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Abstract

Over the last few decades, several methods have been explored and
applied to circumvent the Abbe-Rayleigh diffraction limit, probably most
importantly, stochastic super-resolution fluorescence microscopy methods.

Another possibility, relying only on linear classical optics, is to exploit
optical superoscillations, and is far less explored to date. In this project we
explore the use of optical vortices for super-resolution far-field imaging.
For this, we investigate strongly focused optical fields using a number of
theoretical methods, we implement an experiment where a micro-pinhole

is scanned through the focus, and, explore spin-orbit interactions of
strongly focused optical fields. We find that our micron-sized pinhole is
able to discern structures much smaller than its own size and leads to an

enhancement of the spin-orbit interaction. Our method can be
implemented as a simple and fast tool for characterizing the intensity

distribution of a focused field with high resolution.
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Chapter 1
Introduction

1.1 The Diffraction Limit and beyond

The Abbe-Rayleigh diffraction limit has long thwarted advances in the
resolution of optical microscopy [1, p. 97][2, p. 281][3, 4]. Mathematically,
for any imaging system using waves, it is stated:

d = 1.22λ/2NA (Abbe) , (1.1)
θ = 1.22λ/D (Rayleigh) , (1.2)

where d, θ is the minimum distance/angle one needs to resolve two spots,
λ is the wavelength, NA is the numerical aperture of the system and D is
the diameter of the optical element. The factor 1.22 is due to the fact that
the first zero of the Airy disk or first order Bessel function appears at 1.22,
see Figure 1.1.

In order to image structures smaller than the diffraction limit for optical
systems, it seems like a logical choice to use electron microscopy, or other
particle beams, because electrons have a much smaller wavelength, and
therefore, the diffraction limit for electrons is of a much smaller scale.
However, these techniques have their own complications. It is not the
purpose of this thesis to discuss the limitations of electron microscopy, but
rather to explore methods to circumvent the diffraction limit itself.

One might ask the question, why is there a diffraction limit at all? If we
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2 Introduction

Figure 1.1: Diffraction pattern of a circular aperture illuminated by two point
sources. The left figure is of a single point source. In the second figure from the
left, the two point sources cannot be distinguished by conventional means because
the separation is half the required factor 1.22. In the third (separation of exactly
1.22) and last figure (separation of two times 1.22) the point sources are far enough
away and can be distinguished. The contrast of the pictures is enhanced by taking
the 4th root of the intensity in order to see the Airy rings more clearly.

look at the second figure of Figure 1.1, we see that pattern is not a perfect
Airy disk, because the light did not originate from a single point source. For
example, if we would have the prior information that the light originated
from two points sources, we can easily deconvolute the signal to image the
two sources at a distance smaller than the resolution limit. Even without
this prior information, deconvolution microscopy can calculate whether it
is a single, double or multiple point source with a slightly better resolution
than the Abbe limit, but this requires increasingly bright illumination [5].
We see that in principle, the Abbe limit can be beaten.

Over the last few decades, several novel techniques have been developed
to image well beyond the diffraction limit. Imaging beyond the diffraction
limit is called superresolution or subdiffraction imaging.

In the example, we stated that prior information on the sample can help
to image beyond the diffraction limit. This is one type of superresolution
and is best explained with the example of fluorescence microscopy. A
strong laser pulse excites a random number of sources, which in turn emit
photons that can be detected and thus localizes the active sources. Another
pulse de-excites the sources and the experiment is repeated. By repeating
the experiment a number of times an image can be constructed where the
sources can be localized with a much better resolution than the Abbe limit.
There are several distinct techniques of fluorescence microscopy beating
the diffraction limit based on this principle including PALM, STORM and
STED microscopy [5–7].

2
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1.2 Vortices and superoscillations 3

Stochastic techniques are not the only way to beat the diffraction limit.
Another technique is near-field optical microscopy, for which methods were
already proposed in the 1920s [8]. A probe, smaller than the diffraction
limit, is inserted into the optical near-field of the sample and the probe is
then scanned through the field. There are several types of nano-probes one
could use, among others: optical fibers, small aperture probes (pinholes)
or nanoparticles. Optical fibers and pinholes simply collect the field at a
tiny spot, while nanoparticles scatter the light, which converts evanescent
modes into propagating ones [1, Ch. 6] [9–11].

The list of superresolution techniques continues with optical needles [12],
saturation microscopy, ’perfect’ lenses constructed with meta-materials
[13–15], superoscillatory filters [16, 17], and quantum entangled photons
[5] and so on. See for a review [18–21]. In this thesis we shall investigate
yet another type of superresolution possible, by making use of the sub-
diffraction limit structure of the incident light itself. In this thesis, we
will investigate the sub-diffraction limit structure of light using a pinhole.
Our measurement technique is a form of superresolution technique called
near-field optical microscopy [22].

1.2 Vortices and superoscillations

A couple of superresolution techniques can be based on the mathematical
concept of superoscillations [4]. The idea of superoscillations originated in
the 60s [23–25] and more ideas for superresolution techniques were discov-
ered in the 50s (antenna superdirectivity). Aharonov and Berry surmised
that mathematical superoscillations could be useful for physical measure-
ments around 1990 [25–27], but only recently it became clear that far-field
optical superresolution techniques almost always require superoscillations
[13, 28], and that previously discovered techniques, such as antenna su-
perdirectivity, make use of superoscillations. Superoscillations and vortices
are ubiquitous in optics, even speckle patterns are full of them [29].

Superoscillations are oscillations that are faster than their fastest Fourier
component. It is very easy to show that such functions exist with the
following example taken from Berry [28, 30]:

f (x) = (cos(x) + ia sin(x))N , (1.3)

Version of December 17, 2019– Created December 17, 2019 - 12:15
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Figure 1.2: A superoscillation in one dimension. The superoscillatory function
f (x) is plotted together with its highest Fourier component fN(x). In this example,
the parameter a = 4 indicates the degree of superoscillation and N = 20 measures
the size of the area in which the superoscillation persists.

where a > 1 and N is a large integer. It can be shown that the highest
Fourier component is:

fN(x) = exp (iNx) . (1.4)

which means the function is bandlimited. However, in Figure 1.2 we see
that the function oscillates faster than its fastest Fourier component for a
limited region. Two fundamental characteristics of superoscillations can
already be seen in this figure. The first is that the superoscillations generally
persist over a small area, and the second is that superoscillations are always
accompanied by an exponentially decreasing amplitude in the area of the
superoscillation together with side-lobes that have exponentially higher
amplitude. The last characteristic especially complicates practical use of
superoscillations.

Another example that takes us a little closer to optics is the perturbed Bessel
beam taken from Berry [31, 32]:

g(r, `) = J`(2πρ)ei`φ + εJ0(2πρ) , (1.5)

where ρ, φ are polar coordinates, ` is the order of the Bessel function J` and
ε is a small perturbation constant. In Figure 1.3 ten ‘vortices’ are visible.
In this example, the wavelength or highest Fourier component is λ = 1.
The distance between two vortices is 0.2655 · 2π/` = 0.16, smaller than
the wavelength. Thus, we see that the amplitude is superoscillatory. In
fact, a vortex is superoscillatory by nature due to its phase distribution.

4
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Figure 1.3: Superoscillation in two dimensions. The superoscillatory function
g(r, `) is plotted with ε = 10−7 and order ` = 10. The amplitude is plotted on the
left and the phase on the right.

Considering a loop around the vortex core, the phase changes more and
more rapidly as we approach the core. A vortex beam generally carries
orbital angular momentum because of its phase distribution. Taking a
loop around the vortex core, the phase changes by 2π`, where ` is the
topological charge of the vortex. This is also a measure for its Orbital
Angular Momentum (OAM), each photon carries `h̄ OAM. The most
commonly encountered vortex modes are Laguerre-Gaussian (LG) modes,
that have a dark vortex core with topological charge `. Vectorial beams
can also carry Spin Angular Momentum (SAM) through their polarization.
Circularly polarized light carries sh̄ SAM per photon, where s = 1 for Right-
handed circular polarization (rcp) and s = −1 for Left-handed circular
polarization (lcp). The strong focusing regime is characterized by the fact
that OAM and SAM become coupled, through Spin-orbit (SO) coupling
[33–35]. In this thesis, we will see evidence of the SO coupling of LG10
modes with opposite circular polarization.

Bessel beams, but also LG modes do not change their shape upon propaga-
tion [36], and their vortices are topologically stable features of the wave [4].
This can also be understood as the conservation of total angular momentum
as the charge ` of a vortex beam can not change upon propagation. Superos-
cillations always operate in dark regions which is evident for vortex beams.
According to Berry [4], the vortices can be arbitrarily narrow because there
is no Abbe limit for dark light.
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6 Introduction

1.3 Goal

The main goal of this thesis is simple: We aim to create a beam with
subdiffraction structure. In order to show that the created optical field
has said structure, we need a superresolution measuring technique. We
have utilized a near field scanning technique involving scanning over the
field with a small aperture to characterize the intensity distribution of
the field. What is or what is not subdiffraction is defined by the optical
apparatus in use. In our case we will strongly focus the field with a high
NA microscope objective; the size of the microscope objective will define
the diffraction limit and we will test our method accordingly. Thus, we
will show superresolution methods in a twofold way. Firstly, we will have
produced a beam that has subdiffraction structure and secondly, we will
use a superresolution measurement technique to show that it has said
structure.

A second goal is to use our method to investigate the tightly focused
intensity distribution of vortex modes experimentally and by numerical
simulation. In the tight focusing (or strong focusing) regime the SAM of
the circularly polarized light can interact with the OAM of the vortex mode
through SO coupling. We will investigate the robustness of the vortex core
under tight focusing for various tightly focused modes.

1.4 Structure of this thesis

After this introductory chapter there are five further chapters. In Chapter 2
the theory of strongly focused fields is treated and methods to tackle the
Debye integral are discussed. These methods are implemented in simula-
tions, of which the results are discussed in Chapter 3. The experimental
method and results are discussed in subsequently Chapter 4 and Chap-
ter 5. Finally, we conclude this thesis in Chapter 6, including an outlook on
further research.

This thesis further contains three appendices. In Appendix A some details
of Chapter 2 are discussed. In Appendix B and Appendix C respectively
all of the simulation results and experimental results are systematically
displayed.

6
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Chapter 2
Theoretical Considerations

In this chapter, the theory of calculating the focused field
distribution is discussed. This is generally done in two
steps. First, a paraxial input field is considered, and
second, the field is refracted by the focusing apparatus.
The action of the focusing apparatus is modeled by a
geometrical construction that transforms the flat 2D inci-
dent beam propagating in the z-direction to a spherical
shell propagating towards the focal point. This chapter
will first set up a derivation for paraxial incident fields
and subsequently, show several methods for calculating
the focused field distribution.

A fundamental equation governing the field of optics is called the Helm-
holtz equation: (

∇2 + k2
)

E = 0 . (2.1)

The Helmholtz equation is a special case of the wave equation, which
can be readily derived from Maxwell’s equation in vacuum, for separable
solutions of the type E = E0eiωt with ω = c|k| the frequency of the light.
The Helmholtz equation allows plane wave and spherical wave solutions.
The infinite, monochromatic, plane wave solution can be written as:

E(r, t) = E0ei(k·r−ωt) . (2.2)

Version of December 17, 2019– Created December 17, 2019 - 12:15
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8 Theoretical Considerations

A general solution to the Helmholtz equation in terms of plane wave
solutions is called the angular spectrum representation [37, pp. 109-114][1,
pp. 38-41]:

E(r) =
∫∫

E(kx, ky)ei(kxx+kyy±kzz)dkxdky (2.3)

where the integral is taken over all k values to account for propagat-

ing and evanescent waves. As kz ≡
√

k2 − k2
⊥ becomes imaginary for

k⊥ ≡
√

k2
x + k2

y > k, the waves are exponentially decaying and are called
evanescent waves. The ±-sign accounts for both forward and backward
propagating waves along the z-direction [1, p. 27][38, Ch. 1][39, Ch. 8.3].

2.1 Vortex modes

An in particular useful approximation of Equation 2.1 is the paraxial ap-
proximation, resulting in solutions important in beam and resonator optics
[40]. Laser beams can be prepared into a variety of exotic modes. Limiting
ourselves to monochromatic and coherent light, a mode is usually char-
acterized by its spatial distribution of intensity, phase, and polarization
direction in the transverse plane.

In the paraxial regime, we can approximate Equation 2.1 by using a solution
of the form E(r) = u(r)e−ikz, where u is a slowly varying function of z.
Under this assumption, u solves the paraxial Helmholtz equation(

∇2
⊥ − 2ik∂z

)
u = 0 , (2.4)

where ∇2
⊥ ≡ ∂2

x + ∂2
y is the transverse part of the Laplacian. A fundamen-

tal solution to this differential equation is the Gaussian beam. A scalar
representation of the Gaussian beam or TEM00-mode is the following:

uGauss(r) =
√

2/π

w(z)
e
−ρ2

w(z)2 e
−i
(

kρ2

2R(z)−Φ(z)
)

, (2.5)

where ρ is the radial distance from the optical axis of the beam, z is the
propagation direction, w(z) = w0

√
1 + (z/zR)2 is the spot size or beam

waist parameter with zR = πw2
0/λ the Rayleigh range, R(z) = z(1 +

(zR/z)2) the radius of curvature and Φ(z) = arctan(z/zR) is the Gouy

8
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2.1 Vortex modes 9

phase due to a small longitudinal component of the wave near the beam
waist [41, pp. 153-155]. Taking a slice at an arbitrary z we see that the field
is of the form E(r) ∝ Ae−αr2

eiβ, with A, α, β constants; in essence this yields
a Gaussian intensity distribution with a flat phase distribution. In principle,
this fundamental Gaussian mode can be prepared in different transverse
polarizations: flat linear or circular polarization or the slightly more exotic
radially outward or azimuthal polarization distributions.

Figure 2.1: On the left the parameters of a Gaussian beam are shown. The left
figure is taken from Wikipedia Gaussian Beam, accessed 14-10-2019. On the right
the Gaussian intensity distribution is plotted.

At this point, we must note that the paraxial Helmholtz equation is sep-
arable in its transverse part, which leads to a complete orthogonal set of
separable solutions in any basis of the two-dimensional transverse plane
[42]. Since the fundamental Gaussian mode is a solution to the Helmholtz
equation, which is a linear homogeneous differential equation, any combi-
nation of spatial derivatives of the fundamental mode are also solutions to
the Helmholtz equation [1, p. 49]. For spatial derivatives in Cartesian coor-
dinates, these are the so-called Hermite-Gaussian (HG) modes or TEMnm
modes [43]:

uHG
nm (r) =

CHG
nm

w(z)
e
−ρ2

w(z)2 e
−i
(

kρ2

2R(z)−(N+1)Φ(z)
)
· Hn

( √
2x

w(z)

)
Hm

( √
2y

w(z)

)
, (2.6)

where Hn,m are (physicists’) Hermite polynomials of order n, m:

H0(x) = 1 , H1(x) = 2x , H2(x) = 4x2 − 2 , . . . (2.7)
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10 Theoretical Considerations

n, m are mode indices, and, N = n + m is the mode order. The factor

CHG
nm = 2−(n+m)/2

√
2

πn!m!
(2.8)

is a normalization constant. Qualitatively for a given z plane, see Figure 2.2,
we see a normal Gaussian profile superimposed with n + m number of
nodal lines and a phase jump of π at each nodal line. Neglecting normal-
ization and phase factors, setting z = 0, and rescaling the coordinates with
respect to w0 the first few modes can be written as:

uHG
00 (r) = e−ρ2

, uHG
10 (r) = 2xe−ρ2

,

uHG
01 (r) = 2ye−ρ2

, uHG
11 (r) = 4xye−ρ2

,

uHG
02 (r) = (4y2 − 2)e−ρ2

, uHG
20 (r) = (4x2 − 2)e−ρ2

.

(2.9)

Figure 2.2: Higher-order modes. On the left are the HG modes with n, m from 0, 0
in the upper left corner to 3, 3 in the lower right corner. On the right are the LG
modes with the values of `, p in the same way as the HG modes.

A second set of orthogonal solutions can be obtained in polar coordinates
and are called Laguerre-Gaussian (LG) modes [40]:

uLG
`p (r) =

CLG
`p

w(z) (−1)p
(

ρ
√

2
w(z)

)|`|
e
−ρ2

w(z)2 e
−i
(

kρ2

2R(z)−(N+1)Φ(z)
)
−i`φ

L|`|p

(
2ρ2

w(z)2

)
, (2.10)

10
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2.2 Diffraction Theory 11

where Ll
p are the generalized Laguerre polynomials

L`
0(x) = 1 , L`

1(x) = −x + `+ 1 ,

L`
2(x) =

x2

2
− (`+ 2)x +

(`+ 2)(`+ 1)
2

, . . .
(2.11)

p the radial, ` the azimuthal indices, and, N = 2p + |`| is the mode order.
Lastly, the factor

CLG
`p =

√
2p!

π(p + |`|)! (2.12)

is a normalization constant. The first few LG modes, at z = 0 and neglecting
normalization and phase factors, can be written as:

uLG
00 (r) = e−ρ2

, uLG
01 (r) = (−2ρ2 + 1)e−ρ2

,

uLG
±10(r) = ρe−ρ2

e∓iφ , uLG
±11(r) = (−2ρ3 + ρ)e−ρ2

e∓iφ ,

uLG
±20(r) = ρ2e−ρ2

e∓2iφ , uLG
±21(r) = ρ2(−2ρ2 + 1± 2)e−ρ2

e∓2iφ .

(2.13)

It is interesting to note that, as both families of solutions form a basis of
solutions to the paraxial Helmholtz equation, in principle one can decom-
pose the HG modes into LG modes. In other words, there exists a relation
between the HG and LG modes [44–48]. For instance, we have:

uLG
±10(r) = uHG

10 ∓ iuHG
01 , (2.14)

uLG
±20(r) = uHG

20 − uHG
02 ∓ 2iuHG

11 . (2.15)

LG modes are the quintessential vortex modes. At the center, due to the
factor e−i`φ there is a vortex of topological charge ` which means that each
photon carries `h̄ Orbital Angular Momentum (OAM). In this project, we
have mainly used the LG10 and LG20 modes to investigate the properties of
vortices.

2.2 Diffraction Theory

2.2.1 Optical Propagation

The Huygens-Fresnel principle states that every point of a wave-front may
be considered as a secondary point source (Huygens). The optical field at

Version of December 17, 2019– Created December 17, 2019 - 12:15
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12 Theoretical Considerations

any point can be calculated as a sum over these secondary point sources,
taking into account (Fresnel) that the secondary wavelets interfere. For any
wavefront S we can calculate the optical field at a point r by integrating
over the field at the wavefront together with the optical propagator or
Green’s function G(r, r′) [1, pp. 45-47]:

Eout(r) =
∫∫
S

G(r, r′)Ein(r′)dS . (2.16)

where the optical propagator is given as (see Section A.1):

G(r, r′) =
eiks

iλs
(2.17)

and s = |r − r′| is the vector between the position r of the field to be
calculated and the position r′ of the incident field on the surface. Given
a surface S on which an incident field is defined, the above equation
calculates the resulting diffracted field at a given location r.

Two geometries for the surface S are prevalent for calculating the diffracted
field. One of these geometries is well known and yields the field of Fourier
physics. On the condition that the aperture (surface) is small with respect
to the propagation length (z � x′, y′), it can be derived (see Section A.2)
that the diffracted field is simply a Fourier transform of the incident field
on the aperture. The method of Fourier analysis to calculate the diffracted
field is very powerful, not only because one can use fast Fourier algorithms
to calculate the diffracted field, but also because in many cases it is possible
to calculate the exact solution in this approximation. This indicates that it
might be useful to try something similar in the strong focusing regime.

The second geometry is that of a spherical surface for calculating a strongly
focused field, for which the above approximation obviously does not hold,
and is discussed next.

2.2.2 Strong Focusing

In the strong focusing regime, we must use another geometrical construc-
tion to calculate the field near the focus, and the vector nature of the field
can no longer be neglected. A strong focusing apparatus obeying the Abbe
sine condition [49]:

ρ = f sin θ (2.18)

12
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2.2 Diffraction Theory 13

is often modeled as in Figure 2.3. An incident paraxial field Ein is trans-
formed at a spherical surface into the transmitted field Et after which it
propagates towards the focal point to become the focused field Eout. The
first transformation is a rather simple transformation to do mathemati-
cally, but we should note that this is simply a model of how a microscope
objective focuses the light. In reality, the microscope objective consists
of multiple lenses together transforming the field approximately in the
manner we are describing here.

𝑧
𝜌′ 𝜑𝜃

𝑓
ℴ

𝒓𝒓′

𝒔

𝑬𝐢𝐧(𝜌′, 𝜑′) 𝑬𝐭(𝜃, 𝜑′)
𝑬𝐨𝐮𝐭(𝒓)

Figure 2.3: Geometrical construction in the strong focusing regime. The vectors
Ein, Et and Eout are drawn at general coordinates. The vector Ein is defined on
the flat surface and the vector Et on the spherical surface. The contribution of the
drawn Et at those coordinates is drawn as an example vector for Eout.

Vector transformation at the lens

Consider the incident vectorial beam in cylindrical coordinates ρ, φ. Then,
at the lens, the radial direction is transformed to the polar direction and
multiplied with the Fresnel coefficient tp. The azimuthal direction remains
unchanged but is multiplied with the Fresnel coefficient ts [1, pp. 21-22].
This can be expressed as follows [1, pp. 58-59]:

Et =
(
ts(Ein · φ̂)φ̂ + tp(Ein · ρ̂)θ̂

)√
cos θ , (2.19)

where the term
√

cos θ is an apodization term due to energy conservation
[1, pp. 57-58]. We can also express this transformation as a matrix:

Et = MEin
√

cos θ . (2.20)

where the matrix M is given in Cartesian coordinates as (see Section A.3):

M =
1
2

(
ts+tp cos θ−(ts−tp cos θ) cos 2φ −(ts−tp cos θ) sin 2φ

−(ts−tp cos θ) sin 2φ ts+tp cos θ+(ts−tp cos θ) cos 2φ

−2tp sin θ cos φ −2tp sin θ sin φ

)
. (2.21)
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14 Theoretical Considerations

This matrix transforms the two transverse polarization directions of the
incident field Ein onto three polarization directions of the transmitted field
Et.

Propagation toward the focal point

In the second step the transmitted field is propagated towards the focus.
To calculate the focused field, we use the geometry in Figure 2.3 where
the transmitted field Et(r′) is defined on a sphere with curvature f [1, pp.
45-55][39, Ch. 8.8][50–52]. Let s denote again the distance vector r′ − r
between the points on the sphere r′ and the image point r. According to
Equation 2.16:

Eout(r) = e−ik f
∫
S

Et(r′)
eiks

iλs
dS . (2.22)

It is conventional to set the 0 of the phase in the origin instead of at the
spherical surface, hence the term e−ik f . In this case, we will expand s
near f , assuming that we are near the focus, i.e. r small. Note that f 2 =
x′2 + y′2 + z′2 by construction so that we can write:

s =
√
(x− x′)2 + (y− y′)2 + (z− z′)2 =

√
f 2 + r2 − 2(r · r′)

= f

√
1 +

r2 − 2(r · r′)
f 2 ≈ f +

r2 − 2(r · r′)
2 f

. (2.23)

We see that in linear approximation in r we obtain s = f − r·r′
f with a

dimensionless error of the size of r2/2 f 2 (in terms of f ). If we plug this into
the integral (with using in the denominator again s ≈ f ), we obtain:

Eout(r) = −
i

λ f

∫
S

Et(r′)e
−ik r·r′

f dS . (2.24)

This integral is called the Debye-Wolf integral [39, p. 485][53, 54]. The next
step is that we perform a coordinate transformation dS = f 2 dΩ, where
dΩ is an integral over the solid angle. We can write k = kr′/ f such that:

Eout(r) = −
i f
λ

∫
Ω

Et(θ, φ)e−ik·r dΩ . (2.25)

Note the similarity of this integral to Equation 2.3 of the angular spectrum
representation.

14
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2.3 Computational Methods 15

2.3 Computational Methods

To recapitulate, calculating a strongly focused field which is focused obey-
ing the Abbe sine condition is done in three steps.

1. The paraxial incident field Ein is fully characterized using an appro-
priate basis of modes and polarization.

2. The incident field is transformed into the transmitted field Et accord-
ing to Equation 2.19.

3. The Debye integral is evaluated to obtain Eout near the focus.

The Debye integral cannot be solved analytically, except for maybe a few
pathological cases. One can, of course, calculate the integral numeri-
cally, but it is computationally expensive, as for each coordinate in three-
dimensional space a two dimensional integral must be solved. However,
there are several techniques that can decrease the computational time. One
such technique relies on converting the integral into a Fourier transform,
and is discussed in Subsection 2.3.1 and Subsection 2.3.2. More elegantly,
the azimuthal integral can be solved analytically, which reduces the two-
dimensional integral into a small set of one-dimensional ones. This method
is discussed in Subsection 2.3.3. In the next chapter, we will compare the
simulations of the different methods of various input fields.

2.3.1 3D Fourier transform

The Debye integral can be turned into a three dimensional integral over all
space by simply multiplying the integrand with a delta function [50, 51, 55,
56]

Eout(r) = −
i f
λ

∫
V

Et(r)δ(|r| − 1)e−ik·r dV . (2.26)

Note the resemblance to the 3D Fourier transform:

f (k) =
∫
V

f (r)e−ik·r dV
(2π)3/2 . (2.27)
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16 Theoretical Considerations

Thus, we find:

Eout(r) = −
i f
λ
(2π)3/2F [Et(r)δ(|r| − 1)] (k) (2.28)

This means that we can implement fast Fourier algorithms and quickly
calculate the focused field.

2.3.2 2D Fourier transform

As we only have a field defined on a spherical shell, it is more natural to
proceed with a two-dimensional Fourier transform [52, 57]. Considering
the on shell angles θ and φ, we may transform these into the cylindrical
coordinates of the paraxial input field before the lens:

r = sin θ , dr = cos θ dθ ,
φ = φ , dφ = dφ ,

(2.29)

such that
dΩ = sin θ dθ dφ =

r dr dφ

cos θ
=

dx dy
cos θ

. (2.30)

Filling this into Equation 2.25, we find:

Eout(r) = −
i f
λ

∫
Ω

Et(θ, φ)e−ik·r dx dy
cos θ

. (2.31)

Taking Et zero for angles larger than the opening angle we can extend the
integral over the plane and obtain the 2D Fourier integral

Eout(r) = −
i f
λ

∫ Et(θ, φ)e−ikzz

cos θ
e−i(kxx+kyy) dx dy

= − i f
λ
F2D

[
Et(θ, φ)e−ikzz

cos θ

]
(kx, ky) . (2.32)

2.3.3 Analytic solutions of the azimuthal integral

The Debye integral (Equation 2.25) can be partially solved analytically for
the azimuthal integral [1, pp. 59-68]. First, let us write this integral in terms

16
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2.3 Computational Methods 17

of the coordinates of the sphere φ′ and θ′:

Eout(ρ, φ, z) = − i f
λ

θmax∫
0

2π∫
0

Et(θ
′, φ′)eik(z cos θ′+ρ sin θ′ cos(φ′−φ)) sin θ′ dφ′ dθ′ .

(2.33)
We will outline how to solve this integral for a linearly x-polarized Gaussian
as incident field. In Section A.4, the full expressions for up to mode order 2
are written down. Let us assume the Fresnel coefficients are 1 for simplicity.
We can now express the transmitted field Et on the spherical surface as

Et(θ, φ) = Ein(θ, φ)

√
cos θ

2

1 + cos θ − (1− cos θ) cos 2φ
−(1− cos θ) sin 2φ
−2 cos φ sin θ

 . (2.34)

Next, let us calculate the incident field Ein for the Gaussian in terms of the
spherical coordinates ( f , θ, φ), where x = f sin θ cos φ, y = f sin θ sin φ by
construction:

uGauss(r) = e− f 2 sin2 θ/w2
0 . (2.35)

Note that inserting these equations into Equation 2.33, there is always the
following common factor

fW(θ) ≡ e− f 2 sin2 θ/w2
0
√

cos θ sin θeikz cos θ (2.36)

that we will write as such. The azimuthal integral can now be evaluated
with the following two standard integrals:

2π∫
0

cos(nφ)eix cos(φ′−φ) dφ′ = 2π(in)Jn(x) cos(nφ) ,

2π∫
0

sin(nφ)eix cos(φ′−φ) dφ′ = 2π(in)Jn(x) sin(nφ) ,

(2.37)

where Jn is the nth-order Bessel function. In principle, what is left is an
integral over the single variable θ. As in Novotny [1, p. 61], it is useful to
introduce these abbreviations for the following integrals:

I00 =
θmax∫

0
fW(θ)(1+cos θ)J0(kρ sin θ)dθ , I01 =

θmax∫
0

fW(θ) sin θ J1(kρ sin θ)dθ ,

I02 =
θmax∫

0
fW(θ)(1−cos θ)J2(kρ sin θ)dθ . (2.38)
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18 Theoretical Considerations

Note that these integrals are still functions of the output coordinates (ρ, z)
meaning that we still have to perform each integral numerically for each
field point that we want to evaluate. Using these abbreviations, we can
write down the focused fields:

EGauss
x (r) = − ik f

2

( I00+I02 cos 2ϕ
I02 sin 2ϕ
−2iI01 cos ϕ .

)
(2.39)

All other LG and HG modes can be obtained in a similar manner. The
only difference between the higher order modes and the Gaussian is a
polynomial in sin φ and cos φ for which the integral can be solved using
Equation 2.37. See Section A.4 for full expressions of the HG modes up to
mode order N = 2.

18
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Chapter 3
Simulations

This chapter discusses the simulations that were used
to calculate the focused field distributions. First, the
main simulation results are discussed for the Gaussian,
LG10 and LG20 modes. The cross- and z-polarization
components intensities are explained and characterized
by means of SO coupling. Next, the different methods
used to simulate are explained and compared.

3.1 Simulation Results

The theoretical problem at hand is how to calculate the Debye integral,
which is valid for strongly focused fields close to the focal point:

Eout(r) = −
i f
λ

∫
Ω

Et(θ, φ)e−ik·r dΩ , (3.1)

In the previous chapter it is outlined how to tackle this integral. In this
chapter, we will present the numerical results for parameters similar to the
experiment, which will be discussed in the next two chapters:

NA = 0.9 , λ = 0.637 µm ,
f = 2000 µm , w0 = 1000 µm . (3.2)
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|Eco|2 |Ecross|2 |Ez|2 |E|2

0

1

0

0.000359

0

0.0402

0

1

Figure 3.1: Focused field of a linearly polarized Gaussian beam. From left to right
are plotted the intensity profiles of the co-, cross-, z-polarization components, and
lastly the total intensity.

In this chapter, all figures have been simulated on a 5× 5 µm grid with
512x512 points. The 2D CZT method (see Section 3.2) has been used unless
stated otherwise in the figure caption. Lastly, the total intensity has been
normalized in each figure.

Focused field of an incident linearly polarized Gaussian beam

Let us first address the strongly focused Gaussian profile of a linear po-
larized beam depicted in Figure 3.1. The first most obvious observation
is that the cross- and z-components are non-zero. The co-polarization
component is the vector component parallel to the incident beam and the
cross-polarization component is the vector component orthogonal, but also
transverse. Finally, the z-polarization component is the axial component in
the direction of propagation. The polarization vector of the incident beam
is rotated inwards at the spherical shell on which it is projected, yielding
the resulting components. While these cross- and z-polarization compo-
nents are always slightly non-zero in real beams, this effect only becomes
appreciably large in the case of strong focusing. The intensity distribution
of the focused field is elongated along the axis of incident polarization,
which in this case is the x-direction, see Figure 3.2.1

Important to note is that the incident field is linearly polarized with a Gaus-

1This is a known result, found in various sources [1, 43, 57, 58]. Gross [57] reports
different values of the intensities of the cross and axial vector components, although the
qualitative behavior is the same. The numbers are not the same because they are in fact
also dependent on the beam waist w0 and the focal length f , which we have chosen to fit
the experiment.

20
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Figure 3.2: Cross-sections along the x- and y-polarization direction of the total
intensity drawn with red and blue curves respectively, showing that the total
intensity distribution is slightly elongated along the polarization axis.

sian intensity profile, such that the separability in Cartesian coordinates
of the field for each vector component is not affected. Therefore, we must
obtain HG modes in the cross- and z-polarization components. A common
theme that we already discover here is that compared to the co-polarization
component, the z-polarization component differs 1 in mode order and 2 in
the cross-polarization component. Tabulated:

Table 3.1: Modes in the focused components of a linearly polarized Gaussian.

mode N = n + m
co HG00 0

cross HG11 2
z HG01 1

where the first column indicates what kind of mode we find in the com-
ponent of the focused field, and the second column lists the mode order
N.

Focused field of an incident circularly polarized Gaussian beam

If we give the incident Gaussian beam circular polarization we find similar
results, see Figure 3.3. In the rotational basis — co- and cross-polarization
now mean right-hand and left-hand in the circular basis — we obtain the
higher order LG modes in cross- and z-polarization components instead of
HG modes, and thus, the total intensity remains circularly symmetrical. The
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Figure 3.3: Focused field of a circularly polarized Gaussian beam. From left to right
are plotted the intensity profiles of the co-, cross-, z-polarization components, and
lastly the total intensity. The upper row depicts the equal intensity distributions for
both lcp and rcp directions. The second and third row depict the phase distribution
of the lcp and rcp directions respectively.

co-polarization component for the focused lcp mode is left hand circular
|L〉 = (|x〉+ i|y〉)/

√
2 and the cross-polarization component is right hand

circular |R〉 = (|x〉 − i|y〉)/
√

2 and vice versa for the focused rcp mode.
Again, we have a mode order difference of 2 for the cross-component and 1
for the z-component:

Table 3.2: Modes in the focused components of a circularly polarized Gaussian.

s = −1 s = 1 N = |`|+ 2p
co LG00 LG00 0

cross LG−20 LG20 2
z LG−10 LG10 1

where the s = −1 and s = 1 columns indicate the circular polarization

22
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3.1 Simulation Results 23

of the incident beam and list the modes found in the focused field com-
ponents. The difference between lcp and rcp can be understood in terms
of SO coupling. For circular polarized light each photon carries sh̄ SAM,
where lcp carries −h̄ and rcp +h̄ SAM per photon. This SAM is partially
converted into OAM in case of tight focusing, yielding a vortex core in the
z-polarization component [59]. We see this difference in the handedness
of the vortex core phase distribution. For lcp, we obtain a LG mode with
azimuthal index ` = −1 in the z-polarization component and ` = −2 in
the cross-polarization component, and for rcp, we have a LG mode with
azimuthal index ` = +1 in the z-polarization component and ` = +2 in
the cross-polarization component.

Focused field of an incident circularly polarized LG10 mode

This fact can be made even more clear for the focused circularly polarized
LG10 modes where the handedness dictates whether the vortex core sur-
vives [60, 61]. Adding the components together to a total intensity for the
focused lcp mode, we see that the vortex core of the beam is no longer
exactly zero2 due to the conversion of SAM into OAM [33, 34]. This pro-
found effect is something we will also encounter in our experiments. For
rcp we see in Figure 3.4 that SAM and OAM are parallel and add. For
lcp the SAM and OAM are anti-parallel and subtract. Moreover, when
the OAM is lowered in this way by SO coupling, the phase distribution
acquires a circular phase step that looks very much like the phase step
of an LG mode with radial index p = 1, see Figure 3.5. In fact, this is a
general rule we observed. The mode order is always 2 and 1 higher in the
cross-component respectively z-component, while the azimuthal index is
also always lowered by 2 and 1 in case of opposite OAM and SAM. The
radial index p is increased accordingly. This is further corroborated by
higher-order radial modes, see Appendix B for a full list of calculated focus
fields.3 We can write for the different polarization components [33]:

left hand circular: ` f oc = (`+ s + 1) , (3.3)

right hand circular: ` f oc = (`+ s− 1) , (3.4)

z: ` f oc = (`+ s) , (3.5)

2See also the simulations of Zhao et al. [35].
3This ‘rule’ was already discovered for the axial component by Klimov [62] and the

vortex order for each component has been calculated by Bliokh [33]. To the best of our
knowledge, the increase in the radial index p has not been discovered.
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Figure 3.4: Focused field of a circularly polarized LG10 mode. The top two rows
depict the focused field distributions of the lcp LG10 mode, and the bottom two
rows of the rcp LG10 mode, similar to the figures above.

24

Version of December 17, 2019– Created December 17, 2019 - 12:15



3.1 Simulation Results 25

Ecross Ez

0

0.0717

0.0000

0.6982

Figure 3.5: SO coupling: p-modes in cross- and z-polarization components. The
low intensities are enhanced by plotting the absolute value of the amplitude
instead of the intensity.

where l f oc is the vortex order of the focused field component. In terms
of modes, tabulated for the incident circularly polarized LG10 mode, we
observe:

Table 3.3: Modes in the focused components of a circularly polarized LG10 mode.

s = −1 s = 1 N = |`|+ 2p
co LG10 LG10 1

cross LG−11 LG30 3
z LG01 LG20 2

Focused field of an incident circularly polarized LG20 mode

For the LG20 mode, the story is much the same. However, because the
z-polarization component of the lcp does have a vortex core, we see that
the vortex is much more robust. We must note that the cross-polarization
component does not have a vortex core and therefore we have a tiny on-axis
intensity even for the LG20 mode. Tabulated for the LG20 mode:

Table 3.4: Modes in the focused components of a circularly polarized LG20 mode.

s = −1 s = 1 N = |`|+ 2p
co LG20 LG20 2

cross LG02 LG40 4
z LG−11 LG30 3
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Figure 3.6: Focused field of a circularly polarized LG20 mode. The top two rows
depict the focused field distributions of the lcp LG20 mode, and the bottom two
rows of the rcp LG20 mode.
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3.1 Simulation Results 27

Focused fields of the incident radially and azimuthally polarized dough-
nut modes

Apart from the modes already discussed, we found the following modes in
the literature [1, 57, 58, 63].4 The radially polarized doughnut mode can be
written as:

urad =
ρ

w0
e−ρ2/w2

0 ρ̂ = uHG
10 x̂ + uHG

01 ŷ , (3.6)

and the azimuthally polarized doughnut mode as:

uazi =
ρ

w0
e−ρ2/w2

0 φ̂ = −uHG
01 x̂ + uHG

10 ŷ . (3.7)

These modes are interesting because they do not disrupt the cylindrical
symmetry of the focusing apparatus. Furthermore, the total intensity of
the focused radially polarized mode shows not a Gaussian but is more
similar to a top-hat profile. Basically, the flat phase doughnut mode in
the radial Eρ polarization component is combined with a large LG01 pro-
file (distinguishable from the Gaussian mode by its phase structure) in
the z-component. For the azimuthally polarized mode, due to symmetry
considerations, the z-polarization component cancels completely and we
are left with the azimuthal Eφ polarization component’s doughnut profile.
The leftover profile in the z-polarization component in the figure is due to
numerical errors in MatLab. We see the leftover fourfold intensities of the z
components of the focused HG01 and HG10 modes.

Table 3.5: Modes in the focused components of a radially or azimuthally polarized
doughnut mode.

radial mode N azimuthal mode N
x HG10 1 HG01 1
y HG01 1 HG10 1
z LG01 2 — —

4Our results are essentially the same as in the literature, indicating that the methods
used to simulate the focused field are correct.
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Figure 3.7: Focused fields of the radial and azimuthally polarized doughnut
modes. The top row depicts the focused field distributions of the radially polarized
doughnut mode, and the bottom row of the azimuthally polarized doughnut
mode. The phases of the transverse polarization components in a Cartesian basis
are similar to that of the z-polarization component of a focused Gaussian mode:
The HG10 phase step toegether with the radial phase steps observed earlier. (Not
plotted.)
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3.2 Methodology

In order to calculate Equation 2.25:

Eout(r) = −
i f
λ

∫
Ω

Et(θ, φ)e−ik·r dΩ , (3.8)

as outlined in Section 2.3, several different methods can be utilized. We
have programmed four distinct methods with MATLAB.

The first most obvious method is by performing brute force integration
(BF). For each position it calculates the integral over each element in the 2D
array Et(θ, φ), or rather Et(ρ, φ), multiplied by the exponent e−ik·r, where
k can be written as:

k = k0

 ρ cos(φ)
ρ sin(φ)

f
√

1− (ρ/ f )2

 , (3.9)

This method is obviously slow, but yields the most trustworthy results.
Fortunately, it is easy to adapt the method to only calculate a single plane,
which is adequately fast.

The second method is by performing the azimuthal integral analytically
[1, 58]. This method is implemented in two equivalent ways. Namely, the
first way (AA1) predefines the integrals from Subsection 2.3.3 for each mode.
The second (AA2) calculates a symbolic expression for the full vectorial
field in terms of a single integral over θ by means of a small algorithm. It
is possible to set up an algorithm for this because the azimuthal integral
is always of the same form. The algorithm first calculates the formula for
the transmitted field Et and rewrites it in such a way that there are only
linear terms of sin nφ′ and cos nφ′. After this step, it performs the integral
by substituting each term of sin nφ′ with 2π(in)Jn(k0ρ sin θ) sin φ according
to Equation 2.37.

The reason for separating the analytical methods AA1 and AA2, that solely
differ in the way they are implemented, is because the AA2 method is a bit
slow in its implementation due to the way MATLAB converts the symbolic
expressions to a 2D or 3D grid. However, due to the algorithmic nature,
the AA2 method is superior over the AA1 method, as it is easy to make
errors in the lengthy mathematical expressions that we see in Section A.4.
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The AA1 method, in fact, becomes slower for higher-order modes because
it needs to calculate more and more integrals, such that the AA2 method is
better overall. The AA methods are faster than the BF method, as they only
need to integrate over a single variable, instead of two for the BF method.

Next are the two Fourier implementations discussed in Subsection 2.3.1 and
Subsection 2.3.2. These are implemented with a Chirp-Z transform (CZT)
instead of a Fast Fourier Transform (FFT), as we are only interested in a
small volume near the focus for which the Debye integral is valid. Cutting
off the Fourier transform at small values greatly increases the speed of the
transform. These two methods are implemented as a 2D transform (2DCZT)
[52] and a 3D transform (3DCZT) [50, 51, 55]. These methods are extremely
fast in their implementation but are hard to program correctly. For instance,
for the 3DCZT method, it is very difficult to implement a spherical shell
that is infinitesimally thin on a Cartesian grid. For both, there are probably
issues with sampling. Another downside is that these methods need to use
3D grids (or z planes for the 2DCZT method) in order to work, which limits
the sampling size when programmed on an ordinary computer.

For each method, the symbolic expressions for HG and LG modes are
generated by making use of a Rodrigues’ formula for Laguerre and Hermite
polynomials.5 For the BF, 2DCZT and 3DCZT methods, the input fields
are calculated as followed. The input modes are calculated on a 2D array
and subsequently set in a cell array of length 2 denoting the transverse
polarization directions. In the second step, Equation 2.19 is performed upon
the input field to obtain the transmitted field Et(r′). Subsequently, in the
third step, the method as described above is implemented. The resultant
object is a 3D array with 3 cells denoting the 3 polarization directions.

Implementing these methods, we ran into many problems. As of now, not
all problems have been addressed. To give an idea of some of the issues that
are left, the methods will be compared to one another in the next section.

5See Wikipedia Rodrigues’ Formula, consulted 18-11-2019.
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Figure 3.8: Method comparison: Focused linearly polarized Gaussian mode, with
NA = 0.9, f = 2 mm and w0 = 1000. From left to right are the BF, 2DCZT, 3DCZT,
AA1 and AA2 methods. The top two rows depict the co-polarization component
and the lower two rows depict the cross-polarization component.

3.3 Method comparison

To compare the methods, we will use a fundamental Gaussian mode pre-
pared in one transverse polarization direction. First, we look at a single
z-plane at z = 0, where all methods seem to function properly. In Figure 3.8
we observe that qualitatively, the results are very similar. Indeed, both AA1
and AA2 output the exact same results, as they eventually use the same
expressions. Between the other methods, there are some differences that
are hardly visible in the intensities, but more clearly in the phase. As we
can see, the phase of the 3DCZT method does not accurately mimic that
of the other methods. However, we see that this only happens in an area
with low intensities, where phase information is less important. Between
the BF, 2DCZT and both AA methods, we observe that the circular phase
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Figure 3.9: Method comparison: Cross-sections for different values of NA and f .
All figures depict the co-polarization component of a focused linearly polarized
Gaussian beam. The left column is the intensity of a cross-section at z = y = 0
and the right column at ρ = 0. The results of the four methods together with a
Gaussian intensity are plotted. The Gaussian is the green curve and is plotted with
the expected beam waist.
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steps are not at the same distance. This indicates a small difference in the
way the incident beam is cut off on the aperture, yielding a different phase
step ring structure.

To investigate the differences in more detail, cross sections are taken in
Figure 3.9 at the z = y = 0 line on the left and on the optical axis on the
right. For the focal plane, we see that the methods almost exactly agree for
small NA, but that for high NA small differences appear, with the largest
differences in the 3DCZT method. All in all, in the focus, all methods
accurately simulate a focused Gaussian with the expected beam waist:

w0,focus =
λ

π arctan(w0,input/ f )
. (3.10)

For the axial cross-section, large differences appear. The 2DCZT method
does not accurately simulate a Gaussian at all and we believe that sampling
and/or spacing issues are the reason this method is failing. The 3DCZT
method fails for low NA, where the sampling of the spherical shell becomes
more difficult. For the other methods, BF most accurately simulates the
Gaussian, while the AA1 method runs into problems for extremely high
NA.

Finally, the methods differ in the amount of time they take to calculate the
focus field. The main motivation to use the difficult to implement CZT
methods is because they speed up the computational time significantly. In
the Figure 3.10, we see that the BF method is slowest, followed by AA2,
AA1, 3DCZT and finally, the fastest is the 2DCZT method. We also see
that regardless of the number of points, the AA2 method takes a couple
of seconds to initialize. This is due to the computation of the symbolic
expressions. We note that the initialization of the AA2 method can be made
significantly faster if it would not be programmed in MatLab.

All in all, if one is interested in the z = 0 plane, the 2DCZT method has
yielded the best results. It is very fast and yields essentially the same results
as the BF method. For 3D results, the only method that accurately simulates
the Gaussian for very high NA was the brute force method, with large
deviations in the other methods. For the CZT methods, one should be very
careful about sampling in case of low NA.
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Figure 3.10: Comparison of calculation duration for the algorithms. On the y-axis
is the time in seconds, on the x-axis is the length of the grid. Left: Calculation on a
n× n square grid. Right: Calculation on a n× n× n grid. Note that the 3DCZT
can only be implemented on a 3D grid. The sampling size of the incident beam is
kept the same. This means for the BF, 2DCZT methods an n× n input field grid
and for the AA methods an n long θ vector that is integrated over.
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Chapter 4
Experimental Method & Setup

This chapter explains in detail the experimental pro-
cedures of this research. The first part of the chapter
describes the setup, of which the schematic can be found
in Figure 4.1, and by which method the focused vortex
modes are generated. The second part describes the
near field scanning technique utilized to measure the
intensity distribution of the strongly focused beam.

4.1 Mode preparation

The optical field is produced by a 637 nm laser diode (Thorlabs LP637-
SF70) transmitted through a single mode fiber (P1-630A-FC-2). The mode is
directed into a horizontal polarization by the subsequent λ/2-plate (633 nm-
AR) and linear polarizer (LPVIS100-MP). At this stage, together with a laser
diode controller (LDC 205 C and TED 200 C), absorptive filters regulate the
total intensity of the beam.

After a, solely practically important, mirror, a 50/50 non-polarizing beam-
splitter (BS016) creates a new perpendicular optical path on which the
phase tailored beam will operate.
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L1L2

absorptive
filters

objective
piezo

Laser fiber

BS

SLM

fourier
filter

A1 A2

A3

Figure 4.1: Schematic of the complete setup. Distances not to scale. The elements
A1 and A2 are respectively a λ/2-plate and a polarizer. The element A3 is either
empty or a waveplate. Lens L1 has a focal length of 20 cm and is the first lens of
the telescope. Lens L2 has a focal length of 20 cm or 40 cm and is the second lens
of the telescope.

4.1.1 Spatial Light Modulator (SLM)

On one side of the beamsplitter, shortly thereafter, a SLM is placed. The
SLM is a very useful device to create vortex modes [64–66]. In principle, a
SLM modulates only the phase distribution of the incident light and reflects
a beam of which the phase is tailored.

A SLM is made out of liquid crystal pixels of which the height can be varied
separately. It can thus modulate the phase by creating a height pattern
on the grid of liquid crystals. Reflected light obtains a phase shift 2πλ/h
where h is the relative height of the pixels. In this way, it is possible to create
phase vortices for LG modes, phase discontinuity lines for HG modes and
so on. See Figure 4.2(b).

By creating a blazed grating pattern, see Figure 4.2(a), the SLM can also
function as a blazed grating to eliminate zeroth-order reflection. By making
judicious use of a blazed grating reflection, one could also use a SLM as an
amplitude modulator [67–70]. However, judging from the Fourier plane
images shown in Figure 4.4, this was not deemed necessary.

The SLM utilized (Holoeye Pluto series) has an active area of 15.36 mm×
8.64 mm and a pixel size of 8 µm2. The SLM is operated by a LabView
program written by Wolfgang Löffler, and, at a tilt of 0.004 rad such that it
operates at a first-order reflection instead of zeroth-order direct reflection.
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4.1 Mode preparation 37

(a) Blazed grating (b) LG10 Phase (c) Grating+LG10

(d) Zernike correction (e) LG10+Zernike (f) Tilted LG10+Zernike

Figure 4.2: This figure shows the phase ramp programmed onto the Spatial Light
Modulator (SLM). Figure (a) shows a simple phase ramp to emulate a blazed
grating. (b) shows the phase vortex structure of an LG10 mode. Figure (c) adds
these two elements together to the familiar pitchfork structure. In the lower row,
the Zernike corrections are added. Figure (d) shows only the Zernike correction,
(e) includes the LG10 phase ramp and Figure (f) shows the final resultant phase
structure of a tilted LG10 mode with Zernike corrections.

Apart from the phase structure of the LG modes, the phase distribution is
tailored by making use of the Zernike polynomials (an orthogonal basis of
the unit disc) [56]. They are defined in cylindrical coordinates as:

Zm
n (ρ, φ) =

{
Rm

n (ρ) cos(mφ) m ≥ 0 ,
R−m

n (ρ) sin(−mφ) m ≤ 0 ,
(4.1)

with

Rm
n (ρ) =

∑
(n−m)/2
k=0

(−1)k (n−k)!

k!
(n+m

2 −k
)

!
(n−m

2 −k
)

!
ρn−2 k n−m even,

0 n−m odd.
(4.2)

The first few Zernike polynomials are the following and can be used for
what is written on the right:

Z0
0 = 1 Piston, (0)

Z−1
1 = 2ρ sin(φ) Y-tilt, (1)
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Z1
1 = 2ρ cos(φ) X-tilt, (2)

Z−2
2 =

√
6ρ2 sin(2φ) Oblique astigmatism, (3)

Z0
2 =
√

3(2ρ2 − 1) (De)focus, (4)

Z2
2 =
√

6ρ2 cos(2φ) Vertical astigmatism, (5)

Z−3
3 =

√
8ρ3 sin(3φ) Vertical trefoil, (6)

Z−1
3 =

√
8(3ρ3 − 2ρ) sin(φ) Vertical coma, (7)

Z1
3 =
√

8(3ρ3 − 2ρ) cos(φ) Horizontal coma, (8)

Z3
3 =
√

8ρ3 cos(3φ) Oblique trefoil. (9)

As we can see in Figure 4.3 and in the equations above, especially polyno-

-1

-0.5

0

0.5

1

Figure 4.3: The first nine Zernike polynomials according to the OSA/ANSI index.

mials 3, 5, 6 and 9 are useful for shaping the phase distribution. The final
utilized SLM hologram can be seen in Figure 4.2(f).

The parameters of the SLM program are adjusted by visual guidance with
a camera (Spiricon SP620U) at the Fourier plane of a 1 m lens (, which is
placed instead of lens L1 in Figure 4.1 together with a mirror to divert the
beam to the camera). The results of this can be seen in Figure 4.4.

The element A3 of Figure 4.1 controls the polarization direction of the
phase tailored beam. For horizontal polarization, it is empty. For vertical
polarization a λ/2-plate at 45 degrees is inserted, or a λ/4-plate at ± 45
degrees for rcp or lcp.
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(a) Gaussian (b) LG10 mode (c) LG20 mode

Figure 4.4: The three fundamental modes in the Fourier plane. The white curves
are cross-sectional plots at the white lines. The red curves are fits of the respective
modes. The images are of an area of 880× 880 µm.

Lastly, a telescope is installed with a set of planar-convex lenses of which
the first is a 20 cm lens and the second either 20 cm or 40 cm, depending on
the need to increase the beam diameter. At the Fourier plane of the first
lens, a large pinhole (∅0.3 mm) is used as a Fourier filter and to select the
correct order of the blazed grating of the SLM. In Figure 4.5 the modes are
depicted just before entering the microscope objective.

(a) Gaussian (b) LG10 mode (c) LG20 mode

Figure 4.5: The three fundamental modes incident on the objective. The images
are of an area of 2.62× 2.62 mm. The curves have been fitted in MATLAB. The
beam waist parameter w0 of the Gaussian is calculated with the Spiricon software
to be w(z) = 1.07± 0.01 mm for the 20 cm lens and w(z) = 1.98± 0.02 mm for the
40 cm lens (not plotted).

After the mode preparation, the field is focused into a small volume with
a microscope objective. Several different objectives have been utilized
to perform the focusing, see Table 4.1. The microscope objectives have
different apertures. Therefore, for the 4×, 10×, and 20× objectives we have
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40 Experimental Method & Setup

used the 40 cm lens and for the 50× and 100× objectives we have used the
20 cm lens.

Table 4.1: List of utilized microscope objectives and their specifications. M stands
for magnification, NA is the numerical aperture, WD the working distance, f the
focal length and D the diameter of the opening aperture. All of the objectives are
infinity corrected. One can calculate the focal length by the specified tube lengths
L and the magnification with f = L/M. For Olympus L = 180 mm and for Nikon
L = 200 mm.

M NA WD (mm) f (mm) D (mm)
Olympus Plan N 4× 0.1 4.9 45 9.8
Olympus Mplan N 10× 0.25 10.6 18 11.7
Olympus Plan 20× 0.40 1.2 9 9.2
Nikon LU Plan EPI 50× 0.80 1.0 4 6.8
Nikon TU Plan APO 100× 0.90 2.0 2 4.7
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4.2 Near Field Scanning Technique 41

4.2 Near Field Scanning Technique

To characterize the strongly focused light it is insufficient to simply place a
camera to capture the light, as the pixel size of a camera is much bigger than
the structure of the beam under investigation. Therefore, we have utilized
a tiny probe that locally measures the field distribution. By scanning this
probe with an XYZ-piezo stage, one can make a full 3D reconstruction of
the intensity distribution of the strongly focused field.

To measure the intensity at a given location of the strongly focused field, we
insert a ∅1.3(2)µm pinhole, see Figure 4.6 for an electron micrograph of the
pinhole. The total intensity transmitted through the pinhole is measured
with a photodiode (PDA 36A-EC), usually with a gain of 70 dB, at each
scanning location. The pinhole is fixed on top of the photodiode.

The pinhole is fixed on top of a piezo stage (PI P-611 3S, controlled with PI
E-517) with a 100× 100× 100 µm scan range and resolution of 1 nm that
functions as the scanning apparatus. For increased versatility, the piezo-
cube is placed on top of a translation stage with a 25× 25× 25 mm scan
range and a resolution of 95 nm (controlled by a Newport ESP 300).

All these objects are operated with a LabView program written for this
project. This program has two important features, besides scanning over
the required volume. The first is that it can combine the translation stage
and piezo cube to increase the scan range of the piezo cube with minimal
loss of resolution. Secondly, the voltage from the photodiode is measured
by averaging over 10 samples where the sample rate is 1000 Hz with an
RSE configuration.1

1See the National Instruments website for more information, accessed 27-9-2019.
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(a) Backside with M = 1000. (b) Backside with M = 30000.

(c) Frontside at 10° with M = 60000. (d) Equal to (c).

Figure 4.6: Electron micrographs of the pinhole. The roughly 1 µm pinhole is
manufactured by Thorlabs and made out of 302 stainless steel. Figure (a) shows
the backside at a magnification of 1000. The plate appears to be etched away in
a cone shape in order to decrease the thickness of the otherwise 0.6 mm plate at
the pinhole. Figure (b), at a magnification of 30000, shows the pinhole ‘tunnel’
most clearly. We also see that the backside exit is not perfectly circular. Figure
(c), at a magnification of 60000, shows that the frontside is highly circular and the
on-screen measurement shows that it has a diameter of 1.27 µm. The frontside
figures are taken under an angle of 10° in order to calculate the thickness of the
plate at the pinhole. According to the on-screen measurement in Figure (d), the
thickness of the plate at the pinhole is 574 nm/ tan(10°) = 3.26 µm.
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Chapter 5
Results and Discussion

This chapter discusses the results of this research. The
first section discusses the action of the pinhole and the
second section treats the observed spin-orbit interaction.
In the third section it is discussed whether or not we
have achieved superresolution. For a full systematic
overview of the measurements, see Appendix C.

5.1 Pinhole action

The pinhole may well be the most ancient object of study in optics, dating
back to Greek and (independently) Chinese writers in the 4th century BC.
The first competent ray optics description of the ‘camera obscura’ can
be found in the Book of Optics written by one of the most influential
Arabic scholars Ibn-al Haytham in the 11th century AC.1 For the last couple
of centuries characterizations of the diffracted image behind a pinhole
remained one of the central problems in classical optics. The problem
was essentially solved in the 19th century by Kirchhoff’s scalar diffraction
theory for pinholes with diameters larger than the wavelength. In the
previous chapters, we have used the vectorial version of Kirchoff’s theory

1See Wikipedia Camera Obscura, accessed 25-11-2019.
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44 Results and Discussion

to calculate the strongly focused field [71].

In the 20th century, the interest shifted to subwavelength pinholes for which
Kirchhoff’s theory failed. The theory is first adapted to subwavelength
holes in optically thin films by Bethe in the 1940s [72] and later, Roberts
[73] investigated optically thick films, for which the circular wave-guide
modes of the hole were essential to understand the transmission of light
through the hole. Bethe’s model turned out to be insufficient, which was
revealed in the late 90s by measurements of the extraordinary transmission
by Ebbesen et al. [74] due to excitations of surface plasmons on the hole
edges. This phenomenon generated a lot of interest in surface plasmons
and optical transmission through sub-wavelength holes [71, 75] and shows
the complexity of optical tranmission of small holes.

The pinhole we have utilized in the experiments lies neither in the sub-
wavelength regime where kr � 1, with r the radius of the pinhole and k the
wavenumber, nor in the regime where kr � 1, where we can use Kirchoff’s
scalar theory. This means we should expect deviations from Kirchoff’s
theory manifesting as an effect on the optical transmission of each separate
vector component [76].

According to Kirchoff’s geometrical theory, we expect the pinhole to mea-
sure the total intensity incident on the circular aperture that constitutes
the pinhole. We simulated this behavior by simply taking the simulated
field, as calculated in Chapter 3, and convoluting thie field with a circular
aperture. Finally, we take the intensity of the calculated convolution of the
field. In Figure 5.1, we compared the measured intensity with the simulated
intensity. The intensity has been measured with the method described in
Chapter 4.

In Figure 5.1 we see that the finite size of the pinhole only becomes relevant
for more tightly focused fields, as there is little to no difference between
the simulated and measured Gaussian beam profiles for the measurements
with the 20× objective. For the strongly focused field, however, we see a
larger Gaussian width in the experiment as compared to the simulations
(red curve bottom right panel), but the distribution remains fully Gaussian,
as we can see from the red Gaussian curve fit in the leftmost panel. The
yellow and purple curves in the bottom right panel show the simulated and
convoluted field, with either a radial step function transmission (CA, circu-
lar aperture) or a Gaussian transmission function (GA, Gaussian aperture).
At the simulated effective diameters of the pinhole, there is only a small
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Figure 5.1: In this figure, we compare the measured Gaussian with the simulations.
The two rows show measurements with the 20x Olympus objective and the 100×
Nikon objective. On the left, the figures show the 5× 5 µm scan of a focused
linearly polarized Gaussian beam, with a resolution of 0.1 µm and 0.05 µm for the
20× and 100× objective respectively. On the right, cross-sections are plotted with
the experiment and simulation. For the 100× objective, the pinhole action has also
been plotted with an effective radius of 0.5 µm. The circular aperture pinhole is
simulated here as a step function (CA) or as a Gaussian function (GA) with an
effective width. The middle two figures show the simulations, with the lower
simulated with the pinhole as a GA of 0.5 µm. The white curves on the left four
figures are cross-sections at the white lines, and the red curve is a Gaussian fit of
the white curve.

difference noticeable between the circular aperture or a Gaussian aperture.
We can thus use either to simulate the action of the pinhole.2 The value of
the effective radius of the simulation of the pinhole is 0.5 µm, which is close
to the measured radius of 1.27/2 = 0.64 µm.3 The widths of simulation
(without convolution), and experiment do not agree precisely, as can be
seen in the bottom right panel of Figure 5.1, but we see that through an
easy step of a convolution with a circular aperture we find almost perfect

2In MATLAB it is much faster to convolute with a boolean array, thus we will use a
circular aperture in what follows.

3See Figure 4.6.
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agreement with the Gaussian measurement.

For Gaussian beams, we have established that the pinhole functions quite
neatly as a geometrical aperture that can be described with Kirchoff’s theory.
The pinhole captures the intensity profile of the focused beam accurately,
with only small deviations from the simulations. However, in the next
section it will become clear that Kirchoff’s theory is not the full story for
pinholes with a radius of the order of the wavelength.

5.2 Spin-orbit interaction

In the measurements with a NA > 0.25 we also observe SO interaction, as
predicted in Chapter 3.4 In Figure 5.2, we see quite clearly the difference
between the combinations of ` = 1, s = 1 (LG10|rcp〉) and ` = 1, s =
−1 (LG10|lcp〉) for the 20× objective (NA = 0.4), which show spin-orbit
interaction.5 It is interesting to see that the spin-orbit interaction is only
observable in the focus. In the top-right two panels of Figure 5.2, we see
the spin-orbit interaction persist over approximately 8 µm.

In Figure 5.3 and Figure 5.4, we see that the SO effect is much stronger in
the experiment than in the simulations of the focused field of a pure LG
mode. Especially for the 100× objective, see Figure 5.4, the vortex core
is not perfectly in the center and is completely destroyed in the case of
opposite OAM and SAM. In fact, it appears that our simulation method
of a convolution with a circular step function decreases the SO interaction
manifest in the non-zero on-axis intensity.6

This can in part be understood by background perturbations in the field
that tend to destroy the superoscillatory vortex core [78], and displace
the vortex from the center [79], see panel (b) and (e) of Figure 5.5. More
importantly, the stronger spin-orbit interaction can be explained by an
enhanced transmission of the z-polarization component, which effectively
increases the NA and increases the spin-orbit interaction. In Figure 5.5, we
have simulated the pinhole as a convolution with a circular aperture in

4We discern no difference between the polarization directions for both 4× and 10×
objectives. See Figure C.1.

5This has also been observed experimentally by Bokor [77].
6Compare Figure 5.4 with the intensity in Figure 3.4.
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Figure 5.2: Results with the 20× Olympus microscope objective. Here, 2D slices
are plotted in each direction. Each XY-plane (or z-position) is measured with a
resolution of 0.1 µm, while the resolution in z is 1 µm. The intensities for the XZ-
and YZ- slices on the right have been plotted logarithmically.

all panels. In Panel (a) and (c) the lcp and rcp with normal convolution
are depicted. In panel (b) we have added a small plane wave perturbation
to the incident field. In the lower panels, the same fields are depicted,
but the optical transmission of the z-component of the field is enhanced
with a factor of 4. We observe that these two effects of perturbation and
enhanced transmission of the z-component can yield results similar to the
measurements. We also observe that these two effects to not destroy the
vortex core in case of rcp.

All in all, we conclude that deviations from the geometrical circular aper-
ture (Kirchoff’s theory) cannot be neglected for transmission function of
the pinhole and that small pinholes have an enhanced axial transmission
function.7

7This has been researched in more detail by Yi et al. [76].
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|lcp〉 simulation |lcp〉 |rcp〉

l = 1 0.0000

1

l = −1 0

1

Figure 5.3: Results with the 20× objective for LG10 modes with a comparison to the
simulations. The images on the left are simulated on a 128× 128 grid convoluted
with a step function circular aperture with a radius of 0.5 µm. Each of the four
images on the right is scanned with a resolution of 0.1 µm.

|lcp〉 simulation |lcp〉 |rcp〉

l = 1 0.0000

1

l = −1 0

1

Figure 5.4: Results with the 100× Nikon objective for LG10 modes with a compari-
son to the simulations. The images on the left are simulated on a 128× 128 grid
convoluted with a step function circular aperture with a radius of 0.5 µm. Each of
the four images on the right is scanned with a resolution of 0.05 µm.
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correction |lcp〉
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(f) Perturbed, weight
correction |rcp〉

Figure 5.5: Enhanced z-polarization effect of the pinhole convolution. In the top
panels, the pinhole is simulated as a circular aperture, while in the bottom panels
the pinhole is simulated as a circular aperture with an enhanced tranmission of
the z-polarization direction with a factor 4. Panel (a) and (d) depict a focused
LG10|lcp〉 mode. Panel (b) and (e) depict the same mode, but perturbed with a
plane wave with an amplitude of 0.1 times amplitude of the incident mode. Panel
(c) and (f) depict a focused LG10|rcp〉mode.
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5.3 Superresolution

To establish what is subdiffraction or superresolution, we must first es-
tablish the diffraction limit for our focusing apparatus. In theory, this is
derived using the numerical aperture of the focusing apparatus according
to the Abbe limit: d = 1.22λ/2NA.8 The measured beam waists in the focal
plane are slightly bigger than expected for the high NA objectives, which
can be understood with convolution, as discussed in previous section.

Table 5.1: This table lists the experimental beam waist w0,exp. parameters, accord-
ing to 2D fits of the focal planes, the theoretical beam waist w0,theory, according to
Equation 3.10, and, the theoretical (diffraction) limit d for the given objective’s NA.

obj. NA w0,exp. (µm) w0,theory (µm) d (µm)
20× 0.4 0.91± 0.01 0.936 0.971
50× 0.8 0.90± 0.01 0.769 0.486

100× 0.9 0.49± 0.01 0.410 0.432

A higher-order vortex mode is always unstable, and will split up under
perturbations [4, 80]. Due to the same perturbations that afflict the measure-
ments of the LG10 mode, we observe the vortices of the LG20 mode slightly
split. This allows us to try and measure the distance between the two vortex
cores. Evidently, if this distance is smaller than the diffraction limit, the
measurement shows superresolution. In Figure 5.6, we can deduce from
the anti-parallel OAM and SAM figures (top left and bottom right), which
have a vortex core of strength 1, that the vortex size is about 7 pixels or
0.35 µm in diameter. For the parallel figures (top right and bottom left), the
vortex core has strength 3 and it is visible that they are slightly split. We
estimated the distance between the vortices of the top right figure to be:

d12 = 0.45± 0.1 µm , d13 = 0.4± 0.1 µm , d23 = 0.2± 0.1 µm . (5.1)

This indicates that we have measured with superresolution, albeit not very
far below the diffraction limit. Nevertheless, this is a surprising result,
considering that the diameter of the pinhole is 1.27 µm and the measured
distances are of the order of the wavelength, and much smaller than the
diameter of the pinhole.

8It may be more practical, however, to compare with a different measure. The measure
more relevant to an underfilled microscope objective is the spot size of the focused
Gaussian in the focal plane.
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Figure 5.6: Results with the 100× Nikon objective for LG20 modes. Each of the
four images is scanned with a resolution of 0.05 µm. On the left are the incident
lcp modes and on the right the rcp modes.

Another argument that the method is a superresolution method, which is
perhaps less compelling, is that we can see a vortex structure in the focused
beam at all, as this structure is evidently smaller of size than the Gaussian
beam. Being able to discern structure smaller than the focused Gaussian is
the same as being able to measure with superresolution.
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Chapter 6
Conclusion and Outlook

6.1 Conclusion

In this thesis, we have seen that it is possible to produce structured fields
that remain structured when tightly focused. We measured the structure
to be smaller than the diffraction limit. We have been able to show this
using a relatively straightforward near field scanning technique using a
simple pinhole, which was capable of measuring these structures. Most
surprisingly, the pinhole was able to discern structures smaller than its size.

We have also shown several methods to simulate the vectorial focused field,
correctly predicting the spin-orbit interaction that was also present in the
measurements.

6.2 Outlook

We were able in this thesis to characterize the intensity of the strongly
focused field quite accurately using a relatively simple three-dimensional
near field scanning technique. However, the precise polarization dependent
transmission function of the pinhole is not yet fully characterized. More
insight can be gained by varying the pinhole dimensions while keeping

Version of December 17, 2019– Created December 17, 2019 - 12:15

53



54 Conclusion and Outlook

the beam parameters the same. Furthermore, it is probably possible to
improve upon the measurement technique by using more sensitive photo-
detectors and background control to measure the vortex position more
precisely. However, the resolution is ultimately limited by the diameter of
the pinhole.

In this thesis, we have used a small aperture to characterize the intensity
of the strongly focused field, where the aperture was the subdiffraction
probe. It is also possible to characterize the full vectorial field distribution
by making use of nanoparticles as the near field scanning probe. By Mie
scattering, the light scattering off a nanoparticle will reflect the different
vector components of the focused field in the spatial distribution of the
scattered light. By collecting the light after the scattering event, one can
reconstruct the full vectorial field. This would be the logical step forward
for characterizing strongly focused fields on the nanoscale. The method
described here has been proposed an implemented by Bauer et al. [10, 58,
81–83]. We planned to implement this method as well, but the good results
using the pinhole stopped us from doing so.
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Appendix A
Theoretical Derivations

A.1 Optical Propagator

For any wavefront S , we can calculate the optical field at a point r by inte-
grating over the field at the wavefront together with the optical propagator
or Green’s function G(r, r′) [1, pp. 45-47]:

Eout(r) =
∫∫
S

G(r, r′)Ein(r′)dS . (A.1)

From the plane wave solution, of which the amplitude is invariant upon
propagation, we may guess that the form of the propagator for such a wave
is:

G(r, r′) ∝
1
s

eiks , (A.2)

where s = |r− r′|. This is a spherical wave. We can calculate the propor-
tionality constant by again considering the propagation of a plane wave.
Consider a plane wave traveling in the z-direction from the plane z = 0
to a plane far away kz � 1. In other words, taking Ein = E0eikz−iωt, then
Equation A.1 yields for the point (0, 0, z)

Eout(0, 0, z) =
∫∫
S

C
s

eiksE0e−iωt dS , (A.3)

where we can approximate the exponent

s =
√

z2 + ρ′2 = z

√
1 +

ρ′2

z2 ≈ z
(

1 +
ρ′2

2z2 + . . .
)

, (A.4)
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where x′2 + y′2 = ρ′2. We approximate the denominator with a simple
s ≈ z to obtain:

Eout(0, 0, z) =
E0C

z
ei(kz−ωt)

∫∫
S

eik ρ′2
2z dS . (A.5)

Integrating over the whole plane in polar coordinates results in:

Eout(0, 0, z) =
2πE0C

z
ei(kz−ωt)

∫ ∞

0
eik ρ′2

2z ρ′ dρ′ = iλCE0ei(kz−ωt) . (A.6)

In order to keep the plane wave invariant Eout = Ein we must have C =
1/iλ. Thus, we find the optical propagator in free space to be:

G(r, r′) =
eiks

iλs
. (A.7)

A.2 Fraunhofer Diffraction and the 2D Fourier
Transform

s

x'

y'

x

y

z=zz'=0

Figure A.1: Geometrical construction for Fraunhofer diffraction.

In Figure A.1 the geometry for Fraunhofer diffraction is shown. This figure
shows a general aperture at z′ = 0 on which a field Ein is incident. The
aperture is small with respect to the propagation length, or, in other words,
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A.2 Fraunhofer Diffraction and the 2D Fourier Transform 57

that the source is paraxial. This is called the Fraunhofer regime (z� x′, y′,
far-field regime). Here, we can approximate:

s =
√

z2 + (x− x′)2 + (y− y′)2 ≈ z +
x2 + y2 + y′2 + x′2 − 2xx′ − 2yy′

2z

≈ z +
ρ2

2z
− xx′ + yy′

z
, (A.8)

with ρ2 = x2 + y2.1 Filling this in Equation A.1 we can calculate the
diffracted field:

Eout(r) =
∫∫
S

Ein(r′)
e

ik
(

z+ ρ2
2z−

xx′+yy′
z

)
iλz

dS

= − i
λz

e
ik
(

z+ ρ2
2z

) ∫∫
S

Ein(r′)e
−ik

(
xx′+yy′

z

)
dx′ dy′ . (A.9)

Note that we can substitute kx/z = k sin θx = kx such that:

Eout(r) = −
i

λz
e
−ik

(
ρ2
2z +z

) ∫
S

Ein(r′)e−i(kxx′+kyy′) dx′ dy′ . (A.10)

This is the Fraunhofer diffraction formula. Given the definition of the
Fourier transform:

Ein(kx, ky) =
∫
S

Ein(x, y)e−i(kxx+kyy)dx′ dy′

2π
, (A.11)

we find:

Eout(r) = −
ik
z

e
−ik

(
ρ2
2z +z

)
F
[
Ein(r′)

] (
kx, ky

)
. (A.12)

The Fraunhofer diffraction formula is valid in general for scalar fields, but
can be generalized for each vector field component, as long as the image
itself is also paraxial, which in essence means that the direction of the vector
field remains unchanged [2, Ch. 10.3].

The stability of the LG and HG modes can also be understood under parax-
ial propagation. The Fourier transform of a Gaussian is another Gaussian.
Together with the general rules for Fourier Transforms one can deduce the

following rule: F [xn f (x)](ω) =
(

i d
dω

)n
F [x](ω) which in turn yields that

the Fourier transform a polynomial times a Gaussian is again a polynomial
of the same order times a Gaussian. In other words, the LG and HG modes
are invariant under paraxial propagation.

1The last approximation step takes us from the Fresnel to the Fraunhofer approxima-
tion.
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A.3 Vector Transformation Matrix

The transformation in Section 2.2.2:

Et =
(
ts(Ein · φ̂)φ̂ + tp(Ein · ρ̂)θ̂

)√
cos θ , (A.13)

can be expressed as a matrix:

Et = MEin
√

cos θ . (A.14)

In spherical output and cylindrical input coordinates we can write:(
r̂
θ̂
φ̂

)
=

(
0 0 1
tp 0 0
0 ts 0

)(
ρ̂

φ̂
ẑ

)
. (A.15)

We can also express both sides in Cartesian coordinates by using the rota-
tions matrices for rotating to cylindrical coordinates:(

ρ̂

φ̂
ẑ

)
=

(
cos φ sin φ 0
− sin φ cos φ 0

0 0 1

)(
x̂
ŷ
ẑ

)
(A.16)

and from spherical coordinates back to Cartesian coordinates:(
x̂
ŷ
ẑ

)
=

(
sin θ cos φ cos θ cos φ − sin φ
sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

)(
r̂
θ̂
φ̂

)
, (A.17)

such that the full transformation matrix in Cartesian coordinates is:

M =

(
sin θ cos φ cos θ cos φ − sin φ
sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

)(
0 0 1
tp 0 0
0 ts 0

)(
cos φ sin φ 0
− sin φ cos φ 0

0 0 1

)
(A.18)

=
1
2

(
ts+tp cos θ−(ts−tp cos θ) cos 2φ −(ts−tp cos θ) sin 2φ 2 sin θ cos φ

−(ts−tp cos θ) sin 2φ ts+tp cos θ+(ts−tp cos θ) cos 2φ 2 sin θ sin φ

−2tp sin θ cos φ −2tp sin θ sin φ 2 cos θ

)
.

(A.19)

This is the same result as in Lin [50]. Finally, we note that as there is no
axial component of the paraxial incident field Ein, we might as well drop
the third column and write:

M =
1
2

(
ts+tp cos θ−(ts−tp cos θ) cos 2φ −(ts−tp cos θ) sin 2φ

−(ts−tp cos θ) sin 2φ ts+tp cos θ+(ts−tp cos θ) cos 2φ

−2tp sin θ cos φ −2tp sin θ sin φ

)
. (A.20)
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A.4 Full analytic solutions of the azimuthal inte-
gral

The Debye integral (Equation 2.25) can be partly solved analytically for the
azimuthal integral [1, pp. 59-68]. First, let us write this integral in terms of
the coordinates of the sphere φ′ and θ′:

Eout(ρ, φ, z) = − i f
λ

θmax∫
0

2π∫
0

Et(θ
′, φ′)eikz cos θ′+ikρ sin θ′ cos(φ′−φ) sin θ′ dφ′dθ′ .

(A.21)
If the incident field is polarized along the x-axis, we can then express the
transmitted field Et on the spherical surface as

Et(θ, φ) = Ein(θ, φ)

√
cos θ

2

1 + cos θ − (1− cos θ) cos 2φ
−(1− cos θ) sin 2φ
−2 cos φ sin θ

 . (A.22)

Similarly, if the incident field is polarized in the y-axis, we obtain:

Et(θ, φ) = Ein(θ, φ)

√
cos θ

2

 −(1− cos θ) sin 2φ
1 + cos θ + (1− cos θ) cos 2φ

−2 sin φ sin θ

 . (A.23)

Next, let us calculate the incident field Ein of the first few HG modes in
terms of the spherical coordinates ( f , θ, φ), where x = f sin θ cos φ, y =
f sin θ sin φ by construction:

uHG
00 (r) = e− f 2 sin2 θ/w2

0 ,

uHG
10 (r) = 2

f
w0

sin θ cos φe− f 2 sin2 θ/w2
0 ,

uHG
01 (r) = 2

f
w0

sin θ sin φe− f 2 sin2 θ/w2
0 ,

uHG
11 (r) = 2

f 2

w2
0

sin2 θ sin φ cos φe− f 2 sin2 θ/w2
0 ,

uHG
02 (r) = (4

f 2

w2
0

sin2 θ sin2 φ− 2)e− f 2 sin2 θ/w2
0 ,

uHG
20 (r) = (4

f 2

w2
0

sin2 θ sin2 φ− 2)e− f 2 sin2 θ/w2
0 .

(A.24)
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Note that inserting these equations into Equation A.21, there is always the
following common factor

fW(θ) ≡ e− f 2 sin2 θ/w2
0
√

cos θ sin θeikz cos θ (A.25)

that we will write as such. The azimuthal integral can now be evaluated
with the following two standard integrals:

2π∫
0

cos(nφ)eix cos(φ′−φ) dφ′ = 2π(in)Jn(x) cos(nφ) ,

2π∫
0

sin(nφ)eix cos(φ′−φ) dφ′ = 2π(in)Jn(x) sin(nφ) ,

(A.26)

where Jn is the nth-order Bessel function. In principle, what is left is an
integral over the single variable θ. Extending upon the definitions of
Novotny [1, p. 61], it is useful to introduce these abbreviations for the
following integrals:

I00 =
θmax∫

0
fW(θ)(1+cos θ)J0(kρ sin θ)dθ , I01 =

θmax∫
0

fW(θ) sin θ J1(kρ sin θ)dθ ,

I02 =
θmax∫

0
fW(θ)(1−cos θ)J2(kρ sin θ)dθ , I10 =

θmax∫
0

fW(θ) sin2 θ J0(kρ sin θ)dθ ,

I11 =
θmax∫

0
fW(θ) sin θ(1+3 cos θ)J1(kρ sin θ)dθ , I12 =

θmax∫
0

fW(θ) sin θ(1−cos θ)J1(kρ sin θ)dθ ,

I13 =
θmax∫

0
fW(θ) sin2 θ J2(kρ sin θ)dθ , I14 =

θmax∫
0

fW(θ) sin θ(1−cos θ)J3(kρ sin θ)dθ ,

I15 =
θmax∫

0
fW(θ) sin2 θ(1−cos θ)J0(kρ sin θ)dθ , I16 =

θmax∫
0

fW(θ) sin3 θ J1(kρ sin θ)dθ ,

I17 =
θmax∫

0
fW(θ) sin2 θ(1+cos θ)J2(kρ sin θ)dθ , I18 =

θmax∫
0

fW(θ) sin3 θ J3(kρ sin θ)dθ ,

I19 =
θmax∫

0
fW(θ) sin2 θ(1−cos θ)J4(kρ sin θ)dθ .

Note that these integrals are still functions of the output coordinates (ρ, z)
meaning that we still have to perform each integral numerically for each
field point that we want to evaluate. Using these abbreviations, we can
finally write down the focal fields of the various modes (neglecting overall
normalization −ik f /2 · ( f /w0)

n+m):

EHG
00,x(r) =

( I00+I02 cos 2ϕ
I02 sin 2ϕ
−2iI01 cos ϕ

)
, EHG

00,y(r) =
( I02 sin 2ϕ

I00−I02 cos 2ϕ
−2iI01 sin ϕ

)
,

60

Version of December 17, 2019– Created December 17, 2019 - 12:15



A.4 Full analytic solutions of the azimuthal integral 61

EHG
10,x(r) =

( i(I11 cos ϕ+I14 cos 3ϕ)
−i(I12 sin ϕ−I14 sin 3ϕ)
−2I10+2I13 cos 2ϕ

)
, EHG

10,y(r) =
( −i(I12 sin ϕ−I14 sin 3ϕ)

i((I11+2I12) cos ϕ−I14 cos 3ϕ)
2I13 sin 2ϕ

)
,

EHG
01,x(r) =

( i((I11+2I12) sin ϕ+I14 sin 3ϕ)
−i(I12 cos ϕ+I14 cos 3ϕ)

2I13 sin 2ϕ

)
, EHG

01,y(r) =
( −i(I12 cos ϕ+I14 cos 3ϕ)

i(I11 sin ϕ−I14 sin 3ϕ)
−2I10−2I13 cos 2ϕ

)
,

EHG
11,x(r) =

( −2I17 sin 2ϕ−I19 sin 4ϕ
I19 cos 4ϕ−I15

2i(I18 sin 3ϕ−I16 sin ϕ)

)
, EHG

11,y(r) =
( I19 cos 4ϕ−I15
−2I17 sin 2ϕ+I19 sin 4ϕ
−2i(I18 cos 3ϕ+I16 cos ϕ)

)
,

EHG
20,x(r) =


4I10−3I15−2

w2
0

f 2 I00−
(

2
w2

0
f 2 I02+4(I17−I13)

)
cos 2ϕ−I19 cos 4ϕ

2
(

2I13−I17−
w2

0
f 2 I02

)
sin 2ϕ−I19 sin 4ϕ

2i
(

2
w2

0
f 2 I01−3I16

)
cos ϕ+2iI18 cos 3ϕ

 ,

EHG
20,y(r) =


2
(

2I13−I17−
w2

0
f 2 I02

)
sin 2ϕ−I19 sin 4ϕ

−I15+4I10−2
w2

0
f 2 I00−

(
4I13−2

w2
0

f 2 I02

)
cos 2ϕ+I19 cos 4ϕ

2i
(

2
w2

0
f 2 I01−I16

)
sin ϕ+2iI18 sin 3ϕ

 ,

EHG
02,x(r) =


−I15+4I10−2

w2
0

f 2 I00+

(
4I13−2

w2
0

f 2 I02

)
cos 2ϕ+I19 cos 4ϕ

2
(

2I13−I17−
w2

0
f 2 I02

)
sin 2ϕ+I19 sin 4ϕ

2i
(

2
w2

0
f 2 I01−I16

)
cos ϕ−2iI18 cos 3ϕ

 ,

EHG
02,y(r) =


2
(

2I13−I17−
w2

0
f 2 I02

)
sin 2ϕ+I19 sin 4ϕ

4I10−3I15−2
w2

0
f 2 I00+

(
2

w2
0

f 2 I02+4(I17−I13)

)
cos 2ϕ−I19 cos 4ϕ

2i
(

2
w2

0
f 2 I01−3I16

)
sin ϕ−2iI18 sin 3ϕ

 ,

where the x or y denotes in which direction the incident beam is polarized.
Other polarization directions or the lowest order LG modes can be decom-
posed in these basic modes. For instance, the first order LG mode can be
written as:

ELG
10,x = EHG

10,x − iEHG
01,x (A.27)

and a rcp HG10 mode is:

EHG
10,rcp = EHG

10,x − iEHG
10,y , (A.28)

combining to a rcp LG10 mode:

ELG
10,rcp = EHG

10,x − iEHG
01,x − iEHG

10,y − EHG
01,y . (A.29)
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Appendix B
Simulation Results

In this appendix, we will list the full simulation results. All figures are
simulated with the parameters from Equation 3.2, with the 2DCZT method,
and, on a 512× 512 grid for the z = 0 plane and with the BF method on a
256× 256 grid for the y = 0 plane. All LG-modes from `, p = 0, 0 to 2, 2
are simulated. At the end, the azimuthal and radially polarized doughnut
modes are depicted.
Each figure is built up in the following way: The columns indicate the po-
larization components. The first two columns are in the regular transverse
Cartesian basis, whilst the next two columns give the same field in the
right-hand and left-hand circular basis. The fifth column is the longitudinal
z-component and the sixth column depicts the total intensity, adding the
transverse and longitudinal components. There are 8 rows per figure, two
for each incident polarization.
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64 Simulation Results

B.1 Focal planes of LG modes
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Figure B.1: Focused Gaussian beam.
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Figure B.2: Focused LG10 mode.
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Figure B.3: Focused LG20 mode.
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Figure B.4: Focused LG01 mode.
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Figure B.5: Focused LG11 mode.
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Figure B.6: Focused LG21 mode.
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Figure B.7: Focused LG02 mode.
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Figure B.8: Focused LG12 mode.
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Figure B.9: Focused LG22 mode.
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B.1.1 Radially and azimuthally polarized doughnut modes
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Figure B.10: Focused azimuthal and radial doughnut modes.

Version of December 17, 2019– Created December 17, 2019 - 12:15

73



74 Simulation Results

B.2 XZ-slices of LG modes
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Figure B.11: Focused Gaussian mode.
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Figure B.12: Focused LG10 mode.
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Figure B.13: Focused LG20 mode.
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Appendix C
Experimental Results

In this appendix we will list the full experimental results from the pinhole
measurements. All focal plane figures are of a 5× 5 µm scan, although the
resolution is not always the same. The white curves are 1D cross-sections
at the white lines and the red curve is a Gaussian fit. For each image
the colorscale is normalized. In reality, the intensity becomes lower for
higher-order modes.
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Figure C.1: Results with the 4× and 10× Olympus objective. The left figure is the
focal plane image of a focused horizontally polarized Gaussian incident beam with
scanning steps of 0.05 µm and 0.1 µm for the 4× and 10× objective respectively.
The next two columns depict slices in the XZ and YZ plane that are 11 µm wide
with 1 µm resolution. The right two columns are focal plane images of a focused
incident LG10 mode prepared in lcp and rcp respectively, scanned with a resolution
of 0.2 µm and 0.1 µm for the 4× and 10× objective respectively.
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Figure C.2: Results with the 20× Olympus objective. Each image is scanned with
a resolution of 0.1 µm. The rows denote different azimuthal indices of the incident
LG modes and the columns indicate the incident polarization direction.
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Figure C.3: Results with the 50× Nikon objective. Each image is scanned with a
resolution of 0.05 µm.
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Figure C.4: Results with the 100× Nikon objective. Each image is scanned with a
resolution of 0.05 µm.
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Figure C.5: 20× and 100× Objective 2D slices in each direction. Each plane in z
has the same resolution as above, while the resolution in z is 1 µm and 0.1 µm for
the 20× and 100× objectives respectively. The intensities for the slices on the right
have been plotted logarithmically.
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