πr Flat

k < 0 Hyperbolic < 180◦ c > 2πr Open

Table 2.1: Summary of the main characteristics of different types of curvature of
space.

Looking back at the Friedmann equation (2.9), one can see that in order to
have a flat geometry (k = 0), one requires a specific value of the density.
This value is called the critical density ρc, given by :

ρc(t) =
3H2

8πG
. (2.21)

11



12 Cosmology: the basics

Figure 2.1: Visualisation of the three possible curvatures of space. Originally
posted on [7].

Although the critical density does not need to be the actual value of the
density, since the universe need not be flat, it does provide a natural scale
against which to measure any densities. It makes sense to define a density
parameter Ω:

Ω ≡ ρ

ρc
. (2.22)

With this definition, the Friedmann equation can be rewritten to find:

Ω(t)− 1 =
k

a(t)2H(t)2 . (2.23)

This gives rise to an interesting insight. For Ω = 1, the value of k must be
equal to 0. However, since k is a fixed constant, that means the right hand
side will remain zero, and thus the value of Ω must be equal to 1 forever.
This is known as a critical density universe.

2.5 Solutions to the Friedmann equation

It is useful to compare a few different examples of using the fluid and
Friedmann equations to solve for H. In order to do so, an equation of state
has to be determined. Two possibilities will be discussed: a matter only
and a radiation only type universe. For simplicity, a flat geometry will be
assumed, corresponding with k = 0.

12



2.5 Solutions to the Friedmann equation 13

For cosmologists, matter refers to all types of material that exert negligi-
ble pressure, so p = 0, as opposed to relativistic matter which does exert
pressure. A matter-only universe is the textbook example for this topic,
as it is the simplest assumption one can make. In fact, once the universe
has cooled down after the Big Bang, matter only provides quite a good
approximation, since most atoms seldom interact since they are well sep-
arated. It is interesting to include a short overview of the thermal history
of the universe [8].

• Big Bang Nucleosynthesis (BBN), at t ∼ 102s. The temperature drops
below MeV∗ values. Protons and neutrons combine to form nuclei
of light elements (such as hydrogen, helium, lithium, ...). The the-
oretical predictions on the distribution of elements are in excellent
agreement with the observations. There is no direct observational
evidence for anything that happened before BBN.
• Matter-Radiation equality, at t ∼ 104. Where at high temperatures

radiation dominated the universe, around this time cool matter comes
to dominate.
• Recombination, at t ∼ 105yr, or T ∼ 0.1 eV. Since the tempera-

ture has now dropped below the binding energy, neutral atoms are
formed. This increases the free path lenght of photons, turning the
universe transparent instead of opaque. Photons from this era are
able to reach us unscattered. These photons form the Cosmic Mi-
crowave Background (CMB).
• Formation of gravitational bound states/galaxies, at t ∼ 109yr or

T ∼ 10−3 eV.
• Present day, with T ≡ 2.73K∼ 10−4 eV.

For a matter-only universe, the fluid equation (2.17) takes a simple form:

.
ρ− 3

.a
a

ρ = 0 (2.24)

This is a separable differential equation with a simple solution:

ρ =
ρ0a3

0
a3 , (2.25)

where a0 and ρ0 are the values of a and ρ at time t0. Often, a0 = 1 is chosen
for t0 as the current time.

∗For distributions of particles, often temperatures are given in eV. It can be converted
to Kelvin using 〈E〉 = kBT. One eV corresponds to about 11,605 Kelvin.

13



14 Cosmology: the basics

This equation means that the density of the universe falls off along with
its volume. No matter can appear, nor can it disappear. Plugging this
equation for ρ into the Friedmann equation as in equation (2.12) with k = 0
gives:

.a2 =
8πGρ0a3

0
3

1
a

. (2.26)

Again, this is a separable equation, so it can be integrated and solved to
find :

a(t) = a0

(
t
t0

)2/3

; ρ(t) =
ρ0a3

0
a3 =

ρ0t2
0

t2 . (2.27)

Thus, the universe will keep expanding forever. It is however interesting
to look at the rate of expansion H:

H ≡
.a
a
=

2
3t

, (2.28)

which decreases with time.

This calculation can be repeated analogously for a radiation-only universe.
One can prove, using the standard theory of radiation, that the kinetic
energy of particle moving at highly relativistic speeds, such as photons,
leads to a pressure force equal to p = ρc2/3. This gives the following form
of the fluid equation, very similar to the one solved before:

.
ρ− 4

.a
a

ρ = 0 (2.29)

This equation has a solution similar to the one seen before:

ρ =
ρ0a4

0
a4 . (2.30)

This is different than with matter only and it is an interesting question to
see where this proportionality comes from. Just as with ’normal’ matter,
the density is expected to scale with the volume, providing a factor 1

a3 .
However, for radiation there is another important effect: the wavelength
of the light is being stretched by another factor of a. This is because the en-
ergy of radiation is proportional to its wavelength (E = h

λ , and the energy
is again proportional to the mass E = mc2.

14



2.6 The cosmological constant 15

Again solving the Friedmann equation with the newly found solution for
density gives the following final result:

a(t) = a0

(
t
t0

)1/2

; ρ(t) =
ρ0a4

0
a4 =

ρ0t2
0

t2 . (2.31)

Here, the universe expands more slowly than in a matter-only universe.
The pressure decelerates the expansion, just as the acceleration equation
(2.20) predicted.

There are many different possible equations of state. The above computa-
tions could be carried out with all kinds of mixtures of radiation and mat-
ter, or different states all together. The results will be much more messy,
but the procedure will remain the same. The equations as given do pro-
vide good approximations for matter and radiation dominated universes,
respectively.

2.6 The cosmological constant

By studying distant supernovae different research groups have made con-
vincing measurements of the rate of acceleration of the universe. They
found the universe to be accelerating. Neither a matter only universe, ra-
diation only nor a mixture of the two is capable of satisfying this condition,
as can be seen directly from the acceleration equation (2.20). However, this
simple cosmological model can be extended to account for the acceleration
by introducing the cosmological constant Λ.

Einstein originally introduced the concept of the cosmological constant
in 1917, when first introducing his theory of general relativity. He be-
lieved the universe to be static, which his equations did not permit without
adding Λ. When however Hubble found the universe to be expanding, he
abandoned the concept, calling it ’his greatest blunder’. Around the 1990s,
the concept was revisited as a means to explain the acceleration of the uni-
verse.

Introducing the cosmological constant adds an extra factor to the Fried-
mann equation (2.9):

H2 =
8πG

3
ρ− k

a2 +
Λ
3

, (2.32)

15



16 Cosmology: the basics

where Λ has units [time]−2. Sometimes it is written with an explicit added
factor c2, to transform the units to [length]−2. Although Λ can be either
positive or negative, in our present universe it is most often considered to
be positive.

The original thought behind adding Λ was to finetune Λ and ρ in such a
way that H(t) would be forced equal to 0, thus having a static universe.
This would however give a very unstable equilibrium, sensitive to very
small perturbations, thus proving very unlikely in practice. As stated be-
fore, in current time the constant is more often used in a different context.
To better see this, consider the acceleration equation (2.20) with an added
term for Λ:

..a
a
= −4πG

3

(
ρ +

3p
c2

)
+

Λ
3

. (2.33)

Although the pressure p and density ρ negatively influence the accelera-
tion, the cosmological constant gives a positive contribution. A large value
of Λ would be able to give a positive value for ..a, providing an explanation
for the observed acceleration of the universe.

One can define a density parameter for the cosmological constant as:

ΩΛ =
Λ

3H2 . (2.34)

Note that since H varies with time, ΩΛ is in fact not a constant (while Λ
itself is). Using this density parameter, the Friedmann equation as given
in equation (2.23) can be rewritten as:

Ω + ΩΛ − 1 =
k

a2H2 . (2.35)

Thus, the condition for a flat universe (k = 0) becomes Ω + ΩΛ = 1, often
written as Ωtot = 1.
Λ is often seen as the energy density of ‘empty’ space. One can interpret
Λ as a fluid with density ρΛ and pressure pΛ. By defining:

ρΛ ≡
Λ

8πG
, (2.36)

the Friedmann equation (2.32) would transform into:

H2 =
8πG

3
(ρ + ρΛ)−

k
a2 . (2.37)

16



2.6 The cosmological constant 17

With this definition of ρΛ, one finds ΩΛ ≡ ρΛ/ρc, where ρc is the critical
density as described before. Note as well that with this definition, ρΛ is a
constant. Now, revisiting the fluid equation for Λ gives:

.
ρΛ + 3

.a
a

(
ρΛ +

p−Λ
c2

)
= 0. (2.38)

Since ρΛ is constant, this implies pΛ = −ρΛc2. The effective pressure of the
cosmological constant is negative. Thus, while the universe is expanding,
work is done on the cosmological constant fluid. This allows the constant
density in a universe with increasing volume.
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Chapter 3
Inflation

In all the topics discussed in the previous chapter, some paradoxes arise.
This chapter will describe these and offer the best-established solution
to these paradoxes, inflation. Although several other possible solutions
exist, inflation is by far the most succesful. After a short introduction
to the topic, some more in depth aspects necessary will be discussed as
well. Much of this chapter again draws from the books ’Introduction to
Cosmology‘ by Andrew Liddle[4] and ’The Primordial Density Perturbation‘
by David Lyth and Andrew Liddle[5]. Besides that, Christopher Hirata
[9] and Daniel Baumanns[10] lecture series and the article by Andrew
Liddle[11] have been consulted extensively.

3.1 Problems with the Big Bang Theory

One of the problems that arise when discussing the Big Bang is known as
the flatness problem, which states that the Big Bang Theory is only valid for
very specific types of universe. To discuss this problem, the first step is
to add absolute values the Friedmann equation in the final form from the
previous chapter (2.23), to find:

|Ω(t)− 1| = |k|
a2H2 . (3.1)

The previous chapter showed that if Ω is equal to 1, it will remain so for
all time. Using the examples from last chapter, the behaviour of Ω when
it is unequal to zero can be determined. This gives for a matter dominated
universe a2H2 ∝ t−2/3 and thus |Ω− 1| ∝ t2/3, while for a radiation dom-
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20 Inflation

inated universe one finds a2H2 ∝ t−1 and thus |Ω− 1| ∝ t.

Note that in both cases, the absolute value of the difference between Ω and
1 increases over time. The fixed point Ω = 1 is unstable. Although these
solutions were derived under the assumption k = 0 and lose validity when
the curvature term becomes more influential, they can help to illustrate the
flatness problem. Take this (quite conservative) estimate of the value of Ω
present day (t0 ' 4 × 1017s) : 0.5 ≤ Ω ≤ 1.5. To reach this value of Ω
today, one can, using the approximations above, find limits for the value
of Ω around the time of nucleosynthesis∗ (t ' 1s):

|Ω− 1| ≤ 1 · 10−18.

A solution to this problem is to assume the universe does indeed have a
flat geometry and Ω is equal to 1. This implies that the Big Bang Theory
would only be valid for a flat universe. However, besides this problem,
there is no other reason to prefer this choice of geometry. One would pre-
fer the theory to be compatible with other types of geometry.

Another perhaps even more important problem with the Big Bang model
is the horizon problem. This problem arises from our observations of the
Cosmic Microwave Background (CMB). A very prominent fact of the mi-
crowave background is that the perturbations are very small; the radiation
field as seen from Earth is almost completely isotropic at the same temper-
ature of 2.725 K†.
The best explanation for two regions being at the same temperature is
for them to (at some point) have been in thermal equilibrium: able to ex-
change heat, interact and move towards equilibrium. However, this can
not be the case. If we take two opposite points in the sky, the CMB radi-
ation will have been travelling towards us since shortly after the dawn of
the universe. Since it has just reached us, it is impossible to have inter-
acted with the area on the other side, the light of which also just got to us.
The distance light could have travelled before the CMB was emitted is also
much smaller than the current scale of horizon. One can calculate that all
regions separated more than two degrees in the night sky are causally dis-
connected. The Big Bang Theory does not offer any explanation for why
the universe appears this homogeneous.

∗The period in which the first atoms were formed out of elementary particles
†The actual measured radiation field forms a dipole. However, after compensating

the measurements for the movement of our galaxy, the result becomes nearly isotropic
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3.2 Inflation 21

However, irregularities in the CMB might pose an even larger problem.
Results from the COBE satellite show irregularities spanning all accesible
angular scales, from a few degrees upwards. These perturbations are on
scales too large to have been created between the Big Bang and the time
the CMB was emitted. Hence, these perturbations must have been part of
the initial conditions. Here, the Big Bang Theory does not allow a predic-
tive theory for the origin of structure. Although this is not a requirement
for a theory, it would be a disappointment if the Big Bang theory failed to
deliver that. Here, inflation will be presented as a solution. After a short
introduction and explanation, both problems will be revisited and solved
using inflation.

3.2 Inflation

Inflation is the period in the evolution of the universe in which the scale
factor was accelerating: ..a > 0. This would only be for a very short period
at the earliest times in the evolution of the universe, but does already have
rather large implications. For the acceleration equation (2.20), it implies
ρc2 + 3p < 0. With density always being positive, this gives the following
constraint for p:

p < −ρc2

3
. (3.2)

Although a negative pressure might sound problematic, the field of parti-
cle physics has come up with several explanations on how this might have
come to be.[12]

However, inflation is most often looked at from a universe with a cos-
mological constant Λ, as seen at the end of the previous chapter. There,
the cosmological constant was seen as a fluid with p = −ρc2, satisfying
the constraint above. With Λ, the Friedmann equation took the following
form:

H2 =
8πG

3
ρ− k

a2 +
Λ
3

. (2.32, revisited)

This equation is greatly simplified when considering the expansion of the
universe, since then the two first terms on the right hand side quickly drop
off, while the last term remains constant. This would imply H is a con-
stant. Using the definition of H, one finds:
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22 Inflation

.a = Ha. (3.3)

This can be solved to find:

a(t) = exp (Ht) . (3.4)

Thus, if the cosmological constant is included, the expansion of the uni-
verse becomes exponential, as opposed to polynomial growth in the mod-
els discussed before.

3.3 The problems revised

With the new theory of inflation, the problems introduced in the para-
graphs before can be revisited. First, recall the flatness problem. The orig-
inal problem was that in the right hand side of equation (3.1), aH always
decreases with time and thus forces Ω towards the value 1 in the distant
past. This changes when one looks at inflation, since:

..a > 0⇒ d
dt

(
.a) > 0 ⇒ d

dt
(aH) > 0. (3.5)

Hence the condition for inflation actually forces the value of Ωtot towards
1 over time. Considering the case of perfect exponential inflation, as seen
above, the effect is especially visible:

|Ωtot(t)− 1| ∝ exp (−2Ht) . (3.6)

If the period of inflation is long enough, it can even drive Ω so close to 1,
that all time since in which Ωtot drifted away from 1 is insufficient to have
significant impact on our current day observations. Thus, if it lasts long
enough, inflation predicts a universe that is at least very close to spatial
flatness. Current observations seem to support this condition.

The horizon problem can also be revisited with the new theory of infla-
tion. We can make a rough estimate of the size of the observable part of
the universe, the Hubble length, by taking cH−1, since H−1 gives a very
rough estimate of the age of the universe. While the universe itself rapidly
expands, this length stays about equal. So, a small bit of the universe can
during inflation spread out become much larger than the observable uni-
verse. Thus, the microwaves coming from opposite ends of the sky can
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3.4 Scalar Field theory 23

actually originate from the same thermal equilibrium.

It is useful to mention that inflation lasted up until about 10−33 seconds
after the Big Bang. Because timescales prove difficult, cosmologists prefer
measuring time in efolds: the interval in which the universe has expanded
a factor e. The number of efolds is often indicated with the letter N.

3.4 Scalar Field theory

Generally, it is supposed that the pressure and density of the cosmologi-
cal constant are dominated by scalar fields during inflation. Here at first
single-field inflation will be discussed, where one assumes only one field, φ
varies. φ is more generally called the inflaton. In order to be able to further
analyse the inflaton, some aspects of field theory need to be discussed. The
following section will heavily draw from [5], [13] and [14]. Some knowl-
edge of classical field theory will be assumed.

When switching to Lagrangian field theory, one replaces the original La-
grangian L∗ as a function of generalised coordinates by the so called La-
grangian density L, a function of the fields in the system, their derivatives
and space and time coordinates. L is Lorentz invariant and has dimen-
sions [energy]4†. Now, the action S is given as:

S =
∫

d4xL.‡ (3.7)

For now, a flat spacetime is assumed, but when considering general rela-
tivity one would have to include a factor

√−g (g being the determinant of
the metric gµν to compensate for the curvature of spacetime).

There are a few restraints on the form of the Lagrangian and the depen-
dence on the coordinates and their derivatives. Besides Lorentz invari-
ance, one would like the theory to have a particle interpretation after quan-
tization. Furthermore, one would like the system to have equations that

∗The Lagrangian is a function determining the evolution of a given system. It is most
often defined as the difference between the kinetic and potential energies, L = T −V.
†This only holds when the convention c = h̄ = 1 is used.
‡d4 because we are working in 4-dimensional spacetime, instead of ‘normal’ 3-

dimensional space.
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24 Inflation

can be solved with physically reasonable boudary conditions in the classi-
cal limit. For the single scalar field φ, the simplest form of the Lagrangian
density satisfying all these requirements is:

L =
1
2

∂µφ∂ν −V (φ) . (3.8)

The function V (φ) here is in fact a potential density, but is generally called
the scalar field potential, and the first term is called the kinetic term, refer-
ring to the classical analogue.

For this theory, the action principle, stating that δS = 0, meaning that the
change in S under small perturbations of the coordinates, δS vanishes, still
holds. Thus one has:

δS =
∫

d4x

(
∂L
∂φ

δφ +
∂L

∂
(
∂µφ

)δ
(
∂µφ

))
= 0. (3.9)

This equation can be expanded using integration by parts to find:

δS =
∫

d4x

(
∂L
∂φ
− ∂

∂xµ

[
∂L

∂
(
∂µφ

)]) δφ +
∫

d4x
∂

∂xµ

(
∂L

∂
(
∂µφ

)δφ

)
= 0.

(3.10)
The last term in this equation is just a number, which, according to the
action principle, has to vanish. This can be ensured by posing restrictions
on φ, demanding that it goes to zero ‘sufficiently fast’ at the boundaries
(infinity). The remaining first term can then be written as:

∂L
∂φ
− ∂

∂xµ

(
∂L

∂
(
∂µφ

)) = 0. (3.11)

This generalisation of the Euler-Lagrange equations is more generally known
as the field equation. Plugging in L from equation (3.8), this gives:

..
φ−∇2φ + V′ (φ) = 0. (3.12)

Here, the prime is used to indicate a derivative to φ. If the field is homo-
geneous, ∇φ is equal to zero and the equation becomes:

..
φ + V′ (φ) = 0. (3.13)

For a homogeneous field, the density and pressure are given by the fol-
lowing equations ([5], equation 13.34):
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3.4 Scalar Field theory 25

ρ =
1
2

.
φ2 + V (φ) , P =

1
2

.
φ2 −V (φ) . (3.14)

The first term in both these equations can be considered some sort of po-
tential energy, while the second can be seen as a kinetic term. As men-
tioned before, this is when considering a flat spacetime. The action princi-
ple will still hold in curved spacetime, but the field equation would change
slightly. With a Robertson-Walker metric∗ for example, the scalar field
metric becomes:

..
φ− a−2∇2φ + 3H

.
φ + V′ (φ) = 0. (3.15)

Again, for a homogeneous field, this becomes:

..
φ + 3H

.
φ + V′ (φ) = 0. (3.16)

Comparing this to a mechanical analogy, the term 3H
.
φ would correspond

to friction. It is therefore known as the Hubble friction. Note that one would
find the same equation by plugging the equations for p and ρ given in
(3.14) into the fluid equation (2.17). Using just the equation given for ρ
(3.14), the Friedmann equation can be rewritten as:

H2 =
8πG

3

(
1
2

.
φ2 + V (φ)

)
. (3.17)

Here, the curvature term has been ignored (k = 0), since when inflation
starts, this quickly becomes negligible. Differentiating this equation and
using the field equation (3.16) to substitute for some terms, we find the
following equation, often known as the second Friedmann equation:

2
.

H = −8πG
.
φ2. (3.18)

For inflation to be possible means that the potential part dominates over
the kinetic part. After all, we have:

..a > 0⇐⇒ p < −ρ

3
⇐⇒

.
φ2 < V (φ) . (3.19)

In order for the potential to dominate, it should be ‘flat enough’, so that
the scalar field would be expected to ‘roll slowly’ [11]. This lead to the

∗ds2 = −dt2 + a2(t)
[

dr2

1−kr2 + r2 (dθ2 + sin2 θdφ2)] = −dt2 + a2(t)
(
dx2 + dy2 + dz2),

the second equation only holding if k = 0.
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26 Inflation

strategy most commonly used for solving the above equations, the slow-
roll approximation (SRA). Summarized, the SRA assumes that inflation is
almost exponential:

εH =
|

.
H|
H2 � 1. (3.20)

Here, εH is one form of the first slow-roll parameter, which will be discussed
in a bit in its other form. This assumption of near exponentiality implies
that a term can be neglected in each equation, leaving a much simpler set
of equations. By ignoring the

.
φ term in the Friedmann equation (3.17) and

the
..
φ term in the field equation; (3.16), these equations become, respec-

tively

H2 ' 8πG
3

V, (3.21)

3H
.
φ ' −V′. (3.22)

To ensure these approximations are allowed, the slow-roll parameters can be
defined:

εV (φ) =
1

16πG

(
V′

V

)2

; ηV (φ) =
1

8πG
V′′

V
. (3.23)

The first slow-roll parameter, ε, measures the slope of the potential, while
the second parameter, η, measures curvature. With these definitions, nec-
essary conditions for the SRA to hold are:

εV � 1 ; |ηV | � 1. (3.24)

These conditions are necessary, but not yet sufficient for the approxima-
tion to be allowed. Liddle et al. offer a more elaborate version of the SRA,
based on the Hamilton-Jacobi formulation of inflation, which is both suf-
ficient and necessary [15]. In this paper it is also proven that the general
solution to the equations has an attractor property. This property allows
for the elimination of one parameter, necessary for the use of the SRA,
since after using the approximation the order of the system of equations is
reduced by one.
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3.5 Multi-field inflation 27

3.5 Multi-field inflation

So far, only one field has been allowed to vary. Although single-field infla-
tion gives some promising results, it is found to be difficult to incorporate
in an UV complete theory such as string theory [3]. It is therefore interest-
ing to study the case where not one, but multiple fields are involved. [5]
and [16] have been extensively consulted for this section.

Let ~φ be a vector of n components (n finite). Then, just as in the single
field case, the first and second Friedmann equations (3.17) and (3.18) can
be written as:

H2 =
8πG

3

(
1
2
|

.
~φ2|+ V (φ)

)
(3.25)

and:

2
.

H = −8πG|
.
~φ2|. (3.26)

For the multi-field case as well, the SRA can be applied. Again the as-
sumption is made that the inflation is nearly exponential:

εH =
−

.
H

H2 � 1, ηH =
.

εH

HεH
� 1. (3.27)

Now, the trick is to again use an approximation to form a set of equations.
For the rest of this section, we will focus on two field inflation n = 2.

To find the equations, one first has to use the Frenet-Serret formalism to
describe the turning trajectories:

~T =

.
~φ

|
.
~φ|

,
.
~T = −ω~N,

.
~N = ω~T, (3.28)

Here ~T is a unit vector tangent to the trajectory, ~N is a unit vector normal
to the trajectory and ω is the trajectory’s rate of turning. ~T and ~N are or-
thonormal, ie ~T · ~T = ~N · ~N = 1, ~T · ~N = 0.

The Euler-Lagrange equations for ~φ are formed by equations (3.25), (3.26)
and the following equation:

..
~φ + 3H

.
~φ +∇V = 0. (3.29)
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28 Inflation

Now, defining VT = ~T · ∇V and VN = ~N · ∇V, one can project equation
(3.29) onto the vectors tangent and normal to the trajectory. This will lead
to two different equations, which will function as the two SRA equations
from the previous section. For the first equation, we will project onto the
tangent vector:

0 = ~T
[ ..
~φ + 3H

.
~φ +∇V

]
=

..
ϕ + 3H .

ϕ + VT, (3.30)

where ϕ is defined as ϕ =
∫
|

.
~φ|dt. Note that we consider the displacement

along the trajectory, so .
ϕ = |

.
~φ| = ~T ·

.
~φ, and that using integration by parts,

one finds (since
.
~T ·

.
~φ = 0):

~T ·
..
~φ =

(
~T ·

.
~φ
)•
−

.
~T ·

.
~φ =

..
ϕ. (3.31)

So, equation (3.30) gives the first equation:

..
ϕ + 3H .

ϕ + VT = 0. (3.32)

The second equation is derived by projecting on the vector normal to the
trajectory:

0 = ~N ·
[ ..
~φ + 3H

.
~φ +∇V

]
. (3.33)

Here, we again use integration by parts to find:

~N ·
..
~φ =

(
~N ·

.
~φ
)•
−

.
~N ·

.
~φ = −ω~T ·

.
~φ = −ω

.
ϕ. (3.34)

This gives, using the fact that ~N
.
~φ = 0:

ω
.
ϕ = VN. (3.35)

This equation, together with equation (3.32), forms the two-field equiva-
lent of equations (3.21) and (3.22).
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Chapter 4
Mathematical solutions

With the physical foundations laid out, we can dive into the mathematical
reasoning. This chapter will be largely based on Achúcarro et al.[1]. Re-
member that from this chapter on, the value of the reduced Planck mass

Mpl =
√

h̄c
8πG will be set equal to 1.

The original paper investigates potentials of the form:

V = 3H(θ)2 − 2
H2

θ

f (ρ)
, (4.1)

where H = H(θ) is a function of θ alone and f = f (ρ) > 0 is a strictly
positive function of ρ. We can now use the Euler-Lagrange equations of
motion as seen in (3.11), compensated for the curvature of space by adding
a factor

√−g for the metric g[17], to find the following exact solutions:

ρ = ρ0, θ̇ = −2
Hθ

f
. (4.2)

This can eb related back to the previous chapter. We now study trajectories
φ = (ρ, θ) with ρ = ρ0 constant and

.
θ = ω. Thus, we have the following

identities, seen in section (3.5):
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∇ =

(
∂

∂ρ
,

1√
f

∂

∂θ

)
, (4.3)

VT =
Vθ√
f (ρ)

(4.4)

.
ϕ =

√
f (ρ)

.
θ. (4.5)

The action used to generate the equations of motion takes the following
form:

S =
∫

d4x
√
−g
[(

∂µρ
)
(∂µρ) + f (ρ)∂µθ∂µθ −V[ρ · θ]

]
. (4.6)

The form of the chosen potential is derived from the application of the
Hamilton-Jacobi formalism. The thought here is to express the input in
terms of the Hubble parameter instead of the potential. For the single
field case this can be derived by replacing H(t) with H (φ) in the second
Friedmann equation (3.18), which gives:

.
H =

.
φHφ = −

.
φ2

2
(4.7)

which, assuming
.
φ 6= 0, can be simplified to find:

− 2Hφ =
.
φ. (4.8)

With this expression, the first Friedmann equation (3.17) transforms into:

V = 3H2 − 2H2
φ (4.9)

Note that all functions here are explicitly dependent on φ. This equation
allows one to quickly find the potential if the Hubble parameter is known.

The multi-field case is very similar, where the potential is now expressed
as a function of φα. Repeating the same steps gives:

.
H =

.
φαHα = −

.
φa .

φbGab
2

−→ Hα = −Gab
.
φb

2
, (4.10)

This is not the most general solution, since an extra term normal to H
could also be included, but this term will be neglected. Then, this equality
can be used to transform the first Friedmann equation into:
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3H2 = V + 2HαHα. (4.11)

The authors wanted to achieve shift-symmetric orbital inflation. To achieve
this, it is important that the inflation trajectory is at any radius along the
isometry direction. When looking at a field space (θ, ρ) with metric Gab =
diag{ f (ρ), 1}, this means that for any value of ρ, the inflation should move

in the θ direction. In the equations, this means that HαHα =
H2

θ
f (ρ) . This is

how the final form of the potential (4.1) is constructed.

4.1 Proof of stability

Achúcarro et al. first study the specific choices of H =
√

1
6 mθ and f = ρ2,

since for these specific choices, the potential and solutions take the follow-
ing form:

V =
1
2

m2
(

θ2 − 2
3ρ2

)
, ρ = ρ0, θ̇ = ±

√
2
3

m
ρ2

0
. (4.12)

These solutions correspond to trajectories with a set radius ρ0 along the θ
direction, as shown in Fig. 4.1.

Achúcarro et al. proved neutral stability for the specific solutions for the
model in (4.12), and for the more general model 4.1 for functions H of the
form H ∝ θn. This proof deserves some additional remarks and observa-
tions, thus it will be replicated over the next few pages. Neutral stability
implies that small perturbations orthogonal to a given orbital trajectory
will shift the system to a trajectory with a different radius, where it will
remain, i.e. ρ̇ = 0.

The simplest way to prove this would be to look at the eigenvalues corre-
sponding to these perturbations. However, these all turn out to be equal
to zero, providing us with no new information on the stability.

One can make the following observation about the potential where H is
linear in θ. Indeed, for H ∼ θ, we find that the potential in (4.1) meets the
following relation:

θVθ − 2
f
fρ

Vρ = 2V (4.13)
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Figure 4.1: Visualisation of the model potential V(ρ, θ) given in equation 4.1, with
the black line depicting an example trajectory. Originally posted in [1].

The first term on the left hand size of this equation is solely dependent on
θ, while the second term solely depends on ρ. Thus, the potential splits, as
can be seen in equation (4.12). This observation was cause for the follow-
ing transformation in coordinates:

x(θ, ρ, θ′, ρ′) =
f H
Hθ

θ′ − 2
f
fρ

ρ′ + 2, (4.14)

y(θ, ρ, θ′, ρ′) =
f H
Hθ

θ′ + 2, (4.15)

z(θ, ρ, θ′, ρ′) =
f H2

H2
θ

− 2/3. (4.16)

Here, a prime was used to denote a derivative with respect to the number
of efolds, (..)′ = d

dN (..) as explained in the previous chapter (just before
section 3.4). For mathematical purposes, this has no significant impact and
can be regarded as the more ‘common’ derivative to time t.

Proving neutral stability of the system now comes down to showing the
existence of an attractor at (x, y) = (0, 0) [1, Appendix B].

32



4.1 Proof of stability 33

In order to prove anything about stability, one first has to rewrite the sys-
tem in terms of the new variables. The result is as follows:

x′ + (3− ε)x +

(
2
(

f
fρ

)
ρ

− g(θ)

) (
ρ′
)2

+
2(z + 2/3)

z
g(θ)(ε− ε0) = 0, (4.17)

y′ + (3− ε)y +
2
z

(
−1

3
(
ρ′
)2 − 1

2
y2 + 2y

)
− g(θ)

(
ρ′
)2

+
2(z + 2/3)

z
g(θ)(ε− ε0) = 0, (4.18)

z′ = 2(y− 2)(1− g(θ)) +
(

fρ

f

)2 y− x
2

(
z +

2
3

)
, (4.19)

ρ′ =
fρ

f
y− x

2
, (4.20)

ε =
1
2
(y− 2)2

z + 2/3
+

f 2
ρ

f 2
(x− y)2

8
. (4.21)

Here we have introduced two other new variables:

ε0 =
2

z + 2/3
and g(θ) ≡ HHθθ

H2
θ

. (4.22)

Remember that we were looking to establish the stability of the plane
(x, y) = (0, 0). This amounts to the point (x, y, z′, ρ′) = (0, 0,−4(1− g(θ)), 0),
found by substituting x and y in the equations above. To study this system,
we linearly perturb the system of equations to obtain:

δx′ +
(

3− 2(z + 2/3)
z

)
δx− 4g(θ)

z
δy = 0, (4.23)

δy′ +
(

3− 2(z + 2/3)
z

+
4(1− g(θ))

z

)
δy = 0, (4.24)

δz′ = 2(1− g(θ))δy +

(
fρ

f

)2
δy− δx

2

(
z +

2
3

)
, (4.25)

δρ′ =
fρ

f
δy− δx

2
. (4.26)

Now, Achúcarro et al. note that ’this linearized system is very simple for
any g(θ). They find that for H ∝ θn, g(θ) reduces to a constant, n−1

n ,
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allowing them to solve the system explicitly. Substituting this constant
and (y, ρ′) = (0, 0) into equation (4.19), gives z′ = − 4

n .
To find a solution for δy one has to integrate the δy equation 4.24, using
z = z0 − 4

n N. The resulting expression for δy can be used to solve for δx to
find the following set of equations:

δx = δx0

(
2 + 3z0

2 + 3z

)n/2

e−3N + δy0
4(n− 1)N

n

(
2 + 3z0

2 + 3z

)n/2

e−3N, (4.27)

δy = δy0
z
z0

(
2 + 3z0

2 + 3z

)n/2

e−3N. (4.28)

From the negative exponent e−3N we can conclude that all perturbations
will over time fade out. For this specific choice of H, one can thus con-
clude that (x, y) = (0, 0) is indeed an attracting solution, and thus that the
system is neutrally stable.

Since g(θ) contains both a function and its derivative, a natural choice for
H would be an exponential. Indeed, note that for the option H ∝ ecθ, the
function g(θ) also becomes equal to a constant, 1 to be more specific. One
can then repeat the integration we saw before. This time, since g(θ) = 1
and (y, ρ′) = (0, 0), equation (4.19) becomes equal to z′ = 0. Thus, inte-
grating the δy equation with z = z0 gives the following solution:

δy = δy0 exp− 9z0

3z0 + 2
(4.29)

This solution can in the same way be used to obtain a similar expression
for δx.
Note that this solution shows (especially for z0 large) similar behaviour.
This choice of H will also lead to neutrally stable solutions. More gener-
ally, we can solve the equation g(θ) = HHθθ

H2
θ

= constant, to find an entire

class of functions for which we can explicitly solve the system and prove
stability (albeit with slightly different values for z). The second order dif-
ferential equation HHθθ = cH2

θ can be solved by setting v = Hθ and using
Hθθ =

dv
dθ = dv

dH
dH
dθ = v dv

dH . This gives a differential equation we can solve
to find v = kHc, with k a free variable. This can again be solved to find:

H =

{
αeβθ c = 1
1−c
√
(c− 1)(α− βθ) c 6= 1

, (4.30)
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where α and β are free variables. This gives a class of functions H for
which the original system is neutrally stable. Checking c = n−1

n indeed
gives the solution H ∝ θn.

We can look at our system of equations in a more general sense. We can
rewrite the system of linearized equations 4.23 and 4.24 in the following
manner:

δx′ + ξ(z)δx + ν(θ, z)δy = 0 (4.31)

δy′ + µ(θ, z)δy = 0. (4.32)

We can now see that the y variable depends on the behaviour of the func-
tion µ. It would be an interesting subject of study to prove stability for
functions µ with limN→∞ µ < 0. Similarly, we need limN→∞ ξ < 0 and
limN→∞ ν < 0. Do note that the physical relevance of this result is limited,
because inflation might have ended before the limits become negative.

4.2 Slow roll analysis

It is also insightful to look at the problem in light of the Slow Roll Ap-
proximation (SRA), as presented by Achúcarro et al.[1] as well. One can
calculate the slow roll parameters:

ε =
2H2

θ

f H2 , η = −4Hθθ

f H
+

4
f

(
Hθ

H

)2

. (4.33)

Note that the function g(θ) (4.22) can also be expressed in terms of these
parameters:

g(θ) = (2ε− η)

√
f

8ε
. (4.34)

If the slow-roll approximation and the condition η �
√

ε both hold, the
function g(θ) becomes very small. Then, the linearized perturbation equa-
tions (4.23-4.26) can be written in the following form:

35



36 Mathematical solutions

δx′ + (3− ε)δx− 2ε− η

1− ε/3

√
ε f
2

δy = 0, (4.35)

δy′ +

(
3− ε +

1
1− ε/3

(
2ε− (2ε− η))

√
ε f
2

))
δy = 0, (4.36)

δz′ = 2

(
1− (2ε− η)

√
f

8ε

)
δy +

(
fρ

f

)2
δy− δx

ε
, (4.37)

δρ′ =
fρ

f
δy− δx

2
. (4.38)

If the SRA (ε� 1, η � 1) is upheld, these equations simplify greatly. The
behaviour of the solutions then comes down to:

δx = δx0 exp−3N, (4.39)
δy = δy0 exp−3N, (4.40)

which is exponentially decaying. Thus, in the case of slow-roll inflation,
the system is indeed neutrally stable.

This chapter has explicitly proven stability for a certain category of the
models, namely models with H of the form

H =

{
αeβθ c = 1
1−c
√
(c− 1)(α− βt c 6= 1

. (4.30)

Besides that, models have been found to be stable if they fulfill the require-
ments described below equation (4.31-4.32). Finally, stability has been
found if the slow roll approximation holds.
As has been noted in [1] as well, stability is expected to hold in gen-
eral. Given the promising predictions generated by this class of models, it
would indeed be worthwhile to try to prove this general stability.
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