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Abstract

Well isolated mechanical systems have the potential to be developed into
systems for magnetic, accelerometric and gravitational sensing, as well as
to investigate the limits of quantum theory. This holds especially for me-
chanical resonators which consist of levitated nano- and microparticles,
since an advantage of this type of system is the lack of clamping losses,
potentially resulting in an extremely low energy dissipation. Here, a me-
chanical resonator is presented, where a magnetic microparticle is levi-
tated in a cylindrical trap of a type I superconductor. SQUID detection has
been used to measure the vibrational modes of the particle. The damp-
ing factors of the resonator have been analytically calculated, resulting in
an expected quality factor Q of 1011. The coupling and energy of the six
translational and rotational rigid body modes of the particle have been
simulated, based on analytical approximations. Experimentally, a reso-
nance is detected with a damping time of 47 seconds and a Q of 2.2 · 104.
These are promising first results, since this difference in damping and Q
factor can be explained as the Earth’s magnetic field was trapped inside
the experiment. With these complications resolved, an extremely sensi-
tive micromechanical resonator can be developed. This opens a new road
in the investigation of the boundary between the quantum and classical
regime and gravitational research.
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Chapter 1
Introduction

1.1 Background

Ever since the early days of quantum mechanics people have been ques-
tioning to what extent this theory can be applied. Generally, the point
where this breaks down is due to the size, mass or complexity of a sys-
tem. One class of systems, however, could possibly overcome this hurdle
and has recently emerged in the investigation of the boundary between
the quantum and the classical regime.

These systems are micromechanical resonators, which consist of a meso-
scopic element which can be brought to its ground state. These resonators
can be cooled down to mK temperatures in order to reduce the internal
energy of the system and its thermal noise. Here, they could occupy a
superposition of quantum mechanical states, which is relatively simple to
investigate.

To date, many types of mechanically resonating systems have been devel-
oped. These include, among others, nanobeams and membranes.[1–3] The
efficiency of a system, and its detachment from its surroundings, is mea-
sured by its quality (Q) factor, which is related to the energy dissipation of
the resonator and will be discussed in Chapter 2. State-of-the-art microme-
chanical resonators obtain a Q factor of 109− 1010.[1, 4] These systems are,
however, optimized for MHz and GHz frequencies. Also, they suffer from
clamping losses as their leading term in energy dissipation. Therefore, it is
becoming increasingly difficult to push these systems to higher Q factors,
due to the intrinsic mechanical link to their surroundings.
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Introduction

Recently, a type of system has come up that does not have any clamping
losses. The Oosterkamp group has developed what we call the
Lead Zeppelin, where a superconducting microparticle is levitated in an
anti-Helmholtz magnetic field.[5] Due to the small interaction with its sur-
roundings the resonator has very little energy dissipation. A disadvan-
tage, however, is the small magnetic coupling due to the weak magnetic
field.

Vinante et al. have experimentally presented an opposite approach: a
magnetic microparticle levitating in a superconducting well.[6] An advan-
tage of this system is that only static magnetic fields are used. Thus, a
feedback system is not needed in order to control the resonator.

1.2 Research

Vinante et al. achieved a Q factor of 107, which is promising for forthcom-
ing experiments. Because this experiment is performed at a temperature
of 4 K and a pressure of 10−4 mbar. This caused their leading cause of en-
ergy dissipation to be viscous drag. In this thesis, a similar experiment of a
Meissner levitated magnetic microparticle is presented. SQUID-detection
will be used to measure the movement of the particle, which causes very
little energy dissipation and is the most noninvasive detection method.
Since a temperature of 10 mK is obtained, the pressure in this experiment
will be below 10−9 mbar. The viscous drag will therefore be smaller and
it is expected that the leading energy dissipation will be caused by eddy
currents instead of viscous drag. With this, a Q factor of 1011 is expected.

Several functioning samples have been developed, on which ringdown
measurements have been performed. Here, the levitated particle is ac-
tively driven at its resonance frequency, after which the damping time τ
has been measured. Also, a frequency shift has been observed for high
amplitudes of the resonator, as will be discussed in Chapters 2 and 4.

An advantage of this system is that the micromechanical resonator can
be designed to have any resonance frequency desired, including low fre-
quencies on the order of 1 Hz. It could be developed for an extremely
sensitive sensor for, for example, small magnetic fields or very precise ac-
celeration measurements. A third, more fundamentally driven, impulse is
to research the edge between quantum and classical mechanics. Finally,
the resonator could be used in the research on gravitational effects. One
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1.2 Research

may study the gravity sourced by very small masses. With this, the gravi-
tational constant could possibly be determined more accurately.
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Chapter 2
Theory

2.1 The harmonic oscillator

In nature almost all systems that are brought out of equilibrium contain
a linear restoring force. Therefore, these systems can be approximated
as a simple harmonic oscillator. A damped harmonic oscillator can be
described by a second-order differential equation of the following form:

mẍ(t) + cẋ(t) + kxx(t) = 0 (2.1)

where x can be any translational or rotational degree of freedom, m is the
mass of the system and kx its spring constant for this oscillation. Here, ẋ
is the damping factor with c a constant proportional to the restoring force.
This equation can however be written in a more intuitive manner[7], using

the damping factor γ = c
2m and the resonance frequency ω0 =

√
kx
m :

ẍ(t) + 2γẋ(t) + ω2
0x(t) = 0 (2.2)

This equation holds for thermally driven oscillations and is solvable. There
are three distinguishable cases, depending on the ratio of the damping fac-
tor and the resonance frequency: overdamped (γ > ω0), critically damped
(γ = ω0) and underdamped (γ < ω0). Most physical systems, such as the
experiment described in this thesis, are underdamped, which yields the
following solution:

x(t) = A · sin
(√

ω2
0 − γ2 · t + φ

)
· e−γt (2.3)

where A is the (maximal) amplitude of the oscillation and φ its phase.
As mentioned in Chapter 1, an important measure for a resonator is its
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quality factor. This is a dimensionless value which describes the damping
of a resonator. The lower the damping factor is, the higher the Q factor
will be. It is defined as the ratio between the frequency of a resonance
mode and the energy that is dissipated:

Q =
ω0

Γ
=

2
τ

(2.4)

Most of the energy of a system will be stored in the resonance oscillations.
Thus, when one measures the spectrum of a resonator, there will be peaks
at the resonance frequencies ω0. The Q factor can be rewritten in terms of
the damping time τ:

Q =
1
2

ω0τ (2.5)

In an experiment a standard ringdown measurement can be performed on
a resonator. Here, the resonator will be driven at its resonance frequency.
The amplitude of the oscillation will increase until a maximum is reached,
at an equilibrium between the driving and damping forces. At that mo-
ment the driving force is turned off and the resonator will only be damped.
Its amplitude will thus decrease. From the measured damping time the Q
factor can be determined.

Another important measure for quantum mechanical experiments, and in
general low amplitude sensing, is the ratio between the temperature and
the damping time T/τ. A lower temperature means that there will be
less thermal noise over the whole spectrum. The noise spectral density
is S = 4kBTmΓ, where kB is the Boltzmann constant and with Γ the fre-
quency is incorporated. It is therefore an advantage to design a mechani-
cal resonator with a given mass m such, to have low resonance frequencies
and high Q, in order to have a lower thermal force noise.

The driving of a system can be performed at the resonance frequency. The
equation of motion becomes:

ẍ(t) + 2γẋ(t) + ω2
0x(t) = F0 · cos

(√
ω2

d − γ2 · t
)

(2.6)

where ωd is the driving angular frequency and F0 the fixed amplitude of
the driving force. If ωd = ω0 the system will resonate and the amplitude
can become large. However, for large driving forces the amplitude of the
oscillation can become so large, such that it will deviate from its linear
dependency on the restoring force.[5] The system will behave as a Duffing
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2.2 Magnetic levitation

oscillator and a cubic term has to be introduced to the equation in order to
describe the non-linearity of the system:

ẍ(t) + 2γẋ(t) + ω2
0x(t) + δx3(t) = F0 · cos

(√
ω2

d − γ2 · t
)

(2.7)

where δ is the Duffing parameter. This equation is however generally hard
to solve analytically.

2.2 Magnetic levitation

Most micromechanical resonators are composed of a vibrating membrane,
as mentioned in Chapter 1. The main contributions to energy dissipation
are clamping losses. In order to avoid this dissipation Vinante et al. have
presented a system consisting of a magnetic microparticle levitated in a
superconducting well.[6] This experiment has been replicated in order to
improve the energy dissipation and obtain higher Q factors.

Our system consists of a spherical microparticle with a radius of 7.9 µm
and an assumed saturated magnetisation of 700 mT. The particle is placed
at the bottom of a cylindrical shaped hole in a piece of lead, which is a
metal that becomes superconducting at a temperature below 7.19 K.[8] Be-
cause lead is a type I superconductor it will expel the magnetic field be-
cause of the Meissner effect, as will be further discussed in the following
section. As a result, a force will act from the superconductor on the parti-
cle and, because of the symmetry of the system, the particle will levitate in

Figure 2.1: Coordinate system of the experiment with the translational and rota-
tional degrees of freedom.
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the middle of the trap at an equilibrium between the Meissner effect and
gravity.

For the well a type I superconductor is chosen because a type II super-
conductor will obtain magnetic vortices. The magnetic field from the par-
ticle would partially go through the material, creating a lattice of normal
metal in between the superconducting metal. This would result in a much
smaller counter force on the particle, if there at all, and the particle would
be pinned at the center at the bottom of the well.

Figure 2.1 shows the three rotational directions of the particle with respect
to the coordinate system.

2.3 Meissner effect

Superconductors have two key electrodynamic properties: they have zero
resistance and they exclude the magnetic field.[9] How a superconductor
behaves around electric and magnetic fields is described by the London
equation[10]:

d~J
dt

=
nse2

m
~E

~∇×~J =
−nse2

m
~B

(2.8)

where ~J is the superconducting current, ns is the number density of su-
perconducting electrons and e and m are the electron’s charge and mass.
When one applies Ampère’s law on the latter London equation one ob-
tains the London penetration depth:

λ =

√
m

µ0nse2 (2.9)

This is the distance to which a magnetic field penetrates a superconducting
material and becomes 1/e times it’s value at the surface. In this region the
lead will be normal. The magnetic field inside the lead is thus:

H(z) = H(0) · e−z
λ (2.10)

where H is the field inside the lead. The London penetration depth de-
pends on the temperature and the critical temperature of the material. An
empirical relation is:
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2.4 Levitated microparticle

λ(T) ≈ λ(0) · 1√
1− ( T

Tc
)4

(2.11)

Which in our case for a temperature of 10 mK and where the lead is far
thicker than λ, it becomes λ(T) ≈ λ(0). The Meissner effect thus excludes
the magnetic field. However, because the lead cylinder has far more mass
than the magnetic particle the inverse force will push the particle upwards.
It will levitate at an equilibrium between the Meissner effect and gravity.

2.4 Levitated microparticle

2.4.1 Resonance frequency and frequency shift

A consequence of the non-linearity of the system is a shift in resonance fre-
quency, meaning that for large amplitudes the oscillation will have a devi-
ated frequency.[11] Neglecting dissipation for now, we get the Duffing-like
equation of motion. When the system is driven at a resonance frequency
of a certain mode that only this mode will gain a large amplitude. There-
fore, we can neglect higher order terms of the other modes. In the fol-
lowing, properties only for the z and β modes for one sample will be cal-
culated, since these resonance frequencies can be accurately analytically
calculated.[6] We make the assumption to have the particle on an infinite
plane, which is possibly since the diameter of the particle is much smaller
than the width of the well.

The potential energy of the z and β oscillation of the magnetic particle
close to a superconductor is:

U = −1
2

∫
V
~M(~x) · ~B(~x)d~x + mgz

=
µ0~µ

2

64πz3 · (1 + sin2(β)) + mgz
(2.12)

where ~M, m and V are respectively the magnetisation, the mass and the
volume of the particle. µ0 is the vacuum permeability. The magnetic mo-
ment is given by ~µ = BrV

µ0
. The equilibrium angle of the particle can be

found by minimising the potential energy, which results in β0 = 0. Thus,
the particle is positioned with its magnetic moment horizontal, as shown
in Figure 2.2. We use this result to minimise U and find the equilibrium
height:
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z0 = (
3µ0|~µ|2

64πmg
)

1
4 (2.13)

For our system this gives z0 = 113 µm. The spring constants of the z- and
β -oscillation can be found with:

kz = (
d2U
dz2 )z0,β0 =

3µ0|~µ|2

16πz5
0

(2.14)

kβ = (
d2U
dβ2 )z0,β0 =

µ0|~µ|2

32πz3
0

(2.15)

This gives kz = 5.38 · 10−6 N
m and kβ = 1.15 · 10−14 N

m . Now we can find the
angular frequencies, considering that the moment of inertial of a perfect
sphere is I = 2

5 mR2:

ωz =

√
kz

m
=

√
4g
z0

(2.16)

ωβ =

√
kβ

I
=

√
5z0g
zR2 (2.17)

This gives ωz = 589 rad
s , or fz = 93.8 Hz, and ωβ = 5441 rad

s , or fbeta = 866
Hz.

When the resonator obtains a large amplitude the following frequencies
are expected:

ω̃z = ωz(1−
35
48

A2
z

z2
0
) = ωz − dωz (2.18)

ω̃β = ωβ(1−
1
4

A2
β) = ωβ − dωβ (2.19)

where Az and Aβ are the amplitudes of the z and β modes respectively.
dωz and dωβ are the frequency shifts. This can be rewritten in a more
insightful way:

Az = ±z0 ·

√
48
35

dωz

ωz
(2.20)

Aβ = ±2

√
dωβ

ωβ
(2.21)

10



2.4 Levitated microparticle

2.4.2 Magnetic field produced by particle and coupling

In this subsection the coupling will be calculated for the most favourable
conditions. For example, the magnetisation of the particle is taken to be in
the vertical direction, perpendicular to the surface of the pick up coil. In
Chapter 4 this will be compared with the expected coupling for the geom-
etry of the experiment.

The movement of the magnetic particle causes a changing magnetic field
and will induce a current in the pick up coil, which, in turn, will be de-
tected by the SQUID. This will be further discussed in Chapter 3. There
can thus a coupling be found between the particle’s position and the mea-
sured signal[5, 12]. We start with the magnetic field produced by a mag-
netic dipole[13]:

~B(z, θ) =
µ0|~µ|
4πz3 · (2 cos(θ)~̂r + sin(θ)~̂θ) (2.22)

where z is the distance from the particle to the pick up coil along the z-axis
and θ is the angle from this axis, as shown in Figure 2.2. The particle is
levitating above a superconductor. Due to the Meissner effect the mag-
netic field will have a certain penetration depth in which the lead will be
normal. This system can be modeled as a dipole at distance z0 above the
surface and an image dipole at the same distance below the surface. Be-
cause of the cylindrical symmetry of the system all flux through the coil
x- and y-direction will cancel out. We can thus take just the first term of
Equation 2.22 and find a total magnetic field of:

Btotal(z) = Bparticle(θparticle) + Bimage(θimage)

=
µ0|~µ|

2π
·
[

1
(h + d− z0)3 · cos

(
θparticle

)
+

1
(h + d + z0)3 · cos

(
θimage

)]
(2.23)

where the distances to the dipole and image dipole (h + d± z0) are used,
where h is the height of the trap and d the distance between the trap and
the pick up coil. The flux through the coil is found by an integral over its
surface:

Φ =
∫ ∫

BtotdA (2.24)

where dA = dxdy = r · drdφ ≈ (h + d± z0)
2 · tan(θ) · dθdφ, where a series

expansion for small θ is used. The change in flux caused by the movement
of the particle is given by:
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∆Φ =
∫ ∫

(
d
dz

Btot)Az dA (2.25)

where the derivative is taken for the particle moving from equilibrium to
its maximal amplitude. This gives:

∆Φ =
3µ0|~µ|

2π
·
∣∣∣∣∣
{

1
(h + d− z0 − Az)2 ·

∫ 2π

0

∫ arctan
(

r
h+d−z0−Az

)
0

sin(θ)dθdφ

− 1
(h + d− z0)2 ·

∫ 2π

0

∫ arctan
(

r
h+d−z0

)
0

sin(θ)dθdφ

}
−
{

1
(h + d + z0 + Az)2

∫ 2π

0

∫ arctan
(

r
h+d+z0+Az

)
0

sin(θ)dθdφ

− 1
(h + d + z0)2

∫ 2π

0

∫ arctan
(

r
h+d+z0

)
0

sin(θ)dθdφ

}∣∣∣∣∣(2.26)

where r is the radius of the pick up coil. For our experiment this gives
∆Φ = 1.379 · 10−10 Wb. Now, the current is found by:

I(z) =
∆Φz

L
(2.27)

The pick up coil has an induction of L = 156.6 nH, resulting in a current
I = 880.8 µA. The energy in the current in the pick-up coil is:

Ucoil(z) =
1
2

Ltotal I2
coil (2.28)

giving Ucoil = 6.074 · 10−14 J. The total potential energy of the particle in
the z mode is:

Uparticle(Az, β0) =
µ0|~µ|2

64πA3
z
· (1 + sin2(β0)) + mgAz (2.29)

This gives an energy of Uparticle = 3.984 · 10−11 J. Note that this is the
total potential energy of the particle, where the amplitude that is found in
Chapter 4 has been used, and not the energy of the oscillation, which is
given by:

Uz =
1
2

kzz2 =
1
2

mω2
z z2 = 1.93 · 10−25 J (2.30)

12



2.5 Damping factors

The coupling is defined as:

β2
z =

Ucoil(z)
Uz(z)

(2.31)

This gives a coupling for an optimal geometry of β2
z = 1.525 · 10−3.

Figure 2.2: Scheme of the bottom of the trap with the particle at height z0 and an
image dipole at a distance z0 from the surface of the lead. The particle and image
make each make a specific angle θ with the pick up coil.

2.5 Damping factors

There are several mechanisms that cause dissipation of energy from the
resonator. The first is viscous damping. This is caused by the particle
moving through the remaining gas in the chamber. Naturally, the higher
the pressure, the higher the damping is. There are however also other
properties, such as the chemical composition of the gas. Viscous damping
was the leading dissipation in Vinante’s experiment. Their experiment
is performed at 4 K, which yielded a pressure of P = 10−4 mbar. The
ideal gas law states that a decrease in temperature brings a decrease in
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pressure. Therefore, since our system can be cooled down to 10 mK, which
is two order of magnitude less, we will have a pressure below 10−9 mbar to
perform our experiment at. We thus expect to have less viscous damping
and have a higher Q factor.

2.5.1 Viscous damping

z mode

In this subsection we will discuss the z oscillation. For a sphere around
90% of viscous damping comes from drag and around 10% from skin fric-
tion, which we will therefore neglect. For small velocities, as we will have
in our experiment, the force that the gas acts on the particle is linear with
the particle’s velocity:

Fdrag =
1
2

ρvCD A (2.32)

where CD = 0.47 is the drag coefficient for a sphere and A = 2πR2 the
cross sectional area of the particle. The density of the gas is given by:

ρ =
MP

RgasT
(2.33)

with M the molar mass of the gas (which at these temperatures can be as-
sumed to be pure helium), P the pressure, Rgas the universal gas constant
and T the temperature. Filling this in with P = 10−9 mbar and T = 30 mK
gives a density and force of:

ρ = 1.605 · 10−14 kg
m3 (2.34)

Fdrag = 4.893 · 10−35 N (2.35)

With this we can find the dissipation rate:

Γz,drag = Fdrag · v = 4.687 · 10−43 J
s

(2.36)

With the total energy of the oscillation, given by Equation 2.30, the Q factor
can be found:

Qz,drag = ωz ·
Uz

Γz,drag
= 1.83 · 1012 (2.37)
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2.5 Damping factors

β mode

We can now do the same for the β oscillation. However, since here the
particle is not displaced but only rotated, we can assume to have viscous
damping 100% coming from skin friction. To find the energy dissipation
we now need the torque instead of the force on the particle:

τ = −8πR3ηωβ (2.38)

where the viscosity is given by:

η = ρλ ·

√
2kβT
πM

(2.39)

The mean free path λ of the helium atoms is:

λ =
kBT√
2AP

= 1.04 · 10−4 m (2.40)

At the same parameters as for the z-oscillation this gives a viscosity and
torque of:

η = 1.35 · 10−29 Pa · s (2.41)

τ = 4.18 · 10−39 Nm (2.42)

This results in a dissipation rate of:

Γβ,drag = τ ·ωβ = 1.53 · 10−35 J
s

(2.43)

The total energy of the β mode, assuming an amplitude of 45◦, is given by:

Uβ =
1
2

κθ2 = 1.39 · 10−25 J (2.44)

Which leads to a Q factor of:

Qβ,drag = ωβ ·
Uβ

Γβ,drag
= 4.95 · 1013 (2.45)
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2.5.2 Eddy currents

z mode

Another mechanism that causes energy dissipation is eddy currents. When
a changing magnetic field is near a normal conductor it induces loops of
electrical current within the conductor. This is due to Faraday’s law. Al-
though in our experiment the particle is completely confined by a super-
conductor and an insulator, eddy currents can still occur. This comes from
the Meissner effect, which states that there is a certain penetration depth in
the superconductor for the magnetic field. As a consequence the material
within this region will be a normal conductor. This is where eddy currents
will occur. These currents feel an effective resistance, which cost energy,
and are therefore damping the motion of the particle.

Eddy currents depend on the specific geometry, which in our case makes
it harder to calculate analytically. However, we can estimate the losses by
assuming a spherical geometry. The dissipation rate is given by:

Γz,eddy =
π

15
B2R2ω2

z σ (2.46)

where σ = 4.55 · 106 S
m is the electrical conductivity of the lead and B the

change in magnetic field. This gives:

Γz,eddy = 8.07 · 10−34 J
s

(2.47)

Qz,eddy = ωz ·
Uz

Γz,eddy
= 1.11 · 1011 (2.48)

β mode

For the β oscillation the equation is slightly altered as follows:

Γβ,eddy =
π

15
B2R5ω2

betaσ = 1.52 · 10−42 J
s

(2.49)

This gives:

Qβ,eddy = 4.95 · 1020 (2.50)
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2.5 Damping factors

2.5.3 Joule heating

Besides this, a far larger dissipation factor would be to have a resistance in
the otherwise superconducting pick up coil- or SQUID-circuit. The current
through the circuit would generate heat, which costs energy. In Chapter
4 will be shown how this is problematic for this experiment. The power
dissipated is quadratic with the current through the circuit:

Γres = I2R (2.51)

As calculated above, the current generated for the z mode is Iz = 880.8µA.
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Chapter 3
Methodology

3.1 Dilution refrigerator

In order to do quantum mechanical measurements the internal energy of
the system needs to be reduced to near the ground state of the system. This
is done by cooling the system down to mK temperatures with a dry dilu-
tion refrigerator (Leiden Cryogenics), which is shown in Figure 3.1. The
process of cooling down goes as follows: first, gaseous helium is pumped
through the system, after which it goes through the pulse tube. This alter-
nately compresses and decompresses the helium, which is an exothermic
process, such that each cycle energy is extracted from the system. With
this process the 4K plate can reach a temperature of 3.4 K. Now, 4He is cy-
cled through a closed system that goes through the mixing chamber and
the still. This is cooled down and at some point liquid 4He will stand in
the mixing chamber and still, see Figure 3.1. Now, 3He is pumped into
the system. The key property used in the mixing process is that 4He are
bosons and 3He are fermions.[14] This means that all 4He atoms can oc-
cupy their lowest energy state. The 3He will mix with the 4He inside the
mixing chamber and still. By doing this, the entropy of the system in-
creases, which, by the third law of thermodynamics, will remove energy
from the system. A liquid mixture of the two will now stand in the mix-
ing chamber and the still. An equilibrium will be attained of 6% liquid
3He and 94% 4He. At the surface however 3He evaporates and is circu-
lated back through the system. With this continuous process the system
can reach its ground temperature of 10 mK.

Our experiments were mounted on the mixing chamber plate.
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Methodology

Figure 3.1: Left: photograph of the dilution refrigerator. The mixing chamber is
located at the bottom plate. Note that the still plate is attached with springs to
prevent vibrations being transmitted to the mass spring system. Right: Photo-
graph of the mass spring system, a low pass vibration isolation system.

3.2 Vibration isolation and thermal conductance

As will be discussed in the next Section, the signal coming from the levi-
tating particle is detected with a SQUID. If the particle is oscillating with
a certain frequency, a current with the same frequency is generated. How-
ever, there will always be multiple sources of vibrations in the system,
also causing currents through the SQUID. The challenge is to find which
part of the signal is caused by the experiment. Also, these vibrations raise
the noise floor, but could also prevent the experiment from cooling down,
both of which would make this experiment impossible. For these sensi-
tive measurements it is therefore necessary to have vibration isolation in
the system.

The first solutions are to place the pumps in a separate room and mounting
the cryostat on a heavy platform. The pulse tube however will create vi-
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brations inside the cryostat. There will also be external vibrations that are
not damped. This creates a challenge to decouple the sample from these
vibrations while maintaining a functional heat conductance. As shown in
Figure 3.1, every plate is connected to the plate above via links. The vibra-
tion isolation is better for a lower stiffness of these links, while the thermal
conduction depends on the cross-sectional area of the thermal links. The
system is optimised for both factors.

In this dilution refrigerator there are four vibration isolation systems present.
First, the cryostat is installed on a separate platform of 25 tons of concrete,
supported on passive hydraulic vibration isolation dampers. The second
consists of seven dampers which are installed on the large concrete slap
underneath the system. These dampers are also used to induce vibrations
with specific frequencies in order to drive the magnetic particle, as will be
discussed in Section 3.4. There are two in the x-, two in the y- and three in
the z-direction, which acts as low-pass filters.

The third step in isolation is a mass-spring system. The bottom half of
the cryostat hangs on springs, which are connected between the 4K plate
and the still plate, as shown in Figure 3.1. This is a low-pass filter.

The fourth isolation system is again a mass-spring system, consisting of
four masses connected in series.[15] Each level is a second order filter with
a corner frequency of 100 Hz, which adds 40 dB per decade of filtering. It
is important to note that the damping is caused by reflection, not by dis-
sipation, which is crucial to keep the system at a low temperature. The
masses are connected with heat links made of soft braided copper in order
to maintain a working heat link while remaining a low stiffness.

These systems together form the sophisticated arrangement which is nec-
essary for quantum mechanical measurements and enables this experi-
ment of the levitated microparticle.

3.3 SQUID detection

Measurements were performed on multiple experiments. However, in the
following sections we will focus on one of these samples. The pick up
coil above the trap encloses part of the magnetic field coming from the
levitating particle. The change of flux enclosed by the coil induces a cur-
rent, which is transferred to the SQUID. This is done by a two-stage de-
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tection system, as this way the inductance of the SQUID is more equally
matched with that of the pick up coil.[15, 16] A diagram of the circuit is
shown in Figure 3.2. More equal inductances results in a better coupling,
and thus a more sensitive device. A SQUID (Magnicon low noise 2stage
DC SQUID) with an inductance of Lin = 150 nH is used. A transformer
is placed between the pick up coil (Lpickup = 156.6 nH) and the SQUID,
where the inductance of the primary coil is L f1 = 0.72 nH and of the sec-
ondary coil L f2 = 360 nH. With the mutual inductances of M1,2 = 14.5 nH
and M2,SQUID = 2.44 nH the flux that is generated in the SQUID can be
calculated:

ΦSQUID =
M1,2M2,SQUID

L1L2 −M2
1,2
·Φpickup (3.1)

where L1 = Lpickup + L f1 + Lpar is the total inductance of the pick up coil
circuit and L2 = Lin + L f2 + Lc is the total inductance of the transformer.
It is evident that the inductance of the pick up coil can be chosen such, as
to have optimal coupling to the SQUID. It is however a challenge to then
also have a good coupling to the magnetic particle.

Figure 3.2: Diagram of the superconducting detection circuit. The magnetic flux
coming from the particle in the pick up coil is transferred to the SQUID input coil
through a transformer. Adapted from [15].

If we fill in Equation 3.1 for our experiment, we find
ΦSQUID = 3.63 · 10−4 · Φpickup. Therefore the coupling between the pick
up coil and the SQUID is about 0.0363%.

This taken together with the coupling calculated in Chapter 2 gives a total
coupling of 5.534 · 10−7 for the z mode.
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3.4 Setup and fabrication

First, it was attempted to replicate the experiment of Vinante et al. with
some adjustments in the design. The magnetic microparticle is made of
neodymium-iron-boron (NbFeB). A grain of powder with the desired spher-
ical shape and size is chosen under a microscope. Particles with a radius
between 7.9 and 15 µm have been used and are magnetised in a 6 T field.
As mentioned in Chapter 2, the mass of the particle alters the equilibrium
height and the resonance frequencies. The particle is picked up with a nee-
dle by electrostatic force. Therefore, larger particles are harder to stick to
the needle and be picked up. Then, it is gently placed at the bottom and
the middle of the lead trap, as shown in Figure 3.3. The trap is a cylindrical
hole in a piece of lead with a diameter of 1.75 mm and depth of 0.75 mm.

Next, the pick up coil and driving loop are placed above the particle. Sev-
eral designs have been used. A spool was designed with the desired di-
ameter and distance to the particle, such that a relatively high coupling
achieved and that it also acted as a lid on the well. This way the particle
could not accidentally fall out during transfer of the sample. A diagram
and photo of the spool is shown in Figure 3.4. The spool is made of PEEK,
a material which can be used in UHV and cryogenic systems. A disadvan-
tage is that, since it is a plastic, it can be electrostatically charged. There
is therefore a possibility for the particle to become stuck to the spool. To
prevent this from happening an alpha radiator was used to neutralise the

Figure 3.3: Optical microscopy picture of the inside the lead trap with the mag-
netic particle is laying at the bottom. This is an elliptical shaped trap, which will
be used for future experiments. The traps used in our samples are circular.
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spool. A pick up coil with six windings of 50 µm Nb wire was placed at
the top axis and a driving loop of the same wire at the bottom axis.

The well was fixated on a copper plate to assure a good thermal conduc-
tance, as shown in Figure 3.5, and the pick up coil was connected to a
SQUID in a Nb casing. The whole sample was closed in an Al container.
The sample was then installed on the mixing chamber plate of the cryo-
stat, as shown in Figure 3.5.

Our experiments were mounted on the mixing chamber plate.

Figure 3.4: Left: Simplified scheme of the designed spool and trap. The pick up
coil and the driving loop are placed at a distance d from the top of the trap. The
spool was partly placed inside the trap, such that the particle can move freely.
Right: Close-up photograph of a similar spool. Here, the driving loop is placed
beneath the spool.
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Figure 3.5: Top: Photograph of the sample without Nb casing. The pick up coil
is connected to the SQUID. Bottom: Photograph of the sample installed on the
mixing chamber plate.
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3.5 Simulation

Finding the configuration of a magnetic system requires complex calcula-
tions of magnetic fields. Often, this is done with a finite element analyses
of a three-dimensional space. This, however, requires a lot of computer
power and long computational times. Here, the magnetic system of the
experiment is simulated using the Magpylib Python package[17], which
uses analytical solutions to provide good approximations of the magnetic
field.

The particle is simulated by a sphere placed at the origin, with a mag-
netisation in the x-direction. When the particle moves the flux difference
through six loops above the particle is calculated, each inducing a cer-
tain current through the loop. The magnetic field strength produced by
the particle is shown in Figure 3.6. The geometry and the magnetic field
strength inside one loop is shown in Figure 3.7. Since in the experiment
the flux is picked up with a coil, these loops are now treated as current
sources placed in series, resulting in a total current through the coil. The
six rigid body modes z, x, y, β, α and γ have been simulated.

Two geometric simplifications have been used. As mentioned above, the
coil is replaced by six individual loops. This will alter the calculated cur-
rent, because the induction of the coil will be different. This could however
be improved by letting the loops interact with each other by the magnetic
field that each creates. A second distinction between the experiment and
the simulation is the absence of the superconducting trap, which results
in two effects. First, magnetic field is not confined by the cylindrical well,
resulting in a different flux through the loops. Second, the material in the
region of the penetration depth will have a magnetic moment, which is
not simulated. However, this simulation provides a good approximation
for our experiment.

The energy transferred to the current, as in Equation 2.28, is calculated
for all six modes. The coupling, as in Equation 2.31, is calculated for the z
and β mode. Besides this, the effect of a misaligned pick up coil is simu-
lated. This is done for the coil tilted in the y-direction by 0◦ to 3◦ and the
coil displaced by 0 to 0.3 mm in the x-direction.
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Figure 3.6: Simulation of the magnetic field stenght of the particle in the xz-plane.

Figure 3.7: Left: Geometry of the magnetic particle and the pick up loops in the
simulation. Note that the particle is 10 times magnified. Right: The magnetic field
strength on the surface of the bottom pick up loop.
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Chapter 4
Results & Discussion

4.1 Simulation

A simulation of the system can give insights in the results to expect in the
experiment. As described in Chapter 3, the current induced in the pick up
coil has been simulated for a single period of oscillation of the magnetic
particle. This is done for all six rigid body modes and is shown in Figure
4.1. Since the experiment is simulated for an optimal geometry, there is a
perfect cylindrical symmetry. Therefore, an equal current is expected for
the x and y modes. Note that the amplitude as found from the ringdown
measurements of the z mode has been used for all translational modes. A
smaller amplitude of the oscillation would only alter the amplitude of the
current. It can, however, be seen that the z mode induces a much higher
current than the other translational modes. Which is clear, since there is a
larger flux difference during the oscillation due to the horizontal magneti-
sation of the particle. Figure 4.1 shows that the frequency of the induced
current from the x and y modes is twice the frequency of the oscillation
of the particle. Due to the symmetry of the system there is also an equal
current for the β and γ modes. For the rotational degrees of freedom an
amplitude of 45◦ has been used. However, a lower amplitude would re-
sult in a smaller current. This also explains why the current from the β and
γ modes shows a jump between the left and right hand side of the graph
when the oscillation is at the maximum amplitude. These modes could be
distinguished from each other by breaking the symmetry of the system,
for example by using an elliptically shaped trap or aligning the pick up
coil not perfectly above the middle of the trap.
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Figure 4.1: Simulated current induced by the translational and rotational modes
of the particle.

The energy of the induced current is simulated for all modes and is shown
in Table 4.1. The effect of a tilted pick up coil is shown in Figure 4.2 and 4.3.
Different scales have been used since there are large differences in energy.
As expected, the energy of the z mode increases for a greater angle, since
more magnetic flux is picked up by the coil. For an angle of 0◦ the energy
of the x and y mode are equal. An opposite behaviour of the x and y
mode, and of the β and γ mode, is expected, as the tilt is in the x-direction.
It is therefore breaking these symmetries of the system. It is notable that a
nonlinear behaviour is seen for the y and β mode, which is caused by the
dipole field of the particle.

Table 4.1: The energy of the induced current for all oscillations.

mode energy (J)
x 2.22 · 10−15

y 2.22 · 10−15

z 2.32 · 10−21

α 2.89 · 10−11

β 6.41 · 10−11

γ 6.41 · 10−11
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Figure 4.2: Simulated energy of the induced current of the translational modes of
the particle for different angles of the pick up coil.

Figure 4.3: Simulated energy of the induced current of the rotational modes of
the particle for different angles of the pick up coil.
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The effect on the energy of the induced current of a misalignment in the x
direction of the pick up coil is shown in Figures 4.4 and 4.5. Again, for a
misalignment of 0mm the energy of the x and y mode are equal. Here too,
an opposite behaviour of the x and y mode, and of the β and γ mode, is
expected, as the misalignment in the x-direction breaks these symmetries
of the system. As expected, the energy of the z mode increases for a greater
misalignment, since a larger flux difference is detected by the pick up coil.
The energy of the γ mode shows, as expected, an increase, since there is a
greater flux difference.

Finally, using Equation 2.31, the coupling of the z and β modes have been
calculated. Note that here a geometry comparable to the experiment has
been used. It is shown in Figure 4.6. It can be seen that the coupling
for both modes increase for a tilted pick up coil. This is expected since a
higher current is induced, as discussed above. For the misalignment the
coupling of the modes show opposite behaviour. The coupling of the β
mode decreases when the coil is shifted in the x-direction. It can therefore
be assumed that the coupling for the γ mode would increase. If the shift
would be in the y-direction these behaviours would be opposite. Remark-
ably, the coupling of the z mode has increased four order of magnitude for
a shift of 0.30 mm of the pick up coil. It would therefore be beneficial to
use this in the design of future samples.
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Figure 4.4: Simulated energy of the induced current of the translational modes of
the particle, plotted against the misalignment of the pick up coil in the x direction.

Figure 4.5: Simulated energy of the induced current of the rotational modes of the
particle, plotted against the misalignment of the pick up coil in the x direction.

33



Results & Discussion

Figure 4.6: Simulated coupling of the z and β modes of the particle. Left: Plotted
against the tilt of the pick up coil. Right: Plotted against the misalignment of the
pick up coil in the x direction.

4.2 Experiments

4.2.1 Large energy dissipation

The first experiments that were performed presented a spectrum as shown
in Figure 4.7. It is evident that the power spectral density of the signal
decreased rapidly, after the cut-off frequency of ±100 Hz. This is the be-
haviour of an RL low-pass filter and thus suggests a resistance present
in the superconducting circuit. As a resistance causes energy dissipation
through Joule heating, a sample with any resistance will have an extremely
low Q factor. The resistance can be calculated from the cut-off frequency
fc:

R = 2π fcL (4.1)

This results in a resistance of R ≈ 1.4 mΩ. It can be caused by fabrication
errors, such as bad contact points. It was thus crucial to solve this and
the following samples were fabricated with certain precautions, such as
removing unnecessary clamping points, chemical etching the Nb wires
with formic acid and sanding of the wires and contact pads.
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Assuming that mode is the z oscillation, the dissipation rate from Equation
2.51 is gives Γz,res = 1.09 · 10−9 J

s . Which results in a quality factor of:

Qz,res = ωz ·
Uz

Γz,res
= 2.43 · 10−14 (4.2)

which explains why no resonance peaks were seen.

Figure 4.7: Measured spectrum of the resonator. The kink of decreasing signal is
caused by a resistance in the superconducting detection circuit.

4.2.2 Ringdown measurements

As mentioned in Chapter 3, for the following experiment three samples
were installed, two on the mixing chamber plate and one below the mass
spring system. Of the last sample the SQUID did not become supercon-
ducting, assumably due to a bad heat conduction connection, which made
measurements impossible. Also, because of its lower transition tempera-
ture, it can be assumed that the lead trap did not become superconducting.
This means that the particle would remain pinned down at the bottom of
the trap.

The other two samples however were successfully cooled down and mea-
surements could be performed. As before, we will focus on one of these
samples, as this gave the most insightful results. Now, a regular spectrum
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was obtained without a residual resistance problem. A resonance peak
was found at a frequency of 147.786 Hz. The system was mechanically
driven at this frequency and a response, noted by an increase of ampli-
tude, was observed. After driving the system for one minute the driving
was turned off in order to see a ringdown. A ringdown at this frequency
was consistently observed and the ringdown time was significantly larger
than that of mechanical modes of the cryostat itself, which can be expected
to be below 5 s. Figure 4.8 shows an average of eleven ringdowns and an
exponential fit of the data. The normalised residual of the fit is shown in
Figure 4.9. It was found that the amplitude was A = 6.873 mV and the
ringdown time τ = 47.48 s. If we assume this resonance to be the z mode,
this results in a quality factor of Q = 22046.

This Q factor is much than was expected from the calculations in Chapter
2. One possible explanation is that when the lead undergoes the transition
into its superconducting state, magnetic flux could become trapped inside
the lead trap. This would come from the Earth’s magnetic field, which was
not sufficiently shielded. At this point, the magnetic field lines are pinned
down and the levitating particle will have to move through these, which
costs energy. Thus, the damping factor would be large, resulting in a short
ringdown time and a low Q factor.

Another reason could be that the lead is contaminated. This can create
regions inside the lead that become superconducting only at temperatures
below 10 mK. Therefore, more material from the well would be in its nor-
mal state, which causes a weaker Meissner effect and more dissipation due
to eddy currents.
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Figure 4.8: Ringdown measurement at a frequency of 147.786 Hz. Data and an
exponential fit of the average of eleven measurements.

Figure 4.9: Normalised residual of the exponential fit of Figure 4.8.
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4.2.3 Frequency shift

Vinante et al. observed nonlinear behaviour of the system where the res-
onance frequency shifted down for higher amplitudes.[6] This shift has
been derived for the z and β modes in Chapter 2. Figure 4.10 shows the ob-
served frequency shift during the ringdown measurements at a frequency
of f0 = 147.786 Hz. The black graph shows the average of eleven ring-
down measurements. As the resonance frequency alters, the signal and the
internal clock of the lock-in amplifier will steadily become out of phase.
The data from Figure 4.10 is taken from the slope of the phase during the
ringdown. At low amplitudes we see that the signal is below the noise
floor. As the amplitude goes up the frequency shifts down quadratically,
as expected from Equation 2.18 and 2.19. The significant increase at high
amplitudes, at the right hand side of the dashed line, is however an arte-
fact. Due to the lock-in time constant used in the experiment the signal
from the driving period is still taken along during the first seconds of the
ringdown.

Figure 4.10: Frequency shift of the resonance mode at a base frequency of 147.786
Hz. The black graph is the average of eleven ringdown measurements.

Assuming this to be the z mode, when we measure a Voltage amplitude
of 4.47 mV at a base frequency of f = 147.786 Hz we see a frequency
shift dωz = −0.296 Hz. As calculated before, the equilibrium height is
z0 = 113 µm. If we fill this in we find the amplitude of the oscillation:

Az = ±5.92 µm (4.3)
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With this, we can calculate the coupling of this mode, which can be com-
pared with the optimal coupling found in Chapter 2 and simulated cou-
pling in Section 4.1. Equation 2.30 gives:

Uz = 2.34 · 10−16 J (4.4)

With a transfer coefficient between the flux in the SQUID and the mea-
sured signal of 0.43 V/Φ0, the energy of the induced current can be found
with Equations 2.27 and 2.28:

Ucoil = 4.29 · 10−27 J (4.5)

This results in a coupling of:

β2
z = 1.83 · 10−11 (4.6)

Note that this is eight orders of magnitude lower than the coupling for
the most favourable conditions, as calculated in Chapter 2. This can be
explained, since in the experiment the magnetisation of the particle is par-
allel with the pick up coil, resulting in much smaller magnetic field differ-
ences during the oscillation.

The coupling found here is, however, only a factor three lower than the
one simulated. This could mean that either the experiment was fabricated
extremely symmetric (less than 0.1◦ oblique and 10 µm placed out of the
middle of the trap), which seems unlikely. Or the simulation should be im-
proved by more accurately calculating the induced current and by adding
the superconducting trap.
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Chapter 5
Conclusion & Outlook

To research quantum mechanical effects a sensitive measurement system
needs to be developed. For this, the best candidate is a micromechanical
resonator that is isolated from its surroundings and thus has an extremely
high Q factor. The boundary between quantum and classical mechanics
could be investigated by increasing the mass of a system that is brought
to its ground state. Here, the first steps have been taken to fabricate and
test such a resonator. Also, the experiment has been simulated, where the
energy of the current induced by all translational and rotational modes
has been calculated. Besides this, the coupling between the z and β mode
and the induced current has been calculated. In the experiment, a mag-
netic microparticle inside a cylindrical lead trap has been cooled down to
a temperature of 10 mK. Due to the Meissner effect the particle is levitated,
where its movement was measured with the use of SQUID detection.

In the process several challenges were encountered. First, a resistance in
the superconducting circuit was detected. This caused so much energy
dissipation that a high Q factor could never be obtained. Several trials
were performed until a sample fabrication method was developed where
no resistance was present.

Another challenge was to have a good coupling between the particle and
the SQUID. Finally, a trap and spool have been designed to optimise this
coupling and two experiments were cooled down and functional. How-
ever, the coupling between the driving loop and the particle was not suffi-
cient. This could be caused by the pick up coil, which screens the particle
from the magnetic field produced by the loop. This can be resolved by
redesigning the superconducting circuit such, that the pick up coil is also
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used as the driver. Ringdown measurements could be performed by con-
secutively driving the resonator and measuring the induced current with
this coil.

The particle could however also be driven by mechanical actuators. The
coupling of the z mode has been measured, which differed a factor three
with the coupling that was simulated. Ringdown measurements were per-
formed and a resonance was found at a frequency of 147.786 Hz, which
could be assumed to be the z mode. The ringdown time was τ = 47.48 s,
resulting in a quality factor of Q = 22046. This is much smaller than the
Q factor expected from theory, which could be explained by flux lines of
the Earth’s magnetic field becoming trapped inside the lead trap during
the superconducting transition. Also, the lead could be contaminated, re-
sulting in a lower critical temperature. Both causes would lead to a large
energy dissipation.

The former challenge can be overcome by wrapping the trap in mu-metal.
This is a material with a very high magnetic permeability. This would
redirect the magnetic field through the mu-metal, instead of through the
trap. When the experiment is cooled down there will thus be almost no
magnetic field that could be trapped inside the trap. The latter can easily
be resolved by using a trap of high purity aluminium, which is a super-
conductor with a critical temperature of 1.2 K.

With these challenges worked out there will be no source of large energy
dissipation present. Then, eddy current losses are expected to become the
leading term of dissipation, giving rise to the earlier calculated Q factor
of the order of 1011. This opens the road to research quantum mechanical
effects and investigate the boundary of quantum and classical mechanics.
Also, gravitational measurements can be performed by using the gravity
between a large mass and the microparticle to drive the resonator. With
this, the gravitational constant could be determined more accurately.
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