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Abstract

The recent popularization of machine learning as a new paradigm in com-
puter science provides interesting opportunities for explaining phenom-
ena of collective motion in living systems, as for example flocks of birds or
schools of fish. In this thesis we develop a model for collective motion us-
ing multi-agent reinforcement learning with orientation-based rewards, a
new type of reward system that has not yet been found in literature. While
the developed model is in principle generally applicable to all forms of
collective motion observed in nature, we use the language of the flocking
behaviour of birds as a particular example to frame our model. The birds
have the option to either fly into an insticnctive direction or act based on
a Viscek-type of interaction with their neighbors, and are rewarded max-
imally when the resulting direction of movement is some predetermined
prefered direction. The model distinghuishes between leaders that instinc-
tively move towards this direction and followers that do not. We show
that collective motion into this prefered direction emerges from this model,
but only with a minimum of 1.23 encounters with neighbours on average,
of which a minimal fraction of 0.2 should be leaders, which on average
roughly corresponds to at least one encounter with a leader every four
timesteps. These lower bounds are rudimentary estimates, as the present
study serves mainly as a proof of concept that collective motion can emerge
from this new type of model. Additionally it is suggested that, using deep
reinforcement learning, this model can be viewed as a reinforcement learn-
ing extension of the Vicsek model.
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Chapter 1
Introduction

In the past decades, many models have been proposed that simulate col-
lective motion in active matter. Classical examples of such models are
Reynolds’ boids and the Vicsek model [1, 2]. Models similar to these exist
in a great variety [3], and have been very succesful in describing collective
motion, but always in a very artificial or mechanical way. By this we mean
that the individual particles usually behave as prescribed by a handful of
rules that are given a priori.

For example, in the Vicsek model, N self-driven particles are located
in a two-dimensional field with periodic boundaries with some randomly
initalized positions xi

0 and velocities vi
0. The speed at which the particles

move is fixed at some constant value v0 and at integer timesteps t the di-
rection of movement of each particle is updated as follows:

θi
t = 〈θi

t−1〉d + η, (1.1)

i.e., it is averaged over the flight direction of neigbouring particles within
some distance d from it and a noise term η is added which is picked at
random from some uniform distribution.

While the original aim in the study by Vicsek et al. [2] was to provide an
example of phase transitions in active matter,1 this model has, among oth-
ers, driven the study of collective motion both in living [4, 5] and non-living
systems [6, 7]. However, while a model like this might be sufficient for the
latter type of systems, such an approach does not satisfactorily explain the
much more widely studied cases of collective motion in living systems, as
for example flocks of birds or schools of fish. Birds or fish do not seem to
be governed by simple natural laws like particles or planets do; as animals
they should be seen as agents that learn from their environment and adapt
their behaviour to it.

Now, with the popularization of machine learning, which has recently
influenced the study of active matter greatly [8], reinforcement learning in

1Where in particular a critical value ηc of the size of the noise distribution is found,
distinghuising between an ordered phase (i.e., collective motion) below ηc and a disordered
phase above ηc [2].
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particular [9] can be used to adress this problem. In reinforcement learn-
ing, agents inhabit some complex environment and are rewarded based on
their behaviour. Using machine learning algorithms, agents then adjust
their behaviour with the aim of maximizing the total received reward. This
avoids the problem of imposing mechanical laws on the agents as classical
models do. A lot of research has been done at the intersection of collective
motion and reinforcement learning, where sometimes a general model is
proposed [10–14], but often models are developed with real-world appli-
cations in mind, such as flocks of birds [15, 16], schools of fish [17, 18], ant
colonies [19], locusts [20], groups of people [21, 22], bots [23] or microswim-
mers [24].2

At least three types of reinforcement learning models can be distin-
guished in literature, categorized by their reward system:

1. Flock-rewarding models, i.e., models with a reward system that re-
wards agents based on their alignment with their neighbours [11, 15,
20], or some other explicit rule for fomation control [12, 14]. It might
be disputed however wether such a model solves the problem the
classical models have satisfactorily, since collective behaviour is still
explicitly imposed on the agents via such a reward system.

2. Predator-prey models [13–16]. In such a model, a predator and several
preys are put into some environment, where the predator attempts
to catch the preys. Rewards might then be given at each timestep to
the preys, to encourage these agents to find strategies that allow them
to survive longer (and receive more rewards). Collective motion has
regularly been observed to be a possible strategy in such models.

3. Energy-minimizing models [17, 18]. In this type of model, a hydro-
damic fluid is modeled in which agents are rewarded that choose en-
ergetically preferable configurations, i.e., minimize the required en-
ergy for their movement. This has been a common explanation for
collective motion observed in nature [25, 26].

In this thesis we develop an additional type of model that has not yet been
found in literature: one with orientation-based rewards. The model we de-
velop uses a leader-follower system in an environment where agents are
rewarded for flying in the right direction. Such a reward system is reminis-
cent to how migratory birds take up cues of the environment to navigate,
like temperature gradients or magnetic fields [27–29], but might also find
its applications to any other situation in which a group of agents has to
navigate through a given environment.

In order to arrive at such a model, we first explain the theory of rein-
forcement learning in chapter 2, where in particular we introduce a widely

2It is obviously disputable whether we can call the latter two applications living sys-
tems, but they are nevertheless included because of the use of reinforcement learning in
the cited studies. Wether this means that we should stretch the definition of living sys-
tems, or we should include some notion of learning in non-living systems,will be left as a
(philosophical) problem not relevant for our present study.
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used algorithm called Q-learning [30]. We then generalize this to the theory
of multi-agent reinforcement learning, and respond to the theoretical diffi-
cluties associated with it. After this we formulate our own model in chapter
3 and report the results of this model in chapter 4. Finally, we present our
conclusions in chapter 5.





Chapter 2
Theory

2.1 Reinforcement learning

In reinforcement learning (RL), an agent is let to explore some interactive
environment that can occupy different states, in which the agent can per-
form certain actions. Based on the action the agent chooses and the state
the environment is in, the agent is rewarded with some reward signal,
while the environment transitions into a new state. The goal of the agent
is to adjust its behaviour such that the reward signal is maximized. An
instance of RL is thus always characterized by three different sets: a set
S that parametrizes the different states of the environment, a set A that
parametrizes the different possible actions the agent can perform and a set
R ⊂ R of possible reward signals the agent can receive. For most imple-
mentations of reinforcement learning (including ours) it is necessary for R
to be bounded from above and S and A to be finite (which often is suf-
ficient, although it might mean in some cases that the environment has to
be discretized), though generalizations exist of reinforcement learning with
for example a continuous state or action space [9]. In addition, the dynam-
ics between the agent and the environment is parametrized by the reward
function r : S × A → R and the transition function p : S2 ×A → [0, 1].
Given a state-action pair (s, a) ∈ S ×A (i.e., the environment is in state s and
the agent chooses action a consequently), r(s, a) is the reward given to the
agent and p(s′ | s, a) is the probability that the environment will transit to
state s′.1 Finally, the behaviour of the agent is determined by its so-called
policy π : S × A → [0, 1], where π(a | s) is the probability that an agent
chooses action a, given that the environment is in state s. These compo-
nents together allow RL to be be formulated in terms of what is called a
Markov Decision Process (MDP) [9, 31].

An episode in reinforcement learning hence consists of a sequence of
timesteps parametrized by an integer t in which the environment occupies

1The probabilistic transition function is introducted for generality. In our case we will
have a deterministic environment, which of course can be reobtained by for each state-
action pair (s, a) choosing p(s′ | s, a) = 1 for exactly one s′ ∈ S and zero otherwise.
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Figure 2.1: Schematic depiction of the learning procedure in reinforcement learn-
ing (RL). The agent observes the state st of the environment at timestep t and
chooses an action at. Based on this state-action pair, the agent is then rewarded
with the reward rt = r(st, at) and the environment updates to state st+1. This
cycle then repeats for timestep t + 1.

state st ∈ S , the agent performs performs some action at ∈ A and receives
a reward rt = r(st, at) ∈ R accordingly. The environment then updates to
the next state st+1 based on its transition function p, after which the whole
cycle is repeated (cf. figure 2.1 for a schematic depiction of these quantities).

In a typical RL-problem, the environment and its dynamics, i.e., p and
r, is assumed given, though not necessarily known to the agent. The goal
of the agent is then to find the optimal policy π in this environment such
that the discounted cumulative future reward signal

Gt =
∞

∑
n=0

γnrt+n (2.1)

is maximized. The parameter γ ∈ [0, 1) is called the discount factor, which
is introduced to ensure that this sum does not diverge. Specifically, given
some R ∈ R such that rt ≤ R for all t (which always exist because R is
bounded from above), it is guaranteed that

Gt ≤
∞

∑
n=0

γnR =
R

1− γ
(2.2)

for all t.

2.2 Q-learning

Now that we explained the framework and the goal of RL, it is time to look
at how RL attempts to achieve this goal. Or, to put it more concretely: how
can we optimize the policy π of the agent such that Gt is maximized?

A lot of different algorithms have been developed that help achieve
this goal, but probably the most widely known and generally applicable
of these is called Q-learning, developed by Watkins [30]. Because we will
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use it in our model, it is worthwile to explain the inner workings of this
algorithm here.

In Q-learning, the agent is provided with a specific value Q(s, a) ∈ R

corresponding to each state-action pair (s, a) ∈ S × A which is called a
Q-value. These Q-values are initialized with random values Q0(s, a) ∈ R

for all (s, a) ∈ S × A, and are updated during a reinforcement learning
episode. This happens according to the following rule: given state st, action
at, reward rt = r(st, at) and updated state st+1, the Q-value belonging to the
state-action pair (st, at) gets updated as

Qt(st, at) = (1− α)Qt−1(st, at) + α

(
rt + γ max

a∈A
Qt−1(st+1, a)

)
(2.3)

while the other values remain constant (Qt(s, a) = Qt−1(s, a) for (s, a) 6=
(st, at)). In this equation, α ∈ [0, 1] is called the learning rate and γ is the
same discount rate as in equation (2.1) (we will see how these are related
in section 2.2.2). The collection of Q-values Q(s, a) for all (s, a) ∈ S ×A is
called the Q-table of the agent.2

In words we can describe this equation as follows: the new Q-value is
equal to the weighted average of the old Q-value and a new value, con-
sisting of the direct reward signal rt and the estimated maximal Q-value
attainable one timestep ahead, reduced by the discount factor γ. The learn-
ing rate α determines the relative weight of these terms, i.e., how much the
new value will influence the current value.

One should interpret these Q-values as estimates for the discounted cu-
mulative future reward signal Gt. Since they are initialized randomly, these
estimates are not very good at the beginning, but the theory of Q-learning
guarantees that they should get better over time, eventually converging to
Gt. In section 2.2.2 we will show why this is the case, but first we want to
explain how these Q-values relate to the policy π of the agent.

2.2.1 The ε-greedy policy

We mentioned that the goal of RL is to find the optimal policy π. In Q-
learning, the Q-table is in principle directly related to the policy: given the
state st, the agent will choose the action a ∈ A that corresponds to the
hightest Q-value Q(st, a) (i.e., the hightest value in the row of the Q-table
corresponding to st).3 Note that Q-learning thus provides the agent with a
deterministic policy.

In practice such a policy does not always yield the most optimal re-
sult however. This is especially the case in the beginning of an episode,
where all the Q-values are randomly initialized. To overcome this problem,
the agent should be allowed to explore other states that do not necessarily
correspond to the maximum Q-value, giving room for all the Q-values to

2It is called a Q-table because it can be made into an |S| × |A| table with the states on
one axis and the actions on the other.

3Or one of the maximum values at random, if there are more than one. However, since
this is a very exceptional case, we will ignore this complication in the present exposition.
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converge to their optimal values. One way in which this is often done is
by making use of what is called an ε-greedy policy [9].4 For this policy, a
parameter ε ∈ [0, 1] is introduced, and the following rule holds: at each
timestep the agent will either perform the action that has the maximum Q-
value, with a chance 1− ε, or perform some action at random with a chance
ε. Quantitatively this means that, given that the environment is in state s,

π(a | s) =

{
1− ε + ε

|A| if Q(s, a) = maxa′∈A Q(s, a′)
ε
|A| otherwise.

(2.4)

It is a common practice when using this policy in an episode, to start with
some non-zero value of ε, and to either let ε slowly decrease to zero or
to keep it constant and set ε = 0 after a certain number of timesteps. In
such an episode we can hence distinguish between two phases: the training
or exploration phase, where ε 6= 0 and the trained phase where ε = 0 and
the agent thus acts according to the (deterministic) policy as prescribed by
Q-learning.

2.2.2 The dynamics of the update rule

To understand the specific form of the update rule (2.3) better, it can be
instructive to get a feel for the dynamics of this equation. This can help for
example with making an informed choice of the value of the parameters α,
γ and ε. In order to do this, assume that each Q-value by repeated iteration
converges to some value Q∗(s, a). Because it has converged, by equation
(2.3) there should hold

Q∗(st, at) = (1− α)Q∗(st, at) + α

(
rt + γ max

a∈A
Q∗(st+1, a)

)
,

which we can rearrange as

Q∗(st, at) = rt + γ max
a∈A

Q∗(st+1, a).

Note that this is a recursive equation. Furthermore, note that if the explo-
ration phase of the agent has ended (i.e., ε = 0), the a for which in the above
equation Q∗(st+1, a) is taken, will also be the next action that will be chosen
by the agent, since its Q-value is the highest. Therefore

max
a∈A

Q∗(st+1, a) = rt+1 + γ max
a∈A

Q∗(st+2, a)

and so

Q∗(st, at) = rt + γ

(
rt+1 + γ max

a∈A
Q∗(st+2, a)

)
= rt + γrt+1 + γ2 max

a∈A
Q∗(st+2, a).

4Other choices for exploration policies include a softmax policy and weighted roulette
action selection [15].
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By reapplying this same logic recursively we see that, by equation (2.1),
Q∗(st, at) = rt + γrt+1 + γ2rt+2 + ... = Gt. Thus we should interpret the
Q-values as estimates for the discounted future reward signal Gt, which
should get better over time. This means that once the exploration phase
has ended and the Q-values are sufficiently close to Q∗, the goal of RL,
which is acting such as to maximize Gt, has been achieved.

Of course, this reasoning crucially depends on the assumption that the
Q-values do in fact converge to a certain set of values. This has been the-
oretically proved in literature. Firstly, for Markovian systems like these,
it has been shown that at least one optimal deterministic policy π∗ does
indeed exist such that Gt is maximized [32, 33]. Consequently, Watkins
and Dyan [31] proved that for each finite action and state space and re-
ward space that is bounded from above, and given sufficient exploration
of the possible state-action pairs,5 this Q-learning algorithm should even-
tually converge to a fixed set of Q-values. We have shown above that such
a Q-table corresponds to an optimal policy π∗.

How quickly this convergence happens is of course very dependent on
the specific model—i.e., the form of A, S and the dynamics of the environ-
ment—and the choice of the learning parameters α, γ and ε. This is the
main challenge in the application of many machine learning techniques
however,6 and can only be addressed by carefully tracking the model-speci-
fic learning process. We will adress how we do this in our model in chap-
ter 3.

2.3 Multi-agent reinforcement learning

The theoretical framework discribed thus far is only applicable to a single
learning agent. Since we are interested in collective motion of a group of
N agents, we want to generalize this model to what is called multi-agent
reinforcement learning (MARL). In order to do this, we simply change our
action state to a vector a ∈ AN and our reward system to a vector r ∈ RN

accordingly, where the i-th component ai of a represents the performed
action of agent i and the i-th component ri of r its received reward (i.e.,
ri = r(s, ai), given that the environment was in state s). The state of the
environment is still parametrized by a single s ∈ S , though it is common
in MARL that not all agents have full access to the whole environment.
Rather, each agent observes its own localized subset of the environment.
All of the possible observations the agents can make are parametrized by
a new set O, the observation space. Additionally, an observation function
ϕi : S → O is introduced that translates the state s of the environment
to the observation oi = ϕi(s) of the agent. Since the observation is all the
information the agent has access to, its policy is now a function πi : O ×
A → [0, 1]

5They have, of course, precisely defined what they mean by ’sufficient’ in their mathe-
matical proof, but I will not go into these details here.

6This is also a great challenge for example in the design of neural networks [34].
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Figure 2.2: Schematic depiction of the learning procedure in mulit-agent reinforce-
ment learning (MARL). The i-th agent performs an observation oi

t of the state st of
the environment at timestep t and chooses an action ai

t. Based on this observation-
action pair, the agent is then rewarded with reward ri

t = ri(oi
t, ai

t) and the environ-
ment updates to state st+1. This cycle then repeats for timestep t + 1.

At each timestep, the procedure of a single RL agent, discussed in sec-
tion 2.1, is performed simultaneously for all agents: each agent observes the
state of the environment (which now is limited to the observation o ∈ O),
decides individually on the action he will perform, after which the envi-
ronment transits to a new state. This transition of the environment is now
dictated by the (N + 2)-argument transition function p : S2 ×AN → [0, 1],
where p(s′ | s, a) is the chance that the environment transits to s′, given
the previous state s of the environment and action vector a of the agents.
After this transition, the cycle repeats. (cf. figure 2.2 for a schematic depic-
tion of all these quantities). Each agent is then either assigned the task of
maximizing their own cumulative discounted future reward signal

Gi
t =

∞

∑
n=0

γnri
t+n, (2.5)

or they might be asigned the task of maximizing some collective of reward
signals (introducing the option of having groups with opposed goals, for
example).

2.3.1 Formalizations of MARL

While this step from single-agent to multi-agent RL is conceptually easy to
make, the theoretical framework has to be reconsidered. Specifically, the
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convergence toward an optimal policy in Q-learning is no longer guaran-
teed, since it relies on the fact that the that the transition of the environment
is predictable for the agent, i.e., only dependent on the state it observes and
the action that it preforms.7 With MARL however, this transition function
also depends on the performed actions of the other agents, which are simul-
taneously learning, and thus act in an unpredictable way.

A lot of different studies have been published on the topic of MARL
[35], with a variety of different learning algorithms and strategies that at-
tempt to overcome the mentioned difficulties associated with having mul-
tiple learning agents at once [36, 37]. Notable examples of this are the
introduction of Nash equilibria to calculate optimal strategies for agents
with opposed goals [38], the theory of Markov games as a formalization
of a MARL-problem, similar to MDP’s in the single agent case [39]. Also
the Deepmind team has recently published a lot of different complex, and
sometimes highly specialized algorithms in the field of MARL [40–43].

Despite all these different strategies to formalize MARL and the algo-
rithms that have been developed for this, we still choose to use the Q-
learning algorithm of section 2.2, for a couple of reasons:8

1. A lot of MARL algorithms use some very sophisticated ways of antici-
pating on the behaviour of other agents (e.g., the minimax policy used
by [39]). This has to do with the fact that a lot of these studies were
performed with applications to game theory in mind. It seems un-
likely however that we need the full strategic power of a chess player
in order to have a bird learn to flock.

2. Consequently, while many of these algorithms are usually developed
as (steps toward) a general framework for MARL, in practice they
have only been applied to games with a few players (e.g., [38]). This
raises the question whether the algorithms developed are computa-
tionally feasible for a system with a number of agents N ∼ 102.

3. If it is the case that the single-agent Q-learning algorithm is not suf-
ficient for explaining collective motion, than that is interesting in-
formation on its own, indicating that in real-life applications agents
have more complicated considerations that initially thought. Con-
versely, if it is the case that the Q-learning algorithm is sufficient for
our purposes, despite not meeting the formal requirements, than that
might indicate that Q-learning has a wider applicability than initially
thought.

7This still holds when this transition function is probabilistic, in which case one can still
define an expectation value of the expected reward signal at, for example, one timestep
ahead as

rt+1 = max
a∈A

E[r(st+1, a)] = max
a∈A ∑

s′∈S
p(s′ | st, at)r(s′, a).

Algorithms like Q-learning formally require at least these expectation values to be constant
[31], which in general is not the case anymore for MARL.

8Other studies in the field of collective motion have also done this, e.g., [16, 22].
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Our hypothesis therefore is that Q-learning is a sufficient framework for
the application in mind, and whether this is true or not should be judged
using the results of our model.



Chapter 3
Formulating the model

As mentioned in the introduction, the main goal of this thesis is to develop
a model that describes collective motion using reinforcement learning with
orientation-based rewards. There are two important properties that such a
model should have:

1. Collective motion should not be put into the model a priori (as is the
case for both the classical and flock-rewarding models). Otherwise
the model can not provide a proper explanation of the phenomenon of
collective motion.

2. At least some agents should actually learn to follow the others. If this
is not the case, that means that each agent is simply learning to move
toward the right direction on its own. Consequently, while all indi-
vidual agents might have learned to move toward the right direction,
the movement of the group can not really be called collective, since the
learning process is very individual and independent from the other
agents.

In this chapter we explain the model that has been developed and the mo-
tivation behind the assumptions of the model. In the explanation that fol-
lows, we choose to use the language for describing the flocking behaviour
of birds. While this is a very common example of collective motion, there is
no reason not to generalize this model to other well-studied applications.
We use terms related to the behaviour of birds primarily for convenience,
so that general terms like collective motion and agents can be replaced by
their shorter and more tangible counterparts flocking and birds respectively.

The general framework of the model is the following: N birds are ini-
tialized with random positions xi

0 and flight directions θi
0 ∈ (−π, π] in

some two-dimensional square field with sidelength L and periodic bound-
aries. The birds all fly at the same constant speed v0. Following the re-
inforcement learning paradigm, the birds perform an observation oi ∈ O,
adjust their flight direction by means of the possible actions available in
the action space A, and are then rewarded accordingly with some reward
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ri. In the following sections we explain the specific form of each of these
quantities separately.

3.1 The reward system r

A natural choice for an orientation-based model is to reward the birds that
are flying toward some preferential direction. This preferential direction
can in general vary from place to place, but for simplicity we choose to
reward the same direction everywhere, namely the eastward direction (θ =
0). This can be a discrete reward system, e.g.,

ri
t =

{
R if θi

t = 0
0 otherwise,

(3.1)

for some R ∈ R, or one could implement a gradient reward system

ri
t = R cos θi

t. (3.2)

Especially the latter might be reminiscent to orientational cues in nature
like temperature, or magnetic fields. We will experiment with both reward
systems, however.

3.2 The state space S and observation space O
Since there are no other objects or dynamics in the field other than the flying
birds themselves, a full state s ∈ S of the environment is thus simply given
by all N positions xi and flight directions θi of the different birds. Not
every agent has this full knowledge however. As is common in models
for collecitve motion, a bird only has information about its neighborhood.
Thus we define an observation oi

t ∈ O of bird i at timestep t as follows: the
bird observes all neighbouring birds within distance d from it, and tracks
the flight direction θ j of all these birds.

As discussed in the previous chapter, Q-learning requires that the ob-
servation spaceO is finite. Therefore we discretize the possible flight direc-
tions. In order to maintain the symmetry of the square field, there should
hold |D| = 2k with k ≥ 2, whereD is the set of all allowed flight directions.1

For example, when |D| = 22 = 4, these directions correspond to the four
cardinal directions. However, this choice introduces undesired artifacts in
the model,2 so we take k = 3 as a lower bound.

Additionally, it is preferable to put an upper bound M on the observed
neighbours per direction, mostly from a computational point of view. Com-
bined with the discretization of the flight directions, this means we can

1By |C| we denote the size of a finite set C, i.e., the number of elements it contains.
2Specifically because of the Vicsek action V that we include in the action space in section

3.3. The details for why this is the case (which we have chosen to omit in this thesis to main-
tain clarity) can be found in a report on http://github.com/andredelft/flock-learning,
under observations/20200323.md#problem-in-the-ideal-policies.

http://github.com/andredelft/flock-learning
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formally define an observation o ∈ O as a tuple (nθ)θ∈D where, given lθ

neighbouring birds flying in direction θ ∈ D,

nθ =

{
lθ if lθ < M
M otherwise.

(3.3)

For example, the observation performed by bird 1 in figure 3.1 will be

o1
t+1 = (0, 0, 0, 2, 1, 0, 0, 0)

where the components are arranged from 0 to 2π.
Since an observation now is a tuple of length |D| with each component

having the possible values 0, 1, ..., M, there holds

|O| = (M + 1)|D|. (3.4)

Thus |O| grows exponentially with |D|. Since |O| dictates the number of
rows in a Q-table, this can quickly become very large, which is a computa-
tional problem.3 Therefore we choose to fix |D| at the lower bound 23 = 8,
i.e.,

D =
{ nπ

4

∣∣∣ n ∈ { 0, 1, ..., 7 }
}

. (3.5)

Additionally we choose M = 2, so that |O| = 38 = 6561.

3.3 The action space A
We considered several different actions that might constitute the action
space of the birds:

1. The four cardinal directions {N,E,S,W }. When one of these actions
is chosen, the bird changes its direction of motion to the associated
cardinal direction North (θt = π/2), East (θt = 0), South (θt = −π/2)
or West (θt = π) respectively. These actions essentially represent the
(discretized) free movement of the birds.

2. An instinctive direction I. When introducting this action, each bird
is provided with a certain direction (which is taken to be one of four
cardinal directions) which represents the direction the bird would fly
to by its own instinct, which it flies toward when choosing action
I. Intruducing this allows us to distinguish between two types of
birds: leaders for which I = E, meaning their instinctive direction is
the ’right’ direction (i.e., that which is rewarded maximally), and fol-
lowers for which I 6= E. The frequency at which a given bird chooses
I can be seen of as a measure of how much the bird trusts its own
instinct.

3The total amount of Q-values we should store is (M + 1)2k · |A| · N. Our choice k = 3
and M = 2, given that |A| = 2 and N = 100, means that we already have 1.3 · 106 Q-values.
This will be much larger for M = 3 or k = 4 (1.3 · 107 or 8.6 · 109 respectively). This is not
only a memory issue, but also means that the Q-values converge much more slowly, since
there are many more available policies to explore.
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Figure 3.1: A visualization of the possible actions in the action space A = { V, I }
for a bird in the field surrounded by some neighbours. When bird 1 chooses the
action V at timestep t + 1, it will fly into the direction θ ∈ D that is closest to the
average flight direction of the neighbours within distance d from it. In this case,
these are bird 2, 3 and 5, and the resulting flight direction will be θ1

t+1 = 3π
4 . If it

chooses I, it will fly into its predetermined instinctive direction, which is one of the
cardinal directions {N,E,S,W }. In this case I = E (i.e., θ1

t+1 = 0), which means
this particular bird is a leader (since flying into that direction will be rewarded
maximally).

3. The Vicsek interaction V. When choosing this action, the agent de-
cides to adjust its flight direction to the average flight direction of
the observed neighbours, i.e., those within a distance d of the bird.
This coincides with the Vicsek update rule (1.1), only with zero noise,
i.e., θt = 〈θt−1〉d. Because we are dealing with a discrete number of
flight directions however, this Vicsek step also has to be discretized.
Thus when V is chosen, 〈θt−1〉d is calculated and then rounded off to
the nearest available θ ∈ D. Introducing this action means that this
model can be seen as an extension of a discretized Vicsek model with
zero noise,4 which can be reobtained when A = { V }.
Quantitatively, 〈θt〉d can be computed using the two-argument arctan-
gent:5

〈θt〉d = arctan2

(
∑

j∈Ni,d

sin θ
j
t, ∑

j∈Ni,d

cos θ
j
t

)
, (3.6)

4The possibility of adding the noise term η to this action (or others) has been investi-
gated, but it has been proven difficult to implement, because of the discretization of the
flight directions. We will discuss this problem further in section 5.1, where deep Q-learning
is discussed as an extension of the current model, allowing for a continuous state space and
thus contiuous flight directions.

5arctan2(y, x) is defined to always be the angle between the vector (x, y) in the Euclidean
plane and the positive x-axis. For x > 0 this coincides with arctan(y/x), but this latter value
does not represent the angle between (x, y) and the positive x-axis anymore in the regions
where x < 0 (where it is off by ±π depending on the value of y) or x = 0 (where it is
undefined). The function arctan2 corrects this.
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where Ni,d is the set of indices of the birds that are within distance d
of bird i.

While all of these are sensible choices for the action space, it turns out that
including free motion in the model raises a problem. The reason for this is
that both leaders and followers tend to choose E for all o ∈ O very quickly.
While this in principle does lead to collective eastward motion, it violates
the second property that we mentioned in the beginning of this chapter,
since all birds are learning independently.6 Therefore, we limit ourselves
to the action space A = { V, I }. Cf. figure 3.1 for a visualization of this
action space.

3.4 Tracking the quality of the learning process: v and
∆

As with any machine learning technique, it is important to track the quality
of the learning process. For this we use the quantities v and ∆. The first is
the normalized average flight direction, and is given by

v(t) =
1

v0N

N

∑
i=1

vi
t =

1
N

N

∑
i=1

(
x̂ cos θi

t + ŷ sin θi
t

)
. (3.7)

This is a measure for the alignment of the flock: when |v| = 0 the birds are
flying incoherently, and when |v| = 1, the whole flock is aligned. Given the
constraints of our model, this usually means that the flight angle is θ = 0,
though this should be checked either by calculating the angle explicitly, or
checking the x-component vx of v.

We refer to ∆ as the normalized distance from the optimal policy. It is a
quantity that is defined for A = { V, I } specifically and is derived from
the Q-tables of the birds. Remember from chapter 2 that the Q-values in
a Q-table of a bird, when trained properly, reflect its expected future re-
ward signal. When the birds are trained and stop exploring, these Q-values
are directly related to the policy of the bird, such that the bird will always
choose the action a ∈ A that corresponds to the highest Q-value Q(o, a),
given the observation o ∈ O. See table 3.1 for a sample of a possible Q-
table, for the action and observation space as we have defined them in this
chapter.

Given the action space A = { V, I }, a natural policy for the leaders
would be to always choose I, since that action will always be maximally re-
warded. Conversely, the followers should always choose V, since their own
instinctive direction by definition will not lead to the maximum reward R.
Following their neighbours and trusting that the collective will end up fly-
ing eastward might thus be the best they can do. As we will see in section

6Just as with the unwanted artifacts for |D| = 4 (cf. note 2), we choose to omit the
details here to maintain clarity. We refer the interested reader again to http://github.

com/andredelft/flock-learning, specifically the data in data/20200229.

http://github.com/andredelft/flock-learning
http://github.com/andredelft/flock-learning
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Table 3.1: An example of a Q-table of a bird, with the action and observation space
as developed in this chapter. Each row represents an observation o ∈ O and each
column an action a ∈ A. If this is the Q-table of a trained bird (i.e., this Q-table is
fixed and the bird does not explore), it will always choose action I when there are
no neighbouring birds, action V when there is one neighbouring bird flying in the
direction θ = 0, and so on.

V I

(0, 0, 0, 0, 0, 0, 0, 0) 0.1 5.0
(1, 0, 0, 0, 0, 0, 0, 0) 3.5 0.9
(2, 0, 0, 0, 0, 0, 0, 0) 10.0 0.2
(0, 1, 0, 0, 0, 0, 0, 0) 8.1 −5.2

... ... ...
(2, 2, 2, 2, 2, 2, 2, 2) −1.2 1.9

4.1, this particular configuration indeed leads to collective motion toward
θ = 0, even for a surprisingly low fraction of leaders (& 1%).

Given this fact, which will be justified by our results, this policy can
be referred to as an optimal policy in the sense that is described in section
2.2.2. This is because, given that this policy leads to full collective eastward
motion, each bird will at each timestep receive the maximum reward R, and
thus for each bird Gi

t is at its theoretical maximum R/(1− γ) (cf. equation
(2.5)).

For this reason, we would like to judge how close a particular config-
uration of birds is to this optimal policy. For this we define the following
function for leaders

δi
l(o) =

{
0 if Qi(o, I) > Qi(o,V)
1 if Qi(o, I) ≤ Qi(o,V)

(3.8)

and, conversely, for followers

δi
f (o) =

{
0 if Qi(o,V) > Qi(o, I)
1 if Qi(o,V) ≤ Qi(o, I)

(3.9)

for each possible observation o ∈ O. If we sum over these functions, we
essentially count how many rows in the Q-tables deviate from the above
defined optimal policy. The normalized distance is then calculated by per-
forming this sum and normalizing:

∆ =
1

N|O| ∑
o∈O

(
∑
i∈L

δi
l(o) + ∑

i∈F
δi

f (o)

)
, (3.10)

where by L and F we refer to the set of indices of the leaders and followers
respectively (so N = |L|+ |F |). From this definition follows that ∆ ∈ [0, 1]
and that ∆ = 0 if and only if the Q-tables of the birds prescribe the defined
optimal policy.

Note that it is not guaranteed that the described policy is the only opti-
mal policy of the system, but our hypothesis will be that all other optimal
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policies will at least have a value of ∆ that is close to 0. Whether or not that
is the case, at the very least ∆ can be a treated as a point of reference for
tracking the evolution of the Q-tables in an episode.





Chapter 4
Results

We now present the results for the orientation-based MARL model outlined
in the previous chapters. The model has been developed using Python 3
and is publicly available under the MIT licence, provided with documen-
tation.1

4.1 The role of ∆

Before reporting the results of our model, we first want to explore wether
the normalized distance from the optimal policy ∆ defined in section 3.4
is a good indicator of the quality of the learning process. For though v is
a common and straightforward way of quantifying collective motion, ∆ is
very specific for our model with action space A = { V, I }.

To investigate this, we performed several runs with randomly initial-
ized Q-tables with the constraint of having a certain predefined value of
∆.2 We regarded these as trained birds (i.e., ε = 0 and α = 0) and measured
v for 1500 timesteps. For the other parameters of the system, we used the
default values listed in table 4.1. We then averaged the magnitude of v over
the last 1000 steps and plotted the resulting value 〈v〉 against ∆ (figure 4.1).
Initially, we scanned over the whole range ∆ ∈ [0, 1]. However, since all
simulations start at around ∆ = 0.5 and generally decrease afterwards,3 we
additionally looked more closely at the region ∆ ∈ [0, 0.5].

A definite negative trend can be observed in the latter region, starting
from ∆ = 0 and ending at ∆ = 0.5. Additionally, in line with our hypothesis
formulated in section 3.4, 〈v〉 = 1 for ∆ = 0, meaning that this policy
indeed yields the optimal result (i.e., the maximal long-term reward signal).

1https://github.com/andredelft/flock-learning
2This can be achieved by starting from the Q-tables of the optimal policy (i.e., Q(o, I) is

maximal for all leaders, Q(o,V) for all followers), and altering as much rows in the Q-tables
of the birds at random untill ∆ reaches the desired value.

3The Q-tables are randomly initialized, so in theory they can start at each possible value
of ∆. However, it is statistically much more probable that the initial value of ∆ is around
0.5, since the possible states form a binomial distribution over ∆ ∈ [0, 1].

https://github.com/andredelft/flock-learning
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Figure 4.1: The average magnitude of v for trained birds with randomly initialized
Q-tables for a given value of ∆, scanned over the whole range ∆ ∈ [0, 1] (top) and
in more detail over the range ∆ ∈ [0, 0.5] (bottom).
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Figure 4.2: The evolution of v at ∆ = 0 with varying leader fractions l ∈
{ 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.25 } (three runs are graphed for each value of l). We
observe that the flock converges very quickly to θ = 0 for l ≥ 0.05 (i.e., in the first
500 timesteps) and does eventually converge for 0 < l < 0.05 as well, only much
more slowly. For l = 0, i.e., an absence of leaders, the flock also converges, but
does so in a random direction θ ∈ D.
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Table 4.1: A list of all parameters of the model and their default values.

Symbol Parameter name Default value
L Dimension of the field (width and height) 800
N Number of birds 100
l Leader fraction 0.25
d Observation distance 100
R Maximum reward signal 5
v0 Flight speed of the birds 1
α Learning rate 0.1
γ Discount factor 0.9
ε Exploration parameter (ε-greedy) 0.5

Furthermore, in this data, other optimal policies also have a low value of
∆. Specifically, the highest value of ∆ for which 〈v〉 > 0.99 is ∆ = 0.064.

Additionally, we further investigated the configuration ∆ = 0, i.e., the
proposed optimal policy where the leaders always choose I and the follow-
ers always choose V. We have tracked the evolution of v at this configura-
tion for different leader fractions (cf. figure 4.2). We observe that the flock
converges in this configuration to full eastward motion even for a surpris-
ingly low fraction of leaders l ≥ 0.01. Given our choice of parameters,
this corresponds to the presence of at least one leader in the field. While
this convergence typically happens in less than 500 timesteps, for low l
(0.01 ≤ l ≤ 0.02, or 1 or 2 leaders) this takes up to 2500 timesteps. When
no leaders are present (l = 0) the flock also converges eventually, but does
so in a random direction θ ∈ D.

4.2 Exploring the parameter space

All parameters of the model that we have developed in the previous chap-
ters are listed in table 4.1. These are separated into two categories: parame-
ters relating to the birds and the environment, and the learning parameters
that are used by the Q-learning algorithm. In this section we report our
exploration of this parameter space to find the conditions for collective mo-
tion in our model. For this, we first investigated the effect of the learning
parameters α, γ and ε, from which we make an informed choice for their
respective values. After this, we explored the effect of the other parameters
on the learning procedure.

But first some notes regarding the first set of parameters listed in ta-
ble 4.1. There are six parameters listed that determine the dynamics of the
birds and their environment. However, from the viewpoint of the indi-
vidual birds and their policy-making there are only two things that really
matter: the frequency of encounters between birds and how much of these
observed neigbouring birds are leaders or followers. The latter is relevant
because leaders and followers generally develop different policies. In par-
ticular, since leaders by definition have the option of choosing the maxi-
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mally rewarded direction at each timestep, they are more likely to choose
this direction than followers. Choosing to follow a leader can therefore in
general be expected to lead to a higher reward than following a follower.

One might estimate the expected encounters n per timestep by multi-
plying the density ρ of the birds in the field by the area A that is observed
each timestep by an individual bird, i.e.,

n = ρA =

(
N
L2

)
· πd2 =

πNd2

L2 . (4.1)

The expected encounters of leaders and followers separately are then given
by multiplying n with l and (1− l) respectively.

Note that, since there is no specific lengthscale defined, decreasing the
observation distance d is equivalent to increasing the dimension L of the
field. This is also reflected in equation (4.1). And both of these changes have
the same effect as decreasing N, namely lowering the average encounters.
Given that the total computation time for all N nearest neighbour searches
scales like O(N2),4 it is preferable to keep N fixed at a computationally
feasible number. We therefore choose to set N = 100, L = 800, and will
vary d and l.

As for the remaining parameters v0 and R, we argue that their specific
value is not very relevant, provided they are sufficiently small and suffi-
ciently large respectively. We can fix v0 by noting that we also do not have
some predefined timescale. However, to ensure relatively continuous mo-
tion and minimize the influence of the periodic boundaries, it should hold
that v0∆t � L. We use integer timesteps, i.e., ∆t = 1, and set v0 = 1 for
simplicity.

R in turn relates to the policy of the birds via the update rule (2.3).
But the only thing that is important in the policy-making of the birds is
which Q-value is maximal, not what its specific value is. And since there
is a theoretical upper limit of R/(1− γ) on the Q-values of the birds, only
the value relative to this maximum is relevant, hence R factors out. What
does help the optimal policies stand out however, is making sure that this
maximum R/(1− γ) is significantly bigger than the initial Q-values (i.e.,
distinguishing the ’signal’ from the ’noise’). Therefore we take the initial
Q-values Q0(o, a) to be uniformly distributed over the interval [0, 1] and
choose R = 5, such that R/(1− γ) = 5/(1− 0.9) = 50.

4.2.1 The learning parameters α, γ and ε

To explore the parameter space of the learning parameters α, γ and ε, we
performed several runs where we varied one learning parameter at a time
over the whole range [0, 1] (and [0, 1) for γ), while all other parameters
have been fixed at their default values listed in table 4.1. For these runs we
have used the gradient reward system.

4We use scipy.spatial.KDTree to do this, for which it is stated in the documentation
that it should be expected not to be significantly faster that brute force [44].
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Figure 4.3: We performed with varying values of the learning parameters α (top),
γ (middle) and ε (bottom), while keeping all other parameters fixed at their values
listed in table 4.1. We saved the Q-tables of these runs every 100 timesteps, from
which ∆ (left) and 〈v〉 (right) have been calculated and graphed as a function of
time. In order to calculate the latter, we started new runs with the saved Q-tables
as trained values, from which 〈v〉 is obtained by averaging v over 1000 timesteps
(skipping the first 500 as initalization time). The values of the learning parameters
that are graphed in these figures are { 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1 } for α and ε and
{ 0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.99 } for γ.
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The default values of the learning parameters have been partially in-
formed by other studies. In particular, it is a common practice to choose
a low value of α in order to keep the Q-values relatively stable and a high
value of γ in order to factor in the long-term reward [9, 22, 31]. With re-
gard to ε, choosing ε = 0 corresponds to birds that do not explore at all.
On the other hand, if ε = 1, the policy of the birds in the learning phase
would be completely random, meaning that it is impossible for the birds
to anticipate upon the others (e.g., no significant difference between the
policy of the leaders and followers will be observed in this case). We thus
chose ε = 0.5 as the default value, as a middle ground between these two
extremes.

In order track the learning process, we saved the Q-tables regularly (ev-
ery 100 steps). We used these calculate ∆. Additionally, we calculated 〈v〉
from each of these Q-tables, in the same way as we did for the runs in fig-
ure 4.1. That is, we started a separate run with birds initialized with these
Q-tables, which were regarded as trained birds. 〈v〉 is then calculated by
averaging v in these runs over 1000 timesteps (skipping the first 500 steps
for initializaition of the flock). We graphed the evolution of both ∆ and 〈v〉
as a function of the timestep at which the corresponding Q-tables are saved
in figure 4.3.5

We found no evolution in both ∆ and 〈v〉 when the learning rate α = 0,
as is to be expected from equation (2.3). From α ≥ 0.1 onwards we ob-
served a decrease in ∆ and generally a convergence of the flock after 2000
timesteps. However, for α ≥ 0.4 we observed that this convergence is not
very stable, since 〈v〉 regularly drops in this region to about 〈v〉 = 0.9.
This indicates that a high value of α is not optimal for the learning process,
which is consistent with the common practice of choosing a low value of α.
A possible explanation for this is that the Q-values fluctuate to much, since
the previous Q-values have a relatively low weight (cf. equation (2.3)).
From these results we concluded that optimal learning happens in the re-
gion 0.1 ≤ α ≤ 0.2 (given γ = 0.9 and ε = 0.5).

We observed no significant differences when varying γ. Although for
γ ≤ 0.1 the flock is less stable initially, eventually (after 3500 timesteps)
the flock does converge for all values of γ. Since γ factors in the long term
reward signal, this might indicate that no long term strategies exist in this
model. However, it should also be noted that the number of timesteps re-
quired for convergence (usually around 500–2000 timesteps) is much lower
than the number of values in the Q-tables of the individual agents. We
discuss this complication further in section 4.2.2.

Similar to the run with α = 0, we found that ε = 0 results in no signif-

5 To maintain clarity, the angle arg(v) is not explicitly shown in these (and subsequent)
graphs, but it has been observed that when 〈v〉 = 1, there always holds arg(v) = 0. To
understand why this happens, note that the leaders always have action I available that
allows them to fly eastward ’on their own’. As a consequence, they very quickly learn to
only fly in that direction and when trained, will almost always do that. Therefore, if 〈v〉 = 1
it is guaranteed that arg(v) = 0, since there must always at least a fraction of the birds that
is flying into this direction.
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icant evolution for both ∆ and 〈v〉. In the region 0.1 ≤ ε ≤ 0.6, we gener-
ally observed a stable convergence of the flock, with some exceptions for
ε = 0.1. For ε ≥ 0.8 however, we observed that the flock does not converge
completely. This indicates that the birds have more difficulty with learning
to flock when the policy of the other birds is random. We concluded that
optimal learning happens in the region 0.1 ≤ ε ≤ 0.8 (given α = 0.1 and
γ = 0.9).

4.2.2 γ at longer timescales

The previous results indicate that it generally takes around 500–2000 time-
steps for the flock to converge (given our default parameters). Additionally,
no we observed no significant influence of the discount rate γ on the learn-
ing process. Since γ factors in the long-term reward signal (as can be seen
from equation (2.3)), this might indicate that no long-term decision making
is present in our model.

However, it should also be noted that these timescales are too low to
observe any effect of γ. To understand this, note that the number of Q-
values in the Q-table of each bird equals |O| × |A| = 6561× 2 = 13,122. In
order to factor in the long term reward, it is necessary that these Q-values
have sufficiently converged to the expected future reward signal. Since one
value of a birds Q-table is affected by the update rule each timestep, and
all values should ideally be updated multiple times in order to converge
properly—or at least those that are associated with frequently performed
observations—this means that the timescale 500–2000 timesteps might be
too low to observe any effect of γ.

Thus, if we want to observe any effect of γ at all, we should measure our
runs at longer timescales. Additionally, from equation (2.3) we find that the
discount factor γ competes with the direct reward signal rt. Therefore it is
prefereable to minimize the influence of the direct reward signal, which we
can do in two ways. Firstly we can use the discrete reward system (3.1),
which means that rt = 0 for all flight directions except θ = 0. Secondly, we
can analyse instances where, given the discrete reward system, whatever
action the bird chooses, it will not be rewarded. For example, if a follower
observes that the neighbouring flock is flying to the North, both actions
V and I will result in a direct reward signal of 0 (because choosing V will
result in θt =

π
2 and choosing I will not result in θt = 0 by definition).

Therefore, in our analysis we separated the Q-tables of the leaders from
the followers, and for each of these bird types we isolated the rows of
the Q-table that correspond to observations o ∈ O in which a majority
of the neighbouring birds is flying toward one of the cardinal directions
{N,E,S,W }. This resulted in eight different categories, for each of which
we calculated the normalized distance from the optimal policy as done in
section 3.4. The results of these new simulations are shown in figure 4.4.

We observed that, as in figure 4.3, there still is no significant effect of
γ on the policy-making of the birds for the leaders. The same holds for
the followers, but only in the case in which a majority of the birds is flying
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Figure 4.4: The evolution of different sections of the birds’ Q-tables on a longer
timescale. We analyzed the Q-tables of the leaders (left) and followers (right)
seperately, and for each of those additionally isolated the rows of the Q-tables
that correspond to observations in which a majority of the neighbouring birds is
flying into one of the cardinal directions N (first row), E (second row), S (third
row) and W. For each of these we graphed the evolution of the normalized av-
erage distance ∆x (with x ∈ {N,E,S,W }) to the opimal policy. We did this with
varying γ ∈ { 0, 0.1, 0.2, ..., 0.8, 0.99 }. Note that we graphed ∆N, ∆S and ∆W of the
followers on a different vertical scale than the others.
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Figure 4.5: The data of the graphs the right hand side of figure 4.4 repeated (i.e.,
the graphs of the followers), only we subtracted ∆x(0) from each run (with x ∈
{N,E,S,W }), such that all the curves start from the same point.

eastward. We concluded that this is the effect of the direct reward signal
rt, since in each of those cases the birds have access to an action a ∈ { V, I }
that directly results in the maximum reward R. However, when a majority
of the birds is flying into any other direction {N,S,W }, followers can not
be directly rewarded at all (both actions V and I result in no reward). In this
case we observed that when we increase γ, the distance to the optimal pol-
icy is in decreasing significantly faster. This is even more visible when we
subtracted the initial value of ∆x from the simulations (x ∈ {N,E, S,W }), to
compensate for the different (random) initializations of the Q-tables. This
is shown in figure 4.5 for the Q-tables of the followers.

We concluded from this that, although the direct reward signal domi-
nates in the general policy-making of the birds, long-term decision making
is in fact present and visible in cases in which the direct reward signal is
zero. More importantly, this long-term decision making does stimulate the
followers to choose V more often, i.e., follow the neighbouring birds.

4.2.3 The parameters of the birds and the field: l and d

Finally, we performed runs varying leader fractions l and observation dis-
tances d using both the discrete reward system (see figure 4.6 for the results)
and the gradient reward system (figure 4.7).

In the measured scope, we observed for the discrete runs that 〈v〉 only
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Figure 4.6: The evolution of ∆ (left) and 〈v〉 (right) for different leader fractions l ∈
{ 0, 0.05, 0.1, 0.2, 0.4 } and observation distances d ∈ { 10, 50, 100, 150 }, using the
discrete reward system. We grouped all runs in sets of graphs by their observation
distance d (in increasing value from top to bottom) and colored on a gradient scale
based on the leader fraction l.
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Figure 4.7: The evolution of ∆ (left) and 〈v〉 (right) for different leader fractions l ∈
{ 0, 0.05, 0.1, 0.2, 0.4 } and observation distances d ∈ { 10, 50, 100, 150 }, using the
gradient reward system. We grouped all runs in sets of graphs by their observation
distance d (in increasing value from top to bottom) and colored on a gradient scale
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definitively reaches 1 for observation distances d ≥ 50 and leader fraction
l = 0.4. Furthermore, notable differences in the gradient runs compared to
the discrete runs are: (1) ∆ actually increases for l = 0, (2) convergence in
general happens earlier for l = 0.4 and (3) the threshold for convergence in
the measured scope has lowered to l ≥ 0.2.

That the thresholds for convergence have lowered for the gradient runs
and the flock converges earlier, can be explained by the fact that there is
more room for the birds to gradually learn to fly eastward. For the discrete
reward system, a bird will only be positively rewarded when flying exactly
toward θ = 0. This means that a follower for example will only favour
to perform V when the discretized average flight direction is exactly θ =
0. However, for the gradient reward system, any movement that has a
postive x-component will be positively rewarded. Additionally, movement
with a negative x-component will be negatively rewarded, which means for
example that birds with an instinct I = W will quickly have low Q-values
for action I.

With this data we unambiguously showed that collective motion does
emerge from our model. Moreover, in general we can derive the lower
bounds l ≥ 0.2 and d ≥ 50 as necessary conditions for collective motion.
Using the estimate of equation (4.1), this corresponds to an average number
of encounters with neigbours of n ≥ 1.23 . Additionally, a minimal fraction
of 0.2 of these should be leaders, which roughly corresponds to at least one
encounter with a leader every four timesteps.



Chapter 5
Conclusion

In this thesis we developed a model for collective motion using multi-agent
reinforcement learning and Q-learning as the learning algorithm, the the-
ory of which we developed in chapter 2. We formulated our particular
model in chapter 3, using the language of the flocking behaviour birds.
These birds have the option to either fly into an insticnctive direction or
act based on a Viscek-type of interaction with their neighbors. The model
uses a new type of reward system with orientation-based rewards, mean-
ing that the birds are rewarded maximally when the resulting direction of
movement is some predetermined prefered direction. Finally, the model
distinghuishes between leaders that instinctively move towards this direc-
tion and followers that do not.

With the results obtained in chapter 4, we unambiguously showed that
collective motion emerges from this model. First, by tracking the evolu-
tion of the Q-tables with ∆ and the convergence of the flock with 〈v〉, we
have been able to optimize the learning paramters. In particular our results
have shown that optimal learning happens in the regions 0.1 ≤ α ≤ 0.2 and
0.1 ≤ ε ≤ 0.6. No significant influence of the discount rate γ on the learn-
ing process has been found the timescales at which collective behaviour
emerges (∼ 103 timesteps), though simulations with longer timescales (∼
105 timesteps) indicate that the learning parameter γ does stimulate follow-
ers to follow the flock in cases where this action is not directly rewarded.
Since the timescales at which the flock typically converges are much lower
than this, we concluded

With learning parameters fixed within the optimal regions, we obtained
a couple of quantitative thresholds for the parameters of the system as con-
ditions for this collective motion. In particular, it we observed that col-
lective motion happens for an observation radius d ≥ 50, corresponding
in our model to an average number of encounters with neighbours per
timestep n ≥ 1.23 for each bird. Additionally, of these encounters, we
observed a minimal fraction of leaders l ≥ 0.2 as a second condition for
collective motion, suggesting that of these 1.23 encounters every timestep,
at least l · n = 0.246 per timestep should be leaders, which roughly corre-
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input
layer

output
layer

Figure 5.1: Schematic depiction of a deep neural network. If the input layer repre-
sents an observation and the output layer the action policy, then this can function
as a replacement for the Q-learning algorithm that is more suited for continuous
observation spaces.

sponds to at least 1 encounter with a leader leader every 4 timesteps.
Note that the original aim of this research has been the development of an

RL-model explaining collective motion using orientation-based rewards, a
type of reward system that has not been found in literature thus far. As
such, the emergence of collective motion that has been observed serves as
a proof of concept. A consequence of this is that the measured thresholds
for convergence that we have observed in chapter 4 are rudimentary lower
bounds that can be determined more precisely with additional simulations.

5.1 The implementation of noise: deep Q-learning

The model developed might be interpreted as an RL-extension to the Vicsek
model, since a Vicsek-like model can be reobtained when choosing A =
{ V }. There are two differences between this model and the Vicsek model,
however:

1. The possible flight directions are discretized into a finite subset D ⊂
[0, 2π).

2. There is no noise term η in this model (cf. equation (1.1)).

The second difference is a direct consequence of the first: since |D| = 8,
a deviation from a certain flight direction can only come in discrete steps
of π/4. Therefore continuous changes in the noise distribution, which is
a central aspect of the phase transitions observed in the Vicsek model [2],
are impossible. The flight directions have in turn been discretized as a di-
rect consequence of Q-learning, which required the observation space to
be finite. While it might be theoretically possible to discretize the flight
directions more finely and hence approaching continuous behaviour, such
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that the Vicsek model becomes a limiting case, this has been shown to be
computationally infeasible in section 3.2.

Nevertheless, it might still be interesting to implement some form of
noise into the current model. Introducing noise in the Vicsek step (which
might correspond for example to a cloudy environment in which the flock
of birds navigates), might lead to different strategies . Perhaps even some
sort of ’phase transition’ might be observed in the model, analogous to that
in the classic Vicsek model. Moreover, since a noisy environment might
generally slow down the learning process, the typical convergence time
might decrease to timescales at which the long-term decision making dic-
tated by γ would be able to play a significant role.

In order to implement noise in the model, we should thus be able to
have continuous flight directions in our model, and therefore a continuous
observation space. This can be achieved when we replace the Q-learning
algorithm (which relies on finite Q-tables) with a neural network [34]. A
neural network is a collection of ’neurons’ that have a value between 0 and
1. These neurons are interconnected and can transmit ther value between
each other. Usually this is arranged in propagating layers, meaning there
is an input layer and an output layer, and possibly some hidden layers in be-
tween (see figure 5.1).1 The input layer can represent many things, e.g.,
some sensorial input, or an image, where each individual input neuron
might represent the greyvalue of a pixel.

These values are then transmitted into a neuron to which it is connected
as a linear transformation w · xi + b, where w and b are called a weight and
bias respectively. This is consequently mapped to the region [0, 1] of a neu-
ron, commonly using the Sigmoid function σ(w · x + b) given by

σ(z) =
1

1 + e−z . (5.1)

All connections between neurons have a weight and bias associated with
them, and the challenge in the theory of neural networks is to find the cor-
rect set of weights and biases that results in the desired output. A common
use case is the field of image recognition, in which the input layer might
represent the pixels of a given image that contains a digit, and the output
layer might consist of 10 neurons, representing the digits 0–9. The chal-
lenge of such a neural network might then be to find the appropriate biases
and weights such that the neural network would be able to recognize the
digit in the image [34].

An interesting use case for this study in particular would be to com-
bine the theory of reinforcement learning with neural networks into what
is called deep reinforcement learning [45]. For this, we replace the Q-learning
algorithm by such a neural network, where we parametrize an observation
as a set of numbers xi ∈ [0, 1] and take those as the input of the neural
network. The output values yi ∈ [0, 1] then represent the action space. For
example, each neuron might represent a possible action of the action space,

1A neural network with hidden layers is also commonly called a deep neural network.
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and the one that has the highest output value can be the action that will be
performed by the agent.

A whole range of new challenges are associated with the study of neural
networks however, which is why we mention the theory here as a sugges-
tion for further improvement. In praticular, there is a lot of freedom in the
design of neural networks. Not only is there a freedom of choice in the
number of layers of the network and the nuber of neurons per layer, there
also exist more advanced types of layers, e.g. convolutional layers [34]. An-
other complication is that the time for a neural network to learn typically is
much larger that than that of Q-learning itself, partly because of the much
larger size of the parameter space [45].

Despite these challenges, there do exist studies in the field of collec-
tive motion that use deep reinforcement learning in their models [14, 16].
An investigation into the role of continuous noise-like order parameters as
’phase transitions’ for the agents’ policies, has not yet been investigated
however. Incorporating the Vicsek model into ours with deep reinforce-
ment learning might open up this possibility.
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