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Abstract

Parton distribution functions (PDFs) are vitally important for high energy
physics calculations. Vast amounts of experimental evidence have shown
that scattering processes involving nuclei cannot be solved using the free-
nucleon formalism of perturbative QCD and therefore, a separate empir-
ical determination of the nuclear modification of PDFs is necessary. Be-
cause the shape and size of nuclear modification are theoretically unmoti-
vated, the NNPDF collaboration uses a neural network to achieve a model-
independent parametrisation. In this thesis, we include new Z boson pro-
duction data from pPb collisions into the NNPDF framework and examine
its impact on the quality of the fit. We will also discuss the phenomenologi-
cal implications of prompt photon production data in pPb collisions.
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Chapter 1

Introduction

Parton distribution functions (PDFs) are vitally important objects for high
energy physics calculations (1; 2), their applications ranging from studying
the quark-gluon plasma to the structure of the proton. As non-perturbative
objects, there currently does not exist a good determination of PDFs from first
principles, necessitating extraction from experimental data (3). Furthermore,
it has become clear that scattering processes involving nuclei cannot be solved
using the free-nucleon formalism of perturbative QCD, necessitating a separate
empirical determination of nuclear parton distribution functions (nPDFs).

There are many approaches to determining nPDFs. Some notable recent
nPDF determinations are DSSZ (4), KA15 (5), nCTEQ15 (6), EPPS16 (7)
and TUJU19 (8; 9). This thesis, however, follows the formalism constructed
by the NNPDF collaboration (10–51), where a neural network is used for a
model-independent PDF parametrisation.

The first version of the NNPDF approach to nuclear PDFs, nNNPDF1.0,
was published in 2019 (45). Recently, an improved version of the nPDF de-
termination was published: nNNPDF2.0 (52). This version includes many
new data sets and displays a much better quark flavour separation than its
predecessor. The results of this thesis, as presented in chapter 5, have been
incorporated in that paper.

This thesis is concerned with adding two datasets into the NNPDF frame-
work for extracting nPDFs: Z boson production in the CMS detector at√
sNN = 5.12 TeV and prompt photon production in the ATLAS detector

at
√
sNN = 8.16 TeV, both from pPb collisions.

The structure of this thesis is as follows. In chapter 2, we give a short
summary of QCD, the theory of the strong interaction, and show how the
concept of PDFs arises from a number of QCD processes. Then, we will discuss
the concept of nuclear modification and how it leads to a separate nuclear PDF
determination. We will also briefly explore the differences between the various
nPDF collaborations mentioned above. In chapter 3, we discuss the basic
formalism of a deep neural network and how it operates. In chapter 4, we
discuss the NNPDF fitting methodology and we present our results in chapter
5. Finally, we give a summary and outlook in chapter 6.
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Chapter 2

QCD: a short summary

In the 1950s, an increasingly large number of hadrons was being discovered
due to experimental advances. In order to explain the vast amount of observed
particles, Murray Gell-Mann (53) and George Zweig (54) proposed that these
hadrons were made up of three flavours of quarks: up (u), down (d), and
strange (s). There was an initial friction with the spin-statistics theorem,
which led to the introduction of the colour quantum number related to an
SU(3) symmetry. (55)

In 1973, Kobayashi and Maskawa (56) proposed the existence of three more
flavours of quarks: charm (c), bottom (b) and top (t). Also that year, Gross
and Wilczek (57), and Politzer (58) discovered that the SU(3) symmetry ex-
hibited both quark binding and asymptotic freedom. This discovery led to the
strong interaction being modelled as a theory of quarks with colour charges.
The SU(3) quanta are referred to as gluons and the theory as quantum chro-
modynamics (QCD). Quarks and gluons will be referred to from here on out
collectively as ”partons”.

In this chapter, we will briefly outline the basic formulation of QCD. We
will discuss the running coupling and how it leads to colour confinement and
asymptotic freedom, and discuss the concept of parton distribution functions
and their role in calculating certain observables. For a more detailed descrip-
tion of these subjects, we refer the reader to, e.g., references (55; 59).

A short note on some conventions used in this chapter. Feynman diagrams
are drawn with time going from left to right. We will also use the ”natural
units” convention c = } = 1 and the Einstein summation convention with
Greek letters indicating four coordinates, e.g. µ, ν = 0, 1, 2, 3.

2.1 Basic formulation

The Lagrangian of QCD is given by:

LQCD = q̄i(i /D −mi)qi −
1

4
FA
µνF

Aµν (2.1)

Here, qi and q̄i are the quark and antiquark fields of flavour i with mass
mi, g is the coupling strength and FA

µν is the gauge field strength tensor of
the gluon field AAµ . The covariant derivative Dµ is contracted with the Dirac
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γ matrices /D = γµDµ, indicating the fermionic nature of the quarks, and is
defined as:

(Dµ)ab = δab∂µ + ig(tAAAµ )ab (2.2)

where a, b are colour indices in the fundamental representation (a, b = r,g,b)
and A is a colour index in the adjoint representation: A = 1, 2, ..., 8. The
matrices tA are the generators of SU(3) in the fundamental representation and
tA = λA/2 where λA are the Gell-Mann matrices, a QCD analogue of the Pauli
matrices. The generator matrices tA obey the commutation relations:

[tA, tB] = ifABCtC (2.3)

where fABC are the structure constants of SU(3). We can now write the
expression for the field strength tensor as:

FA
µν = ∂µA

A
ν − ∂νAAµ + gfABCABµA

C
ν (2.4)

The third term in FA
µν is where QCD’s non-abelian character is seen: it gives

rise to 3-gluon and 4-gluon vertex interactions. This non-abelian character of
QCD gives it one its most important features: the running coupling.

2.2 The running coupling

Using a standard Quantum Field Theoretical approach, one can use the QCD
Lagrangian to calculate observables perturbatively, order by order in αs =
g2/4π. The β function for an SU(3) symmetry with nf fermion flavours in the
representation is:

β(g) =
−g3

(4π)2

(
11− 2

3
nf

)
=
−g3

(4π)2
β0 (2.5)

In terms of αs, this becomes:

β(αs) =
−α2

s

2π
β0 (2.6)

From this, we can derive the running of the coupling:

αs(E) =
1

β0 ln E2

Λ2
QCD

(2.7)

We see that the coupling αs is a function of the energy E of the interaction
and ΛQCD ∼ 200 MeV, the QCD energy scale. For E ≤ ΛQCD, αs � 1,
the quarks are tightly bound together, whereas for E � ΛQCD, αs � 1 and
the quarks become essentially free particles. This last case is referred to as
asymptotic freedom and it allows us to apply perturbation theory techniques
to QCD in e.g. collider experiments that are performed at high energies. For
low energies, the large value of αs prevents quarks from being observed in
isolation. This is referred to as colour confinement.
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2.3 Calculating observables

For the calculation of physical observables, we will consider three types of
experiments. The first is Deep Inelastic Scattering (DIS), where a lepton
scatters off a hadron. The second is the Drell-Yan process (60). The third
process we will discuss is prompt photon production.

Let us consider a lepton scattering off a proton: `+ p→ `′ +X, where X
is an unobserved hadron. See figure 2.1 for two leading order diagrams for this
process. This process is referred to as deep inelastic scattering if the interaction
energy and the mass of the outgoing hadron X are both much greater than
the proton mass. There are two separate cases to consider: neutral current
(NC) and charged current (CC), characterised by the (electric) charge of the
exchanged boson. In the left diagram of figure 2.1, the boson (a photon in this
case) is electrically neutral (NC DIS), whereas in the right diagram, the W+

boson has an electric charge (CC DIS). Also note that from the right diagram,
we see that the incoming lepton need not be the same as the outgoing lepton.
Similarly, the ’incoming’ parton can be a different flavour than the ’outgoing’
parton.

Figure 2.1: Leading order diagrams for a lepton scattering off a hadron via
exchange of a virtual boson. The left diagram shows Neutral Current DIS
with an electron scattering off a quark via photon exchange. The right shows
Charged Current DIS with νµp→ µ−X via W+ boson exchange.

For a proton momentum P , we define the momentum of the interacting
parton as a fraction x of this momentum. The exchanged energy (i.e. in-
teraction energy) is then Q2 = −q2 with q the momentum of the exchanged
boson. We can now encode the probability for the interacting parton of flavour
i (here, a quark) to have momentum fraction x, in a function fi(x,Q

2), called
a parton distribution function (PDF). 1 We use the PDF for the calculation of
observables, such as the F2 structure function:

1Strictly speaking, the PDF is not the probability density, but the number density, due
to the choice of normalisation.
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F2(x,Q2) =

nf∑
i

Ci(x,Q
2)⊗ fi(x,Q2) (2.8)

= x

nf∑
i

∫ 1

x

dx′

x′
Ci(x/x

′, Q2)fi(x
′, Q2) (2.9)

Here, the coefficients Ci are process-dependent functions that can be pertur-
batively calculated and ⊗ is the Mellin convolution, as defined above. This
result can be derived using the factorisation theorem (61) and it shows us that
the structure function is made up of a perturbative part (Ci) that governs the
short distance behaviour and a non-perturbative PDF that governs the long
distance behaviour. (3)

NC DIS experiments are only sensitive to one type of quark PDF com-
bination (at leading order). In order to separate the quark flavours, we can
use CC DIS measurements, which is sensitive to different types of quark PDF
combinations (52). Alternatively, we can consider gauge boson production in
hadronic processes. These are processes of the Drell-Yan family of interactions,
shown in figure 2.2. The cross-section for such a process is given by:

σ =
∑
ij

∫
dx1dx2fi(x1, Q

2)fj(x2, Q
2)σ̂ij(x1, x2, Q

2) (2.10)

where the two interacting partons of flavour i and j have momentum x1P1 and
x2P2, respectively, and σ̂ij(x1, x2, Q

2) is the partonic cross-section (3; 62). As
with DIS, we see the observable is a function of a perturbative part (σ̂ij) and
non-perturbative PDFs.

Figure 2.2: Feynman diagram for a Drell-Yan process. A quark-antiquark pair
annihilate to produce a lepton-antilepton pair via a gauge boson. Note that
the gauge boson can be neutral (γ, Z) or charged (W±), depending on the
flavours of the interacting quarks.

Finally, let us consider prompt photon production. At leading order,
prompt photons are produced via QCD Compton scattering or qq̄ annihila-
tion, shown in figure 2.3. Photon production is an important QCD process, for
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the following reasons. Prompt photons are useful in studying the quark-gluon
plasma, as they can traverse it without being modified, due to being QCD
neutral. Additionally, as can be seen in figure 2.3, prompt photon production
is sensitive to the gluon content of the proton already at leading order, whereas
DIS and Drell-Yan processes only sense the gluon beyond leading order. In-
cluding photon production processes in our analysis will therefore significantly
impact the quality of the gluon PDF fits.

Figure 2.3: Prompt photon production at leading order via QCD Compton
scattering (left) and qq̄ annihilation (right).

2.4 PDF evolution

In the equations above, we have written the PDFs as a function of Q2 with-
out further comment. It is interesting to know how the PDFs evolve with
Q2 and, surprisingly, this evolution is governed by perturbative QCD (for
Q2 ≥ 1 GeV2), despite the PDF’s non-perturbative nature (63–65), and can
be derived from the renormalisation group equation. The equations describing
the Q2 evolution of the PDFs are called the DGLAP equations and are given
by:

d

d logQ
fg =

αs(Q
2)

2π

∫ 1

x

dz

z

(
Pg←q(z)

nf∑
i

[
fi(x/z,Q

2) + f̄i(x/z,Q
2)
]

+ Pg←g(z)fg(x/z,Q
2)

)
(2.11)

d

d logQ
fi =

αs(Q
2)

2π

∫ 1

x

dz

z

(
Pq←q(z)fi(x/z,Q

2) + Pq←g(z)fg(x/z,Q
2)
)

(2.12)

d

d logQ
f̄i =

αs(Q
2)

2π

∫ 1

x

dz

z

(
Pq←q(z)f̄i(x/z,Q

2) + Pq←g(z)fg(x/z,Q
2)
)

(2.13)

where the sum over i runs over all nf quark flavours, fi is the PDF for flavour
i, and f̄i is the PDF for the respective antiquark. The splitting functions Pi←j
give the probability for a parton of type j to emit a collinear parton of type i
with momentum fraction xz. The splitting functions are given by:
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Pq←q(z) =
4

3

[
1 + z2

(1− z)+

+
3

2
δ(1− z)

]
(2.14)

Pg←q(z) =
4

3

[
1 + (1− z)2

z

]
(2.15)

Pq←g(z) =
1

2

[
z2 + (1− z)2

]
(2.16)

Pg←g(z) = 6

[
1− z
z

+
z

(1− z)+

+ z(1− z) +

(
11

12
− nf

18

)
δ(1− z)

]
(2.17)

where we 1/(1− z)+ is defined as 1/(1− z) for z < 1 and has a singularity at
z = 1 such that: ∫ 1

0

dz
f(z)

(1− z)+

=

∫ 1

0

dz
f(z)− f(1)

(1− z)
(2.18)

Up until now, we have worked with PDFs of physical quark flavours. This is
known as the physical or flavour basis. Because all quarks couple to the gluon,
using the DGLAP equations is quite complicated. Therefore, it is convenient to
apply a change of basis that decouples the non-singlet combinations of parton
distributions from the gluon (66). Defining q±i = qi ± q̄i, we can now write:

g = g, Σ =

nf∑
i

q+
i , V =

nf∑
i

q−i , q±ij = q±i − q±j (2.19)

where Σ is the (only) quark singlet distribution, V is the valence distribution
and q±ij are non-singlet distributions. We can now compute the full evolution
basis by taking linear combinations of the non-singlet distributions and we will
find a basis {g,Σ, V, V3, V8, V15, V24, V35, T3, T8, T15, T24, T35}. In this work, the
g,Σ, V, V3, T3 and T8 PDFs are of importance. So, in addition to the definitions
above, we explicitly define V3, T3 and T8:

V3 = u− − d− T3 = u+ − d+ T8 = u+ + d+ − 2s+ (2.20)

Now, the DGLAP equations transform for the non-singlet distributions:

d

d logQ2
qNS =

αs(Q
2)

2π

∫ 1

x

dz

z
PNS(z)qNS(x/z,Q2) (2.21)

where PNS = Pq←q at leading order. For the singlet and gluon, the DGLAP
equations become:

d

d logQ2

(
Σ(x,Q2)
g(x,Q2)

)
=
αs(Q

2)

2π

∫ 1

x

dz

z

(
Pq←q Pq←g
Pg←q Pg←g

)(
Σ(x/z,Q2)
g(x/z,Q2)

)
(2.22)
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2.5 Nuclear modification

Up until now, we have not made any distinction between partons originating
from a free or bound nucleon. In reality, however, these two differ signifi-
cantly, which is surprising, because the nuclear binding effects are of the order
of MeV, while the energy scale of nuclear processes is GeV (67). Vast amounts
of experimental evidence have shown that the free-nucleon formalism of per-
turbative QCD is insufficient to describe the nuclear modification of PDFs
(1–3) and while there are a number of theoretical models aiming to explain
nuclear modification from first principles, a consensus has yet to be reached
(67). Therefore, a separate extraction of nuclear PDFs (nPDFs) from experi-
mental data is necessary.

Nuclear modification was first discovered by the European Muon Collabo-
ration at CERN in 1983 (68) in the form of the EMC effect. Specifically, they
observed that the nuclear F2 structure functions (obtained from DIS exper-
iments) are not the same as the sum of the structure functions of their free
nucleon constituents. Instead, they found a pronounced deviation, shown in
figure 2.4. The size of this effect has been found to increase with A, but is
only feebly affected by the interaction energy Q2. (67)

Figure 2.4: Figure from the original EMC paper (68) showing the ratio of the
F2 structure functions for iron (Fe) and deuterium (D). The negative slope of
the fitted line is in strong disagreement with the theoretical predictions at the
time.

In the following decades, nuclear modification was studied extensively and
four distinct regimes (69) of nuclear modification were identified: shadowing
(x . 0.1, RA

f < 1), anti-shadowing (0.1 . x . 0.3, RA
f > 1), EMC effect

(0.3 . x . 0.8, RA
f < 1) and Fermi motion (x & 0.8, RA

f > 1). We show
a schematic representation of these four regimes in figure 2.5 (adapted from
reference (45)), where we define the nuclear modification factor RA

f as the ratio
of the PDF in a nucleus to the PDF in a free nucleon:
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RA
f = f (N/A)(x,A)/f (N)(x) (2.23)

We use the PDF of an average nucleon N in a nucleus with Z protons and
atomic mass number A, defined as:

f (N/A) =
Z

A
f (p/A) +

A− Z
A

f (n/A) (2.24)

where f ({p,n}/A) are the PDFs for the proton and neutron in a nucleus with
atomic mass number A. In the case of isoscalar symmetry (A = 2Z), we
observe that these average nucleon nPDFs are equivalent (52) to the proton
nPDFs for all flavours, except the up and down quark, although the relation
is still straightforward in those cases. In the evolution basis, the relation is
likewise trivial for all flavours but V3 and T3, which are related to their proton
counterparts by a factor 2Z/A− 1.

Figure 2.5: Schematic representation of nuclear modification. Indicated are
the four distinct regimes of shadowing, anti-shadowing, the EMC effect and
Fermi motion. Figure adapted from (45).

The first nuclear PDF set was EKS98 (70), based on both DIS and Drell-
Yan data, quickly followed by the HKM (71) set, which included error analysis.
Both these sets were at leading order (LO). The first next-to-leading-order
(NLO) set was nDS (72). With time, the amount of data included in nPDF
analyses increased (3; 73) and so did their quality. The most recent nuclear
PDF determinations are DSSZ (4), KA15 (5), nCTEQ15 (6), EPPS16 (7),
TUJU19 (8), and nNNPDF2.0 (52). Since publication, the nCTEQ15 set has
been updated to incorporate W± and Z vector boson production from pPb and
PbPb collisions (74) and the EPPS collaboration has incorporated dijet (75)
and D-meson (76) production in their nPDF set.

We can extract nPDFs by studying processes involving nuclei, where the
observable is altered by the nuclear modification of the PDF. As an example,
we consider the Drell-Yan cross-section in a pA collision:

dσDY(y)

dy
≡ A

dσ
(N/A)
DY (y)

dy
= Z

dσ
(p/A)
DY (y)

dy
+ (A− Z)

dσ
(n/A)
DY (y)

dy
(2.25)
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where the superscripts (N/A), (p/A), (n/A) indicate that the cross-section cor-
responds to a collision between a parton from the free proton and a parton
from either a bound average nucleon, a bound proton or a bound neutron,
respectively. Note that σ(p/A) 6= σp, the cross-section for a pp collision, but
instead is defined by replacing one of the PDFs in equation 2.10 with a nuclear
PDF. To illustrate the importance of nuclear PDFs in the modification of ob-
servables, we show the effect of nuclear modification (in the EPPS16 nPDF
set) on the cross-section of W− production in pPb collisions (7) in figure 2.6.

Figure 2.6: Improvement of the theoretical prediction for W− production in
pPb collisions, when including nuclear effects. Figure adapted from (7)

In addition to the modification of observables in pA collisions, we need
nPDFs to calculate the initial state of AA collisions. We can also use nPDFs
and AA collisions to study the quark-gluon plasma: the hot and dense medium
present in the early universe, prior to nucleosynthesis (77). Furthermore,
nPDFs are of importance to astroparticle physics in ultra-high energy neu-
trino scattering processes, probed by neutrino telescopes such as KM3NeT.
Lastly, nuclear effects can propagate into the uncertainties of the proton PDF,
as many free proton PDF analyses include data on proton-nucleus or lepton-
nucleus scattering in their calculations. (3)

2.6 PDF parametrisation

As mentioned before, PDFs are non-perturbative objects. While there have
been attempts to derive PDFs from first principles, most notably Lattice QCD,
there is currently no reliable approach to do so (3). Therefore, PDFs can be
most accurately determined by fitting them from experimental data. In order
to do this, we need to establish a parametrisation scheme. It is customary
(4–8; 52; 78–80), to parametrise the PDF as follows:

fi(x,Q
2
0) = Nxαi(1− x)βiI(x, {a}) (2.26)
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where N is a normalisation factor that accounts for theoretical constraints,
which we will mention later. The factor xαi governs the low-x behaviour and
is derived from Regge Theory (81), whereas the (1 − x)βi governs the high-
x region and derives from Brodsky-Farrar quark counting rules (82). While
some models may predict certain values for the effective exponents αi and βi,
in practice, they are often fitted from the experimental data (83). The function
I(x, {a}) is an interpolation function dependent on a set of parameters {a}.
There is no theoretical motivation for the shape of this function and this is
where the different (n)PDF collaborations diverge in their methodology and,
per extension, their results.

The interpolation function is often chosen to have a polynomial form (8; 78–
80) such as I(x, {a}) = 1 + γ

√
x+ δx+ ..., with {a} = {γ, δ, ...}, but its shape

can be much more complicated (6). Alternatively, the NNPDF collaboration
assumes a model-independent approach by parametrising I(x, {a}) with a neu-
ral network (3; 10; 52), which we will discuss in chapter 4.

Likewise, a parametrisation has to be chosen for the nuclear modification
factor RA

f , which differs between the different nPDF collaborations. One might
choose to parametrise it directly (4; 5; 7), similarly to I, or the parameters
can be given an A dependent functional form: {a(A)} = {γ(A), δ(A), ...}
(6; 8). Lastly, one can remain model-agnostic and parametrise Rf with a
neural network. The nuclear modification factor is then absorbed into the
PDF determination of the network. (3; 45; 52)

2.7 Nuclear PDF collaborations

The nPDF landscape is diverse in both the general approach of the problem
and the complexity of the models employed. In this section, we will briefly dis-
cuss the parametrisation schemes of the aforementioned nPDF collaborations
(in chronological order, as per the discussed nPDF sets), with the exception
of NNPDF, which we will discuss in chapter 4. The DSSZ, KA and EPPS
collaborations do not generate their own free proton PDF sets, but use exter-
nal sets. The parametrisation employed to construct these free proton PDFs
will be discussed separately, in appendix A. Despite the differences in their
parametrisation approach, all collaborations use the χ2 function for their fit-
ting procedure and as the figure of merit for their results. All the nPDF sets
discussed in this section, use the Hessian (84) method for uncertainty estima-
tion.

DSSZ: The DSSZ (NLO) nPDF set (4) uses the MSTW08 (79) set as its
free proton PDF, which uses a number of different polynomial functions in

√
x

for the various flavours. They parametrise the nuclear modification factor at
Q0 = 1 GeV directly as:

RA
v = ε1x

αv(1− x)β1(1 + ε2(1− x)β2)(1 + av(1− x)β3) (2.27)

RA
s = RA

v

εs
ε1

1 + asx
αs

as + 1
(2.28)

RA
g = RA

v

εg
ε1

1 + agx
αg

ag + 1
(2.29)
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where RA
v is the nuclear modification for the valence quarks and the values

for ε1, ε2, εs and εg are fixed by the QCD sum rules (see section 2.8). The A
dependence of the other parameters is then parametrised as:

ξ = γξ + λξA
δξ (2.30)

where ξ ∈ {αv, αs, αg, β1, β2, β3, av, as, ag}. Using the approximation that
δαg = δαs and δag = δas , this leaves a final fit with 25 free parameters.

KA15: The KA15 (NNLO) nPDF set (5) uses the JR09 (80) free proton
PDF set and parametrises the nuclear modification at Q2

0 = 2GeV2 directly
as:

Ri(x,A, Z) = 1 +

(
1− 1

Aα

)
ai(A,Z) + bi(A)x+ ci(A)x2 + di(A)x3

(1− x)βi
(2.31)

where the A dependence of the parameters for the nuclear modification is
parametrised as:

aq̄(A) = a1A
a2 (2.32)

bi(A) = b1A
b2 (2.33)

ci(A) = c1A
c2 (2.34)

di(A) = d1A
d2 (2.35)

with i indices left implicit. KA15 chooses fixed values for a number of param-
eters. They set α = 1/3, due to constraints imposed by nuclear volume and
surface contributions and βv = 0.4, βq̄ = 0.1, βg = 0.1, due to a lack of data
preventing them from determining these values from the fit. The values for the
av and ag parameters are fixed by the QCD flavour and momentum sum rules,
respectively. The other parameters are determined via the fitting procedure,
yielding a total of 16 free parameters.

nCTEQ15: The nCTEQ15 (NLO) set (6) opts for an exponential inter-
polation function while simultaneously fitting the ratio of ū and d̄ quarks:

xf
p/A
i (x,Q0) = c0x

c1(1− x)c2ec3x(1 + ec4x)c5 (2.36)

d̄(x,Q0)

ū(x,Q0)
= c0x

c1(1− x)c2 + (1 + c3x)(1− x)c4 (2.37)

where i ∈ {uv, dv, g, ū + d̄, s + s̄, s − s̄}. The nuclear modification is then
parametrised at Q0 = 1.3 GeV by introducing an A dependence in the fitting
parameters ck:

ck → ck(A) ≡ ck,0 + ck,1(1− Ack,2) k = 1, 2, ..., 5 (2.38)

In total, nCTEQ15 allows for ∼ 10 free parameters per parton flavour. Due
to data limitations, however, they constrain themselves to a fit with 16 free
parameters: 7 for the gluon, 4 for the valence u quark, 3 for the valence d
quark and 2 for the d̄+ ū quark.
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EPPS16: The EPPS16 (NLO) nPDF set (7) uses the CT14 (78) free pro-
ton PDF, which employs a fourth-order polynomial in y =

√
x. However,

in order to decorrelate the parameters of this polynomial, they instead fit a
linear combination of Bernstein polynomials and translate the fitted param-
eters back to those of the interpolation function. EPPS16 opts for a direct
parametrisation of RA

f at Q0 = mc = 1.3 GeV with polynomial functions:

RA
f (x,Q2

0) =


a0 + a1(x− xa)2 x ≤ xa

b0 + b1x
α + b2x

2α + b3x
3α xa ≤ x ≤ xe

c0 + (c1 − c2x)(1− x)β xe ≤ x ≤ 1

(2.39)

where α = 10xa, xa is the position of the anti-shadowing maximum, xe is the
position of the EMC minimum and the coefficients ai, bi, ci are determined by
the asymptotic small-x limit of RA

f . Using yi = RA
f (xi, Q

2
0) for xi = 0, xa, xe,

the A dependence of yi is parametrised as:

yi = yi(Aref )

(
A

Aref

)γi[yi(Aref )−1]

(2.40)

where γi ≥ 0 and Aref = 12. The nuclear modification, deviation from RA
f = 1,

is now greater for high A, by construction. Lastly, continuity and vanishing
first derivatives are required for RA

f at xi. In total, the EPPS16 fit has 56
parameters, 36 of which are fixed, leaving 20 free fitting parameters.

TUJU19: Lastly, let us consider the TUJU19 (NLO and NNLO) nPDF
set (8; 9) which uses a simple second order polynomial for the interpolation
function at Q2

0 = 1.69 GeV2:

xf
p/A
i = c0x

c1(1− x)c2(1 + c3x+ c4x
2) (2.41)

As in the nCTEQ15 analysis, the nuclear modification is parametrised by
introducing an A dependence into the fitting parameters:

ck → ck(A) ≡ ck,0 + ck,1(1− Ack,2) (2.42)

where ck,0 is kept fixed for all flavours based on the free proton fit, and the
nuclear parameters ck,1, ck,2 are fitted for each flavour. Under the TUJU19
fitting assumptions, this equates to a fit with 16 free nuclear parameters in
total.

2.8 Theoretical constraints

As mentioned above, PDFs are the probability distributions that dictate the
momentum of partons as a fraction x of the hadron momentum. Although this
interpretation is no longer valid when we move beyond leading order (85), the
PDF is still constrained (86) by a normalisation constraint, the momentum
sum rule, given in equation 2.43, due to conservation of energy. Additionally,
baryon number conservation yields a flavour or valence sum rule, given in
equation 2.44.
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∑
i

∫ 1

0

dxxfi(x,Q
2
0, A) = 1 (2.43)∫ 1

0

dx
(
fi(x,Q

2
0, A)− f̄i(x,Q2

0, A)
)

= ni (2.44)

with ni the number of quarks of flavour i. Note that these sum rules are valid
for all values of A and need only be computed for a single energy scale Q0, as
the DGLAP equations guarantee their validity at all Q > Q0 (45). Switching
from the physical basis to the evolution basis, the momentum and valence sum
rules become:

∫ 1

0

dxx(Σ + g) = 1 (2.45)∫ 1

0

dxV =
∑
i

ni (2.46)

Although the validity of the sum rules has been called into question for
the nuclear case (87), no definitive evidence for this has been found. The
NNPDF collaboration has recently found their nPDF fits to satisfy the sum
rules (within uncertainties) (52) even if they were not imposed. In addition to
the sum rules mentioned above, there are some theoretical constraints on the
allowed sizes and shapes of PDFs.

For x → 1, any PDF must go to zero (83). If a parton were to possess all
of the momentum of a proton or neutron, it would be a free particle, which is
forbidden by colour confinement.

While PDFs can, in general, be negative, hadronic observables are positive
definite (3). One can ensure this positivity constraint in a number of ways. One
can choose the parametrisation such that positivity is guaranteed or simply
discard the PDF parameter configurations that lead to negative observables.

All nuclear PDFs are constrained for A = 1 by the proton PDF. Again,
this can be constrained by the choice of parametrisation of the nPDF (3).
Alternatively, one can fit the A = 1 PDF alongside the other nuclei, compare
it to a proton PDF prior and discard the fits that do not agree within its
uncertainties (45). The latter approach results in smaller uncertainties for
nuclei with low A.
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Chapter 3

Neural Networks

The concept of artificial neural networks was first coined by McCulloch and
Pitts in 1943 (88). The idea was to mimic human intelligence by using a
structure of connected neurons. Neural networks are well suited for non-linear
regression and classification problems, even in cases where other machine learn-
ing techniques break down. Despite this vast potential, neural networks fell
out of favour due to their unfeasably high computational cost (89). However,
due to advances in computation in recent decades, the potential of neural net-
works is now accessible and they are being used for many different purposes,
ranging from natural language processing to theoretical physics problems. (90)

In this chapter, we will discuss some of the basic properties of neural net-
works: their structure and how they learn. For an in-depth look at (deep)
neural networks, we refer the reader to reference (91; 92).

Generally, we distinguish three different types of learning for a neural net-
work: supervised, unsupervised and reinforcement learning. In supervised
learning, the data the network is trained on is labelled, i.e., the desired out-
come is known. Supervised learning is used in e.g. classification or regression
problems (93). Unsupervised learning has the network find correlations within
the data without any preconstructed labels. This form of learning is a pow-
erful data compression or clustering tool (94). Finally, reinforcement learning
teaches a network to interact with its environment. A prime example would
be a network learning to play a game (95). While the considerations below are
quite general, we focus in this work on supervised learning, which is the type
of learning employed in the NNPDF framework.

3.1 Network Architecture

A neural network consists of layers made up of individual neurons (elements)
which are connected to the neurons in adjacent layers with individual weights,
see figure 3.1. The weights parametrise the sensitivity of a neuron to the values
of each of the neurons in the previous layer. The network has an input layer,
an output layer, and can have an arbitrary number of intermediate, hidden,
layers in-between. Each neuron has an individual bias, which parametrises its
sensitivity to the total input it receives from the previous layer. Each layer
(apart from the input layer) has an activation function that introduces the
non-linear behaviour.
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Figure 3.1: A neural network made up of an input layer (yellow) with 4 neu-
rons, five hidden layers (blue) of various sizes and an output layer (red) with 3
neurons. The lines connecting the neurons signify the weights. Figure adapted
from (96)

The value z`i of neuron i in layer ` is given by:

z`i = a`

(∑
j

w`−1
ij z`−1

j − b`i

)
(3.1)

where w`−1
ij is the weight connecting neuron j in layer ` − 1 to neuron i in

layer `, a`(z) is the activation function in layer `, and b`i is the bias of neuron
i in layer ` (sometimes referred to as a threshold). Using this update rule, the
values of the input vector are propagated to the end of the network into the
output vector zL. We can then relate our output vector to the desired output
vector y and define a cost or loss function C(y, zL), in such a way that an
optimal result coincides with a minimum value of the cost function.

Before any calculation can be performed, we need to initialise the weights
and biases of the network. The weights are commonly initialised randomly,
although the used probability distribution may vary (91), whereas the biases
are initialised at 0, as initialising the biases at a non-zero value may lead to
much longer run times.

3.2 Learning

After having calculated the output of the network, the value of the cost function
can be determined. Now, we want to slightly alter our network, in order to
achieve a better result next run. For this, we use a stochastic gradient descent
algorithm (91). After each step, we change the weights and biases such that
we move down along the gradient of the cost function, i.e., to a better result.
We then update the weights and biases by:
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δW `
ij = −η ∂C

∂W `
ij

(3.2)

δb`i = −η∂C
∂b`i

(3.3)

where η is the learning rate, a parameter that governs the size of the steps taken
along the descent. The learning rate can be a constant, but is often allowed to
vary over time. The advantage of this is clear: while a high learning rate might
be advantageous at the start of learning, as a minimum is approached, a high
learning rate will cause the network to overshoot, thus delaying the network
or even outright preventing it from reaching a minimum.

Because the network aims to minimise the cost function with every iteration
(or epoch), there is a risk of overfitting: the network fitting to the noise of the
data instead of the underlying distribution. While the cost function does not
inherently contain any information on whether the network is overfitting, we
can use it as a measure of overfitting by making use of a validation set (91).
Instead of training our network on all of the available data, we split the data
and train our network on part of it: the training set. Then, after each epoch,
we use the trained network to fit the data in the validation set and record
the value of the cost function for that set. Now, the objective becomes not to
minimise the cost function on the training set, but on the validation set. As
illustrated in figure 3.2, the error on the training data continues to decrease
(higher accuracy), but the error of the validation set (representative of data
the network has never seen before), has passed its minimum value (maximum
accuracy), signifying overfitting.

Figure 3.2: Accuracy (inverse error) of the training and validation set. The
vertical dashed line indicates the optimal stopping point for the network train-
ing: the accuracy of the network on the validation set is maximum. Figure
adapted from (97)

3.3 Optimisers

There are various ways to improve the gradient descent algorithm. One popular
optimisation is the addition of momentum (91; 98–100). Analogous to the
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physical concept, the learning rule is updated such that the network moves
faster in directions with persistent downward gradients. The learning rule
then becomes:

vt = γvt−1 − η∇θC(θt) (3.4)

θt+1 = θt − vt (3.5)

where we have introduced the momentum parameter γ, with 0 ≤ γ ≤ 1, and
we have combined all parameters (weights and biases) into the θt parameter.
One particular form of momentum in gradient descent is Nesterov Accelerated
Gradient Descent (NAG) (99). In NAG, rather than calculating the gradient
at the current parameters, we calculate the gradient at the expected position:

vt = γvt−1 − η∇θC(θt + γvt−1) (3.6)

θt+1 = θt − vt (3.7)

Nesterov momentum allows for a larger learning rate η, for the same value
of γ, thus allowing for faster convergence (91).

Instead of scaling up persistent gradients, we can make the optimisation
algorithm more sensitive to sparse parameter regions, by tuning the learning
rate to the parameters. This is known as an adaptive gradient or AdaGrad
(101). Writing the gradient at time t as gt, the (component-wise) update rules
for AdaGrad are:

gt,i = ∇θC(θt,i) (3.8)

θt+1,i = θt,i −
η√

Gt,ii + ε
gt,i (3.9)

where Gt,ii are the sums of the squares of the gradients with respect to the
parameter θi, up to time t, and ε is a small constant to prevent divergences.
A problem with the AdaGrad optimiser is that its learning rate rapidly de-
creases with time. In order to combat this, Hinton (102) proposed an alter-
native optimiser that still uses past gradient information, but is only sensitive
to that information for a limited period of time: RMSProp. Instead of the
weighted average gradient, RMSProp uses the second moment st = 〈g2

t 〉. The
(component-wise) RMSProp update rule is:

st = βst−1 + (1− β)g2
t (3.10)

θt+1 = θt − ηgt/
√
st + ε (3.11)

where the decay rate β is a constant that governs the averaging time of the
gradients. (91)

The Adaptive Momentum Estimation (Adam) optimiser (103) combines
the advantages of both AdaGrad and RMSProp by keeping track of both the
first and second moment of the gradient. Adam updates the first and second
moments as:
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mt = β1mt−1 + (1− β1)gt (3.12)

st = β2st−1 + (1− β2)g2
t (3.13)

where mt is the first moment with decay rate β1 and st is the second moment
with decay rate β2. Accounting for the fact that we are estimating these
moments with a running average, Adam performs a bias correction:

m̂t =
mt

1− (β1)t
(3.14)

ŝt =
st

1− (β2)t
(3.15)

Now, we can use these bias-corrected moments to update the network pa-
rameters as:

θt+1 = θt − η
m̂t√
ŝt + ε

(3.16)
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Chapter 4

Methodology

In this chapter, we will discuss the NNPDF methodology. We will detail the
most important software packages used and the PDF parametrisation using a
neural network. We also discuss the initialisation and training of the network.

4.1 Monte Carlo simulation

MCFM is a parton-level Monte Carlo (MC) programme for femtobarn processes
(104–106). This programme simulates partonic processes to give a (differential)
cross-section for various processes occurring in hadron-hadron collisions. The
version used for this work is MCFM v6.8, which can calculate various processes
to NLO precision. A full list of the available processes can be found in the
MCFM documentation (107).

MCFM allows the user to choose a number of settings to fit the experiment.
Most notably, for this work, these include the centre of mass energy of the
experiment, and kinematic cuts on quantities such as the pseudorapidity or
the transverse momentum.

4.2 APPLgrids

Normally, the MC run needs to be repeated for each new input PDF set,
which is very computationally expensive. The APPLgrid formalism is a solution
to this by allowing for the a posteriori inclusion of PDFs into the MC run
(108). Instead of having the MC run calculate a histogram of cross-sections, it
calculates a lookup table of weights in (x,Q2) that the PDF can subsequently
be combined with. This way, the MC calculation needs to be performed only
once and can be used in conjunction with any amount of different PDF sets.

4.3 FK tables

In order to compute observables with PDFs, one needs to perform complicated
convolutions, as shown in equation 2.8 or 2.10 while determining observables.
We can simplify this calculation greatly by using FastKernel (FK) tables: pre-
calculated lookup tables that contain all perturbative information (calculated
using the constructed APPLgrid) and a suitable interpolation basis (20; 28).
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To illustrate this, let us look at the expression for the F2 structure function in
DIS.

First, let us assume we can write the PDF with two interpolating functions
Iα(x) and Iβ(Q2), such that:

fi(x,Q
2, A) =

∑
α

∑
β

fi(xα, Q
2
β, A)Iα(x)Iβ(Q2) (4.1)

We can express fi(xα, Q
2
β, A) at the input energy scale using the interpo-

lated DGLAP operators:

fi(xα, Q
2
β, A) =

∑
j

∑
γ

Γij,αβγfj(xγ, Q
2
0, A) (4.2)

Now, we can rewrite the F2 structure function and define the FK tables
accordingly:

F2(x,Q2, A) =

nf∑
i

Ci(x,Q
2)⊗ fi(x,Q2, A) (4.3)

=

nf∑
i

Ci(x,Q
2)⊗

∑
j

∑
α,β,γ

Γij,αβγfj(xα, Q
2
0, A)Iβ(x)Iγ(Q

2) (4.4)

=

nf∑
i

nx∑
α

FKi,α(x, xα, Q
2
0, Q

2)fi(xα, Q
2
0, A) (4.5)

Thus, by using FK tables, we can replace the convolutions by matrix multi-
plication, greatly speeding up the computation. In addition, we circumvent the
calculation of the complicated integro-differential DGLAP equations 2.21, 2.22
by including them in the FK table. For a complete treatment of the FastKernel
method, we refer the reader to references (20) and (28).

4.4 Pre-processing data with buildmaster

Before we can use our network to fit the data, we have to convert the data
into a format that our code is equipped to handle. During this translation of
data formats, we must also ensure the uncertainties of the data are propagated
correctly into the new format. We use a program called buildmaster for this
conversion.

The experimental data is conventionally stored in the HEPData (109)
database, where it can be downloaded along with the corresponding uncer-
tainty information. For each data set, we then have to construct a filter,
which will read the information from the data files and store it in (C++) arrays,
where it can be then converted to the new data format by the buildmaster

code.
The filter also determines the treatment of the uncertainties. If necessary,

it symmetrises the uncertainties and shifts the data values accordingly. We
label the uncertainties depending on whether they are correlated with the
experimental data and calculate both their additive and multiplicative form.
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Statistical uncertainties are always additive, by their random nature, and
the luminosity uncertainty is always multiplicative. For other uncertainties,
we must determine from the original publication of the experimental results
whether the uncertainties are to be treated as additive or multiplicative. In
case this is not clear, the NNPDF policy is to assume the uncertainties are
multiplicative for collider experiments, so as to avoid the d’Agostini bias. (19)

4.5 Neural network

The neural network used to fit the nPDFs (for the nNNPDF2.0 nPDF set) has
a 3-25-6 architecture with a sigmoid activation function in the hidden layer
and a linear activation function in the output layer (52). The three input
neurons correspond to x, ln 1/x and A, and the output neurons correspond
to the nPDFs of interest in the evolution basis at the initial energy scale Q2

0.
We use both x and ln 1/x as input because only using x as input can make
the network lose its sensitivity to small x, as the neuron will feed forward a
near-zero value for any reasonably sized weight. At low values of x, ln 1/x can
still be ∼ 1 and so the network retains its accuracy for small values of x.

It has been shown (45) that PDF fits are stable with respect to this network
architecture. This means that if one were to increase the number of neurons
in the hidden layer, the fit will change only within statistical fluctuation. This
implies the network is sufficiently redundant in its 3-25-6 shape, equating to
256 free parameters (weights and biases). Additionally, the same has been
shown to hold for a network with a similar amount of parameters, but with
two hidden layers.

NNPDF assumes three active quarks, vanishing strangeness asymmetry,
and c and b quarks generated via perturbative evolution. These assumptions
imply (52) a six-parton fitting basis {u, ū, d, d̄, s, g} where s = s̄. The cor-
responding evolution basis is then {Σ, g, V, T8, V3, T3}, which is related to the
flavour basis via equations 2.19 and 2.20. We parametrise these nPDFs at
energy Q0 = 1 GeV as:

xΣ(p/A)(x,Q0) = xαΣ(1− x)βΣNNΣ(x,A)

xg(p/A)(x,Q0) = Bgx
αg(1− x)βgNNg(x,A)

xV (p/A)(x,Q0) = BV x
αV (1− x)βV NNV (x,A) (4.6)

xT
(p/A)
8 (x,Q0) = xαT8 (1− x)βT8 NNT8(x,A)

xT
(p/A)
3 (x,Q0) = xαT3 (1− x)βT3 NNT3(x,A)

xV
(p/A)

3 (x,Q0) = BV3x
αV3 (1− x)βV3 NNV3(x,A)

where NNi are the output neurons of the network. Note that we fit the bound
proton PDFs f (p/A), instead of the average nucleon nPDF f (N/A). The reasons
for this are threefold: a straight-forward connection to the A = 1 (free proton)
boundary condition, avoiding Z dependence of the PDFs, and avoiding Z/A
dependence in the sum rules for non-isoscalar nuclei (52). The normalisation
factors are determined by the sum rules (equations 2.45 and 2.46) as:
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Bg(A) =
1−

∫ 1

0
dx xΣ(p/A)(x,Q0)∫ 1

0
dx xg(p/A)(x,Q0)

(4.7)

BV (A) =
3∫ 1

0
dx V (p/A)(x,Q0, A)

(4.8)

BV3(A) =
1∫ 1

0
dx V

(p/A)
3 (x,Q0, A)

(4.9)

where the denominators are calculated using equation 4.6 with Bg = BV =
BV3 = 1.

4.6 Network initialisation

The weights of the network are initialised via Xavier initialisation (103), which
samples from a normal distribution with zero mean and variance of 1/N , with
N the amount of neurons in the previous layer. In addition, the initial values
for the input weights for the hidden layer are constrained to be within two
standard deviations, which leads to more efficient training (45). The biases are
initialised at zero. The effective exponents αi, βi are sampled uniformly from
the intervals listed below and fitted simultaneously with the other parameters
of the network. The values of the effective exponents are always constrained
to be within the intervals in brackets. For more information on the treatment
of αi, βi, we refer the reader to references (45) and (52).

α{Σ,g,T8,T3} ∈ [−1, 1] ([−1, 5])

α{V,V3} ∈ [1, 2] ([0, 5])

β{Σ,g,T8,T3,V,V3} ∈ [1, 5] ([1, 10])

We train the network with the χ2 of the fit as the cost function, combined
with additive terms representing the bound proton and positivity boundary
conditions, and we use the Adam (110) optimiser, discussed in section 3.3,
to perform the stochastic gradient descent. We use standard values for most
of the Adam parameters (45): the initial learning rate η = 0.001, the decay
rate of the second moment of past gradients β2 = 0.999 and the smoothing
parameter ε = 10−8. The only deviation from standard values is the decay
rate of the first moment of past gradients β1 = 0.99, which is slightly larger
than its standard value of 0.9, because this was found to result in better overall
performance (45).

The full cost function C is given by the χ2 of the fit (4.10), the proton
boundary condition (4.11) and the positivity penalty for the hadronic observ-
ables (4.12):

23



C = χ2 (4.10)

+ λBC
∑
f

Nx∑
i

(
q

(p/A)
f (x,Q2

0, A = 1)− qpf (x,Q2
0)
)2

(4.11)

+

Npos∑
k

λkpos

NA∑
j

Nk
dat∑
ik

max
(
−Fkik(Aj), 0

)
(4.12)

where λBC and λkpos are Lagrange multipliers indicating the weight of each of
these conditions. The sum over f runs over all active partons in the evolution
basis. The sum over i runs over Nx = 60 points with 10 points spread loga-
rithmically between x = 10−3 and x = 0.1 and 50 points spread linearly from
x = 0.1 and x = 0.7. The proton baseline qpf is taken to be a variant of the
NNPDF3.1 NLO free proton fit, that excludes heavy nuclear target data. In
equation 4.12, we sum over Npos observables Fkik , each with Ndat data points,
for all NA available values of Aj (52). λBC is set to 104 to ensure that the con-
tribution of 4.11 is of the same order as the χ2, while λkpos is manually tuned
by observing the optimisation process.

4.7 Central value and uncertainties

In order to improve the quality of the fit, we make use of Monte Carlo generated
pseudo-data. We use a MC method to generate so-called replicas of the data
to which we can fit a network. Each replica then yields a distinct (n)PDF fit.
We determine our central value by taking the median of all these fits and the
uncertainties are determined by the distance of our fits to this central value
(19). Note that we will need to alter our convergence criterion when fitting
replicas. For the true data, a χ2/Ndat ∼ 1 indicates a good fit: the variance of
the fit is of the order of the variance of the data. Because independent errors
add in quadrature, the variance of the pseudo-data will be double that of the
true data (provided we set the variance of the MC sampling distribution equal
to the variance of the data). A good fit should then yield χ2

k/Ndat ∼ 2, where
the subscript k indicates a single replica. The average fit, however, should
again have χ2/Ndat ∼ 1. (2)
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Chapter 5

Results

In this thesis, we have incorporated the data of two LHC-based experiments
in the NNPDF framework and examined their impact on the overall quality of
the global nPDF fits. We have studied Z boson production in pPb collisions at
centre of mass energy

√
sNN = 5.02 TeV in the CMS detector (111) and prompt

photon production in pPb collisions in the ATLAS detector at
√
sNN = 8.16

TeV (112).

5.1 CMS Z production

This CMS experiment (111) studies the process of a pPb collision producing a Z
boson, decaying to a lepton-antilepton pair: Z→ `¯̀. This process is a member
of the Drell-Yan family discussed in section 2.3. The experiment is performed
at a centre of mass energy per nucleon of

√
sNN = 5.02 TeV at an integrated

luminosity of L = 34.6 ± 1.2 nb−1. The lepton pseudorapidity is limited to
|η`lab| < 2.4 in the lab frame and the lepton minimum transverse momentum is
p`T > 20 GeV. The cross-sections are given as a function of the centre-of-mass
rapidity yCM , which is limited to the interval: −2.8 < yCM < 2.0.

The first step in studying this experiment, is to use the kinematic cuts
listed above to perform a MC simulation with MCFM. The full settings used can
be found in appendix B. This constructs an APPLgrid, which we can convolute
with various PDF sets and consequently compare the predicted cross-sections
with those given in the reference (experimental) paper. In figure 5.1, we show
the comparison between our APPLgrid implementation and the values given
in the reference, for the CT10nlo (113), EPS09 (114) and DSSZ 1 (4) input
PDF sets. We also show the values of the total (integrated) cross-sections,
which show agreement within 1%. In the lower plot, we show the ratio of the
reference and prediction values normalised w.r.t. the CT10nlo PDF set. This
good agreement between our predictions and the reference values validates our
APPLgrid implementation as a good representation of the experimental data.

Using this APPLgrid, we can then generate the FK tables and implement
the data in the buildmaster. On HEPData, we find the (symmetric) total
systematic uncertainties, presented as additive, uncorrelated errors, and the
statistical uncertainty. Lastly, we also have a luminosity uncertainty of 3.5%.

1This set was converted to a LHAPDF (85) set (both Hessian and MC versions) by
Emanuele Nocera. We used the MC version. (44; 115)
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Figure 5.1: Differential cross-section for Z production in pPb collisions at√
sNN = 5.12 TeV. The solid lines correspond to the predictions calculated

by convoluting PDF sets with our APPLgrid and the dashed lines are the
predictions given in the CMS paper. (111) The lower plot shows the ratio of
these values normalised w.r.t. the CT10nlo (113) predictions.

With our buildmaster implementation now complete, we can train the neural
network and extract the nPDFs.

The impact of this single data set on the global nNNPDF2.0 fit will be
small, as it accounts for < 1% of the total data points and 12.8% of the total
Drell-Yan data. In addition, the effect of CMS Z data will be similar to that
of the other Drell-Yan type data. Therefore, it is more instructive to examine
the effect of the Drell-Yan data as a whole.

In figure 5.2, we show the nuclear modification factor for lead nuclei for
all fitted parton flavours at Q2 = 100 GeV2. We compare the DIS only fit
(orange line) to the global nNNPDF2.0 fit (blue line), where the global fit
contains both DIS and Drell-Yan data, and the shaded bands correspond to
the 90% confidence level. For a full list of the data sets included in the global
nNNPDF2.0 fit and their corresponding χ2/Ndat values, we refer to appendix
C, where we also compare its performance to the DIS only fit and the EPPS16
nPDF set.

The inclusion of LHC data in the fit primarily affects the low x behaviour
of the fits. For x . 0.1, the uncertainties are reduced quite dramatically and
the nuclear shadowing effect at low x is now clearly visible for the valence and
sea quarks. While the impact on central values is not as dramatic for x & 0.1,
there is a slight reduction in the uncertainties.
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Figure 5.2: Nuclear modification factor for lead as determined by the DIS
only fit and the global nNNPDF2.0 fit, normalised with respect to the free
proton baseline. The shaded bands correspond to the 90% confidence levels.
Note that the global fit exhibits a pronounced shadowing effect and decreased
uncertainties. Figure adapted from (52).

In figure 5.3, we show the Pb (A = 208) nPDFs, at Q2 = 100 GeV2, based
on a 1000 replica fit. We show the valence u and d quarks, the ū, s and c
sea quarks, and the gluon. Again, the shaded areas correspond to the 90%
confidence band. Note the clear separation of the various flavours. These
nPDFs were determined by applying the DGLAP evolution equations to the
nPDFs fitted at energy Q2

0 = 1 GeV2.
Now, we can use the global fit and examine how it performs on the CMS

Z data. In the top panel of figure 5.4, we show the calculated cross-sections
as compared to the experimental data. We show both the free proton (A = 1)
fit and the lead (A = 208) fit. The middle panel shows the ratio of the
data to the A = 208 fit and the lower panel shows the nuclear modification
factor RA = f (N/A)/f (N). The data/theory ratio is close to one over the whole
rapidity spectrum, indicating the nNNPDF2.0 fit yields an accurate prediction
for this data, which is further validated by its χ2/Ndat = 0.521. The fit also
shows a clear nuclear modification of up to ∼ 10% in this rapidity range.
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Figure 5.4: Differential cross-section for pPb collisions at
√
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nNNPDF2.0 proton (A = 1) PDF and the blue line corresponds to the lead
(A = 208) PDF. The shaded band corresponds to the 90% confidence level.
The middle and lower panel corresponds to the data/theory ratio for the
A = 208 fit and the nuclear modification factor, respectively. Figure adapted
from (52).
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5.2 ATLAS photon production

In this experiment, inclusive, isolated, prompt photon production was studied
for pPb collisions in the ATLAS detector (112). The experiment was performed
at a centre-of-mass energy per nucleon of

√
sNN = 8.16 TeV and an integrated

luminosity of L = 165 nb−1. The centre-of-mass pseudorapidity range is di-
vided into three regions: (−2.83,−2.02), (−1.84, 0.91), and (1.09, 1.90) and
the detected photons must have transverse energy Eγ

T > 20 GeV. In order
for a photon to be identified as originating from an inclusive, prompt pro-
duction process, it must fulfil the isolation requirements of Eγ

iso < 4.8 GeV
+4.2 × 10−3Eγ

T within a cone of ∆R =
√

(∆η)2 + (∆φ)2 = 0.4 around the
photon. See also appendix B for the full settings used for the APPLgrid gen-
eration.

For constructing the theoretical predictions for the ATLAS data, we have
used a patched version of the MCFM v6.8 software with the same settings as
reference (116). In this patch, the calculation of the experimental isolation con-
ditions has been altered so that we do not need to calculate the fragmentation
component. (52)
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Figure 5.5: Cross-sections for the ATLAS photon production in the three
rapidity bins, fitted with both the nNNPDF2.0 global fit and the EPPS16
NLO fit. The upper panel shows the absolute cross-sections and the lower
panel shows the ratio of the data to the theory predictions. The two fits are
in reasonable agreement with each other, but deviate significantly from the
experimental data. Figure adapted from (52).

In figure 5.5, we show a fit of the global nNNPDF2.0 and EPPS16 (7)
fits to the ATLAS photon data in the three rapidity bins. The upper panels
show the fits to the absolute data and the lower panels show the ratio of the
experimental data as normalised to the theoretical predictions. As can be seen
in the ratio plots, although the nNNPDF2.0 and EPPS16 sets are in agreement
with each other, they do not describe the data well. It should be noted that
this same behaviour was (qualitatively) present in the original analysis done
by the ATLAS collaboration.

Note that the calculation of the nNNPDF2.0 and EPPS16 sets are based
on different Monte Carlo simulation algorithms. While nNNPDF2.0 uses MCFM,
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EPPS16 is based on the JETPHOX (117) software. Despite the different soft-
ware, there is a reasonable agreement between the two calculations. However,
the theory calculations undershoot the data for nearly all datapoints. This dis-
agreement is reflected in the χ2 values, with the global nNNPDF2.0 fit having
a χ2/Ndat = 9.1, 10.5, and 8.5 in the forward, central and backwards rapidity
bins, respectively, with similar numbers for the EPPS16 fit. In appendix C,
we have included the χ2/Ndat values for EPPS16 on the data sets included
in the nNNPDF2.0 global fit, where applicable, as a reference to their overall
agreement across data sets.

In order to investigate the issue with the description of this data, it is
instructive to include it in our nPDF fit. Thus, we must first implement the
data in the buildmaster. The uncertainties for this experiment are presented
individually, for each source of systematic uncertainty. From the reference it
is not clear whether they are additive or multiplicative, so, as per the NNPDF
policy, we treat all of them as multiplicative and correlated errors (apart from
the statistical uncertainty). The purity and detector performance errors need
to be symmetrised and the central value of the data is shifted accordingly.

Including the ATLAS photon data in the fit (unsurprisingly) yields better
results (χ2/Ndat = 6.1, 7.5, and 5.7) than the global nNNPDF2.0 fit, but this is
still far from satisfactory. The agreement between nNNPDF2.0 and EPPS16,
and their mutual disagreement with this data, is extra puzzling because the
NNPDF3.1 proton PDF is known to describe prompt photon production in the
ATLAS detector well for pp collisions at both

√
sNN = 8 TeV and

√
sNN = 13

TeV (116). Until the origin of this data-theory discrepancy is fully understood,
including ATLAS photon data in a global nPDF fit will be ineffective.
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Chapter 6

Summary and outlook

The calculation of hadronic observables depends on non-perturbative objects
called parton distribution functions, that govern the momentum of quarks and
gluons within hadrons. In processes involving nuclei, the PDFs are further
modified non-trivially, necessitating a separate determination of nuclear PDFs
from experimental data.

In this thesis we have discussed the addition of CMS Z boson production
data from pPb collisions into the NNPDF framework. This dataset was added
to the nNNPDF2.0 nuclear PDF set, contributing to improved quark flavour
separation over its predecessor nNNPDF1.0. The inclusion of this data and
that of similar experiments also leads to a dramatic improvement of the nuclear
modification displayed by the fit, as shown in figure 5.2. Overall, these results
show the power of factorisation theorems to describe the nuclear modification
of PDFs.

We have also presented a phenomenological exploration of the nNNPDF2.0
fit to prompt photon production data in pPb collisions in the ATLAS detector.
Both the nNNPDF2.0 and EPPS16 nPDF sets do not describe this data well,
see figure 5.5. Including the data in the training set does not improve the qual-
ity of the theory predictions for this data to a satisfactory level. This implies
a further investigation of these processes is necessary, especially considering
that the analysis of the ATLAS collaboration itself shows a similar, poor de-
scription and the fact that the same process in pp collisions is well described
by free proton PDF sets.

The current nNNPDF2.0 PDF set displays relatively large uncertainties for
the gluon. In order to remedy this, one could study prompt photon production
data. However, we have seen that this might not actually improve the quality
of the fit, if similar results are achieved as for the ATLAS photon data studied
in this thesis. Alternatively, one could investigate the inclusion of pPb dijet
production data in the next global fit. Dijet production in LHC run I pp
collisions has been studied recently (51) at NNLO and it has been shown to
constrain the gluon at large x. The corresponding pPb case has been shown
to greatly affect the gluon nuclear modification (118) in an EPPS16-based
analysis, indicating it would improve the nNNPDF2.0 fit as well.
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Appendix A

Other free proton PDFs

MSTW08 PDF parametrisation

The DSSZ nuclear PDF set uses the MSTW08 (79) free proton PDF, which is
parametrised at Q2

0 = 1GeV2 as:

xuv = Aux
η1(1− x)η2(1 + εu

√
x+ γux) (A.1)

xdv = Adx
η3(1− x)η4(1 + εd

√
x+ γdx) (A.2)

xS = ASx
δS(1− x)ηS(1 + εS

√
x+ γSx) (A.3)

x∆ = A∆x
η∆(1− x)ηS+2(1 + γ∆x+ δ∆x

2) (A.4)

xg = Agx
δg(1− x)ηg(1 + εg

√
x+ γgx) + Ag′x

δg′ (1− x)ηg′ (A.5)

x(s+ s̄) = A+x
δS(1− x)η+(1 + εS

√
x+ γSx) (A.6)

x(s− s̄) = A−x
δ−(1− x)η−(1− x/x0) (A.7)

where qv = q − q̄, ∆ = d̄ − ū and S = 2(ū + d̄) + s + s̄. Using the flavour
and momentum sum rules, the values of Ag, Au, Ad and x0 can be expressed in
terms of other parameters. In principle, there are then 30 free PDF parameters
(including αs), which is reduced to 28 due to strong (anti-)correlations between
some of the parameters. When including the Hessian uncertainty calculation,
this is extended to a total of 49 free parameters.

JR09 PDF parametrisation

The JR09 PDF (80) is used by the KA15 nPDF as the free proton prior at
NNLO. They fit the uv, dv,∆ = d̄ − ū, d̄ + ū, s = s̄ and g PDFs at various
values of Q0, with their standard fit being at Q2

0 = 2GeV2. They parametrise
the PDF interpolation functions with a simple polynomial in

√
x:

xfi = Nix
ai(1− x)bi(1 + Ai

√
x+Bix) (A.8)

Then, by setting Ag = Bg = 0, using s̄ = s = (d̄+ ū)/4 and using the QCD
flavour sum rule, this fit has a total of 21 free parameters.
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CT14 PDF parametrisation

The CT14nlo (78) PDF set is used by EPPS16 as their proton baseline. They
parametrise the g, u, ū, d, d̄, s PDFs with s = s̄ at Q0 = 1.4 GeV by using a
fourth order polynomial in y =

√
x as the interpolation function I. Instead

of fitting this function from the data, they instead transform it to a linear
combination of Bernstein polynomials. For, e.g., uv, this then becomes:

Puv = d0p0(y) + d1p1(y) + d2p2(y) + d3p3(y) + d4p4(y) (A.9)

where

p0(y) = (1− y)4 (A.10)

p1(y) = 4y(1− y)3 (A.11)

p2(y) = 6y2(1− y)2 (A.12)

p3(y) = 4y2(1− y) (A.13)

p4(y) = y4 (A.14)

The dk parameters are then fitted from the data and the interpolation
function can then be calculated by reverting Puv back to its simple polynomial
shape:

Puv = c0 + c1y + c2y
2 + c3y

3 + c4y
4 (A.15)

In practice, not all dk parameters are free parameters. The value for d4

is set to 1 and supplanted with an overall constant factor, determined by the
flavour sum rule

∫ 1

0
dxuv = 2. Also, to suppress deviations from the high-x

(1− x)βuv behaviour, d3 = 1 + αuv/2 is set. The effective exponents for dv are
also set to be equal to those of uv. Ultimately, this leaves us with a total of 28
free parameters.
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Appendix B

MCFM settings

CMS Z production

’6.8’[file version number]

[Flags to specify the mode in which MCFM is run]

-1 [nevtrequested]

.false. [creatent]

.false. [skipnt]

.false. [dswhisto]

.true. [creategrid]

.false. [writetop]

.false. [writedat]

.false. [writegnu]

.false. [writeroot]

.false. [writepwg]

[General options to specify the process and execution]

31 [nproc]

’tota’ [part ’lord’,’real’ or ’virt’,’tota’]

’CMSpPbZ5TEV’[’runstring’]

5020d0 [sqrts in GeV]

+1 [ih1 =1 for proton and -1 for antiproton]

+1 [ih2 =1 for proton and -1 for antiproton]

125.09d0 [hmass]

91.1876d0 [scale:QCD scale choice]

91.1876d0 [facscale:QCD fac_scale choice]

’no’[dynamicscale]

.false. [zerowidth]

.false. [removebr]

10 [itmx1, number of iterations for pre-conditioning]

10000 [ncall1]

10 [itmx2, number of iterations for final run]

200000 [ncall2]

1089 [ij]

.false. [dryrun]
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.true. [Qflag]

.true. [Gflag]

[Heavy quark masses]

173.1d0 [top mass]

4.18d0 [bottom mass]

1.28d0 [charm mass]

[Pdf selection]

’CT10.00’[pdlabel]

4 [NGROUP, see PDFLIB]

46 [NSET - see PDFLIB]

CT10nlo.LHgrid [LHAPDF group]

0 [LHAPDF set]

[Jet definition and event cuts]

60d0 [m34min]

120d0 [m34max]

0d0 [m56min]

14000d0 [m56max]

.true. [inclusive]

’ankt’[algorithm]

120d0 [ptjet_min]

0d0 [|etajet|_min]

3d0 [|etajet|_max]

0.3d0 [Rcut_jet]

.true. [makecuts]

20d0 [ptlepton_min]

-2.865d0,1.935d0 [|etalepton|_max]

0d0,0d0 [|etalepton|_veto]

0d0 [ptmin_missing]

20d0 [ptlepton(2nd+)_min]

-2.865d0,1.935d0 [|etalepton(2nd+)|_max]

0d0,0d0 [|etalepton(2nd+)|_veto]

0d0 [minimum (3,4) transverse mass]

0d0 [R(jet,lept)_min]

0d0 [R(lept,lept)_min]

0d0 [Delta_eta(jet,jet)_min]

.false. [jets_opphem]

0 [lepbtwnjets_scheme]

0d0 [ptmin_bjet]

99d0 [etamax_bjet]

[Settings for photon processes]

.false. [fragmentation included]

’GdRG__LO’ [fragmentation set]

80d0 [fragmentation scale]

20d0 [ptmin_photon]
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2.5d0 [etamax_photon]

20d0 [ptmin_photon(2nd)]

20d0 [ptmin_photon(3rd)]

0d0 [R(photon,lept)_min]

0.4d0 [R(photon,photon)_min]

0.4d0 [R(photon,jet)_min]

0.4d0 [cone size for isolation]

0.5d0 [epsilon_h, energy fraction for isolation]

[Anomalous couplings of the W and Z]

0.0d0 [Delta_g1(Z)]

0.0d0 [Delta_K(Z)]

0.0d0 [Delta_K(gamma)]

0.0d0 [Lambda(Z)]

0.0d0 [Lambda(gamma)]

0.0d0 [h1(Z)]

0.0d0 [h1(gamma)]

0.0d0 [h2(Z)]

0.0d0 [h2(gamma)]

0.0d0 [h3(Z)]

0.0d0 [h3(gamma)]

0.0d0 [h4(Z)]

0.0d0 [h4(gamma)]

2.0d0 [Form-factor scale, in TeV]

[Anomalous width of the Higgs]

1d0 [Gamma_H/Gamma_H(SM)]

[How to resume/save a run]

.false. [readin]

.false. [writeout]

’’[ingridfile]

’’[outgridfile]

[Technical parameters that should not normally be changed]

.false. [debug]

.true. [verbose]

.false. [new_pspace]

.false. [virtonly]

.false. [realonly]

.true. [spira]

.false. [noglue]

.false. [ggonly]

.false. [gqonly]

.false. [omitgg]

.false. [vanillafiles]

1 [nmin]

2 [nmax]
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.true. [clustering]

.false. [realwt]

0 [colourchoice]

1d-2 [rtsmin]

1d-4 [cutoff]

0.1d0 [aii]

0.1d0 [aif]

0.1d0 [afi]

1d0 [aff]

1d0 [bfi]

1d0 [bff]
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ATLAS prompt photon production

’6.8’[file version number]

[Flags to specify the mode in which MCFM is run]

-1 [nevtrequested]

.false. [creatent]

.false. [skipnt]

.false. [dswhisto]

.true. [creategrid]

.false. [writetop]

.false. [writedat]

.false. [writegnu]

.false. [writeroot]

.false. [writepwg]

[General options to specify the process and execution]

280 [nproc]

’tota’ [part ’lord’,’real’ or ’virt’,’tota’]

’nATLAS_pPb_PHT_8TEV’[’runstring’]

8160d0 [sqrts in GeV]

+1 [ih1 =1 for proton and -1 for antiproton]

+1 [ih2 =1 for proton and -1 for antiproton]

125.1d0 [hmass]

1d0 [scale:QCD scale choice]

1d0 [facscale:QCD fac_scale choice]

’pt(photon)’[dynamicscale]

.false. [zerowidth]

.false. [removebr]

10 [itmx1, number of iterations for pre-conditioning]

10000 [ncall1]

15 [itmx2, number of iterations for final run]

200000 [ncall2]

1089 [ij]

.false. [dryrun]

.true. [Qflag]

.true. [Gflag]

[Heavy quark masses]

172.9d0 [top mass]

4.18d0 [bottom mass]

1.27d0 [charm mass]

[Pdf selection]

’mstw8nl’[pdlabel]

4 [NGROUP, see PDFLIB]

46 [NSET - see PDFLIB]

NNPDF31_nlo_as_0118.LHgrid [LHAPDF group]
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0 [LHAPDF set]

[Jet definition and event cuts]

0d0 [m34min]

14000d0 [m34max]

0d0 [m56min]

14000d0 [m56max]

.true. [inclusive]

’ankt’[algorithm]

0d0 [ptjet_min]

0d0 [|etajet|_min]

99d0 [|etajet|_max]

0.2d0 [Rcut_jet]

.false. [makecuts]

0d0 [ptlepton_min]

99d0 [|etalepton|_max]

0d0,0d0 [|etalepton|_veto]

0d0 [ptmin_missing]

0d0 [ptlepton(2nd+)_min]

99d0 [|etalepton(2nd+)|_max]

0d0,0d0 [|etalepton(2nd+)|_veto]

0d0 [minimum (3,4) transverse mass]

0d0 [R(jet,lept)_min]

0d0 [R(lept,lept)_min]

0d0 [Delta_eta(jet,jet)_min]

.false. [jets_opphem]

0 [lepbtwnjets_scheme]

0d0 [ptmin_bjet]

99d0 [etamax_bjet]

[Settings for photon processes]

.false. [fragmentation included]

’GdRG__LO’ [fragmentation set]

80d0 [fragmentation scale]

20d0 [ptmin_photon]

2.83d0 [etamax_photon]

0d0 [ptmin_photon(2nd)]

0d0 [ptmin_photon(3rd)]

0d0 [R(photon,lept)_min]

0d0 [R(photon,photon)_min]

0d0 [R(photon,jet)_min]

0.4d0 [cone size for isolation]

0.1d0 [epsilon_h, energy fraction for isolation]

[Anomalous couplings of the W and Z]

0.0d0 [Delta_g1(Z)]

0.0d0 [Delta_K(Z)]

0.0d0 [Delta_K(gamma)]
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0.0d0 [Lambda(Z)]

0.0d0 [Lambda(gamma)]

0.0d0 [h1(Z)]

0.0d0 [h1(gamma)]

0.0d0 [h2(Z)]

0.0d0 [h2(gamma)]

0.0d0 [h3(Z)]

0.0d0 [h3(gamma)]

0.0d0 [h4(Z)]

0.0d0 [h4(gamma)]

2.0d0 [Form-factor scale, in TeV]

[Anomalous width of the Higgs]

1d0 [Gamma_H/Gamma_H(SM)]

[How to resume/save a run]

.false. [readin]

.false. [writeout]

’’[ingridfile]

’’[outgridfile]

[Technical parameters that should not normally be changed]

.false. [debug]

.true. [verbose]

.true. [new_pspace]

.false. [virtonly]

.false. [realonly]

.true. [spira]

.false. [noglue]

.false. [ggonly]

.false. [gqonly]

.false. [omitgg]

.false. [vanillafiles]

1 [nmin]

2 [nmax]

.true. [clustering]

.false. [realwt]

0 [colourchoice]

1d-2 [rtsmin]

1d-4 [cutoff]

0.1d0 [aii]

0.1d0 [aif]

0.1d0 [afi]

1d0 [aff]

1d0 [bfi]

1d0 [bff]
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Appendix C

χ2 tables

nNNPDF2.0 (DIS) nNNPDF2.0 EPPS16nlo

Dataset Ndat χ2/Ndat χ2/Ndat χ2/Ndat

NMC (He/D) 13 1.11 1.129 0.829
SLAC (He/D) 3 0.623 0.638 0.152
NMC (Li/D) 12 1.083 1.166 0.74
SLAC (Be/D) 3 1.579 1.719 0.098
EMC (C/D) 12 1.292 1.321 1.174
FNAL (C/D) 3 0.932 0.838 0.985
NMC (C/D) 26 2.002 2.171 0.872
SLAC (C/D) 2 0.286 0.251 1.075
BCDMS (N/D) 9 2.439 2.635 n/a
SLAC (Al/D) 3 0.606 0.864 0.326
EMC (Ca/D) 3 1.72 1.722 1.82
FNAL (Ca/D) 3 1.253 1.194 1.354
NMC (Ca/D) 12 1.503 1.747 1.772
SLAC (Ca/D) 2 0.82 0.771 1.642
BCDMS (Fe/D) 16 2.244 2.743 0.765
EMC (Fe/D) 58 0.827 0.875 0.445
SLAC (Fe/D) 8 2.171 2.455 1.06
EMC (Cu/D) 27 0.523 0.572 0.714
SLAC (Ag/D) 2 0.667 0.691 1.595
EMC (Sn/D) 8 2.197 2.248 2.265
FNAL (Xe/D) 4 0.414 0.384 n/a
SLAC (Au/D) 3 1.216 1.353 1.916
FNAL (Pb/D) 3 2.243 2.168 2.044
NMC (Be/C) 14 0.268 0.269 0.27
NMC (C/Li) 9 1.063 1.117 0.9
NMC (Al/C) 14 0.345 0.354 0.396
NMC (Ca/C) 23 0.468 0.44 0.564
NMC (Fe/C) 14 0.663 0.667 0.751
NMC (Sn/C) 119 0.607 0.638 0.626
NMC (Ca/Li) 9 0.259 0.276 0.15

Table C.1: The values of the χ2 per data point for the DIS neutral current
structure function datasets included in nNNPDF2.0. We compare the χ2/Ndat

of the nNNPDF2.0 DIS-only fit with those obtained by the global nNNPDF2.0
fit and EPPS16. Table adapted from (52)
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nNNPDF2.0 (DIS) nNNPDF2.0 EPPS16nlo

Dataset Ndat χ2/Ndat χ2/Ndat χ2/Ndat

NuTeV (ν̄Fe) 37 0.946 1.094 0.639

NuTeV (νFe) 39 0.287 0.264 0.381

CHORUS (ν̄Pb) 423 0.938 0.97 1.107

CHORUS (νPb) 423 1.007 1.015 1.024

ATLAS5TEV Z 14 1.469 1.134 1.12

CMS5TeV W− 10 1.688 1.078 0.857

CMS8TeV W− 24 1.453 0.72 0.825

CMS5TeV W+ 10 2.32 1.125 1.211

CMS8TeV W+ 24 3.622 0.772 0.951

CMS5TeV Z 12 0.58 0.52 0.639

Total 1467 1.013 0.976 0.896

Table C.2: Same as Table C.1 now for the datasets newly included in
nNNPDF2.0: charged current DIS structure functions and gauge boson pro-
duction at the LHC. We also provide the values of χ2/Ndat for the total dataset.
Values in italics indicate predictions for datasets not included in the corre-
sponding fit. Table adapted from (52)
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