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Abstract

Motivated by the recent discovery of superconductivity in Magic
Angle Twisted Bilayer Graphene, we discuss preparatory work

for STM measurements on micrometer-sized graphene flakes. We
develop and fabricate a dummy sample for testing capacitive

navigation in any STM setup with an XY-stage. Furthermore, we
calculate the effect of a biased STM tip on the charge distribution

in a graphene bilayer. We also estimate the chemical potential
shift in a gated graphene sample as a result of the probe tip. All
results unambiguously suggest that the STM tip will strongly

influence the electrical behavior of the graphene system.
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Chapter 1
Introduction

In this work, we describe the first steps towards Scanning Tunneling Mi-
croscopy (STM) measurements on micrometer-sized graphene flakes. Mo-
tivated by the recent discovery of superconductivity in so called Magic
Angle Twisted Bilayer Graphene (MA-TBG) [1, 2], we investigate the pos-
sibility of doing STM measurements on flakes of bilayer graphene on hexag-
onal Boron Nitride.
STM measurements would allow us to study the emergent superconduc-
tivity on the atomic scale. Unfortunately, STM also has a disadvantage hid-
den in its core mechanic when it comes to studying low-density free car-
rier materials: due to extremely small distance between them, the charge
dynamics in the sample can be influenced by the electric field emitted
by the tip. Although this effect is often ignored, because free carriers in
the sample often screen the field emitted by the tip, as a result of the low
free carrier density of graphene (∼ 1012), unfortunately, this effect can be
quite substantial in this material. In this work, we attempt to calculate the
charge distribution in a graphene bilayer as a result of a biased probe in
proximity to the bilayer.
Another challenge when it comes to studying graphene flakes with STM,
is landing the probe tip on the sample. To overcome this, most researchers
study graphene in a system with optical access to the STM. Unfortunately,
in most low-temperature setups, optical access is not available. To over-
come this we investigate capacitive navigation of the probe tip to the sam-
ple. We demonstrate the fabrication of a dummy sample for testing a ca-
pacitive navigation protocol. Unfortunately, because a functioning STM
setup was unavailable during the time span of this master project, we
could not actually test this technique yet.
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Chapter 2
Graphene

* Graphene consists of carbon atoms forming the well known honeycomb
lattice with a lattice constant of 2.46Å (figure 2.1a). The band structure of
this system can be deduced rather easily by following the tight-binding
approach [3, 4]. Each carbon atom contributes 4 electrons to the system.
Three of those form strong covalent bonds with the nearest neighboring
carbon atoms and therefore do not play any major role in transport. The
fourth one, however, occupies the pz orbital and does contribute to trans-
port. For this reason, graphene can be modeled as a hexagonal lattice with
a two atom basis in which each atom contributes one free electron.

A

B

b)a)

Figure 2.1: a) Crystal lattice of graphene. The crystal consists of a two-atom basis
in a hexagonal lattice. The individual atoms that form the basis are referred to
as A (blue) and B (black). b) Band structure of graphene as calculated by the
tight binding model [3, 4]. The inset shows a magnifications of one of the six
points where the upper and lower bands touch, forming a Dirac cone. Image
from reference [4].

*This chapter was partially copied from my earlier work: Visualizing Strongly Corre-
lated Electronic States in Bilayer Graphene with a Scanning Tunneling Microscope
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4 Graphene

Following the tight-binding approach, the dispersion relation can be cal-
culated:

E(k) = ±t
√

3 + f (k)− t′ f (k), where
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In this expression, a is the distance between nearest neighboring carbon
atoms (1.42Å), and t, t′ are the hopping amplitudes corresponding to hop-
ping between nearest neighboring (A to B, figure 2.1a), and next nearest
neighboring (A to A) atoms respectively. Figure 2.1b shows the calculated
dispersion relation. This tight-binding dispersion can be expanded around
the K and K′ points (2π

3a

(
1, 1√

3

)
and 2π

3a

(
1, −1√

3

)
respectively), yielding a

linear dispersion for small momentum displacement (E ∼ vF|k|, vF is
the Fermi velocity). These areas of momentum space are known as Dirac
cones. The reason for this is that this linear dispersion relation quantum
mechanically describes relativistic particles known as Dirac fermions [5].
Note that these are in essence very different from ordinary electrons; since
there is no effective mass term present in the dispersion relation. The pres-
ence of relativistic Dirac fermions has experimentally been confirmed by
measuring the

√
n dependence of the cyclotron mass [4].

Stacking graphene: A route to induce strong correlations
When stacking two sheets of graphene on top of each other, interlayer hop-
ping needs to be considered, and as a consequence, the electronic structure
of the sheets changes. Depending on the stacking order (AA or AB), the
band structure differs quite substantially due to a different interlayer hop-
ping magnitude [6]. When two sheets are stacked under an angle with
respect to each other, a so called Moiré pattern forms (figure 2.2). This
Moiré superlattice consists of alternating AA and AB stacked zones. As a
result of this, the original periodicity of the graphene sheet is reduced and
the Brillouin zone folds into a mini Brillouin zone.

4
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5

Depending on the twist angle, the
periodicity of the Moiré pattern
changes, and with it, the strength
of the interlayer coupling. It was
found that for large twist angles
(θ > 15◦), the interlayer hybridiza-
tion is minor and the band struc-
ture can be evaluated as a single
graphene sheet including a small
perturbing potential (ignoring cer-
tain commensurate rotation angles
where full two-dimensional period-
icity is restored).

Figure 2.2: Illustration of a Moiré pat-
tern created by stacking two honey-
comb lattices with a relative twist angle
of θ = 10◦.

However, for general small twist angles (θ < 10◦), interlayer effects be-
come very strong and a different theoretical treatment is required to de-
scribe the electronic properties of the bilayer.

A full theoretical treatment of the small twist angle regime is presented
in the work of Bistritzer and MacDonald [7]. They present a low-energy
continuum Hamiltonian that captures both the intralayer and interlayer
hopping as a function of the twist angle between them. In this new model,
the band structure of the bilayer is described by so called Moiré Bloch
bands. Bistritzer and MacDonald show that the Dirac cones at the K and
K′ points mix due to interlayer interactions. Most of the electronic states
are contained in AA stacked areas of the superlattice, although some are
present in AB stacked zones. More astonishing though, is the observa-
tion the flattening of the lowest of the Moiré Bloch bands, observed for a
specific set of angles. At these “magic angles”, the Fermi velocity at the
Dirac point becomes 0. This is very interesting, since flat bands translate
to a very high density of states (DOS), and therefore give rise to a strong
intraband electron-electron correlation. In combination with a small band-
width, this can result in strong localization of the electronic states, and all
kinds of other correlated electronic phases.

Mottness in MA-TBG
The relevance of this theoretical work was emphasized very recently, when
Cao et al. [1, 2] presented transport data on samples of MA-TBG. They
measured TBG samples with a twist angle of θ = 1.05◦ and θ = 1.16◦ re-
spectively, very close to the theoretically predicted magic angle of θ = 1.1◦.
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6 Graphene

To electronically isolate the graphene bilayer from its environment, the bi-
layer is sandwiched between hexagonal Boron Nitride (hBN), and then
placed on top of a metal gate in order to control the carrier density inside
the bilayer. Due to its large band gap, hBN only interacts very weakly
with the graphene. By choosing a relatively large stacking angle between
the hBN sheet and the graphene, their coupling is only minimal. There-
fore, hBN is an excellent material to isolate the bilayer.

Figure 2.3: Resistivity measurements as a function of doping for a MA-TBG sam-
ple with a twist angle of θ = 1.05◦, measured at T = 0.3K. The lighter shaded
regions correspond to superlattice gaps induced by the Moiré structure at carrier
density of±ns ≈ 2.5× 1012cm-2. The gaps indicated by the darker shaded regions
at half the carrier density of the superlattice gaps, however, do not appear in the
single particle DOS. The inset shows the dependence of ns on the relative twist
angle. Image from reference [1].

Resistivity data for different carrier densities measured at 0.3K is pre-
sented in figure 2.3. At a carrier density of ±ns ≈ 2.5 × 1012cm-2, the
data shows an insulating gap that corresponds to the gap induced by the
superlattice modulation of the Moiré pattern. The gap observed at half
of this carrier density (±ns

2 ), however, cannot be explained by the tight-
binding results of Bistritzer and MacDonald [7], and therefore seems to be
a many-body effect. More specifically, because this insulating state occurs
at exactly half filling of the lowest of the Moiré bands (2 electrons per unit
cell), this strongly hints at the emergence of a Mott insulating state at this
carrier density, which will be explained in box 1.

6
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Box 1: Mott insulators
A Mott insulator is one of many electronic phases found in strongly
correlated materials, formed when the intraband Coulomb energy ex-
ceeds its bandwidth. Such a system can be described by the Hubbard
model:

H = ∑
i,j,α,β

tij,αβ c†
i,αcj,β + h.c. + U ∑

i,α
ni,α(ni,α − 1) (2.2)

In this equation, ci,α is the annihilation operator for a particle at site i in
orbital α, and niα is the corresponding occupation number operator. t
and U are the hopping amplitude and the Hubbard (electron-electron)
repulsion respectively. Balancing these parameters results in different
electronic phases: When the Hubbard repulsion is much stronger than
the hopping parameter, which is proportional to the electronic band-
width of the material (W ∼ t), the electronic states become highly
localized and the model describes a Mott insulator (figure 2.4). On the
other hand, when U/t� 1, the model describes a (semi-)metallic sys-
tem with some correlations.

UHB

LHB

E

D(E)

E

D(E)

μ

U = 0 U > 0

Figure 2.4: In a Mott insulator, due to strong electron-electron interactions,
the conduction band splits in an upper- and lower Hubbard band. As a result,
the material is insulating at half filling.

In materials with substantial electron-electron correlations, like the fa-
mous copper oxides, electronic states can become localized, in accor-
dance with the model above. Electron transport can only take place if
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8 Graphene

an electron hops from one site to another, which requires a character-
istic energy U that originates from the Coulomb interaction. In other
words, instead of a steady flow of electrons, transport in these mate-
rial closely resembles a bunch of people trying to cross a river over a
path of stepping stones. The insulating state that occurs as a result of
this effect is called a Mott insulator. In the past years, it has been con-
firmed that high-Tc superconducting phases appear when we dope a
Mott insulator [8, 9]. In iron-based superconductors, it is still uncer-
tain how Mott-like behavior gives rise to the observed unconventional
superconductivity, because the parent compound is actually a metallic
ferromagnet as opposed to an insulating antiferromagnet in the case of
cuprates. Currently, it is believed that the iron-based compounds ex-
hibit a so called orbital selective Mott state [10]. As the name suggests,
this entails that only certain orbitals form bands through which carri-
ers are transported, whereas others form a Mott state: The iron-based
superconductors are thought to have a Mott state which is concealed
by their metallic behavior, i.e. correlated- and uncorrelated electrons
coexist in these materials.

8
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A new platform to study unconventional superconductivity
Mott insulators are especially interesting since in the past few years, it has
been established that high-Tc superconductivity arises from doping a Mott
state [8, 9]. In MA-TBG, the realization of a Mott state is possible due to
the flatness of the lowest Moiré band and the large DOS associated with
it. In reference [2], Cao et al. actually showed that superconducting domes
appear in the phase diagram of the MA-TBG samples when doping away
from the insulating state, closely resembling that of cuprates (figure 2.5a,
2.5b).
The sample with θ = 1.05◦, which exhibits a metal to (Mott)insulator tran-
sition at 4K, shows superconductivity when the back gate voltage was
shifted away from the Mott state, with a maximum measured Tc of 1.7K.
At first glance, this seems rather disappointing when compared to the
record high Tcs achieved in for example BSCCO (Tc = 108K) or monolayer
FeSe on STO (Tc ∼ 65K). It should be pointed out though, that the car-
rier density at which superconductivity occurs in TBG is much lower than
that of other high-Tc superconducting compounds. In this context, a Tc
of 1.7K is actually very large, suggesting an even stronger pairing mecha-
nism than that observed in the cuprates.
In figure 2.5c, the four-probe resistivity data of Cao et al. [2] is displayed.
Figure 2.5a contains a stripped-down version of the cuprate phase dia-
gram, a full version of which is displayed in figure 2.5b. We know of a
rich variety of phases that appear in the diagram of the cuprates. MA-TBG
was only recently discovered as an unconventional superconductor, and
because it has only been studied in transport experiments so far, it is cur-
rently not possible to describe its phase diagram in more detail. However,
because of the Mott state that is present in the current phase diagram, and
the additional analogy with cuprates, we deem it highly likely that MA-
TBG will have a much more elaborate phase diagram with respect to what
is revealed thus far. For this reason, we would like to further investigate
the phase diagram of MA-TBG by studying it with an STM. Based on its
previous successes in studying cuprates and iron-based superconductors,
we think STM is an excellent technique to study MA-TBG as well. In this
thesis, we carry out some of the necessary preparations in order to do so,
mainly focusing on the aspect of landing on micrometer-sized graphene
flakes, and tip induced band banding (TIBB), an effect expected to occur in
graphene due to the relatively low carrier densities present in the material.
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Figure 2.5: a) Schematic phase diagram of the cuprates. b) Detailed phase dia-
gram of the cuprates. Image taken from reference [8]. c) Four-probe resistivity
measurements of MA-TBG (θ = 1.05◦) as a function of temperature and doping.
Image from reference [2]. The transport data shows remarkable similarities to the
cuprate phase diagram.
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Chapter 3
Scanning Tunneling Microscopy

Ever since its invention in the 17th century, the optical microscope has
allowed humans to study objects with extremely small dimensions. The
instrument is made up out of a collection of lenses that manipulate the
lightrays from the object. Unfortunately, because of the diffraction limit,
these instruments cannot image objects that are smaller than several µm,
half of the wavelength of visible light. To overcome this, electron based
microscopes were invented.
A Scanning Tunneling Microscope, or STM, is an electron microscope based
on the quantum mechanical effect of tunneling: Where classical theory
does not allow particles to cross a potential barrier when their energy is
lower than said barrier, due to the particle-wave duality in quantum the-
ory, a particle incident on a potential barrier can have a finite probability
to end up on the other side of it. This effect is called tunneling.
Typically, the founding work of STM is considered to be done by Binnig
and Rohrer in 1983 [11]. What is often not mentioned however, is a pa-
per published in 1972 already, by Young, Ward and Scire on an instrument
called the topographiner [12]. Their instrument was based on having a
small emitter (∼ 100− 10000 Å) (cathode) close to the to be imaged sur-
face (anode) in a vacuum. When passing a constant current through the
emitter, a constant electric field originates from it, creating a finite poten-
tial between the emitter and surface, which depends on the distance be-
tween them. This voltage is measured an coupled back to a servo system
made from piezoelectric elements, in order to keep the emitter at a con-
stant height above the surface. Then, by moving emitter laterally with
respect to the surface, its topography can be deduced.
The only problem with this technique was its resolution: using typical
emitters at the time (∼ 10 Å), the best resolution achievable would be the-
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12 Scanning Tunneling Microscopy

oretically be limited to 100 Å. Binnig and Rohrer built a device similar to
this, however, instead of relying on field emission, the topography is in-
ferred by measuring a tunneling current. Instead of using an emitter, the
STM is based on an atomically sharp tip which is brought close to a sur-
face (several Å). The vacuum gap between the tip and surface behaves as
a potential barrier for electrons. As mentioned above, from quantum the-
ory, we know that it is possible for particles to tunnel through a barrier,
in this case, from tip to sample or vice versa. Because of the symmetry of
the tunnel junction, the probability to tunnel in the former case equals that
of the latter. Therefore, there will be no net current. In order to overcome
this, a finite bias voltage is applied between the tip and sample, favoring
one of the two tunnel processes thereby generating a finite current.

Figure 3.1: Schematic overview of a scanning tunneling microscopy setup. An
atomically sharp tip is moving parallel to the surface, measuring the tunneling
current at each location. In this way, the electronic properties of a sample can be
determined with atomic precision.

Importantly, this tunneling current scales exponentially with the width
of the tunnel barrier, i.e., the distance between the tip and sample. This
is easy to see by just calculating the probability (|Ψ|2) of an electron to
appear on the other side of an infinitely large potential barrier from the

12
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(time-independent) Schrödinger equation:

HΨ = EΨ

− h̄2

2m
∂2Ψ
∂x2 + VΨ = EΨ

Plane wave ansatz : Ψ ∼ ekx

− h̄2k2

2m
= (E−V)Ψ

k = ±i
√

2m(E−V)

h̄

Notice how when the electron has an energy higher than the potential
(outside the barrier, E > V), k is fully imaginary and the electron wave
function is just a plane-wave. In the potential barrier itself, however,
E < V and k becomes real. In order for the wave function to not diverge,
only k < 0 can be a valid solution and we see that the wave function
decays exponentially inside the tunnel barrier. This is a key mechanism
behind the excellent vertical and lateral resolution of STM: only a small
difference in tip-sample distance (∼ Å) can substantially change the tun-
neling current.
A more in-depth theoretical understanding of quantum tunneling is pro-
vided by Bardeen [13]. Later, Tersoff and Hamann [14, 15] applied this to
STM. Using Fermi’s golden rule, they showed that the tunneling current
obeys:

I =
2πe

h̄ ∑
µν

f (Eµ)[1− f (Eν + eV)]× |Mµν|2δ(Eµ − Eν) (3.1)

In this expression, f (Ei) is the Fermi distribution function, V is the bias
voltage and |Mµν|2 is the matrix tunneling element, which can be calcu-
lated according to Bardeen as [13]:

Mµν = − h̄2

2m

∫
dS · (Ψ∗µ∇Ψν −Ψν∇Ψ∗µ)

= − h̄2

2m

∫
dS · Jµν

(3.2)

The integral is performed over the entire surface lying in the vacuum gap
between the tip and sample.
In order to evaluate Mµν, Tersoff and Hamann assumed a general form for
the sample wavefunctions (plane-waves). Furthermore, since the tip states
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14 Scanning Tunneling Microscopy

and tip geometry are generally unknown as well, they assumed an s-like
wave function for the tip and a spherical geometry, as displayed in figure
43. Using this, and assuming the low temperature and low bias limit, they
found that:

I ∼ Vnt(E f )e2κR ∑
ν

|Ψν(r0)|2δ(Eν − E f ) (3.3)

Here, nt(E f ) is the density of states of the tip at the Fermi level, κ =

h̄−1√2mφ, is the inverse of the decay length of the wave function and
φ is the work function. The summed over expression is regarded as the
local density of states of the sample: LDOS = ∑

ν
|Ψν(r0)|2δ(Eν − E f ).

Figure 3.2: Tip geometry assumed by Tersoff and Hamann. In their paper, r0
indicates the center of curvature of the tip. The radius of curvature is given by R
and the distance on nearest approach is given by d.

As we can see from equation 3.3, the tunneling current depends on the
LDOS of the sample. More specifically, the differential conductance, dI

dV , is
directly proportional to it. This is utilized in a technique called scanning
tunneling spectroscopy. An AC bias is superimposed on the regular DC
bias, with a frequency higher than the bandwidth of the feedback electron-
ics. Using lock-in technique, the in-phase component is measured, yield-
ing dI

dV . The carrier frequency is chosen higher than the cutoff frequency
of the electronics in order to prevent the the feedback from compensating
for it. The amplitude of the modulation should be chosen small enough in
order to resolve the spectral features of the LDOS. Additionally, the mea-
sured features are affected by thermal broadening (5.4kbT). Therefore, this

14
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measurement technique can only be applied in a low temperature envi-
ronment.
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Chapter 4
STM on micrometer-sized flakes:
Capacitive navigation

Exfoliated graphene flakes usually have a surface area on the order of sev-
eral µm2. This makes them a tricky candidate for studies involving STM:
It is rather difficult to land with the tip on a patch of these dimensions.
Some setups allow for optical acces to the scanner, which makes it easier
to align the flake with the tip. Unfortunately, not every setup has optical
access, because of the need of for example ultra low temperatures.
To overcome this obstacle in a setup without optical access, some research
groups choose to stamp their flake on a sample containing pre-patterned
macroscopical contacts [16, 17]. By scanning such samples and extracting
the information from the topological features patterned on the sample, the
tip can be navigated towards the flake. The downside of this method,
however, is that finding the flake is a rather slow process. This has to
do with the intrinsic limitations of STM: To achieve atomic resolution on
the regular, the working principle of an STM setup relies on a piezoelec-
tric scanning tube. The length of this tube, together with its diameter de-
termine the maximum field of view of the microscope. In designing the
microscope, choosing the dimensions of the tube scanner is equivalent to
balancing the maximum field of view versus mechanical noise [18]. As a
result of this, typical microscopes have a maximum XY-range of about .
10 µm at low temperatures.
To extend the XY-range, most microscopes rely on a separate XY-stage to
accurately move the sample over larger distances, extending the effective
field of view. Then, finding a graphene flake by following topological fea-
tures on the sample entails taking many topographs in different locations
and combining their information to eventually navigate to the flake, a very
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18 STM on micrometer-sized flakes: Capacitive navigation

time consuming process.
Alternatively, the work of Andrei et al. [19] shows that it is possible to find
the microscopically small flake by capacitively scanning the contour of the
sample under study. This method, other than relying on the presence of
a backgate in the sample under study, requires no additional components
except for a standard STM setup.
The technique relies on measuring an AC component in the tunneling cur-
rent. During normal operation, the microscope measures the DC tunnel-
ing current which flows between tip and sample. From what nowadays
is considered routine Scanning Tunneling Spectroscopy (STS) measure-
ments, we know that it is also possible to measure AC components of the
tunneling current. The total current measured by the microscope is given
by:

I =
Vbias
|Zj|

(4.1)

In this expression, Vbias is the applied bias voltage (the potential difference
between tip and sample), and Zj is the complex impedance of the tunnel
junction. Generally, we can model the impedance of the junction as a par-
allel resistor-capacitor circuit. The bias contains the normally applied DC
bias (V), in addition to a small AC modulation (Ṽ). This means that the
tunnel current can be written as:

I = GtV + GtṼ + iωCṼ = GtVbias + iωCṼ (4.2)

Here, Gt is the junction conductance, C is the tip-sample capacitance, and
ω is the frequency of the applied modulation signal.
When the tip is relatively far away from the sample, Gt is infinitesimally
small, and no DC current can be measured. However, due to the finite
capacitance between the probe tip and the sample, it is possible to mea-
sure the AC signal. Furthermore, because the capacitance (C) is spatially
dependent, it is possible to map out the contours of the sample by mea-
suring the AC component of the current. According to reference [19], for
typical scanning parameters (Ṽ = 200 mVrms at 5 kHz), the AC current can
be detected several mm away form the sample.
The fact that the capacitance is spatially dependent finally allows the mi-
croscope to map out the contours of the sample just by measuring the AC
component of the current. Figure 4.1 demonstrates this, and the purpose
of the backgate.

18
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Figure 4.1: Equipotential lines of the electric field for: a), a biased, conducting
sample b), a biased, conducting smaple in the presence of a grounded backgate
c), a biased, conducting smaple in the presence of a backgate, where the gate
voltage is chosen equal in magnitude to the bias, but 180◦ out of phase. Image
taken from reference [19].

Normally, when the bias voltage is applied to the conductive contacts, the
equipotential lines of the electric field quickly lose the shape of the con-
tacts (figure 4.1a). Putting a grounded, metallic plate below the contacts,
however, drastically increases the distance over which the electric field re-
tains the shape of the contact (figure 4.1b). Finally, by applying an equal
but opposite bias voltage (180◦ out of phase) to the backgate, sharp fea-
tures appear in the electric field at the edges of the contact (figure 4.1c).
These features decay over a distance which is proportional to the size of
the contact. According to reference [19], to accurately resolve the size of
the contact, an aspect ratio ≤ 0.3 is requires, where the aspect ratio is de-
fined as tip sample distance

feature size .
One can use this capacitive trick to navigate towards, for example, a micrometer-
sized graphene flake. To this purpose, the authors of reference [19] suggest
a sample as displayed in figure 4.2.
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20 STM on micrometer-sized flakes: Capacitive navigation

Figure 4.2: Optical image of the sample used in reference [19]. The actual width
of each feature is written in the image. Image taken from reference [19].

Gold contacts are patterned on top of a doped Si/SiO2 wafer. The doped
Si acts as a backgate. By patterning the contacts in this way, the graphene
flake is intended to be stamped at the apex of the smallest feature of the
contact. By arranging the chip position as to center the biggest pad roughly
in the middle of the sampleholder, one maximizes the chance of landing
with the tip on the biggest contact pad. Then, by capacitively mapping out
the contour of the whole contact, one can navigate towards the flake.

20
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In this work, we design a testsample for testing capacitive navigation in
our STM setup. Unfortunately, because the setup was defective at the time
of this project, we could not do the actual test.

Figure 4.3: Schematic of the sample we designed for capacitive nagigation in our
system. In practice, a graphene flake can be placed in one of the four 10 µm gaps
pointed out by the arrow.
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22 STM on micrometer-sized flakes: Capacitive navigation

We create a large platinum contact on a Si/SiN chip using standard optical
lithography. The design for the contact is displayed in figure 4.3. In prac-
tice, the graphene flake will be positioned at one of the four small pads,
which in our case is 50 µm x 50 µm. Instead of gold, we choose to make
our contacts out of platinum, keeping in mind the future use for these de-
vices: the study of graphene flakes. Since platinum acts as a catalyst for
removing polymer residues when annealing the graphene [20], it seems
beneficial to use platinum instead of gold electrodes.
We decided to make four different branches on the testsample, in order to
test which design gives the fastest and most reliable tip navigation.

4.1 Testsample fabrication

To create the contact, we spin-coat a chip with AZ5214 optical resist (4000
rpm, thickness = 1.4 µm). After that, we use a laserwriter (DMO ML-2)
to transfer our design into the resist. We expose with a laser (spotsize 1
µm) having a wavelength of 405 nm, using a dose of 400 mJ/cm2. After
writing, we develop the chip in a 1:3.5 solution of AZ400 and water (H2O).
This takes approximately 10 s. We stop the development process by rins-
ing the chip with water.
Then, we sputter approximately 50 nm Pt and perform lift-off in acetone.
When necessary, we sonicated the chip for 2 seconds in order to remove
the resist. The sputtering is done using a Leybold Z400 sputtering ma-
chine. Later inspection of the chip using a profilometer (KLA/Tencor D-
120) revealed that the actual thickness of the platinum layer is approxi-
mately 51 nm (figure 4.4). The final result is displayed in figure 4.6.

Figure 4.4: Photograph of the profilometer display, after tracing over one of the
branches after lift-off. The green contour indicates the platinum contact. We esti-
mate the thickness of the Pt film to be approximately 51 nm.

22
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4.1 Testsample fabrication 23

After fabrication, we inspected the chip with an optical microscope. An
image of part of the chip is included in figure 4.5

Figure 4.5: Optical image of part of one of our fabricated testsamples. Unfortu-
nately, some samples show a trench through the pad. We believe this is an artifact
from the laserwriter.

Unfortunately, some samples show a trench in the pads. We believe this
is an artifact of the laserwriter we used to expose the resist. This phe-
nomenon occurs when the turbo mode is enabled, resulting in rendering
errors of the pattern in the control software.

Version of November 25, 2018– Created November 25, 2018 - 02:09

23



24 STM on micrometer-sized flakes: Capacitive navigation

Figure 4.6: Picture of one of our fabricated testsamples.

24
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Chapter 5
Tip Induced Band Bending in
graphene samples

As discussed in chapter 2, graphene has a relatively low carrier density.
This is quite a favorable property in most cases, because it allows for tun-
ing of the chemical potential using standard electrostatic doping. To this
purpose, in most studies, it is common to use a doped Si wafer as a chip
substrate and utilize it as a backgate [17, 19, 21].
Unfortunately, there is also a downside to this property with regards to
studying it with STM. In chapter 3, we discussed the working principle
of a conventional STM. To briefly recap: an STM measures the tunneling
current between a probe tip and the sample under study. To realize a fi-
nite tunneling current, a bias is applied between the tip and sample. This
means that during normal STM operation, a metal electrode with a dif-
ferent electric potential is in close proximity (∼ 5 Å) to the sample under
study. In most cases, this scenario has no further implications since most
samples studied with STM are metallic. Due to the high free carrier den-
sities in these materials, the electric field emitted by the tip is effectively
screened, and therefore, of no further consequence. In graphene, however,
this is no longer the case due to the presence of relatively few free carriers.
A similar situation occurs when studying semiconductors with STM. In
this field of research, a commonly known phenomenon that manifests it-
self as a result of this is Tip Induced Band Bending (TIBB) [22–24].
Because the tip- sample junction is biased, the tip has a finite potential
difference with respect to the sample. As a result of this, an electric field
emanates from the tip or sample, depending on the sign of the potential
difference. Because only few free carriers are present in the graphene, this
electric field is not fully screened, and hence it will attract/repel free car-
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26 Tip Induced Band Bending in graphene samples

riers in the graphene sheet. The phenomenon described here is actually
the same mechanism at work when it comes to electrostatic doping: TIBB
is nothing more than the effect of locally gating the sample with the probe
tip.
In the MA-TBG system, this effect can be very unfortunate since the peri-
odicity associated with the Moiré lattice is quite long (∼ 15 nm). Because
the tip acts as a nanoscale gate, we fear that the TIBB effect will destroy
this periodicity, thereby possibly impairing the observed phenomena in
this system. It is thus far unclear how severe the effect of TIBB is on MA-
TBG.
In this work, we try to predict the effect of having a probe tip in close prox-
imity to a system of bilayer graphene. We do this following the model
presented by Min et al. [25]. Here, the carrier distribution of few-layer
graphene grown by thermal decomposition of silicon carbide (SiC) is cal-
culated. We apply this model a system of bilayer graphene deposited on
hBN, carefully pointing out the weaknesses, and the major differences of
this model with respect to the work presented in reference [25].

5.1 Charge distribution few-layer graphene

Following the work of reference [25], we model M individual layers of
graphene deposited on a certain substrate (see figure 5.1). In equilibrium,
all layers share the same chemical potential, µ. The energy spectrum of
each layer is given by the energy spectrum of a single graphene layer,
shifted by the local potential, ui. This implies that the charge density of
layer i, is given by:

σi =
sgn(µ− ui)

π

(
µ− ui

h̄v

)2

(5.1)

In this expression, h̄ is the reduced constant of Planck, and v is the carrier
velocity of the π-band at the dirac point. The latter is proportional to the
intralayer hopping amplitude, γ0, and can be calculated according to:

v =

√
3a
2

γ0

h̄
(5.2)
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5.1 Charge distribution few-layer graphene 27

Here, a is the lattice constant of graphene (a = 2.46 Å), and γ0 is taken to
be 3 eV (reference [25]). This gives of a carrier velocity of 9.71× 105 m/s.

Figure 5.1: Overview of the few-layer graphene model used in this section. Each
graphene layer is characterized by its own charge density and the local potential,
σi and ui respectively. The electric field between layer i and i+1 is given by Ei.

We calculate the local potential from the charge densities using the Poisson
equation. The electric field between layer i and i+1, Ei, statisfies:

Ei − Ei−1 = (−e)
σi

ε0
, (5.3)

where ε0 is the vacuum permittivity. Finally, the local potential can be
obtained by iterating:

ui+1 = ui + edEi (5.4)
Here, d is the interlayer distance in graphene, d = 0.335 nm (reference [25]).
A boundary condition is created by the substrate. This fixes the value of
u1 − µ, and can experimentally be determined with spectroscopic mea-
surements [26]. For few-layer graphene on SiC, the authors of reference
[25] choose u1 − µ = 360 meV, in accordance with the work presented in
reference [26]. On hBN, we expect this number to be much smaller. The
reason for this is the relatively large free carrier count present in the buffer
layer which eventually sits between the few-layer graphene and the SiC
substrate. Obviously, this layer is absent when stamping graphene on
hBN. Since we mainly consider bilayer systems on hBN, in this work, we
therefore choose u1 − µ = 50 meV.
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28 Tip Induced Band Bending in graphene samples

5.2 Charge distribution in bilayer graphene

We start by considering a bilayer system (M = 2) without the presence of a
probe tip. In this situation, we can assume that the electric field outside the
bilayer vanishes, i.e. E2 = 0. Using equation 5.3, we obtain an expression
for E1, the electric field between the layers:

E1 = e
σ2

ε0
(5.5)

Furthermore, we choose our zero energy such that u1 = 0. According to
equation 5.4, this means that u2 is given by:

u2 = edE1 =
e2d
ε0

σ2 (5.6)

Additionally, equation 5.1 implies that:

σ1 =
1
π

( µ

h̄v

)2
, (5.7)

σ2 =
sgn(µ− u2)

π

(
µ− u2

h̄v

)2

(5.8)

Using equation 5.6 and 5.8, we numerically solve for u2. Finally, we use
this result to calculate σ2 using either equation 5.6 or 5.8. We find that
σ2
σ1
≈ 0.53. This implies that the charge distribution over the two graphene

sheets is already significantly anisotropic to begin with.

5.3 Charge distribution in bilayer graphene in
the presence of a probe tip

To calculate the charge distribution in a system of bilayer graphene in the
presence of a probe tip, we repeat the procedure described in the previ-
ous section. The probe tip is modeled as an extra plate above the bilayer,
separated by a distance equal to dts. As a result of this, E2 6= 0.

28
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5.3 Charge distribution in bilayer graphene in the presence of a probe tip 29

Figure 5.2: Overview of the few-layer graphene model used in this section. Each
graphene layer is characterized by its own charge density and the local potential,
σi and ui respectively. The electric field between layer i and i+1 is given by Ei. The
tip is modeled as an extra plate, a distance dts above the sample. As is convention
in STM, the bias is applied to the sample.

We can determine the value of E2 by realizing that the chemical potential
of the tip is given by:

µtip = µ + eV = u2 + Φ + edtsE2 (5.9)

In this expression, V is the bias voltage between the tip and sample, and
Φ = Φgraphene−Φtip, is the difference between the work function of graphene
and the tip. According to reference [21], the work function of graphene is
given by Φgraphene ≈ 4.6 eV. For a PtIr tip, ΦPtIr ≈ 5.2 eV (reference [21]).
Rewriting 5.9, we get:

E2 =
µ + eV −Φ− u2

edts
(5.10)

Using equation 5.3, we again obtain an expression for the electric field
between the two graphene sheets:

E1 = E2 + e
σ2

ε0
=

µ + eV −Φ− u2

edts
+ e

σ2

ε0
(5.11)

Then, using equation 5.4, we obtain a relation between u2 and σ2:

u2 = u1 + edE1 = ed
(

µ + eV −Φ− u2

edts
+ e

σ2

ε0

)
(5.12)

Version of November 25, 2018– Created November 25, 2018 - 02:09

29



30 Tip Induced Band Bending in graphene samples

Note that we again choose our zero energy such that u1 = 0. Rewriting in
terms of σ2, we find:

σ2 =
ε0

e2

(
u2

d
− µ + eV −Φ− u2

dts

)
(5.13)

Finally, we can combine equation 5.13 and 5.8, and solve for u2, σ2. In
figure 5.3,5.4, we do this for different tip- sample distances (dts) and differ-
ent bias voltages (V). We plot the ratio σ2

σ1
, as function of the applied bias

voltage (V), and tip- sample distance (dts).

Figure 5.3: Charge density distribution in a bilayer graphene system as a function
of bias voltage and tip- sample distance. In this calculation, µ = 50 meV.
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5.3 Charge distribution in bilayer graphene in the presence of a probe tip 31

Figure 5.4: Charge density distribution in a bilayer graphene system as a function
of bias voltage. The different colors correspond to different tip-sample distances.
In this calculation, µ = 50 meV.

From the result displayed in the figures above, we can conclude that the
STM tip significantly alters the charge distribution over the two graphene
sheets. Notice that even if the bias is switched off, the tip still influences
the charge distribution. This is a direct result of the work function dif-
ference between the probe tip and graphene. In figure 5.4, the different
curves appear to cross near V ≈ -0.65 V. This value corresponds to when
the applied bias exactly compensates for the work function difference and
the chemical potential.
In figure 5.5, we plot the charge distribution as a function of bias voltage
for varying the chemical potentials. As described above, u1− µ is fixed by
the substrate, and therefore, sample dependent.
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32 Tip Induced Band Bending in graphene samples

Figure 5.5: Charge density distribution in a bilayer graphene system as a func-
tion of bias voltage. The different colors correspond to different values for the
chemical potential. In this calculation, dts = 5 Å.

Figure 5.5 shows that the charge distribution is altered significantly with µ.
From this, we can draw a number of conclusions. First, because the model
is heavily dependent on this value, exact knowledge of it is extremely sig-
nificant for the accuracy of the predicted charge distribution. Second, to
control the distribution of charge across the layers, the use of a backgate
would be extremely beneficial. Its electric field could independently con-
trol the value of µ, thereby altering the influence of the probe tip. Third,
this implies that STM is significantly more invasive in bilayer graphene on
hBN, as compared to few-layer graphene on SiC owing to the difference
in available free carriers.
Finally, we would like to point out another significant uncertainty in this
model: The work function difference between the tip and graphene. Espe-
cially the work function of the tip can vary from tip to tip, and is therefore
a major uncertainty in the model. On top of that, it is known that the
work function of graphene is dependent on the charge density [25], a phe-
nomenon that is not accounted for in this model.

32
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5.4 TIBB in gated graphene samples 33

5.4 TIBB in gated graphene samples

To conclude this chapter, we want to draw attention to a double gate
model described in the work of Brar et al.. In this paper, an STM study is
presented of Co adatoms on graphene. Graphene/SiO2 devices are stud-
ied, and a model is presented for calculating the local shift in chemical
potential under the STM tip. A schematic drawing of the system is dis-
played in figure 5.6. Because superconductivity in the MA-TBG system
can only be realized by electrostic doping, we believe it is relevant to dis-
cuss this model, because it can potentially be modified with relative ease
to describe the MA-TBG system during an STM experiment.

Figure 5.6: Schematic of the model representing the tip- sample junction for esti-
mating the effect of TIBB. The tip and sample are modeled as two infinite plates,
a distance d1 and d2 removed from the graphene flake respectively. We indicate
the permittivity of the medium between the tip and the graphene as ε1, and the
medium between the backgate and the graphene as ε2. The bias- and gate volt-
age are indicated with Vb and VG respectively. The charge distribution on the tip,
gate, and graphene are finally indicated as σ1, σ2, and σQ respectively.

The tip, graphene, and the backgate form a triple plate capacitor. Because
of the quantum capacitance of graphene, a finite potential difference, φQ
is present in the layer itself when a charged electrode is brought in close
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34 Tip Induced Band Bending in graphene samples

proximity (in this case, the tip). Since the graphene is grounded however,
this implies that the total chemical potential is zero. Therefore, the local
shift in chemical potential due to the presence of the tip, is given by:

∆µ = −eφQ (5.14)

φQ can be calculated by considering the total energy of the system:

Etot =
d1σ2

1
ε1

+
d2σ2

2
ε2

+
4
3

h̄v f
√

π

(
1
e

) 3
2 σ2

Q√
|σQ|

(5.15)

In this expression, the first two terms correspond to the geometrical ca-
pacitance between the tip and graphene, and the backgate and graphene
respectively. The third term accounts for the quantum capacitance of the
graphene sheet, a direct result of the low carrier density in the material,
and the quantum mechanical nature of electrons (ref [27]). After mini-
mizing with respect to the charge densities (see reference [27]), a relation
between the electrostatic potentials can be obtained. The result is:

d1e3

π(h̄v f )2ε1
|φQ|φQ +

(
1 +

d1ε2

d2ε1

)
φQ −

(
φtip +

d1ε2

d2ε1
φgate

)
= 0 (5.16)

In this expression, φtip is given by the work function difference between
the tip and graphene, and φgate, the work function of Si. We take all rel-
evant parameters equal to the values we set in the previous sections. ε1
is chosen equal to the vacuum permittivity, ε0. ε2 is chosen as 3.8ε0, the
permittivity of SiO2. Furthermore, d1 and d2 are set to 5 Å and 200 nm
respectively. Finally, the shift in chemical potential can be calculated by
solving for φQ. The result is plotted in figure 5.7.

34
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5.4 TIBB in gated graphene samples 35

Figure 5.7: Chemical potential shift due to the presence of the STM tip, as calcu-
lated by the model described above. The different colored curves correspond to
different backgate voltages.

From this result, we can conclude that the chemical potential is influenced,
both by the bias- and the gate voltage. It is however unclear how this shift
influences the emergent superconductivity in the MA-TBG system. To say
something more about this, experimental results will be necessary. The
reason for this is that it is so far unclear what the physical origin is of the
observed phenomenon.
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Chapter 6
Summary and Outlook

In this work, we developed and fabricated a dummy sample for testing
capacitive navigation in a standard STM setup. Aimed at ultimately con-
ducting STM measurements on graphene flakes, we calculate the effect of
a biased STM tip on the charge distribution in a graphene bilayer. We also
estimate the chemical potential shift in a gated graphene sample as a result
of the probe tip. All results unambiguously suggest that the STM tip will
strongly influence the electrical behavior of the graphene system. Unfor-
tunately, it is not quite possible to quantify the effect on phenomena such
as the observed superconductivity in MA-TBG, because their physical ori-
gin is still unclear.
Moving forward, we will further attempt to quantify the effect of charge
redistribution and TIBB in the graphene bilayer as a result of the STM tip.
We plan to combine the two models investigated above to estimate the
shift in chemical potential in a gated bilayer system, also taking into ac-
count the quantum capacitance of the graphene sheets. Furthermore, very
recently, it was observed with ARPES that charge inhomogeneity in bi-
layer graphene can create extremely flat bands (reference [28]). Since we
have seen from this work that this parameter is freely tunable with the
STM tip (wanted or unwanted), we believe it is definitely worth investi-
gating the effects of charge inhomogeneity in a bilayer system.
In parallel, we strive to get the STM setup functional again. After that, we
plan to test the capacitive navigation using the dummy sample fabricated
in this work.
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