"The relationship between the culture of a child and sex differences in cognitive and non-cognitive measures"

A meta-analysis

Bachelor thesis Psychology - Imme Zoon
Institute of Psychology
Faculty of Social and Behavioural Sciences - Leiden University
Date: 04-06-2020
Bachelorproject number: 76
Student number: 2033542
First examiner: L. Wierenga

Table of contents

Abstract 3
Introduction 4
Method 7
Participants7
Materials and measuring instruments7
Interpretation 8
Procedure 8
Statistical analysis 10
Results 10
Cognitive measures 11
Non-ognitive measures 12
Discussion 14
Perspective of current literature for cognitive measures 15
Perspective of current literature for non-cognitive measures 16
Explanations 18
Limitations 19
Future research 19
Concluding paragraph 20
Appendix. 21
1: Literature
2: List of Western Countries
3: Flow chart and cut-off rules
4: List of used articles
5: R code
6: Forest plots

Abstract

Girls perform better at school than boys. There has been a lot of research on sex differences in the cognitive skills cognitive control/inhibition, intelligence and (basic) language skills and the non-cognitive skills motivation, risk seeking/taking, confidence/self-esteem, emotional intelligence, emotion regulation and self-regulation. All these studies are taken into account for this meta-analysis, to finally compare different cultures. We compared the results from Western studies to the results from non-Western studies. This was done to investigate the cultural differences between the sex differences from different cultures. Based on the mean effect sizes for boys and girls and the standardized mean differences for Western and nonWestern countries we learned more about the way culture and sex interact for different cognitive and non-cognitive measures. For confidence/self-esteem, emotional intelligence and self-regulation we found that there are different sex effects in Western and non-Western countries, which suggests an interaction between culture and sex.

Introduction

Boys versus girls: although boys generally show a higher full scale IQ than girls (Liu \& Lynn, 2015), girls outperform boys in school (Steinmayr \& Spinath, 2008). Steinmayr and Spinath are not the first authors to report this finding, the difference has been researched and confirmed in many more articles. Vantieghem \& Van Houtte (2015) show that since 1990, there have been multiple studies that show this effect. They mention different aspects of the girls performing better at school: girls get higher grades and do not drop out or repeat classes as much as boys (Vantieghem \& Van Houtte, 2015). Given that boys show significantly higher intelligence than girls, this gives rise to the question where the difference in school performance comes from.

There are several possible explanations for this difference. Different hypotheses are genetic differences, the development of the brains of boys and girls, coping mechanisms, teaching styles and many more. Many of these hypotheses have been tested, leading to divergent results.

If the effect could be explained by genetic differences, the effect would be approximately the same for all boys and girls in every part of the world. The question that will be examined in this paper is whether the effect is different for different cultures. In other words, does the culture of a child influence the differences in skills related to school performance between boys and girls? This would mean culture is a mediator in the relationship between sex and school performance.

This research focusses on the difference between Western and non-Western countries. This distinction is based on previous cross-cultural research, and the question whether the expectations of boys and girls are different for different cultures. If boys are expected to perform differently, this can lead them to actually behave differently. Steinmayr \& Spinath (2008) wrote about the differences between sex-roles in different cultures. Sex-roles are an important way to distinguish countries from each other, because sex-roles can differ a lot between countries. In non-Western countries, the focus at work and school is more collective, whereas the focus in Western countries is more individualistic. This distinction between Western and non-Western countries is explained by Fukuzawa and Inamasu (2020). They state that non-Westerners see themselves as a member of the community, whereas Westerners see themselves as an independent part of their group. This can cause a different type of motivation within a child, which might lead to sex differences in school performances. The
relationship between culture, sex and learning was proposed by Akande, Adewuyi, Akande, \& Adetoun in 2016. They found that culture and sex interact when researching learning style. This leads to the question in which way culture influences boys and girls.

Much research has already been done on school-related sex differences in both Western and non-Western countries. The study mentioned above, by Vantieghem \& Van Houtte (2015), explained there are sex differences in motivation, leading to differences in different aspects of school performance. This study was based on several Western industrialized countries. A study from New York (Duckworth et al., 2015) showed a different effect. The children were tested on motivation and self-control to explain the difference in academic performance. The results only showed a sex difference in self-control and there was no difference found in motivation. Another study about sex differences in a Western country was done in Japan (Sugihara \& Katsurada, 2002). In their study, they tested 10 'feminine’ characteristics like innocence and politeness and 10 'masculine' characteristics like persuasiveness and having guts. These characteristics are based on the 'Japanese Gender Role Index', meaning they are typical skills for either boys or girls in Japan, a Western country (see appendix 2 for list of Western countries). This study is useful to explain sex differences using specific cultural sex roles. They did not find differences between boys and girls on any of the skills, which leads to the conclusion that sex differences do not rise from sex specific cultural roles. Looking at these different studies, there is no clear directionality of these results from research in Western countries.

Another study compared sex differences between cultures: Chiu \& Chow (2010) performed a study about sex differences in school performance in 41 different countries. They observed that girls who live by more traditional rules show lower reading achievement than girls in other countries. The same effect was found by a research performed by Akande et al. (2016), which states that sex differences in learning strategies are larger in non-Western countries like Botswana than in Western countries like Australia. The effect gives rise to the question whether girls live up to the expectations that the rules of the culture imply. Maybe when someone is given a rigid sex role this can lead to the person performing expectationconfirming behavior. This leads to the hypothesis that the difference between boys and girls is negatively correlated to the development of a country. In other words, when a country develops this leads to a decrease in sex differences, possibly because of a change in expectations for boys and girls. This is a start to answer the question where sex differences in
different aspects of school performance come from, since culture seems to play a role when defining the sex differences.

The aim of this study is to test whether the sex-effects and culture-effects mentioned above appear when using a larger sample size. There have been previous meta-analyses on some of the factors we will examine, but they have outdated or we are interested in comparing the results. They are further explained in the 'Discussion' section. For now most studies are not large or recent enough to generalize the results. That is why all relevant articles on this topic will be examined together in a meta-analysis. The aim is to find results supporting or not supporting the hypotheses about a general effect of culture on school performance.

The sex difference in school performance has been established (Steinmayr \& Spinath, 2008). To investigate where the difference comes from, several cognitive- and non-cognitive predictors of school performance are used. School performance can be predicted by cognitive control/inhibition, intelligence, (basic) language skills, motivation, risk-seeking/taking, confidence/self-esteem, emotional intelligence, emotion regulation and self-regulation, all described in more detail in the Methods section. These skills have already been tested in boys and girls in many different countries. Many studies on the different cognitive and noncognitive measures are used for this research. Western and non-Western studies were compared on the skills. Pérez-Arce already proposed an effect of culture on cognitive abilities in 1999, but so far it has never been tested on a scale this large. Therefore, sex differences in all different measures will be examined, using culture as an independent variable.

Duncan and Magnuson (2011, as cited in Davies, Janus, Duku, \& Gaskin, 2016) explain the distinction between cognitive and non-cognitive measures. Their studies support the hypothesis that both cognitive and non-cognitive skills are needed for school performance, but cognitive skills are needed for 'school readiness' and non-cognitive skills influence school performance. The research by Davies et al. (2016) point out the importance of both cognitive and non-cognitive skills influencing academic achievement. They concluded that cognitive skills are needed for academic success and non-cognitive skills are important in early development of school-readiness. Since cognitive and non-cognitive skills both seem to influence school performance in different ways, these two types of skills will be tested and compared in this research.

The research question of this paper is: 'Is there a relationship between the culture of a child and sex differences in cognitive and non-cognitive measures?' We hypothesize that in non-Western cultures the sex differences in cognitive measures are larger than in Western cultures and that in non-Western cultures the sex differences in non-cognitive measures are larger than in Western cultures.

Method

Participants

The participants examined in this research are school-attending children from 4 to 18 years old. The children are healthy; there are no mental disabilities mentioned.

The used studies were not selected based on culture. After selecting the studies, the participants were divided into two groups: Western and non-Western studies. A list of included countries into the category 'Western countries' is included into Appendix 2. All other countries fall under the category of 'non-Western countries'.

The studies were all collected through Web of Science. The distribution of participants across Western and non-Western countries and boys and girls is displayed in table 1. In some studies the participants were tested on several skills. The participants were counted based on the amount of times their data has been used. In other words, if a participant did two different tasks this participant was counted twice calculating the $\mathrm{N}_{\text {total }}$.

Table 1: Distribution of participants across Western and non-Western and boys and girls (N)

	N Non-		
	N Western	Western	N Total
N Girls	412.650	55423	468073
N Boys	412083	55252	467335
N Total	824733	110675	935408

Materials and measuring instruments

After collecting the data according to the cut-off rules, displayed in appendix 3, the different variables were put into a table. These results were transferred into R statistical software (R Core Team, 2013). We used ' R statistical software' to calculate mean effect size with probability interval, significance for sex differences, heterogeneity, standardized mean differences and significance for cultural differences for the different cognitive and non-
cognitive measures, using the code displayed in appendix 5. In addition, forest plots were generated for all different measures, displayed in appendix 6 .

Interpretation

A heterogeneity test was performed to find out whether the different selected studies on a skill are similar and therefore appropriate for comparing in a meta-analysis. A significant result on this test corresponds with a heterogenous sample.

The size of the effect size (ES) indicates the strength of the effect, where a larger absolute value represents a larger effect (Cumming \& Finch, 2005). The rule to interpret the effect sizes is defined by Lakens (2013). A commonly used rule to interpret the effect size is by categorizing them 'small': $\mathrm{d}=0.2$, 'medium': $\mathrm{d}=0.5$ or 'large': $\mathrm{d}=0.8$. The confidence interval (95%) of the mean effect size means that the mean effect size for the population has 95% chance to lay within the interval (Altman, Gore, Gardner, \& Pocock, 1983). Altman et al. (1983) also explained that a wider interval means there is not enough information: this is a warning against drawing conclusions from the sample, because the sample might be too small. A more narrow distribution shows a more accurate indication of the mean effect size.

Two different values showing significance were calculated. The first 'Sign. ES' is the test for sex differences on the cognitive and non-cognitive measures, this indicates whether there is a significant difference between the boys and girls. The second 'Sign. Culture' is the test for cultural differences within these sex differences. This indicates if there is a significant difference between the results from Western and non-Western countries in sex differences on the specific skill. The significant values are highlighted bold ($\alpha=0.05$).

The Standardized mean difference (SMD) for the cultural groups were calculated. When there were significant cultural differences in 'Sign. Culture', the SMD was used to understand this difference. The value is calculated by dividing the mean difference from 0 by the within-group standard deviation (Hedges \& Vevea, 2001). Negative outcomes for SMD correlate with girls outperforming boys.

Procedure

Since this research is a meta-analysis, the selected studies have different study designs. We include experimental, semi-, and non-experimental designs. Besides that, there are selfreports, parent-reports, teacher-reports and questionnaires included. The studies are compared
based on different cognitive- and non-cognitive measures. The cognitive measures included in the study are:

- Cognitive control/inhibition
- Intelligence
- (Basic) language skills

The non-cognitive measures included into the study are:

- Motivation
- Risk-seeking/taking
- Confidence/self-esteem
- Emotional intelligence
- Emotion regulation
- Self-regulation

Before the data collection we also included the variable 'memory'. This variable was left out after collecting the articles, because all relevant studies about memory took place in Western countries which made it impossible to compare the studies from different cultures. While entering the values into the table visible in appendix 4, we reversed Cohen's D for the studies that calculated higher values for negative skills. For 'risk-seeking/taking' we did this for all articles, meaning that a higher score on risk-seeking/taking corresponds with a person who does not take many risks.

The used search terms are: ‘TS=("gender" OR "sex") AND TI=("..." OR "...*" OR "...") AND TS= ("child*" OR "adolesc*" OR "teen*") AND TS=("behav*" OR "skill*" OR "perform*"OR "*school*" OR "academi*" OR "education")) AND LANGUAGE: (English) AND DOCUMENT TYPES: (Article)'. On the dots the different cognitive- and non-cognitive measures named above were entered. All included articles are English articles and date from 2009-2020. The results included all articles with the specific cognitive- or non-cognitive measure in the title and topics were school-related or sex-related. The time slot was chosen because a culture may develop and the aim of the study is to define the influence of the present culture. After the selection procedure of the articles, which will be explained in the 'Results' section, the articles were divided into the two cultural groups, depending on the country where the research was performed. All information about the articles, including the
origin, was placed into a dataset. Then the articles were compared using the different cognitive and non-cognitive measures mentioned above.

Statistical analysis

The code shown in appendix 5 was used to extract information from the dataset. In this code, the dependent variables are 'cognitive control/inhibition', 'intelligence', '(basic) language skills', 'motivation', 'risk-seeking/taking', 'confidence/self-esteem', 'emotional intelligence', 'emotion regulation' and 'self-regulation'. The independent variable is 'sex' and the grouping variable is 'culture'. Western countries were labeled ' 1 ' and non-Western countries were labeled ' 0 '.

Results

Using the search terms mentioned in the methods section, 2029 articles were found Table 2 shows the amount of articles for every exclusion phase for the different cognitive and non-cognitive skills. First, the title and abstracts of these articles were scanned, and the articles relevant to the subject of sex differences in the cognitive- and non-cognitive measures were selected. The other articles were excluded from the study. The remaining articles were read and another exclusion round was performed, leaving the articles that fully met the criteria. 165 articles were included to perform the meta-analysis. Many articles presented results of several experiments, they have been noted separately in appendix 4 , leading to a total of 428 articles. The flowchart for these data together with exclusion criteria is added into appendix 3 and a list of all used articles is added into appendix 4. A couple of studies were left out due to missing data about the origin of the study. This happened when data was extracted from both Western- and non-Western countries, but the results were not presented separately.

Table 2: Flowchart results

	Identification	Screening	Eligibility	Included full- text articles	
Intelligence	287	97	12	12	
Emotional Intelligence	114	72	21	21	
Risk seeking/taking	463	280	24	23	
Cognitive					
control/Inhibition	117	53	12	12	
Self-regulation	115	53	8	8	
Emotion regulation	153	80	17	17	

Confidence/Self-esteem	270	181	42	41
(basic) Language skills	135	70	14	10
Motivation	375	113	30	21
Total	2029	934	180	165

Cognitive measures

Table 3 shows the results of the meta-analysis for cognitive measures. The first outcomes are the results for heterogeneity. The null hypothesis for homogeneity was tested and shows that the studies about intelligence and (basic) language skills are heterogenous. The studies on cognitive control/inhibition are homogenous. For cognitive control/inhibition the result of a fixed effect model and for intelligence and (basic) language skills the result of a random effect are noted in table 5 .

Table 3: Results cognitive measures

	Mean ES	Mean ES lower	Mean ES upper	Sign. ES	Heterogeneity	Sign. Culture
Cognitive control/ inhibition	-0.137	-0.243	-0.03	$\mathbf{0 . 0 1 7}$	0.223	0.824
Intelligence (Basic) Language skills 0.061	0.022	0.101	$\mathbf{0 . 0 0 3}$	0	0.188	

Sign. values highlighted bold, $\alpha=.005$
Mean ES: mean effect size based on Cohen's D values of included articles. Negative value shows girls performed better than boys
Mean ES lower \& Mean ES upper: confidence interval for mean effect size of 95\%.
Sign. ES: test for sex differences
Sign. Culture: test for differences Western and non-Western countries
All three cognitive skills show a significant difference for sex. This means there are sex differences for cognitive control/inhibition, intelligence and (basic) language skills. Cognitive control/inhibition $(\mathrm{p}=0.017)$ has a mean effect size of -0.137 , meaning that girls outperformed boys on this skill. The effect size is small ($\mathrm{d}<0.2$), according to the rule mentioned by Lakens (2013). The confidence interval shows a tight range close to 0 . The effect is small but significant and the small range indicates a clear effect. Intelligence ($\mathrm{p}=0.003$) has a mean effect size of 0.061 , meaning boys outperform girls. This is a very small effect size according to the thumb rule mentioned above. The confidence interval factors (0.022 and 0.101) are relatively close together. This means boys do not score much higher on
intelligence, but they score higher systematically. (Basic) language skills ($\mathrm{p}=0.000$) has a mean effect size of -0.315 , meaning girls outperform boys. The effect size is between 'small' and 'medium' (Lakens, 2013). The range is wider than the range of intelligence. This means the results for how much better girls score on (basic) language skills differ more between the studies. The lower bound of the interval is -0.436 , which is almost a 'medium' effect, whereas the upper bound is -0.195 , which is a 'small' effect. This means that the effect size of the population falls in between this interval for 95% of the cases, meaning the effect is small to medium for 95% of the cases.

We did not find any significant cultural differences for the cognitive measures. This means that the difference between boys and girls on the skills are relatively the same in Western and non-Western countries. For the cognitive measures, this means boys outperform girls on intelligence in both Western and non-Western countries and girls outperform boys on cognitive control/inhibition and (basic) language skills in both Western and non-Western countries.

Non-cognitive measures

Table 4 shows the results for non-cognitive measures. All heterogeneity tests are significant, meaning the studies on all tested non-cognitive skills are heterogenous. That is why all standardized mean differences in table 6 are generated from a random effect model.

Table 4: results non-cognitive measures

	Mean ES	Mean ES lower	Mean ES upper	Sign. ES	Heterogenity	Sign. Culture
Motivation Risk- seeking/ taking	-0.502	-1.235	0.249	0.186	0	0.066
Confidence/ self-esteem Emotional	-0.391	-0.687	-0.095	$\mathbf{0 . 0 1 2}$	0	0.137
Intelligence	-0.231	-0.412	-0.05	$\mathbf{0 . 0 1 3}$	0	$\mathbf{0 . 0 0 5}$
Emotion		0.083	0.241	$\mathbf{0}$	0	$\mathbf{0 . 0 1 1}$
Regulation	0.008	-0.091	0.106	0.872	0	0.292

Self-
$\begin{array}{lllllll}\text { regulation } & -0.081 & -0.212 & 0.05 & 0.209 & 0 & \mathbf{0}\end{array}$

Sign. values highlighted bold, $\alpha=.005$
Mean ES: mean effect size based on Cohen's D values of included articles.
Mean ES lower \& Mean ES upper: confidence interval for mean effect size of 95\%.
Sign. ES: test for sex differences
Sign. Culture: test for differences Western and non-Western countries
3 out of 6 non-cognitive skills show a significant sex difference. Risk-seeking/taking $(\mathrm{p}=0.012)$ has a mean effect size of -0.391 , meaning girls performed better and thus show less risk-seeking/taking behavior. The mean effect size is between 'small' and 'medium'. The confidence interval (-0.687 to -0.095) is wide. This means the sex difference is not very generalizable between the used studies, since the results are far apart. Confidence/self-esteem $(\mathrm{p}=0.000)$ has a mean effect size of 0.162 , meaning boys performed better. The effect is 'small' and the confidence interval (0.083 to 0.241) is relatively narrow. This means boys perform better than girls consistently, but the difference is small. Emotional intelligence $(\mathrm{p}=0.013)$ has a mean effect size of -0.231 , meaning girls perform better than boys. The mean effect size of -0.231 is a 'small' effect with a wide confidence interval (-0.412 to -0.050). In other words, girls generally perform better than boys, but the strength of this difference can differ between studies.

The other non-cognitive measures 'motivation' $(\mathrm{p}=0.186)$, 'emotion regulation' ($\mathrm{p}=0.872$) and 'self-regulation' $(\mathrm{p}=0.209)$ do not show significant sex differences. The probability intervals for these skills all have a negative lower bound and a positive upper bound, meaning more diversity between the studies. In some of the studies on the skills boys performed better, and in other studies girls did. The insignificant outcomes mean the differences between boys and girls are either not there or not large enough to notice.

We found significant cultural differences for 3 skills. The sex difference in confidence/self-esteem is different in Western and non-Western cultures $(\mathrm{p}=0.005$). The standardized mean difference for confidence/self-esteem in Western countries from table 6 is 0.21 and for non-Western this value is 0.03 . This means boys perform much better on this skill than girls in Western countries, where this difference is not there in non-Western countries. The sex difference in emotional intelligence is also different in Western and nonWestern countries $(\mathrm{p}=0.011)$. The standardized mean difference for Western countries is -0.05 and for non-Western countries it is -1.58 . This means there is no large difference between boys and girls on emotional intelligence in Western countries, but in non-Western countries
girls performed better than boys. There also is a significant cultural difference for selfregulation ($\mathrm{p}=0.000$). This skill is not significantly different for boys and girls ($\mathrm{p}=0.209$). The SMD in Western countries is 0.10 and for non-Western countries this is -0.25 . This means in Western countries boys perform better than girls, but in non-Western countries girls perform better than boys. That is why on average there is no significant sex difference.

In table 5 and table 6 the standardized mean differences (SMD) are given for the different cognitive and non-cognitive measures in Western and non-Western countries. These tables are used to explain the significant cultural differences from table 3 and table 4.

Table 5: Standardized mean differences cognitive measures

	SMD	SMD non-
	Western	Western
Cognitive		
control/inhibition	-0.17	-0.14
Intelligence	0.08	0.02
(Basic) Language skills	-0.28	-0.41

Negative outcomes correlate with girls > boys
SMD from fixed effects model for cognitive control/inhibition
SMD from random effects model for intelligence and (basic) language skills

Table 6: Standardized mean differences non-cognitive measures

	SMD	SMD non-
Western	Western	
Motivation	-0.66	0.2
Risk-seeking/taking	-0.5	-0.1
Confidence/self-esteem	0.21	0.03
Emotional Intelligence	-0.05	-1.58
Emotion Regulation	-0.06	0.04
Self-regulation	0.1	-0.25

Negative outcomes correlate with girls > boys
SMD from random effects model

Discussion

The goal of this study was to examine the generalizable effects of culture on cognitive and non-cognitive measures. We expected that non-Western countries would show larger differences between boys and girls on all tasks. This is incorrect, since the only sex difference that was significantly larger in non-Western countries is in emotional intelligence. In these countries girls perform better than boys. In Western countries boys performed better than girls at confidence/self-esteem and self-regulation. Steinmayr \& Spinath (2008) wrote about sex
roles and especially about the importance of those roles to distinguish cultures. The results of this study partially substantiate the idea that sex roles play a role when defining a culture, since the sex differences for emotional intelligence, confidence/self-esteem and selfregulation do differ for the different cultures. Using that information, we learn more about the specific sex roles in different cultures. The observed results on all cognitive and non-cognitive measures lead to divergent effects that will be elucidated and compared to currently existing information.

In the first hypothesis we suggested that sex differences for cognitive measures would be larger in Non-Western countries than in Western countries. This was proven wrong, since the sex differences in cognitive measures are not significantly different in Western and nonWestern countries. The first hypothesis can be rejected. The second hypothesis suggested that sex differences in non-cognitive measures in non-Western cultures are larger than in in Western cultures. This effect only occurs for emotional intelligence. For confidence/selfesteem the difference is larger in Western countries. For motivation, risk-seeking/taking, emotion regulation and self-regulation the sex differences did not show a significant difference between Western and non-Western countries. This means the hypothesis can be accepted for emotional intelligence only, and the hypothesis should be rejected for the other measures.

Perspective of current literature for cognitive measures

In this study cognitive control/inhibition showed a significant advantage for girls. This effect is relatively small and not significantly different for the two cultures. This is in line with findings of an earlier meta-analysis performed by Shoberg (2013). His results also suggested that girls show better results for cognitive control/inhibition than boys with a mean effect size of 0.319 , where we found a mean effect size of -0.137 in our own study. The effect found by Shoberg is larger than our effect. This difference can be explained by the sample sizes of the studies: in our own analysis we used information of 935408 participants, where Shoberg used information of 21314 participants. Our study was much larger, which lead to a more moderate overall effect. Shoberg (2013) also investigated the cultural differences and found that this effect is general for all tested cultures. That is also in line with our research.

For intelligence we found a significant effect where boys outperform girls. This in line with an earlier meta-analysis performed by Born, Bleichrodt and Flier (1987). They
concluded that boys generally score higher than girls on intelligence tests. This difference is significant for all cultures, but most for Western, African and Asian countries. In our own analysis we did not find a significant difference between Western and non-Western countries on sex differences in intelligence. This difference was not tested by Born et al. (1987), but the effect that boys performed better than girls on intelligence occurred in all cultures. That is a similar outcome to our own, and we can not compare the cultural differences for Western and non-Western countries since they have not been tested on a big scale so far.
(Basic) language skills show the largest mean effect size out of all cognitive measures (mean $E S=-0.315$). This is in line with earlier research. Barbu et al. (2015) reported a growing number of researchers finding an effect of girls outperforming boys on all facets of language skills. This is in line with the significant result of the test for sex differences $(\mathrm{p}=0.000)$. We did not find a significant effect for cultural differences $(\mathrm{p}=0.316)$ which means girls perform better than boys in all cultures. This is also in line with previous studies: sex differences in language skills are the same across all languages and countries (Bornstein \& Cote, 2005, as cited in Barbu et al., 2015).

Perspective of current literature for non-cognitive measures

Our findings about motivation support the idea that there are no sex differences in motivation, and this null-result is generalizable over cultures. This is not in line with a previous meta-analysis performed by Steinkamp \& Maehr (1984). They reported an advantage for boys when testing motivation towards learning science. This advantage is small (mean $\mathrm{ES}=0.04$), but significant. They also examined the influence of culture, leading to the conclusion that more developed (Western) countries like Japan and Australia showed a larger advantage for boys. We did not find a significant result when testing for cultural differences in motivation. This difference can be explained by development in sex roles, since the research performed by Steinkamp \& Maehr was published in 1984, 36 years ago. The sex roles may have changed in the meantime, leading to the cuttent absence of cultural- or sex differences in motivation.

We found that risk-seeking/taking occurs more by boys than by girls. This effect is general for both Western and non-Western cultures. This is in line with a previous metaanalysis performed by Byrnes, Miller \& Schafer (1999). They concluded that sex differences in risk-seeking/taking can vary across category of risk-taking or age, but generally support the
idea that boys take more risks than girls. We found a mean ES of -0.391 , where Byrnes, Miller \& Shafer found a mean ES of 0.13 . Our absolute effect is larger, which can be explained by the method of gathering data. Byrnes et al. included all articles involving riskseeking/taking, where we included articles related to school performance. This leads to a different sample and therefore to different results. We can conclude that boys take more risks than girls, and even more school-related risks. No cultural differences are mentioned, which is in line with previous literature.

The next skill we investigated is confidence/self-esteem. We found that boys score higher on this measure, but there is a significant effect of culture which shows that this effect only occurs in Western countries. This is partly in line with past research. Bleidorn et al. (2015) also researched this topic, using a sample of 985937 participants. It was not a metaanalysis but a large examination about participants from different countries. They found that boys score significantly higher than girls on confidence/self-esteem. This effect was found for all different countries, and did not show significant differences between the countries. We found the same sex effect only for Western countries. This difference can be explained by sample characteristics: their research used a smaller variety of countries, where we used many more.

We also found that girls perform better than boys on emotional intelligence. This sex difference is not the same in all cultures: it is only present in non-Western countries. Our results are in line with the information from another meta-analysis. A previous meta-analysis concluded an advantage for girls on emotional intelligence (Joseph \& Newman, 2010, as cited in Fernández-Berrocal et al., 2012). They found a mean ES of 0.29 and we found a mean ES of -0.231 , which are small effects. Both studies are based on a combination of taskperformance and self-reported results. Another study on emotional intelligence pointed out that collectivism has a positive influence on emotional intelligence (Gunkel, Schlägel, \& Engle, 2014). This was a systematic analysis with a sample size of 2067 participants. This means that people in non-Western countries should be better at emotional intelligence than people in Western countries. For our study this would mean that culture influences emotional intelligence in the way that girls are stimulated to perform better than boys in non-Western countries, where this does not happen in Western countries.

The results for emotion regulation did not show a sex difference and this was general for Western and non-Western cultures. There has not been another meta-analysis on sex
differences in emotion regulation. Other literature on emotion regulation suggests women have access to more strategies and use them more flexibly than men (Goubet \& Chrysikou, 2019). This effect was also found by McRae et al. in 2008, who examined the neural base of emotion regulation. Research by Kwon, Yoon, Joormann, \& Kwon (2013) does not suggest a sex difference, but highlights the influence of culture on emotion regulation when comparing a Korean and American sample. Participants in this study used significantly different strategies: Koreans showed more brooding and Americans showed more anger suppression. We did not find a connection between culture and emotion regulation, which is inconsistent with the available literature. This can be explained by the depth of emotion regulation we tested. In our study we extracted data about the 'level' of emotion regulation, instead of the type of emotion regulation. The studies mentioned above all examined the type of emotion regulation, which makes the comparison more heterogenous.

For self-regulation we found that in Western cultures boys perform better, and in nonWestern cultures girls do. There have not been previous meta-analyses about this sexdifference. A study from Canada suggested that there is no sex difference in traits, but there is a fluctuating sex difference based on the female menstrual cycle (Hosseini-Kamkar \& Morton, 2014). They concluded that women are less impulsive than men during the fertile phase of the cycle. Comparing to our findings this would mean the sex difference is not caused by different expectations from boys and girls, but a difference between hormonal levels influences the differences in self-regulation. There are no articles comparing different cultures, and the articles that perform a research are used into our own meta-analysis. That makes our findings novel to the field of research.

Explanations

Altogether, the results on sex differences for all cognitive measures and for riskseeking/taking, confidence/self-esteem and emotional intelligence are approximately in line with previous literature. The effect sizes are not all the same, which can be explained by the used methods for the analysis. The results for motivation are not in line with the literature, which is explained by the time frame of the study. Results for emotion regulation and selfregulation are not compared with previous meta-analyses due to a lack of studies. Our results on cultural differences for the three tested cognitive measures all suggest that culture does not explain the sex differences for the skills. This is in line with the literature. For non-cognitive measures, the results for risk-seeking/taking, confidence/self-esteem and emotional
intelligence show cultural differences that fit into the current literature. For motivation we did not find cultural differences, where Steinkamp \& Maehr (1984) found that culture influences the sex difference, since boys are relatively more motivated in Western countries. This difference is explained by the changing expectations of boys and girls. This finding suggests the theory that motivation is at least partially influenced by cultural factors since the changing culture lead to a change in sex differences in motivation. For emotion regulation our research was not specific enough to compare to other cross-cultural research on emotion regulation. The most surprising result was found for self-regulation. Previous to the study we did not have any literature to compare our results for self-regulation to. We found that boys perform better than girls in Western countries and girls perform better than boys in non-Western countries. This result can be a starting point in future research on this topic, and examined to find out the cause of the cultural difference.

Other explanations for the found effects could be found in the method of the metaanalysis. There was no equal distribution of articles between the countries in the world. The analysis using ' R ' corrects for the amount of Western and non-Western countries. However, within the categories Western and non-Western the data can originate from many different countries. This is because we used all relevant articles found using the search terms, leading to an unequal distribution of countries that are taken into account. Before performing the analysis we divided the countries into the categories, so the original countries were not compared. Within both cultural groups there is a large variety of underlying cultures. The analysis in this form does not specifically calculate the differences between these cultures, which can lead to over- or under-generalization of an effect.

Limitations

A difficulty about this analysis is the specification of the tested skills. Motivation for example can hold information about different types of motivation (eg. intrinsic motivation, reading motivation, extrinsic motivation for mathematics etc.). We decided to test the skills all combined. Based on the outcomes from this research we were able to state the general sexand cultural differences about the skills. This is a first step into understanding the differences and the cause of the differences, but it is not enough to draw conclusions about the origin of the differences. More research is needed to understand the outcomes of this meta-analysis.

Future research

For future research it would be interesting to investigate the specific differences between the countries themselves and to investigate the different cognitive and non-cognitive skills more deeply. For a meta-analysis, it would be interesting to compare more countries than only Western and non-Western. The countries can also be grouped into continents or religions. That way, a theory can be made up about the way culture influences the results on specific skills, instead of just stating the presence of a difference.

Concluding paragraph

The cultural and sex differences for the three cognitive measures are in line with previous literature. They do not show significant cultural differences, meaning the found sex differences are equal in Western and non-Western countries. The same counts for motivation, risk-seeking/taking and emotion regulation. For motivation this is not in line with existing information, meaning the effect has changed over time, possibly together with the culture. For confidence/self-esteem, emotional intelligence and self-regulation the sex differences are not equal in Western and non-Western countries. For confidence/self-esteem this difference is not in line with the existing literature, which we explained by sample size. For emotional intelligence and self-regulation there is not enough literature to compare our outcomes to, which makes our outcomes novel to this field of research. Altogether the different factors that influence the sex difference in school performance have been investigated and we hope this will serve as a first step into more research on this.

Appendix 1: literature

Akande, A., Adewuyi, M., Akande, T., \& Adetoun, B. (2016b). If One Goes Up the Other Must Come Down: Examining Gender Differences and Understanding of Models of Learning Style: A Non-Western Perspective. Social Indicators Research, 131(2), 817829. https://doi.org/10.1007/s11205-016-1274-9

Altman, D. G., Gore, S. M., Gardner, M. J., \& Pocock, S. J. (1983). Statistical guidelines for contributors to medical journals. $B M J, 286(6376), 1489-1493$. https://doi.org/10.1136/bmj.286.6376.1489

Born, M. Ph., Bleichrodt, N., \& Van Der Flier, H. (1987). Cross-Cultural Comparison of SexRelated Differences on Intelligence Tests. Journal of Cross-Cultural Psychology, 18(3), 283-314. https://doi.org/10.1177/0022002187018003002

Barbu, S., Nardy, A., Chevrot, J.-P., Guellaï, B., Glas, L., Juhel, J., \& Lemasson, A. (2015). Sex Differences in Language Across Early Childhood: Family Socioeconomic Status does not Impact Boys and Girls Equally. Frontiers in Psychology, 6, 1. https://doi.org/10.3389/fpsyg.2015.01874

Bleidorn, W., Denissen, J. J. A., Gebauer, J. E., Arslan, R. C., Rentfrow, P. J., \& Potter, J. (2015). Supplemental Material for Age and Gender Differences in Self-Esteem—A Cross-Cultural Window. Journal of Personality and Social Psychology, 111. https://doi.org/10.1037/pspp0000078.suppPhilips, S. U. (1980). Sex differences and language. Annual review of anthropology.

Byrnes, J. P., Miller, D. C., \& Schafer, W. D. (1999). Gender differences in risk taking: A meta-analysis. Psychological Bulletin, 125(3), 367-383. https://doi.org/10.1037/00332909.125.3.367

Cumming, G., \& Finch, S. (2005). Inference by Eye: Confidence Intervals and How to Read

Pictures of Data. American Psychologist, 60(2), 170-180.
https://doi.org/10.1037/0003-066x.60.2.170
Duckworth, A. L., Shulman, E. P., Mastronarde, A. J., Patrick, S. D., Zhang, J., \& Druckman, J. (2015). Will not want: Self-control rather than motivation explains the female advantage in report card grades. Learning and Individual Differences, 39, 13-23. https://doi.org/10.1016/j.lindif.2015.02.006

Chiu, M. M., \& Chow, B. W. Y. (2010). Culture, motivation, and reading achievement: High school students in 41 countries. Learning and Individual Differences, 20(6), 579-592. https://doi.org/10.1016/j.lindif.2010.03.007

Clarivate. Web of Science. Retrieved from https://apps.webofknowledge.com
Davies, S., Janus, M., Duku, E., \& Gaskin, A. (2016). Using the Early Development Instrument to examine cognitive and non-cognitive school readiness and elementary student achievement. Early Childhood Research Quarterly, 35, 63-75. https://doi.org/10.1016/j.ecresq.2015.10.002

Fernández-Berrocal, P., Cabello, R., Castillo, R., \& Extremera, N. (2012). GENDER DIFFERENCES IN EMOTIONAL INTELLIGENCE: THE MEDIATING EFFECT OF AGE. Behavioral Psychology, 20(1), 77-89. Geraadpleegd van http://jornadasaludemociongenero.uji.es/wp-content/uploads/2014/11/FernandezBerrocal.pdf

Fukuzawa, A., \& Inamasu, K. (2020). Relationship between the internal locus of control and collective action: A comparison of East Asian and Western Countries. Asian Journal of Social Psychology, 33. https://doi.org/10.1111/ajsp. 12406

Goubet, K. E., \& Chrysikou, E. G. (2019). Emotion Regulation Flexibility: Gender Differences in Context Sensitivity and Repertoire. Frontiers in Psychology, 10, 10.
https://doi.org/10.3389/fpsyg.2019.00935
Gunkel, M., Schlägel, C., \& Engle, R. L. (2014). Culture's Influence on Emotional Intelligence: An Empirical Study of Nine Countries. Journal of International Management, 20(2), 256-274. https://doi.org/10.1016/j.intman.2013.10.002

Hedges, L. V., \& Vevea, J. L. (2001). International Encyclopedia of the Social \& Behavioral Sciences. Maarssen, Nederland: Elsevier Gezondheidszorg.

Hosseini-Kamkar, N., \& Morton, J. B. (2014). Sex differences in self-regulation: an evolutionary perspective. Frontiers in Neuroscience, 8, 10. https://doi.org/10.3389/fnins.2014.00233

Kwon, H., Yoon, K. L., Joormann, J., \& Kwon, J.-H. (2013). Cultural and gender differences in emotion regulation: Relation to depression. Cognition \& Emotion, 27(5), 769-782. https://doi.org/10.1080/02699931.2013.792244

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4,. https://doi.org/10.3389/fpsyg.2013.00863

Liu, J., \& Lynn, R. (2015). Chinese sex differences in intelligence: Some new evidence. Personality and Individual Differences, 75, 90-93. https://doi.org/10.1016/j.paid.2014.11.002

McRae, K., Ochsner, K. N., Mauss, I. B., Gabrieli, J. J. D., \& Gross, J. J. (2008). Gender Differences in Emotion Regulation: An fMRI Study of Cognitive Reappraisal. Group Processes \& Intergroup Relations, 11(2), 143-162. https://doi.org/10.1177/1368430207088035

Ministerie van Buitenlandse Zaken. (2018, 14 februari). Lijst van Westerse Landen.

Geraadpleegd op 14 mei 2020, van
https://www.sso3w.nl/documenten/rapporten/2018/2/14/lijst-van-westerse-landen Pérez-Arce, P. (1999). The Influence of Culture on Cognition. Archives of Clinical Neuropsychology, 14(7), 581-592. https://doi.org/10.1016/s0887-6177(99)00007-4

R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Shoberg, E. (2013). Gender differences in cognitive inhibition: Results from a meta-analysis, a negative priming Stroop task, and a stop-signal task. Research gate.
10.13140/RG.2.1.3325.3209

Steinmayr, R., \& Spinath, B. (2008). Sex differences in school achievement: what are the roles of personality and achievement motivation? European Journal of Personality, 22(3), 185-209. https://doi.org/10.1002/per. 676

Steinkamp, M. W., \& Maehr, M. L. (1984). Gender Differences in Motivational Orientations toward Achievement in School Science: A Quantitative Synthesis. American Educational Research Journal, 21(1), 39-59. https://doi.org/10.2307/1162353

Sugihara, Y., \& Katsurada, E. (2002). Gender Role Development in Japanese Culture:

Diminishing Gender Role Differences in a Contemporary Society. Sex Roles, 47(9/10), 443-452. https://doi.org/10.1023/a:1021648426787

Vantieghem, W., \& Van Houtte, M. (2015). Differences in Study Motivation Within and Between Genders: An Examination by Gender Typicality Among Early

Adolescents. Youth \& Society, 50(3), 377-404.
https://doi.org/10.1177/0044118x15602268

Appendix 2: list of Western Countries by Minestry of Foreign Affairs

"Andorra
Australië
Azoren (Portugal)
Barbados
België
Bermuda (Brits overzees gebied)
Canada
Canarische Eilanden (Spanje)
Cyprus
Denemarken (exclusief Groenland)
Duitsland
Finland
Frankrijk
Gibraltar (Brits overzees gebied)
Griekenland
Groot Brittannië
Hawaï (Verenigde Staten)
Hongarije
Ierland
IJsland
Italië
Japan

Liechtenstein

Luxemburg
Madeira (Portugal)
Malta
Monaco
Nederland
Nieuw Zeeland
Noorwegen
Oostenrijk
Portugal (incl. Azoren)
San Marino
Slowakije
Spanje
St. Pierre en Miquelon (Frans overzees gebied)
Tsjechië
USA
Verenigd Koninkrijk
Verenigde Staten van Amerika
Zweden
Zwitserland"

Appendix 3: Flow chart and cut-off rules

Appendix 4: List of used articles

Appendix 4.1.1: Cognitive control/inhibition

First author	Year	Task	$\begin{aligned} & \mathrm{N} \\ & \text { total } \end{aligned}$	N girls	N boys	Calculated_ D	Country
	201					0,03595814	
Chung. YS; Calhoun. V; Stevens. MC	9	Go/No-Go task Young's Diagnostic	130	64	66	3	USA
	201	Questionnaire for Internet				0,21492754	
Li. Q; Dai. WN; Zhong. Y; Wang. LX; Dai. BB; Liu. X	9	Addiction; Problem-Coping Young's Diagnostic	416	212	204	2	China
	201	Questionnaire for Internet				0,10599114	
Li. Q; Dai. WN; Zhong. Y; Wang. LX; Dai. BB; Liu. X	9	Addiction. Impulsiveness Young's Diagnostic	416	212	204	4	China
	201	Questionnaire for Internet Addiction. Behavioral				$0,33267440$	
Li. Q; Dai. WN; Zhong. Y; Wang. LX; Dai. BB; Liu. X	9	inhibition system Young's Diagnostic Questionnaire for Internet	416	212	204	9	China
	201	Addiction. Behavioral				0,29134087	
Li. Q; Dai. WN; Zhong. Y; Wang. LX; Dai. BB; Liu. X	9	approach system	416	212	204	9	China
	201					0,17096780	
Alarcon. G; Pfeifer. JH; Fair. DA; Nagel. BJ	8	SRP Task	49	25	24	9	USA
Nolin. P; Stipanicic. A; Henry. M; Lachapelle. Y; LussierDesrochers. D; Rizzo. A; Allain. P	201					0,11017116	
	6	ClinicaVR Test	102	53	49	3	Canada

First author	Year	Task	\mathbf{N}
total N girls N boys Calculated_D Country			

Chung. YS; Calhoun. V; Stevens. MC
Li. Q; Dai. WN; Zhong. Y; Wang. LX; Dai. BB; Liu. X
Li. Q; Dai. WN; Zhong. Y; Wang. LX; Dai. BB; Liu. X
Li. Q; Dai. WN; Zhong. Y; Wang. LX; Dai. BB; Liu. X

2019	Go/No-Go task	130	64	66	0,035958143	USA
	Young's Diagnostic Questionnaire for Internet					
2019	Addiction; Problem-Coping	416	212	204	0,214927542	China
	Young's Diagnostic Questionnaire for Internet					
2019	Addiction. Impulsiveness	416	212	204	0,105991144	China
	Young's Diagnostic Questionnaire for Internet				-	
2019	Addiction. Behavioral inhibition system	416	212	204	0,332674409	China

Li. Q; Dai. WN; Zhong. Y; Wang.	Young's Diagnostic Questionnaire for Internet			-			
LX; Dai. BB; Liu. X	2019	Addiction. Behavioral approach system	416	212	204	0,291340879	China
Alarcon. G; Pfeifer. JH; Fair. DA;						-	
Nagel. BJ	2018	SRP Task	49	25	24	0,170967809	USA
Nolin. P; Stipanicic. A; Henry. M;							
Lachapelle. Y; Lussier-						-	
Desrochers. D; Rizzo. A; Allain. P	2016	ClinicaVR Test	102	53	49	0,110171163	Canada
Liu. TR; Xiao. T; Shi. JN	2012	Go/No-Go task	32	18	14	0,346524662	China
Sijtsema. JJ; Veenstra. R;							
Lindenberg. S; van Roon. AM;						-	
Verhulst. FC; Ormel. J; Riese. H	2010	Neo-PI-PR	1332	713	619	0,154288546	Netherlands
Rosenberg-Kima. RB; Sadeh. A	2010	The balloon task	134	81	53	0,140788583	Israel
Chasiotis. A; Kiessling. F; Hofer. J;						-	Germany. Costa
Campos. D	2010	Inhibitory control tasks	314	154	160	0,098577513	Rica. Cameroon
Herba. CM; Tranah. T; Rubia. K;							
Yule. W	2016	Stop task	53	24	29	0,402263851	

Appendix 4.1.2: intelligence

				N	N		
First author	Year	Task	N total	girls	boys	Calculated_D	Country
Gil-Espinosa, FJ; Chillon, P;							
Cadenas-Sanchez, C	2019	General intelligence assessed by the D48 test	129	55	74	0,144515723	Spain
Ziada, KE; Metwaly, HAM;		Intelligence assessed by Raven's Coloured					
Bakhiet, SF; Cheng, H; Lynn, R	2019	Progressive Matrices (CPM)	128	63	65	-0,356111844	Egypt

Ziada, KE; Metwaly, HAM;		Intelligence assessed by Raven's Coloured					
Bakhiet, SF; Cheng, H; Lynn, R	2019	Progressive Matrices (CPM)	230	111	119	0,288141975	Egypt
Ziada, KE; Metwaly, HAM;		Intelligence assessed by Raven's Coloured					
Bakhiet, SF; Cheng, H; Lynn, R	2019	Progressive Matrices (CPM)	268	148	121	0,041149525	Egypt
Ziada, KE; Metwaly, HAM;		Intelligence assessed by Raven's Coloured					
Bakhiet, SF; Cheng, H; Lynn, R	2019	Progressive Matrices (CPM)	350	171	179	0,296068328	Egypt
Ziada, KE; Metwaly, HAM;		Intelligence assessed by Raven's Coloured					
Bakhiet, SF; Cheng, H; Lynn, R	2019	Progressive Matrices (CPM)	326	170	156	0,115692603	Egypt
Ziada, KE; Metwaly, HAM;		Intelligence assessed by Raven's Coloured					
Bakhiet, SF; Cheng, H; Lynn, R	2019	Progressive Matrices (CPM)	304	152	152	0,038107026	Egypt
Ziada, KE; Metwaly, HAM;		Intelligence assessed by Raven's Coloured					
Bakhiet, SF; Cheng, H; Lynn, R	2019	Progressive Matrices (CPM)	149	78	71	0,10124241	Egypt
Heikkinen, T; Rusanen, J; Sato,							
K; Pesonen, P; Harila, V;							
Alvesalo, L	2018	Intelligence assessed by Stanford-Binet IQ	782	376	406	-0,193097585	USA
Pezzuti, L; Orsini, A	2016	IQ: Similarity measured by the WISC-IV	2200	1100	1100	0,120434347	Italy
Pezzuti, L; Orsini, A	2016	IQ:Vocabulary measured by the WISC-IV	2200	1100	1100	0,122988009	Italy
Pezzuti, L; Orsini, A	2016	IQ: Comprehension measured by the WISC-IV	2200	1100	1100	0,040996003	Italy
Pezzuti, L; Orsini, A	2016	IQ: Block design measured by the WISC-IV	2200	1100	1100	0,160579129	Italy
Pezzuti, L; Orsini, A	2016	IQ: Picture Concepts measured by the WISC-IV	2200	1100	1100	-0,040824829	Italy
Pezzuti, L; Orsini, A	2016	IQ: Matrix Reasoning measured by the WISC-IV	2200	1100	1100	-0,040996003	Italy
Pezzuti, L; Orsini, A	2016	IQ: Digit span measured by the WISC-IV	2200	1100	1100	0	Italy

		IQ: Letter-Number Sequencing measured by the					
Pezzuti, L; Orsini, A	2016	WISC-IV	2200	1100	1100	0	Italy
Pezzuti, L; Orsini, A	2016	IQ: Coding measured by the WISC-IV	2200	1100	1100	-0,427569125	Italy
Pezzuti, L; Orsini, A	2016	IQ: Symbol search measured by the WISC-IV	2200	1100	1100	-0,167468128	Italy
		IQ: Verbal Comprehension Index measured by the					
Pezzuti, L; Orsini, A	2016	WISC-IV	2200	1100	1100	0,11511865	Italy
		IQ: Perceptual Reasoning Index measured by the					
Pezzuti, L; Orsini, A	2016	WISC-IV	2200	1100	1100	0,053795976	Italy
		IQ: Working Memory Index measured by the					
Pezzuti, L; Orsini, A	2016	WISC-IV	2200	1100	1100	0,008969602	Italy
		IQ: Processing Speed Index measured by the					
Pezzuti, L; Orsini, A	2016	WISC-IV	2200	1100	1100	-0,400372402	Italy
		Full Scale Intelligence Quotient measured by the					
Pezzuti, L; Orsini, A	2016	WISC-IV	2200	1100	1100	-0,03607852	Italy
		Picture completion measured by the Wechsler					
		Intelligence Scale for Children-III					
Bakhiet, SFA; Lynn, R	2015	(WISC-III)	1018	545	473	0,01986567	Bahrain
		Information measured by the Wechsler					
		Intelligence Scale for Children-III					
Bakhiet, SFA; Lynn, R	2015	(WISC-III)	1018	545	473	-0,097837427	Bahrain
		Coding measured by the Wechsler Intelligence					
		Scale for Children-III					
Bakhiet, SFA; Lynn, R	2015	(WISC-III)	1018	545	473	-0,154232133	Bahrain

Bakhiet, SFA; Lynn, R

Similarities measured by the Wechsler Intelligence
Scale for Children-III
2015 (WISC-III)
Picture arrangement measured by the Wechsler Intelligence Scale for Children-III
2015 (WISC-III)
Arithmetic measured by the Wechsler Intelligence Scale for Children-III
2015 (WISC-III)
Block design measured by the Wechsler Intelligence Scale for Children-III
2015 (WISC-III)
Vocabulary measured by the Wechsler Intelligence Scale for Children-III
2015 (WISC-III)
Object assembly measured by the Wechsler Intelligence Scale for Children-III
2015 (WISC-III)
Comprehension measured by the Wechsler Intelligence Scale for Children-III
2015 (WISC-III)
Symbol search measured by the Wechsler Intelligence Scale for Children-III
2015 (WISC-III)
$1018545473-0,237095627$ Bahrain

1018545473 0,070440582 Bahrain

1018545473 0,155057647 Bahrain

1018545473 0,197099296 Bahrain

1018545473 -0,072451676 Bahrain

1018545473 0,102468076 Bahrain

1018545473 -0,068247397 Bahrain

1018545473 0,045038678 Bahrain

Bakhiet, SFA; Lynn, R

Liu, JH; Lynn, R

Liu, JH; Lynn, R

Liu, JH; Lynn, R

Digit span measured by the Wechsler Intelligence
Scale for Children-III
2015 (WISC-III)
Mazes measured by the Wechsler Intelligence
Scale for Children-III
2015 (WISC-III)
Verbal IQ measured by the Wechsler Intelligence
Scale for Children-III
2015 (WISC-III)
Performance IQ measured by the Wechsler Intelligence Scale for Children-III
2015 (WISC-III)
Full Scale IQ measured by the Wechsler Intelligence Scale for Children-III
2015 (WISC-III)
Information measured by the The Chinese version of the Wechsler Intelligence Scale for Children-
2015 Revised (WISC-R)
Comprehension measured by the The Chinese version of the Wechsler Intelligence Scale for
2015 Children-Revised (WISC-R)
Similarities measured by the The Chinese version of the Wechsler Intelligence Scale for Children-
2015 Revised (WISC-R)

1018545
473

1018545
473
0,333465009 Bahrain

1018545473 -0,134166114 Bahrain

1018545473 0,0609179 Bahrain

1018545473 -0,047885071 Bahrain

788362426 0,51165678 China

78836
426
$-0,004972329$
China
$788 \quad 36$
426

Liu, JH; Lynn, R

Arithmetic measured by the The Chinese version
of the Wechsler Intelligence Scale for Children-
2015 Revised (WISC-R)
Vocabulary measured by the The Chinese version
of the Wechsler Intelligence Scale for Children-
2015 Revised (WISC-R)
Picture arrangement measured by the The Chinese
version of the Wechsler Intelligence Scale for
2015 Children-Revised (WISC-R)
Picture completion measured by the The Chinese
version of the Wechsler Intelligence Scale for
2015 Children-Revised (WISC-R)
Block design measured by the The Chinese version
of the Wechsler Intelligence Scale for Children-
2015 Revised (WISC-R)
Object assembly measured by the The Chinese
version of the Wechsler Intelligence Scale for
2015 Children-Revised (WISC-R)
Coding measured by the The Chinese version of the Wechsler Intelligence Scale for Children-
2015 Revised (WISC-R)
Verbal IQ measured by the The Chinese version of the Wechsler Intelligence Scale for Children-
2015 Revised (WISC-R)

Liu, JH; Lynn, R

Liu, JH; Lynn, R
Carreras, MR; Braza, P; Munoz, JM; Braza, F; Azurmendi, A; Pascual-Sagastizabal, E; Cardas, J; Sanchez-Martin, JR

Ezenwosu, O; Emodi, I;
Ikefuna, A; Chukwu, B
Lemos, GC; Abad, FJ; Almeida, LS; Colom, R

Lemos, GC; Abad, FJ; Almeida, LS; Colom, R

Lemos, GC; Abad, FJ; Almeida,
LS; Colom, R
Lemos, GC; Abad, FJ; Almeida,
LS; Colom, R
Lemos, GC; Abad, FJ; Almeida, LS; Colom, R
version of the Wechsler Intelligence Scale for

Full scale IQ measured by the The Chinese version of the Wechsler Intelligence Scale for Children-
2015 Revised (WISC-R)

Social Intelligence assessed by teachers with the
2014 Peer-Estimated Social Intelligence (PESI)
IQ measured by the Draw-APerson Test (DAPT)
2013 proposed by Ziler and validated in Nigeria
Abstract Reasoning Intelligence was assessed
2013 through the Reasoning Test Battery (RTB)
Numerical Reasoning Intelligence was assessed
2013 through the Reasoning Test Battery (RTB)
Verbal Reasoning Intelligence was assessed
2013 through the Reasoning Test Battery (RTB)
Mechanical Reasoning Intelligence was assessed
2013 through the Reasoning Test Battery (RTB)
Spatial Reasoning Intelligence was assessed
2013 through the Reasoning Test Battery (RTB)

0,346251908 China
788362426 0,332567395 China
$117 \quad 64 \quad 63-0,027716851$ Spain
$90 \quad 35 \quad 55 \quad-0,108336441$ Nigeria

1714886828 0,108898429 Portugal

1714886828 0,104401419 Portugal

1714886828 0,106326512 Portugal

1714886828 0,827256194 Portugal

1714

Liu, JH; Lynn, R

Information measured by the Chinese version of the Wechsler Preschool and Primary Scale of 2011 Intelligence (WPPSI)

Vocabulary measured by the Chinese version of the the Wechsler Preschool and Primary Scale of 2011 Intelligence (WPPSI)

Arithmetic measured by the The Chinese version of the Wechsler Preschool and Primary Scale of 2011 Intelligence (WPPSI)

Similarities measured by the The Chinese version of the Wechsler Preschool and Primary Scale of 2011 Intelligence (WPPSI)

Comprehension measured by the The Chinese version of the Wechsler Preschool and Primary
2011 Scale of Intelligence (WPPSI)
Animal house measured by the The Chinese version of the Wechsler Preschool and Primary
2011 Scale of Intelligence (WPPSI)
Picture completion measured by the The Chinese version of the Wechsler Preschool and Primary
2011 Scale of Intelligence (WPPSI)
Mazes measured by the The Chinese version of the Wechsler Preschool and Primary Scale of
2011 Intelligence (WPPSI)

1331603728
728 0,
0,225499848 China
1331603728 0,242741663 China

0,1604887 China

0,127267038 China
$1331603 \quad 728$ 0,297140559 China
1331603728 0,048245098 China

603
728
0,140633613
China

603
728 0,469026696 China

Appendix 4.1.3: (basic) language skills

		Task	N	N	
First author	Year	N total	girls	boys	Calculated_D

Torppa. M; Vasalampi. K;
Eklund. K; Sulkunen. S;

Niemi. P
Torppa. M; Vasalampi. K;
Eklund. K; Sulkunen. S;
Niemi. P

Riso. EM; Magi. K; Vaiksaar.
S; Toplaan. L; Jurimae. J

Riso. EM; Magi. K; Vaiksaar. S; Toplaan. L; Jurimae. J

Riso. EM; Magi. K; Vaiksaar. S; Toplaan. L; Jurimae. J

Jang. BG; Ryoo. JH
Jang. BG; Ryoo. JH
Jang. BG; Ryoo. JH
Memisevic. H; Malec. D;
Biscevic. I; Pasalic. A Memisevic. H; Malec. D; Biscevic. I; Pasalic. A Torppa. M; Eklund. K; Sulkunen. S; Niemi. P; Ahonen. T
Torppa. M; Eklund. K; Sulkunen. S; Niemi. P; Ahonen. T

2020 Reading comprehension - PISA reading link items

2020 Reading fluency
Language and cognitive devolpment (progressive
matrix) - modified Boehm Test of Basic Concepts. 3th
2019 ed (Boehm-30)
Language and cognitive devolpment (progressive matrix) - modified Boehm Test of Basic Concepts. 3th
2019 ed (Boehm-30)
Language and cognitive devolpment (progressive
matrix) - modified Boehm Test of Basic Concepts. 3th
2019 ed (Boehm-30)
Reading comprehension (literal/factual
2019 comphrehension) - the Noh Reading Inventory (NRI)
Reading comprehension (inferential comprehension) -
2019 the Noh Reading Inventory (NRI)
Reading comprehension (critical comprehension)- the
2019 Noh Reading Inventory (NRI)
2019 Reading skills (grade 2) - multiple tasks together
2019 Reading skills (grade 3) - multiple tasks together

2018 PISA Reading composite

2018 PISA - interpret

$256124 \quad 132 \quad-0,102037245$ Estonia $256124132-0,21641235$ Estonia
$256 \quad 124 \quad 132 \quad-0,022423299$ Estonia
$585313 \quad 272-1,712134678$ South Korea
$585313 \quad 272-1,906309516$ South Korea
$585313 \quad 272$-1,773295149 South Korea Bosnia and Herzegovenia Bosnia and Herzegovenia

Torppa. M; Eklund. K;
Sulkunen. S; Niemi. P; Ahonen. T
Torppa. M; Eklund. K;
Sulkunen. S; Niemi. P; Ahonen. T
Torppa. M; Eklund. K;
Sulkunen. S; Niemi. P; Ahonen. T
Torppa. M; Eklund. K;
Sulkunen. S; Niemi. P; Ahonen. T
Torppa. M; Eklund. K;
Sulkunen. S; Niemi. P; Ahonen. T
Torppa. M; Eklund. K;
Sulkunen. S; Niemi. P;
Ahonen. T
Torppa. M; Eklund. K;
Sulkunen. S; Niemi. P; Ahonen. T
Torppa. M; Eklund. K;
Sulkunen. S; Niemi. P;
Ahonen. T
Salihu. L; Aro. M; Rasanen.
P
Duncan. LG; McGeown. SP; Griffiths. YM; Stothard. SE; Dobai. A
Duncan. LG; McGeown. SP; Griffiths. YM; Stothard. SE; Dobai. A

2018 PISA - evalua

2018 PISA - retriev

2018 PISA - Multiple choice

2018 PISA - written response

2018 Reading Fluency

2018 Reading Fluency - error search

2018 Reading Fluency - word chains

2018 Reading Fluency - sentence reading
2018 Reading comprehension - reading 1

2016 Early adolescence. Reading comprehension

2016 Early adolescence. Word identification - SWRT
$1375707668 \quad-0,588619466$ Finland
$1375707668 \quad-0,273877547$ Finland
$1375707668 \quad-0,306787511$ Finland

1375707668 -0,493690487 Finland
$1375707668 \quad-0,602686181$ Finland

1375707668 -0,614595535 Finland
1375707668 -0,825256762 Finland
$1375707668 \quad-0,613440365$ Finland
$233101132-0,135833613$ Kosovo

89 -0,120321627 United Kingdom

89 0,014157875 United Kingdom

Duncan. LG; McGeown. SP; Griffiths. YM; Stothard. SE; Dobai. A
Duncan. LG; McGeown. SP; Griffiths. YM; Stothard. SE; Dobai. A
Duncan. LG; McGeown. SP; Griffiths. YM; Stothard. SE; Dobai. A
Duncan. LG; McGeown. SP; Griffiths. YM; Stothard. SE; Dobai. A
Dennaoui. K; Nicholls. RJ; O'Connor. M; Tarasuik. J;
Kvalsvig. A; Goldfeld. S
Völkel. G; Seabi. J;
Cockcroft. K; Goldschagg. P
Ozturk. E
Smith. JK; Smith. LF; Gilmore. A; Jameson. M Smith. JK; Smith. LF;
Gilmore. A; Jameson. M
Bourke. L; Adams. AM
Bourke. L; Adams. AM Huestegge. L; Heim. S; Zettelmeyer. E; LangeKuttner. C
Huestegge. L; Heim. S; Zettelmeyer. E; LangeKuttner. C

2016 Early adolescence. Reading fluency

2016 Middle adolescence. Reading comprehension

2016 Middle adolescence. Word identification - SWRT

2016 Middle adolescence. Reading fluency
Academic Rating Scale (ARS) language and literacy
2016 scores
Readingcomprehension - Suffolk Reading Scale 2
2016 (SRS2)
2014 Reading comprehension - oral reading task

2012 Year 4, reading achievement - NEMP program
2012 Year 8, reading achievement - NEMP program
Expressive language - the expressive scale of the
2012 Reynell Developmental Languge Scales
Verbal comprehension - the comprehension scale of
2012 the Reynell Developmental Language Scales
Reading accuracy - The Neale Analysis of Reading
2012 Ability NARA II
Reading comprehension - The Neale Analysis of
2012 Reading Ability NARA II

211122

101

101
692338
$89-0,152787113$ United Kingdom
$50-0,146078424$ United Kingdom

50 0,297856486 United Kingdom
$50-0,11291425$ United Kingdom
$39-0,476532966$ Australia
$332-0,143851153$ South-Africa
206 -0,245746664 Turkey

250 -0,189092239 New Zealand
$250-0,298034958$ New Zealand
$31-0,532653494$ United Kingdom
$31-0,620280189$ United Kingdom

18 1,42693538 United Kingdom

18
1,279204298 United Kingdom

							United Nations of
Reynolds. ME; Fish. M	2010	Reading ability - The Group Reading Test 11 6-14	232	115	117	-0,329695348	America

Appendix 4.2.1: motivation

First author	Year	Task	N total	N girls	$\begin{aligned} & \mathrm{N} \\ & \text { boys } \end{aligned}$	Calculated_D	Country
Brody. DL; Scheiner. EY; Ben							
Ari. MD; Tzadok. Y; van der		Task orientation: questionnaires filled out by					
Aalsvoort. GM; Lepola. J	2020	kindergarten teachers	115	56	59	-0,252832602	Israel
Tian. Y; Fang. Y; Li. J	2018	Academic motivation scale: intrinsic motivation	569	324	245	0,31896287	China
Ishihara. T; Morita. N;							
Nakajima. T; Okita. K;							
Sagawa. M; Yamatsu. K	2018	SFAM: self-fulfillment achievement motivation	325	153	172	-0,123597032	United States
Ishihara. T; Morita. N;							
Nakajima. T; Okita. K;							
Sagawa. M; Yamatsu. K	2018	CAM: competitive achievement motivation	325	153	172	0,462000179	United States
Vantieghem. W; Van Houtte.		Academic Self-Regulation Scale: study motivation					
M	2018	Autonomous Motivation	6380	2948	3432	-0,127820626	Belgium
Vantieghem. W; Van Houtte.		Academic Self-Regulation Scale: study motivation					
M	2018	Controlled motivation	6380	2948	3432	0,051800908	Belgium
De Smedt. F; Merchie. E;							
Barendse. M; Rosseel. Y; De							
Naeghel. J; Van Keer. H	2018	Autonomous writing motivation	1577	766	811	-0,624847362	Belgium
De Smedt. F; Merchie. E;							
Barendse. M; Rosseel. Y; De							
Naeghel. J; Van Keer. H	2018	Controlled writing motivation	1577	766	811	0,254221769	Belgium
Brandenberger. CC;							
Hagenauer. G; Hascher. T	2018	Intrinsic academic motivation	348	179	169	0,413591239	Switzerland
Brandenberger. CC;							
Hagenauer. G; Hascher. T	2018	Introjected academic motivation	348	179	169	0,276254134	Switzerland

Brandenberger. CC;
Hagenauer. G; Hascher. T
Brandenberger. CC;
Hagenauer. G; Hascher. T
Lee. E
Lee. E
Lee. E
Lee. E
Pitsia. V; Biggart. A;
Karakolidis. A
Pitsia. V; Biggart. A;
Karakolidis. A
King. RB
King. RB
Sedgewick. F; Hill. V; Yates. R;
Pickering. L; Pellicano. E
Bugler. M; McGeown. S; St
Clair-Thompson. H
Bugler. M; McGeown. S; St Clair-Thompson. H
Bugler. M; McGeown. S; St Clair-Thompson. H
Bugler. M; McGeown. S; St Clair-Thompson. H
2018 External academic motivation
2018 Identified academic motivation
2017 Science intrinsic motivation
2017 Science Self-determination motivation
2017 Technology intrinsic motivation
2017 Technology Self-determination motivation
2017 Intrinsic mathemetics motivation
2017 Instrumental mathematics motivation
2016 Mastery-approach motivation
2016 Performance-approach motivation
2016 Social Motivation
2016 Adaptive Cognition
2016 Adaptive behavior
2016 Adaptive Cognition
2016 Maladaptive cognition
2016 Maladaptive behavior
2016 Adaptive behavior
2010

348	179	169	1,390265611	Switzerland
348	179	169	0,102250138	Switzerland
745	377	368	0,743179782	South Korea
745	377	368	0,400615515	South Korea
745	377	368	0,36176454	South Korea
745	377	368	0,143992454	South Korea
5125			0,288999063	Greece
5125			0,181759827	Greece
848	485	363	-0,230373717	Philippines
848	485	363	0,020442682	Philippines
23	13	10	-0,965745259	United Kingdom
253	110	143	-0,458131473	United Kingdom
253	110	143	-0,596218779	United Kingdom
253	110	143	0,030212397	United Kingdom
253	110	143	0,578606655	United Kingdom
324	162	162	0,01849876	United Kingdom
324	162	162	-0,085980793	United Kingdom
324	162	162	-0,603793271	United Kingdom

Bugler. M; McGeown. S; St
Clair-Thompson. H
Bugler. M; McGeown. S; St
Clair-Thompson. H
Bugler. M; McGeown. S; St
Clair-Thompson. H
Bugler. M; McGeown. S; St Clair-Thompson. H
Bugler. M; McGeown. S; St Clair-Thompson. H
Hadjichambis. AC; Georgiou.
Y; Paraskeva-Hadjichambi. D;
Kyza. EA; Mappouras. D
Wolter. I; Braun. E; Hannover.
B
Bugler. M; McGeown. SP; St
Clair-Thompson. H
Bugler. M; McGeown. SP; St
Clair-Thompson. H
Bugler. M; McGeown. SP; St
Clair-Thompson. H
Bugler. M; McGeown. SP; St Clair-Thompson. H
Bugler. M; McGeown. SP; St Clair-Thompson. H
Bugler. M; McGeown. SP; St Clair-Thompson. H
Bugler. M; McGeown. SP; St Clair-Thompson. H
Bugler. M; McGeown. SP; St Clair-Thompson. H

2016 Maladaptive behavior
2016 Adaptive Cognition
2016 Adaptive behavior
2016 Maladaptive cognition
2016 Maladaptive behavior
2016 Motivation in context of learning biology
2015 Reading motivation
2015 Self-Belief
2015 Valuing
2015 Learning focus
2015 Planning
2015 Task management
2015 Persistence
2015 Anxiety
2015 Failure Avoidance

324	162	162	$-0,215005298$	United Kingdom
240	105	135	$-0,295881738$	United Kingdom
240	105	135	$-0,082598558$	United Kingdom
240	105	135	$-0,342267881$	United Kingdom
240	105	135	0,123360048	United Kingdom
6465	3260	3205	$-0,189018693$	Cyprus
135	70	65	$-0,322074597$	Germany
750	366	384	$-0,12156669$	United Kingdom
750	366	384	$-0,211588451$	United Kingdom
750	366	384	$-0,226303209$	United Kingdom
750	366	384	$-0,068345454$	United Kingdom
750	366	384	$-0,240288846$	United Kingdom
750	366	384	$-0,202989113$	United Kingdom
750	366	384	$-0,512751429$	United Kingdom
750	366	384	0,130600121	United Kingdom

Bugler. M; McGeown. SP; St
Clair-Thompson. H
Bugler. M; McGeown. SP; St
Clair-Thompson. H
Bugler. M; McGeown. SP; St
Clair-Thompson. H
Bugler. M; McGeown. SP; St Clair-Thompson. H
Bugler. M; McGeown. SP; St Clair-Thompson. H
Bugler. M; McGeown. SP; St
Clair-Thompson. H
Arbabi. T; Vollmer. C; Dorfler.
T; Randler. C
Arbabi. T; Vollmer. C; Dorfler.
T; Randler. C
Schwabe. F; McElvany. N;
Trendtel. M
Schwabe. F; McElvany. N;
Trendtel. M
McGeown. SP; Duncan. LG; Griffiths. YM; Stothard. SE
McGeown. SP
McGeown. SP
McGeown. SP
McGeown. S; Goodwin. H; Henderson. N; Wright. P McGeown. S; Goodwin. H; Henderson. N; Wright. P
Kim. JI; Chung. H
Kim. JI; Chung. H

2015	Uncertain Control	750	366	384	-0,257752474	United Kingdom
2015	Self-sabotage	750	366	384	0,208110057	United Kingdom
2015	Disengagement	750	366	384	0,072878944	United Kingdom
2015	Oppositional classroom behavior	750	366	384	0,125261934	United Kingdom
2015	Cognitive problems/inattention	750	366	384	0,209756971	United Kingdom
2015	Hyperactivity	750	366	384	0,40932454	United Kingdom
2015	SELLMO: motivation: Learning objectives SELLMO: Motivation: Approach performance	1120	536	584	-0,104967957	Germany
2015	objectives	1120	536	584	0,095380906	Germany
2015	Reading motivation	4000	1980	2020	$-2,260290562$	Germany
2015	Reading motivation	4979	2435	2544	-5,040259937	Germany
2015	Reading motivation	312			-0,696852411	United Kingdom
2015	Reading Motivation (curiosity)	223	126	97	-0,425022849	United Kingdom
2015	Reading Motivation (challenge)	223	126	97	-0,179882692	United Kingdom
2015	Reading Motivation (involvement)	223	126	97	-0,412886469	United Kingdom
2012	Reading motivation: intrinsic	182	84	98	-0,463777242	United Kingdom
2012	Reading motivation: extrinsic	182	84	98	-0,173393533	United Kingdom
2012	Motivation to learn mathemetics: mastery approach Motivation to learn mathemetics: performance	187	86	105	0,135214853	Korea
2012	approach	187	86	105	0,115308305	Korea

Kim. J; Chung. H	2012	Motivation to learn mathemetics: intrinsic motivation	187	86	105	0,327364882
Cleary. TJ; Chen. PP	2009	Task interest	880	449	431	$-0,20820321$

Appendix 4.2.2: Risk seeking/taking

First author	Year	Task	N total	N girls	N boys	Calculated_D	Country
Popovac. M	2020	Child and adolescent online security (CHAOS) scale multi-wave longitudinal study of delinquency and rule-	1184	639	545	-0,269760116	South Africa
Rebellon. CJ	2019	violating behavior	661	388	273	0,320617899	USA
Harakeh. Z	2019	Balloon Analogue Risk Task (BART) Strengths and Difficulties Questionnaire (SDQ;	35	18	16	-0,045888409	Netherlands
Keyzers. A	2019	Goodman. 1997)	520	229	290	0,205608971	USA
Villarreal. DL	2018	Risky Behavior Questionnaire: Sexual behavior	659	343	316	0,077613772	USA
Villarreal. DL	2018	Risky Behavior Questionnaire: Substance use Current Sexual Activity and Risky Sexual Behavior:	659	343	316	0,027620285	USA
Ewing. SWF	2018	Frequency of sexual intercourse Current Sexual Activity and Risky Sexual Behavior:	169	54	115	0,304029802	USA
Ewing. SWF	2018	Frequency of condom use	169	54	115	0,157641174	USA
Arbel. R	2018	Daily risky behaviors questionnaire	103	46	57	0,117639222	USA
de Boer. A	2017	Balloon Analogue Risk Task (BART)	269	125	144	2,795449917	Netherlands
de Boer. A	2017	Balloon Analogue Risk Task (BART)	65	31	34	0,037972613	Netherlands
Morrongiello. BA	2017	Obstacle course	120	60	60	-0,110547443	Canada
Morrongiello. BA	2017	Photo sort task	120	60	60	0,270498198	Canada
Schmidt. NM	2017	Risky behavior index	879	431	448	0,09221835	USA
Sasson. H	2016	Risky online behaviors	495	229	266	0,371888465	Israel

Rovis. D
Wang. B
Wang. B
Sychareun. V
Sychareun. V
Sychareun. V
Morrongiello. BA
Morrongiello. BA
Daughters. SB
Lasenby-Lessard. J
Lasenby-Lessard. J
Stevens. E
Vermeersch. H
Vermeersch. H
Auerbach. RP
Morrongiello. BA
Geckil. E
Williams. LR

Engagement in sacral forms of risk behavior: antisocial
2015 behavior, gambling, and heavy drinking
2015 Sexual behavior
2015 Drug use
2013 Age at first sexual intercourse
2013 Number of lifetime sexual partners
2013 Number of sexual partner last 6 mo
2013 Intention to copy risk behavior (video)
2013 Intention to copy risk behavior (video)
2013 Balloon Analogue Risk Task (BART)
2013 Balance beam task
2013 Balance beam task
2013 Bicycle safety measures: Stopping
2013 Bicycle safety measures: Waiting
2013 Bicycle safety measures: Gap size
2013 Bicycle safety measures: Timing of entry
2013 Bicycle safety measures: Time to spare
2013 Bicycle safety measures: Stopping
2013 Bicycle safety measures: Waiting
2013 Bicycle safety measures: Gap size
2013 Bicycle safety measures: Timing of entry
2013 Bicycle safety measures: Time to spare
2013 Non-aggressive risk taking
2013 Aggressive risk taking
2012 Risky Behvaior Questionnaire-Adolescents
2012 Playground risk taking task
2011 Health Risk Behaviors Scale
2010 Balloon Analogue Risk Task (BART)

1137	568	569	0,618202678	Croatia
770	433	337	0,071090696	Bahamas
770	433	337	0	Bahamas
483	238	245	0,704251889	Laos
483	238	245	0,790190518	Laos
483	238	245	0,47675868	Laos
82	39	43	0,21913902	Canada
75	35	40	0,396601809	Canada
132	73	59	2,367918774	USA
53	29	24	0,863339634	Canada
49	26	23	0,066108216	Canada
52	26	26	$-0,176974322$	USA
52	26	26	$-0,549468704$	USA
52	26	26	$-0,062277399$	USA
52	26	26	$-0,622032074$	USA
52	26	26	0,718224149	USA
57	26	31	0,246210114	USA
57	26	31	0,119434096	USA
57	26	31	0,158800359	USA
57	26	31	$-0,574602178$	USA
57	26	31	0,814122512	USA
599	298	301	0,55878601	Belgium
599	298	301	0,822157754	Belgium
151	83	68	$-0,45913015$	Canada
70	38	32	1,346765203	Canada
1361	655	706	0,362236725	Turkey
137	72	65	0,297127393	USA
			0	

Appendix 4.2.3: Confidence/self-esteem

First author	Year	Task	N total	N girls	$\begin{aligned} & \mathrm{N} \\ & \text { boys } \end{aligned}$	Calculated_D	Country
Metsapelto et al.	2020	Rosenberg Self-Esteem Scale	557			0,280196259	Finland
de la Garza et al.	2019	Rosenberg Self-Esteem Scale	350	165	185	0,223771633	Mexico
Xiang et al.	2019	T1: Rosenberg Self-Esteem Scale	246			0,136238009	China
Xiang et al.	2019	T2: Rosenberg Self-Esteem Scale	248	132	116	-0,095335634	China
Xiang et al.	2019	T3: Rosenberg Self-Esteem Scale	243			-0,128272849	China
Alm \& Laftman	2018	Stockholm School Survey	321777	16280	15897	0,791796686	Sweden
Liu et al.	2018	Rosenberg Self-Esteem Scale	612	358	254	0,035414519	China
Chen et al.	2018	Wave 1: Rosenberg Self-Esteem Scale	276	119	157	-0,147351745	China
Chen et al.	2018	Wave 2: Rosenberg Self-Esteem Scale	276	119	157	-0,135349941	China
Duraku \& Kelmendi	2018	Rosenberg Self-Esteem Scale 	200	97	103	0,075679611	Kosovo
Federicova et al.	2018	CLoSE 4th Grade 	2945	1422	1523	0,122207735	Czech Republic
Federicova et al.	2018	CLoSE 5th Grade General Self-Esteem scale of the Self-Description	2945	1422	1523	0,310544379	Czech Republic
Hernandez et al.	2017	Questionnaire II-Short 5th grade General Self-Esteem scale of the Self-Description	674	337	337	-0,016541924	US (CA)
Hernandez et al.	2017	Questionnaire II-Short 7th grade General Self-Esteem scale of the Self-Description	674	337	337	-0,08615569	US (CA)
Hernandez et al.	2017	Questionnaire II-Short 9th grade Ryff Well-Being Scale \& Rosenberg Self-Esteem	674	337	337	0,086874449	US (CA)
Ja \& Jose.	2017	Scale	1996	1038	958	0,136811691	New Zealand

Aanesen et al.	2017	T1: Rosenberg Self-Esteem Scale	751	383	398	0,498158403	Norway
Aanesen et al.	2017	T2: Rosenberg Self-Esteem Scale T1: Self-Description Questionnaire I (SDQ-I)	751	383	398	0,877877615	Norway
Coelho et al.	2017	General Self scale T2: Self-Description Questionnaire I (SDQ-I)	1147	524	623	0,018563358	Portugal
Coelho et al.	2017	General Self scale T3: Self-Description Questionnaire I (SDQ-I)	1147	524	623	-0,053860354	Portugal
Coelho et al.	2017	General Self scale T4: Self-Description Questionnaire I (SDQ-I)	1147	524	623	-0,095134188	Portugal
Coelho et al.	2017	General Self scale	1147	524	623	-0,057413733	Portugal
Zeng et al.	2017	Rosenberg Self-Esteem Scale	11819	5674	6145	0,109201304	China
Choi \& Choi	2016	5 item self esteem measure (USA)	1002	550	452	0,232819076	USA
Choi \& Choi	2016	5 item self esteem measure (SK)	3933	1929	2004	0,121629219	South Korea
Malik \& Kaiser	2016	Rosenberg Self-Esteem Scale T1: Self-Descriptive Questionnaire (Math	400	200	200	0,242377709	India
Ganley \& Lubienski	2016	confidence) T2: Self-Descriptive Questionnaire (Math	7040	3580	3460	0,322891426	USA
Ganley \& Lubienski	2016	confidence) T3: Self-Descriptive Questionnaire (Math	7040	3580	3460	0,290930359	USA
Ganley \& Lubienski	2016	confidence)	7040	3580	3460	0,148817988	USA
Mayer-Brown et al.	2016	Harter Self-Perception Profile for Children	179	97	82	-0,116112458	USA
Moksnes \& Lazarewicz	2016	Rosenberg Self-Esteem Scale	1237	634	603	0,888176118	Norway
Wu et al.	2015	T1: Children's Self-Esteem Scale	816	394	422	-0,118766534	China
Wu et al.	2015	T2: Children's Self-Esteem Scale	816	394	422	-0,035796245	China
Wu et al.	2015	T3: Children's Self-Esteem Scale Selbstwertinventar für Kinder und Jugendliche	816	394	422	0,103549081	China
Schone et al.	2015	SEKJ (academic Contingent Self-Esteem scale) Selbstwertinventar für Kinder und Jugendliche	338	163	175	-0,121855467	Germany
Schone et al.	2015	SEKJ (Self-Esteem scale)	338	163	175	0,257228234	Germany

		Selbstwertinventar für Kinder und Jugendliche					
Schone et al.	2015	SEKJ (academic Contingent Self-Esteem scale) Selbstwertinventar für Kinder und Jugendliche	558	275	283	-0,196971884	Germany
Schone et al.	2015	SEKJ (Self-Esteem scale) Selbstwertinventar für Kinder und Jugendliche	558	275	283	0,328169023	Germany
Schone et al.	2015	SEKJ (academic Contingent Self-Esteem scale) Selbstwertinventar für Kinder und Jugendliche	990	504	486	$-0,411950178$	Germany
Schone et al.	2015	SEKJ (Self-Esteem scale) reading confidence items from Progress in	990	504	486	0,512726082	Germany
McGeown et al.	2015	International Reading Literacy Study (PIRLS)	203	100	103	-0,353330153	England
Schmidt et al.	2015	W2: Rosenberg Self-Esteem Scale	428	198	230	0,231671298	Switzerland
Schmidt et al.	2015	W3: Rosenberg Self-Esteem Scale	428	198	230	0,218651967	Switzerland
McKay et al.	2014	Rosenberg Self-Esteem Scale	610	372	238	0,542978491	Northern Ireland
Wood et al.	2014	Rosenberg Self-Esteem Scale	25	13	12	-0,395896288	UK
Tan \& Tan	2014	Rosenberg Self-Esteem Scale	298	155	143	0,37583824	Singapore
Moksnes \& Espnes	2013	Rosenberg Self-Esteem Scale	1289	636	603	0,904258829	Norway
Witherspoon et al.	2013	Rosenberg Self-Esteem Scale	235	116	119	0,101258337	USA
Ramiro et al. Lo Cascio. V; Guzzo. G; Pace.	2013	Rosenberg Self-Esteem Scale	1005	529	470	0,116369573	Spain
F; Pace. U	2013	Rosenberg Self-Esteem Scale	350	149	201	0,53979369	Italy
Zeiders et al.	2013	T1: Rosenberg Self-Esteem Scale	323	160	163	0,200940284	USA
Wang et al.	2013	Rosenberg Self-Esteem Scale	6045	3572	2473	0,264845191	Taiwan
Richardson et al.	2013	Rosenberg Self-Esteem Scale	1267	718	549	0,524232367	Canada
Soler et al.	2012	Rosenberg Self-Esteem Scale	712	458	254	0,871665539	Spain
Soler et al.	2012	Rosenberg Self-Esteem Scale	712	458	254	0,541619167	Spain
Makinen et al.	2012	Rosenberg Self-Esteem Scale	1343	650	693	0,859398243	Finland
Litwack et al.	2012	Rosenberg Self-Esteem Scale	245	142	103	0,035509229	USA
Sahranavard et al.	2012	Coopersmith Self-Esteem Inventory (CSEI)	680	364	316	-0,491767966	Iran
McKay et al.	2012	Rosenberg Self-Esteem Scale	4088	2062	2026	0,668999242	Northern Ireland

		Pictorial Self-Evaluation Scale (PSES) for Young					
Doumen et al.	2011	Children	139	69	70	-0,467941676	Belgium
Doumen et al.	2011	General Self-Concept Scale (SDQ-I)	139	69	70	0,072907024	Belgium
Doumen et al.	2011	Puppet Interview (Cassidy. 1988)	139	69	70	-0,39520482	Belgium China (Hong
Cheung \& Yeung	2011	Pier-Harris Inventory (academic self-esteem)	566	248	318	$-0,149267343$	Kong)
van den Berg et al.	2010	Rosenberg Self-Esteem Scale	4734	2357	2377	0,498302967	USA (MN)
Vlachioti et al.	2010	Culture-Free Self-Esteem Inventory for Children (CFSEI-2)	136	69	67	0,072575876	Greece

Appendix 4.2.4: Emotional intelligence

First author	Year		Task	N total	N girls	N boy s	Calculated_ D	Country
			El dimension: intrapersonal (BarOn Emotional					Spain
Herrera. L.		2020	Quotient Inventory)	407	215	192	0,033736301	
			El dimension: interpersonal (BarOn Emotional					
Herrera. L.		2020	Quotient Inventory)	407	215	192	0,408663285	Spain
			El dimension: stress management (BarOn Emotional					
Herrera. L.		2020	Quotient Inventory)	407	215	192	0,528560512	Spain
			El dimension: adaptdability (BarOn Emotional					
Herrera. L.		2020	Quotient Inventory)	407	215	192	0,393150843	Spain
			El: percieved emotional clarity measured by The					
Lopez-			Perceived Emotional Intelligence Scale-24 (Trait Meta-				-	
Martinez. P.		2019	Mood Scale-24)	1304	693	611	0,011812735	Spain
			El: perceived emotional attention measured by The					
Lopez-			Perceived Emotional Intelligence Scale-24 (Trait Meta-				-	
Martinez. P.		2019	Mood Scale-24)	1304	693	611	0,333061163	Spain

Lopez-
Martinez. P.
Gugliandolo
. MC.

Gugliandolo
. MC.

Gugliandolo
. MC.
Amado-
Alonso. D.
Amado-
Alonso. D.
Amado-
Alonso. D.
Amado-
Alonso. D.

Amado-
Alonso. D.

Amado-
Alonso. D.
Salavera. C.
Salavera. C.

El: percieved emotional repair measured by The
Perceived Emotional Intelligence Scale-24 (Trait Meta-
2019 Mood Scale-24)
trait EI measured by the Trait Emotional Intelligence
Questionnaire-Child Form (TEIQue-CF; Mavroveli et
2019 al.. 2008)
trait El measured by the Trait Emotional Intelligence
Questionnaire-Child Form (TEIQue-CF; Mavroveli et
2019 al. 2008)
trait El measured by the Trait Emotional Intelligence Questionnaire-Child Form (TEIQue-CF; Mavroveli et
2019 al.. 2008)
Emotional Quotient: as a whole measured by Emotional Quotient Inventory: Young Version (EQ-i:
2019 YV)
Emotional Quotient: Intrapersonal measured by Emotional Quotient Inventory: Young Version (EQ-i: 2019 YV)

Emotional Quotient: Interpersonal measured by Emotional Quotient Inventory: Young Version (EQ-i:
2019 YV)
Emotional Quotient: Coping with stress measured by Emotional Quotient Inventory: Young Version (EQ-i:
2019 YV)
Emotional Quotient: Adaptability measured by
Emotional Quotient Inventory: Young Version (EQ-i:
2019 YV) \& 2
Emotional Quotient: Mood State measured by
Emotional Quotient Inventory: Young Version (EQ-i:
2019 YV)
2019 El: well-being
2019 Ei: self-controll skills

1304693611 0,010884152 Spain
$91 \quad 4051$ 0,271732397 Italy
$11150 \quad 61$ 0,054377908 Italy
98

Salavera. C.	2019	El: emotional skills	1358	667	691	0,221043639	Spain
Salavera. C.	2019	El: social skills	1358	667	691	0,00483957	Spain
		Time 1: El: emotional attention measured byt he					
		Spanish adaptation of the Trait Meta-Mood Scale					
Gomez-		(TMMS;					
Baya. D.	2018	Salovey et al.. 1995; Fernandez-Berrocal et al.. 2004)	880	461	419	0,517384176	Spain
		Time 1: EI: emotional clarity measured byt he Spanish					
Gomez-		adaptation of the Trait Meta-Mood Scale (TMMS;					
Baya. D.	2018	Salovey et al.. 1995; Fernandez-Berrocal et al.. 2004)	880	461	419	0,055375	Spain
		Time 1: EI: emotional repair measured byt he Spanish					
Gomez-		adaptation of the Trait Meta-Mood Scale (TMMS;					
Baya. D.	2018	Salovey et al.. 1995; Fernandez-Berrocal et al.. 2004)	880	461	419	0,2218882	Spain
		Time 2: El: emotional attention measured byt he					
		Spanish adaptation of the Trait Meta-Mood Scale					
Gomez-		(TMMS;					
Baya. D.	2018	Salovey et al.. 1995; Fernandez-Berrocal et al.. 2004)	880	461	419	0,415462137	Spain
		Time 2: EI: emotional clarity measured byt he Spanish					
Gomez-		adaptation of the Trait Meta-Mood Scale (TMMS;					
Baya. D.	2018	Salovey et al.. 1995; Fernandez-Berrocal et al.. 2004)	880	461	419	0,2746026	Spain
		Time 2: El: emotional repair measured byt he Spanish					
Gomez-		adaptation of the Trait Meta-Mood Scale (TMMS;					
Baya. D.	2018	Salovey et al.. 1995; Fernandez-Berrocal et al.. 2004)	880	461	419	0,323989541	Spain
		El as whole measured by the Wong and Law					
Rey. L.	2018	Emotional Intelligence Scale' (WLEIS)	1645	832	813	0,205000069	Spain
		El: Self-emotion appraisal measured by the Wong and					
Rey. L.	2018	Law Emotional Intelligence Scale' (WLEIS)	1645	832	813	0,3626093	Spain
		El: Other-emotion appraisal measured by the Wong					
Rey. L.	2018	and Law Emotional Intelligence Scale' (WLEIS)	1645	832	813	0,306367153	Spain
		El: Use of emotions measured by the Wong and Law					
Rey. L.	2018	Emotional Intelligence Scale' (WLEIS)	1645	832	813	0,138562891	Spain

Rey. L.
Peachey.
AA.

Esnaola. I.
Esnaola.I.

Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.

Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.

Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.

El: Regulation of emotions measured by the Wong and 2018 Law Emotional Intelligence Scale' (WLEIS)

2017 El measured by TEIQue-CSF.
Grade 7: Time 1: EI: Intrapersonal measured by [EQ-i: YV(s), Bar-On \& Parker, 2000, translated by Caraballo 2017 \& Villegas, 2001].

2017 Grade 7: Time 1: EI: Interpersonal
2017 Grade 7: Time 1: El: Stress management
2017 Grade 7: Time 1: EI: Adaptability
2017 Grade 8: Time 1: EI: Intrapersonal
2017 Grade 8: Time 1: EI: Interpersonal
2017 Grade 8: Time 1: El: Stress management
2017 Grade 8: Time 1: EI: Adaptability
2017 Grade 9: Time 1: EI: Intrapersonal
2017 Grade 9: Time 1: El: Interpersonal
2017 Grade 9: Time 1: El: Stress management
2017 Grade 9: Time 1: EI: Adaptability
2017 Grade 10: Time 1: EI: Intrapersonal
2017 Grade 10: Time 1: El: Interpersonal
2017 Grade 10: Time 1: El: Stress management
2017 Grade 10: Time 1: EI: Adaptability
2017 Grade 11: Time 1: EI: Intrapersonal

1645	832	813	0,441942256	Spain
235	120	115	0,193997049	
83	37	46	0,183640606	Spain
83	37	46	0,877323328	Spain
83	37	46	0,845409652	Spain
83	37	46	0,365196538	Spain
81	34	47	0,047711731	Spain
81	34	47	0,432406575	Spain
81	34	47	0,122960576	Spain
81	34	47	0,145569953	Spain
88	44	44	0,379288259	Spain
88	44	44	-0,95728563	Spain
88	44	44	0,388755676	Spain
88	44	44	0,140760969	Spain
75	46	29	0,655343758	Spain
75	46	29	0,440650563	Spain
75	46	29	0,191764465	Spain
75	46	29	0,269652137	Spain
89	49	40	0,12777517	Spain

Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.

Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola. I.
Esnaola.I.

Esnaola. I.
Esnaola.I.
Esnaola. I.
Esnaola. I.

2017 Grade 11: Time 1: El: Interpersonal
2017 Grade 11: Time 1: El: Stress management
2017 Grade 11: Time 1: EI: Adaptability
2017 Grade 12: Time 1: EI: Intrapersonal
2017 Grade 12: Time 1: EI: Interpersonal
2017 Grade 12: Time 1: El: Stress management
2017 Grade 12: Time 1: EI: Adaptability
2017 Grade 7: Time 2: EI: Intrapersonal
2017 Grade 7: Time 2: El: Interpersonal
2017 Grade 7: Time 2: EI: Stress management
2017 Grade 7: Time 2: EI: Adaptability
2017 Grade 8: Time 2: EI: Intrapersonal
2017 Grade 8: Time 2: El: Interpersonal
2017 Grade 8: Time 2: EI: Stress management
2017 Grade 8: Time 2: EI: Adaptability
2017 Grade 9: Time 2: EI: Intrapersonal
2017 Grade 9: Time 2: El: Interpersonal
2017 Grade 9: Time 2: El: Stress management
2017 Grade 9: Time 2: EI: Adaptability
2017 Grade 10: Time 2: EI: Intrapersonal

89	49	40	0,228500902	Spain
89	49	40	0,043169796	Spain
89	49	40	0,724360358	Spain
68	48	20	0,007969514	Spain
68	48	20	1,073587568	Spain
68	48	20	1,142283755	Spain
			-	
68	48	20	0,273179844	Spain
83	37	46	0,289163374	Spain
83	37	46	1,331165753	Spain
83	37	46	0,667636471	Spain
83	37	46	0,255443601	Spain
83	37		47	0,117845627

Esnaola. I.	2017	Grade 10: Time 2: El: Interpersonal	75	46	29	0,593921206	Spain
Esnaola. I.	2017	Grade 10: Time 2: El: Stress management	75	46	29	0,492409063	Spain
Esnaola. I.	2017	Grade 10: Time 2: El: Adaptability	75	46	29	0,009856279	Spain
Esnaola. I.	2017	Grade 11: Time 2: El: Intrapersonal	89	49	40	0,104385421	Spain
Esnaola. I.	2017	Grade 11: Time 2: El: Interpersonal	89	49	40	0,768270517	Spain
Esnaola. I.	2017	Grade 11: Time 2: El: Stress management	89	49	40	0,350755714	Spain
Esnaola. I.	2017	Grade 11: Time 2: El: Adaptability	89	49	40	0,573835435	Spain
Esnaola. I.	2017	Grade 12: Time 2: El: Intrapersonal	68	48	20	0,041494386	Spain
Esnaola. I.	2017	Grade 12: Time 2: El: Interpersonal	68	48	20	0,549343897	Spain
Esnaola. I.	2017	Grade 12: Time 2: EI: Stress management	68	48	20	0,994303123	Spain
Esnaola. I.	2017	Grade 12: Time 2: El: Adaptability El: Time 1: Emotional Attention measured by the Spanish validated version of the Trait Meta-Mood Scale (TMMS; Fernandez-	68	48	20	0,109613713	Spain
Gomez-		Berrocal, Extremera \&					
Baya. D.	2017	Ramos, 2004; Gomez-Baya, 2014; Salovey et al., 1995) El: Time 1: Emotional Clarity measured by the Spanish validated version of the Trait Meta-Mood Scale (TMMS; Fernandez-	878	342	536	-0,31260157	Spain
Gomez-		Berrocal, Extremera \&					
Baya. D.	2017	Ramos, 2004; Gomez-Baya, 2014; Salovey et al., 1995) El: Time 1: Emotional Repair measured by the Spanish validated version of the Trait Meta-Mood Scale (TMMS; Fernandez-	878	342	536	0,074847235	Spain
Gomez-		Berrocal, Extremera \&					
Baya. D.	2017	Ramos, 2004; Gomez-Baya, 2014; Salovey et al., 1995)	878	342	536	0,343806817	Spain

Herrera. L.

Herrera. L.

Herrera. L.

Herrera. L.

Herrera. L.

Herrera. L.
Gomez-
Baya. D.
Moreno-
Manso. JM.

El: total measured by the Emotional Quotient Inventory: Youth Version (EQi: YV, Bar-On \& Parker,

2017 2000)

EI: Intrapersonal measured by the Emotional Quotient Inventory: Youth Version (EQi: YV, Bar-On \& Parker,

2017 2000

EI: interpersonal measured by the Emotional Quotient Inventory: Youth Version (EQi: YV, Bar-On \& Parker, 2017 2000)

El: Stress Management measured by the Emotional
Quotient Inventory: Youth Version (EQi: YV, Bar-On \&

2017 Parker, 2000)

EI: Adaptability measured by the Emotional Quotient Inventory: Youth Version (EQi: YV, Bar-On \& Parker,

20172000

EI: General Mood measured by the Emotional
Quotient Inventory: Youth Version (EQi: YV, Bar-On \& 2017 Parker, 2000)

El: Time 1: Emotional Attention measured by the Trait 2016 Meta-Mood Scale

El: Time 1: Emotional Clarity measured by the Trait
2016 Meta-Mood Scale
EI: Time 1: Emotional Repair measured by the Trait
2016 Meta-Mood Scale
El: Time 2: Emotional Attention measured by the Trait
2016 Meta-Mood Scale
El: Time 2: Emotional Clarity measured by the Trait
2016 Meta-Mood Scale
El: Time 2: Emotional Repair measured by the Trait
2016 Meta-Mood Scale
2016 version of the Trait Meta-Mood Scale of Mayer,

1451	727	724	0,004597625	Colombia
1451	727	724	0,205131436	Colombia
1451	727	724	0,197222814	Colombia
1451	727	724	0,014730224	Colombia
1451	727	724	0,203335884	Colombia
1451	727	724	\#VERW!	Colombia
714	362	352	0,307364242	Spain
714	362	352	0,079439849	Spain
714	362	352	0,375184372	Spain
714	362	352	0,400228852	Spain
714	362	352	0,16833785	Spain
714	362	352	0,286385571	Spain
66	29	37	0,149591518	Spain

Moreno-
Manso. JM.

Moreno-
Manso. JM.

Andrei. F.

Andrei. F.
Gugliandolo
. MC.
Gugliandolo
. MC.
Gugliandolo
Gugliandolo
. MC.
Gugliandolo
. MC.

DiPaolo, and Salovey (1990)
(TMMS-24; Fernández-Berrocal, Extremera, and
Ramos 2004)
El: Emotional Clarity measured by The Spanish version
of the Trait Meta-Mood Scale of Mayer, DiPaolo, and Salovey (1990)
(TMMS-24; Fernández-Berrocal, Extremera, and
2016 Ramos 2004)
EI: Emotional Repair measured by The Spanish version of the Trait Meta-Mood Scale of Mayer, DiPaolo, and Salovey (1990)
(TMMS-24; Fernández-Berrocal, Extremera, and
2016 Ramos 2004)
trait El measured by the Italian Trait Emotional Intelligence Questionnaire-Child Form (TEIQue-CF; Russo et al., 2012;
2015 Mavroveli, Petrides, Shove, \& Whitehead, 2008 trait El measured by the Italian Trait Emotional Intelligence Questionnaire—Child Form (TEIQue-CF; Russo et al., 2012;
2015 Mavroveli, Petrides, Shove, \& Whitehead, 2008
2015 trait El: well-being
2015 trait El: self-control

2015 trait El: emotionality

2015 trait El: sociability

2015 global trait El

$66 \quad 2937$ 0,149591518 Spain

376195181 0,388420298 Italy
$202107 \quad 95$ 0,306286997 Italy
263130133 0,234771284 Italy

263130133 0,184439699 Italy

263130133 0,136927098 Italy

263130133 0,046932722 Italy

Castillo. R.

Castillo. R.

Topcu. C.

Naghavi. F.

Naghavi. F.

Naghavi. F.

Hogan. MJ.

Hogan. MJ.

Naghavi. F.

Cognitive empathy: Perspective-taking measured by The Spanish version (Pérez-Albéniz et al., 2003) of the

2013 Interpersonal Reactivity Index (IRI; Davis, 1983) Cognitive empathy: Fantasy measured byThe Spanish version (Pérez-Albéniz et al., 2003) of the

2013 Interpersonal Reactivity Index (IRI; Davis, 1983) Cognitive empathy measured by Basic Empathy Scale

2012 (BES)

El measured by Schutte's Emotional Intelligence Selfmeasuring Scale (introduced by Schutte and her colleagues in 1998 and Mayer and Salovey's original
2012 emotional intelligence model, 1990)
Emotional Intelligence measured by Schutte's Selfmeasuring Scale (introduced by Schutte and her colleagues in 1998 and Mayer and Salovey's original

2012 emotional intelligence model, 1990)
Emotional Regulation measured by Schutte's
Emotional Intelligence Self-measuring Scale
(introduced by Schutte and her colleagues in 1998 and
Mayer and Salovey's original emotional intelligence
2012 model, 1990)
Emotional Utllization measured by Schutte's Emotional Intelligence Self-measuring Scale (introduced by Schutte and her colleagues in 1998 and Mayer and Salovey's original emotional intelligence
2012 model, 1990)
E.I: general measured by The Emotional Quotient Inventory: Youth
2010 Version (EQ-i:YV) (Bar-On \& Parker, 2000a)
E.I: intrapersonal measured by The Emotional

Quotient Inventory: Youth
2010 Version (EQ-i:YV) (Bar-On \& Parker, 2000a)

118111 0,335742568 Spain

229118111 0,203406898 Spain

455340 0,664996616 Turkey

118116 3,498527161 Iran

234118116 3,989714716 Iran

118116 4,219114352 Iran

0,013115584 Canada

Hogan. MJ.

Hogan. MJ.

Hogan. MJ.

Jordan. JA.

Jordan. JA.

Jordan. JA.

Jordan. JA.

Jordan. JA.
Williams. C.
Williams. C.
E.I: interpersonal measured by The Emotional Quotient Inventory: Youth
2010 Version (EQ-i:YV) (Bar-On \& Parker, 2000a) E.I: adaptabilitymeasured by The Emotional Quotient Inventory: Youth
2010 Version (EQ-i:YV) (Bar-On \& Parker, 2000a)
E.I: stress management measured by The Emotional Quotient Inventory: Youth
2010 Version (EQ-i:YV) (Bar-On \& Parker, 2000a)
El: interpersonal measured by the long form of the Bar-On Emotional Quotient Inventory Youth Version (EQ-i:YV;
2010 Bar-On and Parker 2000)
El: intrapersonal measured by the long form of the Bar-On Emotional Quotient Inventory Youth Version (EQ-i:YV;
2010 Bar-On and Parker 2000)
EI: stress management measured by the long form of the Bar-On Emotional Quotient Inventory Youth Version (EQ-i:YV;
2010 Bar-On and Parker 2000)
El adaptability measured by the long form of the BarOn Emotional Quotient Inventory Youth Version (EQi:YV;
2010 Bar-On and Parker 2000)
El total measured by the long form of the Bar-On
Emotional Quotient Inventory Youth Version (EQ-i:YV;
2010 Bar-On and Parker 2000)
Ability El measured by The Emotion Focusing Task
2009 (EFT)
2009 Ability El measured by Story Stems

49
0,297966944 Northern Ireland

Williams. C.

Williams. C.
Williams. C.

2009 Ability El measured by Facial Expression Recognition Trait El measured by the Trait Emotional Intelligence Questionnaire - Adolescent Short Form (TEIQue -
2009 ASF
Trait El measured by the Schutte Self-Report
2009 Emotional Intelligence (SSREI; Schutte et al., 1998)
$598 \quad 311 \quad 287 \quad 0,134529225$ North Wales

Appendix 4.2.5: Emotion regulation

First author	Year	Task	$\begin{aligned} & \mathrm{N} \\ & \text { total } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \text { girls } \end{aligned}$	\mathbf{N} boys	Calculated_ D	Country
Suh et al..	201	Emotion Regulation Checklist	271	123	148	0,398760294	South Korea
	9						
	201					0,379182714	
Suh et al..	9	Emotion Regulation Checklist	271	123	148		South Korea
	201					0,	
Suh et al..	9	Emotion Regulation Checklist	271	123	148	0,178781622	South Korea
	201						
Suh et al..	9	Emotion Regulation Checklist	271	123	148	0,370294768	South Korea
	201						
Rueth et al..	9	Regulations of Emotions Questionnaire	1018	576	442	$0,158608984$	Germany
	201						
Rueth et al..	9	Regulations of Emotions Questionnaire	1018	576	442	0,104329657	Germany
	201						
Rueth et al..	9	Regulations of Emotions Questionnaire	1018	576	442	$-0,12927146$	Germany
	201						
Rueth et al..	9	Regulations of Emotions Questionnaire	1018	576	442	$0,390169003$	Germany
	201						
Rueth et al..	9	Regulations of Emotions Questionnaire	1018	576	442	0,659946869	Germany

Rueth et al..	201						Germany
	9	Regulations of Emotions Questionnaire	1018	576	442	0,053639452	
	201					- -	
Kokonyei et al..	9	Cognitive Emotion Regulation Questionnaire - short	1646	611	1035	0,261661051	Hungary
	201					-	
Kokonyei et al..	9	Cognitive Emotion Regulation Questionnaire - short	1646	611	1035	0,079908223	Hungary
	201						
Kokonyei et al..	9	Cognitive Emotion Regulation Questionnaire - short	1646	611	1035	-0,43731138	Hungary
	201					-	
Kokonyei et al..	9	Cognitive Emotion Regulation Questionnaire - short	1646	611	1035	0,057713587	Hungary
	201					-	
Kokonyei et al..	9	Cognitive Emotion Regulation Questionnaire - short	1646	611	1035	0,182798669	Hungary
	201					-	
Kokonyei et al..	9	Cognitive Emotion Regulation Questionnaire - short	1646	611	1035	0,123525507	Hungary
	201					-	
Kokonyei et al..	9	Cognitive Emotion Regulation Questionnaire - short	1646	611	1035	0,131441294	Hungary
	201					-	
Kokonyei et al..	9	Cognitive Emotion Regulation Questionnaire - short	1646	611	1035	0,208348174	Hungary
	201						
Kokonyei et al..	9	Cognitive Emotion Regulation Questionnaire - short	1646	611	1035	0,220416285	Hungary
	201	Messverfahren für emotionale Kompetenz bei					
Schaan et al..	9	Kindern im Vor- und Grundschulalter	15	7	8	0,590037261	Germany
	201	Messverfahren für emotionale Kompetenz bei				- -	
Schaan et al..	9	Kindern im Vor- und Grundschulalter	26	10	16	0,392467289	Germany
	201	Messverfahren für emotionale Kompetenz bei					
Schaan et al..	9	Kindern im Vor- und Grundschulalter	8	5	3	0,65815948	Germany
	201	Messverfahren für emotionale Kompetenz bei					
Schaan et al..	9	Kindern im Vor- und Grundschulalter	49	22	27	0,136233812	Germany
	201					-	
Garnet et al..	9	Emotion Regulation Checklist	109	55	54	0,329792521	USA
	201			179			
Boyes et al..	5	Emotion Regulation Questionnaire	2637	3	844	0,059180811	Australia

	201	
Boyes et al..	5	Emotion Regulation Questionnaire
Lu et al..	201	
	5	Emotion Regulation Questionnaire
Andres et al..	201	
	6	Cognitive Emotion Regulation Questionnaire
Andres et al..	201	
	6	Cognitive Emotion Regulation Questionnaire
Andres et al..	201	
Andres et al..	6	Cognitive Emotion Regulation Questionnaire
	201	
Andres et al..	6	Cognitive Emotion Regulation Questionnaire
	201	
Teixeira et al..	6	Cognitive Emotion Regulation Questionnaire
	201	Emotion Regulation Questionnaire - Children and
Teixeira et al..	5	Adolescents
Hadley et al..	201	Emotion Regulation Questionnaire - Children and
	5	Adolescents
Skripkauskaite et al..	201	
	5	Emotion Regulation Checklist
Skripkauskaite et al..	201	
Zhao et al..	5	Difficulties in Emotion Regulation Scale
Zhao et al..	201	
Roos et al..	5	Difficulties in Emotion Regulation Scale
	201	

2637	179			
	3	844	0,50960888	Australia
	214		-	
4316	5	2171	0,517188263	China
315	165	150	0,100900305	Argentina
315	165	150	0,360896852	Argentina
315	165	150	0,487004297	Argentina
315	165	150	0,033160264	Argentina
315	165	150	0,094318402	Argentina
809	476	333	0,021841583	Portugal
809	476	333	0,187272178	Portugal
376	182	194	-0,14529423	USA
482	207	275	0,293069246	Netherlands
482	207	275	0,212020138	Netherlands
504	316	188	0,082640214	China
504	316	188	0,369814181	China
				0,69989253
	307	174	133	7

Santas et al..	201	Difficulties in Emotion Regulation Scale	349	207	142	$0,07957274$	Turkey
	3						
	201						
Santas et al..	3	Difficulties in Emotion Regulation Scale	349	207	142	$0,119802936$	Turkey
	201						
Calvete et al..	2	Social Information Processing Questionnaire	1125	627	498	$0,298259046$	Spain
	201						
Monopoli et al..	2	Emotion Regulation Checklist	65	35	30	0,788945928	USA
	201					-	
Bowie	0	Child Self-report of Emotional Experience	111	60	51	0,131975894	USA
	201					-	
Bowie	0	Child Self-report of Emotional Experience	111	60	51	0,063183993	USA

Appendix 4.2.6: Self-regulation

Hubert et al..	2015	Self-regulation: Head-Toes-Knees-Shoulder task	138	66	72	0,363913512	France
Hubert et al..	2015	Self-regulation: Head-Toes-Knees-Shoulder task Academic self-regulation: Motivated Strategies for	138	66	72	0,163402558	France
Lee et al..	2014	Learning Questionnaire Academic self-regulation: Motivated Strategies for	499	253	246	0,120994006	USA
Lee et al..	2014	Learning Questionnaire Academic self-regulation: Motivated Strategies for	499	253	246	0,201757516	South Korea
Lee et al..	2014	Learning Questionnaire Academic self-regulation: Motivated Strategies for	499	253	246	0,010453645	South Korea
Lee et al..	2014	Learning Questionnaire	499	253	246	0,104459301	South Korea
Weis et al..	2013	Self-regulation: Self-control scale	53	34	19	0,694163266	Germany
von Suchodoletz et al..	2012	Self-regulation: Head-Toes-Knees-Shoulder task	190	100	90	0,443684516	Germany
von Suchodoletz et al..	2012	Self-regulation: Head-to-Toes task	111	55	56	0,037962799	Iceland
von Suchodoletz et al..	2012	Self-regulation: Head-Toes-Knees-Shoulder task	111	46	65	0,468924844	Iceland $0,21066389$
McCoy et al..	2011	Self-regulation: Barratt Impulsiveness Scale-11 (Cognitive)		215	99	116	8
McCoy et al..	2011	Self-regulation: Barrat Impulsiveness Scale-11 (Behaviou Self-regulation: Self Assessment Questionnaire -		215	99	116	0,32197008
Hong et al..	2009	Homework (self-check) Self-regulation: Self Assessment Questionnaire -	240	116	124	0,111683628	China
Hong et al..	2009	Homework (self-check)	294	179	115	0,144633722	China

Appendix 5: R code

packages <- c("readxl","meta","ggplot2","grid","knitr","scales")
\# This part automaically installs the packages if they are not already there
if $($ length $($ setdiff $($ packages, rownames $($ installed.packages ()$)))>0)\{$
install.packages(setdiff(packages, rownames(installed.packages()))))
\}
lapply(packages, library, character.only = TRUE)
text_col <- "black"
font_size <-12
col_gender_pres <- c("\#F3B7A8","\#525B5A")
data table <- NULL
temp_table <- NULL
tabselect $<-\mathrm{c}(4: 8,10: 14)$ \# Social skills toevoegen door 4 in 3 te veranderen
for($(\mathrm{i}$ in $\mathrm{c}($ tabselect $))\{$
temp_table <- read_excel("C:/Users/immel/Desktop/BP_2020_data/Table_for_Literature_Search.xlsx",sheet= i, skip=1,col_names=TRUE)[1:32]
temp_table_name <- as.data.frame(read_excel("C:/Users/immel/Desktop/BP_2020_data/Table_for_Literature_Search.xlsx",sheet= i, col_names $=F$) $[1,1]$) $[1,1]$

```
    temp_table <- cbind(temp_table_name,temp_table)
    names(temp_table)[1] <- 'Variable'
    data_table <- rbind(data_table,temp_table)
}
data_table <- data_table[complete.cases(data_table[,2]), ]
data_table <- data_table[!data_table[,2]=="<NA>", ]
data_table <- data_table[data_table$Include=='yes'&!is.na(data_table$Include),]
data_table$`sign (p-waarde)` <- ifelse(is.na(data_table$`sign (p-waarde)` ), data_table$Calculated_p,data_table$`sign (p-waarde)` )
data_table$`Cohens D` <- as.numeric(data_table$`Cohens D`)
data_table$`Cohens D` <- ifelse(is.na(data_table$`Cohens D`),data_table$Calculated_D,data_table$`Cohens D`)
data_table$`Cohens D` <- ifelse(data_table$`Reverse Cohen's D`=="yes",-1*data_table$`Cohens D`,data_table$`Cohens D`)
data_table[,'Mean boys'] <- ifelse(data_table\$`Reverse Cohen's D`=="yes"\&!is.na(data_table\$`Reverse Cohen's D`),-1*data_table[,'Mean boys'],data_table[,'Mean boys'])
data_table[,'Mean girls'] <- ifelse(data_table\$'Reverse Cohen's D`=="yes"\&!is.na(data_table\$`Reverse Cohen's D`),-1*data_table[,'Mean girls'],data_table[,'Mean girls'])
```

data $<$ - data_table
variable_names <- levels(data\$Variable)
data\$Study <- paste(gsub(" . * ", "", data\$'First author'),"et al.",data\$Year,sep=" ")
data $<-$ data[order(data\$Variable,data\$Study,data\$'Cohens D'),]
data\$Grouping_variable $<-$ data\$'Western?
table_Meta <- NULL
for $(\mathrm{i}$ in $\mathrm{c}(1$:length(variable_names) $))$ \{
\#Select all measures of the variable
table_Meta_temp $<$ - variable_names[i]
data_temp $<-$ data[data\$Variable==variable_names[i],]
\# This is the actual meta analysis boys are the exeperimental group, girls are the control group
m.hksj.raw <- meta::metacont(data_temp[,'N boys'],
data_temp[,'Mean boys'],

```
data_temp[,'SD boys'],
data_temp[,'N girls'],
data_temp[,'Mean girls'],
data_temp['SD girls'],
data=data_temp,
studlab=paste(Study),
byvar=Grouping_variable, # This is your grouping variable (depending on the quesion remove by commenting out)
    comb.fixed = TRUE,
comb.random = TRUE,
method.tau = "SJ",
hakn = TRUE,
prediction=TRUE,
sm="SMD")
```

m.hksj.raw
meta::forest(m.hksj.raw, lab.e="Boys", lab.c="Girls")
\# Add title of variable name
grid::grid.text(paste(variable_names[i],sep=" "), .5, .9, gp=grid::gpar(cex=2))
\# Save the graph in folder
filename<- paste("C:/Users/immel/Desktop/BP_2020_data/Forest_",variable_names[i],".pdf",sep="")
dev.copy(pdf,filename,width=595/50,height=842/50)
dev.off()
\# save outcome in a table
table_Meta_temp\$mean_ES <- m.hksj.raw\$TE.random
table_Meta_temp\$mean_ES_lower $<-$ m.hksj.raw\$lower.random
table_Meta_temp\$mean_ES_upper <- m.hksj.raw\$upper.random
table_Meta_temp\$sign_ES <- m.hksj.raw\$pval.random
table_Meta_temp\$heterogeneity <- m.hksj.raw\$pval.Q
table_Meta_temp\$School_type_p <- m.hksj.raw\$pval.Q.b.random
table_Meta $<-\operatorname{rbind}($ table_Meta,table_Meta_temp)
\}

kable(table_Meta)

write.table(table_Meta,file=paste("C:/Users/immel/Desktop/BP_2020_data/Tabel_meta_analysis.csv",sep=""),sep=",",row.names=F)

Appendix 6.1: Forest plot cognitive control/inhibition

Inhibition (Leonard)

Appendix 6.2: Forest plot intelligence

Heterogeneity: $\iota^{2}=82 \%, \tau^{2}=0.0227, p<0.01$

Grouping_variable $=1$	Rando				$\begin{aligned} & 3.000 \\ & 0 \end{aligned}$
Calvin, et al. 2010	m	89054	99.20	14.900	
Calvin, et al. 2010	effect	89054	100.60	0	3.000
Calvin, et al. 2010	s	89054	100.50	14.700	0
Carreras, et al. 2014	model	63	2.40	0	15.200
Gil-Espinosa, et al. 2019		74	23.92	14.900	0
Lemos, et al. 2013		828	8.77	0	3.000
Lemos, et al. 2013		828	9.72	0.640	00
Lemos, et al. 2013		828	14.14	0	3.000
Lemos, et al. 2013		828	12.77	5.760	15.300
Lemos, et al. 2013		828	10.34	0	15.300 0
Pezzuti, et al. 2016		1100	97.90	3.960	3.000
Pezzuti, et al. 2016		1100	10.20	0	3.000
Pezzuti, et al. 2016		1100	10.20	4.010	. 000
Pezzuti, et al. 2016		1100	10.10	0	0
Pezzuti, et al. 2016		1100	10.00	3.690	15.300
Pezzuti, et al. 2016		1100	99.80	0	15.300
Pezzuti, et al. 2016		1100	10.00	3.200	15.500
Pezzuti, et al. 2016		1100	10.00	0	0
Pezzuti, et al. 2016		1100	100.10	3.000	2.900
Pezzuti, et al. 2016		1100	10.00	0	2.900 0
Pezzuti, et al. 2016		1100	10.00	14.300	2.800
Pezzuti, et al. 2016		1100	100.30	O 3.100	0
Pezzuti, et al. 2016		1100	100.60	3.100	
Pezzuti, et al. 2016		1100	9.80	3.100	
Pezzuti, et al. 2016		1100	9.50	3.100	
Fixed effect model		287939		0	

89545
89545
89545
64
55
886
886
886
886
886
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
289684

99.70		2.900
99.30	14.100	0
10.20	0	2.900
10.50	13.800	0
	0	14.800
	13.500	0
	0	2.900
	0.630	0
	0	2.900
	7.220	0
	0	14.500
	3.520	0
	0	3.000
	4.030	0
	0	2.900
	3.720	0
	0	14.700
	3.220	0
	0	14.800
	3.010	0
	0	3.000
	15.600	0
	0	3.100
	2.800	0
	0	
	2.800	
	0	

Appendix 6.3: (Basic) language skills

(basic) Language skills (Nicole Loomans)

Appendix 6.4: motivation

Appendix 6.5: Risk-seeking/taking

Risk seekingtaking (Amy)

Appendix 6.6: confidence/self-esteem

Appendix 6.7: emotional intelligence

Heterogeneity: $I^{2}=91 \%, \tau^{2}=0.0775, p<0.01$

Grouping_variable $=0$	Ran				5.010				136.36		4.780
Herrera. et al. 2017	do	724	33.32	9.4	0	727		36.5	136.12	9.390	
Herrera. et al. 2017	m	724	44.82	900	4.510	727		6	129.52	0	5.410
Herrera. et al. 2017	effe	724	44.60	12.5	0	727		46.6	36.10	12.000	
Herrera. et al. 2017	cts	724	55.85	200	4.970	727		3		0	5.510
Naghavi. et al. 2012	mod	116	106.31	11.8	0	118	-	44.6		11.230	
Naghavi. et al. 2012	el	116	120.10	500	5.450	118		4		0	5.350
Naghavi. et al. 2012		116	121.84	15.6	0	118		53.5		16.740	0
Naghavi. et al. 2012		116	115.96	200		118		1		0	
Topcu. et al. 2012		340	33.46	3.9		455		130.4		6.020	
Fixed effect model		3700		900		3835		7		0	

Appendix 6.8: emotion regulation

Emotional regulation (San)

Appendix 6.9: self-regulation

Self-regulation (San)

Study	Total	Mean	Boys SD	Total	Mean	Girls SD	Standardised Mean Difference	SMD	95\%-CI	Weight (fixed)	Weight (random)
Grouping_variable $=0$											
Hong et al. 2009	124	2.58	0.6500	116	2.50	0.6100	-	0.13	[-0.13; 0.38]	4.1\%	5.4\%
Hong et al. 2009	115	2.47	0.6300	179	2.37	0.5300	1	0.17	[-0.06; 0.41]	4.7\%	5.5\%
Lee et al. 2014	246	3.24	0.9400	253	3.05	0.8900	-	0.21	[0.03; 0.38]	8.4\%	6.0\%
Lee et al. 2014	246	3.24	0.9500	253	3.14	0.9300	-	0.11	[-0.07; 0.28]	8.5\%	6.0\%
Lee et al. 2014	246	3.23	0.9700	253	3.24	0.8900	1	-0.01	[-0.19; 0.16]	8.5\%	6.0\%
Liu et al. 2018	305	5.99	2.2200	276	5.86	2.3300	"	0.06	[-0.11; 0.22]	9.9\%	6.1\%
Liu et al. 2018	311	6.33	2.1900	275	6.15	2.2100		0.08	[-0.08; 0.24]	9.9\%	6.1\%
Liu et al. 2018	313	6.15	2.2500	277	5.96	2.2100	1	0.09	[-0.08; 0.25]	10.0\%	6.1\%
Fixed effect model	1906			1882			,	0.10	[$0.03 ; 0.16]$	64.0\%	
Random effects model							10	0.10	[0.04; 0.15]	64.0	47.3\%
Heterogeneity: $l^{2}=0 \%, \tau^{2}=0.0015, p=0.81$											
Grouping_variable $=1$							\ldots				
Hubert et al. 2015	72	47.86	7.9400	66	48.85	7.9400	+	-0.12	[-0.46; 0.21]	2.3\%	4.6\%
Hubert et al. 2015	72	24.21	10.8800	66	27.18	10.0600	-	-0.28	[-0.62; 0.05]	2.3\%	4.6\%
Lee et al. 2014	246	3.20	0.8900	253	3.31	0.8600	+	-0.13	[-0.30; 0.05]	8.5\%	6.0\%
McCoy et al. 2011	116	-30.92	11.7000	99	-28.06	10.8600	-	-0.25	[-0.52; 0.02]	3.6\%	5.2\%
McCoy et al. 2011	116	-37.33	12.3800	99	-35.35	12.1500	\square	-0.16	[-0.43; 0.11]	3.6\%	5.2\%
Storksen et al. 2015	124	30.87	15.5700	119	38.13	14.9700	\square	-0.47	[-0.73; -0.22]	4.0\%	5.3\%
Storksen et al. 2015	124	4.08	0.9100	119	4.57	0.6500		-0.62	[-0.87; -0.36]	3.9\%	5.3\%
von et al. 2012	56	13.32	6.1800	55	13.50	6.4800	-	-0.03	[-0.40; 0.34]	1.9\%	4.3\%
von et al. 2012	90	27.13	10.8600	100	23.64	11.4700	\square	0.31	[0.02; 0.60]	3.2\%	5.1\%
von et al. 2012	65	32.27	6.1700	46	34.57	4.1300		-0.42	[-0.80; -0.04]	1.8\%	4.2\%
Weis et al. 2013	19	3.03	0.8600	34	3.64	0.7900	\bigcirc	-0.74	[-1.32; -0.16]	0.8\%	2.8\%
Fixed effect model	1100			1056				-0.23	$[-0.31 ;-0.14]$	36.0\%	--
Random effects model								-0.25	$[-0.43 ;-0.06]$	36.0\%	52.7\%
Heterogeneity: $I^{2}=70 \%, \tau^{2}=0.0594, p<0.01$											
Fixed effect model	3006			2938				-0.02	$[-0.07 ; 0.03]$	100.0\%	
Random effects model							1	-0.08	$[-0.21 ; 0.05]$,	100.0\%
Prediction interval									[-0.62; 0.46]		
Heterogeneity: $I^{2}=75 \%, \tau^{2}=0.0611, p<0.01$											

