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Abstract

In this thesis a detailed description of the KKLT scenario is given as well
as as a comparison with later papers critiquing this model. An attempt is
made to provide a some clarity in 17 years worth of debate. It concludes

with a summary of the findings and possible directions for further
research.
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Chapter 1
Introduction

During the turn of the last century it has become apparent that our uni-
verse is expanding and that this expansion is accelerating. When attempt-
ing to describe these observations using the Friedmann equations, derived
from general relativity, we find we need a energy source which behaves
as a gas with negative pressure. This appears as when we add up all
the known energy contributions and match it with the geometry of the
universe, which we can observe from for example the cosmic microwave
background, we find a miss match if we do not add such a contribution.
Such an energy contribution is known as a cosmological constant.
This was somewhat of a surprise, as up until then it was generally as-
sumed that the cosmological constant would be zero. Besides explaining
the current accelerated expansion the cosmological constant also provides
a way to explain the rapid expansion in the early universe known as infla-
tion and has become a fundamental part of the Λcdm model, the current
leading model in cosmology.
As mentioned above the cosmological constant behaves as a gas with neg-
ative pressure which means it has an energy contribution which does not
change under expansion of the universe, contrary to contributions form
matter and radiation which all fall of in density as the universe expands.
This property of not diminishing in energy density even during expansion
implies that the cosmological constant is a property of empty space, since
the new space that is created during expansion would also carry the en-
ergy with it thereby the total per volume does not change.
This energy of empty space is very well known in quantum field theory
where the groundstate, i.e. empty space, generally carries with it energy.
In the Feynmann diagram picture this comes from the summation over
loop diagrams, also known as quantum fluctuations of the vacuum. And
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8 Introduction

emerges in cosmology also as an explanation for the fluctuations in the
cosmic micro wave background. This vacuum energy we can calculate
using the standard model, our current best model of particle physics, by
preforming the summation over bubble diagrams. When preformed this
leads to an unexpected high energy for the vacuum, much higher than the
cosmological constant observed. This is the core of the cosmological con-
stant problem.
As the observational evidence for the cosmological constant is fundamen-
tally gravitational, one could argue that we should not search for our ex-
planation in the standard model as this does not include gravity. But we
can not simply ignore the result from the standard model, as independent
experiments, such as those measuring the Casimir force, have shown that
this vacuum energy does exist. Therefor even if we do not equate the result
of this calculation to the cosmological constant we still expect it to enter
in to the total cosmological constant of our universe. As at this point we
are attempting to explain a gravitational problem using a quantum theory,
it has become clear that we’ll need a theory of quantum gravity. This is
maybe the largest frontier of modern physics, a theory unifying both revo-
lutions of last century physics, general relativity and quantum mechanics.
One of the most prominent candidates for quantum gravity is string the-
ory, originally developed as a theory for the strong nuclear force but aban-
doned in favor of quantum chromodynamics. It’s formalism was later
realised to be able applicable to describe quantum gravity. The original
theory describing Bosonic particles was later expanded to be applicable
to Fermions as well. This required the introduction of supersymmetry,
a symmetry transforming Bosons in to Fermions and vice versa. This
was at the time seen as very promising as when in a supersymmetric the-
ory one counts the bubble diagrams from both the Fermions and Bosons
they cancel, resulting in a vanishing vacuum energy.∗ But later collision
experiments failed to observe the particles predicted by supersymmetry,
the so called superpartners which are the supersymmetric counterparts to
known particles. This lack of superpartners and the non-vanishing cosmo-
logical constant observed mean that supersymmetry needs to be broken
or abandoned in order to describe our universe. As supersymmetry pro-
vides an enormous simplification in calculations and a reduction in the
number of dimensions required for string theory to be consistent, mod-
ern string theories usually are formulated such that the supersymmetry
breaking and with it the mass of the superpartners put them beyond the

∗In general supersymmetric string theory also allows a negative vacuum energy but
not a positive one.

8
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9

reach of current observations. as hinted at earlier the resulting theory still
runs in to difficulties which in no small part is due to the fact that we do
not have a fully consistent description of the entire string theory. The best
descriptions we can write are low energy effective theories not dissimilar
to the effective field theories one frequently encounters in quantum field
theory. Such low energy effective string theories incorporating supersym-
metry are known as supergravities. These theories differ by being different
limits of the full string theory, as such there exist ways of translating be-
tween these supergravity theories. This framework of different theories
being the low energy limits of a full theory was originally proposed by
Edward Witten in 1995 [1] and has since become known as M-theory.
These theories however still have problems to overcome in order to solve
the cosmological constant problem. Besides the issue, hinted at earlier,
that supersymmetry needs to be broken in the groundstate, in order to
have a non-negative vacuum energy, they also need to provide a solution
to what is known as the Dine-Seiberg problem, [2]. Often stated as ”When
corrections are important, they are not computable, and when they are
computable, they are not important.” [3] (p. 125-126). Although the de-
tails of the problem are quite technical in nature the idea is quite simple.
Since we expect our theory to be asymptotically free as function of a cer-
tain coupling, our potential should vanish asymptotically as function of
this coupling. This means that when coming from strong coupling the po-
tential should either approach zero from above or bellow, assuming it is
not free at strong coupling. In the first case this means that to first order
ours is a runaway potential to weak coupling, in the second case our po-
tential would to first order be a runaway to strong coupling. So in order
for an at least meta stable regime we need to take in to account higher or-
der corrections, but to do this consistently we need to check all orders for
relevancy which is beyond our capabilities in the regime where we would
want to stabilise. So in other words our corrections are either irrelevant
and we have an unstable theory or they relevant an we can’t compute
them.
At this point our problem seems hopeless, but string theory allows for
quite a few exotic object, such as D-branes which we’ll introduce in chap-
ter 2, which possibly allow for constructions that overcome these prob-
lems. The focus of this thesis will be such a construction which attempts
to overcome some of these problems. This construction, known as KKLT
after the authors who originally proposed it, Kachru, Kallosh, Linde and
Trivedi, [4], has been one of the most promising of such construction but
is definitely not without its problems. It is this construction and the prob-
lems facing it that will be the focus of this thesis.
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10 Introduction

The structure of this thesis will be as follows, in chapter 2 we’ll provide
some perspective on the physical problem which motivated the research
as well as giving a very brief overview and surprising results of string the-
ory. In chapter 3 we’ll go trough the model at the basis of this research
while trying to highlight points which in chapter 4 we relate to critique
point of this model. Then in chapter 5 we’ll conclude with a summary of
the research and offer some directions in which progress can be made.

10
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Chapter 2
The Basics

2.1 Cosmological constant problem and the Ex-
panding Universe

Often quoted as the most famous blunder of Einstein the cosmological
constant, denoted as Λ, is a scalar parameter which can be added to the
action of General relativity.

S =
∫ √

−g(
1

2κ
(R− 2Λ))d4x + SM (2.1)

Here g is the determinant of the metric tensor, κ is a coupling constant, R
is the Ricci curvature, Λ will be the cosmological constant and Sm is the ac-
tion for any matter content, which is generally depend on the metric and
matter fields. The original reason for introduction, Einsteins attempt at a
static universe, is dismissed in modern physics as it is unstable. However
the cosmological constant remains an object of interest, particularly in cos-
mology. This is because the cosmological constant is closely related with
the global structure of the universe. When varying (2.1) with respect to
the metric we find Einsteins equation, which using the Einstein conven-
tion has the following form.

Rµν −
1
2

Rgµν + Λgµν = κTµν (2.2)

Where Tµν is the stress energy tensor defined by:

Tµν = − 2√−g
δSm

δgµν (2.3)
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12 The Basics

As our universe appears to be homogeneous and isotropic on large scales
we can use the FLRW metric for homogeneous and isotropic universe,

ds2 = −c2dt2 + a(t)2ds2
3 (2.4)

where a is a scale factor and ds3 a 3d spacial metric. Combining this metric
with (2.2) we find the Friedmann equation.

(
ȧ
a
)2 − κρ

3
− Λ

3
= − k

a2 (2.5)

Where we have introduced the convention c = 1 and ρ represents the mat-
ter density and k = −1, 0, 1 corresponds with a negative, flat or positive
spacial curvature respectively. From observations, such as measurement
of the angles cosmological sized triangles using the cosmic microwave
background, we can determine the spacial curvature of our universe, which
to very good approximation appears to be flat meaning k = 0. Thus the
right hand side of (2.5) vanishes. The current expansion of our universe
we can observe using type 1a supernovae and we find it to be positive,
i.e. our universe is an expanding one. From observation we can also de-
termine ρ by adding up all matter contributions, including radiation Bary-
onic and Dark matter. Adding all this observational evidence together we
find that for our universe Λ has to be positive but extremely small. Other
observational evidence for a positive cosmological constant comes from
the fact that the current expansion of our universe appears to be expo-
nential which means our current epoch is one dominated by vacuum en-
ergy. ∗ The simplest universe with a positive cosmological constant is a de
Sitter (dS) universe, this is a maximally symmetric space without matter
and with a positive cosmological constant. Since our universe clearly does
contain matter this is not our universe however it is a good description of
what our universe looked like shortly after the big bang during the epoch
of inflation and also what our universe is expected to look like in the far
future as vacuum energy domination continues. So we say our universe is
asymptotically de Sitter. Thus a good start for a description of our universe
with it’s positive cosmological constant would be to find a description of
a de Sitter universe. This as outlined in the introduction, necessarily in-
corporates both gravity and quantum effect and therefor will require a
quantum gravity theory. With our problem and goal outlined we’ll spend

∗These different sources for determining the cosmological constant don’t agree on the
precise value of the cosmological constant, this discrepancy is known as the tension in
cosmology. We’ll not delve in to this separate problem any further in this thesis.

12
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2.2 String theory 13

the rest of this chapter on a broad stroke introduction of String theory and
it’s components which will be relevant to the KKLT construction.

2.2 String theory

Aside from the cosmological constant problem mentioned in the previ-
ous section modern physics has additional problems, such as the mass of
neutrino’s, chiral gauge couplings and unification. String theory has be-
come one of the main candidate theories to address these problems. And
as such the search for constructions of cosmological models in string the-
ory is far from surprising. Should string theory really be the new physics
we are looking for then we could hope that it provides an answer to the
cosmological constant problem. This search has already resulted in many
surprising discoveries one of which is the enormous amount of possible
universes describable using string theory. An often given figure for this
10500 more as a way to illustrate the scale rather than to be used as a precise
figure. We’ll refer to this number in section 2.2.5. This section is broken
down into parts each discussing different aspect of string theory relevant
to our discussion of the Kachru Kallosh Linde and Trivedi model.

2.2.1 Classical relativistic strings

We’ll take a look at a very simple string, namely the classical† relativistic
open string, as it gives an intuitive insight into some basics of string the-
ory.‡ As in most physics we’ll be interested in formulating an action as the
basis for our theory. Let’s recall the action for a relativistic particle familiar
from relativity. Again using the Einstein summation convention this is the
following.

S = −mc
∫ τf

τi

√
−ηµν

∂xµ

∂τ

∂xν

∂τ
dτ (2.6)

Where τ is a parameter defining a position along the worldline of a particle
via the function x(τ) from the parameter space to physical space. Notice
that this action is nothing more than a parametrisation invariant way to
write the length of the worldline in spacetime. It is intuitively clear that the
equivalent of a worldline of a particle for a string would be some surface,
called a worldsheet, so one might expect that the action for a relativistic

†Classical here is meant to mean not quantum.
‡This and the next section are inspired by [5] an insightful lecture series.
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14 The Basics

string would be the parametrisation invariant area of this worldsheet. The
area spanned by two vectors in Euclidian space is given by

dA = |dv1 × dv2| =
√
|dv1|2|dv2|2 − |dv1 · dv2|2 (2.7)

For an infinitesimal area in parameter space spanned by τ, σ the physical
space equivalent is then given by

dA = dσdτ

√
(

dxa

dσ

dxa

dσ
)(

dxb

dτ

dxb
dτ

)− (
dxa

dτ

dxa

dσ
)2 (2.8)

This is however assuming physical space is Euclidean. To transform this
equation to one for spacetime with metric (−,+,+,+) we need to make a
Wick rotation resulting in the terms in the square root changing sign. This
results in the Nambu-Goto action

S = −T0

c

∫ τf

τi

dτ
∫

dσ

√
(

dxa

dτ

dxa

dσ
)2 − (

dxa

dσ

dxa

dσ
)(

dxb

dτ

dxb
dτ

) (2.9)

Where T0 has units of tension, force per unit length, and can be understood
on dimensional grounds. A surprising observation at this point is that
the rest energy of the string is given by T0l where l is the length of the
string, thus that the mass per unit length µ0 is determent by the strings
tension. This is rather different than the classical string like one might
find on a guitar. In the classical case a string not put under tension has a
mass determined by the material the string is made out of. But in the case
of the relativistic string the mass of the string is given completely by the
energy needed to pull it to it’s length as per E = mc2.
The Nambu-Goto action does not lend itself well to quantization although
it is possible using the light-cone gauge. The action which is more often
used when one wants to quantize the string is the Polyakov action.

S =
T
2

∫
d2σ
√
−hhabgµν(X)∂aXµ(σ)∂bXν(σ) (2.10)

Where T is the string tension, gµν the metric on the target manifold, (the
manifold given by the embedding of the worldsheet in spacetime), and
hab is the metric on the worldsheet. This action is in the classical sense
equivalent to the Nambu-Goto action, as we can recover, up to reparama-
terisation, the action (2.9) from (2.10) by stabilising the later with respect
to the worldsheet metric, hab. Because of this any physical solution leaves
both stationary.

14
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2.2 String theory 15

2.2.2 Boundary conditions and D-branes

We’ll now examine what kind of solutions the action (2.9) allows. For
notational convenience we’ll use the canonical momenta,

Pτ
µ =

∂L
∂( dxµ

dτ )
=

( dxν

dτ
dxν
dσ )

dxµ

dσ − ( dxν

dσ
dxν
dσ )

dxµ

dτ√
( dxµ

dτ
dxµ

dσ )2 − ( dxµ

dσ
dxµ

dσ )( dxν

dτ
dxν
dτ )

(2.11a)

Pσ
µ =

∂L
∂( dxµ

dσ )
=

( dxν

dτ
dxν
dσ )

dxµ

dτ − ( dxν

dτ
dxν
dτ )

dxµ

dσ√
( dxµ

dτ
dxµ

dσ )2 − ( dxµ

dσ
dxµ

dσ )( dxν

dτ
dxν
dτ )

(2.11b)

With this notation the variation of (2.9) becomes

δS =
∫

dτPσ
µ δxµ|σ1

0 −
∫

dτdσδxµ(
∂Pτ

µ

∂τ
+

∂Pσ
µ

∂σ
) (2.12)

Requireing the term (
∂Pτ

µ

∂τ +
∂Pσ

µ

∂σ ) to vanish we recover the equations of
motion for the string as usuall.

(
∂Pτ

µ

∂τ
+

∂Pσ
µ

∂σ
) = 0 (2.13)

For the full variation of the action to vanish the first term of (2.12) which
we recognise as the boundary conditions must also vanish. In our notation
the boundary values for σ are 0 and σ1. Boundary terms like these are in
quantum field theories usually taken to vanish by the assumption that the
fields themselves vanish at the boundaries, which correspond to space-
time infinity. But since in this case the boundaries correspond to the end
of the string which need not be located at space-time infinities we cannot
simply discard the boundary terms. As we are considering an open string,
i.e. the endpoints are not connected, we should treat the different σ values
separately. Also our choice of coordinates should not matter, this means
we can consider each direction separately. So in each direction we get two
conditions one for each endpoint. This leaves us with

0 = Pσ
0 (τ, σ∗)δx0(τ, σ∗) (2.14a)

0 = Pσ
i (τ, σ∗)δxi(τ, σ∗) (2.14b)

Where we do not sum over i as each one corresponds with a different spa-
cial direction and we have introduced the notation σ∗ ∈ {0, σ1}. So (2.14)
represent 2D equations, for D the number of dimensions. Since setting
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16 The Basics

δx0(τ, σ∗) = 0 would mean fixing the endpoint in time, which is not phys-
ically valid, equation (2.14a) means that 0 = Pσ

0 (τ, σ∗). This means that
the endpoints behave as free particles along the temperal direction. Equa-
tion (2.14b) allows for two types of boundary conditions namely

0 = Pσ
i (τ, σ∗) (2.15)

0 = δxi(τ, σ∗) (2.16)

which are known as Neumann and Dirichlet boundary conditions respec-
tively. For each endpoint and each direction one of these two types of
boundary conditions needs to be satisfied.
The Neumann condition, (2.15), means it’s corresponding canonical mo-
mentum vanishes. This indicates translational invariance along the i di-
rection. Meaning the endpoint behaves as a free particle along the corre-
sponding spacial direction. The interpretation of the Dirichlet conditions,
(2.16), is surprising. This is because if δxi = 0 the endpoint is fixed at a
certain position in the i direction. Since fixing a spacial position for the
endpoints means that transnational invariance is broken. But as we’ll dis-
cuss in section 2.2.3, transitional invariance need only be satisfied in non
compact directions.So this boundary condition can not entirely be ignored.
Suppose that an endpoint satisfies the Dirichlet condition in m directions
and the Neumann condition it the remaining D − 1 − m directions. We
can then consider this endpoint fixed to a surface which spanned the m
directions corresponding to the m Dirichlet conditions, such a surface is
called a Dirichlet-brane or D-brane for short. These objects are crucial in
modern string theory. When one quantizes the theory these branes cease
to be rigid objects and become dynamical, and as such these branes carry
energy and interact. It is these branes that will play an important role in
the model we’ll be discussing.

2.2.3 Extra Dimensions

An almost infamous property of String Theory is that in order for the the-
ory to be consistent it needs to be considered in a higher dimensional space
than we commonly observe. Exactly how high dimensional depends on
the type of string theory we consider. What is called Bosonic string theory
needs a total of 26 dimensions while supersymmetric theories generally
need only 10 and M-theory needs 11 dimensions. The need for extra di-
mensions might at first be considered enough basis to abandon the theory
entirely as a possible physical theory, however a second look allows for a

16
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2.2 String theory 17

surprising possibility. This possibility comes from the idea of compactifi-
cation. This is the idea that our universe actually is higher dimensional,
but that we just haven’t noticed this because the ”extra” dimensions are
extremely small on the order of the Planck scale. Since everyday physics
happens at scales much larger we would expect that these additional di-
mensions are unnoticeable. It is also this reason, the smallness of the extra
dimensions, that put much of string theory beyond the scope of modern
experiments, as in order for an experiment to probe the length scales re-
quired we would need energies well beyond modern day reach.
To get better understanding of this we’ll now take a look at the quintessen-
tial example of a compactified theory, namely Kaluza-Klein (KK) unifi-
cation of gauge interactions and gravity. Along the way we’ll encounter
some important objects and principles which we’ll use throughout the rest
of this thesis. In this example we’ll consider a D dimensional theory with
one periodic coordinate. So let’s consider a D dimensional field theory
where, D = d + 1. The crucial element will be that we’ll periodically iden-
tify one direction, say the d-th, meaning xd = xd + 2πR. This identification
does not change the local metric but it will be useful write the part of the
metric corresponding to the d-direction explicitly. When writen as such
the metric becomes the following:

ds2 = GD
MNdxMdxN = Gµνdxµdxν + Gdd(dxd + Aµdxµ) (2.17)

Where M, N = 0, . . . , d, µ, ν = 0, . . . , d− 1 and Aµ = GddGµd. The invari-
ant length squared is invariant under local coordinate transformations,
these include transformations in the periodic d direction of the form x′d =
xd + λ(xµ). This can be seen as follows:

ds2 = Gµνdxµdxν + Gdd(dxd + Aµdxµ) (2.18)

= Gµνdxµdxν + Gdd(dx′d − ∂µλdxµ + Aµdxµ) (2.19)

= Gµνdxµdxν + Gdd(dx′d + A′µdxµ) (2.20)

This gives us the transformation law A′µ = Aµ − ∂µλ. So we see that
gauge transformations arise from higher-dimensional coordinate transfor-
mations.
Now it will be interesting to look at what happens to a massless scalar field
ϕ(xM); for simplicity we’ll assume that Gdd = 1 for now. The periodicity
of xd means that the momentum in that dimension needs to be discrete,
pd = n

R , n ∈ Z. Now we can expand ϕ in terms of a complete set for it’s xd
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18 The Basics

dependence, which gives the following

ϕ(xd) =
∞

∑
n=−∞

ϕn(xµ) exp (in
xd

R
) (2.21)

We can substitute this in to the D dimensional wave equation and find
that:

∂µ∂µ ϕn(xµ) =
n2

R2 ϕn(xµ) (2.22)

We can interpret this with by interpreting each mode with momentum in
the periodic direction as a massive mode, with mass square given by n2

R2

and one massless mode for corresponding to the zero momentum mode.
The energy to excite these modes is related to their mass, as per E = mc2,
so at low energies the more massive modes cannot be excited and will
therefor not be dynamical. If for example we’ll only consider energies
lower than E < 1

R non of the massive modes will be dynamical; we can
disregard them. This is common in the kind of theories we’ll consider as
they’ll be almost exclusively the low energy limit theories. For string the-
ories with supersymmetry these kinds of limits are referred to as super-
gravity theories. Most of this thesis will deal with supergravity theories as
that is the regime where calculations are somewhat tractable. We’ll see in
chapter 4 that precisely how tractable these calculations are, is a source of
much debate.

2.2.4 Moduli

In the example above of the Kaluza-Klein compactification theory the pa-
rameter R we left unspecified. This parameter determines the size of the
periodic, (or compact) dimension and we can take it as having any posi-
tive real value. But this will have consequences for our theory, as we saw
when we wanted to impose an energy limit on our description the pre-
cise value of R determined what modes we would need to consider at any
given limit. In principle we can promote R to a dynamical field depen-
dent on the non-compact directions. This would mean that the masses of
the modes corresponding to momenta in the compact dimension would
change dependent on this field and as such the effective potential of the
system could be dependent on this R field. This is an example of a mod-
ulus field, which is extremely common in supergravity theories. These
moduli fields arise naturally by allowing the parameters defining a system

18
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2.2 String theory 19

to become dynamical fields. For example if in the Kaluza-Klein model de-
scribed above we compactified an additional dimension the size of this di-
mension could also be left dynamical giving an additional modulus field.
Then we can also consider rotations in these now two compact directions,
which would transform the compact momenta in one direction in to com-
pact momenta in the other direction. This results in the different types of
masses (or charges) corresponding to the different directions transform-
ing into one another. So by the addition of just a single modulus field the
model quickly grows more complex. These moduli we would like to be
fixed. This seems somewhat counter productive firstly promoting these
parameters to dynamic fields and then desiring them to be fixed. The
motivation behind this however is quite physical, since by allowing our
moduli to be dynamical fields we impose minimal assumptions on to our
system. In our example above we assume only that R is finite§. This way
of approaching the problem means that when the moduli are stabilised,
what this means we’ll see shortly, this is due to the physics and not be-
cause we imposed their value beforehand.
As mentioned before moduli can in general appear in the energy of our
system. In our example this occurs via the dependency of the mass of the
modes being dependent on R. So as nature minimizes energies we expect
that, by allowing our moduli to be dynamic, they will feel effectively a
potential. So our moduli will take values where this potential is at least
locally minimised. If such a minimum is at least meta-stable, in contrast to
a rolling potential, we say that our modulus is stabilised at the value corre-
sponding to that minimum. If our moduli are stabilized then we can treat
the moduli as having a fixed value, namely that which it has at the mini-
mum, meaning the physics dependent on those moduli does not change.
Allowing us to analyse our system.

2.2.5 Anthropic reasoning

A possible reason for the observed value for the cosmological constant is
that if the cosmological constant had a different value the universe would
not be able to support life like us. So it should not be surprising that we
observe it to have approximately this value since we are here to observe it
in the first place.
This argumentation rests on the anthropic principle. The basis of the an-

§Although we do in principle allow it to run to infinity when considering it as a mod-
ulus. But since this significantly changes our physics as the dimension will no longer
remain compact, we consider this a different system.
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20 The Basics

thropic principle is an argument of observation bias. This is best illustrated
with an example.
Suppose we want to answer the question why life evolved on earth. A line
of argumentation might go as follows. In order for life to be there needs
to be something, lets call it matter, to be alive, so life can expect not to find
itself in an empty universe. If the matter in the universe was completely
isotropically and homogeneously distributed almost nothing would hap-
pen so there would be no life. Thus living things can expect to be in a
non-homogeneous universe this leads to structure creation. Again the re-
quirement for matter leads to the conclusion that if life exist it would be
in these structures not in the voids between. Then the extremes in most of
these structures, i.e. in stars or in interplanetary space, are not conducive
to formation of life. Thus we expect life to evolve on a planet, with the
right conditions. Therefor it is not to surprising that life evolved on earth.
This kind of argumentation is almost more philosophical than it is phys-
ical. And this is the reason that it causes much debate. One might argue
that it does not answer the question, our example might just be interpreted
as not explaining why life evolved on earth, but just could be seen as sim-
ply asking ”Well where else would it have evolved?”.
The reason to mention this here is because, in the search for solutions to
the cosmological constant problem, this type of reasoning is occasionally
used. Particular in context with what is called the string landscape. This is
the large number of possible vacua expected to be self consistently describ-
able by supergravity theories. Suppose we find a family of different vacua
each with a different cosmological constant. We could then by virtue of
anthropic reasoning conclude that if this family contains vacua with our
cosmological constant it describes our universe; without needing to spec-
ify a mechanism by which a selection out of this family is made. This
somewhat relaxes the rigor needed for an acceptable model of our uni-
verse. The core of the debate on whether this is a good physical argument
rests on this relaxation of rigor. We’ll try not to take sides in this debate
during this thesis. When anthropic reasoning is used we’ll try to point it
out leaving for the reader to decide whether the argumentation made is
satisfactory.

2.3 Why KKLT?

As discussed at the start of this chapter, a good begin in providing a solu-
tion to the cosmological constant problem is to find a quantum gravity
description of a de Sitter space. As mentioned before supersymmetric
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groundstates, which are the only groundstates which we can with cer-
tainty compute, are either flat or anti-de-Sitter. This makes such a de-
scription somewhat of a challenge. However constructing a de Sitter is
precisely what the model proposed by Kachru Kallosh Linde Trivedi, [4],
attempts to provide. It is the first concerted attempt at providing a con-
struction in string theory with a computationally controlled groundstate,
which is neither flat nor Anti-de-Sitter (AdS).
Precisely how controlled this construction is has been a matter of debate
since it’s proposal in 2003.
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Chapter 3
KKLT construction

3.1 The construction in a nutshell

In this chapter we’ll examine the Kachru, Kallosh, Linde, Trivedi model
for constructing a de Sitter space in string theory. This model they pro-
posed in [4] in 2003. The construction method they laid out consists of
three main parts. Starting from what is known as the tadpole condition,
which comes from F-theory. This we’ll explain in section 3.2. F-theory
is a string theory formalism which we’ll not discuss in this thesis. We’ll
just assume the result and proceed from there. The construction is done in
what is called type IIB string theory. Type IIB theory is a limit of F-theory
and therefor the tadpole condition can be translated into IIB theory using a
standard method which we’ll not derive nor explicitly preform. However
the fact that the tadpole condition is translatable to IIB theory will allow
us to make some statements in the IIB theory even without going trough
the explicit details.
In the IIB framework we’ll firstly stabilize all but one moduli. This we dis-
cuss in section 3.3. Here we’ll use a superpotential and Kähler potential
that we take as given to certain order. Then adding some general higher
order corrections, which we’ll discuss in subsection 3.5, to the resulting po-
tential we’ll find that we can stabilise also the remaining modulus. Which
we do in section 3.6. We’ll see that this results in a anti-de-Sitter space.
This first part of the construction is known as moduli stabilisation. Dur-
ing the moduli stabilisation we’ll not break supersymmetry.
During the second step we’ll add more flux than to our system. Then to
balance the tadpole condition we’ll need to add an anti-D3-brane to our
set up. Such an object breaks supersymmetry.
Lastly we’ll consider the effect of having added an anti-brane. And we’ll

Version of 2020-07-03– Created 2020-07-03 - 08:17

23



24 KKLT construction

see that this has the effect of lifting the vacuum to positive value, meaning
it results in a de Sitter vacuum. This last step is known as anti-brane up-
lifting. The resulting vacuum is meta-stable, which as explained earlier we
expect all de Sitter vacua to be. So we’ll conclude the chapter by a stability
analysis of the resulting de Sitter vacuum.

3.2 Tadpole Condition

As mentioned above we’ll start from the tadpole condition. In this section
we’ll give an explanation of what this condition means. But before we get
to the condition we’ll fist introduce some of the components which appear
in the condition, namely the IIB fluxes.
Type IIB theory has what are called two sectors. These two sectors come
from the fact that the fermionic part of the worldsheet action, (3.1), can
satisfy two different boundary conditions.

SF =
1

4π

∫
d2z(ϕµ∂ϕµ + ϕ̃µ∂ϕ̃µ) (3.1)

Where ϕ and ϕ̃ are holomorphic and anti-holomorphic anticommuting
fields respectively. The two boundary conditions are:

ϕµ(w + 2π) = +ϕµ(w) (3.2a)
ϕµ(w + 2π) = −ϕµ(w) (3.2b)

With an equivalent set for ϕ̃. These are the Ramond (R), (3.2a), and Neveu-
Schwarz (NS), (3.2b), conditions respectively. For an open string there are
thus 4 possible boundary conditions. These are R-R, R-NS, NS-R, NS-NS.
Due to symmetries the only ones relevant for IIB are the R-R and NS-NS
cases. The resulting objects from each of these two can be separately stud-
ied. Those coming from the R-R boundary conditions are said to be from
the Ramond-Ramond sector and those from the NS-NS boundary condi-
tions are said to be from the Neveu-Schwarz-Neveu-Schwarz sector. When
transform from the worldsheet to space-time objects we can still separate
them in to their sections. The potentials and field strengths coming from
the RR sector we’ll indicate with Cp and Fp+1 respectively. And the poten-
tials and field strengths coming from the NSNS sector we’ll indicate with
Bp and Hp+1 respectively.

24
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3.2 Tadpole Condition 25

The space-time IIB action then is the following:

S =
1

2κ2
10

∫
d10x

√
−gs

(
e−2φ(R + 4(∇φ)2)−

F2
(1)

2
−

G(3) · G(3)

12
−

F̃2
(5)

4 · 5!
)

+
1

8iκ2
10

∫
eφC(4) ∧ G(3) ∧ G(3) + Sloc (3.3)

Where gs is the string metric, R the Ricci curvature, φ the dilation field, F(i)
are i-form fluxes, C(4) is a 4-form potential, G(3) = F(3) − τH(3) is the com-
bined three-flux where τ = C(0) + ie−φ and Sloc is the action of localized
objects, such as branes. For more details on type IIB we’ll refer the reader
to [6].
As mentioned in 3.1 our starting point is an F-theory result called the tad-
pole condition. This is the following, [6]:

χ(X)

24
= ND3 +

1
2κ2

10T3

∫
H(3) ∧ F(3) (3.4)

Here ND3 is the number of D3-branes minus number of anti-D3-branes
present in the system. The reason that they appear here are because these
branes couple to the RR sector, or in other words they carry RR charge. The
H(3), F(3) fluxes are as explained above. On the left hand side the χ(X) is
the Euler characteristic of the manifold X. This X is compact space in F-
theory.
The way to think about this condition is in the sense of Gauss law. Con-
sider for example a point charge on a sphere in familiar electromagnetism.
On a compact space such as a sphere we can not have just a single point
charge as the flux lines emanating form this charge would have nowhere
to end. Since the branes here can be considered as charges this condition
simply balances the charges in the geometry of X. Note that in the absence
of branes this condition tells us that there also can’t be any fluxes.
As stated in 3.1 IIB theory is a limit of F-theory. A priori the way to trans-
form from F-theory to IIB via this limit only applies to systems without
fluxes. This was however extended to also be applicable in the present of
fluxes in [7] and [8].
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3.3 Superpotential and complex moduli stabili-
sation

With our starting point clear we’ll continue with N=1 supergravity in which
we’ll construct our vacuum. The standard potential for such a theory is the
following:

V = eK
(

∑
a,b

gab̄DaWDbW − 3|W|2
)

(3.5)

Da is the Kähler covariant derivative and is defined by Da = ∂a + (∂aK).
In (3.5) K is the Kähler potential and W is the superpotential and the sum-
mation over a, b runs over all moduli in our system. A superpotential
is a generalization of a familiar potential. It arises when considering su-
persymmetric theories. A Kähler potential is a mathematical object from
which we can define a particular kind of manifold, known as a Kähler
manifold. The compact manifolds in IIB theory need to be Calabi-Yau
manifolds, which are special kinds of Kähler manifolds. So we can un-
derstand the Kähler potential as defining our compact space. The super-
potential is known as a GVW superpotential, [7], and is of the form:

W =
∫

M
G3 ∧Ω (3.6)

M is the IIB compact space, G3 is the same as G(3) encountered earlier and
encodes the degrees of freedom of the fluxes, Ω is a unique holomorphic
(3,0) form on the compact space. Ω defines the complex structure on the
compact space and is therefore referred to as the complex structure mod-
ulus. The Kähler potential follows from the space-time action, (3.3), as
derived in [9]. It is of the following form:

K = −3 ln (−i(ρ− ρ̄))− ln (−i(τ − τ̄))− ln (−i
∫

M
Ω ∧ Ω̄) (3.7)

Here ρ is a volume modulus and encodes the overall volume of the com-
pact manifold. In general there could be additional Kähler moduli, but
through out this thesis we’ll only consider scenario’s with a single Kähler
modulus ρ. τ is called the axio-dilaton and is the same as encountered
in section 3.2 and Ω is the unique holomorphic (3,0) form as above. This
Kähler potential is a generalisation of the result given in [10] as derived in
[9].
How these potentials arise is quite technical and not extremely relevant for
us. There are potential corrections to be added to these potentials which

26
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3.3 Superpotential and complex moduli stabilisation 27

we’ll ignore for now. It is however relevant to realise that these potentials
are determined by the compactification and are of the given form as a re-
sult of the IIB limit we took for the original F-theory we started with and
which gave us the tadpole condition. The information of this compacti-
fication is encoded in the parameters ρ, τ, Ω. The way these parameters
couple to the fluxes is what is described by W and it is this coupling that
means we can not simply treat the flux and background manifold sepa-
rately.
When we substitute these potentials in to (3.5) we find the following

V = eK
(

∑
i,j

gi j̄DiWDjW
)

. (3.8)

Where the summation now runs over all moduli except ρ. This due to the
cancellation of the ρ term in the summation with the −3|W|2 term. Which
is due to the fact that (3.6) does not depend on ρ meaning that ∂ρW = 0.
This means that

gρρ̄DρWDρW = 3|W|2 (3.9)

Where we used that gρρ̄ = (∂ρ∂ρ̄K)−1 by definition of the Kähler metric
gi j̄.

Thus far we have not made a choice for our fluxes, so let’s do that. We’ll
take F3, H3 ∈ H3(M, Z), meaning that they are 3-form fluxes of the form
such that when integrated over our manifold, M, they evaluate to integers
as demanded by Dirac quantization. This choice forces G3 to be Imaginary
Self-Dual (ISD). This follows from the fact that for all objects we consider
(3.10) holds, as explained in [9].

1
4
(Tm

m − Tµ
µ )

loc ≥ T3ρloc
3 (3.10)

Where Tab is the stress energy tensor (considered for localised objects);
the index µ runs over de compact directions and m over the non-compact
directions. T3 is the tension of D3-branes and ρloc

3 is the D3 charge density
from localised sources.
As discussed in 2.2.4 any modulus which enters in to the potential feels an
effective potential in the presents of fluxes. So when fixing our fluxes we
essentially create an effective potential for the moduli. As familiar from
quantum field theories an effective potential can be viewed as generating
a mass for fields. The same applies to our moduli. We recall that the
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volume modulus term in the summation of (3.5) cancelled as discussed
earlier. This results in all other moduli receiving a mass of the scale:

m ∼ α′

R3 (3.11)

Where R is the characteristic radius of manifold, which relates to ρ. We
remark that Im(ρ) ∝ R4. So from this we conclude that the masses of all
moduli are large when compared to the mass of ρ. So we can consider the
low energy limit and in doing so treat all other moduli as fixed and only ρ
as dynamical.
As a side note, the dependence of the masses of the fixed moduli on our
choice of fluxes means that they are discretely tunable, as our flux choice
is discrete.

3.4 Warping

One of the more subtle and crucial aspects of the KKLT model is that the
separation of scales, the fact that we can consider the moduli other than
the volume modulus fixed, depends on the warping in the system. One
can think about this warping as a similar phenomenon as the warping
in spacetime caused by massive objects familiar from GR. D-branes and
fluxes are sources of warping and so we expect our system to exhibit warp-
ing. This allows us to write the metric of our system in Einstein frame as
follows:

ds2
10 = e2A(y)ηµνdxµdxν + e−2A(y) g̃mn(y)dymdyn (3.12)

Where x coordinates along the D3 branes and y coordinates in the orthog-
onal direction. Since the D3 branes span the non-compact directions, as
demanded by Poincare symmetry, this means that the x coordinates corre-
spond with the non-compact directions and the y coordinates correspond
with the compact coordinates.ηµν(x) is the non-compact unwarped metric
and g̃mn(y) is the compact unwarped metric on M. This warping parame-
terizes energy scales as it varies over the compact dimensions. Generally
this is thought about as a throat expanding from the compact manifold
where, as we descend in to the throat the warping increases, meaning our
energy gets scaled down. This scaling should be read as scaled in rela-
tion to the value outside the throat. Although it is not exactly the same
phenomena, one can again think about this in a similar manner as the red
and blue shifting photons experience as they climb out resp. fall in to a
potential well. The effect of objects high in the throat (more towards the

28

Version of 2020-07-03– Created 2020-07-03 - 08:17



3.5 Corrections 29

unwarped compact space) are observed to have a larger energy than the
same object when it sits lower in the throat, as seen from a specific location.
The precise size of this warping is in general dependent on the objects in
our system. One of the major results of [9] is that there it shown that using
integral fluxes we find exponential warping as given by

eAmin ∼ e−
2πK

3gs M (3.13)

where K, M are called the flux quanta. The value of K, M is given by inte-
grating the H3, F3 over specific subspaces of the compact manifold, see [9]
for more details.
This warping is crucial for the KKLT model. As we’ll see later the addi-
tion of a anti-brane without warping would have a significant effect on the
shape of the potential. This effect, known as back-reaction, would make
calculations in tractable. So in order to have some hope of finding a de
Sitter vacuum we need exponential warping.

3.5 Corrections

In this section we’ll discuss some known corrections to the no-scale po-
tential we found in section 3.3. In order to construct a vacuum all moduli
need to be stabilized. As we have seen the no-scale potential results in
stabilization of the complex structure moduli as they enter in to the su-
perpotential. But this leaves the Kähler moduli, in our case just one, ρ,
unfixed. In order to have stabilization of all moduli a term needs to be
added to the potential which couples to the Káhler moduli. Such a term
can not be perturbative as supersymmetry forbids such terms. However
there are possible non-perturbative corrections we could consider.
The precise origin of these corrections is not extremely relevant for our
conclusion. As such we’ll not derive these corrections in detail. An exam-
ple of such a correction can be found in [11] where as a part of a broader
discussion on corrections they derive a correction arising from a magneti-
cally charged instanton.
An other example is given in [4], coming from gaugino condensation on
D7-branes∗.
Correction term like these generally depend on both the complex structure
as well as the Kähler moduli. But since we fixed our complex structure
moduli we can consider them just dependent on the Kähler modulus. This

∗For details see [4] and references therein
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however crucially depends on the fact that the scale at which the complex
structure moduli are fixed is sufficiently high. Some of the debate around
KKLT revolves around this hierarchy of scales. Again the fact that we need
these corrections to stabilize the Kähler modulus is crucial to the model.
As both example above give a term to the super potential of the form:

Wcorrection = Aeiaρ (3.14)

Where A, a parameters dependent on the details of the source of the cor-
rection. We’ll assume our corrections are of this form although in general
other terms could exist. An additional source of debate is the fact that in
the examples above a is not a continuous parameter as it depends on the
choice of fluxes, for which can only make discrete choices. However we’ll
treat it as continuous in the next section.

3.6 Stabilizing the volume modulus

In this section we’ll consider the stabilization’s we have made thus far
and find that they lead to an Anti-de-Sitter vacuum. Recall that as we
discussed in section 3.3, prior to adding the corrections discussed in sec-
tion 3.5, we stabilized all moduli except the Kähler moduli, of which we
consider there to be only one, the volume modulus. These moduli where
stabilised when we fixed our flux configuration as they entered in to the
superpotential. Since we have stabilized all but the volume modulus the
only relevant term from the Kähler potential is

K = −3 ln (−i(ρ− ρ̄)). (3.15)

The superpotential with the added correction term is the following:

W = W0 + Aeiaρ (3.16)

where W0 is a tree level contribution due to the flux as coming from (3.6).
The second term we assumed as the general form of corrections as we
discussed in the previous section.
We’ll consider the tadpole condition (3.4) to be solved by turning on only
flux, which for now means that no additional D3-branes are present. For
a supersymmetric vacuum it holds that DρW = 0 where again Dρ = ∂ρ +
(∂ρK). We’ll write ρ = τ + iσ. Then we find that with our Kähler and

30
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Superpotential we get:

K = −3 ln (−i(ρ− ρ̄))

= −3 ln (2σ) (3.17)

So the real dependence drops out of the Kähler potential. And the Super-
symmetry restriction gives us:

0 = Dρ(W0 + Aeiaρ)

= Dρ(W0 + Aeia(τ+iσ))

= ∂ρ(W0 + Aeia(τ+iσ)) + (∂ρK)(W0 + Aeia(τ+iσ))

= aAieia(τ+iσ) +
3i
2

1
σ
(W0 + Aeia(τ+iσ))

W0 = −Ae−aσeiaτ(
2
3

aσ + 1) (3.18)

Recall that the potential is given by:

V = eK(Gρρ̄DρWDρW − 3|W|2) (3.19)

Which means that with our superpotential and Kähler potential, as in
(3.16) and (3.17), we find that the potential has a minimum at:

VAds = −3eKW2 (3.20)

= − a2A2e2ia(τ+iσ)

(6σ)
(3.21)

The effect resulting from the imaginary part of ρ, namely σ, is the addition
of a non-perturbative term to the superpotential as discussed in section
3.5.
In the original KKLT paper, [4], the axion part of the volume modulus was
set to zero, τ = 0, this results in the same minimum except without the fac-
tor e2iaτ. This has the effect of simply considering only 1 of the degenerate
vacua. This degeneracy comes from the the fact that Re(e2iaτ) behaves as
a cosine where each minimum corresponds with a different discrete vac-
uum. Since τ enters into the superpotential via G3 as we saw earlier it is
fixed by the choice of fluxes. This means that our choice of fluxes already
break this degeneracy. This means that here we can treat the e2iaτ term
simply as a prefactor.
As mentioned prior the Kähler potential we use in principle receives higher
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order corrections which we neglect. In order for these corrections to in-
deed be negligible we assumed that σ >> 1, otherwise we’d expect that
the higher order terms need to be taken into account. We also require that
aσ > 1 in order for contributions to the superpotential originating from
the instanton to be accounted for properly in the way we have. We’ll as-
sume that this is achievable by tuning the fluxes such that W0 << 1 which
we can see from (3.18) has the desired result.
At this point we have stabilized all our moduli. This we did using the
assumption that the masses the complex structure moduli receive is large
when compared with the mass of the Kähler moduli, of which we assumed
there was only 1. Thus far we have not broken supersymmetry and there
for any vacuum will be supersymmetric. In figure 3.1 we see our potential
plotted against σ. From both figure 3.1 as well as from (3.21) we find that
this minimum is an Anti-de-Sitter one as expected.

Figure 3.1: Here we see V(×1015) plotted for A = 1, a = 0.1, W0 = −10−4

3.7 Constructing dS vacua

In the previous section we found that by only adding flux and demanding
our vacuum to be supersymmetric our potential exhibited a Anti-de-Sitter
minimum. Now in order to find a de Sitter vacuum we’ll add additional
components to our setup in order to provide what is called the uplift. This
addition will break supersymmetry. This is crucial for recovering a de
Sitter vacuum as these are not supersymmetric. The validity of this and the
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following analysis is one of the major point of debate concerning KKLT,
we’ll discuss some of this in the next chapter. For now we’ll follow the
original paper, [4], in order to compare with their results.

The uplift components we’ll be adding are D3−branes, which we intro-
duce as countering additional flux in order to satisfy (3.4). These D3−branes
add a term to the potential proportional to 1

σ3
† each. For the origin of this

term we refer the reader to [12]. So adding multiple D3−branes means
we need to add D

σ3 to our potential, where D depends on the number of
D3−branes. The factor D depends also on the warp factor at the position
of the D3−branes, this ensures that in a warped throat the additional term
is small. In principle higher order terms would appear but these scale
quadratically in D, which is exponentially suppressed due to the warp
factor, so we can ignore these.

Here we assume that the D3−branes do not disturb our setup to much.
It is this assumption that is at the hart of much of the debates surrounding
this model, which again we’ll discuss in the next chapter. So assuming
simply adding this term to our potential, implying that our Kähler po-
tential and superpotential remain effectively unchanged (as side from the
additional term in the superpotential) means our potential becomes:

V = eK(Gρρ̄DρWDρW − 3|W|2) + D
Im(ρ)3

=
aAe−aσ

2σ2 (
1
3

σAae−aσ + W0 + Ae−aσ) +
D
σ3 (3.22)

Where we have set τ = 0 for ease of calculation as this just represents
the same degeneracy we discussed in the last section. This potential has
again a minimum around the same value as the not uplifted potential.
For D ≥ a2 A2σ2e−2aσ

6 the minimum is no longer negative. This minimum
however is now no longer global as it is positive and the potential goes to
0 as σ goes to infinity.

†Later papers use 1
σ2 after canceling the warp factor dependence on σ in the numerator

with a σ term in the denumerator.
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Figure 3.2: Here we see V(×1015) plotted for A = 1, a = 0.1, W0 = −10−4, D =
3× 10−9.

This new minimum, being positive, corresponds with a de Sitter vac-
uum. The value of the potential at this minimum is dependent on the
fluxes and number of added D3−branes and therefor it should be dis-
cretely tunable.

3.8 Stability of dS vacuum, Original Considera-
tions

The uplifted vacuum we found in the last section is as mentioned not a
global minimum. This means that we should expect this vacuum to be un-
stable, particularly this de Sitter vacuum should decay into a Minkowski
vacuum in the decompactification limit of σ → ∞. But this is not neces-
sarily a problem for the physical relevancy of the model for if the vacuum
is stable enough we may use the model as an effective description of our
universe. By stable enough we mean that the time scale of the decay is
larger than the expected age of the universe (so larger than 1010 year). On
the other hand we’ll also consider an upper bound as argued for in [4]. ”If
the decay time is longer than tr ∼ eS0 , one may need to address the issues
about the consistency of the stringy description of de Sitter space ...”, [4].
Here tr is the recurrence time and S0 = 24π2

V0
the de Sitter enthropy. This

gives us a lower and upper bound on the decay time of the de Sitter vac-
uum. Basic tunneling decay of meta-stable states including gravitational
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effects are discussed in [13] and along these lines we’ll analyse the stability
of our de Sitter vacuum.
We can think about this decay as a bubble of spacetime tunneling from the
local de Sitter minimum in the potential to the lower value of the potential
at higher σ. The probability of this occurring is related to the difference in
the potential between the two configurations as well as the size of the bub-
ble. The bubble after forming has a different vacuum than the surround-
ing spacetime. The vacuum of the bubble is lower in energy than the sur-
rounding vacuum which will decay in to the lower energy vacuum. The
boundary of the bubble mediates between these two vacua, which we can
think about as two different phases. The mediation between two phases
can be described using an instanton which is what we’ll use here as well.

It is convenient for our description to switch notation to ϕ =
√

3
2 ln(σ).

Just as in [13] we’ll look at the probability of decay per volume, P = Γ
V ,

which in the semi-classical limit they find to be approximately:

P = Ae−
B
h̄ (1 +O(h̄)) ≈ e−S(ϕ)+S0 (3.23)

Where S0 = S(ϕ0) is the action for the initial configuration, in our case
the action at the de Sitter vacuum and S(ϕ) is the Euclidean action for the
tunneling trajectory. We consider spherically symmetric decay, that is to
say that we assume the volume which decays is spherically symmetric.
This means we can use the general O(4) invariant Euclidean metric:

ds2 = dξ2 + ρ(ξ)2dΣ2 (3.24)

Where ξ is the Euclidean time coordinate, ρ(ξ) the scaling factor and dΣ2

the metric of a 3-sphere. The Euclidean action is given by

S =
∫

d4x
√

g
(∂α ϕ∂α ϕ

2
+ V(ϕ)− R

2
)

(3.25)

This action leads to the following EOM:

ϕ′′ + 3
ρ′

ρ
ϕ′ =

dV(ϕ)

dϕ
(3.26)

−ρ

3
(ϕ′2 + V(ϕ)) = ρ′′ (3.27)
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36 KKLT construction

Combining these with the Ricci scalar of the metric

R =
∂α ϕ∂α ϕ

2
+ 4V(ϕ) (3.28)

means that the action (3.25) simplifies to

S(ϕ) = −
∫

d4x
√

g
(
V(ϕ)

)
= −2π2

∫ ξ f

0
dξρ(ξ)3V(ϕ(ξ)). (3.29)

The initial state before the spacetime bubble forms corresponds with the
limit that ξ f → 0. This equal to minus the entropy of our initial de Sitter
congfiguration as formulated in, [14] and [15]. This gives us that S0 is
given by:

S0 = −S0 =
24π2

V(ϕ0)
(3.30)

Where S0 is the de Sitter space entropy.

Thin-wall approximation

The decay of our de Sitter vacuum to Minkowski corresponds with a spe-
cial case discussed in [13] of a positive valued false vacuum decaying to a
vacuum with zero potential energy in the thin-wall approximation. There
for we can use their result for the decay probability which when rewritten
becomes

Ptunnel = exp (− S0

(1 + ( 4V0
3T2 ))2

) (3.31)

Where T =
∫ ∞

ϕ0
dϕ
√

2V(ϕ) is the tension of the bubble wall, equivalent
to S1 from [13]. For our model we can consider the case that V0 << T2,
which allows us to reasonably expand (3.31) in terms of V0

T2 , to zeroth order
this gives us a familiar result

Ptunnel ≈ exp (−S0) (3.32)

Which for realistic values of V0 ∼ 10−120 in Planck units, means that the
decay time becomes of the order of tdecay ∼ exp (122) satisfying the lower
bound. If we consider first order we get

Ptunnel ≈ exp (−S0) exp (
64π2

T2 ) (3.33)

36
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3.8 Stability of dS vacuum, Original Considerations 37

This means that the decay time becomes

tdecay = tr exp−(64π2

T2 ). (3.34)

Since 64π2

T2 > 0 the decay time is exponentially smaller than the recurrence
time. This means that our meta-stable vacuum satisfies the upper bound.

In this analysis we just considered decay via instantons as considered
in [13], consideration of other instantons provide similar results leading to
the conclusion that our meta-stable vacuum can be effectively considered
stable.
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Chapter 4
Points of critique on KKLT

As mentioned before the Kachru, Kallosh, Linde Trivedi construction, which
we examined in detail in the previous chapter, was proposed in 2003. Since
it’s introduction it has been one of the bases for the attempts as formulat-
ing a de Sitter space in string theory. Other methods exist, such as the
Large Volume Scenario, [16], but are beyond the scope of this thesis. It
then surprising that after almost 20 year there is still a large ongoing de-
bate on whether the solutions proposed by the model are reliable or even
exist at all, [17].
Ever since it’s original proposal there have been critiques launched at the
model ranging from minute technical details to conflicts with no-go theo-
rems, supposedly showing that de Sitter vacua are not possible in string
theory.
In this chapter we’ll consider a few of these critiques. In sections 4.1 and
4.2 we go into some more detail for two discussions revolving around the
probe-approximation. In the remaining sections we’ll be more brief, only
giving a broad outline. This chapter is not intended to be an exhaustive
list of all critiques raised over the last two decades. Rather it is intended
as a starting point, for the interested reader, outlining some of the more
prominent critiques.

4.1 Flattening of the potential due to backreac-
tion

The uplift in KKLT from the anti-de-Sitter vacuum to a meta-stable de Sit-
ter vacuum needs to preserve the stability of the minimum. This is, as we
mentioned in 3.7, the essence of the probe approximation. In [18] and [19]
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40 Points of critique on KKLT

the validity of this approximation is examined.
In principle when we add a supersymmetry breaking object to our anti-
de-Sitter solution we should also account for any interactions between this
object and our setup, not simply add it’s energy to the potential. We how-
ever ignored these interactions in the probe-approximation.
In [19] they give sufficient criterion for the validity of ignoring these inter-
actions, namely that the lightest scalar mass times the cosmological con-
stant is much larger than unity (relative to the KK scale). This is simply
stating that the energy added by the supersymmetry breaking effect, in
our case the D3−brane does not have enough energy to excite the moduli.
This is necessary for us to consider the moduli as remaining fixed. Which
in the notation, we used in chapter 3, this is the following statement:

m2
ρ

V2
AdS
≈ 4a2σcr >> 1 (4.1)

Where we introduce m2
ρ as the mass of the volume modulus squared,

which is approximately m2
ρ ≈

a4|A|2e−2aσcr σcr
9 and σcr to indicate the value

of σ at the potential minimum. This condition is not parametrically ful-
filled in KKLT models as aσcr is not arbitrarily tunable.
So a more in depth analysis of the uplift is needed. For this they use a
nilpotent description. This rests on the idea of adding a nilpotent chiral
superfield, S, such that S2 = 0, to our set up which will play the roll of an
uplift term. Then they proceed to calculate the potential in the same man-
ner as before and at the end we put S = 0. It is not clear this description is
accurate, see [20–22] for a discussion on this. But assuming the approach is
valid we can say some thing about the uplift. Adding the nilpotent chiral
superfield, S, to our description the superpotential and Kähler potential
take the form

W = W0 +Aeiaρ + e2A√24µ3S (4.2)

K = −3 log (2Im(ρ)− SS) (4.3)

Where again S is a degree 2 nilpotent superfield, i.e. S2 = 0. Then calcu-
lating the potential after the uplift, then setting S = 0 the potential takes
the naive form of

VdS = VAdS + Vuplift (4.4)

This however excludes a term which arises from setting A → A(1 + cS),
since this is not forbidden by symmetries we should include it in our EFT

40
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4.2 Conifold instability 41

description. This term results in an additional term in the potential of the
form:

Vcorrections =
e−aσ

12σ2 (2
√

24µ3Re(Aceiaθ) + |Ac|2e−aσ) (4.5)

It is clear that if c is small enough this correction term becomes negligi-
ble so lets consider where this parameter comes form. It arises from the
compactification of the supersymmetry breaking object. In case of KKLT
this is a D3−brane in a warped throat, so naively we would expect c to
be warped down meaning it indeed would be small enough. There are
however a priori possibilities where this warping down does not occur,
for example a gaugino condensate which lives outside the throat would
have a back-reaction effect which gets blue shifted when considering it’s
effect at the tip of the throat. This back-reaction could there for mess with
the warping down of c meaning the correction term to the potential is not
negligible. In that case Vcorrections would result in a runaway potential and
we would not have a meta-stable dS vacuum after the uplift, which is ob-
viously would be a problem for the validity of the KKLT construction.

4.2 Conifold instability

Again the method of uplifing in KKLT works only if the addition of the su-
persymmetry breaking effect doesn’t spoil the anti-de-Sitter vacuum. By
this we mean that even though the minimum should get lifted it should re-
main a sufficiently deep minimum. A general D3−brane placed anywhere
in the compact manifold will not satisfy this condition, it’s contribution to
the potential is to large. This we discussed in 3.7 where we argued that
the constant D was small due to the warp factor adding exponential sup-
pression, without warping it would be of the order of the brane tension
times the compact volume. This would violate our low energy approach,
needed to consider the complex structure moduli as fixed. Therefor these
anti-branes are generally placed in a region of large warping, the throat.
This is not a untoward assumption as the brane is able to move and is at-
tracted to regions with high warping, so we would expect a brane located
not in the throat to fall in to the throat given enough time. Since currently
no explicit construction of a compact warped manifold exist one generally
assumes the throat to be glued to a flux compactification. In calculations
this compact part is then integrated over and treated basically as a bound-
ary condition for considerations made in the throat. The validity of this
approach is difficult to assess as due to the lack of explicit construction
there is no clear test to verify the found results. This is one of the sources
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42 Points of critique on KKLT

of debate on the construction. In this section we’ll examine one of the ar-
guments made in this line of thought.
Originally posed in [23], the conifold destabilisation mechanism suggests
that the correct way to describe an anti-D3-brane in the throat should take
in to account the conifold deformation parameter. This conifold deforma-
tion parameter can be thought of as the size of the warped throat. That
this needs to be taken into account follows from a calculation done in [24]
where they show that the conifold deformation parameter, which we’ll
denote S, is actually lighter, comparable in mass to the volume modulus,
than argued for in the original KKLT paper, where it was argued to of or-
der 1

R3 same as the complex structure moduli.
This means we can not simply integrate it out and need to treat it as a
dynamical modulus. This treatment gives rise to the following potential:

Vks =
π

3
2

κ10

gs

(Imρ)3

[
c log(

Λ3
0
|S| ) + c′

gs(α′M)2)

|S| 43
]−1| M

2πi
log(

Λ3
0
|S| ) +

iK
gs
|2 (4.6)

Where c is a constant coming from the warp factor at UV and will be small
c << 1, c′ is a order 1 constant dependent on the warp factor. M, K are
the flux quanta and Λ0 is the UV cutoff which corresponds with the limit
where the throat is glued to the flux compactification.
From this potential we can easily see that in the limit where S → 0 this
potential vanishes which means there is an additional minimum at 0. This
minimum is not taken in to account when one assumes that S is fixed by
being heavy. In order for S not to go to zero the potential barrier between
the non-zero minimum and zero should be large enough, as the entire
contribution when combined with the term coming from the D3−branes
flattens this barrier. What this means is examined in [24] in the limit where

log(
Λ3

0
|S| ) <<

gs(α′M)2)

|S| 43
(4.7)

This limit corresponds with a large throat. Then by looking at the values
where the non-zero minimum becomes an inflection point they find in
terms of N the number of D3−branes the flux quanta int the throat should
satisfy: √

gsM > Mmin Mmin ∝
√

N (4.8)

Where we explicitly keep the flux quanta as they define the number of
anti-branes via the tadpole condition. This forms a lower bound on the

42
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flux quanta. The tadpole condition provides an upper bound, namely

MK ≤ |Qloc
3 | (4.9)

where Qloc
3 is the total D3 brane charge from local sources. When we then

consider only a single D3−brane and 64 O3−planes these bounds gives
us a value for the total hierarchy between the UV cutoff and the IR to be

ΛIR

ΛUV
= exp (

2πK
2gsM

) > 0.2 (4.10)

Which would exclude de Sitter vacua with sufficient hierarchy. A nec-
essary remark at this point concerning the choice for a single D3−brane
and 64 O3−planes is the following. Multiple D3−branes have been ar-
gued to give additional contributions to the potential by their internal
interactions which would already spoil the vacuum without accounting
for the deformation parameter. And the choice for 64 O3−planes is some
what arbitrary as there exist no known upper limit for the amount of
O3−planes, but most examples in the literature exhibit around this num-
ber of O3−planes.

4.3 IIB backgrounds with de Sitter space and time-
independent internal manifold are part of the
swampland

A term common in the literature of string vacua is the swampland. This is
the idea that some of the vacua that one can construct in low energy theo-
ries, such as supergravities, are not vacua of the full string theory. Similar
as how in effective field theories we sometimes find problems when con-
sidering UV energy scales. There are general arguments made that certain
types of vacua are in the swampland, i.e. they are not really vacua of the
full theory. These are generally referred to as swampland conjectures.
Swampland conjectures are mostly based on calculations in regimes where
top-down calculations can be made. There for it is possible that these con-
jectures miss out on phenomena which only are possible in other regimes.
For example anti-brane back reaction on the world volume which leads to
the the uplift in KKLT. So a closer look at possible quantum corrections
appears to be necessary to expand or circumvent these conjectures. This is
precisely what is investigated in [25]. This paper gives an extensive anal-
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44 Points of critique on KKLT

ysis of different possible corrections applicable to the construction of de
Sitter vacua in IIB theory. We’ll not be able to discuss in depth the entire
analysis, so we’ll just mention the results relevant to our discussion. The
first of these is that in [25] they find that a IIB background with 4d de Sit-
ter isometries, a time independent 6 dimensional internal manifold, with
a metric of the form (4.11), and time independent fluxes are necessarily in
the swampland.

ds2 =
1

Λ(t)
√

h
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
√

hgmn(y)dymdyn (4.11)

These kind of solutions would include the original version of KKLT as we
described it in Chapter 3. However a further result of [25] suggest that
certain alterations to KKLT might provide a de Sitter space. This result is
that they find that when one allows for the fluxes and internal manifold to
be time dependent the resulting theory need not be part of the swampland
as previous considerations no longer holds. Such a time dependent setup
would have a metric of the form

ds2 =
1

Λ(t)
√

h
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
√

h(F1(t)gαβ(y)dyαdyβ

+ F2(t)gmn(y)dymdyn) (4.12)

Where α, β = 4, 5 and m, n = 6, 7, 8, 9, which is to say the internal manifold
has the structure of a product manifold consisting of a 2d and 4d part. ∗ So
this argument suggest an alteration to the KKLT model is needed in order
to proceed.

4.4 Global compatibility

As pointed out by Liam Mcallister in his talk at Strings 2019, [17], the com-
ponents of KKLT are quite well examined seperately. Altough at this point
it should be clear that the consensus on the validity of each part is not
unanimous in the literature. With this in mind we’ll examine his point
anyway. As Mcallister points out we can consider the different compo-
nents of the KKLT senario seperately and should pose some questions re-
garding these components. Concerning Moduli stabilisation we should
ask whether there exit global models with:

∗Cross terms between these manifolds could in general also exist but we’ll not discuss
these.

44
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• Quantized fluxes giving small classical superpotenial

• Incorporating D7-brane stacks supporting gaugino condensation

• Klebanov Strassler throat regions

And concerning the antibrane uplifting we can wonder whether:

• there is a supersymmetric action that describes D3−branes?

• decompactification is the only important instability coming from the
D3−branes?

• de Sitter can vacua be described in 10d supergravity manner?

4.4.1 Quantized fluxes giving small classical superpotenial

By this we mean that the W0 from chapter 3 is indeed << 1 in string units.
This we required in order to be able to neglect all moduli except the Kähler
as these would be fixed at large mass. Examples of constructions satisfying
this condition have been found, for example in [26].

4.4.2 Incorporating D7-brane stacks supporting gaugino con-
densation

The presence of gaugino condensation is an example of a correction that
in chapter 3 gave rise to the exponential part in (3.16) needed for the AdS4
vacuum prior to uplift. Although other corrections resulting in a similar
term to superpotential might be substituted instead means the existence
of gaugino condensation is some sense less crucial. However examples
in the literature, such as [27], show that such substitutions while remain-
ing interesting are not necessary. By which we mean that the addition of
gaugino condensation is enough to lead to the AdS4 vacuum. Gaugino
condensation is the most often considered source of these correction terms
but other sources exist. So gaugino condensation in particular is not re-
quired but there has to be something that gives rise to such a correction
term to formulate a anti-de-Sitter vacuum.

4.4.3 Klebanov Strassler throat regions

As discussed in section 4.2 the existence of such a warped part of our man-
ifold is crucial to the warping needed for the scale separation. Luckily the
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existence of these regions are well established, at least in the non-compact
space where they where originally formulated in [28]. The method of glu-
ing of this region to a compact CY is still an open point of discussion and
could benefit greatly from an explicit formulation of a CY metric. Besides
the method of gluing there is even still debate on if such a throat is possible
in on a compact manifold.

4.4.4 Supersymmetric action describing D3−branes

A supersymmetric action which describes D3−branes is use full as it sheds
light on the coupling of the branes to the background. This as we have
seen is quite relevant. It is these couplings which are argued to ruin the
uplift as in certain cases we saw that the back reaction due to the cou-
pling is supposedly stronger than expected, which would indicate that the
probe approximations is not valid. A extensive explicit Susy action for
D3−branes has been formulated in [29] to quadratic order in the Fermion
fields. So such a description is not beyond our reach although it non trivial
to preform the analysis using this action. And the obvious route of going
beyond quadratic order also remains an avenue for improvement.

4.4.5 Is decompactification the leading D3−branes insta-
bility

As we mentioned earlier when working under certain restrictions the D3−branes
can be found to cause singularities when considered in the flux back-
ground. These singularities would indicate further instabilities besides
solely decompactification. However as shown by [30] these singularities
do not occur when these restrictions are relaxed as then the D3−branes
puff up in to NS5−branes as per the Myers effect. Leaving decompactifi-
cation as the leading instability as expected.

4.4.6 10d supergravity of dS

Most of the analysis that has been made of our model is in the framework
of 4d EFT. But fundamentally we should be able to do this in 10d as well
and when we do the 10d calculation we better find the same result as we
did in the 4d. This comparison has been done where possible in the liter-
ature, for example in [18]. Thus the EFT analysis remains valuable. There
however still various corrections one could consider in 10d which are in-

46
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tegrated out in the 4d EFT, but these are generally found to be subleading.
So it appears that the 10d calculation agrees with the 4d argumentation.

4.4.7 All at once

Thus far no example has been constructed that exhibits all these properties
simultaneously. There for there is no guarantee that this actually exist
but so far no conclusive proof exist that this impossible. But subtleties
might arise in the construct which means these necessary features can not
all be realised simultaneously. So might the D7 branes change the back-
reaction of the anti-brane in the throat, dependent on the way the throat
is glued to the compact manifold. And so there are many more possible
point of failure that need to be checked for mutual compatibility to be sure
that the construction is valid in general. If one could construct a explicit
model with all these properties an analysis can be made, by checking this
example for the existence of the de Sitter, which might prove that there
exist de Sitter vacua in string theory. But this obviously is easier said than
done.
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Chapter 5
Conclusion

To conclude we have discussed in chapter 3 a construction proposed by
Kachru Kallosh Linde and Trivedi to recover a de Sitter vacuum in super-
gravity. Which consisted of formulating a stabilized anti-de-Sitter vacuum
and adding an anti-brane, which broke supersymmetry and provided an
uplift to the vacuum. This resulted in a de Sitter vacuum. We discussed
the main assumptions made during this construction an analysed the sta-
bility of the resulting vacuum.
In chapter 4 we saw that this construction is not without flaws. In the 17
years since it’s proposal alterations have been constructed tweaking the
model here and there but fundamentally these remain the same model.
Extensive examination of the model showed many a priori problems with
the construction. However all of these augmentations and no-go theorems
have been found to miss certain subtleties or remain dependent on the in-
ability to formulate an explicit example. The later therefor we found to be
the main challenge left for the construction. There is however not a clear
method to proceed in this direction. And there for it would be presump-
tuous to simply call it a technical detail as some authors have argued. As
with all open questions it remains impossible to predict what we might
find along the way. But even if it turns out that due one reason or an other
the KKLT construction does not work the debate about the model has al-
ready provided numerous insights in to the deeper workings of string the-
ory models applicable beyond attempted cosmological models.
In conclusion we have found no clear answer to the question of whether
the Kachru Kallosh Linde Trivedi model provides a de Sitter space in su-
pergravity. But we have gained some insight in to the obstacles to find a
conclusive answer to this question.
It is clear at this point that currently there is no definitive method to solve
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the cosmological constant problem in string theory using the KKLT con-
struction. There are other potential methods, such as the large volume
scenario, which could provide an alternative should KKLT be found to be
invalid, but these we have not discussed.
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