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Abstract

Adopting some key ideas of the AdS/CFT correspondence, such as the
geometrization of the RG formalism and having an AdS background
spacetime, mappings of the 1D and 2D Ising model onto a network

model were developed. The mappings primarily serve to engineer a 2D
phase transition into a higher dimensional tree network and show what

holographic properties are obtained by merely invoking some conceptual
’ingredients’ from the holographic duality. The networks were studied by

MC simulation of the Ising model and subsequent construction. This
thesis then further reports on efforts to describe the network ensemble

seeded off the Ising model independently, by a(n) (exponential) random
graph model.
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Chapter 1
Introduction

With the first direct ’real’ image of a black hole, a little over a year ago
[1], it has become more clear than ever, that what was once considered a
mere mathematical curiosity of Einstein’s theory of general relativity, is
truly a part of nature. Of the many peculiar aspects of black holes, per-
haps its most significant feature to physicists is the ’event horizon’, the
boundary surface that marks the point of no return for anything that falls
in. In particular, the effort to reconcile the laws of thermodynamics with
the presence of such a phenomenon has strongly impacted the attempts of
formulating a theory of quantum gravity. In the 1970’s, it was conjectured
by Bekenstein [2] and supported by Hawking [3], from thermodynamic
and quantum mechanical considerations, that black holes are thermody-
namic objects with entropy that is proportional to the surface area of the
event horizon. Moreover, black holes are considered maximum entropy
objects. This implies that there is an upper bound on the entropy that a
finite region of space can contain, and the upper bound is proportional to
the area of the region.

This non-extensiveness of the entropy led ’t Hooft to propose the ’holo-
graphic principle’ publicly in 1993 [4], where he argued that any model of
quantum gravity in a volume of space should reduce to a description by
degrees of freedom in the lower dimensional boundary. Shortly after, it
was worked out by Susskind how to create a string-theoretical realization
[5]. Then, towards the end of that decade, arguably the most successful re-
alization of the holographic principle was conjectured by Maldacena: ’the
anti-de Sitter/conformal field theory (AdS/CFT) correspondence’ [6], also
known as the ’holographic duality’, or ’gauge/gravity theory’. The Ad-
S/CFT correspondence relates quantum gravity theories within the frame-
work of string theory as dual to quantum field theories with conformal

7



8 Introduction

symmetry. The gravity theory descibes the geometry of spacetimes of d
dimensions that are asymptotically anti-de Sitter (AdS), while the confor-
mal field theories (CFT) are defined on the boundary of these spacetimes,
i.e. a spacetime with one dimension lower, d− 1. Upon imposing certain
symmetries on the conformal field theories, one can reduce the quantum
gravity theory to that of classical general relativity. Hence, one has found
a way to describe general relativity in terms of quantum field theory.

The AdS/CFT correspondence has been recognized as powerful math-
ematical machinery, finding applications beyond its original framework of
string theoretical quantum gravity. Following the trend of a lot of interdis-
ciplinary activity surrounding AdS/CFT, we have been inspired to adopt
some of its core ideas to create a network model with holographic properties.
Network theory is a young and active scientific discipline, whose popular-
ity has been propelled by the fact that a wide range of both physical and
societal systems can be described in terms of a network. That is, a collec-
tion of entities (nodes/vertices) and their connections (links/edges). Our
aim is show that by copying some key characteristics from AdS/CFT into
a network model, one can already find a relatively simple holographic sta-
tistical mechanical system. In particular, we have attempted to encapture
the 2D phase transition of the Ising model in the topology of a seemingly higher
dimensional network model. Before going over what this thesis reports and
how it is structured, let us briefly discuss two parts of AdS/CFT that we
have invoked to construct a network model.

The first is, the geometric representation of the renormalization group
(RG) flow. Conceptually speaking, the main idea of the AdS/CFT corre-
spondence is loosely the following. One has a field theory on ’the bound-
ary’ of an higher dimensional space, ’the bulk’. The field theory is renor-
malizable, i.e. it can be viewed from different (energy) scales. One can
identify the ability of being able to ’zoom in’ or ’zoom out’ and observe
the boundary system at a different scale as moving along the extra dimen-
sion of the bulk. More formally, the flow of the couplings in the boundary
field theory, as prescribed by the renormalization group, corresponds to
the radial coordinate of the bulk. So, essentially, the bulk consists of layers
which can be considered to be copies of the boundary system at different
scales. If one now alters the field theory, such that its RG flow is affected,
e.g. changing a coupling locally, the correspondence prescribes that the
geometry of the bulk space changes accordingly. One then finds a dual-
ity, if the change in geometry is alternatively described by the gravitational
theory. Thus, analogous to a hologram, all information of the gravitational
bulk is encoded in the theory of the boundary.

The second aspect of AdS/CFT that we translate into our networks,
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Figure 1.1: Visualization of AdS3 spacetime. Figure obtained from [7].

is the hyperbolic nature of AdS spacetime. As mentioned earlier, in Ad-
S/CFT, the geometry of the bulk is that of d-dimensional spacetimes that
are asymptotically anti-de Sitter (AdS), i.e. they should be solutions to
Einstein’s equations with negative cosmological constant. The bare AdS
spacetime is the maximally symmetric (simplest) vacuum solution. It cor-
responds to hyperbolic geometry, i.e. it is the generalization of the hyper-
boloid to spacetimes with Lorentzian signature. Hence, the restriction the
Einstein equation imposes on the spacetimes can be seen as an hyperbol-
icity constraint. A visualization of AdS3, so with dimension d = 3, is dis-
played in figure 1.1. In this picture the spatial geometry (at a given time)
is represented by the hyperbolic disk. In the hyperbolic space of the disk
each semi-circle is of the same size. So, in a sense, with this hyperbolic
geometry, space itself is exponentially expanding as one moves towards
the boundary. Note that the boundary cilinder has flat geometry and here
it represents minkowski spacetime, in which the conformal field theory
’lives’.

With the above in mind, we designed and applied procedures related
to coarse graining (real-space RG) on the Ising model, to generate net-
works. The Ising model plays the role of the boundary field theory, while
the network is analogous to spacetime, where each configuration of spins
results in a particular topology for the network. We translate the restric-
tion of spacetimes having to be asymptotically AdS, to the requrement that
all networks are trees (or very tree-like). Though there is no general precise

9



10 Introduction

mathematical definition of a ’hyperbolic network’, we have followed [8] in
asserting that trees are the most hyperbolic examples of networks. Note
that with hyperbolic spaces and trees, the boundary makes up a siginifi-
cant part of the whole, one can almost say that the volume of the space/-
graph is the boundary. Therefore, it is interesting to see how much one
gets, in terms of holography, from merely imposing hyperbolic geometry
on the networks. Furthermore, the Ising phase transition was engineered
into the network model, such that it loosely resembles the Hawking-Page
phase transition [9].

The mapping of the Ising model to a network model serves as a start-
ing point for creating a holographic network model. On its own, it does
not signify anything very profound, as it remains nothing but the Ising
model in disguise. It inherits the Ising thermodynamics trivially. There-
fore, we have looked into ways of extending this Ising-network model, by
first studying the networks seeded by the Ising model using a MC simula-
tion and then weighting them with a network-specific measure. Chapter
3 describes the mappings and compares the thermodynamics of this semi-
independent network model, to that of the Ising/boundary model. Alter-
natively, in chapter 4, we develop a way to create the network ensemble
seeded off the Ising model independently. This is done by means of a(n)
(exponential) random graph model.

Chapter 2 reviews a topic interesting in it of itself, namely the Ising
model defined on the Cayley tree/Bethe lattice. Dependent on the order
of when the thermodynamic limit is taken, this model exhibits completely
different thermodynamics (hence the two names). The network is not dy-
namical here, and this chapter serves to briefly review the Ising model and
familiarize the reader with the tree network.
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Chapter 2
Example of a Statistical Mechanical
System on a Hyperbolic Network:
The Ising model on the Cayley
Tree/Bethe Lattice

The Cayley tree, named in honor of Arthur Cayley who introduced the
mathematical notion of a tree [10], is a a relatively simple example of a
network that can be considered as a discretized version of a hyperbolic
space. The study of the Ising model on the Cayley tree [11–14] showcases
the importance of the boundary when working with hyperbolic objects.
The model had gathered interest after it was discovered that it matters if
one defines the Ising model on the finite Cayley tree and then takes the
thermodynamic limit, or if one takes the Cayley tree to be infinite from the
outset–a property that has much to do with the boundary. The graph re-
sulting from the latter procedure has become known as the ’Bethe lattice’
∗, and it has been shown to be a lattice where the Bethe-Peiers approxima-
tion becomes exact [16, 17].

After giving a brief review of the Ising model, this chapter treats the
Ising model on the Cayley tree as well as on the Bethe lattice.

∗There is some ambiguity in older literature as to when one refers to a Cayley tree or
a Bethe lattice, which has resulted in confusion to the present day. An attempt has been
made relatively recently [15] to consolidate the nomenclature and clarify the distinction.
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Example of a Statistical Mechanical System on a Hyperbolic Network: The Ising model

on the Cayley Tree/Bethe Lattice

2.1 The Ising Model: A Brief Review

Originally devised as a model for magnetization in the early1920’s [18],
the Ising model has become known as the prototype model of statistical
mechanics. Its prominence is due to the fact that despite its simplicity†,
it exhibits many interesting features of complex statistical mechanical sys-
tems (e.g. possible phase transition, cooperative and critical phenomena).

The model considers discrete variables that can be in one of two states
+1 or -1, usually intepreted as the spin polarisation of an atom (spin up or
spin down). If we have N of these spins σi, the particular set of values

σ = {σ1, σ2, ..., σN} (2.1)

specifies a microstate of the system and one has 2N states. The spins are
arranged on a lattice, thus a microstate corresponds to a particular config-
uration of the lattice. Only nearest neighbour interactions and a coupling
to an external field are incorporated in the energy of a configuration, as
prescribed by the Hamiltonian:

E(σ) = −J ∑
〈i,j〉

σiσj − H ∑
i

σi (2.2)

where J is the coupling constant, 〈i, j〉means the sum is over nearest neigh-
bours of spin σi and H is an external magnetic field. We consider the ferro-
magnetic case where J > 0, i.e. it is energetically favourable for the spins
to be aligned with their nearest neighbours.

The canonical probability of finding the system in a state σ is:

P(σ) =
1
Z

e−βE(σ) (2.3)

with β = 1/kbT and the normalizing factor is the partition function

Z = ∑
σ

e−βE(σ) (2.4)

Then ensemble averages of observables X(σ) of the system are:

〈X〉 = 1
Z ∑

σ

X(σ)e−βE(σ) (2.5)

†We mean that the Ising model is simple in the conceptual sense. Solving the model
exactly can be a formidable task, depending on i.a. the dimension of the lattice on which
it is defined. For example to date an exact solution for the Ising model defined on a
3-dimensional lattice has not been found.
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2.2 Ising Model on the Cayley Tree 13

by which one can calculate thermodynamic quantities statistical mechani-
cally.

By the usual methods of statistical mechanics one can in principle ob-
tain all equilibrium thermodynamic functions of interest (e.g. energy, spe-
cific heat, magnetization, susceptibility etc.) from the partition function.
Therefore, for our purposes it will be sufficient to limit ourselves predom-
inantly to the derivation of the partition function in the next sections.

2.2 Ising Model on the Cayley Tree

The Cayley tree is defined as a simple connected undirected (no self-loops,
no isolated vertices and the edges are not directed) graph G = (V, E),
where V is the set of vertices (also called nodes, sites or points) and E is
the set of edges (also called links, connections or bonds) that has no cycles
(closed paths). One constructs it as follows: start with a root node 0 and
connect q nodes to it. These q nodes constitute the first shell. Next connect
each node of the first shell to q− 1 new nodes, in this way constructing the
second shell. Iterate this process to construct n shells. The result is a finite
spherical tree like in figure 2.1, where each node has degree q (the degree
of a node is its number of links to other nodes) except for at the boundary.
At the boundary (i.e. the leaf vertices), located at shell n, the nodes have
only degree one. Finally we define the Ising model on the Cayley tree by
associating the spins with the nodes of the Cayley tree: σi = ±1, i ∈ V (see
figure 2.1).

From (2.2) and (2.4) the partition function reads:

Z = ∑
σ

exp{K ∑
〈i,j〉

σiσj − h ∑
i

σi} (2.6)

with K = J/kbT and h = H/kBT. First let us consider the case h = 0. Then
using a derivation adapted from [12, 15], we obtain a recursion relation for
Z.

Consider the bond variables θα = σrσs = ±1, where σr and σs are spins
sitting at the end of the bond. Note then that instead of specifying states
by σ = {σi}, we can equally well specify them by the set {σ0, {θα}}, as
there is a unique correspondence between the two. If we divide the Cayley
tree into l = 1, 2, ..., n shells as shown in figure 2.2 and label the bond
variables accordingly, we can write the partition function for a Cayley tree

13
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Example of a Statistical Mechanical System on a Hyperbolic Network: The Ising model

on the Cayley Tree/Bethe Lattice

Figure 2.1: A Cayley tree with degree q = 3 and having n = 3 shells. The root
node 0 in the middle, is connected to q nodes. These q nodes in turn are in addi-
tion connected to q− 1 other nodes and the subsequent q(q− 1) nodes are again
in addition connected to q− 1 other nodes etc. The Ising model is defined on the
lattice by associating the spins σ with the nodes.

consisting of n shells as:

Zn = ∑
{σ0,{θα}}

exp

{
K

n

∑
l=1

nl

∑
m=1

θ
(l)
m

}
(2.7)

where nl is the number of bonds or equivalently the number of nodes,
belonging to shell l. Now note that each bond θα is independent as there
are no closed loops in a Cayley tree. Hence the partition function factorizes
nicely:

Zn =∑
σ0

∑
θ
(1)
1

∑
θ
(1)
2

... ∑
θ
(1)
n1

 ...

∑
θ
(n)
1

∑
θ
(n)
2

... ∑
θ
(n)
nn

(eKθ
(1)
1 eKθ

(1)
2 ...eKθ

(1)
n1

)
...
(

eKθ
(n)
1 eKθ

(n)
2 ...eKθ

(n)
nn

)

=∑
σ0

n

∏
l=1

nl

∏
m=1

1

∑
θ
(l)
m =−1

eKθ
(l)
m

=

∑
σ0

n−1

∏
l=1

nl

∏
m=1

1

∑
θ
(l)
m =−1

eKθ
(l)
m

×
 nn

∏
m=1

1

∑
θ
(n)
m =−1

eKθ
(n)
m


(2.8)
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2.2 Ising Model on the Cayley Tree 15

Figure 2.2: A Cayley tree with q = 3 divided into n = 3 shells. The bond vari-
ables θ

(l)
m = ±1 are labeled accordingly, i.e. shells are indexed by l and bonds (or

equivalently nodes) in the shell are indexed by m.

In the last line Zn is factorized into the sum at the boundary (between the
second pair of brackets) and the rest. Performing the sum over bonds at
the boundary:

nn

∏
m=1

1

∑
θ
(n)
m =−1

eKθ
(n)
m =

nn

∏
m=1

2 cosh(K) = [2 cosh(K)]nn (2.9)

Note that the rest is just the partition function of the Cayley tree with n− 1
shells:

Zn−1 = ∑
σ0

n−1

∏
l=1

nl

∏
m=1

1

∑
θ
(l)
m =−1

eKθ
(l)
m (2.10)

So one finds the recursive equation:

Zn = Zn−1 [2 cosh(K)]nn (2.11)

and iteration gives

Zn = [2 cosh(K)]nn+nn−1+...+n1 Z0 (2.12)

15
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Example of a Statistical Mechanical System on a Hyperbolic Network: The Ising model

on the Cayley Tree/Bethe Lattice

with Z0 = ∑σ0
1 = 2. Now nn + nn−1 + ... + n1 sums up to the total num-

ber of bonds, which is equal to the number of edges |E| of the graph.
Furthermore for any finite tree one has for the total number of vertices
|V| = |E|+ 1. Hence

Zn = 2 [2 cosh(K)]|V|−1 (2.13)

This partition function is identical to that of the one-dimensional Ising
model. And the Ising chain is known to show no spontaneous magnetiza-
tion, moreover in taking the thermodynamic limit one can check that the
free energy per site −β f = lim|V|→∞ |V|−1 ln(Zn) is analytic in β. Hence
we can conclude that for zero field the Ising model on the Cayley tree does
not exhibit a phase transition and there is no spontaneous magnetization.

2.2.1 Alternative Method

Here we consider an alternative recursive relation for the partition func-
tion, which can also be used when h 6= 0 (only pertubatively) and in
the treatment of the Bethe lattice. We follow the outline as prescribed in
[13, 19].

Note that if one were to make a cut at the root of the Cayley tree and
split σ0, the result would be q rooted trees. That is, q disconnected identi-
cal pieces as shown in figure 2.3 for q = 3. This means that we can factor

Figure 2.3: The result of cutting the Cayley tree at its root. The Cayley tree is
equivalent to the disconnected branches with their root nodes identified. Thus
one can factorize the partition function into conditional partition functions of
each branch.

16



2.2 Ising Model on the Cayley Tree 17

out the partition function (2.4) into conditional partition functions with
respect to σ0 of each branch. So,

Z = ∑
σ0

exp{hσ0}
q

∏
m=1

Z(m)
n (σ0) (2.14)

with

Z(m)
n (σ0) = ∑

s(m)

exp

Kσ0s(m)
1 + K ∑

〈i,j〉
s(m)

i s(m)
j − h ∑

i
s(m)

i

 (2.15)

being the conditional partition function for the m-th branch. The set {s(m)
i }

denotes the spins on the m-th branch (σ0 not included) and the sums in
(2.15) are defined appropiately. Now as the sum over all states on identical
systems should give identical results, the partition function of each branch
is the same. So we can lose the superscript and (2.14) becomes:

Z = ∑
σ0

exp{hσ0} [Zn(σ0)]
q (2.16)

Next note that we can also factorize Zn(σ0) in conditional partition func-
tions of each branch, now starting from s1:

Zn(σ0) =∑
s

exp

Kσ0s1 + K ∑
〈i,j〉

sisj − h ∑
i

si


=∑

s1

exp{Kσ0s1 + hs1}

∑
t

exp

Ks1t1 + K ∑
〈i,j〉

titj − h ∑
i

ti


q−1

(2.17)

where the expression between square brackets is the conditional partition
function with respect to s1 and the set {ti} are the spins on a subbranch
emanating from s1. Then the full partition function (2.16) can be evaluated
using the recursive equation for the conditional partition function:

Zn(σ0) = ∑
s1

exp{Kσ0s1 + hs1} [Zn−1(s1)]
q−1 (2.18)

Note the distinction between this recurrence relation and (2.11). With
the latter, the partition function of the entire Cayley tree with n shells is

17
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Example of a Statistical Mechanical System on a Hyperbolic Network: The Ising model

on the Cayley Tree/Bethe Lattice

expressed in terms of the partition function of the Cayley tree with n− 1
shells. On the other hand (2.18) is the result of decomposing a branch with
n generations‡ into branches with n − 1 generations. Nonetheless both
methods lead to the same result for h = 0. One has Z0 = 1 and (2.18)
yields

Zn = [2 cosh(K)]
1−(q−1)n

2−q (2.19)

by which (2.16) becomes

Z = 2 [2 cosh(K)]q
1−(q−1)n

2−q = 2 [2 cosh(K)]|E| (2.20)

That is, we retrieve again the Ising chain model (2.13), as we should.
For arbitrary h 6= 0, no closed form expression has been found and

in the weak field limit one usually uses expansion or numerical methods.
For instance one can expand (2.16) in h [13] and obtain some very unusual
properties such as a diverging susceptibility without spontaneous magne-
tization [11, 13].

2.3 Ising Model on the Bethe Lattice

Essentially the Bethe lattice is the Cayley tree that goes on forever, i.e. it is
infinite and there are no boundary nodes. It defined as an infinte cycle-free
graph where each vertex is connected to the same number of neighbours.
Thus one has a tree lattice with coordination number q, i.e. each node has
degree q.

As the system is taken to be infinite from the start, we cannot peform
a finite sum for the partition function. We can however use self-similarity
to solve the system [15, 19]. First consider the partition function (2.16)
and the recurrence relation (2.18) obtained for the finite Cayley tree. As
in the Bethe lattice the branches corresponding to Zn(σ0) and Zn−1(s1) are
infinite, one actually has:

Zn(σ) = Zn−1(σ) (2.21)

which makes (2.18) a self-similarity equation for the conditional partition
function Z(σ). It turns out that it is more convenient- especially if one

‡One can still call them shells, but generations seems to be more appropiate as we are
considering a branch and not the whole spherical Cayley tree. Ofcourse whatever you
call it, the value of n is the same.

18



2.3 Ising Model on the Bethe Lattice 19

wants to study the magnetization, to first sum over s1 = ±1 in (2.18)

Zn(1) = eK+h [Zn−1(1)]
q−1 + e−K−h [Zn−1(−1)]q−1 (2.22)

Zn(−1) = e−K+h [Zn−1(1)]
q−1 + eK−h [Zn−1(−1)]q−1 (2.23)

and then consider the ratio

xn = Zn(−1)/Zn(1) =
e−K+h + eK−hxq−1

n−1

eK+h + e−K−hxq−1
n−1

(2.24)

for which one has the self-similarity equation

x = y(x) with y(x) =
e−K+h + eK−hxq−1

eK+h + e−K−hxq−1 (2.25)

As K > 0, the function y(x) increases monotonically from e−2K to e2K for
−∞ < x < ∞. The solution to (2.25) can be found graphically by simul-
taneously plotting y = x and y = y(x). In doing so, two cases are found
depending on the value of K (i.e. temperature T): one finds either one
intersection point or three, as shown in figure 2.4. These two cases are in

(a) (b)

Figure 2.4: Sketches of graphical solutions for (2.25). One finds either one solution
(a) or three (b), corresponding to the paramagnetic phase and the ferromagnetic
phase respectively.

agreement with the typical behaviour of a ferromagnet (paramagnetic and
ferromagnetic phase respectively). So the Ising model on the Bethe lattice
exhibits a phase transition with spontaneous magnetization. By consider-
ing the variation of x (or equivalently the magnetization) with the external

19
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on the Cayley Tree/Bethe Lattice

field H the critical temperature at which the phase transition takes place
can be found, see [19]. It is entirely dependent on the coordination number
q and given by:

Kc = J/kbTc =
1
2 ln (q/(q− 2)) (2.26)

2.3.1 Bethe lattice vs Cayley tree

The solution to the Ising model on the Bethe lattice is found to differ signif-
icantly from the model defined on the Cayley tree. As mentioned earlier,
the Bethe lattice vs the Cayley tree is an example of a difference in lim-
iting procedures: defining a model on a system that is infinite and then
study its physical properties or considering the system to be finite, study
its properties and then take the limit of large system size. Usually the lat-
ter procedure shows equivalence with the former, such as on the regular
d-dimensional lattice Zd. The reason that this is not the case for the Cayley
tree/Bethe lattice lies in the fact that the contribution from the boundary
sites is non-negligible, even in the thermodynamic limit. The ratio of the
number of boundary nodes nn with respect to the total number of nodes is
shown not to approach zero by a simple calculation. Note the number of
nodes in shell l is given by nl = q(q− 1)l−1 and the total number of nodes
for a Cayley tree with n shells is:

N = 1 +
n

∑
l=1

q(q− 1)l−1 =
2− q(q− 1)n

2− q
(2.27)

Thus:

lim
N→∞

nn

N
= lim

n→∞

(2− q)q(q− 1)n−1

2− q(q− 1)n =
q− 2
q− 1

6= 0 (2.28)

for q > 2. Therefore it must come as no surprise that the Ising model on
the Bethe lattice yields different results, as with the Bethe lattice there are
no boundaries.

By another simple calculation one can find a heuristic argument as to
why the Cayley tree does not exhibit spontaneous magnetization. From
(2.26) one sees that q = 2 represents a threshold for the number of neigh-
bours for which a phase transition can occur, i.e. spontaneous magne-
tization occurs when q > 2 in the Bethe lattice. One can also read this
condition as that the average degree 〈k〉 should be larger than 2 (obiously
for the Bethe lattice 〈k〉 = q). The average degree for the Cayley tree is:

〈k〉 = 2|E|/|V| = 2− 2/|V| (2.29)
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where the tree property |V| = |E|+ 1 is used. Thus for the Cayley tree the
average degree does not exceed the critical value of 2, irrespective of how
large q- the degree of the nodes in the interior is. And so the Ising model
defined on it has no phase transition (technically one could say a phase
transition still occurs when T = 0).

2.3.2 Relation to the Bethe-Peierls approximation

Historically, the study of the Ising model on the Cayley tree began with the
finding that the solution on the infinite Cayley tree was exactly the same
as that of the Bethe-Peierls approximation [16, 17]. The authors Kurata et
al. therefore coined the infinite Cayley tree (infinite from the outset) ’Bethe
lattice’, after Hans Bethe. The Bethe-Peierls approximation is a mean field
approximation which incorporates first order interactions, first introduced
by Bethe [20] and then applied to the Ising model by Peierls [21]. We give
an outline of the approximation following [17, 22].

One starts by considering a cluster of a regular lattice with coordination
number q. So a central spin σ0 and its q surrounding neighbors, as shown
in figure 2.5 for q = 3.

Figure 2.5: Spin cluster for q = 3, consisting of a central spin σ0 and its neigh-
bours.

The Hamiltonian of the cluster is written as:

Ec = −Jσ0

q

∑
i=1

σi − Hσ0 − He

q

∑
i=1

σi (2.30)

Apart from the usual interaction with nearest neighbors and an external
field H, it approximates the interaction of the surounding spins with the
rest of the lattice as a coupling to an effective field He. Then the partition
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function of the cluster is straightforwardly calculated:

Zc =∑
σ

exp

{
Kσ0

q

∑
i=1

σi + hσ0 + he

q

∑
i=1

σi

}

=∑
σ0

∑
σ1

... ∑
σq

exp{hσ0}
q

∏
i=1

exp{Kσ0σi + heσi}

=∑
σ0

exp{hσ0} [2 cosh(Kσ0 + he)]
q

(2.31)

Unless one prefers to work with hyperbolic trigonometric identities it is
more convenient to make a change of variables

z = e−2K , µ = e−2h , µ1 = e−2he (2.32)

which gives

Zc = µ−
1
2

[
z−

1
2 µ
− 1

2
1 + z

1
2 µ

1
2
1

]q
+ µ

1
2

[
z

1
2 µ
− 1

2
1 + z−

1
2 µ

1
2
1

]q
(2.33)

The magnetization of the central spin can be found through the usual re-
lation:

m0 =
∂

∂h
ln Zc = −2µ

∂

∂µ
ln Zc (2.34)

Similarly the magnetization of a neighbour spin can be obtained from:

mnb =
1
q

∂

∂he
ln Zc = −2

µ1

q
∂

∂µ1
ln Zc (2.35)

Now the main assumption of the approximation is made; a self-consistency
condition is introduced:

m0 = mnb = m (2.36)

This gives the equation of state,

µ

µ1
=

(
µ1 + z

1 + µ1z

)q
(2.37)

which can be solved graphically, similar to the self-similarity equation of
section 2.3. In fact, if one defines xq−1 = µ1/µ. And recalls (2.32), equation
(2.37) becomes:

x =
e−K+h + eK−hxq−1

eK+h + e−K−hxq−1 (2.38)
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2.3 Ising Model on the Bethe Lattice 23

i.e. one retrieves exactly (2.25). Hence the Bethe-Peierls description is com-
pletely equivalent to the exact solution of the Ising model on the Bethe lat-
tice.

One might wonder how an approximation can be exactly valid (it is an
approximation right?). A rationale for this remarkable fact can be found by
considering the dimensionality of the Bethe lattice. In general, dimension-
ality greatly influences the validity of a mean field theory (MFT). Usually
MFT prescribes a replacement of all interactions to any given one body by
an average or effective interaction. It follows that the more interactions
are present the better results MFT will give, as fluctuations are averaged
out. Thus MFT yields better and better results with increasing dimension,
as the number of interactions automatically increases with dimension. In
fact, the MFT can become exactly valid if one lets the dimension d go to in-
finity. This happens for example with the (Weiss) MFT of the Ising model
on a regular d-dimensional cubic lattice.

Herein then lies an explanation for the equivalence of the Bethe-Peierls
treatment to the exact solution. Consider the number of sites Vl within l
steps of any given site on a flat d-dimensional regular lattice§, and Sl the
number of sites at step l of the same site (think of Vl and Sl as the vol-
ume and the surface area of a sphere with radius l respectively). Vl will be
propotional to ld, while Sl will be proportional to ld−1. Hence:

Sl ∝ V
1− 1

d
l (2.39)

In contrast, from (2.28) one sees that for the Bethe lattice the surface scales
linearly with volume, Sl ∝ Vl, which happens only in (2.39) when d → ∞.
Also, one can look at the dimensional dependence of the probability of
finding loops in a regular lattice. With increasing dimension this proba-
bility decreases and loops become even irrelevant when d→ ∞, thus high
dimensional regular lattices become like trees.

The above arguments indicate that the Bethe lattice is in some sense
infinite-dimensional. That is, the number of neighboring sites and thus
interactions surrounding any given site, increase with distance to that site
like they would in an infinite dimensional regular lattice. From this per-
spective it is not surprising that the Bethe-Peierls MFT can be exact.

You might ask why all of the same arguments do not hold for the Cay-
ley tree. The answer lies in the fact that the contribution from the bound-
ary sites is taken into account with the Cayley tree. Obviously, the spa-
tial dependence of the number of interactions surrounding a site at the

§By flat we mean that the d-dimensional lattice can tile the d-dimensional euclidean
space in a regular way. With d = 2 one has the square, triangular and hexagonal lattice.
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boundary is very different from that of a site in the interior. For exam-
ple, the number of nearest-neighbours is one for a site at the boundary
as opposed to q ≥ 3, for a site in the interior. Hence the similarity to an
infinite-dimensional regular lattice is lost.
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Chapter 3
Mapping of the Ising model onto a
Network model

This chapter treats our mappings of the Ising model onto a network model.
In addition to the key ideas from AdS/CFT, we have used the Hawking-
Page phase transition [9] as a leitmotiv in designing the procedure by
which we construct a network from a configuration of spins. The Hawking-
Page phase transition describes a transition between AdS spacetime and
a spacetime geometry of a black hole that is asymptotically AdS. Both
spacetime geometries are solutions to the (vacuum) Einstein equation with
negative cosmological constant, which can be seen as a hyperbolicity con-
straint on the admitted solutions, and in the context of AdS/CFT they
correspond to the low and high temperature phase of the boundary field
theory. So, the black hole is interpreted as resulting from the disordered
(high temperature) phase of the boundary field, whereas in the ordered
(low temperature) phase of the boundary, there is no black hole but just
the ’bare’ AdS spacetime.

More concretely, the mappings were designed with the following in
mind: the resulting network model should undergoe a phase transition,
should be ’hyperbolic’ regardless of the phase and should ultimately be
described by a dual theory defined on its boundary. Moreover, with the
aim of letting the networks loosely reflect the two phases of the Hawking-
Page phase transition, we wanted to see the following property: starting
with a pertubation at the boundary of the network (say a random walk),
there is a significant increase in the time for it to reach the boundary again
in the disordered phase as compared to the ordered phase. This was trans-
lated to having networks resembling trees in the ’AdS phase’, while in the
’black hole phase’ the networks are still tree-like, but have some added
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26 Mapping of the Ising model onto a Network model

structure (e.g. loops, or more nodes). The two phases of the network topol-
ogy correspond to the low temperature and high temperature phase of the
Ising model respectively.

The specific construction procedures by which we map a configuration
of spins σ onto a network Gσ:

M : σ→ Gσ (3.1)

developed with all of the above in mind, are layed out in detail in sec-
tions 3.2 and 3.3. But in short they can be summarized as follows: we
define spins of the Ising model on the boundary of the to-be-constructed
network. Then by a set of rules related to coarse graining, the bulk of the
network is constructed. The procedure is designed such that the resulting
network is (approximately) a simple fully connected tree with higher com-
plexity for more disordered spin configurations. It should be mentioned
that the mappings we present here in this thesis are not one-to-one, but
two-to-one, due to inversion symmetry. That is, if one inverts all spins of
configuration σ, the resulting configuration −σ, will be mapped to exactly
the same graph: Gσ = G−σ. This should not pose any significant problem
as the entropy of the created network ensemble will only slightly differ
from that of the Ising model (to be precise the difference is given by ln 2,
which is neglible for a large number of degrees of freedom).

The networks generated from the Ising model trivially inherit the Ising
thermodynamics. Therefore, we look to extend the network model by
weighting them with a network specific measure. In order to preserve
the thermodynamics of the Ising model, we want the networks Gσ to be
weighted by roughly the same weight as given in the Ising model ensem-
ble:

PI(σ) =
1

ZI
e−βHI(σ) (3.2)

where we consider the Hamiltonian that only incorporates nearest neigh-
bour interactions

HI(σ) = −J ∑
〈i,j〉

σiσj (3.3)

(see section 2.1 for a brief review of the Ising model). Yet, to obtain a
true network model that stand on its own, the weights we put on the net-
works should be determined from the network itself, without knowledge
of the corresponding spin configuration. This amounts to finding a net-
work Hamiltonian HNw(G) that is (roughly) equal to the Ising energy, but
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only makes reference to properties of the network. Additionally, we want
HNw to be a function of some property of the whole network, i.e. the
’boundary’ and the ’bulk’. We will see that it is easy to find a network
attribute near the boundary that tracks the Ising energy. However, we
would like to show that although HNw receives a contribution from the
boundary as well as the bulk, the boundary contribution dominates due
to the hyperbolicity of the networks.

In sum, we consider a network ensemble Ω that consists of the net-
works {Gσ} weighted by the measure:

PNw(Gσ) =
1

ZNw
e−βHNw(Gσ) (3.4)

The network model’s partition function is given by:

ZNw = ∑
G

δG,Gσ
e−βHNw(G) = ∑

Gσ

e−βHNw(Gσ) (3.5)

Note that we have first written the partition function as a sum over all pos-
sible networks G. The kronecker delta reflects the fact that only networks
resulting from our construction procedure are part of the ensemble. It can
be seen as the hyperbolicity constraint of the model, as it restricts the net-
works of the ensemble to have hyperbolic structure. The kronecker delta
also highlights the point that in addition to weighting networks with a
network Hamiltonian, in order to have a fully fledged network model, one
needs to provide a way of obtaining the networks of our ensemble {Gσ}
without knowledge of the Ising spins. In the next chapter we discuss a
model that attempts to establish the ensemble independently of the Ising
model.

While one could try to find an analytic correspondence between the
Ising model and the network models resulting from our mappings, we
have chosen to take a more straightforward route in simulating the Ising
model and subsequently constructing the networks from the generated
configurations of spins. The Ising model is simulated by means of a Monte
Carlo (MC) method- a well-known numerical method used in computa-
tional physics to study statistical models. In particular, we employ the
Metropolis [23] and Wolff algorithm [24]. From the generated networks
Gσ (that occur in accordance with PI(σ)), we try to identify an appropri-
ate network Hamiltonian HNw. Then using the newly found HNw, we
perform a separate simulation, where the networks occur in accordance
with PNw(Gσ). Note that this still amounts to generating configurations
of spins, as we lack a direct way of generating the networks. Finally, we
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28 Mapping of the Ising model onto a Network model

obtain from simulation the free energy of the network model:

FNw =
ln ZNw

β
(3.6)

and compare it to that of the Ising model with the aim of showing that the
two models exhibit the same thermodynamics. Our strategy is schemati-
cally displayed in figure 3.1.

Figure 3.1: Schematic displaying our strategy of showing that we have succes-
fully mapped the thermodynamics of the Ising model onto a network model.

We devote the first section of this chapter to the MC simulation of the
Ising model and the calculation of thermodynamic quantities, such as the
free energy. For the most part an outline is followed as given in [25] and
[26]. Subsequent sections describe and discuss our mappings of the 1D
and 2D Ising model onto a network model along with the results they
yield.

3.1 Monte Carlo simulation of the Ising Model

The idea of simulating the Ising model in thermal equilibrium, is to sample
configurations σ that occur in accordance with the Boltzmann distribution
P(σ) as given by (3.2). More generally, if one has a system consisting of
an ensemble of states {X} with probabability distribution P(X), the goal
of simulating the system is to sample states with a frequency that corre-
sponds to that distribution. This allows for the calculation of ensemble
averages of an observable A:

〈A〉 = ∑
X

A(X)P(X) (3.7)
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3.1 Monte Carlo simulation of the Ising Model 29

which are often the quantities of interest.
Perhaps the most apparent method of simulation that comes to mind

is to randomly generate states X (with uniform distribution) and accept
them with probability P(X) (or with a probability proportional to P(X)).
Unfortunately, for the Ising model, or in general for systems where the
target distribution is of the form of ( 3.2), this method is computationally
very inefficient. The degeneracy g(E) of a given energy E, i.e. the number
of states that have that energy, increases drastically with energy. With in-
creasing energy the acceptance probability becomes smaller and smaller.
Thus, practically most of the computational effort is alloted to generating
states that will be rejected anyway.

Therefore, one would like to generate a set of representative states, i.e.
limiting the simulation to generating states that have a significant weight,
while at the same time maintaining the right relative proportions in the
generated frequencies (these should correspond to the desired distribu-
tion P(X)).

This delicate feature is accomplished by the Metropolis Monte Carlo
method [23]. Hereby, as opposed to uniform sampling, states are gener-
ated by means of a Markov chain- a sequence of states where the proba-
bility for a given state is solely dependent on the previous one in the se-
quence. Essentially, one creates a system with artificial dynamics, whereby
the probability for a state X to occur is now ’time-dependent’: P(X, t).
With time t we obviously do not mean physical time, but the parameter
that keeps track of the number of steps in the simulation.

Let T(X → X′) denote the probability of having state X transition-
ing into X′, then it is straightforward to find the equation governing the
dynamics- the so-called master equation:

P(X, t + 1)− P(X, t) = −∑
X′

T(X → X′)P(X, t) + ∑
X′

T(X′ → X)P(X′, t)

(3.8)

The idea is to find transition probabilities T(X → X′) such that for large
t the time-dependent probability: 1) equilibrates towards a stationary dis-
tribution, 2) the stationary distribution is the desired target distribution.
Thus we have

P(X, t + 1) = P(X, t)
P(X, t)⇒ P(X)

(3.9)

for t→ ∞, and (3.8) becomes

∑
X′

T(X → X′)P(X) = ∑
X′

T(X′ → X)P(X′) (3.10)
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For simplicity’s sake, one often tries to find solutions that satisfy (3.10)
term for term, that is:

T(X → X′)P(X) = T(X′ → X)P(X′) (3.11)

for every pair X, X′. This equation is called a detailed balance condition, and
it simply says that the probability flux from state X to X′ should be equal
to that of X′ to X.

In designing a practical implementation of the transition probability
T(X → X′), the detailed balance condition is usually one of the first things
to check. Note that for the Ising model, one can write the detailed balance
condition (3.11) as:

T(σ′ → σ)

T(σ→ σ′)
=

P(σ)
P(σ′)

= e−β(E(σ)−E(σ′)) (3.12)

Hence, only the ratio of the transition probabilities are fixed and it only
depends on the energy difference between configurations before and af-
ter the transition ∆E = E(σ)− E(σ′). This leaves quite some freedom in
choosing a particular transition probability.

Another important property one usually requires for the simulation
scheme to be valid, is referred to as ergodicity. The Markov chain is called
ergodic if: 1) every state in the ensemble under consideration is attainable
from any other state within a finite number of steps and 2) it is aperiodic.
Ergodicity is needed in addition to the detailed balance condition, as one
can think of transition probabilities that satisfy (3.11), but exclude states
of the ensemble X apriori (e.g. T(X → X′) = 0 for all X, X′). We want to
sample states in a biased way, but not totally exclude any state. Moreover,
one wants the simulation to work regardless of what initial state is used.

In the traditional Metropolis algorithm applied to the Ising model, one
uses a single spin flip updating scheme to implement transitions. A spin
on the lattice is selected at random and the transition between the present
configuration σ and the configuration with this spin flipped σ′ is consid-
ered. If this transition lowers the energy, the trial state σ′ is always ac-
cepted. If however, the energy inreases, σ′ is accepted with a probability
given by the boltzman factor that corresponds to the change in energy:
e−β(E(σ)−E(σ′)). In appendix A.1 we give a more detailed description of the
Metropolis algorithm applied to the Ising model and show that it satisfies
the detailed balance condition.

Though the Metropolis algorithm is suitable for our purposes, we pre-
fer to use, where possible, another updating algorithm, the Wolff algorithm
[24]. Here, instead of a single spin, a whole cluster of spins are updated in
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3.1 Monte Carlo simulation of the Ising Model 31

parallel. The cluster is grown by starting off with a randomly selected spin
and adding aligned nearest neighbours with probability 1− e−2βJ . Once no
more spins are added to the cluster, all the spins in the cluster are flipped
with probability 1. See appendix A.2 for a more detailed description of
the Wolff algorithm and that it satisfies detailed balance. The main advan-
tage of the Wolff algorithm over the traditional Metropolis- and other local
update algorithms is that it does not suffer (or at least very weakly) from
’critical slowdown’ in simulation of systems that undergo a phase transi-
tion. Critical slowdown refers to the phenomenon that when the system
is critical, the autocorrelation time diverges and one needs to generate a
lot more configurations to obtain reliable results. In short, at criticality a
very long simulation time is needed. Therefore, unless explicitly stated
otherwise we use the Wolff algorithm. Unfortunately, the Wolff algorithm
is specifically designed for Ising- and other spin models where the Hamil-
tonian is given by nearest-neighbour interactions. It is not (easily) appli-
cable to models with a different hamiltonian. Hence, in simulations where
we go beyond the Ising model we use the much more widely applicable
Metropolis algorithm.

We have then a simulation of the Ising model in equilibrium by means
of a stochastic trajectory through phase space. Hence, in observing the
generated sequence we can approximate ensemble averages (3.7) through
time averages:

Ā =
1
m

m

∑
t=1

A(σ(t)) (3.13)

By m we will denote the number of sampled configurations; with the
metropolis algorithm the ’time’ t is expressed in units of Monte Carlo steps
per spin (MCS), being equal to N trials for a system with N spins. When
the Wolff algorithm is used, m will be given by the number of moves (clus-
ter updates).

To get an indication of the error in these time averages we can calculate
the standard deviation:

σ̄ =
√

Ā2 − Ā2 (3.14)

However, for this to represent a true statistical error, it should be obtained
from samples that are independent. Obviously, our Markov chain simu-
lation generates correlated configurations, so we need to correct for this.
There are different ways of calculating the statistical error from correlated
data. We have chosen a method that involves the calculation of the auto-
correlation time τ, a quantitiy that gives an indication of how many sim-
ulation steps configurations are correlated with one another. We refer to
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appendix B for a full description of our calculation of the correlation time
and error analysis. In short, the standard deviation obtained from corre-
lated data can be related to the standard deviation for the uncorrelated
case via [27, 28]:

σ = σ̄
√

1 + 2τ (3.15)

Finally, note that as the simulation of the Ising model is obviously al-
ways performed on a finite lattice, observables calculated from (3.13) will
suffer from a finite size effect. That is, they differ from the ensemble av-
erages of the Ising model in the thermodynamic limit N → ∞, which is
the macroscopic model we are interested in. The problem is somewhat
alleviated by implementing periodic boundary conditions, which we do.
However, to make real qualitative statements on anything related to the
macroscopic Ising model we employ finite size scaling. The results are
obtained for varying system sizes. If a trend is observed with increas-
ing scale, one can extrapolate the result or statement to the macroscopic
model.

3.1.1 Free Energy Calculation

In addition to ensemble averages, we would like to obtain the free energy
from simulation. The free energy, related to the partition function by

F = − ln Z
β

(3.16)

essentially encodes all the relevant information of the system in the canon-
ical ensemble. Hence, we can claim that we have successfully mapped the
Ising model onto a network model if we can show that the free energy of
the latter converges to the former. Moreover, in combination with the av-
erage energy obtained from (3.13), we can calculate the entropy S from the
standard thermodynamic relation:

F = 〈E〉 − TS (3.17)

Calculation of the free energy is a difficult assignment for conventional
MC methods. The difficulty lies in the fact that a quantity like the free
energy cannot be formulated as an ensemble average of a function of the
degrees of freedom (in contrast to e.g. the energy of the system). Rather,
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3.1 Monte Carlo simulation of the Ising Model 33

it is a phase space integral. And although a MC simulation samples the
dominant contribution of phase space to the free energy, it begs the ques-
tion if it provides a good estimate of the full phase space volume integral.
(See [29] for a nice analogy of trying to estimate the surface area of a river
by measuring the average depth.) Even more troublesome, the simulation
samples states with a probability proportional to the target distribution,
where the proportionality factor is unknown. This is not an issue for the
calculation of ensemble averages, as it cancels out. However for the calcu-
lation of the partition function (free energy), this factor is required.

It is worth mentioning that ofcourse there exists methods to compute
the free energy of the Ising model which do not involve MC simulation.
Most notably the transfer matrix method, whether it be analytical or nu-
merical. However, the point is that we would like a method that can be
incorporated in our MC simulation and subsequently also be applied to
the network model. Therefore, a free energy calculation method like the
numerical transfer matrix method is not suitable for our purposes, as it is
restricted to lattice spin models.

Fortunately, what is feasible with MC simulations- is to compute free
energy differences. That is, if one knows the free energy for particular val-
ues of the system parameters (e.g. at a given temperature), one can obtain
the difference to the free energy at different values for those system pa-
rameters (e.g. at a different temperature). A large variety of methods have
been developed for this purpose, to name a few: expressing the difference
as an ensemble average [30–32], histogram analysis methods [33–36], en-
tropic sampling [37], Wang-Landau method [38] or straightforward ther-
modynamic integration [25, 29]. The entropic sampling and Wang-Landau
method require a simulation in energy space as opposed to configuration
space and thus cannot be incorporated into our MC simulation. Probably,
the methods that can be implemented most easily are a histogram method
or thermodynamic integration. We choose to use a histogram method, de-
veloped relatively recently by Sheng Bi and Ning-Hua Tong [39]. Their
method has been implemented in combination with a standard MC simu-
lation of the Ising model and the results show it to be very accurate. We
describe the method in what follows.

As the configuration probability for the Ising model is given by (3.2),
the energy probability distribution is:

P(E) =
g(E)

Z
e−βE (3.18)

where g(E) is the degeneracy of the energy level E. With our MC simula-
tion we can then estimate P(E) by making a histogram of the encounterd
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energies:

p(E) ≈ N(E)
m

(3.19)

with N(E) being the number of configurations with energy E encoun-
tered during simulation. m is the total number of sampled configurations
(simulation steps) and obviously the accuracy of the estimation increases
with increasing m. The simulation is done for a specific temperature, so
β = 1/kbT is an input parameter. Then rewriting (3.18), we see that if the
degeneracy g(E) is known, we can estimate the free energy from simula-
tion:

F(T) = − ln Z
β

= − 1
β

ln
(

g(E)e−βE m
N(E)

)
= E− kbT ln

(
g(E)

m
N(E)

) (3.20)

Usually, the groundstate degeneracy is known; for the Ising model one has
g(Eg) = 2. So theoretically speaking, the free energy can be calculated for
arbitrary temperature directly from the groundstate histogram N(Eg).

However, this does not work in practice. For any given T, the energy
distribution is sharply peaked at an energy E(T). The peak position moves
away from the groundstate energy Eg towards higher energy levels for
increasing temperature. And for finite m one cannot accurately sample
P(Eg), as it becomes vanishingly small. Figure 3.2 illustrates this. It shows
P(E) ≈ N(E)/m for different temperatures obtained from our simulation
of the Ising model on a L×L = 20×20 square lattice. For high temperatures
P(Eg) becomes zero and so F(T) cannot be calculated from N(Eg).

Therefore, [39] prescribes a scheme to calculate unkown values of g(E)
from known ones. Suppose one knows the degeneracy at energy level
E1 and one wants to know the degeneracy at energy E2. The probabilities
P(E1) and P(E2) for these energy values to occur are given by (3.18) and at
the same temperature the partition function Z = Z(T) is the same. Using
this and plugging in (3.19) we find:

g(E2) = g(E1)
P(E2)

P(E1)
e−β(E1−E2)

≈ g(E1)
N(E2)

N(E1)
e−β(E1−E2)

(3.21)

Thus if we obtain N(E1) and N(E2) from simulation, we can calculate
g(E2) from g(E1). The only requirement is that N(E1) and N(E2) are
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(a) (b)

Figure 3.2: Energy probability distribution P(E) ≈ N(E)/m for various tem-
peratures plotted on a logarithmic scale. These are obtained from simulation
of the Ising model on a L×L = 20×20 square lattice with number of samples
m = 4× 104. The energy is given by (3.3) and the temperature is expressed in re-
duced units of J/kb. (a) For low temperatures P(E) is peaked around the ground-
state energy (Eg/L2 = −2.0). (b) For higher temperatures the peak is shifted
towards higher energies and P(Eg) is zero.

nonzero. This means that the simulation should be done at a temperature
for which it produces a histogram where N(E) is significantly large for
E1 and E2. More generally, the simulation at temperature T produces an
energy window WT, where N(E) is significantly nonzero. Then by (3.21),
knowledge of g(E) can be transferred to all E ∈WT.

The free energy F(T) is then obtained by a relay-like scheme. Knowing
the degeneracy for a particular energy Ei, we do a MC simulation at a tem-
perature Ti, such that we produce a histogram for which Ei ∈ WTi . Thus
with g(Ei) known and N(Ei) obtained, we can calculate F(Ti) by (3.20).
Next we do a simulation at temperature Ti+1 producing a histogram with
energy window WTi+1 . Temperature Ti+1 is chosen such that WTi+1 and WTi
overlap, i.e. Ti+1 is close to Ti. We choose an energy Ei+1 ∈ WTi ∩WTi+1
and use the data of the Ti simulation to obtain g(Ei+1) from g(Ei) by (3.21).
As g(Ei+1) is temperature independent, we can use it in combination with
N(Ei+1)- obtained from the Ti+1 simulation, to calculate F(Ti+1). In this
way, starting with T near zero where we know g(Eg), and incrementing
the temperature appropiately, g(E) and F(T) are found for consecutively
higher E and T respectively.

We follow [39] in choosing the common energy value Ei+1 ∈WTi ∩WTi+1
to be the crossing energy Ec, given by the intersection P(Ec, Ti) = P(Ec, Ti+1),
as shown in figure 3.3. Then in order to guarantee P(Ec) is not too small,
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36 Mapping of the Ising model onto a Network model

Figure 3.3: Energy histograms for two adjacent temperatures Ti and Ti+1, illus-
trating the procedure to obtain F(T). Suppose we know g(Ei), then with N(Ei)
we can calculate F(Ti) using (3.20). For Ei+1 we choose the crossing energy Ec, as
this is where N(E) is largest for both histograms. Then the knowledge of g(Ei)
can be transferred to g(Ei+1) by (3.21). With g(EI+1) known, F(Ti+1) can be cal-
culated. The histograms were obtained from simulation of the Ising model on a
L×L = 20×20 square lattice with number of samples m = 4× 104.

one needs to choose an increment interval ∆T = Ti+1 − Ti that is not too
large. Bi and Tong found the optimal value to lie within 0.06− 0.1 for dif-
ferent values of m in their simulations. They tested their method on a ver-
sion of the Ising model (two-state Potts model) where the phase transition
occurs at T = 1.181, while we consider a model where the phase transition
occurs at Tc = 2.269. Hence, conversion by this factor 2.269/1.181 gives
the optimal range relevant for our simulation: ∆T = 0.12− 0.19. From our
simulations, we find that we have to use a larger ∆T at the high end of the
temperature spectrum. The problem is that for high temperatures we find
the energy histograms of two adjacent temperatures ∆T to practically be
the same. Perhaps this is due to the fact that in general we simulate on
smaller lattices than used in [39]. In the end we decided to use a varying
temperature mesh for the calculation of F(T), where ∆T is increased for
higher temperatures.

This thesis lacks a full error analysis of the free energy calculation. Bi
and Tong have given an estimate for the error in their method by repeat-
edly calculating F (400 times). From the independent data they calculated
the standard deviation and compared the average to the exact value. We
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3.2 First Mapping Scheme: Averaging over Spin Domains 37

have chosen not to perform such an analysis, as it proved to be rather
costly. Our MC simulation typically samples the system m = 1× 104 times
for each temperature, and then this would have to be carried out several
hundreds of times, in the worst case amounting to a simulation time of
several months with our simulation apparatus. To still give some indica-
tion of the error we can calculate the difference between F and the exact
value of the Ising model per spin:

ε =
|F− FExact|

N
(3.22)

Bi and Tong found their error to be small in the ordered phase and in-
crease linearly with temperature in the disordered phase. We expect that
the quantity ε will behave similarly. Obviously, ε can only be seen as a
direct indication of the error for the numerically found free energy of the
Ising model F = FI . However, we can use εI = |FI − FExact|/N as a bench-
mark for the accuracy of the free energy calculation method. And if εI is
small, we can be confident that the numerically calculated network free
energy FNw will also be close to its true value.

3.2 First Mapping Scheme: Averaging over Spin
Domains

Here we shall present our first mapping scheme, which we coin ’Averag-
ing over Spin Domains’ (AoSD). Before going over to the 2D Ising model,
we start with the mapping of the 1D Ising model onto a network model.
Though it does not feature a phase transition- the property we would like
to see reflected in our network model, the added benefit is that it is easier
to picture and thus easier to illustrate our mapping scheme. In addition,
it can be used to verify our results obtained in the high temperature phase
of the 2D Ising model, as we expect these to be very similar.

3.2.1 AoSD in 1D

Construction Procedure

A MC simulation as described in the previous section is done, generating
configurations of N spins on a 1D lattice of size L (so N = L). We impose
periodic boundary conditions, so the lattice has the topology of a chain.
The input parameter of the simulation is the temperature T = 1/β (in re-
duced units of [J/kB]), by which the probability for each configuration to
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38 Mapping of the Ising model onto a Network model

occur is controlled.
Let us now go over the procedure by which we construct a network G

from a particular configuration σ = {.., σi, ..}. See figure 3.4 for an accom-
panying schematic. Firstly, we regard the lattice sites of the Ising model
as the boundary nodes of the to-be-constructed network. Next, for each
domain of equal spins in the configuration a new node is added and all
the sites in the domain are connected to the new node by edges. These
new nodes constitute now the network’s next to outer shell- let us label
the shells of the network starting from the outer shell, so the outer shell
is labelled by l = 0 and the next to outer shell by l = 1, etc. Spin values
are assigned to each node in the l = 1 shell, given by the sum of spin val-
ues in the domain they are connected to. This bundling of domain sites
constitutes step 1 of the construction procedure. Next comes step 2, which
creates the l = 2 shell. The nodes in the l = 1 shell are coarse grained

Figure 3.4: Different stages of the ’Averaging over Spin Domains’ procedure.
Starting from the configuration of spins in the 1D Ising model, defined here on a
lattice with size L = 8, the network is constructed by alternately applying step 1
(bundling of domains) and 2 (coarse graining).
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3.2 First Mapping Scheme: Averaging over Spin Domains 39

with a branching factor of two, so two neighbouring nodes in the l = 1
shell are connected to a new node. By construction, a node j in the newly
created l = 2 shell is connected to two nodes of the l = 1 shell, let us call
them k1 and k2, which have spin values that have opposing signs, let us
refer to these as σ

(1)
k1

and σ
(1)
k2

. Node j receives a spin value of σ
(2)
j = ±1,

where the sign is determined by whichever spin value between k1 and k2

is larger in magnitude (hence by majority). So, if |σ(1)
k1
| > |σ(1)

k2
|, j inherits

the sign of σ
(1)
k1

and vice versa. If the spin values of k1 and k2 are equal in
magnitude, j receives a spin value of +1 or −1 randomly. This concludes
step 2, where we have effectively averaged over spin domains. Step 1 and
2 are then repeated alternately untill a new shell is created that contains
only one node. This last node constitutes the root node of the created tree
network and finalizes the construction procedure.

The cautious reader will have noticed that by assigning the spin value
randomly in the case of a tie, our mapping is no longer two-to-one. In
appendix C the effect of this ’added randomness’ is explored. In short, it
is shown that although the frequency of ties occurring is considerable, the
added randomness is subleading and the effect of the random tie breaker
on the obtained results is insignificant.

In programming the AoSD procedure, the nontrivial part is to scan and
decompose the lattice of spins into its domains. We have adopted and
modified a recursive routine from [25], originally designed to implement
the Swendsen-Wang algorithm [40] (a cluster MC algorithm similar to the
Wolff algorithm). See appendix A.3 for the routine.

The AoSD construction procedure is practically implemented in a MC
simulation of the 1D Ising model via Python in a Jupyter Notebook. We
refer to A.4.1 for the code.

Results

Through the above mapping we generated networks from the MC simu-
lation of the Ising model. Figure 3.5 shows some representative configura-
tions of spins along with their corresponding networks, generated by the
simulation for different temperatures T[J/kB]. For T close to zero one finds
the groundstate of the network model to be a star graph. With increasing
temperature the network becomes an ever deeper rooted tree with more
and more nodes and edges.

Observing the generated networks, our first and simple guess for the
network hamiltonian that tracks the Ising model energy EI (3.3) is the
number of nodes n. The average of both quantites obtained from sim-

39



40 Mapping of the Ising model onto a Network model

Figure 3.5: Configurations of the 1D Ising model, along with the corresponding
networks that were construced by the AoSD mapping procedure. The configu-
rations/networks are representative for the ones generated by the simulation at
a given temperature T[J/kb]. The spins/nodes are labeled by numbers and the
node colors (purple/yellow) indicate the spin value.

ulation at different T and for various system sizes L, are shown in the
same plot of figure 3.6a. Both were calculated as given by (3.13), with
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3.2 First Mapping Scheme: Averaging over Spin Domains 41

(a) (b)

Figure 3.6: Comparison between the Ising energy EI and number of nodes, ob-
tained from the MC simulation of the 1D Ising model and the correspondingly
constructed networks. The simulation was done for increasing system size L and
both quantities are averages over m = 2.5 × 104 samples for each temperature
T[J/KB]. (a) Ising energy (yellow, left vertical axis) and the number of nodes (red,
right vertical axis) are shown as a function of T. The inset shows the correspond-
ing standard deviation σ. (b) The Ising energy plotted against the number of
nodes. In the legend the Pearson correlation coefficient r between the two quan-
tities is shown.

m = 2.5 × 104 samples for each T. The inset shows the corresponding
standard deviation (3.15), where we see that the fluctuation in the mean
decreases with increasing scale. In figure 3.6b the same datapoints for the
Ising energy and the number of nodes are shown, but now plotted against
each other. Both figures show that the variation of the Ising energy and the
number of nodes, as a function of temperature, practically overlap for all
system sizes. In the legend of figure 3.6b, we have included the Pearson
correlation coefficient r ∈ [−1, 1] between the two datasets, giving a more
quantitative measure to the overlap. For all system sizes r is found to be
close to 1, indicating a strong positive linear correlation.

Having established that the number of nodes and the Ising energy are
linearly related, we define the network Hamiltonian as follows:

HNw = J(−2L + n) (3.23)

where we include J the coupling constant, so that the model has the same
units of energy as the Ising model. Note that the number of boundary
nodes is fixed and in 1D equal to L, so n = L + nint, where nint are the
internal nodes. It is then perhaps more instructive to write HNw in terms
of nint:

HNw = J(−L + nint) (3.24)
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42 Mapping of the Ising model onto a Network model

Figure 3.7: The network energy (red), as defined by (3.23), and the 1D Ising en-
ergy (blue) are shown as a function of temperature T[J/kB]. Both are averages
over m = 2.5× 104 samples for each T, obtained from MC simulations performed
for various system sizes L. The inset shows the corresponding standard devia-
tions.

as nint is the quantity that varies. The offset−JL is added such that HNw is
numerically (approximately) equal to the Ising energy. Irreverently said,
the Ising energy is nothing but a counter for the number of nearest neigh-
bour pairs of misaligned spins Z, with an offset given by the total number
of nearest neighbour pairs Nn.n.. In 1D (with periodic boundary condi-
tions), Nn.n. = L. Hence, HI = −JL + JZ. Though a difference in energy
by a constant should not alter the thermodynamcs, it is convenient to com-
pare the energy and ultimately the free energy on the same scale. Finally,
note that one could also use the number of edges e instead of n to define
HNw. This amounts to having essentially the same function, as the net-
work ensemble consists solely of trees, and for a tree graph the number of
nodes is practically equal to the number of edges: n = e + 1.

Figure 3.7 shows the average network energy as defined by (3.23) and
the Ising energy as functions of temperature. The same data used to create
figure 3.6a was used to create this plot. As the two energy functions are
practically equal, we are confident that our network model weighted by
HNw will exhibit the same thermodynamics as that of the Ising model.

In order to show this explicitly, we performed a separate MC simula-
tion where HNw was used instead of HI , i.e. the networks are simulated
with the target distribution being (3.4). The use of HNw prevented us from
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3.2 First Mapping Scheme: Averaging over Spin Domains 43

using the Wolff algorithm (see appendix A.2) and the network simulation
was performed using the more widely applicable Metropolis algorithm. In
figure 3.8 the free energy of the network model is shown vs T for various
system sizes. It was obtained through the method described in subsec-
tion 3.1.1, where we performed an upward temperature scan starting from
T0 = 0.1 and the groundstate degeneracy g(Eg) = g(ET0) = 1. At each
temperature Ti an energy histogram was produced from m = 2× 104 sam-
ples. It is compared to the free energy of the 1D Ising model, obtained nu-
merically from the Ising model MC simulation (using HI), as well as from
the exact solution. The Ising model free energy was calculated in similar
fashion, using an upward temperature scan, but with notable differences:
the Wolff algorithm was used, g(Eg) = g(ET0) = 2 and m = 4× 104. In the
inset one finds the difference of the numerically computed free energies to
the exact Ising model free energy [18], εNw/I = |FNw/I− FExact|/L. The lin-
ear increase of εI with T is in accordance with [39], where this behaviour
was found for the 2D Ising model in the high temperature phase. For

Figure 3.8: The network free energy (green) along with the 1D Ising model free
energy (blue) as a function of temperature T[J/kB], obtained from the network-
and Ising model simulation respectively. The simulations were performed for
various sizes L and the calculated free energies are compared to the exact value
of the Ising model (red). With the network simulation, the Metropolis algorithm
instead of the Wolff algorithm was used and an energy histogram of m = 2× 104

samples at each T was produced. For the Ising model simulation m = 4× 104 at
each T was used. The inset shows the absolute difference ε of the calculated free
energies to the exact value.
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44 Mapping of the Ising model onto a Network model

Figure 3.9: The network (yellow) and 1D Ising (black) entropy as a function of
temperature T[J/kB], obtained from the network- and Ising model simulation
respectively. The simulations were carried out for various system sizes L and the
entropies were calculated from the corresponding average energy 〈E〉 and free
energy F. For the network simulation m = 2× 104 samples were used- and for
the Ising model simulation m = 4 × 104 samples were used to calculate each
datapoint.

larger scales, both εI and εNw do not exceed 4× 10−2 for any temperature
that was probed. From the simulations used to calculate the free energy
we can also compute the entropy. By calculating the average energy 〈E〉 in
addition to F, we can obtain the entropy through (3.17). Figure 3.9 shows
the resulting entropies for the network model as well as the Ising model.

We will further discuss the results in subsection 3.2.3. But from the free
energy and entropy plot we can already conclude that our constructed net-
work model shares the same thermodynamics as the 1D Ising model. In
this sense the mapping is succesful, and it is an encouraging result as we
move on to 2D.

3.2.2 AoSD in 2D

Construction Procedure

For the 2D case of our AoSD mapping scheme, we perform a MC simula-
tion which generates configurations of N spins on a square lattice of size
L× L (so N = L× L). Just like in 1D we impose periodic boundary con-
ditions, hence the topology of the boundary of the constructed networks
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3.2 First Mapping Scheme: Averaging over Spin Domains 45

will be that of the torus. A more natural extension of our 1D mapping,
would be to construct networks from spins defined on a spherical lattice,
as the sphere is the higher-dimensional topological equivalent of the chain
(circle). We have chosen to use the square lattice for a number of reasons,
one of which is that it is easier to program. Also, the square lattice Ising
model is well studied and the exact solution is known. Moreover, numer-
ical studies of the Ising model on spherical lattices show that it belongs
to the same universality class as that of the model defined on the square
lattice [41–43]. Therefore, it is immaterial with respect to our goal of en-
gineering a phase transition into our network model whether we use the
spherical- or the square lattice.

The procedure by which a network G is constructed from a configura-
tion of spins σ is much the same as it was in 1D. Step 1 consists of bundling
all sites within each domain of equal spins to a new node. The resulting
new nodes constitute the next to outer shell (l = 1) and spin values are
assigned to them given by the sum of spin values in the domain they are
connected to. Note that contrary to the 1D case, after performing step 1,
the original 2D square lattice structure is lost. In 1D, step 1 produces an
inner shell of sites which quite naturally can once again be regarded as a
1D lattice with periodic boundary conditions. The same cannot be said
of the created inner shell in 2D, and the original 2D lattice. We regard
nodes in the l = 1 shell to be neighbours if the domains in the l = 0 shell
to which they are connected, are adjacent. And so in 2D, the l = 1 shell
need not have the same lattice structure as the l = 0 shell. Also, in 1D,
the number of domains is always even, which in 2D need not be the case.
With these difficulties in mind, we have chosen to let step 2 consist of ex-
actly the same coarse graining procedure that was used in 1D. Thus, the
l = 1 shell is divided into pairs of neighbouring nodes and each pair is
connected to a new node . A new node j, connected to a pair of nodes
k1 and k2 of the l = 1 shell, then receives a spin value σ

(2)
j = sgn (σ

(1)
ki

)

from whichever σki is larger in magnitude. If |σ(1)
k1
| = |σ(1)

k2
|, σj is assigned

a value of 1 or −1 randomly. If the number of domains is uneven, one set
of three nodes are coarse grained together with the same rules applied. In
this way step 2 creates the l = 2 shell. Next the shells l = 3, 4 etc. are
created by alternately applying step 1 and 2. The procedure ends when a
shell with one node is created. This last node constitutes the root node of
the created tree network.

The AoSD construction procedure is practically implemented in a MC
simulation of the 2D Ising model via Python in a Jupyter Notebook. We
refer to A.4.2 for the code.
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46 Mapping of the Ising model onto a Network model

Results

The generated networks are characterized by the two phases of the 2D
Ising model, where the phase transition occurs at critical temperature Tc ≈
2.26 measured in reduced units [J/kB]. In the low temperature phase one
finds networks close to the star graph (the groundstate) and in the high
temperature phase the networks become ever deeper rooted trees, see fig-
ure 3.10.

Figure 3.10: Configurations of the 2D Ising model, along with the corresponding
networks that were construced by the AoSD mapping procedure. The configu-
rations/networks are representative for the ones generated by the simulation at
a given temperature T[J/kb]. The spins/nodes are labeled by numbers and the
node colors (purple/yellow) indicate the spin value.
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Satisfied with our choice in 1D, we once again consider the number
of nodes n as a network property by which we can define an appropiate
network hamiltonian that tracks the Ising energy EI . The average (3.13) of
both quantities as a function of T, obtained from simulation performed for
different system sizes L are shown in the same plot of figure 3.11a. They
were calculated using m = 2.5× 104 samples for each T. In contrast to
the result found in 1D, the number of nodes function n(T) clearly deviates
from the Ising energy EI(T). Firstly, different from EI(T), n(T) increases
fairly linearly with T, where a kink is observed around Tc. Secondly, the
inset shows the corresponding standard deviations (3.15), where we ob-
serve a peak around Tc of the fluctuation in EI- indicative of the phase
transition, while no such behaviour is seen for the fluctuation in n. Finally,
the trend with increasing scale L indicates that n(T) and EI(T) converge
to different functions in the thermodynamic limit, as can also be seen from
figure 3.11b, where EI(T) and n(T) are plotted against each other. The leg-
end of figure 3.11b includes the Pearson correlation coefficient r ∈ [−1, 1]
between the two quantities. Though the found values for r indicate a pos-
itive linear relationship, we need r to be closer to 1. We conclude that
n(T) is not an appropiate function to define the network hamiltonian. In
subsection 3.2.3 we will discuss the reason for why, in contrast to 1D, we
found such a disparative result in 2D.

(a)
(b)

Figure 3.11: Comparison of the Ising energy EI with the number of nodes, ob-
tained from MC simulation of the 2D Ising model and the correspondingly con-
structed networks. The simulation was done for different system sizes L and both
quantities are averages over m = 2.5× 104 samples for each temperature T[J/KB].
(a) Ising energy (yellow) and number of nodes (red) are shown as a function of
T. The inset shows the corresponding standard deviation σ. (b) The Ising en-
ergy plotted against the number of nodes. In the legend the Pearson correlation
coefficient r between the two quantities is shown.
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Next we make perhaps a more educated guess on which network func-
tion can serve as our network Hamiltonian. We consider a quantitiy used
to study allometric scaling relations in transport networks, such as river-
basin networks or nutrient transport networks found in biological sys-
tems [source?]. How this allometric number, Nalm, is calculated from a
given network is best explained by an example. Consider the tree net-
work shown in figure 3.12a. To each node two numbers (Bi, Ci) are as-
signed. All nodes on the boundary, i.e. the l = 0 shell, receive the values
(B(0)

i , C(0)
i ) = (1, 1). For the nodes in the interior (l = 1, 2 etc.) these

(a)

(b) (c)

Figure 3.12: A few exemplary networks with allometric scale. (a) Tree network
where some of the assigned numbers (Bi, Ci) are shown. The quantity of interest
by which we aim to define the network Hamiltonian is Nalm = Croot. (b) Network
topology for which Croot is large: the linear chain. Note that it does not belong to
the set of networks generated by our mapping. (b) At the other extreme, with a
small value for Croot, lies the star graph.
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numbers are calculated according to recursive equations:

B(l)
i = 1 + ∑

〈i,j〉
B(l−1)

j (3.25)

C(l)
i = B(l)

i + ∑
〈i,j〉

C(l−1)
j (3.26)

where 〈i, j〉 denotes that nodes i and j are connected by edges. So, for a
node i in shell l, (Bi, Ci) is calculated from all (Bj, Cj) belonging to nodes
that branch out off i (and are thus situated in shell l − 1). The quantity of
interest is then Ci of the root node, i.e. Nalm = Croot will be our candidate
for defining a network Hamiltonian.

In the context of transport networks, Bi can be interpreted as the flux
(e.g. flow of water or blood per unit time) at node i that it receives from
sites upstream (starting from the boundary) in a steady-state supply situa-
tion. Ci is then the total amount of fluid per unit time that streams through
i and simultaneously through all nodes upstream that are connected to i
directly or indirectly. It is a measure of how efficient a given network
topology is able to maintain a certain amount of flux (or pressure) at a site
downstream. For example, the topology for which C downstream at the
root is found to be very large, is that of the linear chain (see figure 3.12b). A
very high amount of total substance flowing through the chain is required
in order to sustain a certain amount of flux at the root node, rendering it
very inefficient. At the other extreme lies the star graph (see figure 3.12c),
where one will find a relatively small value for Croot.

Note that Bi also equals the number of nodes upstream of i (includ-
ing i). Hence, at the root it is nothing but the total number of nodes of
the network: Broot = n. The networks generated by our mapping scheme
will then obey the scaling relation: Nalm ∼ nα. For networks near the star
graph, the exponent α will be close to 1 (isometrically shaped networks),
while for deeper rooted networks α will approach 2 (allometric networks).

Making the same comparison as we did for the number of nodes, figure
3.13 shows how the allometric scale Nalm compares to the Ising energy EI .
We observe that for the smallest scale used (L = 8), Nalm(T) follows EI(T)
closely in the low temperature phase, but deviates from it when T is raised
above the critical temperature Tc ≈ 2.26. For increasing scales it seems to
be the other way round, e.g. for the largest scale used (L = 32), Nalm and
EI(T) actually overlap quite nicely in the high temperature phase, while
they differ significantly for T < Tc. In the range T = 1-2, a curious plateau
is found followed by a sudden increase near Tc. This behaviour of Nalm(T)
is, remarkably so, somewhat reminiscient of latent heat encountered in
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(a) (b)

Figure 3.13: Comparison of the Ising energy EI with the allometric scale, obtained
from MC simulation of the 2D Ising model and the correspondingly constructed
networks. The simulation was done for increasing system size L and both quan-
tities are averages over m = 2.5× 104 samples for each temperature T[J/KB]. (a)
Both are shown as a function of T. The inset shows the corresponding standard
deviation σ. (b) The Ising energy plotted against the allometric scale. In the leg-
end the Pearson correlation coefficient r between the two quantities is shown.

first order phase transitions.
Though the trend with increasing scale indicates that in the thermody-

namic limit Nalm(T) will accurately track the Ising energy for high tem-
peratures, we deem it unfit to be the network Hamilonian because of its
behaviour for T below and near Tc. It is at this point that we abandoned
our search for an appropiate network Hamiltonian for this particular map-
ping scheme and so also did not proceed in taking the next intended steps
(perform separate simulation and compute network free energy). Instead,
we decided to develop a whole new mapping scheme, which is the subject
of section 3.3.

3.2.3 Discussion

The AoSD mapping in 1D is a showcase example of what we are trying to
achieve in this chapter. A function of the whole network (boundary+bulk)
was found, by which a network Hamiltonian could be defined that accu-
rately tracks the energy of the boundary model (i.e. Ising model). Simu-
lations done with the network Hamiltonian showed that the free energies
of the two models are practically the same (figure 3.8). For some temper-
atures, the network model free energy was found to be closer to the exact
value of the Ising model than the numerically calculated free energy of the
latter model.
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(a) (b)

Figure 3.14: Two 2D spin configurations with the same number of domains (two)
but with different energies (number of misaligned pairs of nearest neighbours).

Repeating the same steps with a 2D boundary, the results were a little
different. In hindsight, the fact that the number of nodes n(T) tracks the
Ising energy EI(T) so poorly in 2D when compared to 1D, can be easily
explained by taking a closer look at our construction procedure. By nature
of the constructed tree-networks, most nodes are found at the boundary.
However, the number of boundary nodes n(0) is constant and so the largest
contribution to the variation in n(T) comes from the number of nodes in
the next to outer shell, n(1). If one recalls how the l = 1 shell is constructed,
one sees that n(1) is nothing but the number of domains of the spin config-
uration defined on the boundary. For the 1D Ising model, the number of
domains equals, except for a constant factor, the nearest neighbour energy
function. This is a property specific to the model in 1D and it does not
extend to higher dimensions. See figure 3.14 for a simple example in 2D
of two configurations with the same number domains but with different
energies.

Finally, in exploring the possibility of using the allometric number Nalm
to define an appropiate network Hamiltonian, we found a curious serendip-
itous result. For large enough scales, Nalm(T) sharply increases for T well
below the critical temperature Tc. The increase is followed by a levelling
off when the temperature is raised, which in turn is followed by a sud-
den increase when T is raised even further and approaches Tc. This is
somewhat similar to latent heat found in systems that exhibit a first order
phase transition, which is remarkable as the (2D) Ising model is an exam-
ple of a second order (continuous) phase transition. Further study would
be needed in order to fully explain this finding.
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3.3 Second Mapping Scheme: RG blocking

Compared to our first mapping, the networks generated by our second
mapping scheme will be more rigid and thus less dynamical in nature. A
tree network will serve as an underlying lattice, where spins are defined
on its nodes by a procedure intricately related to the block spin renormal-
ization group (RG) formalism. Hence, we will coin this second mapping
scheme ’RG blocking’ (RGb). This time we have paid special attention
to designing the dynamics such that the Ising energy is reflected into the
topology of the network. Once again, we will first treat the mapping of
the 1D Ising model, before moving on to 2D.

3.3.1 RGb in 1D

Construction Procedure

Configurations of N spins σ = {.., σi, ..} are generated by the MC simula-
tion of the 1D Ising model. The lattice has size L (so N = L) and periodic
boundary conditions are imposed. The input parameter of the simulation
is the temperature T[J/kB], which controls the configuration probability.

A configuration σ is mapped onto a network G as follows. First of all,
the spins σi of the Ising chain are identified as the boundary nodes (shell
l = 0) of a full b-ary tree network, where the branching factor b equals 2.
Then, the parent nodes of these, in shell l = 1, are identified with block-
spins σ

(1)
i that result from blocking together the spins defined on their

offspring. So, the branching factor b is also the block size. See figure 3.15
for an accompanying picture. The block-spins receive a spin value of ±1
by majority rule. In the case of a tie, they inherit the spin value of the
most clockwise spin in their block. This whole identification procedure is
repeated for all shells. So, the lth shell corresponds to the lth iteration of
blocking spins. Note that there are N(l) = N/bl number of spins in shell l.
Next, dynamics are introduced by adding edges e(l)ij across neighbouring
spins i, j (of the same shell) that are misaligned. Letting these cross-edge
variables be represented by numerical values as follows:

e(l)ij =

{
1 if an edge is present between node i and j
0 else

(3.27)
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3.3 Second Mapping Scheme: RG blocking 53

Figure 3.15: RGb mapping procedure. The Ising spins σ
(0)
i are defined on the

boundary nodes (shell l = 0) of a b-ary tree network (with branching factor b = 2)
and take on spin values ±1 (yellow/purple). Nearest neighbour spins belonging
to the same parent node are blocked together. The resulting block-spins σ

(1)
i are

associated with the parent nodes in shell l = 1. This is repeated for all shells
untill all nodes have a designated spin value σ

(l)
i . The mapping is completed by

adding edges eij between all nearest neighbour spins (within the same shell) that
are misaligned (dashed edges).

they are related to the spin variables by

e(l)ij =
1− σ

(l)
i σ

(l)
j

2
(3.28)

where the subscripts i, j index nearest neighbours. With the placement of
these edges onto the network the mapping is completed.

The RGb construction procedure is practically implemented in a MC
simulation of the 1D Ising model via Python in a Jupyter Notebook. We
refer to A.4.3 for the code.

Results and Discussion

The corresponding network to the groundstate of the Ising model is clearly
the tree network. With the increase of temperature T[J/kB], the networks
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54 Mapping of the Ising model onto a Network model

have more and more cycles that are found throughout all shells, as shown
in figure 3.16.

Figure 3.16: Configurations of the 1D Ising model, along with the corresponding
networks that were construced by the RGb mapping procedure. The configu-
rations/networks are representative for the ones generated by the simulation at
a given temperature T[J/kb]. The spins/nodes are labeled by numbers and the
node colors (purple/yellow) indicate the spin value.

Our RGb mapping scheme is very reminiscient of the Monte Carlo renor-
malization group (MCRG) [44–47]- a method developed to study critical
phenomena that combines MC simulations with real-space renormaliza-
tion [48]. The strategy of MCRG is to use a MC simulation to generate
a sequence of configurations characteristic of the system’s Hamiltonian.
Then an RG transformation (e.g. blocking spins) is applied directly on
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3.3 Second Mapping Scheme: RG blocking 55

these configurations. The result is a sequence of configurations character-
istic of the (original) system with a renormalized Hamiltonian. One can iter-
ate the RG transformation on the produced sequences of configurations-
and one usually does so to find the RG flow near the critical point and
ultimately the critical exponents. In this light, the generated networks can
be seen as constructs that graphically represent the whole RG procedure.
The lth shell of the network corresponds to a configuration of spins char-
acteristic of the renormalized Hamiltonian for the lth iteration of the RG
transformation.

By (3.28), the cross-edge variables e(l)ij correspond to the nearest neigh-
bour interactions of the (block-)spins. Therefore, we can write an approx-
imation to the renormalized Hamiltonian in terms of these:

H(l) =∑
i,j
−Jσ

(l)
i σ

(l)
j = −J ∑

i,j
1− 2e(l)ij

=J(−n(l) + 2e(l))
(3.29)

where n(l) is the maximum number of possible cross-edges in shell l (a
constant) and e(l) = ∑i,j e(l)ij is the actual number of cross-edges present in

shell l. Note that as the shells are one-dimensional, n(l) = N(l). For l > 0,
H(l) is an approximation to the full renormalized Hamiltonian, where we
have tacitly assumed it to be of the same form as the original Hamiltonian
H(0, i.e. incorporating only nearest neighbour interactions. This turns out
to be exactly valid for the 1D Ising model, but usually the renormalized
Hamiltonian may contain higher order interactions (next nearest neigh-
bour etc.) or even an infinite number of coupling constants. Furthermore,
note that H(l) is found explicitly from the block-spins. To complete the
RG analysis, one would want to express H(l) in terms of the original spins
σ
(0)
i = σi (accompanied by an appropiate rescaling) and a renormalized

coupling constant J(l) (or equivalently a renormalized temperature T(l)).
Figure 3.17 shows the energies for some shells, as given by (3.29). They

were obtained from the networks generated by the MC simulation and
each data point is an average over m = 2.5× 104 samples for each tem-
perature T. The Ising energy is also shown, which by construction corre-
sponds exactly to the energy of the outer shell, i.e. HI = H(0). For increas-
ing l, H(l) is found to be increasingly higher relative to H(0) for the same
T. This is in accordance with the flow of the RG transformation for the
Ising model in 1D. The 1D Ising model has two fixed points, an attractive
one at K = βJ = 0 (high temperature T → ∞ or equivalently weak cou-
pling J → 0) and a repulsive one at K → ∞ (low temperature T → 0 or
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56 Mapping of the Ising model onto a Network model

Figure 3.17: Energies E(l) as given by (3.29) are shown as a function of tempera-
ture T[J/kB] for some shells. Also shown is the Ising energy EI as a function of T,
which by construction is exactly equal to E(0). Each datapoint is an average over
m = 2.5× 104 samples, obtained from the MC simulation of the 1D Ising model
and the correspondingly constructed networks. The Ising model was simulated
on a lattice with size L = 1024. Note the values for E(l) at a given T are increas-
ingly higher with increasing l, in accordance with the RG flow for the 1D Ising
model.

strong coupling J → ∞). Thus, starting with the system at any finite T, the
RG transformation is equivalent to making it more disorderd, i.e. finding
higher energies in the system.

A natural candidate to consider then as the network Hamiltonian is the
sum of all shell energies:

HNw =
1

rgeom

n−1

∑
l=0

H(l)

=
1

rgeom

n−1

∑
l=0

∑
i,j
−Jσ

(l)
i σ

(l)
j

=
J

rgeom

n−1

∑
l=0

(−n(l) + 2e(l))

(3.30)

where n is the number of shells of the network. From the network per-
spective, HNw is nothing more than a function of the network that traces
the total number of cross-edges e = ∑l e(l). We have included a rescaling
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3.3 Second Mapping Scheme: RG blocking 57

factor rgeom to make the groundstate energy level per boundary spin of
the Ising model and the network model coincide. Without rescaling (i.e.
rgeom = 1), HNw would differ from the Ising energy HI for two reasons:
1) as discussed above, the H(l)’s for l > 0 differ qualitatively from HI in
accordance with the RG flow of the model, and thus so does HNw; 2) there
is a quantitative difference, simply due to the fact that HNw is a sum over
all shells. By rescaling- or equivalently setting the coupling strength of a
cross-edge to J̄ = J/rgeom, we eliminate the difference stemming from the
latter reason. The rescaling factor is determined by how much larger the
total number of sites of the network is compared to the number of sites
of its boundary. We can find this size difference from the bulk-boundary
ratio, which is solely determined by the branching factor b. The number
of sites found at the boundary is Nbd = bn. The number of sites found in
the bulk is given by a geometric series Nbulk = ∑n−1

k=0 bk. In the thermo-
dynamic limit n → ∞, we find Nbulk/Nbd = 1/1− b. As b = 2, the ratio
bulk:boundary is 1 : 1, so the network is twice the size of its boundary,
and we set the rescaling factor to rgeom = 2.

Figure 3.18 shows how the network energy HNw (as given by (3.30))
compares to the Ising/boundary energy HI . The averages over m = 2.5×
104 samples of both quantities are plotted as a function of temperature.
They were obtained from simulations done for various sizes L. In the inset

Figure 3.18: Network energy (red), as defined by (3.30), and the 1D Ising energy
(blue) are shown as a function of temperature T[J/kB]. Both are averages over
m = 2.5× 104 samples for each T, obtained from MC simulations performed for
various system sizes L. The inset shows the corresponding standard deviations.
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58 Mapping of the Ising model onto a Network model

we see that the corresponding standard deviations decreace with increas-
ing L. The network energy is found to be higher than the Ising energy for
virtually all T, which follows from the aggregate effect of having higher
energies in the inner shells. Despite this difference, figure 3.19 shows that
the network free energy- obtained from a simulation where the graphs/-
configurations were weighted in accordance with HNw (i.e. the weights
are given by (3.4)), is still found to be very close to the Ising free energy
(both exact and numerical). With the largest scale used (L = 1024), the dif-

Figure 3.19: Network (green) and 1D Ising model (blue) free energy as a function
of temperature T[J/kB]. They were obtained from the network- and Ising simu-
lation respectively, which were performed for various sizes L. Also shown is the
exact value (red) of the Ising model. With the network simulation, the Metropolis
algorithm instead of the Wolff algorithm was used and an energy histogram of
m = 2× 104 samples at each T was produced. For the Ising model simulation
m = 4× 104 at each T was used. The inset shows the absolute difference ε of the
calculated free energies to the exact value.

ference to the exact value, εNw = |FNw − FExact|/L is found to be smaller
than 0.1 for any T that was used. The free energies were calculated through
the histogram method described in subsection 3.1.1. For the upward tem-
perature scans, an energy histogram of m = 2 × 104 and m = 4 × 104

samples at each T was used for the network- and Ising model simulation
respectively. The scans were also used to compute the entropies (via 3.17),
and the result is shown in figure 3.20.
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3.3 Second Mapping Scheme: RG blocking 59

Figure 3.20: Network (yellow) and 1D Ising (black) entropy as a function of tem-
perature T[J/kB], obtained from the network- and Ising model simulation respec-
tively. The simulations were carried out for various system sizes L and the en-
tropies were calculated from the corresponding average energy 〈E〉 and free en-
ergy F. For the network simulation m = 2× 104 samples were used- and for the
Ising model simulation m = 4× 104 samples were used at each T.

3.3.2 RGb in 2D

Construction Procedure

We use the MC simulation of the Ising model to generate configurations of
N spins σ = {.., σi, ..} on a square lattice of size L× L (so N = L× L). Peri-
odic boundary conditions are imposed, which means that the topology of
the lattice is that of the torus. The configuration probability is controlled
by inputting the temperature T[J/kB].

A spin configuration σ is mapped onto a network G by essentially the
same procedure used for the 1D case (see (3.3.1)). We once again start by
identifying the Ising spins σi with the boundary nodes of a full b-ary tree.
Ofcourse, as the spins are now defined on the 2D lattice, the boundary of
the network is the square lattice instead of the linear chain. The lattice is
divided into 2× 2 squares to form block-spins σ

(1)
i , which are identified as

the parent nodes of the spins in their corresponfing blocks. So, the branch-
ing factor/block size b is equal to 4. The block-spins receive their spin
value ±1 by majority rule. In the case of a tie, σ

(1)
i receives the spin value

of the spin in the top left corner of its block. In this way the l = 1 shell is
formed. It is again a square lattice on which we impose periodic boundary
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60 Mapping of the Ising model onto a Network model

conditions. Next, it is in turn divided into 2× 2 blocks to form the block-
spins of the next shell. This process is repeated forming square lattices
of decreasing size untill one arrives at the root node of the tree network.
See figure 3.21 for an illustration. Note that a shell l counts N(l) = N/bl

spins defined on a lattice of size L(l) × L(l) (so L(l) = L/bl/2). The map-
ping is finalized by adding edges e(l)i,j across nearest neighbouring spins of
the same shell that are misaligned. In other words, all nearest neighbour
interactions of spins within the same shell are graphically represented by
these cross-edges. They are related to the spins by (3.28).

The RGb construction procedure is practically implemented in a MC
simulation of the 2D Ising model via Python in a Jupyter Notebook. We
refer to A.4.4 for the code.

Figure 3.21: Top view of two consecutive layers that are part of the network con-
structed by the RGb mapping procedure of the 2D Ising model. The square lattice
of spins σ

(l)
i (small circles) that constitute the lth shell of the network, is divided

into 2× 2 blocks. The blocks are used to define new spins σ
(l+1)
i (large circles) by

a coarse-graining procedure (majority rule). They are connected to all the spins
in their corresponding blocks by edges (solid lines) and make up the l + 1 shell of
the network. All spins can take on values ±1 (yellow/purple) and edges (dashed
lines) are drawn between nearest neighbour spins of the same shell whenever
they are misaligned.
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Results and Discussion

As already discussed in the 1D case (3.3.1), the networks resulting from
the RGb mapping (see figure 3.22 for two examples) can be regarded as
constructs that embody the whole RG procedure. On the boundary shell
(l = 0) of the network one has the original system, i.e. the Ising model. In
the inner shells (l > 0) one finds spins characteristic of the original model

Figure 3.22: Configurations of the 2D Ising model, along with the corresponding
networks that were construced by the RGb mapping procedure. The configu-
rations/networks are representative for the ones generated by the simulation at
a given temperature T[J/kb]. The spins/nodes are labeled by numbers and the
node colors (purple/yellow) indicate the spin value.
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62 Mapping of the Ising model onto a Network model

with a renormalized Hamiltonian, where going radially inward into the
network corresponds to the RG flow of the model’s parameter K = βJ.
The 2D Ising model has in addition to the trivial fixed points K = 0 and
K = ∞, a critical fixed point at Kc ≈ 0.441 (Tc ≈ 2.26) where the phase
transition occurs. The shell energies H(l), composed of nearest neighbour
interactions between the (block-)spins (see 3.29), give for l > 0 a (crude)
approximation to the renormalized Hamiltonians. From the network per-
spective these are (apart from a constant) equal to the number of cross-
edges e(l) found in the shell. Note that the number of maximum possible
cross-edges in a shell is now equal to twice the number of spins found in
the shell: n(l) = 2N(l).

Figure 3.23 shows shell energies as a function of T, obtained from the
MC simulation using m = 2.5× 104 samples. The Ising energy, which by
construction corresponds to the boundary shell energy HI = H(0), is also
shown. For l > 0, we observe a distinct difference in the behaviour of
the H(l)’s depending on which phase the system is in. In the high tem-
perature phase (T > Tc), we find H(l) to be increasingly higher relative
to H(0) with increasing l. This corresponds to the RG flow towards the

Figure 3.23: Energies E(l), defined by (3.29), are shown as a function of tempera-
ture T[J/kB] for some shells. Also shown is the Ising energy EI as a function of T,
which by construction is exactly equal to E(0). The data is obtained from the MC
simulation of the 2D Ising model and the correspondingly constructed networks,
where m = 2.5× 104 samples and a boundary lattice of size L× L = 32× 32 was
used. We observe that the E(l)’s compare to E(0) in accordance with the RG flow
of the 2D Ising model.
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3.3 Second Mapping Scheme: RG blocking 63

high temperature fixed point K = 0, which was also observed for the 1D
mapping. Different from the 1D case however, we now have a low tem-
perature phase and the low temperature fixed point K = ∞ is attractive.
Thus for T < Tc, we see that H(l) is found to be increasingly lower rela-
tive to H(0) with increasing l. The intersection point of all shell energies
around the critical temperature Tc ≈ 2.26 corresponds to the non-trivial
fixed point where the system is expected to display universal behaviour.
In other words, the scale invariance of the Ising model at the fixed points
is explicitly reflected into the network, as there the network appears the
same throughout all shells, i.e. the fraction of cross-edges e(l)/n(l) is the
same.

We define the network energy HNw in the same way as for the 1D case,
namely as the sum over all shell energies 1

rgeom
∑l=0 H(l) rescaled by the

factor rgeom, see (3.30). As the branching factor b = 4, the bulk-boundary
ratio in the thermodynamic limit is now 1 : 3 and so we rescale by a factor
rgeom = 4/3. Figure 3.24 shows how the network energy HNw compares
to the Ising/boundary energy HI as a function of T, both obtained from
the simulation using different sizes L and m = 2.5× 104 samples. We see
that HNw tracks HI reasonably well, especially in the range T < Tc. For
temperatures above Tc, the network energy is found to be slightly higher

Figure 3.24: Network energy (red), defined by (3.30), and the 2D Ising energy
(blue) are shown as a function of temperature T[J/kB]. Both are averages over
m = 2.5× 104 samples for each T, obtained from MC simulations performed for
various system sizes L. In the inset the corresponding standard deviations are
shown.
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than the Ising/boundary energy, similar to what was found in 1D. The dis-
crepancy is much less though here in 2D, which is to be expected from the
higher boundary-to-bulk ratio. In the inset the corresponding standard
deviations show a peak around Tc, highlighting the increase of fluctua-
tions near criticality.

Having performed a separate MC simulation, where HNw was used
to weight the generated networks (i.e. the target distribution is (3.4)), we
calculated the free energy of the network ensemble using the histogram
method described in subsection 3.1.1. Figure 3.25 shows the network free
energy as a function of T, where it is compared to the Ising free energy,
given exactly as well as numerically from simulation. Both the numerical
Ising and network free energy were obtained by an upward temperature
scan, where an energy histogram of m = 4× 104 and m = 2× 104 sam-
ples was used for each Ti respectively. We observe that for the most part
the network free energy agrees with its Ising counterpart; only around
Tc we find a slight difference. In fact, as shown in the inset, the differ-
ence of the network free energy to the exact value of the Ising model

Figure 3.25: Network (green) and 2D Ising model (blue) free energy as a function
of temperature T[J/kB]. They were obtained from the network- and Ising simu-
lation respectively, which were performed for various sizes L. With the network
simulation, the Metropolis algorithm instead of the Wolff algorithm was used
and an energy histogram of m = 2× 104 samples at each T was produced. For
the Ising model simulation m = 4× 104 at each T was used. Also shown is the
exact value (red) of the Ising model. The inset shows the absolute difference ε of
the calculated free energies to the exact value.
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εNw = |FNw − FExact|/L2 shows a clear peak at Tc ≈ 2.26. As HNw was
expected and found to be close to HI at Tc (fixed point), this difference is
somewhat unexpected. The peak in εNw may result from the histogram
method being less accurate near the order-disorder transition rather than
that it reflects a true difference in the free energies. It would be good to
get an indication of the error in the histogram method near Tc, perhaps
by calculating the free energy numerous times from independent data (i.e.
running the simulation multiple times) and then considering the corre-
sponding standard deviation.

Comparison of the network entropy with that of the Ising model (see
figure 3.26), both calculated from the free energy data through (3.17), shows
a different picture. The network entropy intersects the Ising entropy at Tc

Figure 3.26: Network (yellow) and 2D Ising (black) entropy as a function of tem-
perature T[J/kB], obtained from the network- and Ising model simulation respec-
tively. The simulations were carried out for various system sizes L and the en-
tropies were calculated from the corresponding average energy 〈E〉 and free en-
ergy F. For the network simulation m = 2× 104 samples were used- and for the
Ising model simulation m = 4× 104 samples were used at each T.

and deviates from it below and above Tc. As T → 0 or T → ∞ the en-
tropies become equal again. This is in line with the RG flow and the three
fixed points of the Ising model. For example, for T > Tc the energies in the
inner shells are found to be higher than the Ising/boundary energy (thus
HNw is higher than HI), and so disorder is penalized more in our network
model resulting in a lower entropy.

In summary, we have mapped each configuration of the 2D Ising model
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66 Mapping of the Ising model onto a Network model

onto a network through the RGb procedure. Weighted with the Ising mea-
sure (3.2), the resulting network ensemble trivially inherits the thermody-
namics of the Ising model. We then studied by means of a MC simula-
tion, a network ensemble consisting of the same networks (i.e. the same
state space), but weighted with a different measure (3.4) using a network
Hamiltonian HNw instead of the Ising energy HI . The network Hamilto-
nian was defined to be a function of the whole network, consisting of a
’boundary term’ (H(0)) that corresponds exactly to HI and an additional
term (∑l>0 H(l)) that is a function of the ’bulk’. Our result (figure 3.25)
shows that despite the added contribution from the bulk, the free energy
of this network model remains more or less equal to the free energy of the
Ising/boundary model. With this, we argue that we have demonstrated
the relative ease of obtaining a model with holographic properties when
hyperbolic structure is imposed. The argument is not without a few dis-
claimers. In defining HNw we added a rescaling factor which takes care of
the quantitative difference with HI . Also, as the bulk of the networks were
constructed by an RG procedure starting from the boundary, the effective
interactions between the block-spins in the inner shells near the boundary
is still similar to that of original Ising spins. As one moves inward in the
network towards the root, the interactions between the block-spins dif-
fer more and more from that of the original system, but by hyperbolicity
contribute less and less to the network’s Hamiltonian. Thus, it really is a
combination of the tree-like structure and the RG flow that results in HNw
remaining close to HI . So, the effect of hyperbolicity demonstrated here is
a subtle one.
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Chapter 4
Creating an Independent
Holographic Network Model by
using the Maximum-Entropy
Method and RG formalism

In the previous chapter, we discussed our attempts of creating a network
model whose dynamics is equivalently descibed by a statistical mechan-
ical model defined on its boundary. Our attempts consisted of mapping
each configuration of the (1D or 2D) Ising model onto a network. Weighted
with the Ising measure, the resulting network ensemble is trivially identi-
cal to the boundary model. We tried to extend the network model beyond
the Ising model by weighting the networks with a different measure, us-
ing a Hamiltonian given by a network property. This represents a model
that is only semi-independent of the Ising model, as the networks require
the Ising spins for construction. In order to realize a full duality, the net-
work model should be able to be constructed independently from the Ising
model. In this chapter, we provide ways of contructing a network model
that roughly resembles the one resulting from our last mapping scheme,
the RGb mapping, but without making reference to the Ising spins.

4.1 RGb mapping model

Before discussing ways to create a network model that is established in-
dependently from the Ising model, it is useful to highlight certain aspects
of the networks resulting from the RGb mapping. Recall from section 3.3
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Method and RG formalism

that a RGb network is a b-ary tree enhanced with cross-edges e(l)ij , linking
nearest neighbour nodes i and j within shell l. The cross-edges graphically
represent the nearest neighbour interactions of the Ising (block)-spins σ

(l)
i ,

i.e. they take on values 0 or 1 as given by (3.28). As each network is con-
structed from a configuration of Ising spins defined on the boundary, the
networks occur with the probability given by the Ising measure (3.2). So,
the model’s Hamiltonian is given by the nearest neighbour interactions of
the Ising spins:

βHI = ∑
〈i,j〉
−βJσ

(0)
i σ

(0)
j = ∑

〈i,j〉
−βJ(1− 2e(0)ij )

= βJ(−n(0) + 2e(0))
(4.1)

where in the last line it is written in terms of the number of links e(0),
and the maximum number of possible links (number of nearest neighbour
interactions) n(0) of the boundary shell. The parameter of the model is
K = βJ, (β the inverse temperature and J = J(0) the coupling constant).

As alluded to in subsection 3.3.1, the sequence of configurations of
block-spins σ

(l)
i in shell l > 0, can be characterized as a system of the origi-

nal spins, σ
(0)
i = σi, with a renormalized hamiltonian H(l)

I . We assume for
simplicity’s sake that the hamiltonians will be of the same form, i.e. only
incorporating nearest neighbour interaction. Also, let’s keep the tempera-
ture T[J/kB] = β−1 the same for all shells, so all of the RG-flow goes into
J(l). Then

H(l)
I = ∑

〈i,j〉
−J(l)σ(0)

i σ
(0)
j (4.2)

and it is found from the block-spins explicitly:〈
H(l)

I

〉
=

〈
∑
〈i,j〉
−J(0)σ(l)

i σ
(l)
j

〉
= J(0)

(
−n(l) + 2

〈
e(l)
〉)

(4.3)

The ratios J(l)/J(0) can then be obtained from simulation using:

J(l)

J(0)
=

〈
H(l)

I

〉
/N(l)〈

H(0)
I

〉
/N(0)

(4.4)

where N(l) is the number of spins in shell l. In figure 4.1, these ratios-
obtained from simulation of the RGb mapping of the 1D Ising model on
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Figure 4.1: The ratio of J(l) to the original coupling constant J = J(0) (red) as a
function of T are shown for some shells. They are calculated from the average
shell energies by (4.4), which were obtained from simulation of the RGb mapping
of the1D Ising model on a L = 1024 lattice. For each T, m = 2.5 × 104 sam-
ples were used. Also shown are theoretical counterparts (black), obtained from a
decimation scheme [49].

a L = 1024 lattice, are plotted as a function of T. So, for a given T, they
show the RG flow along the shells. (Note that the plotted J(l)’s essentially
display the same information as was shown in figure 3.17.) As a reference,
we have also included these ratios as found from theory [49]. The theo-
retical results we consider come from a decimation scheme. Starting from
the input parameter K(0) = βJ(0), K(l) is found recursively by:

K(l) =
1
2

ln (cosh 2K(l−1)) (4.5)

We find J(l)’s to be in reasonable agreement with the theoretical values.
For low values of T, they start to deviate slightly, which is probably a
finite size effect. For finite lattices, it becomes harder to sample the true
statistics of the model at low temperatures (strong coupling).

4.2 (Exponential) Random Graph Model

As a starting point in creating an independent network model, we propose
to use the data gathered from the simulated RGb networks, for the creation
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of a random graph model in their image. We start again with the b-ary tree,
but now place each cross-edge e(l)ij with a probability p(l)ij . The connection

probabilities p(l)ij are chosen in such a way that the links e(l)ij are on average,
occupied the same number of times as encountered in the RGb mapping
model. Note that as e(l)ij is a binary variable, one has:

〈
e(l)ij

〉
=

1

∑
e(l)ij =0

p(l)ij e(l)ij = p(l)ij (4.6)

Also, due to symmetry, the connection probabilities are only l-dependent,
i.e. p(l)ij = p(l); and they are equal to the average fraction of cross-edges
encountered in the shell:

p(l) =
〈

e(l)ij

〉
=

〈
e(l)
〉

n(l)
(4.7)

with e(l) denoting the number of cross-edges and n(l) the maximum num-
ber of possible cross-edges in shell l. So, using the average e(l)’s obtained
from the simulation (which essentially are identical to the average shell
energies (4.3) and are also shown in figure 3.17) to calibrate the p(l)’s, we
create the random graph model.

Considering a graph G in this model, let us find what the probability
for it to occur is. First note that the cross-edges e(l)ij have become Bernoulli
random variables (analogous to a sequence of independent coin flips with
a possibly unfair coin). Being independent and identically distributed
within a shell l, they take on values 1 (link present) with probability p(l)

and 0 (no link present) with probability 1− p(l). The probability for the
subgraph G(l), that constitutes the shell l of G, is then given by a Bernoulli
product measure:

P(G(l)) = ∏
〈i,j〉

p(l)ij (1− p(l)ij ) = (p(l))e(l)(1− p(l))n(l)−e(l) (4.8)

The probability for the total graph is then:

P(G) = ∏
l

P(G(l)), (4.9)

From the product above, it may seem that we have a collection of inde-
pendent subgraphs G(l), and as we extract the whole array of connection
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probabilities for each shell from simulation, this is indeed the case. If we
take a closer look however, the p(l)’s are not independent and one should
be able to find them all from p(0). We will come back to this point in sec-
tion 4.3.

For the reason of comparing the model to the Ising model, we would
like to calculate the corresponding entropy and free energy. Knowing the
occurence probability, we can calculate the Gibbs entropy:

S(G) = −∑
G

P(G) ln P(G) (4.10)

which by (4.9) is equal to

S(G) = ∑
l

S(l) (4.11)

with S(l) = − ∑
G(l)

P(G(l)) ln P(G(l)) the entropy for shell G(l). The latter

can be quite easily enumerated, as each graph with the same number of
links has the same weight, and the number of graphs with the same num-
ber of links is a binomial coefficient,

S(l) = −
n(l)

∑
e(l)=0

(
n(l)

e(l)

)
(p(l))e(l)(1− p(l))n(l)−e(l)

[
e(l) ln p(l) + (n(l) − e(l)) ln (1− p(l))

]
(4.12)

The graph model we have introduced is a variant of what is known as
an Erdös-Rényi random graph [50, 51], named after its authors and inde-
pendently introduced by Gilbert [52]. When such a model is described by
the connection probability and the measure of the form (4.8), there is no
notion of a free energy. There is however, a completely equivalent describ-
tion of a classical random graph model, which is more akin to statistical
mechanics. That is, our random graph model can be recovered from a so-
called exponential random graph model [53]. The exponential random graph
can be derived by the maximum entropy principle, a method developed in
information theory–more specifically statistical inference–to uncover the
’least biased’ probability distribution for a system, given partial informa-
tion in the form of averages. Let us go over these two concepts by using
our random graph model as an example in what follows.

Observe that in contrast to the RGb model, all possible graphs that one
can think of on the tree enhanced with cross-edges, occur with nonzero
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probability. For instance, the tree with no cross-edge found at its bound-
ary, but with cross-edges in its interior, is now (though with low proba-
bility) part of the ensemble. This is a reflection of the fact that the model
consists of all possible trees enhanced with cross-edges, where the only
condition we impose, is that the number of cross-edges in each layer will on
average be a given value. Apart from this constraint, the probability distri-
bution P(G) is chosen to be ’as uniform as possible’. The above statement
is made mathematically rigorous by the maximum entropy approach. It
states that such a probability distribution is found by maximizing the en-
tropy (4.11) subject to the constraints

∑
G

P(G)e(l)(G) =
〈

e(l)
〉
∀l (4.13)

and the normalization condition

∑
G

P(G) = 1 (4.14)

Maximizing a function (or in this case a functional) subject to constraints
can be done by the method of Lagrange multipliers:

∂

∂P(G)

[
S + α

(
1−∑

G
P(G)

)
+ ∑

l
θ(l)

(〈
e(l)
〉
−∑

G
P(G)e(l)(G)

)]
= 0

(4.15)

for all graphs G. The parameters θ(l) and α are the Lagrange multipli-
ers tuning the sensitivity to the constraints (4.13) and (4.14) respectively.
Equation (4.15) leads to

1 + ln P(G) + α + ∑
l

θ(l)e(l)(G) = 0 (4.16)

And after rearranging, the solution is

P(G) =
1
Z

e−H(G) (4.17)

with

H(G) = ∑
l

θ(l)e(l)(G) (4.18)

and

Z = e1+α = ∑
G

e−H(G) (4.19)
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One immediately recognizes these as analogs of statistical mechanics, i.e.
H(G) is the graph Hamiltonian and Z is the partition function. The prob-
ability distribution (4.17) defines the exponential random graph and is
analogous to the Boltzmann distribution for the microstates of a physi-
cal system. In fact, the Boltzmann distribution can be derived by the same
means–maximizing the entropy with respect to contraints that one lays
on the observable canonical averages (e.g. total energy). Hence, there
is an information-theoretic viewpoint, as especially promoted by Jaynes
[54, 55], purporting that statistical mechanics is just a particular example
of a more general inference problem within information theory.

The free energy for the exponential random graph model is defined by:

F = − ln Z (4.20)

Note that as e(l)(G) is in reality only a function of G(l), the Hamiltonian is
actually

H(G) = ∑
l

H(l) with H(l) = θ(l)e(l) (4.21)

and the partition function factors out:

Z = ∏
l

Z(l) (4.22)

with

Z(l) = ∑
G(l)

e−θ(l)e(l) = ∏
〈i,j〉

1

∑
e(l)ij =0

e−θ(l)e(l)ij = (1 + e−θ(l))n(l)
(4.23)

Hence:

F = ∑
l

F(l) (4.24)

where

F(l) = − ln Z(l) = −n(l) ln (1 + e−θ(l)) (4.25)

Finally, note that from
〈

e(l)
〉

= − ∂ ln Z
∂θ(l)

and
〈

e(l)
〉

= n(l)p(l) one can
extract the connection probability from θ or vice versa:

p(l) =
1

1 + eθ(l)
(4.26)

One can check that by this relation, (4.9) is recovered from (4.17), showing
the equivalence between the two descriptions presented here.
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4.3 Comparison to the 1D Ising model

In order to compare our (exponential) random graph model with the Ising
model, it is important to identify which parameters and functions corre-
spond with each other. First of all, note that the inverse temperature is
incorporated in the definition of the network Hamiltonian (4.18). Hence,
H(G) and F should be compared to the Ising functions βHI and βFI re-
spectively. Looking at (4.1) and (4.21), one sees that the change in energy
due to having a link (misaligment of nearest neighbour spins) for the Ising
model is β∆HI = 2βJ, while it is ∆H = θ for the random graph model.
This means that the parameters are related like so θ(l) ∼ 2βJ(l). In particu-
lar, working in units where J = 1 and kB = 1, we have θ(0) ∼ (2βJ0 = 2β),
thus the equivalent parameter for the temperature T = β−1 in the random
graph model is identified as T = 2(θ(0))−1. Finally, there is a difference
in offset (given by the number of nearest neighbour pairs) with the energy
and consequently with the free energy. Putting all of this together, the net-
work energies and free energies correspond to their (renormalized) Ising
counterparts as:

H(l)
I ∼ −n(l) +

2
θ(0)

H(l)

F(l)
I ∼ −n(l) +

2
θ(0)

F(l)
(4.27)

Besides the differences in definitions, note that there is also a difference
in size. As we are interested in a purely thermodynamic comparison, we
will consider the thermodynamic functions per degree of freedom. For
the Ising model, the number of degrees of freedom is the number of spins
N, which is equal to the lattice size L, as we are in 1D. We will use L to
characterize the size of both models. With the random graph model, the
number of degrees of freedom in each shell l is the number of cross-edge
variables (number of bonds), which is found from L by n(l) = L/2l. So,
the total number of degrees of freedom for the random graph model is
n = ∑l n(l) = L + L/2 + L/4 + ...

Having extracted the p(l)’s–or equivalently the θ(l)’s–from simulation
of the 1D Ising model and the subsequently generated RGb networks via
(4.7), we used (4.12) to calculate the entropy S(l) and (4.25) to calculate
the free energy F(l). As shown in figure 4.2 and 4.3, the entropy and free
energy of the boundary shell l = 0 correspond pretty much exactly to
the Ising entropy and free energy respectively. It is a reminder that the
1D Ising model can be described as a system of independent biased coin
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Figure 4.2: Entropies S(l) as given by (4.12), are shown as a function of tempera-
ture T[J/kB] for some shells. Also shown is the Ising entropy SI as a function of
T. With the MC simulation of the 1D Ising model and the correspondingly con-
structed networks, a lattice size of L = 1024 and m = 2.5× 104 samples at each T
was used.

Figure 4.3: Change in free energies, where F(l) is given by (4.25), are shown as
a function of T[J/kB] for some shells. Also shown is the change in the Ising free
energy ∆FI as a function of T. With the MC simulation of the 1D Ising model
and the correspondingly constructed networks, a lattice size of L = 1024 and
m = 2.5× 104 samples at each T was used.
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Figure 4.4: Random graph (yellow) and 1D Ising (black) entropy as a function of
temperature T[J/kB]. The simulation of the Ising model and the subsequent RGb
mapping, was carried out with various system sizes L. At each T, m = 2.5× 104

samples were used.

tosses, i.e. one can replace the coupled spin variables and work with ’bond
variables’ σiσi+1, which are independent in 1D. The bond variables are es-
sentially the cross-edge variables of our network model. In the free energy
plot, the change in free energy ∆F is shown, so that the results are not ob-
scured by the difference in offset–irrelevant to the thermodynamics. For
l > 0, S(l) and F(l) start to deviate as functions of T, in accordance with the
higher fraction of cross-edges that are found as one moves along the inner
shells towards the root, which in turn can be traced back to the RG flow of
the 1D Ising model. Whether or not this contribution from the interior is
enough to let the entropy (4.11) and free energy (4.24) of the whole graph
deviate significantly from the original Ising model, can be found in fig-
ure 4.4 and figure 4.5. We observe that they differ from the corresponding
Ising functions. As discussed in subsection 3.3.1, the bulk-to-boundary ra-
tio is 1 : 1. Thus, the contribution to the free energy coming from the inner
shells is still one half of the whole, and apparently enough to make it differ
slightly from the Ising free energy.

As mentioned earlier, the parameters θ(l) are not independent. We have
now seen that they correspond to 2βJ(l). Hence, all θ(l) for l > 0 are ulti-
mately functions of θ(0), which is the true and only parameter of the ran-
dom graph model, and their relation is given by the RG flow. In figure
4.1 we saw how J(l), obtained explicitly from the block-spins of the RGb
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Figure 4.5: Random graph (green) and 1D Ising model (blue) change in free en-
ergy as a function of temperature T[J/kB]. Also shown is the exact value (red) for
the Ising model. The Ising model simulation and subsequent RGb mapping was
done for various sizes L, and m = 2.5× 104 samples were used at each T.

networks , agrees reasonably well with the RG trajectory as given by a
decimation scheme [49]. Making the same comparison in figure 4.6 for the
ratio’s θ(l)/θ(0), we find that they are more in agreement with the theoreti-
cal result than the J(l)’s. This came a bit as a surprise to the present author.
Though both J(l) and θ(l) are obtained from the average energy/number
of cross-edges, it seems that θ(l) does not suffer from finite size effects of
the simulation. Anyhow, it is convenient, as it shows that θ(l)’s can be
given by the recursive relation (4.5), which from the network perspective
is then seen as a radial equation. This would make the random graph
model complete and truly independent, as one does not need the Ising-
RGb simulation anymore to extract the parameters.
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Figure 4.6: The ratio θ(l)/θ(0) as a function of T are shown for some shells. They
are compared to the equivalent ratio, obtained from a decimation scheme of the
1D Ising model [49]. The θ(l)’s were extracted from the average number of cross-
edges in the shell, as found from the RGb simulation. The lattice had size L =
1024 and for each T, m = 2.5× 104 samples were used.

4.4 Extension to 2D

We have straightforwardly extended the random graph model to 2D (di-
mension of the boundary). Thus, from simulation of the Ising model, now
on a N = L× L lattice of spins, and the subsequently generated RGb net-
works, we have extracted the connection probabilities p(l) (and thus also
θ(l)) using (4.7). Note that there are now two cross-edge variables for each
spin. Hence the number of degrees of freedom in a shell for the random
graph model is n(l) = 2N(l), where N(l) = L2/4l (branching factor is 4) is
the number of spins found in shell l. The number of degrees of freedom
for the whole network is then n = ∑l n(l) = 2(L2 + L2/4 + L2/16 + ...).

Figure 4.7 shows the entropy of each shell (4.12) and figure 4.8 shows
the free energy of each shell (??). Notice that the entropy and the free en-
ergy of shell l = 0, i.e. the boundary, already does not correspond with
that of the Ising model. It then comes as no surprise that the total entropy
(4.11) and free energy (4.24) differs significantly from the 2D Ising model,
as shown in figure (4.9) and (4.10) respectively.

So why is it that the boundary of our random graph model is practi-
cally identical to the Ising model in 1D, but not in 2D? As alluded to earlier,
the 1D Ising model can actually be rewritten as a system of independent
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Figure 4.7: Entropies S(l) as given by (4.12), are shown as a function of tempera-
ture T[J/kB] for some shells along with the Ising entropy SI . With the MC sim-
ulation of the 2D Ising model and the correspondingly constructed networks, a
lattice size of L× L = 32× 32 and m = 2.5× 104 samples at each T was used.

Figure 4.8: Change in free energies, where F(l) is given by (4.25), are shown as a
function of T[J/kB] for some shells along with the change in the Ising free energy
∆FI . With the MC simulation of the 2D Ising model and the correspondingly
constructed networks, a lattice size of L× L = 32× 32 and m = 2.5× 104 samples
at each T was used.

bond variables. While the spins {σi} are obviously coupled by the nearest
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Figure 4.9: Random graph (yellow) and 2D Ising (black) entropy as a function of
temperature T[J/kB]. The simulation of the Ising model and the subsequent RGb
mapping, was carried out with various system sizes L. At each T, m = 2.5× 104

samples were used.

Figure 4.10: Random graph (green) and 2D Ising model (blue) change in free
energy as a function of temperature T[J/kB]. Also shown is the exact value (red)
for the Ising model. The Ising model simulation and subsequent RGb mapping
was done for various sizes L, and m = 2.5× 104 samples were used at each T.

neighbour Hamiltonian, the bond variables {σiσj} are independent in 1D. In
2D this is not the case, as due to the increased number of neighbours per
spin, the occurence of a cross-edge (anti-aligned bond) fixes the presence
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Figure 4.11: Connection probabilities of the random graph model, as given by
(4.7), are shown as a function of temperature T[J/kB] for some shells. With the
MC simulation of the 2D Ising model and the correspondingly constructed RGb
networks, a lattice size of L× L = 32× 32 and m = 2.5× 104 samples at each T
was used.

of neighbouring cross-edges. Thus, a graph model with independent bond
variables cannot accurately describe the Ising model. We can also see this
by simply considering the number of degrees of freedom. The number
of cross-edges is twice the number of spins for the 2D case. As a model
with independent d.o.f. cannot describe a system with half the number of
d.o.f., it is natural that the boundary of our random graph model corre-
sponds poorly to the 2D Ising model.

Though it is clear that the random graph model does not inherit the
Ising phase transition, we do expect it to be very sensitive to which phase
the Ising model is in. The inner shells of the RGb networks, in a way, ’ex-
aggerate’ the phase in which the Ising model on the boundary is in. That
is, in the low temperature phase, the block-spins in the interior are charac-
teristic of the boundary Ising model with an even lower temperature (or
stronger coupling) and it is the opposite for the high temperature phase.
We do see, especially from the entropy of each shell in figure 4.7, that this
effect is reflected onto the random graph model. One would think how-
ever, that the point where the system looks the same in all shells is at the
critical temperature of the Ising model Tc ≈ 2.26, as then the fraction of
cross-edges in the RGb networks should be the same for all shells. We
observe that the shell entropies coincide already for lower temperature
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T ≈ 1.2. This can also be clearly seen from the connection probabilities,
displayed in figure 4.11. It would be interesting to know why the self-
similarity point of our random graph model lies where it does.

4.4.1 Outlook

Suppose we could recreate the situation found in 1D for the random graph
model in 2D. In particular having the boundary correspond exactly to the
Ising model. Then we might find that the thermodynamic functions of the
whole network are much closer to their Ising counterparts than was found
in 1D. We expect this because of the smaller deviating contribution coming
from the inner shells, due to the larger branching factor (b = 4 as opposed
to b = 2).

Finding a graph model that is equivalent to the Ising model for all di-
mensions (even generalized for the Potts model) has been done in the early
70’s by Fortuin and Kasteleyn [56, 57]. The probability for a planar graph
in the Fortuin-Kasteleyn model, which also goes by the name random clus-
ter (RC) model, is similar to that of the Bernoulli product measure we saw
in (4.8):

P(G(l)) =
1

ZRC
qk(G(l)) ∏

〈i,j〉
p(l)(1− p(l)) (4.28)

where p(l) denotes again the connection probability and is the parameter
of the model∗. Notice that there is an extra factor qk(G(l)). For our pur-
poses q = 2, as then it corresponds to the Ising model (in general q is a
positive real that determines which model the RC model is equivalent to,
e.g. for q ∈ {2, 3, ..} it corresponds to the q-state Potts model). The ex-
ponent k(G(l)) denotes the number of connected components (clusters) in
G(l). Therefore, the factor qk(G(l)) couples the cross-edge variables e(l)ij . The
normalizing factor ZRC is the model’s partition function:

ZRC = ∑
G(l)

qk(G(l)) ∏
〈i,j〉

p(l)ij (1− p(l)ij )

 (4.29)

Carrying on as before, we would create the random graph model by

∗We have kept using the notation 〈i, j〉, which refers to spin i and j to denote the
corresponding bond variable. Ofcourse, as the spins are not needed to define the RC
model, it is perhaps more appropiate to start indexing the bonds themselves.
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setting the connection probability for each shell equal to the value found
from simulation of the RGb networks. Or alternatively, it is known that
the connection probability is related to the parameter of the Ising model
as: p(l) = e−2βJ(l) . However, due to the inclusion of the factor q(k(G

(l)),
graphs with the same number of cross-edges e(l) = ∑〈i,j〉 eij, are no longer
measured with the same weight. Thus, simple numerical enumeration us-
ing binomial factors is no longer possible. If one would want to study the
resulting random graph model numerically, one probably would need to
use a MC simulation of the RC model for each shell.

In light of the RC model being the equivalent graph representation of
the Ising model in any dimension, one might wonder how it is that our
random graph model, with independent cross-edge variables, was found
to correspond to the 1D Ising model already so well. Should not the RC
model then be the same as our random graph model when the planar
graph is a one-dimensional chain? In fact, this is indeed the case. In 1D, the
number of clusters k(G(l)) is equal to the number of cross-edges (pairs of
misaligned spins), as we have emphatically learned from our AoSD map-
ping scheme (section 3.2). Hence the factor qk becomes qe(l) , and (4.28) re-
duces to a Bernoulli product measure equivalent to the one in (4.8), where
the cross-edges are independent variables.

Instead of focussing on the thermodynamics of the network itself, we
could also take a different approach. Our aim is to find a network model
that encaptures a boundary dimensional phase transition, not nessecarily the
Ising phase transition, in its higher dimensional structure. Thus, we could
also for example study percolation on the networks of our random graph
model. It would be interesting to find a percolation phase transition spe-
cific to 2D, in the seemingly higher-dimensional networks. Care should be
taken that one is not finding trivial results, as in its present form, the edges
only vary in 2D within the shells, i.e. the edges in the radial direction are
fixed.
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Chapter 5
Conclusion

Inspired by the AdS/CFT correspondence, we have incorporated some
key ideas, such as the geometrization of the RG formalism and having
a hyperbolic background into the construction of a network model. The
goal was to see if by merely adopting these concepts one can create a sta-
tistical mechanical-network system that exhibits boundary specific ther-
modynamics. In particular, we aimed at encapturing the 2D Ising phase
transition in a higher dimensional network model.

After offering a review of the Ising model on the Cayley tree–a net-
work equivalent of hyperbolic space–in chapter 2, where by self-similarity
arguments the model can be transformed into a Bethe lattice, we dicussed
mappings of the 1D and 2D Ising model onto a network model in chapter
3. With our AoSD mapping, we found in 1D that although weighted with
a Hamiltonian that was equal to the boundary (Ising) hamiltonian plus an
added contribution from the bulk, the thermodynamics remained virtu-
ally the same (the same as when it was weighted with only the boundary
Hamiltonian). In 2D, the variation of the Ising energy was found not to
be reflected into the topology of the network. Therefore, we developed
another construction procedure, the RGb mapping. The same holographic
effect as was shown for the 1D AoSD mapping was demonstrated, though
to a lesser extent and with a caveat (the quantitative difference between
network and boundary Hamiltonian was ignored).

In chapter 4 we formulated a(n) (exponential) random graph model to
create an ensemble of networks that resembles the one seeded of the Ising
model by the RGb mapping independently. In 1D (dimension of the Ising
model/boundary), the boundary of the random graph model was found
to correspond exactly to the Ising model. The entropy per degree of free-
dom was found to be bit higher than its Ising counterpart, due to the con-
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tribution of the interior. We expected the entropies to correspond better
in 2D due to the higher boundary-to-bulk ratio, but the boundary graph
description already did not correspond to the Ising model. The 1D Ising
model, can be descibed by independent ’bond variables’, which is not true
for the model in any dimension higher. If one wants to create the same
situation one has in 1D, we suggest to use the random cluster model to
descibe each shell of the RGb network, as it is a planar graph model that
is equivalent to the Ising model in any dimension. An alternative move
forward is to study percolation, on the random graph model with the 2D
boundary. Perhaps it displays a 2D specific percolation phase transition in
the higher dimensional network model.
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Appendix A
Simulation Routines and Code

A.1 Metropolis Algorithm

The Metropolis algorithm [23] is an algorithm that can be used to imple-
ment transitions in the Monte Carlo (MC) simulation of the Ising model. It
proceeds in two stages: 1) given a state X, a trial state X′ is proposed with
trial probability W(X → X′), 2) the trial state X is accepted to be the new
state with acceptance probabiltiy A(X → X′). The transition probability
then reads

T(X → X′) = W(X → X′)A(X → X′) (A.1)

and the trial probabilities are required to meet the following conditions

W(X → X′) > 0, (A.2)

W(X → X′) = W(X′ → X), (A.3)

∑
X′

W(X → X′) = 1, (A.4)

for all X, X′

Note that the symmetry requirement A.3 turns the detailed balance condi-
tion 3.11 into an equation for the acceptance probabilities:

A(X → X′)
A(X′ → X)

=
P(X′)
P(X)

(A.5)

The Metropolis solution is then defined as:

A(X → X′) = min (1, P(X′)/P(X)) (A.6)
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So, if the trial state has a larger weight than the present state P(X′) >
P(X), it is always accepted to be the new state; if the trial state has a
smaller weight than the present one P(X′) < P(X), it is accepted with
probability P(X′)/P(X).

Using the Metropolis method to simulate the Ising model, the first
stage of the move is realized by selecting a spin at random from the cur-
rent configuration σ and taking the configuration with this selected spin
flipped as the trial configuration σ′. Therefore the trial probabilities are
chosen to be:

W(σ→ σ′) =

{
1/N, if σ and σ′ differ by a single spin flip
0, otherwise

(A.7)

As the weights are given by: P(σ) ∝ e−βE(σ), A.6 boils down to always
accepting the trial configuration if the energy is lowered or remains the
same, ∆E(σ → σ′) = E(σ′) − E(σ) ≤ 0. If the proposed transition in-
creases the energy ∆E(σ → σ′) > 0, then the trial configuration is ac-
cepted with probability e−β∆E(σ→σ′). This last step is realized in practice
by generating a random number r ∈ Uni f orm[0, 1], and accepting the trial
state if r < e−β∆E(σ→σ′).

Besides obviously satisfying the detailed balance condition, the Metropo-
lis algorithm aslo satisfies the ergodicity requirement. Note that in prin-
cipal each configuration can be obtained from any other configuration by
an appropriate succession of single spin flips. As the Metropolis algorithm
applied to the Ising model consists of single spin flips and there is no peri-
odicty in the generated configurations, one can conclude that it is ergodic.

A.2 Wolff Algorithm

The Wolff algorithm [24] is a cluster algorithm that can be used to imple-
ment transititions in the MC simulation of the Ising model. A cluster of
spins is constructed and updated at each move. The move is defined as
follows:

1. From the current configuration of spins σ, select a spin σ0 at random
to be the first spin of the cluster C.

2. Next consider its nearest neighbours. Only if they have the same
spin value, add to the cluster with a probability Padd (and thus ex-
clude equal spins with probability 1− Padd).
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3. Repeat 2 for each spin added to the cluster, visiting all nearest neigh-
bours that are not already in the cluster.

4. The construction process stops automatically when no more spins
are added. All spins in the cluster σi ∈ C are flipped, which yields a
new spin configuration σ′ that is always accepted.

Setting

Padd = 1− e−2βJ (A.8)

ensures that the transition σ → σ′ as defined above satisfies the detailed
balance condition 3.12:

T(σ′ → σ)

T(σ→ σ′)
= e−β(E(σ)−E(σ′)) (A.9)

To see this, first note that the configurations σ and σ′ differ from each other
only by the flip of a single cluster, see figure A.1 for an example. Let m be

Figure A.1: Example of two configurations of spins σ and σ′ on the 2D lattice
that differ by one cluster flip of the Wolff algorithm. The dashed line indicates
the boundary of the cluster that is comprised of equal spins. The encircled spins-
though eligible to be part of the cluster, they are not.

the number of nearest neighbour pairs 〈i, j〉 (bonds) of a spin in the cluster
σi ∈ C and an equal spin outside the cluster σj /∈ C for configuration σ. Let
n be the same quantity for configuration σ′ (in the example of figure A.1
m = 2 and n = 10). Then observe that the transistion probability resulting
from the above procedure for the move σ → σ′ has a lot of factors in
common with the transition probability for the reverse move σ′ → σ, e.g.
selection probability for the seed spin (1/N for a system with N spins)
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and the probability to have the same spins in the cluster(P|C|−1
add ). Actually,

they only differ by factors coming from excluding spins: T(σ → σ′) ∝
(1 − Padd)

m and T(σ′ → σ) ∝ (1 − Padd)
n. So, the ratio in the detailed

balance equation becomes:

T(σ′ → σ)

T(σ→ σ′)
= (1− Padd)

n−m = e−β(E(σ)−E(σ′)) (A.10)

Now, for the Ising model the energy increases +2J for each aligned nearest
neighbour pair that becomes misaligned, while vice verse it decreases by
−2J. The change in energy is then precicely given by E(σ) − E(σ′) =
(n−m)2J. And so one has:

(1− Padd)
n−m = e−2βJ(n−m) (A.11)

from which A.8 follows.
As a sidenote, the fact that the quantities m and n drop out of the de-

tailed balance condition makes Padd independent of the configuration of
spins. Herein lies the difficulty in applying the Wolff algorithm to a model
with a different energy function than that of nearest neighbour interaction.
For a general energy function m and n does not drop out and one would
need to determine them to calculate Padd. The Wolff algorithm would ef-
fectively then reduce to a local update algorithm, losing its advantageous
features.

Besides the detailed balance condition, the Wolff algorithm also satis-
fies the ergodicity criterion. Observe that in principal, each spin configura-
tion can be obtained from any other spin configuration by a finite number
of successive single spin flips. As there is a non-zero chance that the cluster
in the Wolff move only consists of a single spin, there is a finite probabil-
ity that given a configuration any other configuration can be obtained by
a particular succession of Wolff moves. Also, there are no periodicities in
the sequence of configurations generated by the Wolff algorithm.

It is natural to program the Wolff algorithm by means of recursion. We
have adopted a recursive routine from [25]. Let ~x = (x1, x2, .., xd) be the
location of a spin σ~x in the d-dimensional lattice. Then after randomly se-
lecting a seed spin, its spin value σ0 is stored and the rest of the routine for
the MC step is given in pseudocode as follows:
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Function GrowCluster(~x, σ0):
Flip σ~x
Mark σ~x as added to Cluster

Consider neighbouring spin σ~y at y = (x1 + 1, x2, ..., xd)

if σ~y at is not already part of the Cluster then
TryAdd(~y, σ0)

end

...do the same for all other neighbours (x1, x2 + 1, ..., xd)..etc...
end

Function TryAdd(~x, σ0):
if σ~x equal to σ0 then

Generate random number r ∈ Uni f orm[0, 1]
if r < 1− e−2βJ then

GrowCluster(~x, σ0)

end
end

end

A.3 Spin Lattice Domain Decomposition Routine

In order to decompose the lattice of spins into its domains for our AoSD
mapping procedure, we have adopted a routine presented in [25], where it
is given to implement the Swendsen-Wang algorithm (another algorithm
that can be used to simulate e.g. the Ising model). It identifies all the
clusters of a d-dimensional lattice by ’backtracking’ in a recursive way as
follows. Considering a spin site ~x = (x1, x2, .., xd), it is marked as visited
and added to the cluster. Then we consider one of its neighbour and check
if it has been visited already. If not, we check if the neighbour has iden-
tical spin value. If so, then we mark the neighbour as visited, add it to
the cluster and consider its neighbour similarly. By repeating these steps
recursively for all the neighbours and neighbours of neighbours etc., the
cluster of the starting spin is identified. The routine to identify a cluster
of spins is given in pseudocode below. Here, VisitedMap(~x) is a boolean
map of the lattice which keeps track of which sites have already been vis-
ited. FrozenMap(~x, ~y) is a boolean map of all nearest neighbour bonds,
i.e. it returns TRUE if the spins at ~x and ~y have equal spin and FALSE if
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Function BackTrack(~x):
if VisitedMap(~x) is FALSE then

Set VisitedMap(~x) to TRUE

Consider neighbouring spin at y = (x1 + 1, x2, ..., xd)
if FrozenMap(~x, ~y) then

BackTrack(~y)
end

...do same for all other neighbours (x1, x2 + 1, ..., xd)..etc...
end

end

otherwise.
Letting the backtrack routine start with every site in the lattice, all clus-

ters are scanned.

A.4 Source Code

All of the code for the simulations in this thesis were programmed in
Jupyter Notebooks with Python. Below, one can find the links to the full
source code of the various simulations, which are stored on github. Apart
from these, for some simulations (e.g. 1D AoSD mapping), we list some
function definitions here and also provide a link to an exhibition notebook.
These serve as entry-material, for the reader who wants to study the sim-
ulation in detail.

A.4.1 AoSD 1D

The full code (collection of jupyter notebooks) used for the AoSD mapping
in 1D can be found here:

https://github.com/JosephSalaris/AoSD1D/tree/master/AoSD1DfullCode

An exhibition jupyter notebook of the 1D AoSD simulation, which also
visualizes the generated networks, can be found here:

https://github.com/JosephSalaris/AoSD1D/tree/master/AoSD1Dexhibition
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Lastly, below one finds the function definitions needed to contruct a graph
from a configuration of spins in 1D by the AoSD procedure. These are at
the heart of the AoSD simulation and are used in every MC step.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import networkx as nx

4

5 def create_frozen_map(lat):

6 """ Creates a boolean map of (freezes) all bonds (nn

interactions) in the lattice

7

8 Input:

9 lat: dtype numpy array

10 [N] array containing only 1 and -1 values

representing the spin configuration

11

12 Returns:

13 f_map: dtype numpy array

14 [N] boolean array containing True if bond is present

or False if not. For example spin lattice [1, -1, 1, 1]

15 corresponds to f_map [True , True , False , False]

16 """

17 lat = np.array(lat)

18 a = lat[1:]-lat[0:len(lat) -1]; b = lat[0]-lat[len(lat) -1]

19 c = np.append(a,b)

20 f_map = (c == 0)

21 return(f_map)

22

23 def backtrack(x,vis ,fm ,cl):

24 """ Part of the cluster decomposition. It recursively checks

whether neighbouring spin should be added to the cluster

25 """

26 if not vis[x]:

27 vis[x] = True

28 cl.append(x)

29 if fm[x]:

30 vis , cl = backtrack ((x+1)%len(fm),vis ,fm,cl)

31 if fm[(x-1)%len(fm)]:

32 vis , cl = backtrack ((x-1)%len(fm),vis ,fm,cl)

33 return(vis ,cl)

34

35 def cluster_decomp(lat):

36 """ Decomposes the spin lattice into clusters , i.e. creates list

of cluster arrays. A cluster array contains the indices of

37 the spins in a cluster

38

39 Input:

40 lat: dtype numpy array

41 [N] array containing only 1 and -1 values

representing the spin configuration

42
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43 Returns:

44 cls: dtype list

45 list of cluster arrays. Each cluster array contains

the indices of the spins in that cluster

46 """

47 visited = np.full((len(lat)), False)

48 frozen_map = create_frozen_map(lat)

49 #zeros = np.where(np.array(lat)==0) [0]

50 #tried = dict.fromkeys(zeros ,False)

51 cls = []

52 for i in range(len(lat)):

53 clu = []

54 visited , clu = backtrack(i,visited ,frozen_map ,clu)

55 if len(clu) > 0:

56 cls.append(clu)

57 return(cls)

58

59 def create_boundary_graph(lat):

60 """ Create boundary graph (collection of nodes) corresponding to

the spin lattice

61

62 Input:

63 lat: dtype numpy array

64 [N] array containing only 1 and -1 values

representing the spin configuration

65

66 Returns:

67 bdGr: dtype networkx graph

68 boundary graph

69 """

70 n_nodes = len(lat)

71 bdGr = nx.Graph ()

72 for i in range(N):

73 bdGr.add_node(i)

74 return(bdGr)

75

76 def construct_graph(lat ,bdGr):

77 """ Construct graph from spin lattice according to the AoSD

procedure

78

79 Input:

80 lat: dtype numpy array

81 [N] array containing only 1 and -1 values

representing the spin configuration

82

83 bdGr: dtype networkx graph

84 graph containing the boundary nodes (i.e. as

constructed by the function ’create_boundary_graph ’)

85

86 Returns:

87 Gr: dtype networkx graph

88 AoSD graph

89 """
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90 lats = []; lats.append(lat)

91 shell = 0; n_nodes_shell = len(np.array(lats[shell])); add = 0

92 Gr = bdGr.copy()

93 CGP_step1 = True

94 while(n_nodes_shell >1):

95 new_lat = []

96 if CGP_step1:

97 # perform step 1 of the coarse grain procedure (create

domain branches)

98 clusters = cluster_decomp(lats[shell ])

99 # go through clusters

100 for i in range(len(clusters)):

101 value = 0

102 n_Gr = nx.number_of_nodes(Gr); Gr.add_node(n_Gr)

103 for j in clusters[i]:

104 value += lats[shell][j]

105 Gr.add_edge(n_Gr ,j+add)

106 new_lat.append(value)

107 CGP_step1 = False

108 else:

109 # peform step 2 of the coarse grain procedure (average

over domains)

110 for k in np.arange(0,n_nodes_shell ,2):

111 value = 0

112 n_Gr = nx.number_of_nodes(Gr); Gr.add_node(n_Gr)

113 #print(’n_Gr ’, n_Gr)

114 #print(’k’,k+add)

115 value = lats[shell][k]+lats[shell][k+1]

116 if value == 0:

117 value = np.random.choice ([-1,1])

118 else:

119 value = value/abs(value)

120 Gr.add_edge(n_Gr ,k+add); Gr.add_edge(n_Gr ,k+1+ add)

121 new_lat.append(value)

122 CGP_step1 = True

123 lats.append(new_lat)

124 shell += 1

125 add += n_nodes_shell; n_nodes_shell = len(np.array(lats[

shell]))

126 return(Gr)

127

128 N = 50 # Global parameter denoting the number of spins (boundary

nodes)

129 lattice = np.ones(N)

130 bdG = create_boundary_graph(lattice)

131 G = construct_graph(lattice , bdG)

132 nx.draw(G)
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A.4.2 AoSD 2D

The full code (collection of jupyter notebooks) used for the AoSD mapping
in 2D can be found here:

https://github.com/JosephSalaris/AoSD2D/tree/master/AoSD2DfullCode

An exhibition jupyter notebook of the 1D AoSD simulation, which also
visualizes the generated networks, can be found here:

https://github.com/JosephSalaris/AoSD2D/tree/master/AoSD2Dexhibition

A.4.3 RGb 1D

The full code (collection of jupyter notebooks) used for the RGb mapping
in 1D can be found here:

https://github.com/JosephSalaris/RGb1D/tree/master/RGb1DfullCode

An exhibition jupyter notebook of the 1D RGb simulation, which also vi-
sualizes the generated networks, can be found here:

https://github.com/JosephSalaris/RGb1D/tree/master/RGb1Dexhibition

Below one finds the function definitions needed to contruct a graph from a
configuration of spins in 1D by the RGb procedure. These are at the heart
of the RGb simulation and are used in every MC step.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import networkx as nx

4

5 def RGgraph_skeleton ():

6 """ Creates boundary graph (collection of nodes) corresponding

to the spin lattice , and the ’bare’ tree graph

7

8 Returns:

9 bdG: dtype networkx multigraph

10 boundary graph

11

12 bulkG: dtype networkx multigraph

13 ’bare’ tree graph , i.e. the boundary + bulk tree

graph that serves as a skeleton for the RGb graph

14 """

15 # Boundary graph
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16 bdG = nx.MultiGraph ()

17 for i in range(N):

18 bdG.add_node(i)

19 # Bulk graph

20 n_nodes_shell = N; add = 0

21 bulkG = bdG.copy()

22 while n_nodes_shell > 1:

23 for k in np.arange(0,n_nodes_shell ,2):

24 n_Gr = nx.number_of_nodes(bulkG); bulkG.add_node(n_Gr)

25 bulkG.add_edge(n_Gr ,k+add); bulkG.add_edge(n_Gr ,k+1+add)

26 add += n_nodes_shell

27 n_nodes_shell //= 2

28 return(bdG , bulkG)

29

30 def RGlats_skeleton ():

31 """ Creates the ’bare’ shells of the RGb graph. That is , a list

of spin lattices of decreasing size in accordance with the

32 branching factor 2, that serve as ’skeleton lattices ’ that

can be modified by the RGb procedure

33

34 Returns:

35 lats: dtype list

36 list of lattice arrays. They serve as the initial

spin lattices that constitute the shells of the RGb graph

37 """

38 lats = []; lats.append(np.zeros(N))

39 n_nodes_shell = N

40 while n_nodes_shell > 1:

41 n_nodes_shell //= 2

42 new_lat = np.zeros(n_nodes_shell)

43 lats.append(new_lat)

44 return(lats)

45

46 def create_frozen_map(lat):

47 """ Creates a boolean map of (freezes) all bonds (nn

interactions) in the lattice

48

49 Input:

50 lat: dtype numpy array

51 [N] array containing only 1 and -1 values

representing the spin configuration

52

53 Returns:

54 f_map: dtype numpy array

55 [N] boolean array containing True if bond is present

or False if not. For example spin lattice [1, -1, 1, 1]

56 corresponds to f_map [True , True , False , False]

57 """

58 lat = np.array(lat)

59 a = lat[1:]-lat[0:len(lat) -1]; b = lat[0]-lat[len(lat) -1]

60 c = np.append(a,b)

61 f_map = (c == 0)

62 return(f_map)
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63

64 def construct_graph(lat , lats , Gr):

65 """ Construct graph from spin lattice according to the RGb

procedure

66

67 Input:

68 lat: dtype numpy array

69 [N] array containing only 1 and -1 values

representing the spin configuration

70

71 lats: dtype list

72 list containing the initial spin lattices that

constitutes the shells of the graph (i.e. as constructed by the

73 function ’RGlats_skeleton ’)

74

75 Gr: dtype networkx multigraph

76 ’bare’ tree graph that serves as the ’skeleton ’ for

the RGb graph (i.e. as constructed by the function

77 ’RGgraph_skeleton ’)

78

79 Returns:

80 Gr: dtype networkx multigraph

81 RGb graph

82 """

83 n_nodes_shell = N; shell = 0

84 add = 0

85 Gr = Gr.copy()

86 while shell < len(lats):

87 lats[shell] = lat

88 if shell == (len(lats) -1):

89 break

90

91 # Update RG graph accordingly:

92 frm = create_frozen_map(lat)

93 idx = np.where(frm== False)

94 for i in idx [0]:

95 Gr.add_edge(i+add , (i+1)%n_nodes_shell+add)

96 add += n_nodes_shell

97

98 # Do RG step:

99 old_lat = lat

100 n_nodes_shell //= 2

101 lat = lat.reshape(n_nodes_shell , 2)

102 lat = np.sum(lat , axis =1)

103 # Deal with ties:

104 idx_zeros = np.where(lat ==0)

105 old_idx_zeros = tuple ([2*i for i in idx_zeros ])

106 lat[idx_zeros] = old_lat[old_idx_zeros] #np.random.choice

([1,-1], size=len(idx_zeros [0]))

107 lat = lat/abs(lat)

108

109 shell += 1

110 return(Gr)
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111

112 N = 16 # Global parameter denoting the number of spins (boundary

nodes)

113 lattice = np.ones(N)

114 bdG , initG = RGgraph_skeleton ()

115 lattices = RGlats_skeleton ()

116 G = construct_graph(lattice , lattices , initG)

117 nx.draw(G)

A.4.4 RGb 2D

The full code (collection of jupyter notebooks) used for the RGb mapping
in 1D can be found here:

https://github.com/JosephSalaris/RGb2D/tree/master/RGb2DfullCode

An exhibition jupyter notebook of the 1D RGb simulation, which also vi-
sualizes the generated networks, can be found here:

https://github.com/JosephSalaris/RGb2D/tree/master/RGb2Dexhibition
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Appendix B
Autocorrelation Time and Error

Correlations between successive samples generated by the Markov Chain
Monte Carlo simulation can be analyzed from the autocorrelation func-
tion. Given an observable A, the autocorrelation function reads:

C(t) =
∫

dt′
(

A
(
t′
)
− 〈A〉

) (
A
(
t + t′

)
− 〈A〉

)
(B.1)

As C(t) measures the correlation between observed values for A and a de-
layed copy of A separated by a time t, it is also called the ’time correlation
function’. For obvious reasons (time is discrete with the MC simulation),
we use the discretized version:

C(t) =
1

nmax − t

(
nmax−t

∑
n=0

A(n)A(n + t)−
nmax−t

∑
n=0

A(n)×
nmax−t

∑
n=0

A(n + t)

)
(B.2)

The ’time’ is measured in the number of moves of whichever algorithm
one is using. As an example, the autocorrelation function of the number
of cross-edges e–encountered in the 2D RGb mapping–is shown for a few
temperatures in figure B.1.

We make the reasonable assumption that the autocorrelation function
decays exponentially, CA(t)/CA(0) ≈ e−t/τ. The correlation time τ can
be used to calculate the standard deviation σ for correlated data. Because
correlated samples are not statistically independent, the usual estimate for
the standard deviation that one obtains from simulation, σ̄ =

√
Ā2 − Ā2

(see 3.14), is not correct. Instead, for the true standard deviation σ, one has
an additional term:

σ2 = σ̄2 + 2
nmax

∑
n<m=0

σ̄nm (B.3)
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104 Autocorrelation Time and Error

Figure B.1: Autocorrelation function of the number of cross-edges e, which is an
observable encounterd in the RGb mapping of the 2D Ising model, is shown for a
few temperatures.

where σ̄nm are corresponding covariances A(n)A(m)− A(n)A(m). Noting
that

nmax

∑
t=0

C(t)/C(0) =
nmax

∑
t=0

e−t/τ ≈ τ (B.4)

and that in fact C(0) = σ̄2, one can show [27, 28] that for large nmax the
second term in (B.3) is equal to 2τσ̄. Thus, the proper standard error in
calculated averages Ā is given by:

σ = σ̄
√

1 + 2τ (B.5)

We have computed the correlation time by using a linear fit to the cor-
relation function on a semi-log plot, see the code B and figure B.2 below.
The correlation time is then determined from the slope. We have auto-
mated the process of selecting an interval for the fit, by selecting increas-
ingly smaller intervals untill a certain accuracy (correlation coefficient cor-
responding to the r-value of the linear regression) is obtained. In practice,
this meant starting with the interval [0, tend], where tend is initially set to
the time for which C(t) < 0, and from there decreasing tend. In the case of
finding an initial value of tend < 3, we automatically set τ = 0. The drop-
off in C(t) is then so fast that time correlations are virtually nonexistent.

104



105

Listing B.1: Code to calculate correlation time
1 import matplotlib.pyplot as plt

2 import matplotlib.cm as cm

3 import numpy as np

4 import pickle

5 import scipy.stats as sc

6

7 # Read correlation function data:

8 CorrData = pickle.load(open(’2DcorrData.p’, ’rb’))

9 possibleScales = CorrData[’possibleScales ’]; temperatures = CorrData

[’temperatures ’];

10 LcorrNEGdata = CorrData[’LcorrNEGdata ’] # The observables used for

this example: Number of Edges in Graph

11

12 i = 2 # scale index

13 j = 30 # temperature index

14 L = possibleScales[i]

15 T = temperatures[j]

16 t = np.arange(len(LcorrNEGdata [0][0]))

17

18 def corr_time(corr , acc):

19 ’’’ Automatically fits the correlation function to an

exponention function and finds the decay length

20

21 Parameters:

22 corr: dtype numpy array

23 The correlation function of a data set

24

25 Returns: dtype float

26 The decay length of the exponential fit ’’’

27

28 t = np.arange(len(corr))

29 l = 0; k = np.argmax(corr <0) -1

30 corr_decay = np.log(corr[l:k])

31

32 slope , cep , r_val , _, err = sc.linregress(t[l:k], corr_decay)

33

34 while r_val**2<acc:

35 k -= 1

36 slope , cep , r_val , _, err = sc.linregress(t[l:k], corr_decay

[:k])

37

38 plt.plot(t[l:k],corr_decay [:k],label=’$\mathrm{ln(C_e(t))}$’)

39 plt.plot(t[l:k],cep+slope*t[l:k],ls=’dashed ’,c=’r’,label=’fit’)

40 plt.xlabel(’t’)

41 plt.legend ()

42 plt.savefig(’RGb2DCorrTimeFit ’)

43 plt.show()

44 tau = -1/slope

45 return(tau)

46

47 print(’L = %d, T = %.2f’%(L,T))

48 tau = corr_time(LcorrNEGdata[i][j], 0.98)
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49 print(’tau = %d’%(tau))

Figure B.2: Semi-log plot of the autocorrelation function Ce and corresponding
linear fit.

In computing the correlation time of an observable using a temperature
mesh {.., Ti, ..}, we found that the variation of τ with T to be somewhat
unreliable. Near criticality τ(T) was usually found to be largest, however
using temperatures successively closer to the critical temperature Tc did
not necessary result in successively larger correlation times. One could
probably solve this issue by using larger temperature intervals, but we
wanted to simulate the system with a temperature mesh that was dense
around Tc. In the end we decided to use the largest correlation time found
over the different temperatures: τmax = max{.., τ(Ti), ..}, to compute the
error for all temperatures. Hence, the standard error we used is:

σ = σ̄
√

1 + 2τmax (B.6)

and so for some temperatures (especially for T away from Tc) the error is
overestimated.
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Appendix C
Effect of Random Tie Breaker in
AoSD Mapping

In our AoSD mapping, we used a random tie breaker in assigning spin
values to the spins/nodes created by step 2 of the network construction
procedure. Here, we explore if this ’added randomness’ has any signifi-
cant effect on the thermodynamics of the network model.

In step 1 of the procedure, domains of equal spins are bundled together
to form new nodes/spins. The spin value of these nodes are given by the
sum of the spins in the respective domains they are connected to. Next,
in step 2 of the procedure, these nodes are grouped together in pairs to
once again form new nodes. The nodes created by step 2, receive a spin
value ±1, where the sign is determined by whichever of the two spins
they are connected to is larger in magnitude. Hence, ties only occur if the
spins grouped together in step 2, are connected to domains of equal size in
step 1. One might think that this does not happen very often and that the
likelyhood of such an event becomes negligible when moving on to larger
scales. In order to find out if this is the case, we kept track of the relative
frequency in which ties occur (number of ties normalized by the number
of times step 2 was performed) in our 1D AoSD simulation. See figure C.1.
We observe that the frequency of ties is significant, especially for higher
temperatures, where ties occur around 30% of the time. Also, increasing
the scale does not lead to a diminished frequency.

Though the frequency of ties–and thus the number of times a part of
the network is constructed randomly–is not negligible, the effect it has on
the model may well be insignificant. To check if this is so, we performed a
simulation of our 1D AoSD model where instead of the random tie breaker
the sign of the spin in step 2 was chosen specifically (the spin inherited the
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Figure C.1: Relative frequency of ties occuring in step 2 of the 1D AoSD construc-
tion procedure. They are obtained from (the 1D Ising) simulation, performed
with different scales and using m = 2.5× 104 samples for each temperature.

sign of the most clockwise spin). Figure C.2 shows how the entropies com-
pare. We observe that the entropies of the model with and without the use
of the random tiebreaker practically overlap for all scales. The difference
∆ = |Sspeci f ic − Srandom|, as shown in the inset, is not larger than 3× 10−2

for the largest scale used. We conclude that the effect of the use the random

Figure C.2: They are obtained from (the 1D Ising) simulation, performed with
different scales and using m = 2.5× 104 samples for each temperature.
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tiebreaker to the model’s entropy is subleading and does not significantly
alter our results.

109





Acknowledgements

First and foremost I would like to thank my supervisors Koenraad Schalm
and Diego Garlaschelli, for granting me the opportunity to do a–in my
opinion–very original and multifaceted project. I would like to thank them
for their supervision and the many discussions we had during our meet-
ings. I would also like to thank the researchers and staff at the Lorentz In-
stitute, and my fellow master students with whom I discussed my project,
in particular Ahmad Jamalzada for suggesting parallel computing which
literally saved hours of simulation time.

111





Bibliography

[1] Event Horizon Telescope Collaboration et al. First m87 event hori-
zon telescope results. i. the shadow of the supermassive black hole.
Astophysical Journal Letters, 875(1), 2019.

[2] J. D. Bekenstein. Black holes and entropy. Phys. Rev. D, 7:2333–2346,
Apr 1973.

[3] S. W. Hawking. Particle creation by black holes. Comm. Math. Phys.,
43(3):199–220, 1975.

[4] G. ’t Hooft. Dimensional reduction in quantum gravity. Conf. Proc. C,
930308:284–296, 1993.

[5] L. Susskind. The world as a hologram. Journal of Mathematical Physics,
36(11):6377–6396, 1995.

[6] J. M. Maldacena. The Large N limit of superconformal field theories
and supergravity. Int. J. Theor. Phys., 38:1113–1133, 1999.

[7] H. Yan. Hyperbolic fracton model, subsystem symmetry, and holog-
raphy. Physical Review B, 99(15), Apr 2019.

[8] M. Gromov. Hyperbolic Groups, pages 75–263. Springer New York,
New York, NY, 1987.

[9] S. W. Hawking and D. N. Page. Thermodynamics of black holes in
anti-de sitter space. Comm. Math. Phys., 87(4):577–588, 1982.

[10] A. Cayley. Xxviii. on the theory of the analytical forms called trees.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 13(85):172–176, 1857.

113



114 BIBLIOGRAPHY

[11] H. Matsuda. Infinite susceptibility without spontaneous magnetiza-
tionexact properties of the ising model on the cayley tree. Progress of
Theoretical Physics, 51(4):1053–1063, 1974.

[12] T. P. Eggarter. Cayley trees, the ising problem, and the thermody-
namic limit. Phys. Rev. B, 9:2989–2992, Apr 1974.

[13] J. von Heimburg and H. Thomas. Phase transition of the cayley
tree with ising interaction. Journal of Physics C: Solid State Physics,
7(19):3433, 1974.

[14] E. Müller-Hartmann and J. Zittartz. New type of phase transition.
Phys. Rev. Lett., 33:893–897, Oct 1974.

[15] M. Ostilli. Cayley trees and bethe lattices: A concise analysis for
mathematicians and physicists. Physica A: Statistical Mechanics and
its Applications, 391(12):3417 – 3423, 2012.

[16] M. Kurata, R. Kikuchi, and T. Watari. A theory of cooperative phe-
nomena. iii. detailed discussions of the cluster variation method. The
Journal of Chemical Physics, 21(3):434–448, 1953.

[17] C. Domb. On the theory of cooperative phenomena in crystals. Ad-
vances in Physics, 9(34):149–244, 1960.

[18] E. Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für
Physik, 31(1):253–258, Feb 1925.

[19] R. J. Baxter. Exactly solved models in statistical mechanics. Academic
Press Limited, London, 1982.

[20] H. A. Bethe. Statistical theory of superlattices. Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences,
150(871):552–575, 1935.

[21] R. Peierls. On ising’s model of ferromagnetism. Mathematical Proceed-
ings of the Cambridge Philosophical Society, 32(3):477–481, 1936.

[22] S. R. A. Salinas. The Ising Model, pages 257–276. Springer New York,
New York, NY, 2001.

[23] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21(6):1087–1092, 1953.

114



BIBLIOGRAPHY 115

[24] U. Wolff. Collective monte carlo updating for spin systems. Phys. Rev.
Lett., 62:361–364, Jan 1989.

[25] J. Thijssen. Computational Physics. Cambridge University Press, 2 edi-
tion, 2007.

[26] M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical
Physics. Clarendon Press, 1999.

[27] V. Ambegaokar and M. Troyer. Estimating errors reliably in monte
carlo simulations of the ehrenfest model. American Journal of Physics,
78(2):150–157, 2010.

[28] A. K. Hartmann and H. Riegr. Optimization Algorithms in Physics. John
Wiley & Sons, Ltd, 2003.

[29] D. Frenkel. Free-energy computation and first-order phase transi-
tions. Molecular-dynamics simulation of statistical-mechanical systems:
proceedings of the 97th international school of physics ”Enrico Fermi”,
pages 151–188, 1986.

[30] I. R. McDonald and K. Singer. Machine calculation of thermodynamic
properties of a simple fluid at supercritical temperatures. The Journal
of Chemical Physics, 47(11):4766–4772, 1967.

[31] C. H. Bennett. Efficient estimation of free energy differences from
monte carlo data. Journal of Computational Physics, 22(2):245 – 268,
1976.

[32] G.M. Torrie and J.P. Valleau. Nonphysical sampling distributions in
monte carlo free-energy estimation: Umbrella sampling. Journal of
Computational Physics, 23(2):187 – 199, 1977.

[33] A. M. Ferrenberg and R. H. Swendsen. New monte carlo technique
for studying phase transitions. Phys. Rev. Lett., 61:2635–2638, Dec
1988.

[34] A. M. Ferrenberg and R. H. Swendsen. Optimized monte carlo data
analysis. Phys. Rev. Lett., 63:1195–1198, Sep 1989.

[35] S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A.
Kollman. The weighted histogram analysis method for free-energy
calculations on biomolecules. i. the method. Journal of Computational
Chemistry, 13(8):1011–1021, 1992.

115



116 BIBLIOGRAPHY

[36] J. Wang and R. H. Swendsen. Transition matrix monte carlo method.
Journal of Statistical Physics, 106(1):245–285, Jan 2002.

[37] J. Lee. New monte carlo algorithm: Entropic sampling. Phys. Rev.
Lett., 71:211–214, Jul 1993.

[38] F. Wang and D. P. Landau. Efficient, multiple-range random walk
algorithm to calculate the density of states. Phys. Rev. Lett., 86:2050–
2053, Mar 2001.

[39] S. Bi and N. Tong. Monte carlo algorithm for free energy calculation.
Phys. Rev. E, 92:013310, Jul 2015.

[40] R. H. Swendsen and J. Wang. Nonuniversal critical dynamics in
monte carlo simulations. Phys. Rev. Lett., 58:86–88, Jan 1987.

[41] O. Diego, J. Gonzalez, and J. Salas. The ising model on tetrahedron-
like lattices: a finite-size analysis. Journal of Physics A: Mathematical
and General, 27(9):2965–2983, may 1994.

[42] Ch. Hoelbling, A. Jakovac, J. JersÃ¡k, C.B. Lang, and T. Neuhaus. Spin
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